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Abstract

Sampling-based methods for uncertainty and sensitivity analysis are reviewed.  Topics considered include (i) separa-
tion of stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, (ii) construction of distributions to char-
acterize subjective uncertainty, (iii) sampling procedures (i.e., random sampling, importance sampling, Latin hyper-
cube sampling), (iv) propagation of uncertainty through models, (v) display of uncertainty in model predictions, and
(vi) sensitivity analysis procedures (i.e., examination of scatterplots, regression analysis, stepwise regression analy-
sis, correlation and partial correlation, rank transformations, identification of nonmonotonic and nonrandom pat-
terns).  Procedures are illustrated with (i) a model for two-phase fluid flow, (ii) a sequence of simple test functions,
and (iii) a performance assessment for a radioactive waste disposal facility.
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1.0  Introduction

Sampling-based methods for uncertainty and sensi-
tivity analysis involve the generation and exploration of
a mapping from uncertain analysis inputs to analysis
results (Iman et al. 1981a, b, Iman 1992, Helton 1993b).
Conceptually, the analysis or model under consideration
can be represented by a vector function

y = [ , , , ]y y ynY1 2 � , (1.1)

and the associated input can be represented by a vector

x = [ , , , ]x x xnX1 2 � , (1.2)

where nX and nY are the dimensions of x and y, respec-
tively, and each value of x produces a corresponding
value y(x).  Most real analyses are quite complex, with
the result that the dimensions of x and y can be large.

If the value for x was unambiguously known, then
y(x) could be determined and presented as the unique
outcome of the analysis.  However, there is uncertainty
with respect to the appropriate value to use for x in
most analyses, with the result that there is also uncer-
tainty with respect to the value of y(x).  The uncertainty
in x and its associated effect on y(x) lead to two closely
related questions:  (i) “What is the uncertainty in y(x)
given the uncertainty in x?”, and (ii) “How important
are the individual elements of x with respect to the un-
certainty in y(x)?”  Attempts to answer these two ques-
tions are typically referred to as uncertainty analysis and
sensitivity analysis, respectively.

An assessment of the uncertainty in y derives from
a corresponding assessment of the uncertainty in x.  In
particular, y is assumed to have been developed so that
appropriate analysis results are obtained if the appropri-
ate value for x is used in the evaluation of y.  Unfortu-
nately, it is impossible to unambiguously specify the
appropriate value of x in most analyses; rather, there are
many possible values for x of varying levels of plausi-
bility.  Such uncertainty is often given the designation
subjective or epistemic and is characterized by assign-
ing a distribution

D1, D2, …, DnX (1.3)

to each element xj of x.  Correlations and other restric-
tions involving the xj are also possible.  These distribu-
tions and any associated conditions characterize a de-
gree of belief as to where the appropriate value of each

variable xj is located for use in evaluation of y and in
turn lead to distributions for the individual elements of
y.  Given that the distributions in Eq. (1.3) characterize
a degree of belief with respect to where the appropriate
input to use in the analysis is located, the resultant dis-
tributions for the elements of y characterize a corre-
sponding degree of belief with respect to where the ap-
propriate values of the outcomes of the analysis are
located.

Sampling-based methods for uncertainty and sensi-
tivity analysis are based on a sample

xk k k k nXx x x= [ , , , ],,1 2 �  k = 1, 2, …, nS, (1.4)

of size nS from the possible values for x as character-
ized by the distributions in Eq. (1.3) and on the corre-
sponding evaluations

y x x x x( ) [ ( ), ( ), , ( )],k k k nY ky y y= 1 2 �

k = 1, 2, …, nS, (1.5)

of y.  The pairs

[ , ( )],x y xk k  k = 1, 2, …, nS, (1.6)

form a mapping from the uncertain analysis inputs (i.e.,
the xk’s) to the corresponding uncertain analysis results
(i.e., the y(xk)’s).  When an appropriate probabilistic
procedure has been used to generate the sample in Eq.
(1.4) from the distributions in Eq. (1.3), the resultant
distributions for the elements of y characterize the un-
certainty in the results of the analysis (i.e., constitute the
outcomes of an uncertainty analysis).  Further, exami-
nation of scatterplots, regression analysis, partial corre-
lation analysis and other procedures for investigating
the mapping in Eq. (1.6) provide a way to determine the
effects of the elements of x on the elements of y (i.e.,
constitute procedures for sensitivity analysis).

When viewed at a high level, performance of a
sampling-based uncertainty and sensitivity analysis in-
volves five components:  (i) definition of the distribu-
tions in Eq. (1.3) that characterize uncertainty, (ii) gen-
eration of the sample in Eq. (1.4) from the distributions
in Eq. (1.3), (iii) evaluation of y for the individual ele-
ments of the sample in Eq. (1.4) to produce the model
evaluations in Eq. (1.5), (iv) generation of displays of
the uncertainty in y from the analysis outcomes in Eq.
(1.5), and (v) exploration of the mapping in Eq. (1.6) to
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determine the effects of the elements of x on the ele-
ments of y.  The preceding components of a sampling-
based uncertainty and sensitivity analysis are discussed
(Sects. 4 - 8).  Further, the classification of uncertainty
and the potential effects that this classification has on
sampling-based analyses are discussed (Sect. 2), and an
example problem is introduced for use in illustrating the

ideas and techniques under consideration (Sect. 3).  In
addition, the ideas and techniques described in this
presentation are illustrated with a sequence of relatively
simple test problems (Sect. 9) and also with an analysis
involving both stochastic (i.e., aleatory) and subjective
(i.e., epistemic) uncertainty (Sect. 10).  Finally, the
presentation ends with a summary discussion (Sect. 11).
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2.0  Classification of Uncertainty

The need for an appropriate treatment of uncer-
tainty in complex analyses is recognized by most, if not
all, analysts (e.g., Cullen and Frey 1999, Risk Assess-
ment Forum 1997, Thompson and Graham 1996, Hel-
ton and Burmaster 1996, Paté-Cornell 1996, Hoffman
and Hammonds 1994, Apostolakis 1990).  Yet, the
treatment of uncertainty in large analyses often causes
confusion because uncertainty and its probabilistic
characterization can arise from two distinct sources.

First, there is the uncertainty that arises because the
system under study can behave in many different ways.
For example, the number of possible sequences of
weather conditions that could occur at a fixed location
over some specified time interval in the future is quite
large; similarly, the number of potential sequences of
operating conditions that could occur at an industrial
facility over the course of one year is also quite large.
This type of uncertainty is often referred to as stochastic
or aleatory uncertainty and is a property of the system
under consideration (Helton 1994, 1997).

Second, there is the uncertainty that arises from an
inability to specify the exact value of a quantity that is
assumed to have a constant value within a particular
analysis.  For example, a system component might be
assumed to have a uniquely determined failure strength,
with the exact value of this failure strength being impre-
cisely known.  As another example, some process might
be assumed to occur at a particular rate, with the exact
value of this rate being imprecisely known.  This type of
uncertainty is often referred to as subjective or epis-
temic uncertainty and is a property of the analysts car-
rying out the study (Helton 1994, 1997).

Probability is typically used to characterize both
stochastic and subjective uncertainty.  This dual usage
of probability has the potential to result in considerable
confusion when care is not taken to specify which inter-
pretation of uncertainty is intended.  In this presenta-
tion, the assumption is made that the goal of uncertainty
and sensitivity analysis is to investigate the effects of
subjective uncertainty.  Thus, the distributions in Eq.
(1.3) are characterizing subjective uncertainty.

As described in the next section, an example that
derives from a performance assessment (PA) for the
Waste Isolation Pilot Plant (WIPP) will be used to il-
lustrate sampling-based methods for uncertainty and
sensitivity analysis (U.S. DOE 1996, Helton et al.
1998a).  This example uses a model for two-phase (i.e.,
gas and brine) fluid flow and involves only subjective
uncertainty.  Then, in Sect. 10, a second example will
be introduced that considers a complementary cumula-
tive distribution function (CCDF) specified in the U.S.
Environmental Protection Agency’s (EPA’s) standard
for the geologic disposal of radioactive waste (U.S.
EPA 1985, 1993, 1996) and involves both stochastic
and subjective uncertainty.

As already indicated, it is important to maintain a
clear distinction between the use of probability to char-
acterize stochastic uncertainty and the use of probability
to characterize subjective uncertainty.  The concept of a
probability space provides a convenient way to maintain
this distinction.  A probability space (S,  , p) is the
formal structure on which the mathematical develop-
ment of probability is based and consists of three com-
ponents:  (i) a set S that contains everything that could
occur in the particular universe under consideration, (ii)
a suitably restricted collection   of subsets of S for
which probabilities are defined, and (iii) a function p
that defines the probabilities of the elements of   (p.
116, Feller 1971).  Thus, an analysis that involves both
stochastic and subjective uncertainty has two probabil-
ity spaces associated with it:  a probability space (Sst,

 st, pst) for stochastic uncertainty and probability

space (Ssu,  su, psu) for subjective uncertainty, where
the subscripts st and su designate stochastic and subjec-
tive, respectively.  The distributions in Eq. (1.3) and
any associated restrictions are defining a probability
space (Ssu,  su, psu) for subjective uncertainty.

Accessible discussions on the origins of the use of
probability to characterize subjective and stochastic
uncertainty are given by Hacking 1975 and Bernstein
1996.
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3.0  Example Analysis Problem

Analysis procedures are easier to understand and
assess when they are illustrated by real examples.  For
this reason, a nontrivial example from a PA carried out
in support of the 1996 Compliance Certification Appli-
cation (CCA) for the WIPP will be used to illustrate the
procedures under consideration (U.S. DOE 1996, Hel-
ton et al. 1998a).  The WIPP is under development near
Carlsbad, NM, by the U.S. Department of Energy
(DOE) for the geologic (i.e., deep underground) dis-
posal of transuranic (TRU) waste (Rechard 1999, NRC
1996).  Waste disposal will take place in excavated
chambers located in a bedded salt formation (Fig. 1,
Helton et al. 1998b).

A number of mathematical models are involved in
assessing the potential behavior of the WIPP, its sur-
rounding environment, and the radionuclides emplaced
there (see Sect. 10.1 for a summary of these models).
Most of these models involve the numerical solution of
systems of partial differential equations used to repre-
sent material deformation, fluid flow and radionuclide
transport.  The model used to represent two-phase (i.e.,
gas and brine) fluid flow in the vicinity of the repository
will be used for illustration, with this model imple-
mented by the BRAGFLO program.

The model for two-phase fluid flow is based on the
following system of nonlinear partial differential equa-
tions:

Gas Conservation

( )

( ) 
      

 

g g rg
g g wg rg

g

g g

k
p g h q q

S

t

�αρ
∇ • ∇ + ρ ∇ + α + α�

µ��

∂ φρ
= α

∂

K

(3.1)

Brine Conservation

( )

( ) 
      

 

b b rb
b b wb rb

b

b b

k p g h q q

S
t

�αρ
∇ • ∇ + ρ ∇ + α + α� µ�

∂ φρ
= α

∂

K

(3.2)

Saturation Constraint

Sg + Sb = 1 (3.3)

Capillary Pressure Constraint

( )p p p f SC g b b= − = (3.4)

Gas Density

ρg determined by Redlich-Kwong-Soave equation of
state (see Eqs. (4.2.27), (4.2.28), Helton et al. 1998a)

Brine Density

( )[ ]ρ ρ βb b b bp p= −0 0exp (3.5)

Formation Porosity

( )[ ]φ φ β= −0 0exp f b bp p (3.6)

where

g = acceleration of gravity (m/s2)
h = vertical distance from a reference location

(m)
Kl = permeability tensor (m2) for fluid l (l = g ~

gas, l = b ~ brine)
krl = relative permeability (dimensionless) to fluid

l
pC = capillary pressure (Pa)
pl = pressure of fluid l (Pa)

qrl = rate of production (or consumption, if nega-
tive) of fluid l due to chemical reaction
(kg/m3/s)

qwl = rate of injection (or removal, if negative) of
fluid l (kg/m3/s)

Sl = saturation of fluid l (dimensionless)
t = time (s)

α = geometry factor (m in 1996 WIPP PA)
ρl = density of fluid l (kg/m3)
µl = viscosity of fluid l (Pa s)
φ = porosity (dimensionless)

φ0 = reference (i.e., initial) porosity (dimension-
less)

pb0 = reference (i.e., initial) brine pressure (Pa),
constant in Eq. (3.5) and spatially variable in
Eq. (3.6)

ρ0 = reference (i.e., initial) brine density (kg/m3)
βf = pore compressibility (Pa−1)
βb = brine compressibility (Pa−1)

and f is defined by the model for capillary pressure in
use (see the right hand sides of Eqs. (4.2.9), (4.2.15)
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and (4.2.18) in Helton et al. 1998a).  The conservation
equations are valid in one (i.e., ∇  = [∂/∂x]), two (i.e.,
∇  = [∂/∂x  ∂/∂y]) and three (i.e., ∇  = [∂/∂x  ∂/∂y  ∂/∂z])
dimensions.  In the present example, the preceding sys-
tem of equations is used to model two-phase fluid flow
in a two-dimensional region (Fig. 3.1).

