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ABSTRACT

Computer modeling to estimate material properties, design them/bio sen-
sors, and evaluate protein-protein interactions all require solving force field
equations for molecular structures that contain tens of thousands of cova-
lently connected atoms. Potential energy minimization is a key step in the
calculation, but stiff covalent bonding forces make optimization difficult and
expensive. This two-year LDRD developed two classes of advanced mini-
mization algorithms that were specialized for chemistry applications and dis-
tributed computing machines. The project led to two successful algorithms
that were implemented in three Sandia computational chemistry codes to
support various users.

*email: tdplantQca.sandia. gov
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Parallel Computational

Final Report, LDRD

1 Introduction

Chemistry Using Constraints:

97-0301, Case 3504140000

This report summarizes the results of a two-year LDRD effort. The LDRD proposed to
design and study new algorithms for providing a potential energy minimization capability in
Sandia computational chemistry codes. The effort led to collaborations between computational
chemists and optimization algorithm specialists. In the end, two advanced algorithms were
implemented in three Sandia codes: LAMMPS [1], CCEMD [2], and DEMoS*.

Technical accomplishments of this project are described in depth in other Sandia publica-
tions [3, 4, 5], This report provides a comprehensive description of the diverse activities funded
by the LDRD, and their likely impact on future projects. Recent project information can be
viewed on the Internet at http://midway. ca. sandia.gov/~ tdplant/compchem/main. html.

2 Technical Goals and Achievements

Energy minimization is an essential step for studying polymer material properties, them/bio
sensors, and protein-protein docking, Chemistry studies are usually based on dynamic simula-
tions, and these require equilibrium structures of minimal energy before they can be started.
For example, the rate of diffusion for water through a butyl rubber O-ring can be estimated by
constructing butyl rubber samples and simulating the motion of water molecules down a con-
centration gradient [15]. Polymer samples are constructed from statistical rules and populated
with randomly placed water molecules, The samples invariably have regions of compression
or distortion that must be “relaxed” before a realistic simulation can be executed. Energy
minimization is the most effective means of relaxing molecules into a natural conformation.
Another import ant application of minimization is to characterize confirmational possibilities
between interacting molecules. Many chemical reaction properties depend on the structural
shape of the interacting molecules. At room temperature the shapes change continually by
hopping between energy minima that are not separated by high energy barriers. Thus, an
interaction can be studied if relevant local energy minima are identified.

Potential energy minimization is computationally difficult when atoms are covalently con-
nected, as is the case with all proteins and polymers. Covalent bonding forces are modeled as
stiff mechanical springs, but much weaker long range coulomb forces are the prime determinant
of three-dimensional structure. The force mismatch causes numerical ill-conditioning that be-
comes worse as molecules become larger. Standard minimization techniques do not perform
well on ill-conditioned systems, and energy minimization is often viewed as the bottleneck in
large-scale computational studies. Special minimization techniques for small molecules have
been investigated by other researchers [6, 7, 8, 9, 10, 11, 12], but not extended to the larger
and more ill-conditioned problems considered in this project.

The goals of this project were to develop state-of-the-art, large-scale optimization methods
appropriate for ill-conditioned potential energy modeling, apply them to distributed machines,

*CarlMelius, SNL/CA, Dept. 8130, email: meliusQsandia.gov.
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and provide a practical minimization capability for computational chemistry applications at
Sandia, Two different algorithmic paths were taken to meet these objectives: a Newton-like
method called TNCG which reduces ill-conditioning with indirect curvature information, and
a constrained optimization approach called SQP that replaces covalent bond “springs” with
semi-rigid rods. Together, the two algorithms provide complementary solutions for molecular
calculations on various machines.

2.1 Unconstrained TNCG algorithm

The project originally addressed two Sandia codes for computational chemistry: CCEMD
[2], a C language program for workstations, and LAMMPS [1], a Fortran program for data-
parallel machines such as the Intel Teraflop and Paragon. CCEMD is used in Dept. 8130
to examine proteins for them/bio sensors and drug docking applications. LAMMPS is used
in Depts. 9221 and 9225 to study polymer materials and biological membranes. Originally,
both codes relied on a “textbook” nonlinear conjugate gradient algorithm [13, 54.1] for energy
minimization, This method is easy to implement and has small memory requirements (a major
consideration for systems with thousands of atoms), but is predictably slow on ill-conditioned
problems and occasionally fails to converge at all. CCEMD also contained a quasi-Newton,
DFP algorithm that performed better, but required excessive memory on large problems.