In general, the individual terms in Eqs. (3.1) - (3.6)
are functions of location and time (e.g., pg(x, y, t), ρg(x,
y, t), krg(x, y, t), …) and often other variables as well
(i.e., elements of the vector x in Eq. (1.2)).  A full de-
scription of how the individual terms in these equations
are defined is beyond the scope of this presentation and
is available elsewhere (Bean et al. 1996; Sect. 4.2,
Helton et al. 1998a).  The system of partial differential
equations in Eqs. (3.1) - (3.6) is too complex to permit a
closed form solution.  In the present analysis, these
equations were solved with finite difference procedures
implemented by the BRAGFLO program on the com-
putational grid in Fig. 3.1 (WIPP PA 1996, Bean et al.
1996).

Two analysis problems involving the solution of
Eqs. (3.1) - (3.6) will be considered.  The first problem
involves undisturbed conditions (i.e., E0 conditions in
the terminology of the 1996 WIPP PA).  In this prob-
lem, the behavior of the repository is modeled under the
assumption that it experiences no human disruptions
after its final decommissioning and closure.  The second
problem involves a drilling intrusion that occurs 1000
yr after the closure of the repository, passes through a
waste panel, and does not penetrate an area of pressur-
ized brine (i.e., a brine pocket) in the Castile Formation
(Fm) beneath the repository (i.e., an E2 intrusion in the
terminology of the 1996 WIPP PA).  The differences
between the two problems are implemented through the
specification of the properties of the regions labeled 1A,
1B and 1C in Fig. 3.1.  Due to regulatory requirements
(U.S. EPA 1985, 1993, 1996), the modeled period ex-
tends from slightly before closure of the repository
(t = −5 yr), through closure of the repository (t = 0 yr),
and out to t = 10,000 yr.  The 1996 WIPP PA also con-
sidered drilling intrusions that passed through the re-
pository and penetrated pressurized brine in the Castile
Fm (i.e., E1 intrusions) but these calculations are not
used for illustration in this presentation.

A number of factors contribute to the presence of
subjective uncertainty in the formulation and solution of
the model embodied in Eqs. (3.1) - (3.6):  (i) a geologic
system that can never be fully observed and character-
ized is under consideration, (ii) the waste to be em-
placed at the WIPP is not fully characterized, (iii) the
mechanical and chemical evolution of the waste panels

cannot be predicted with certainty, (iv) many of the
inputs to the analysis are spatially and possibly tempo-
rally averaged values for quantities (e.g., permeabilities)
that vary in space and possibly in time, and (v) a very
long time period (i.e., 10,000 yr) is under consideration.
For these and other reasons, considerable uncertainty
exists with respect to the appropriate values to use for
many of the quantities that enter into the formulation of
the model in Eqs. (3.1) - (3.6).

To assess the effects of such uncertainty, the 1996
WIPP PA identified 31 uncertain inputs to the
BRAGFLO program required in the formulation of the
model in Eqs. (3.1) - (3.6) (Table 3.1).  The exact man-
ner in which these inputs were used in the definition of
the coefficients in Eqs. (3.1) - (3.6) is described in Ta-
ble 5.2.1 of Helton et al. 1998a.

The analyses under consideration were structured
to require a single value for each of the variables in
Table 3.1.  However, the exact values to use for these
variables were felt to be poorly known.  Therefore,
ranges of possible values for these variables were de-
veloped, and distributions were assigned to these ranges
to characterize a degree of belief with respect to the
location of the appropriate values to use in the 1996
WIPP PA.  Thus, the distributions indicated in Table
3.1 are characterizing subjective uncertainty.

Put another way, the distributions and associated
correlations in Table 3.1 are defining a probability
space (Ssu, su, psu) for subjective uncertainty.  In
this space, the elements xsu of Ssu are vectors of the
form

xsu = [ANHBCEXP, ANHBCVGP, …, WRGSSAT] (3.7)

and correspond to the vector x in Eq. (1.2).  Similarly, y
in Eq. (1.1) corresponds to the totality of the results
generated in the solution of Eqs. (3.1) - (3.6).  Actually,
there are two y values in this example:  one for solution
of the equations for undisturbed (i.e., E0) conditions
and one for solution of the equations for disturbed con-
ditions (i.e., an E2 intrusion at 1000 yr).

All 31 variables in Table 3.1 are used in the for-
mulation of Eqs. (3.1) - (3.6) for the E2 intrusion.
However, BHPRM relates only to the E1 and E2 intru-
sions and so was not used in the formulation of Eqs.
(3.1) - (3.6) for E0 conditions.  Further, the variables
affecting the brine pocket (i.e., BPCOMP, BPINTPRS,
BPPRM, BPVOL) are effectively removed from the
calculation of any results associated with the repository
for E0 and E2 conditions due to the absence of a con-
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nection between the brine pocket and the repository (Fig. 3.1).
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Table 3.1. Uncertain Variables Used as Input to BRAGFLO in the 1996 WIPP PA (see Table 5.2.1,
Helton et al. 1998a and App. PAR, U.S. DOE 1996, for additional information)

ANHBCEXP Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Distribution:  Stu-
dent’s with 5 degrees of freedom.  Range:  0.491 to 0.842.  Mean, Median:  0.644.

ANHBCVGP Pointer variable for selection of relative permeability model for use in anhydrite. Distribution:
Discrete with 60% 0, 40% 1.  Value of 0 implies Brooks-Corey model; value of 1 implies van Genuchten-
Parker model.

ANHCOMP Bulk compressibility of anhydrite (Pa–1).  Distribution:  Student’s with 3 degrees of freedom.
Range:  1.09 × 10–11 to 2.75 × 10–10 Pa–1.  Mean, Median:  8.26 × 10–11 Pa–1.  Correlation:  –0.99 rank cor-
relation (Iman and Conover 1982) with ANHPRM.

ANHPRM Logarithm of anhydrite permeability (m2).  Distribution:  Student’s with 5 degrees of freedom.
Range:  –21.0 to –17.1 (i.e., permeability range is 1 × 10–21 to 1 × 10–17.1 m2).  Mean, Median:  –18.9.  Cor-
relation :  –0.99 rank correlation with ANHCOMP.

ANRBRSAT Residual brine saturation in anhydrite (dimensionless).  Distribution:  Student’s with 5 degrees
of freedom.  Range:  7.85 × 10–3 to 1.74 × 10–1.  Mean, Median:  8.36 × 10–2.

ANRGSSAT Residual gas saturation in anhydrite (dimensionless).  Distribution:  Student’s with 5 degrees of
freedom.  Range:  1.39 × 10–2 to 1.79 × 10–1.  Mean, median:  7.71 × 10–2.

BHPRM Logarithm of borehole permeability (m2).  Distribution:  Uniform.  Range:  –14 to –11 (i.e., perme-
ability range is 1 × 10–14 to 1 × 10–11 m2).  Mean, median:  –12.5.

BPCOMP Logarithm of bulk compressibility of brine pocket (Pa–1).  Distribution:  Triangular.  Range:
–11.3 to –8.00 (i.e., bulk compressibility range is 1 × 10–11.3 to 1 × 10–8 Pa–1).  Mean, mode:  –9.80, –10.0.
Correlation:  –0.75 rank correlation with BPPRM.

BPINTPRS  Initial pressure in brine pocket (Pa).  Distribution: Triangular.  Range: 1.11 × 107 to 1.70 × 107

Pa.  Mean, mode:  1.36 × 107 Pa, 1.27 × 107 Pa.

BPPRM  Logarithm of intrinsic brine pocket permeability (m2).  Distribution:  Triangular.  Range:  –14.7 to
–9.80 (i.e., permeability range is 1 × 10–14.7 to 1 × 10–9.80 m2).  Mean, mode: –12.1, –11.8.  Correlation:
–0.75 with BPCOMP.

BPVOL  Pointer variable for selection of brine pocket volume.  Distribution:  Discrete, with integer values 1,
2, ..., 32 equally likely.

HALCOMP Bulk compressibility of halite (Pa–1).  Distribution:  Uniform.  Range:  2.94 × 10–12 to 1.92 ×
10–10 PA–1.  Mean, median:  9.75 × 10–11 Pa–1, 9.75 × 10–11 Pa–1.  Correlation:  –0.99 rank correlation with
HALPRM.

HALPOR Halite porosity (dimensionless).  Distribution:  Piecewise uniform.  Range:  1.0 × 10–3 to 3 × 10–2.
Mean, median:  1.28 × 10–2, 1.00 × 10–2.

HALPRM Logarithm of halite permeability (m2).  Distribution:  Uniform.  Range:  –24 to –21 (i.e., perme-
ability range is 1 × 10–24 to 1 × 10–21 m2).  Mean, median:  –22.5, –22.5.  Correlation:  –0.99 rank correlation
with HALCOMP.
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Table 3.1. Uncertain Variables Used as Input to BRAGFLO in the 1996 WIPP PA (see Table 5.2.1,
Helton et al. 1998a and App. PAR, U.S. DOE 1996, for additional information) (contin-
ued)

SALPRES Initial brine pressure, without the repository being present, at a reference point located in the cen-
ter of the combined shafts at the elevation of the midpoint of Marker Bed (MB) 139 (Pa).  Distribution:  Uni-
form.  Range:  1.104 × 107 to 1.389 × 107 Pa.  Mean, median:  1.247 × 107 Pa, 1.247 × 107 Pa.

SHBCEXP Brooks-Corey pore distribution parameter for shaft (dimensionless).  Distribution:  Piecewise
uniform.  Range:  0.11 to 8.10.  Mean, median:  2.52, 0.94.

SHPRMASP Logarithm of permeability (m2) of asphalt component of shaft seal (m2).  Distribution:  Trian-
gular.  Range:  –21 to –18 (i.e., permeability range is 1 × 10–21 to 1 × 10–18 m2).  Mean, mode:  –19.7,
–20.0.

SHPRMCLY Logarithm of permeability (m2) for clay components of shaft.  Distribution:  Triangular.  Range:
–21 to –17.3 (i.e., permeability range is 1 × 10–21 to 1 × 10–17.3 m2).  Mean, mode:  –18.9, –18.3.

SHPRMCON Same as SHPRMASP but for concrete component of shaft seal for 0 to 400 yr.  Distribution:
Triangular.  Range:  –17.0 to –14.0 (i.e., permeability range is 1 × 10–17 to 1 × 10–14 m2).  Mean, mode:
–15.3, –15.0.

SHPRMDRZ Logarithm of permeability (m2) of DRZ surrounding shaft.  Distribution:  Triangular.  Range:
–17.0 to –14.0 (i.e., permeability range is 1 × 10–17 to 1 × 10–14 m2).  Mean, mode:  –15.3, –15.0.

SHPRMHAL Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft
seal at different times.  Distribution:  Uniform.  Range:  0 to 1.  Mean, mode:  0.5, 0.5.  A distribution of per-
meability (m2) in the crushed salt component of the shaft seal is defined for each of the following time inter-
vals:  [0, 10 yr], [10, 25 yr], [25, 50 yr], [50, 100 yr], [100, 200 yr], [200, 10000 yr].  SHPRMHAL is used to
select a permeability value from the cumulative distribution function for permeability for each of the preceding
time intervals with result that a rank correlation of 1 exists between the permeabilities used for the individual
time intervals.

SHRBRSAT Residual brine saturation in shaft (dimensionless).  Distribution:  Uniform.  Range:  0 to 0.4.
Mean, median:  0.2, 0.2.

SHRGSSAT Residual gas saturation in shaft (dimensionless).  Distribution:  Uniform.  Range:  0 to 0.4.
Mean, median:  0.2, 0.2.

WASTWICK Increase in brine saturation of waste due to capillary forces (dimensionless).  Distribution:  Uni-
form.  Range:  0 to 1.  Mean, median:  0.5, 0.5.

WFBETCEL Scale factor used in definition of stoichiometric coefficient for microbial gas generation (dimen-
sionless).  Distribution:  Uniform.  Range:  0 to 1.  Mean, median:  0.5, 0.5.

WGRCOR Corrosion rate for steel under inundated conditions in the absence of CO2 (m/s). Distribution:
Uniform.  Range: 0 to 1.58 × 10–14 m/s.  Mean, median:  7.94 × 10–15 m/s, 7.94 × 10–15 m/s.

WGRMICH Microbial degradation rate for cellulose under humid conditions (mol/kg•s).  Distribution:  Uni-
form.  Range:  0 to 1.27 × 10–9 mol/kg•s.  Mean, median:  6.34 × 10–10 mol/kg•s, 6.34 × 10–10 mol/kg•s.
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Table 3.1. Uncertain Variables Used as Input to BRAGFLO in the 1996 WIPP PA (see Table 5.2.1,
Helton et al. 1998a and App. PAR, U.S. DOE 1996, for additional information) (contin-
ued)

WGRMICI Microbial degradation rate for cellulose under inundated conditions (mol/kg•s).  Distribution:
Uniform.  Range:  3.17 × 10–10 to 9.51 × 10–9 mol/kg•s.  Mean, median:  4.92 × 10–9 mol/kg•s, 4.92 × 10–9

mol/kg•s.

WMICDFLG Pointer variable for microbial degradation of cellulose.  Distribution:  Discrete, with 50% 0,
25% 1, 25% 2.  WMICDFLG = 0, 1, 2 implies no microbial degradation of cellulose, microbial degradation of
only cellulose, microbial degradation of cellulose, plastic, and rubber.

WRBRNSAT Residual brine saturation in waste (dimensionless).  Distribution:  Uniform.  Range:  0 to 0.552.
Mean, median:  0.276, 0.276.

WRGSSAT Residual gas saturation in waste (dimensionless).  Distribution:  Uniform.  Range:  0 to 0.15.
Mean, median:  0.075, 0.075.
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4.0  Definition of Distributions for Subjective Uncertainty

The definition of the distributions in Eq. (1.3) used
to characterize subjective uncertainty is, in many ways,
the most important single part of a sampling-based un-
certainty and sensitivity analysis because these distribu-
tions determine both the uncertainty in y and the rela-
tive importance of the individual elements of x that give
rise to this uncertainty.  However, the determination of
such distributions is not the primary focus of this pres-
entation and thus will be treated rather briefly.

It is important for everyone involved in the defini-
tion of these distributions to understand the type of in-
formation that is being quantified.  In particular, the
purpose of these distributions is to characterize a degree
of belief with respect to where the appropriate value of
each element of xsu is located for use in the analysis.  In
concept, the analysis structure has been developed to
the point that a single value for each element of xsu is
required, but the precise values for these elements, and
hence for xsu, are not known.

A common error is to define the Dj so that they
characterize spatial, temporal or experimental variabil-
ity.  If the analysis uses a quantity that is held constant
over an extended period of time or over an extended
area, then the corresponding distribution Dj should not
be defined to characterize temporal or spatial variabil-
ity.  Rather, given that the model uses a spatially or
temporally averaged input, the distribution Dj should
characterize the uncertainty in this averaged quantity
rather than the variability that is averaged over.  Simi-
larly, experimental variability is not the same as the
uncertainty in an analysis input derived from variable
experimental outcomes.

Due to its importance and pervasiveness, the char-
acterization of subjective uncertainty has been widely
studied (e.g., Berger 1985; Cook and Unwin 1986;
Mosleh et al. 1988; Hora and Iman 1989; Keeney and
von Winterfeldt 1991; Bonano et al. 1990; Bonano and
Apostolakis 1991; Cooke 1991; Meyer and Booker
1991; Ortiz et al. 1991; NRC 1992; Thorne 1993).
Perhaps the largest example of an analysis to use a for-
mal expert review process to assess the uncertainty in its
inputs is the U.S. Nuclear Regulatory Commission’s
reassessment of the risks from commercial nuclear
power stations (U.S. NRC 1990-1991; Harper et al.
1990, 1991, 1992; Breeding et al. 1992).  Another large
example is an assessment of seismic risks in the eastern
United States (EPRI 1989).

Although formal statistical procedures might be
useful in the construction of the distributions Dj, j = 1,
2, …, nX, in Eq. (1.3) in some situations, in most cases
such distributions are probably best developed by speci-
fying selected quantile values without making an at-
tempt to specify a particular distribution type and its
associated parameters (e.g., normal, log normal, beta,
…) (Sect. 3.1, Helton 1993b).  For example, the con-
struction procedure might start by specifying minimum,
median and maximum values for the variable under
consideration (i.e., the points (x0.00, 0.00), (x0.5, 0.5)
and (x1.00, 1.00) on the cumulative distribution function
(CDF) in Fig. 4.1).  Then, resolution could be added by
specifying additional quantile values (e.g., the points
(x0.10, 0.10), (x0.25, 0.25), (x0.75, 0.75) and (x0.90, 0.90)
in Fig. 4.1).  The process can be continued until it is felt
that the distribution is providing an adequate characteri-
zation of the uncertainty in the variable under consid-
eration.  Hopefully, the expert, or experts, whose
knowledge is being quantified by this distribution
should be able to provide a documentable rationale for
the selection of specific quantile values.  The expert is
more likely to be able to justify the selection of specific
quantile values than the choice of specific parameters to
define a beta distribution or some other formal distribu-
tion.
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When several experts are used to develop a distri-
bution for a variable, one possibility is first to have each
expert independently develop a distribution as indicated
in Fig. 4.1.  Then, these distributions can be vertically
averaged to produce a new distribution based on the
distributions supplied by the individual experts (Fig.
4.2).  This is easiest to do if each expert’s distribution is
assigned equal weight (i.e., the divisor in the averaging
process is nE, where nE is the number of experts).  In
practice, the assigning of different weights to different
experts is very difficult.

As previously indicated, this presentation uses an
example from the 1996 WIPP PA. The variables that
comprise the elements of xsu in this example are listed
in Table 3.1.  The distributions assigned to these vari-
ables were defined by appropriate members of the ex-
perimental programs that were being carried out at San-
dia National Laboratories to support the development of
the WIPP, with these distributions intended to charac-
terize a degree of belief with respect to where the ap-
propriate values of these variables are located for use in
the 1996 WIPP PA.  The distributions assigned to
WMICDFLG and WSOLAM3C are illustrated in Fig.
4.3, with WMICDFLG having a discrete distribution
and WSOLAM3C having a piecewise uniform distribu-
tion (i.e., the type of distribution that results when
quantiles are defined as indicated in Fig. 4.1 and then
connected by straight lines).

The care and effort used in the definition of the
distributions in Eq. (1.3) are dependent on both the pur-
pose of an analysis and the amount of time and re-
sources available for its implementation.  If the analysis
is primarily exploratory in nature or if limited time and
resources are available, then rather crude specifications
for these distributions might be used (e.g., uniform and
loguniform for variables with uncertainty ranges less
than and greater than one order of magnitude, respec-
tively).  As long as the ranges are not unreasonably

small or large, such an approach can lead to consider-
able insights into the behavior of a system and the vari-
ables that influence this behavior.  However, more ro-
bust insights would require greater effort in the defini-
tion of the distributions.  An efficient approach is to
carry out an initial screening analysis with uniform and
loguniform distributions to identify the most important
variables and then to characterize more carefully the
uncertainty in these variables for use in a second analy-
sis.  This iterative approach allows resources to be con-
centrated on characterizing the uncertainty in the most
important variables.  If a variable has little effect on the
outcome of an analysis, then the accuracy with which its
uncertainty is characterized is not very important to the
outcome of the analysis.
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Fig. 4.2. Construction of mean CDF by averaging of
CDFs defined by individual experts, with
equal weight (i.e., 1/nE = 1/3, where nE = 3 is
the number of experts) given to each expert.
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Fig. 4.3. Examples of uncertain variables, their associated distributions, and sampled values obtained with a Latin
hypercube sample (Sect. 5.6) of size 100 (see App. PAR, U.S. DOE 1996, and App., Helton et al. 1998a
for distributions of the nX = 31 variables in xsu).
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5.0  Sampling Procedures

Sampling-based methods for uncertainty and sensi-
tivity analysis obviously require sampling procedures.
Three sampling procedures are discussed in this section:
Random sampling (Sect. 5.1), importance sampling
(Sect. 5.2), and Latin hypercube sampling (Sect. 5.3).
Random and Latin hypercube sampling are compared
with a simple function (Sect. 5.4).  A correlation control
procedure for use in conjunction with random and Latin
hypercube sampling is then discussed (Sect. 5.5).  Fi-
nally, the use of Latin hypercube sampling to generate a
sample from the probability space (Ssu,  su, psu) for
subjective uncertainty introduced in Sect. 3 is described
in Sect. 5.6.

5.1 Random Sampling
For notational convenience, assume that the vari-

ables under consideration are represented by

x = [x1, x2, ..., xnX] (5.1)

and that the corresponding probability space is (S,   ,
p).  In random sampling, sometimes also called simple
random sampling, the observations

xk = [xk1, xk2, ..., xk,nX],  k = 1, 2, ..., nR, (5.2)

where nR is the sample size, are selected according to
the joint probability distribution for the elements of x as
defined by (S,  , p).  In practice, (S,  , p) is de-
fined by specifying a distribution Dj for each element xj
of x as indicated in Eq. (1.3). Points from different re-
gions of the sample space S occur in direct relationship
to the probability of occurrence of these regions.  Fur-
ther, each sample element is selected independently of
all other sample elements.  As illustrated in Fig. 5.1 for
x1 = U, x2 = V, nX = 2 and nR = 5, the numbers RU(1),
RU(2), ..., RU(5) are sampled from a uniform distribu-
tion on [0, 1] and in turn lead to a sample U(1), U(2),
..., U(5) from U based on the CDF for U.  Similarly, the
numbers RV(1), RV(2), ..., RV(5) lead to a sample V(1),
V(2), ..., V(5) from V.  The pairs

xk = [U(k), V(k)], k = 1, 2, ..., nR = 5, (5.3)

then constitute a random sample from x = [U, V], where
U has a normal distribution on [−1, 1] and V has a tri-
angular distribution on [0, 4] in this example.

Random samples are generated in an analogous
manner when x has a dimensionality greater than 2

(e.g., nX = 100).  Specifically, if the elements of x are
represented by U, V, ..., W and a random sample of size
nR is to be generated, then random numbers RU(1),
RU(2), ..., RU(nR) are sampled uniformly from [0,1]
and used to obtain corresponding values U(1), U(2), ...,
U(nR) for U; random numbers RV(1), RV(2), ..., RV(nR)
are sampled uniformly from [0,1] and used to obtain
corresponding values V(1), V(2), ..., V(nR) for V, and so
on, with the process continuing through all elements of
x and ending with the selection of random numbers
RW(1), RW(2), ..., RW(nR) from [0,1] and the genera-
tion of the corresponding values W(1), W(2), ..., W(nR)
for W.  The vectors

xk = [U(k), V(k), ..., W(k)], k = 1, 2, ..., nR, (5.4)

then constitute a random sample from x = [U,V, ...,W].

The preceding sampling procedure depends on the
generation of random samples from a uniform distribu-
tion on [0, 1] (i.e., uniform random variates).  The gen-
eration of such samples is widely discussed (e.g., Press
et al. 1992, Barry 1996, Fishman 1996, L’Ecuyer
1998), and the capability to do so is taken for granted in
this presentation.

5.2 Importance Sampling
In random sampling, there is no assurance that

points will be sampled from any given sub-region of the
sample space S.  Also, it is possible for an inefficient
sampling of S to occur due to several sampled values
falling very close together.  The preceding problems can
be partially ameliorated by using importance sampling.
With this technique, S is exhaustively divided into a
number of nonoverlapping subregions (i.e., strata) Si, i
= 1, 2, ..., nS.  Then, nSi values for x are randomly
sampled from Si, with the random sampling carried out
in consistency with the definition of (S,  , p) and the
restriction of x to Si.  The resultant vectors

xk = [xk1, xk2, ..., xk,nX],  k = 1, 2, ..., nSi
i

nS

=1

, (5.5)

then constitute an importance-based sample from S (i.e.,
a sample obtained by importance sampling).  Typically,
only one value is sampled from each Si, with the result
that the sample has the form
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Fig. 5.1. Example of random sampling to generate a sample of size nR = 5 from x = [U, V], with U normal on
[−1, 1] (mean = 0, 0.01 quantile = −1, 0.99 quantile = 1) and V triangular on [0, 4] (mode = 1).
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xk = [xk1, xk2, ..., xk,nX],  k = 1, 2, ..., nS. (5.6)

The name importance sampling derives from the fact
that the Si are in part defined on the basis of how im-
portant the x’s contained in each set are to the final out-
come of the analysis.  Often, importance sampling is
used to ensure the inclusion in an analysis of x’s that
have high consequences but low probabilities (i.e., the
probabilities p(Si) are small for the Si that contain such
x’s).  When importance sampling is used, the probabili-
ties p(Si) and number of observations nSi taken from
each Si must be folded back into the analysis before
results can be meaningfully presented.

Several examples of importance sampling for x =
[U, V] are given in Fig. 5.2.  The two top frames are for
strata of equal probability (i.e., all p(Si) are equal).  For
two uniform distributions, this results in all strata hav-
ing the same area (upper left frame).  For two nonuni-
form distributions, different strata can have different
areas even though they have the same probability (upper
right frame).  The two lower frames are for strata of
unequal probability.  In this case, the variable distribu-
tions and the strata probabilities interact to determine
the area of the strata. However, it is important to recog-
nize that specifying variable distributions, number of
strata and strata probabilities does not uniquely define
an importance sampling procedure; rather, there are
many ways in which the strata Si can be defined that are
consistent for the preceding constraints.  In particular,
appropriate definition of strata will depend on specific
properties of individual analyses.  Similar ideas also
hold for more than two variables, in which case the
strata become volumes in a space with the same dimen-
sion as x.

5.3 Latin Hypercube Sampling

Importance sampling operates to ensure the full
coverage of specified regions in the sample space.  This
idea is carried farther in Latin hypercube sampling
(McKay et al. 1979) to ensure the full coverage of the
range of each variable.  Specifically, the range of each
variable (i.e., the xj) is divided into nLHS intervals of
equal probability and one value is selected at random
from each interval.  The nLHS values thus obtained for
x1 are paired at random and without replacement with
the nLHS values obtained for x2.  These nLHS pairs are
combined in a random manner without replacement
with the nLHS values of x3 to form nLHS triples.  This
process is continued until a set of nLHS nX-tuples is
formed.  These nX-tuples are of the form

xk = [xk1, xk2, ..., xk,nX],  k = 1, ..., nLHS, (5.7)

and constitute the Latin hypercube sample (LHS).  The
individual xj must be independent for the preceding
construction procedure to work; a method for generat-
ing Latin hypercube and random samples from corre-
lated variables has been developed by Iman and
Conover (1982) and is discussed in Sect. 5.5.  Latin
hypercube sampling is an extension of quota sampling
(Steinberg 1963) and can be viewed as an n-
dimensional randomized generalization of Latin square
sampling (pp. 206-209, Raj 1968).