A properly implemented Newton-like algorithm should converge faster and more reliably.
Newton methods construct a quadratic model of the energy potential using first and second
partial derivatives; however, an n-atom system has 0(n2) second derivatives, a prohibitively
large number when n exceeds 1000. Conjugate gradient provides an indirect way of handling

●

second derivatives without actually computing them. With proper safeguarding, the conju-
gate gradient inner iteration can be stopped after a few loops to save time. It produces an f

approximate Newton solution, and the algorithm is known as a ‘{truncated” Newton method
utilizing conjugate gradient (TNCG). Reliable convergence is obtained by adding a trust region
constraint [14]. Table 2.1 provides an illustration of how much faster energy minimization was
accomplished with the new method.

Versions of TNCG have appeared in the literature [6, 7, 8], but only for single processor
machines. The TNCG algorithm is organized around vectors that correlate strongly with force
vectors computed from the potential energy; hence, TNCG can be implemented on parallel

Table 2.1: Comparison of Algorithms on CCEMD

Molecule Num atoms ~ Old NLCG Old DFP New TNCG
1

P21 172 3,600 sec 600 sec 770 sec
lROP 455 15,000 sec 9,020 sec 4,990 sec
3CHY 979 49,700 sec 54,100 sec 12,100 sec
153L 1432 202,000 sec t 33,600 sec

The new TNCG minimization algorithm developed under this project converges more quickly than the
old algorithms in CCEMD. NLCG is nonlinem conjugate gradient, easy to implement but inefficient.
DFP is the Davidon-Fletcher-Powell quasi-Newton method, which performs well on small molecules but
requires 0(n2) memory; consequently, it runs much slower on large problems. TNCG has solved problems
with 50)000 atoms in its distributed processing LAMMPS form.

t Still not converged after 400,000 seconds.
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processors by following the force vector distribution pattern. This was done to create a parallel
version of TNCG for LAMMPS. The algorithm was tuned for optimal performance on the
Teraflop machine, and converged reliably while consuming only 5% of problem execution time.
SAND report 98-8201 [3] describes this work in detail.

Recently, the TNCG algorithm was also incorporated into the next generation Sandia
computational chemistry code, DEMoS (Distributed Extensible Molecular Simulation). The
algorithm was redesigned as Java classes that interface with the InDEPS framework on which
DEMoS is based. Acceptance testing is currently underway. The redesign effort was small
(done by a summer intern), thanks in part to the use of object oriented software engineering
principles. The TNCG algorithm now exists as a C program in CCEMD for workstations, a
Fortran subroutine in LAMMPS for the Teraflop, and a Java code in DEMoS for heterogeneous
distributed architectures.

TNCG is robust and scalable, and has enabled computations for polymers at the meso-
scopic scale that were previously considered intractable [15]. Nevertheless, convergence to a
minimum still takes a long time due to the extreme ill-conditioning in large problems. In
1998 a collaboration was established with the Optimization Technology Center (OTC) at Ar-
gonne National Laboratory and Northwestern University to explore enhancements based on
limited memory BFGS approximations (L-BFGS). An experimental L-BFGS preconditioned
[16] was added to the inner conjugate gradient loop of TNCG. Initial testing shows a 3- to
5-fold speedup, and the design should adapt easily for parallel computing [5]. Detailed testing
of this option is continuing.

2.2 Constrained SQP algorithm

A second class of optimization algorithm was developed in the project to address ill-
conditioning in a different way. As mentioned earlier, the conditioning results from a mismatch
in force magnitudes between long range coulomb interactions and short range covalent bonds.
Bonds are modeled as stiff mechanical springs that cause small, high speed oscillations during
minimization. The shape of a minimum energy structure is ultimately determined by weaker
long range forces, but their action is perturbed by the spring forces. The stiffness is such that
springs in a minimum energy structure are rarely stretched more than a slight amount from
their natural rest position; hence, a reasonable approximation is to replace the springs with
rigid rods that fix the bonds in nominal positions. It turns out that even when all covalent
bonds and valence angles are fixed, polymer molecules still have enough rotational degrees of
freedom to reasonably model chemical interactions. Fixed bonds are routinely used in molec-
ular dynamics simulations [17, $3.4], and they beneficially reduce the search space of possible
conformations to a physically relevant subset [18].