The generation of an LHS of size nLHS = 5 from
x = [U, V] is illustrated in Fig. 5.3.  Initially, the ranges
of U and V are subdivided into five intervals of equal
probability, with this subdivision represented by the
lines that originate at 0.2, 0.4, 0.6 and 0.8 on the ordi-
nates of the two upper frames in Fig. 5.3, extend hori-
zontally to the CDFs, and then drop vertically to the
abscissas to produce the 5 indicated intervals. Random
values U(1), U(2), ..., U(5) and V(1), V(2), ..., V(5) are
then sampled from these intervals.  The sampling of
these random values is implemented by (i) sampling
RU(1) and RV(1) from a uniform distribution on [0,
0.2], RU(2) and RV(2) from a uniform distribution on
[0.2, 0.4], and so on, and (ii) then using the CDFs to
identify (i.e., sample) the corresponding U and V val-
ues, with this identification represented by the dashed
lines that originate on the ordinates of the two upper
frames in Fig. 5.3, extend horizontally to the CDFs, and
then drop vertically to the abscissas to produce U(1),
U(2), ..., U(5) and V(1), V(2), ..., V(5).  The generation
of the LHS is then completed by randomly pairing
(without replacement) the resulting values for U and V.
As this pairing is not unique, many possible LHSs can
result.  Two such LHSs are shown in the lower two
frames in Fig. 5.3, with one LHS resulting from the
pairings [U(1), V(5)], [U(2), V(1)], [U(3), V(2)], [U(4),
V(3)], [U(5), V(4)] (lower left frame) and the other LHS
resulting from the pairings [U(1), V(3)], [U(2), V(2)],
[U(3), V(4)], [U(4), V(5)], [U(5), V(1)] (lower right
frame).

The generation of an LHS for nX > 2 proceeds in a
manner similar to that shown in Fig. 5.3 for nX = 2.
The sampling of the individual variables for nX > 2
takes place in the same manner as shown in Fig. 5.3.
However, the nX variables define an nX-dimensional
solid rather than a 2-dimensional rectangle in the plane.
Thus, the two lower frames in Fig. 5.3 would involve a
partitioning of an nX-dimensional solid rather than a
rectangle.
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Fig. 5.2. Examples of importance sampling with ten strata (i.e., nS = 10), one random sample per strata (i.e., nSi =
1), equal strata probability (i.e., p(Si) = 1/10, upper frames), unequal strata probability (i.e.,
p(Si) = 0.2, 0.2, 0.1, 0.1, 0.1, 0.06, 0.06, 0.06, 0.06, 0.06, lower frames), U and V uniform on [0, 1] (left
frames) and U normal on [−1, 1] (mean = 0, 0.01 quantile = −1, 0.99 quantile = 1) and V triangular on [0,
4] (mode = 1) (right frames).
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Fig. 5.3. Example of Latin hypercube sampling to generate a sample of size nLHS = 5 from x = [U, V] with U nor-
mal on [−1, 1] (mean = 0, 0.01 quantile = −1, 0.99 quantile = 1) and V triangular on [1, 4] (mode = 1).
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5.4 Comparison of Random and
Latin Hypercube Sampling

Random sampling is the preferred technique when
sufficiently large samples are possible because it is easy
to implement, easy to explain, and provides unbiased
estimates for means, variances and distribution func-
tions.  The possible problems with random sampling
derive from the rather vague phrase “sufficiently large”
in the preceding sentence.  When the underlying models
are expensive to evaluate (e.g., many hours of CPU time
per evaluation) or estimates of extreme quantiles are
needed (e.g., the 0.999999 quantile), the required sam-
ple size to achieve a specific purpose may be too large
to be computationally practicable.  In the 1996 WIPP
PA, random sampling was used for the estimation of
complementary cumulative distribution functions
(CCDFs) for radionuclide releases to the accessible
environment (i.e., for integration over (Sst,  st, pst);
see Sect. 10) because it was possible to develop a com-
putational strategy that allowed the use of a sample of
size nS = 10,000 to estimate an exceedance probability
of 0.001.

When random sampling is not computationally fea-
sible for the estimation of extreme quantiles, importance
sampling is often employed.  However, the use of im-
portance sampling on nontrivial problems is not easy
due to the difficulty of defining the necessary strata and
also of calculating the probabilities of these strata.  For
example, the fault and event tree techniques used in
probabilistic risk assessments for nuclear power stations
and other complex engineered facilities can be viewed
as algorithms for defining importance sampling proce-
dures.  The bottom line is that the definition and imple-
mentation of an importance sampling procedure is not
easy.  Further, without extensive a priori knowledge,
the strata may end up being defined more finely than is
necessary, with the result that the importance sampling
procedure ends up requiring more calculations than the
use of random sampling to calculate the same outcomes.
For example, the number of strata in the importance
sampling procedure used to estimate CCDFs in the
1991 and 1992 WIPP PAs (Helton and Iuzzolino 1993)
greatly exceeds the size of the random samples used in
the 1996 WIPP PA to estimate CCDFs.  The unequal
strata probabilities also make the outcomes of analyses
based on importance sampling inconvenient for use in
sensitivity analyses (e.g., how does one interpret a
scatterplot or a regression analysis derived from results
obtained from an importance sampling procedure?).

Latin hypercube sampling is used when large sam-
ples are not computationally practicable and the estima-
tion of very high quantiles is not required.  The pre-
ceding is typically the case in uncertainty and sensitivity
studies to assess the effects of subjective uncertainty.
First, the models under consideration are often compu-
tationally demanding, with the result that the number of
calculations that can be performed to support the analy-
sis is necessarily limited.  For example, the totality of
the model calculations (i.e., BRAGFLO, NUTS,
PANEL, GRASP_INV, SECOFL2D, SECOTP2D,
CUTTINGS_S, BRAGFLO_DBR; see Sect. 10) in the
1996 WIPP PA was too extensive to permit the genera-
tion of thousands of CCDFs in an uncertainty/sensitivity
study to assess the effects of subjective uncertainty on
compliance with environmental regulations (i.e., 40
CFR 191.13; see Sect. 10).  Second, the estimation of
very high quantiles is generally not required in an
analysis to assess the effects of subjective uncertainty.
Typically, a 0.90 or 0.95 quantile is adequate to estab-
lish where the available information indicates a par-
ticular analysis outcome is likely to be located; in par-
ticular, a 0.99, 0.999 or 0.9999 quantile is usually not
needed in assessing the effects of subjective uncertainty.

Desirable features of Latin hypercube sampling in-
clude unbiased estimates for means and distribution
functions and dense stratification across the range of
each sampled variable (McKay et al. 1979).  In par-
ticular, uncertainty and sensitivity analysis results ob-
tained with Latin hypercube sampling have been ob-
served to be quite robust even when relatively small
samples (i.e., nLHS = 50 to 200) are used (Iman and
Helton 1988, 1991; Helton et al. 1995a).

For perspective, Latin hypercube and random sam-
pling are illustrated in Fig. 5.4 for two different distri-
bution pairs.  To facilitate comparisons, the grid that
underlies the LHSs is also shown for the random sam-
ples, although it plays no role in the actual generation of
these samples.  The desirability of Latin hypercube
sampling derives from the full coverage of the range of
the sampled variables; specifically, each equal prob-
ability interval for U and also each equal probability
interval for V has exactly one value sampled from it.  In
contrast, random sampling makes less efficient use of
the sampled points, with the possibility existing that
significant parts of a variable’s range will be omitted
(e.g., only one value below the 0.5 quantile for U in the
lower left frame and no values for U below the 0.19
quantile nor above the 0.85 quantile in the lower right
frame) and that other parts will be overemphasized
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Fig. 5.4. Examples of Latin hypercube and random sampling to generate a sample of size 10 from variables U and V
with (1) U and V uniform on [0, 1] (left frames), and (2) U normal on [−1, 1] (mean = 0, 0.01 quantile =
−1, 0.99 quantile = 1) and V triangular on [0, 4] (mode = 1) (right frames).
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(e.g., 5 out of 10 values for U fall between the 0.5 and
0.7 quantiles for U in the lower left frame, and two pairs
of sampled points fall close together in the lower right
frame).  The enforced stratification in Latin hypercube
sampling prevents such inefficient samplings while still
providing unbiased estimates for means and distribution
functions.

The outcome of the enforced stratification associ-
ated with Latin hypercube sampling is that estimates of
means and distribution functions tend to be more stable
when generated by Latin hypercube sampling than by
random sampling.  Here, stability refers to the amount
of variation between results obtained with different
samples generated by the particular sampling technique
under consideration.  This stability can be illustrated by
comparison of estimates of the CDF for the simple
function

f(U, V) = U + V + UV (5.8)

obtained with Latin hypercube and random sampling
under the assumption that U and V are uniformly dis-
tributed on [0, 2].  In particular, each sampling tech-
nique is used to generate 100 samples of size 10 and

also 100 samples of size 100 from U and V.  Each sam-
ple gives rise to an estimated CDF for f (Fig. 5.5).  The
goal is to compare the variability between the estimates
obtained with Latin hypercube and random sampling.

Presenting plots similar to those in Fig. 5.5 for 100
CDFs at a time is not very informative because the
CDFs tend to turn into a solid black mass.  A more in-
formative presentation is to summarize the distributions
of CDFs with mean and percentile curves.  The location
of the percentile curves then provides an indication of
how stable the estimates of the CDFs are.  In particular,
limited separation between low and high percentiles
(e.g., the 10th and 90th) indicates that the sampling pro-
cedure is providing stable estimates of the CDF (i.e.,
there is little variability in the estimated CDF from one
sample to the next); in contrast, a large spread between
low and high percentiles indicates that the sampling
procedure is not providing stable estimates of the CDF
(i.e., there is substantial variability in the estimated
CDF from one sample to the next).  The previously in-
dicated 100 samples of size 10 and 100 are summarized
in this manner in Fig. 5.6.  Further, the analysis was
replicated three times to give three estimates of the 10th
percentile, three estimates of the 50th percentile, and so
on.

0.0 1.0 2.0 3.0 4.0 5.0 6.0

TRI-6342-5205-0

7.0 8.0
f(U,V) = U + V + UV

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
f(U,V) = U + V + UV

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y 

of
 V

al
ue

 ≤
 f 

P
ro

ba
bi

lit
y 

of
 V

al
ue

 ≤
 f 

10 Random Samples of Size 10 10 Random Samples of Size 100

Fig. 5.5. Example CDFs for f(U, V) = U + V + UV estimated with random samples of size 10 and 100 under the
assumption that U and V are uniformly distributed on  [0, 2].
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Fig. 5.6. Summary of distribution of CDFs for f(U, V) = U + V + UV estimated with 3 replications of 100 Latin hy-
percube samples and 100 random samples of size 10 and 100 under the assumption that U and V are uni-
formly distributed on [0, 2].
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As examination of Fig. 5.6 shows, Latin hypercube
sampling is producing CDF estimates that are more
stable than those produced by random sampling (i.e.,
the spread between the 10th and 90th percentile curves
is tighter for Latin hypercube sampling than for random
sampling).  The stability of the mean and percentile
estimates across the three replicates indicates that the
observed stability is real rather than a chance occur-
rence associated with a particular set of 100 Latin hy-
percube or random samples.

From the perspective of uncertainty and sensitivity
analysis, the full stratification over the range of each
sampled variable is a particularly desirable property of
Latin hypercube sampling.  In a large study, there are
potentially hundreds of predicted variables that will be
examined at some point in associated uncertainty and
sensitivity analyses.  Further, it is likely that almost
every sampled variable will be important with respect to
at least one of these predicted variables.  With Latin
hypercube sampling, every variable gets equal treatment
(i.e., full stratification) within the sample; should a vari-
able be important with respect to a particular output
variable, it has been sampled in a way that will permit
this importance to be identified.  In contrast, it is very
difficult to design an importance sampling procedure
that provides acceptable results for a large number of
sampled and predicted variables.  In some sense, Latin
hypercube sampling can be viewed as a compromise
importance sampling procedure when a priori knowl-
edge of the relationships between the sampled and pre-
dicted variables is not available.  When random sam-
pling is used with a small sample size in an analysis that
involves a large number of sampled and predicted vari-
ables, the possibility exists that the chance structure of
the sample will result in a poor representation of the
relationships between some of the sampled and pre-
dicted variables.  Such poor relationships can also occur
for Latin hypercube sampling when several sampled
variables affect a given predicted variable, but are less
likely to occur than is the case with random sampling.

Formal results involving Latin hypercube sampling
and other sampling procedures are available in a num-
ber of publications (e.g., Owen 1992, Stein 1987, Iman
and Conover 1982, McKay et al. 1979).

5.5 Correlation Control
Control of correlation within a sample can be very im-
portant.  If two or more variables are correlated, then it
is necessary that the appropriate correlation structure be
incorporated into the sample if meaningful results are to
be obtained in subsequent uncertainty/sensitivity stud-

ies.  On the other hand, it is equally important that vari-
ables do not appear to be correlated when they are
really independent.

It is often difficult to induce a desired correlation
structure on a sample.  Indeed, multivariate distributions
can be incompatible with correlation patterns that are
proposed for them.  Thus, it is possible to encounter
analysis situations where the proposed variable distri-
butions and the suggested correlations between the vari-
ables are inconsistent; that is, it is not possible to have
both the desired variable distributions and the requested
correlations between the variables.

In response to this situation, Iman and Conover
(1982) proposed a method for controlling the correla-
tion structure in random and Latin hypercube samples
that is based on rank correlation (i.e., on rank-
transformed variables) rather than sample correlation
(i.e., on the original untransformed data).  With their
technique, it is possible to induce any desired rank-
correlation structure onto the sample.  This technique
has a number of desirable properties:  (i) It is distribu-
tion free.  That is, it may be used with equal facility on
all types of distribution functions.  (ii) It is simple.  No
unusual mathematical techniques are required to im-
plement the method.  (iii) It can be applied to any sam-
pling scheme for which correlated input variables can
logically be considered, while preserving the intent of
the sampling scheme.  That is, the same numbers origi-
nally selected as input values are retained; only their
pairing is affected to achieve the desired rank correla-
tions.  This means that in Latin hypercube sampling the
integrity of the intervals is maintained.  If some other
structure is used for selection of values, that same
structure is retained.  (iv) The marginal distributions
remain intact.

For many, if not most, uncertainty/sensitivity analy-
sis problems, rank-correlation is probably a more natu-
ral measure of congruent variable behavior than is the
more traditional sample correlation.  What is known in
most situations is some idea of the extent to which vari-
ables tend to move up or down together; more detailed
assessments of variable linkage are usually not avail-
able.  It is precisely this level of knowledge that rank
correlation captures.

The following discussion provides an overview of
the Iman/Conover procedure for inducing a desired rank
correlation structure on either a random or a Latin hy-
percube sample and is adapted from Sect. 3.2 of Helton
1993b.  The procedure begins with a sample of size m
from the n input variables under consideration.  This
sample can be represented by the m × n matrix
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where xij is the value for variable j in sample element i.
Thus, the rows of X correspond to sample elements, and
the columns of X contain the sampled values for indi-
vidual variables.

The procedure is based on rearranging the values in
the individual columns of X so that a desired rank cor-
relation structure results between the individual vari-
ables.  For convenience, let the desired correlation
structure be represented by the n × n matrix
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where ckl is the desired rank correlation between vari-
ables xk and xl.

Although the procedure is based on rearranging the
values in the individual columns of X to obtain a new
matrix X* that has a rank correlation structure close to
that described by C, it is not possible to work directly
with X.  Rather, it is necessary to define a new matrix
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that has the same dimensions as X, but is otherwise in-
dependent of X.  Each column of S contains a random
permutation of the m van der Waerden scores (Conover
1980) Φ−1(i/m + 1), i = 1, 2, . . . , m, where Φ−1 is the
inverse of the standard normal distribution.  The matrix
S is then rearranged to obtain the correlation structure
defined by C.  This rearrangement is based on the Cho-
lesky factorization (Golub and van Loan 1983) of C.
That is, a lower triangular matrix P is constructed such
that

C = PPT. (5.12)

This construction is possible because C is a symmetric,
positive-definite matrix (Golub and van Loan 1983, p.
88).

If the correlation matrix associated with S is the n
× n identity matrix (i.e., if the correlations between the
values in different columns of S are zero), then the cor-
relation matrix for

S* = SPT (5.13)

is C (Anderson 1984, p. 25).  At this point, the success
of the procedure depends on the following two condi-
tions:  (1) that the correlation matrix associated with S
be close to the n × n identity matrix; and (2) that the
correlation matrix for S* be approximately equal to the
rank correlation matrix for S*.  If these two conditions
hold, then the desired matrix X* can be obtained by
simply rearranging the values in the individual columns
of X in the same rank order as the values in the individ-
ual columns of S*.  This is the first time that the vari-
able values contained in X enter into the correlation
process.  When X* is constructed in this manner, it will
have the same rank correlation matrix as S*.  Thus, the
rank correlation matrix for X* will approximate C to the
same extent that the rank correlation matrix for S*
does.

The condition that the correlation matrix associated
with S be close to the identity matrix is now considered.
For convenience, the correlation matrix for S will be
represented by E.  Unfortunately, E will not always be
the identity matrix.  However, it is possible to make a
correction for this.  The starting point for this correction
is the Cholesky factorization for E:

E = QQT. (5.14)

This factorization exists because E is a symmetric,
positive-definite matrix.  The matrix S* defined by

S* = S(Q−1)TPT (5.15)

has C as its correlation matrix.  In essence, multiplica-
tion of S by (Q−1)T transforms S into a matrix whose
associated correlation matrix is the n × n identity ma-
trix; then, multiplication by PT produces a matrix whose
associated correlation matrix is C.  As it is not possible
to be sure that E will be an identity matrix, the matrix
S* used in the procedure to produce correlated input
should be defined in the corrected form shown in Eq.
(5.15) rather than in the uncorrected form shown in Eq.
(5.13).
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The condition that the correlation matrix for S* be
approximately equal to the rank correlation matrix for
S* depends on the choice of the scores used in the defi-
nition of S.  On the basis of empirical investigations,
Iman and Conover (1982) found that van der Waerden
scores provided an effective means of defining S, and
these scores are incorporated into the rank correlation
procedure in the widely used LHS program (Iman and
Shortencarier 1984).  Other possibilities for defining
these scores exist, but have not been extensively inves-
tigated.  The user should examine the rank correlation
matrix associated with S* to ensure that it is close to the
target correlation matrix C.  If this is not the case, the
construction procedure used to obtain S* can be re-
peated until a suitable approximation to C is obtained.
Results given in Iman and Conover 1982 indicate that
the use of van der Waerden scores leads to rank corre-
lation matrices for S* that are close to the target matrix
C.

Additional information on the Iman/Conover (i.e.,
restricted pairing) technique to induce a desired rank-
correlation structure is given in the original article.
Further, the technique is implemented in the widely
used LHS program (Iman and Shortencarier 1984).  The
results of various rank-correlation assumptions are il-
lustrated in Iman and Davenport (1980, 1982).

5.6 Latin Hypercube Sampling in
the 1996 WIPP PA

As discussed in Sect. 3, this presentation uses an
example from the 1996 WIPP PA.  In this analysis, the
LHS program (Iman and Shortencarier 1984) was used

to produce three independently generated LHSs of size
nLHS = 100 each from the 31 variables in Table 3.1, for
a total of 300 sample elements.  Each individual repli-
cate is an LHS of the form

xsu,k = [xk1, xk2, …, xk,nX], k = 1, 2, …, nLHS = 100,

(5.16)

with nX = 31.  The three replicated samples were gener-
ated to provide a way to observe the stability of results
obtained with Latin hypercube sampling.  For notational
convenience, the replicates are designated by R1, R2
and R3 for replicates 1, 2 and 3, respectively.

The restricted pairing technique described in Sect.
5.5 was used to induce requested correlations and also
to ensure that uncorrelated variables had correlations
close to zero.  The variable pairs (ANHCOMP,
ANHPRM), (HALCOMP, HALPRM) and (BPCOMP,
BPPRM) were assigned rank correlations of −0.99,
−0.99 and −0.75, respectively (Table 3.1).  Further, all
other variable pairs were assigned rank correlations of
zero.  The restricted pairing technique was quite suc-
cessful in producing these correlations (Table 5.1).
Specifically, the correlated variables have correlations
that are close to their specified values and uncorrelated
variables have correlations that are close to zero.

Table 5.1.  Example Rank Correlations in Replicate 1

WGRCOR 1.0000
WMICDFLG 0.0198 1.0000
HALCOMP 0.0011 0.0235 1.0000
HALPRM −0.0068 −0.0212 −0.9879 1.0000
ANHCOMP 0.0080 0.0336 −0.0123 −0.0025 1.0000
ANHPRM 0.0049 −0.0183 0.0037 0.0113 −0.9827 1.0000
BPCOMP 0.0242 0.1071 −0.0121 0.0057 −0.0184 0.0078 1.0000
BPPRM −0.0514 −0.0342 0.0035 0.0097 0.0283 −0.0202 −0.7401 1.0000

WGRCOR WMICDFLG HALCOMP HALPRM ANHCOMP ANHPRM BPCOMP BPPRM
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6.0  Evaluation of Model

Once the sample in Eq. (1.4) has been generated,
the corresponding model evaluations in Eq. (1.5) must
be carried out.  The nature of these evaluations is model
specific and outside the scope of this presentation.
However, this brief section is included to emphasize
that these evaluations are something that must be done
as part of a sampling-based uncertainty and sensitivity
analysis.  If the model under consideration is expensive
to evaluate, then this will probably be the most compu-
tationally demanding part of the analysis and may sig-
nificantly influence the sample size selected for use and

possibly other aspects of the analysis.  For example, the
model introduced in Sect. 3 for use as an example re-
quires approximately 4 to 5 hours of CPU time on a
VAX Alpha per evaluation (i.e., for each sample ele-
ment) and produces a large quantity of temporally and
spatially variable results.  Thus, for this example, car-
rying out and then saving the necessary model evalua-
tions involved a significant expenditure of human and
computational resources.  In contrast, this part of the
analysis can be relatively undemanding for models that
are less complex and computationally intensive.
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7.0  Uncertainty Analysis

After the sample in Eq. (1.4) has been generated
and the corresponding model evaluations in Eq. (1.5)
have been carried out, the primary computational por-
tions of the uncertainty analysis component of a sam-
pling-based analysis have been completed.  What re-
mains to be done is to display the uncertainty informa-
tion contained in the mapping between analysis inputs
and analysis results in Eq. (1.6).  Two cases are consid-
ered:  results represented by single numbers (Sect. 7.1),
and results represented by functions (Sect. 7.2). Finally,
example analysis outcomes illustrating the stability of
uncertainty analysis results obtained with Latin hyper-
cube sampling are presented (Sect. 7.3).

7.1 Scalar Results

When a single real-valued result is under consid-
eration, the vector-valued function y(xk) in Eqs. (1.5)
and (1.6) becomes the scalar-valued function

( ),k ky y= x  k = 1, 2, …, nS. (7.1)

One possibility is to summarize the uncertainty in y with
a mean and a variance.  If random or Latin hypercube
sampling was used to generate the results in Eq. (7.1),
then estimates �( )E y  and �( )V y  for the expected value
and variance of y are given by

1

ˆ ( ) /
nS

k
k

E y y nS
=

= (7.2)

and

2

1

ˆ ˆ( ) [ ( )] /( 1)
nS

k
k

V y y E y nS
=

= − − . (7.3)

If importance sampling was used in the generation of
the results in Eq. (7.1), then the probabilities of the in-
dividual strata in the importance sampling procedure
would have to be used in the determination of �( )E y  and
�( )V y .

Although the estimation of means and variances is
a possibility for summarizing the uncertainties in scalar-
valued results, these quantities do not provide very
good summaries of subjective uncertainty for at least

two reasons.  First, information is always lost in the
calculation of means and variances.  Specifically, there
is more information in the nS numbers in Eq. (7.1) and
their associated weights (i.e., the reciprocal of the sam-
ple size for random and Latin hypercube sampling and
the strata probabilities for importance sampling) than
there is in the two numbers in Eqs. (7.2) and (7.3).
Second, means and variances are not very natural quan-
tities for summarizing subjective uncertainty.  Specifi-
cally, the quantiles associated with a distribution sum-
marizing subjective uncertainty convey more meaning-
ful information about where the quantity under consid-
eration is believed to be located.

Distribution functions provide a more effective
summary of the information associated with the map-
ping in Eq. (7.1) than means and variances.  In particu-
lar, this mapping can be summarized with either a CDF
or a CCDF, with the CCDF simply being one minus the
CDF (Fig. 7.1).  The presence of the included and ex-
cluded points in Fig. 7.1 results from the use of a finite
number of y values and the inequalities in the defini-
tions of CDFs and CCDFs.  Technically, the vertical
lines should not be present in the CDF and CCDF in
Fig. 7.1 but these lines are typically included to make
plots of CDFs and CCDFs easier to read.  For the same
reason, the distinction between included and excluded
points is typically omitted.  When random or Latin hy-
percube sampling is used, the step heights in the defini-
tions of CDFs and CCDFs are the reciprocal of the
sample size nS (i.e., 1/nS and thus 1/10 in Fig. 7.1);
when importance sampling is used, the step heights cor-
respond to the strata probabilities.  An example with
real data is given in Fig. 7.2.

The value of CDFs and CCDFs is that they provide
a display of all the information associated with the
mapping in Eq. (7.1).  In particular, they allow an easy
extraction of the probabilities of having values in dif-
ferent subsets of the range of y.  Although CDFs and
CCDFs are equivalent in their information content,
CCDFs are often used for display purposes when large
samples are in use and it is important to display the ef-
fects of low probability but high consequence analysis
outcomes (i.e., unlikely but large y values); further,
CCDFs answer the question “How likely is it to be this
bad or worse?”, which is typically the question of inter-
est in risk assessments.  Given that the distributions
assigned to the elements of x are characterizing subjec-
tive uncertainty, then the resultant probabilities
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Fig. 7.1. Example of construction of CDFs and CCDFs for a sample of size nS = 10 (i.e., yk = y(xk), k = 1, 2, …, nS
= 10 in Eq. (7.1)).
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Fig. 7.2. Example of estimated CDF and CCDF for
repository pressure at 10,000 yr under undis-
turbed conditions (i.e., y = E0:WAS_PRES)
obtained from the 300 LHS elements that re-
sult from pooling replicates R1, R2 and R3
(see Sect. 5.6).

extracted from CDFs and CCDFs are also characteriz-
ing subjective uncertainty and are thus providing quan-
titative measures of where the value of y is believed to
be located.