Dynamics simulations commonly obtain only a 3-fold speedup, and it is usually assumed
energy minimization can do no better. The new algorithm developed in this project achieved
a 4- to 8-fold speedup because it allowed rigid rods to flex during intermediate stages of mini-
mization. The new algorithm also dealt with scaling issues more successfully than conventional
ideas [9, 10, 11, 12], though difficulties remain.

Mathematically, rigid rods translate to holonomic constraint equations that must be sat-
isfied when minimization finishes. Thus, an optimization problem with quadratic constraints
must be solved. The number of constraints is large: an n-atom protein has 3n unknowns (the
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Cartesian coordinates of each atom) and on the order of 2.5n constraints. An advanced algo-
rithm suitable for this class of problem is sequential quadratic programming (SQP), a Newton-
Iike method. SQP algorithms invariably require solution of two or more linear systems, and it
is crucial for scalability that these systems be kept sparse. A special implementation of SQP
tailored to covalent molecules with distance constraints was able to accomplish these goals.

The linear system involving second derivatives was solved indirectly using the same trick
as TNCG: an inner conjugate gradient iteration. Each inner iteration now requires “precon-
ditioning” to make intermediate structures satisfy a linear approximation of the constraint
equations. This preconditioned is a second linear system derived from the constraint Jacobian
matrix. The Jacobian is very sparse and can be arranged into a nearly block diagonal form.
Since this linear system is solved so many times, a sparse factorization is computed once per
outer iteration and saved for reuse.

Testing revealed that another important factor for good algorithm performance is proper
choice of the constraint set. There is usually considerable freedom in which distances to fix,
and a poor choice can introduce new ill-conditioning into the constraint Jacobian. A satisfac-
tory procedure was devised that uses QR factorization to automatically choose constraints in
proteins [4].

Together, the algorithmic enhancements to SQP resulted in a successful implementation
in CCEMD. Figure 2.1 demonstrates the effect of eliminating ill-conditioning. SQP finds a
constrained local energy minimum 4- to 8- times faster than TNCG. Of course, a constrained
minimum is only an approximation to the unconstrained solution, but in many applications
the approximation is justified. This work is described more fully in [4].
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Figure 2.1: Constraints eliminate ill-conditioning

energy reduction is plotted as a function of execution time for the unconstrained TNCG (top)
and constrained SQP (bottom) algorithms. Each graph superimposes results from 20 different starting
conformations of the 455-atom protein lROP. In general, each starting conformation leads to a different
local minimum. The end of each algorithm run is shown by a circle. Unconstrained minimization
exhibits long irregular “plateau” regions where little progress is made, which indicates ill-conditioning.
Constraints eliminate the plateaus, but final energies (measured in kcal/mol) are not as low because
bonds are fixed.
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Attempts were made to port the SQP algorithm to LAMMPS for parallel processing. The
intent was to solve the Jacobian linear system using Sandia’s AZTEC software package [19].
AZTEC’s solvers work efficiently, but require a distribution of matrix elements among proces-
sors that conflict with the distribution used by LAMMPS. Thus, there are two implementation
opt ions:

. Support the LAMMPS distribution for the Jacobian matrix and force AZTEC to use it.
Saves on memory and communication costs, but AZTEC cannot achieve optimal load
balancing.

. Support two distinct distributions for the Jacobian matrix. Gives good load balancing
in AZTEC and LAMMPS, but requires twice as much memory, and significant commu-
nicantion overhead to keep the two distributions consistent.

Unfortunately, neither of these gave reasonable performance. Communication costs were very
high, and the huge number of linear solves involving the Jacobian did not permit any compro-
mise in AZTEC performance. To date, no version of the SQP algorithm has been released for
LAMMPS.

3 Review of the Program

Customers for the project were identified as computational chemists at both SNL/CA and
SNL/NM. Collaborations with both groups were established early in FY97: Richard Judson
and Carl Melius (Dept. 8130), Steve Plimpton (Dept. 9221), and Jean-Loup Faulon (Dept.
9225). A representative set of ten test problems was obtained, ranging in size from 172 to
48,388 atoms. Minimization performance on these problems was used throughout the project
as the yardstick for measuring progress.