Many individuals prefer density functions rather
than CDFs or CCDFs for the display of distributions.
Density functions have the advantage that they make it
easy to identify the mode of a distribution but do not
allow an easy extraction of the probabilities associated
with various subranges of the dependent variable.  Fur-
ther, unless smoothing procedures are used, the best that
can be obtained from the results in Eq. (7.1) is a histo-
gram that approximates the shape of the density func-
tion, with the potential that the shape of this histogram
will be significantly influenced by the resolution at
which the yk’s are binned (Silverman 1986).  As rec-
ommended by Ibrekk and Morgan (1987), an alternative
display is to plot the CDF, the mean, and the associated
density function on the same plot frame (Fig. 7.3).

One disadvantage associated with CDFs, CCDFs
and density functions is that displays using these dis-
tributional summaries can become quite cluttered when
results for a number of different analysis outcomes are
presented in a single plot frame (e.g., a plot involving
CDFs, CCDFs or density functions for 10 different
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Fig. 7.3. Uncertainty display including estimated dis-
tribution function, density function, and mean
for repository pressure at 10,000 yr under un-
disturbed conditions (i.e., y =
E0:WAS_PRES).

analysis outcomes can be hard to read due to the ten-
dency of the individual curves to repeatedly cross each
other).  Box plots provide an alternative, less congested
display of multiple distributions (Fig. 7.4).  In such
plots, the endpoints of the boxes are formed by the
lower and upper quartiles of the data, that is x0.25 and
x0.75.  The vertical line within the box represents the
median, x0.50.  The mean is identified by the large dot.
The bar on the right of the box extends to the minimum
of x0.75 + 1.5(x0.75 −x0.25) and the maximum value.  In
a similar manner, the bar on the left of the box extends
to the maximum of x0.25 − 1.5(x0.75 − x0.25) and the
minimum value.  The observations falling outside of
these bars are shown with crosses.  In symmetric distri-
butions, these values would be considered outliers.  Box
plots contain the same information as a distribution
function, but in a somewhat reduced form.  Further,
their flattened shape makes it convenient to place many
distributions on a single plot and also to compare dif-
ferent distributions.

7.2 Functions

In many analyses, outcomes of interest are func-
tions of one or more variables.  In the example used in
this presentation, many results are functions of time
(Fig. 7.5).  Thus, time is the independent variable (i.e.,
function argument).  However, there is also subjective
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MB Tot
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BRNREPTC
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Key:
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Fig. 7.4. Examples of box plots for cumulative brine
flow over 10,000 yr into various regions in
disturbed rock zone surrounding repository
(E0:BRM38NIC, E0:BRM38SIC, E0:BRA-
ABNIC, E0:BRAABSIC, E0:BRM39NIC,
E0:BRM39SIC and E0:BRAALIC) and into
repository (E0:BRNREPTC)  under undis-
turbed conditions in the 1996 WIPP PA (Fig.
7.2.2, Helton et al. 1998a).

uncertainty in the variables required in the estimation of
these functions, with this uncertainty leading to multiple
possible functions as illustrated in Fig. 7.5.  The esti-
mated distribution presented in Fig. 7.5 was obtained
from the LHS in Eq. (5.16) associated with replicate R1
(i.e., each curve in Fig. 7.5 was calculated conditional
on the occurrence of one of the sample elements xsu,k in
Eq. (5.16) for replicate R1).

The family of curves in Fig. 7.5 is an approxima-
tion obtained with an LHS of size 100 to the actual dis-
tribution associated with the probability space (Ssu,

su, psu) for subjective uncertainty.  Although such
families provide an impression of the shape of the asso-
ciated distributions, they do not directly provide prob-
abilistic information.  In concept, these distributions can
be summarized by presenting density functions for the
values on the ordinate for a sequence of values on the
abscissa (Fig. 7.6).  In practice, only a
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Fig. 7.5. Repository pressure under undisturbed condi-
tions (i.e., y = E0:WAS_PRES) for 100 LHS
elements in replicate R1.

finite number of curves will be available as shown in
Fig. 7.5, with the result that the density functions indi-
cated in Fig. 7.6 will have to be approximated from
these curves (Fig. 7.7).

Although the representations in Figs. 7.6 and 7.7
are intuitively appealing (especially for individuals who
like to use density functions to represent distributions),
these representations do not seem to work very well in
practice.  In particular, they are difficult to construct
(e.g., construction problems arise if specific conse-
quence values have nonzero probabilities) and also dif-
ficult to extract information from (e.g., to determine
specific quantile values).  Some of these problems could
be alleviated by plotting CDFs in the third dimension,
but the resultant plots are still difficult to read.

An alternative and often effective representation is
to determine mean values and quantiles conditional on
individual values on the abscissa and then to plot these
means and quantiles above the values for which they
were determined (Fig. 7.8).  Conceptually, a vertical
line is drawn through the curves above a given value on
the abscissa (Fig. 7.8a).  The locations where this line
passes through the individual curves identifies the cor-
responding consequence values, with the number of
consequence values equal to the sample size in use.
These values can be used to produce a mean value and
also selected quantile values (Fig. 7.8a).  If desired, the
definition of the mean and quantile values can be
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Fig. 7.6. Density functions characterizing subjective
uncertainty in consequence values for indi-
vidual times.
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= 1, 2, …, nLHS, from Ssu that characterize
subjective uncertainty in consequence values
for individual times.

represented formally by integrals over Ssu (Helton
1996), with the sampling procedure being used to pro-
vide approximations to these integrals.  Once the mean
and quantile values have been determined, they can be
plotted above the corresponding values on the abscissa
and then connected to form continuous curves (Fig.
7.8b).  With this summary procedure, the quantile val-
ues are defined conditional on individual times on the
abscissa; as a result, the quantile curves (Fig. 7.8b)
should not be viewed as being quantiles for the distri-
bution of curves (i.e., it is inappropriate to assume that
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there is a probability of 0.9 that a randomly selected
element of Ssu will produce a curve that falls below the
0.9 quantile curve indicated in Fig. 7.8b).

Repository pressure has been used as an example of
an uncertain function (Figs. 7.5).  Estimates of the cor-
responding mean and quantile curves are given in Fig.
7.9, with these estimates obtained as indicated in con-
junction with Fig. 7.8 from the 300 curves that result
from pooling the outcomes associated with all three
replicates (see Eq. (5.16)).  Results such as those given
in Fig. 7.9 provide a more quantitative summary of the
distribution of curves in Fig. 7.5 than the intuitive im-
pression that is obtained by visually examining the dis-
tributions themselves.

7.3 Stability of Results

As indicated in Fig. 5.6, Latin hypercube sampling
tends to produce more stable results than random sam-
pling. The reason the LHS in Eq. (5.16) was replicated
3 times (i.e., nR = 3) was to provide a measure of the
stability of the results obtained in the 1996 WIPP PA.
For the pressure results in Fig. 7.5, the results were
quite stable from sample to sample (Fig. 7.10).  Indeed,
the results obtained with the individual replicates were
quite stable across the large number of predicted out-
comes examined in the analysis, with no instance occur-
ring where different replicates would have lead to dif-
ferent conclusions with respect to system behavior.
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8.0  Sensitivity Analysis

Sensitivity analysis involves an exploration of the
mapping in Eq. (1.6) to determine the effects of indi-
vidual components of x on the analysis outcomes con-
tained in y(x).  A number of procedures and topics as-
sociated with the exploration of this mapping are dis-
cussed, including examination of scatterplots (Sect.
8.1), regression analysis (Sects. 8.2, 8.3), correlation
and partial correlation analysis (Sect. 8.4), stepwise
regression analysis (Sect. 8.5), the rank transformation
to facilitate regression and correlation analysis (Sect.
8.6), effects of correlations on sensitivity analysis (Sect.
8.7), identification of nonmonotonic patterns (Sect.
8.8), and identification of random patterns (Sect. 8.9).
The presented techniques are illustrated with the analy-
sis problem introduced in Sect. 3.

8.1 Examination of Scatterplots

The generation of scatterplots is undoubtedly the
simplest sensitivity analysis technique and only involves
plotting the points

(xkj, yk), k = 1, 2, …, nS, (8.1)

for each element xj of x for j = 1, 2, …, nX (see Eqs.
(1.2, 1.4)).  This produces nX scatterplots that can be
examined for relationships between y and the elements
of x (i.e., the xj).  As an example, the scatterplot in Fig.
8.1 shows a nonlinear but monotonic relationship be-
tween borehole permeability (BHPRM) and cumulative
brine flow down an intruding borehole, with no brine
flow taking place for small values of BHPRM and brine
flow increasing rapidly for larger values of BHPRM
(see Sect. 8.2 of Helton et al. 1998a for additional dis-
cussion).  As another example, the scatterplot in Fig. 8.2
shows a complex relationship between BHPRM and
repository pressure that is both nonlinear and non-
monotonic, with repository pressure decreasing as
BHPRM increases and then undergoing a sudden jump
at BHPRM � .= −11 7  (i.e., at a permeability of 10−11.7

m2 �=  2 × 10−12 m2) (see Sect. 8.4 of Helton et al.
1998a for additional discussion).  In contrast to the
well-defined patterns in Figs. 8.1 and 8.2, the individual
points will be randomly spread over the plot when there
is no relationship between y and a particular xj.

Sometimes scatterplots alone will completely re-
veal the relationships between model input (i.e.,
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Fig. 8.1. Scatterplot for cumulative brine flow
through borehole into upper disturbed rock
zone (DRZ) over 10,000 yr for E2 intrusion
at 1000 yr into lower waste panel (i.e., y =
E2:BNBHDNUZ) versus borehole perme-
ability (BHPRM).

elements of x) and model predictions (i.e., y).  This is
often the case when only one or two inputs dominate the
outcome of the analysis.  Further, scatterplots often re-
veal nonlinear relationships, thresholds, and variable
interactions that facilitate the understanding of model
behavior and the planning of more sophisticated sensi-
tivity studies.  Iman and Helton (1988) provide an ex-
ample where the examination of scatterplots revealed a
rather complex pattern of variable interactions.  The
examination of scatterplots is always a good starting
point in a sensitivity study.  The examination of such
plots when Latin hypercube sampling is used can be
particularly revealing due to the full stratification over
the range of each input variable.

8.2 Regression Analysis

A more formal investigation of the mapping

[ , ( )]x xk ky , k = 1, 2, …, nS, (8.2)
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Fig. 8.2. Scatterplot for repository pressure (Pa) at
10,000 yr for E2 intrusion at 1000 yr into
lower waste panel (i.e., y = E2:WAS_PRES)
versus borehole permeability (BHPRM).

can be based on regression analysis.  In this approach, a
model of the form

0
1

ˆ
nX

j j
j

y b b x
=

= + (8.3)

is developed from the mapping between analysis inputs
and analysis results, where the xj are the input variables
under consideration and the bj are coefficients that must
be determined.  The coefficients bj and other aspects of
the construction of the regression model in Eq. (8.3) can
be used to indicate the importance of the individual xj
with respect to the uncertainty in y.

The construction of the regression model in Eq.
(8.3) is considered first.  To keep the notation from be-
coming unwieldy, n will be used to denote the number
of independent variables under consideration (i.e., n =
nX as used in Eqs. (1.2) and (8.3)) and m will be used to
denote the number of observations under consideration
(i.e., m = nS as used in Eqs. (1.4) and (8.2)).  As shown
in Eq. (8.2), there exists a sequence yk = y(xk), k = 1, 2,
..., m, of values for the output variable.  When ex-
pressed in the form of the model in Eq. (8.3), each yk
becomes

y b b x mk
j=

j kj k= , 1, . . . , ,0
1

+ + =
n

kε (8.4)

where the error terms εk, k = 1, …, m, are defined by
εk k ky y= − �  and thus equal the difference between the
observed value yk and the corresponding predicted
value �yk  defined by Eq. (8.3).  At this point, the bj are
still unknown.  What is desired is to determine the bj in
some suitable manner.  The method of least squares is
widely used and will be employed here (Harter 1983,
Eisenhart 1964).  As a result of its extensive use, there
exist a number of excellent textbooks on least squares
regression analysis (e.g., Myers 1990, Weisberg 1985,
Seber 1977, Draper and Smith 1981, Daniel and Wood
1980, Neter and Wasserman 1974).  The following dis-
cussion presents just enough information to be able to
describe some of the applications of regression-based
techniques in sensitivity analysis.  The indicated text-
books, as well as many others, provide far more infor-
mation on regression analysis than can be presented
here.

To determine the bj, it is convenient to use the fol-
lowing matrix representation for the equalities in Eq.
(8.4):

y = Xb + εεεε, (8.5)

where

y X b=
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1
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In the least squares approach, the bj are determined such
that the sum
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(8.6)

is a minimum.  Put another way, the bj are determined
such that the sum of the error terms, 2

kk
ε , is a mini-

mum.  The determination of the bj in the least squares
approach is a calculus rather than a statistics problem
and is based on consideration of the first derivatives of
S(b) with respect to the individual bj (Sect. 2.6, Draper
and Smith 1981).



34

This determination leads to the following matrix
equation that defines the coefficient vector b for which
the sum S(b) in Eq. (8.6) is a minimum:

XTXb = XTy. (8.7)

For the analysis to produce a unique value for b, the
matrix XTX must be invertible.  Then, b is given by

b = (XTX)−1 XTy. (8.8)

The matrix XTX will always be invertible when the col-
umns of X are linearly independent.  This is usually the
case in a sampling-based study in which the number of
sample elements (i.e., m) exceeds the number of inde-
pendent variables (i.e., n).