The initial LDRD plan was to concentrate on the constrained optimization approach, but
it turned out there was substantial customer demand for a reliable unconstrained minimizer.
Thus, TNCG was developed first, in CCEMD and LAMMPS. In retrospect, this served as a
useful introduction to the chemistry application source codes and supercomputer programming
environments. The basic TNCG algorithm was delivered by Summer of 1997 and used immedi-
ately by the customers. Further TNCG work in FY98 was largely provided by student interns
(Manoj Viswanathan, Genetha Gray, and Katherine Hegewisch), and OTC collaborators. This
work included porting TNCG to the DEMoS code, and investigating advanced preconditioners.

The constrained optimization SQP algorithm was developed simultaneously beginning in
Spring of 1997. The computational kernel was built around a prototype code known as ETR
[20]. This Fortran code was first wrapped and connected to CCEMD, but later rewritten in
C for cleaner interfacing. The single processor CCEMD implementation was used to develop
algorithmic enhancements described in $2.2, and it performed well. The Fortran version of
ETR was ported to LAMMPS in FY98, but never achieved a satisfactory performance level,
as explained earlier. The project did succeed in identifying precise reasons for poor execution
on distributed architectures, so a better approach can be designed for DEMoS.

OTC collaborations were begun in Spring of 1998. Progress was made on two different
fronts: investigation of advanced optimization algorithms appropriate for energy minimization
problems, and implementation of a novel client/server distributed computing framework for
optimization problem solving. The algorithm work resulted in development of the L-BFGS
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preconditioned described earlier. It also produced a general-purpose, public domain, nonlinear
programming code built around the ETR kernel, The client/server framework exploits the
nature of optimization methodologies to cleanly divide application code from algorithm code,
allowing each to be executed on separate machines from separate object codes. This allows
proprietary applications to access state-of-the-art algorithms without exposing source code
or data structures. OTC researchers produced a final report summarizing the collaboration,
included as Appendix A.

The project led to a number of publications and presentations to the scientific community.
These included:

● “Parallel unconstrained minimization of potential energy in LAMMPS”, SAND report
98-8201

● “Fast energy minimization of large polymers using constrained optimization”, SAND
report 98-8251

. “Optimization and parallel computing”, Graduate seminar on parallel computing, North-
western University, Feb 1997

● “Parallel optimization of constrained molecular structures”, MCS department seminar,
Argonne National Laboratory, Mar 1997

. “Parallel optimization of constrained molecular structures”, SIAM Annual Meeting,
Stanford University, Jul 1997

4

. “Molecular energy minimization in parallel using constraints”, AMS Fall Western Sec-
tional Meeting, University of New Mexico, Nov 1997 i

. Web pages at http://midway. ca. sandia. gov/- tdplant/compche m/main. html

The LDRD funded support for three student interns at Sandia, and two graduate students
at Northwestern University:

Manoj Viswanathan (Spring 1998)
Chemical engineering undergraduate at University of California, Berkeley

Genetha Gray (Summer 1998)
Applied mathematics graduate student at Rice University

Katherine Hegewisch (Summer 1998)
Applied mathematics graduate student at Washington State

Leonardo Lopes (Summer 1998)
Industrial engineering graduate student at Northwestern University

Richard Waltz (Summer 1998)
Electrical and computer engineering graduate student at Northwestern University

Sandia employees who contributed to this project include Todd Plantenga (principal in-
vestigator), Len Napolitano (project manager), Juan Meza, Richard Judson, Steve Plimpton,
Jean-Loup Faulon, Carl Melius, Mike Colvin, David Hobbs, Dianna Roe, Patricia Hough,
Charles Tong, Chuck Bisson, and Randy Radmer.
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4 Summary

The goals of this project were to design and study new algorithms for minimizing potential
energy in Sandia computational chemistry codes. Two classes of algorithms were developed.
The TNCG method proved faster and more reliable than existing algorithms for unconstrained
minimization. It was coded in serial and parallel versions for CCEMD, LAMMPS, and DEMoS.
The SQP method improved performance even more by partially fixing molecular covalent
structure. The algorithm scaled well on a single workstation, but was difficult to parallelize
for very large molecules.