The following identity holds for the least squares
regression model and plays an important role in assess-
ing the adequacy of such models:

( ) ( � ) ( � ) ,y y y y y yk
k

m

k
k

m

k k
k

m
− = − + −

= = =

2

1

2

1

2

1

(8.9)

where �yk  denotes the estimate of yk obtained from the
regression model and y  is the mean of the yk (Sect. 3.4,
Myers 1990).  For notational convenience, the preced-
ing equality is often written as

SStot = SSreg + SSres, (8.10)

where

2 2

1 1

2

1

ˆ( ) , ( ) ,

ˆ( ) .

m m

tot k reg k
k k

m

res k k
k

SS y y SS y y

SS y y

= =

=

= − = −

= −

The three preceding summations are called the total sum
of squares, regression sum of squares, and residual sum
of squares, respectively.

Since SSres provides a measure of variability about
the regression model, the ratio

R SS SSreg tot
2 = / (8.11)

provides a measure of the extent to which the regression
model can match the observed data.  Specifically, when
the variation about the regression model is small (i.e.,
when SSres is a small relative to SSreg), then the corre-

sponding R2 value is close to 1, which indicates that the
regression model is accounting for most of the uncer-
tainty in the yk.  Conversely, an R2 value close to zero
indicates that the regression model is not very success-
ful in accounting for the uncertainty in the yk.  Another
name for R2 is the coefficient of multiple determination.

An important situation occurs when the rows of the
matrix X (i.e., the variable values at which the model is
evaluated) are selected so that XTX is a diagonal matrix.
In this case, the columns of X are said to be orthogonal,
and the estimated regression coefficients are given by

b = (XTX)−1 XTy
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and so each element bj of b is given by

b x y d x y xj
k

m

kj k j
k

m

kj k
k

m

kj= =
= = =1 1 1

2/ . (8.13)

Thus, the estimate of the regression coefficient bj for
the variable xj depends only on the values for xj in the
design matrix X (i.e., x1j, ..., xmj).  This is true regard-
less of the number of variables included in the regres-
sion.  As long as the design is orthogonal, the addition
or deletion of variables from the model will not change
the regression coefficients for the remaining variables.
Further, when the design matrix X is orthogonal, the R2

value for the regression can be expressed as

R SS SS R R Rreg tot n
2

1
2

2
2 2 ,= = + + +/ � (8.14)

where Rj
2 is the R2 value that results from regressing y

on only xj (p. 99, Draper and Smith 1981).  Thus, Rj
2  is

equal to the contribution of xj to R2 when the design
matrix X is orthogonal.

The regression model in Eq. (8.3) can be algebrai-
cally reformulated as

( ) ( ) ( )
1

ˆ ˆ ˆ ˆ ˆ/ / / ,
n

j j j j j
j

y y s b s s x x s
=

− = − (8.15)

where
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The coefficients b s sj j� / �  appearing in Eq. (8.15) are
called standardized regression coefficients (SRCs).
When the xj are independent, the absolute value of the
SRCs can be used to provide a measure of variable im-
portance.  Specifically, the coefficients provide a meas-
ure of importance based on the effect of moving each
variable away from its expected value by a fixed frac-
tion of its standard deviation while retaining all other
variables at their expected values.  Calculating SRCs is
equivalent to performing the regression analysis with
the input and output variables normalized to mean zero
and standard deviation one.

An example regression analysis is now given.  The
output variable (i.e., y) is pressure (Pa) in the repository
at 10,000 yr under undisturbed (i.e., E0) conditions
(i.e., the pressure values above 10,000 yr in Fig. 7.5).
To keep the example at a convenient size, 3 independ-
ent variables (i.e., xj) will be considered (Table 3.1):
pointer variable for microbial degradation of cellulose
(WMICDFLG), halite porosity (HALPOR), and corro-
sion rate for steel (WGRCOR).  The following regres-
sion model is obtained using the preceding three vari-
ables and the pooled LHS indicated in conjunction with
Eq. (5.16) (i.e., n = 3 and m = 300):

y = 5.72 × 106 + 2.46 × 106 •  WMICDFLG
+ 1.55 × 108 •  HALPOR
+ 1.52 × 1020 •  WGRCOR. (8.16)

The coefficients in the preceding model show the effect
of a one unit change in an input variable (i.e., an xj) on
the output variable (i.e., y).  The sign of a regression
coefficient indicates whether y tends to increase (a
positive regression coefficient) or tends to decrease (a
negative regression coefficient) as the corresponding
input variable increases. Thus, y tends to increase as
each of WMICDFLG, HALPOR and WGRCOR in-
creases.

It is hard to assess variable importance from the re-
gression coefficients in Eq. (8.16) because of the effects
of units and distribution assumptions.  In particular, the
regression coefficient for WGRCOR is much larger than
the regression coefficients for WMICDFLG and
HALPOR, which does not necessarily imply that

WGRCOR has greater influence on the uncertainty in y
than WMICDFLG or HALPOR.  Variable importance is
more clearly shown by the following reformation of Eq.
(8.16) with SRCs:

y = 0.722 WMICDFLG + 0.468 HALPOR
+ 0.246 WGRCOR, (8.17)

where y, WMICDFLG, HALPOR and WGRCOR have
been standardized to mean zero standard deviation one
as indicated in Eq. (8.15).  The SRCs in Eq. (8.17) pro-
vide a better characterization of variable importance
than the unstandardized coefficients in Eq. (8.16).  For
perturbations equal to a fixed fraction of their standard
deviation, the impact of WMICDFLG is approximately
50% larger than the impact of HALPOR (i.e., (0.722 −
0.468)/0.468 = 0.54) and almost 200% larger than the
impact of WGRCOR (i.e., (0.722 − 0.246)/0.246 =
1.96).  Both regression models have an R2 value of 0.79
and thus can account for approximately 79% of the un-
certainty in y.  Standardized regression coefficients are
a popular way of ranking variable importance in sam-
pling-based sensitivity analysis and many examples of
their use exist (e.g., Chan 1996, Helton et al. 1996,
Hamby 1995, Ma et al. 1993, Ma and Ackerman 1993,
Whiting et al. 1993).

8.3 Statistical Tests in Regression
Analysis

Determination of the regression coefficients b0, b1,
b2, …, bn that constitute the elements of the vector b in
Eq. (8.8) involves no statistics.  Rather, as already indi-
cated, this determination is based entirely on procedures
involving minimization of functions and algebraic ma-
nipulations.  If desired, formal statistical procedures can
be used to indicate if these coefficients appear to be
different from zero.  However, such procedures are
based on assumptions that are not satisfied in sampling-
based sensitivity studies of deterministic models (i.e.,
models for which a given input always produces the
same result), and thus the outcome of using formal sta-
tistical procedures to make assessments about the sig-
nificance of individual coefficients or other entities in
sampling-based sensitivity studies should be regarded
simply as one form of guidance as to whether or not a
model prediction appears to be affected by a particular
model input.

In the usual construction of tests for the signifi-
cance of regression coefficients, the relationship be-
tween the dependent and independent variables is as-
sumed to be of the form
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y xj j
j

n
= + +

=

β β ε0
1

, (8.18)

where ε is normally distributed with mean 0 and stan-
dard deviation σ and characterizes the variation in y that
is observed when y is repeatedly evaluated for x = [x1,
x2, …, xn].  Further, σ is assumed to be the same for all
values of x.  It is the distributional assumptions involv-
ing ε that allows the construction of statistical tests for
the coefficients β0, β1, β2, …, βn.  These assumptions
are not satisfied in sampling-based sensitivity studies
with deterministic models because a given x always
produces the same value for y.

Given the preceding assumptions involving ε, the
relationship in Eq. (8.9) can be used in the development
of tests to indicate if various of the βj in Eq. (8.18) ap-
pear to be different from zero.  For notational conven-
ience, let

SS y yreg n k
k

m
( , , , | ) ( � )β β β β1 2 0

2

1

� = −
=

(8.19)

when the vector b in Eq. (8.8), and hence the associated
regression model, contains estimates for β0, β1, β2,
…,βn.  The preceding quantity is called the regression
sum of squares and constitutes the part of the total sum
of squares (i.e., the left-hand side of Eq. (8.9)) that can
be explained by the regression model.  More generally,
if
β1, β2, …,βn are partitioned into vectors ββββ1 and ββββ2
where ββββ1 contains p1 of the coefficients β1, β2, …,βn
and ββββ2 contains the remaining p2 = n − p1 coefficients,
then

1 2 0 1 2 0

2 0

( , , , | ) ( | , )

  ( | ),
reg n reg

reg

SS SS

SS

β β β β = β

+ β

� β ββ ββ ββ β

ββββ (8.20)

where SSreg(ββββ1|ββββ2, β0) is the increase in the regression
sum of squares that results from extending a regression
model involving estimates for β0 and the βj’s in ββββ2 to a
regression model involving estimates for β0 and the
coefficients in ββββ1 and ββββ2.

Given the assumptions involving ε indicated in
conjunction with Eq. (8.18), SSreg(ββββ1|ββββ2, β0) can be
used to test the hypothesis that ββββ1 = 0.  In particular, if
ββββ1 = 0 and the assumptions involving ε are satisfied,
then

F SS p sreg= [ ( | , ) / ] / �β β β1 2 0 1
2 (8.21)

can be regarded as a randomly sampled value from an F-
distribution with (p1, m − n − 1) = (p1, m − p1 − p2 − 1)
degrees of freedom, where

� ( � ) / ( )s y y m nk k
k

m
2 2

1

1= − − −
=

(8.22)

is an approximation to σ2 (see Sect. 3.4, Myers 1990, or
any other standard text on regression analysis).  The
probability probF ( ~ | , )F F> η η1 2  of exceeding an F-
statistic value of F calculated with (η1, η2) degrees of
freedom can be estimated by

prob F F I
F

F (
~

| , ) ( / , / ),
/ ( ),

> =
= +

η η η η
ν η η η

ν1 2 2 1

2 2 1

2 2
(8.23)

where Iν (a, b) designates the incomplete beta function
(p. 222, Press et al. 1992).  Thus, under the assumption
that ββββ1 = 0, the probability that a larger value for SSreg
(ββββ1|ββββ2, β0) would result from chance alone can be cal-
culated and used to make an assessment as to whether
or not it appears to be reasonable to reject the assump-
tion that ββββ1 = 0, with this probability typically called
the p-value or α-value for F and the corresponding
vector ββββ1.  Small p-values indicate that the observed
value for F is unlikely to have occurred due to chance
and thus suggest that ββββ1 ≠ 0.

The statistic F in Eq. (8.21) can be used to test the
hypothesis that

ββββ = =[ , , , ]β β β1 2 � n 0 . (8.24)

In this case,

F SS n sreg= [ ( | ) / ] / �β β0
2 (8.25)

can be regarded as a randomly sampled value from an
F-distribution with (n, m − n − 1) degrees of freedom.
A small p-value for F suggests that ββββ ≠ 0.

Another important special case occurs when a sin-
gle regression coefficient (i.e., βj) is under considera-
tion, with the result that p1 = 1 and p2 = n − 1 in Eq.
(8.21).  Then,

F SS sreg j= [ ( | , ) / ] / �β β β2 0
21 (8.26)
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can be used to indicate if βj appears to differ from zero
given that estimates for β0 and the coefficients in ββββ2 are
included in the regression model.  Specifically, under
the assumption that βj = 0, F can be regarded as a ran-
domly sampled value from an F-distribution with (1,
m−n−1) degrees of freedom.  An equivalent test in-
volving βj can be based on the statistic

t b s cj jj= / � , (8.27)

where bj is the estimated value for βj, �s  is defined in
Eq. (8.22), and cjj is the jth diagonal element of the ma-
trix (XTX)−1 in Eq. (8.8) (p. 98, Myers 1990).  Under the
assumption that βj = 0, t can be regarded as a randomly
sampled value from a t-distribution with m − n − 1
degrees of freedom.  The probability

(| | | | | 1)tprob t t m n> − −�  of obtaining a value ~t  from
the preceding distribution for which |~|t  exceeds | |t  is
given by

(| | | | | 1) 1 [( 1) / 2, 1/ 2]t xprob t t m n I m n> − − = − − −�

 2
1 ,

1
m nx

m n t
− −=

− − + (8.28)

where Ix (a, b) designates the incomplete beta function
(p. 222, Press et al. 1992).  Thus, t as defined in Eq.
(8.27) can also be used to test if an individual regres-
sion coefficient appears to be different from zero.  The
equality F = t2 holds for F and t as defined in Eqs.
(8.26) and (8.27).  Further, identical significance results
(i.e., p- or α-values) are produced by the use of F in
conjunction with the relationship in Eq. (8.23) and the
use of t in conjunction with the relationship in Eq.
(8.28)

As already indicated, the distributional assumptions
that lead to the p-values defined by Eqs. (8.23) and
(8.28) are not satisfied in sampling-based sensitivity
studies.  However, these p-values still provide a useful
criterion for assessing variable importance because they
provide an indication of how viable the relationships
between input and output variables would appear to be
in a study in which the underlying distributional as-
sumptions were satisfied.

As an illustration, results of a formal statistical
analysis of the regression models in Eqs. (8.16) and
(8.17) are presented in Table 8.1, with the coefficients
in these models appearing in the columns labeled “Re-
gression Coefficient” and “Standardized Regr Coef,”
respectively.  The p-value for the regression model
containing all three variables (Footnote e, Table 8.1) is
less than 10−4, as are the p-values for adding individual

variables to the regression model (Footnote n, Table
8.1).  Thus, in a study in which the necessary distribu-
tional assumptions were satisfied (see Eq. (8.18)), the
implication would be that WMICDFLG, HALPOR and
WGRCOR have significant influences (i.e., nonzero
regression coefficients) on y = E0:WAS_PRES.  The p-
values for the individual variables (Footnote n, Table
8.1) are more useful from a sensitivity analysis perspec-
tive than the p-value for all three variables (Footnote e,
Table 8.1) as they indicate whether or not individual
variables appear to affect y.  In contrast, the p-value for
the variables collectively only indicates that at least one
of the variables appears to affect y.