The project started several collaborations between computational chemists and optimiza-
tion algorithm specialists. Collaborations were fostered between National Laboratories and
universities. The project’s theories and results were disseminated through publications, pre-
sentations, personal contacts, student hires, and a web site.

Related work is cent inuing, including development of minimization algorithms for the new
DEMoS software, and further research into L-BFGS preconditioners. Like most research
projects, this LDRD led to new and unexpected inquiries while accomplishing its original
goals.
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Appendix A Report on Collaborations with the OTC

The LDRD funded a collaboration with the Optimization Technology Center (OTC)*, a
research enterprise with personnel at Argonne National Laboratory and Northwestern Univer-
sity. The project specifically supported three students at Northwestern during Summer 1998.
They were supervised by Professor Jorge Nocedal, and contributed to the LDRD in two areas.
Their final report is below.

A. 1 Interactive environment for nonlinear optimization

The recently developed NEOS Server (uxow.mcs. anl.gov/home\otc) is an advanced demon-
stration of the Internet as a tool for computational optimization. It has been accessed by
hundreds of users worldwide to solve a variety of optimization problems. Nevertheless, NEOS
has several drawbacks. One of them is that it requires the user to send to the server a code that
evaluates the objective and constraint functions. This mode of operation is often impractical,
for either or both of two reasons:

● In many important applications this function evaluation is the result of a complex simu-
lation involving a collection of routines, often written in various languages. It is therefore
not possible or practical to send this code to the server.

. Some users are not willing to reveal their objective function and constraints, which de-
scribe their model and method of solution. One could think of ways of disguising the
problem functions so that they would be difficult to interpret, but the user can never be
sure that the NEOS operators won’t be able to decipher their code and understand their
model.

A further drawback is that NEOS will only interact with the user after completion of the
optimization. In time-consuming applications, the user often wishes to monitor the solution
process and stop if little progress is being made or if the computing time is too large.

One solution we have explored as part of this project is to leave the task of function
evaluations in the user’s machine and to access NEOS only to generate a better estimate of
the solution. This is feasible in nonlinear programming, as we will discuss. To simplify the
presentation of the ideas that follow, we will assume that the problem to be solved is the
unconstrained minimization of a function,

Minimize f(z).

Nevertheless, the ideas we develop here are readily extended to constrained optimization.

We have focused on very large problems in which the Hessian matrix is difficult to evaluate,
and have used the limited memory method (L-BFGS-B) [1] to perform the optimization. At
every iterate z~, this method computes a search direction d~ and a step length a~, and defines
the new iterate as

x~+l = xk + akdk.

The crucial observation is that to compute the search direction dk, these algorithms only require
the current iterate x~ (an n-vector), the current function value .fk (a scalar) and the gradient

“http://www-c. mcs. anl.gov/home/otc/o tc.html
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value at Zk (an n-vector). These are numerical quantities that do not reveal information about
the model.

The interactive environment for nonlinear optimization that we developed operates as fol-
lows. The user chooses the initial vector ZO, evaluates the objective function f and gradient
Vj at that point, and transmits this information to the appropriate NEOS server, The opti-
mization server launches the solver, which computes a search direction and begins to perform
a line search. During this line search new values of ~ and Vf may be required; if so NEOS
sends the trial point to the user and requests the evaluation of the function and gradient at
that point. After NEOS has received this information the algorithm proceeds with the line
search.

An interactive session of this form continues until the solution is found. We should point
out that most of the nonlinear optimization codes in NEOS, and in particular L-BFGS-B,
are already written in a reverse communication form that makes this interaction simple to
implement. The challenges lie in establishing a robust, reliable and fast interaction, and in
creating the tools that will make access to NEOS transparent to the user. For this we have
used the tools provided by Globus [2]. Communication between client and server is performed
my means of Nexus [3]. Synchronization and check-pointing have been implemented using the
mutex utilities. Authentication and security, as well as a heart-beat monitor are also provided
by Globus, but have not yet been implemented in our environment. Figure A. 1 illustrates our
interact ive environment using Nexus.

The interactive environment has been implemented using two Solaris machines. It is sup-
ported by the following software:

. simulator. c : the simulator exec (running on the user’s machine); it contains the driver
and the maino function,

. optimizer. c : the nonlinear optimization server (running on the remote machine). It
contains all server functions, and Nexus handler functions which can be issued remotely
by the client,

● Makefile : makes simulator and optimizer.

c makefile-header: the Globus header (required in Makefile).

● reverse-corn. h: declares all data structures and memory allocation/deallocation functions.

● reverse_internal.h : declares all Nexus structures (client, monitor? (admin, server in the
future...) ) and functions for buffer management.

. reverse-internal.c : functions for buffer management.

. reverse-memory. c : memory allocat ion/deallocat ion functions.

. reverse-lbfgs.h : declares functions specific to L-BFGS.

● reverse-lbfgs .C : contains the client functions and Nexus handler functions which can be
issued remotely by another Nexus node.

14
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Figure A. 1: Interactive Nexus client/server environment

A working version of the interactive environment has been developed. We have demon-
strated that the limited memory code L-BFGS-B can easily be accessed by a remote user in
an interactive session supported by Nexus tools.

There are many areas of optimization where this interactive environment can be useful.
Among them we should mention molecular design, geophysical inversion, neuron networks,
chemical process analysis, and climate modeling. The advantage of our interactive environment
is that the user can concentrate on the simulation and leave the task of optimization to NEOS,
which is building an extensive array of solvers with which the user can experiment by simply
clicking a box in a web page.

A.2 Nonlinear optimization software

We have developed a Fortran code that implements the interior point algorithm for nonlinear
programming described in [4, 5, 6]. It is designed to solve large optimization problems with
equality and inequality constraints, and can be used as a feasible or infeasible method.

At the beginning of this project the mathematical algorithm had been fully developed
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but several crucial details of implementation remained unresolved. One of them is the use
of preconditioners for the conjugate gradient iteration that performs the step computation.
We have coded three options for this preconditioned; they are all designed to remove the ill-
conditioning created by the Hessian of the barrier term. In addition, we have implemented an
adaptive heuristic in which the largest eigenvalue of the Hessian of the Lagrangian is estimated,
and this value is used to scale the preconditioned. The objective is to properly weigh the relative
contributions of the two terms in the barrier function: the portion corresponding to the primal
variables, and the portion formed by the slacks,

The algorithm described in [4] is an infeasible method for optimization. This means that the
algorithm can start from a point that does not satisfy the constraints, and that all subsequent
iterates are allowed to move outside the feasible region of the problem. This gives the algorithm
great freedom of movement. However, in many practical applications it is not admissible to
generate points that violate certain constraints. This is because the objective function may
not be defined at such points, or because the model is not valid. We have therefore developed
a feasible version of the algorithm.

The fundamental idea of the feasible method is to let the merit function reject points that
violate the constraints, and to leave all the logic of the algorithm unchanged. More precisely,
suppose that an iterate violating a constraint is generated; then we simply declare the value
of the merit function to be very large, and ask that the algorithm recompute the step with a
smaller trust region. This simple change works well most of the time, but can give rise to the
Maratos effect. This problem can be circumvented by the simple device of setting the slack
variables to be the negative of the constraint values before the merit function is evaluated. An
infeasible version of the algorithm based on this strategy has been extensively tested and has
shown to be robust and efficient.

The Fortran code implementing the interior point algorithm, incorporating the new features
described above, has now been written. It uses reverse communication to allow the user
complete freedom in the evaluation of the function.

The step computation is done by a projected conjugate gradient iteration. The projections
are performed by solving an augmented system, which is factored using the Harwell subroutine
MA27. The same factorization of the augmented system is used to compute the Lagrange
multiplier estimates. The code includes iterative refinement techniques to ensure that the
projection operation is accurate.

Several drivers have been written to allow the user to choose one that fits his/her needs.
The code has been tested using 135 problems from the CUTE collection. These include the
well-known small problems collected by Hock and Schittkowsky as well as a variety of optimal
control and nonlinear regression problems of large size. We have also tested the code on
linear programs, which were successfully solved. Nevertheless, interior point codes designed
exclusively to solve linear programs (such as PCX) appear to be more efficient. It is an open
question whether our code can be made as efficient on linear programs as these codes.

Comparisons with various established codes have been made. Our algorithm requires far
fewer function and constraint evaluations than LANCELOT. The active set method SNOPT
has shown to be slightly more robust than our code, but appears to require more computing
time – especially on problems where the number of degrees of freedom is not very small.

The code is now available for distribution in the public domain.
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