The regression analysis summarized in Eq. (8.16),
Eq. (8.17) and Table 8.1 only involves the variables
WMICDFLG, HALPOR and WGRCOR, with these vari-
ables selected for illustrative purposes on the basis of a
priori knowledge that they had identifiable effects on y.
As a result, these variables result in regression models
with small p-values.  In a sensitivity analysis with no a
priori knowledge, all of the variables in Table 3.1
would have to be investigated for their effects on y.
This implies the construction of a regression model with
all 31 variables from Table 3.1, with the outcome of this
construction summarized in Table 8.2.  Actually, the
regression model in Table 8.2 only involves 24 vari-
ables because (i) the variables ANHCOMP and
HALCOMP were not used in the construction of the
model due to the rank correlations of −0.99 assumed to
exist within the variable pairs (ANHCOMP, ANHPRM)
and (HALCOMP, HALPRM) (see Sect. 8.7) and (ii) the
variables BHPRM, BPCOMP, BPINTPRS, BPPRM and
BPVOL were not used because they were not involved
in the calculation of the dependent variable under con-
sideration.  Of the 24 variables, six have p-values less
than 0.02 and thus appear to affect y (i.e., WMICDFLG,
HALPOR, WGRCOR, ANHPRM, SHRGSSAT,
SALPRES).  The remaining variables have larger p-
values, and thus the regression analysis does not indi-
cate an effect for these variables.  However, it is im-
portant to realize that the failure of a regression analysis
to identify an effect for a variable does not necessarily
imply that no effect exists.  In particular, the regression
model is based on identifying a linear relationship and
can completely miss other types of relationships (see
Sects. 8.8, 8.9).

The results presented in Table 8.2 are rather un-
wieldy, with much of the table involving variables that
appear to have no effect on y.  Stepwise regression
analysis provides a more informative and less cumber-
some procedure for constructing and presenting regres-
sion models and will be described in Sect. 8.5.
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Table 8.1. Summary of Regression Analysis for y = E0:WAS_PRES at 10,000 yr, x1 = WMICDFLG,
x2 = HALPOR and x3 = WGRCOR

Source DofFa SSb MSc Fd SIGNIFe

Regression 3 1.9009E+15 6.3365E+14 3.7643E+02 0.0000
Residual 296 4.9827E+14 1.6833E+12
Total 299 2.3992E+15

R-Squaref = 0.79232 Interceptg = 5.7274E+06

Variableh Regressioni

Coefficient
Standardizedj

Regr Coeff
Partialk

SSQ
T-Testl

Values
R-Squarem

Deletes
Alphan

Hats

WMICDFLG 2.4625E+06 7.2201E−01 1.2482E+15 2.7231E+01 2.7206E−01 0.0000E+00
HALPOR 1.5529E+08 4.6809E−01 5.2479E+14 1.7657E+01 5.7359E−01 –4.4409E−16o

WGRCOR 1.5210E+20 2.4649E−01 1.4559E+14 9.3000E+00 7.3164E−01 –4.4409E−16

a Degrees of freedom associated with regression (SSreg), residual (SSres) and total (SStot) sums of squares; see Eqs. (8.9), (8.10).
b Regression (SSreg), residual (SSres) and total (SStot) sums of squares.
c Mean sums of squares (SSreg/n, SSres/(m − n − 1), where estimates for β1, β2, …, βn are obtained from m observations).
d F-statistic ([SSreg/n]/[SSres/(m − n − 1)]); see Eq. (8.25).
e p- or α-value for F; see Eq. (8.23).
f R2 value for regression model with estimates for β0, β1, β2, …, βn; see Eq. (8.11).
g Estimate for β0.
h Variables in regression model (x1, x2, …, xn).
i Regression coefficients (b1, b2, …, bn); see Eq. (8.8).
j Standardized regression coefficients; see Eq. (8.15).
k Partial sum of squares for variable (i.e., xj) in row (SSreg(βj|β2, β0)); see Eqs. (8.20), (8.26).
l t-statistic for variable in row; see Eq. (8.27).
m For variable (xj) in row, R2 value for regression model constructed with xi, i = 1, 2, …, n and i ≠ j.
n For variable (xj) in row, p- or α-value for addition of xj to regression model containing xi, i = 1, 2, …, n and i ≠ j; use of F-statistic or t-

statistic produces same value; see Eqs. (8.23) and (8.26) for F-statistic and Eqs. (8.27) and (8.28) for t-statistic.
o Negative values result from numerical errors in the calculation of very small p-values with the STEPWISE program (Iman et al. 1980).

8.4 Correlation and Partial
Correlation

The ideas of correlation and partial correlation are
useful concepts that often appear in sampling-based
uncertainty/sensitivity studies.  For a sequence of ob-
servations (xk, yk), k = 1, ..., m, the (sample or Pearson)
correlation rxy between x and y is defined by
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2
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2
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where x  and y  are defined in conjunction with Eq.
(8.15).  The correlation coefficient (CC) rxy provides a
measure of the linear relationship between x and y.  For
the regression model defined by Eq. (8.8), the R2 value
in Eq. (8.11) is equal to the square of the correlation
between y and ŷ  2 2 ˆ( . ., )yyi e R r=  (p. 91, Draper and
Smith 1981).

The nature of rxy is perhaps most readily under-
stood by considering the regression

�y b b x= +0 1 . (8.30)

The definition of rxy in Eq. (8.29) is equivalent to the
definition

rxy = sign(b1)(R2)1/2, (8.31)
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Table 8.2. Summary of Regression Analysis for y = E0:WAS_PRES at 10,000 yr and x1, x2, …, x24 Cor-
responding to ANHBCEXP, ANHBCVGP, ANRBRSAT, ANHPRM, ANRGSSAT, HALPOR,
HALPRM, SALPRES, SHBCEXP, SHPRMASP, SHPRMCLY, SHPRMCON, SHPRMDRZ,
SHPRMHAL, SHRBRSAT, SHRGSSAT, WASTWICK, WFBETCEL, WGRCOR, WGRMICH,
WGRMICI, WMICDFLG, WRBRNSAT and WRGSSAT (see Table 8.1 for description of table
structure)

Source DofF SS MS F SIGNIF

Regression 24 1.9921E+15 8.3003E+13 5.6063E+01 0.0000
Residual 275 4.0714E+14 1.4805E+12
Total 299 2.3992E+15

R-Square = 0.83030 Intercept = 1.2896E+07

Variable Regression
Coefficient

Standardized
Regr Coeff

Partial
SSQ

T-Test
Values

R-Square
Deletes

Alpha
Hatsa

WMICDFLG 2.4669E+06 7.2329E−01 1.2002E+15 2.8472E+01 3.3007E−01 2.7828E−08
HALPOR 1.5429E+08 4.6510E−01 5.1332E+14 1.8620E+01 6.1635E−01 2.7828E−08
WGRCOR 1.5156E+20 2.4561E−01 1.4349E+14 9.8446E+00 7.7050E−01 2.7828E−08
ANHPRM 5.5924E+05 1.2774E−01 3.8910E+13 5.1266E+00 8.1408E−01 5.8498E−07
SHRGSSAT 1.7177E+06 7.0177E−02 1.1729E+13 2.8147E+00 8.2541E−01 5.2352E−03
SALPRES 2.1946E−01 6.3855E−02 9.6907E+12 2.5584E+00 8.2626E−01 1.1051E−02
WASTWICK 4.9174E+05 5.0273E−02 6.0154E+12 2.0157E+00 8.2779E−01 4.4804E−02
HALPRM 1.6369E+05 5.0099E−02 5.9533E+12 2.0053E+00 8.2782E−01 4.5914E−02
WGRMICH −3.3997E+14 –4.3972E−02 4.5935E+12 −1.7614E+00 8.2839E−01 7.9278E−02
SHPRMCLY −1.5252E+05 –4.1991E−02 4.2037E+12 −1.6850E+00 8.2855E−01 9.3118E−02
ANHBCEXP 1.6070E+06 3.3745E−02 2.7011E+12 1.3507E+00 8.2918E−01 1.7790E−01
ANHBCVGP 6.0999E+04 3.2355E−02 2.4143E+12 1.2770E+00 8.2930E−01 2.0269E−01
WGRMICI 2.8456E+13 2.6713E−02 1.7003E+12 1.0717E+00 8.2959E−01 2.8481E−01
ANRBRSAT −2.0139E+06 −1.9366E−02 8.9467E+11 −7.7736E−01 8.2993E−01 4.3761E−01
SHPRMCON −5.2400E+04 −1.3969E−02 4.6597E+11 −5.6101E−01 8.3011E−01 5.7525E−01
SHPRNHAL −1.2571E+05 −1.2830E−02 3.9130E+11 −5.1410E−01 8.3014E−01 6.0759E−01
SHPRMSAP 5.2519E+04 1.1577E−02 3.1972E+11 4.6471E−01 8.3017E−01 6.4251E−01
WRGSSAT 7.8406E+05 1.2014E−02 3.4357E+11 4.8173E−01 8.3016E−01 6.3038E−01
SHBCEXP 1.1063E+04 1.0169E−02 2.4150E+11 4.0388E−01 8.3020E−01 6.8662E−01
ANRGSSAT 7.4311E+05 8.8597E−03 1.8755E+11 3.5592E−01 8.3022E−01 7.2217E−01
WFBETCEL −8.1238E+04 −8.2986E−03 1.6325E+11 −3.3206E−01 8.3023E−01 7.4010E−01
WRBRNSAT −1.0212E+05 −5.7539E−03 7.8584E+10 −2.3039E−01 8.3027E−01 8.1796E−01
SHPRMDRZ 1.6592E+03 3.6624E−04 3.2009E+08 1.4704E−02 8.3030E−01 9.8828E−01
SHRBRSAT −2.9090E+03 −1.8048E−04 7.6305E+07 −7.1791E−03 8.3030E−01 9.9428E−01
a Identical values result from lack of resolution in algorithm used in the calculation of very small p-values in the STEPWISE program (Iman et

al. 1980).
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where sign(b1) = 1 if b1 ≥ 0, sign(b1) = −1 if b1 < 0, and
R2 is the coefficient of determination that results from
regressing y on x.  With respect to interpretation, the CC
rxy provides a measure of the linear relationship be-
tween x and y, and the regression coefficient b1 charac-
terizes the effect that a unit change in x will have on y.

The definition of rxy in Eq. (8.29) is also equivalent
to the definition

r b s sxy = 1 1� / � , (8.32)

where �s1  and �s  are defined in conjunction with Eq.
(8.15) with x assumed to correspond to x1.  Thus, rxy is
also equal to the standardized regression coefficient that
results from regressing y on x.  Hence, rxy can be
viewed as characterizing the effect that changing x by a
fixed fraction of its standard deviation will have on y,
with this effect being measured relative to the standard
deviation of y.  The CC can also be viewed as a pa-
rameter in a joint normal distribution involving x and y
(Sect. 2.13, Myers 1990); however, this interpretation is
not as intuitively appealing as the two preceding inter-
pretations involving the regression model in Eq. (8.30).
Further, x and y typically do not have normal distribu-
tions in sampling-based sensitivity analyses.

When more than one input variable is under con-
sideration, partial correlation coefficients (PCCs) can be
used to provide a measure of the linear relationships
between the output variable y and the individual input
variables.  The PCC between an individual variable xj
and y is obtained from the use of a sequence of regres-
sion models.  First, the following two regression models
are constructed:

� � .x c c x y b b xj
p
p j

n

p p
p
p j

n

p p= + +
=
≠

=
≠

0 0and  =
1 1

(8.33)

Then, the results of the two preceding regressions are
used to define the new variables xj − �x j  and y − �y .

The PCC px j y  between xj and y is the CC between xj −

�x j  and y − �y .  Thus, the PCC provides a measure of
the linear relationship between xj and y with the linear
effects of the other variables removed.  The preceding
provides a rather intuitive development of what a PCC
is.  A formal development of PCCs is provided by Iman
et al. (1985).

The PCC characterizes the strength of the linear
relationship between two variables after a correction has
been made for the linear effects of the other variables in
the analysis, and the SRC characterizes the effect on the
output variable that results from perturbing an input
variable by a fixed fraction of its standard deviation.
Thus, PCCs and SRCs provide related, but not identical,
measures of variable importance.  In particular, the PCC
provides a measure of variable importance that tends to
exclude the effects of other variables, the assumed dis-
tribution for the particular input variable under consid-
eration, and the magnitude of the impact of an input
variable on an output variable.  In contrast, the value for
an SRC is more influenced by the distribution assigned
to an input variable and the impact that this variable has
on an output variable.

The following relationship exists between px j y

and the SRC c b s sj j j= � / � in Eq. (8.15):

p c R Rx j y j j y= − −[( ) / ( )] ,/1 12 2 1 2 (8.34)

where Rj
2  is the R2 value that results from regressing xj

on y and the xi, i = 1, 2, …, n with i ≠ j, and Ry
2  is the

R2 value that results from regressing y on the xi, i = 1, 2,
…, n (Eq. (1), Iman et al. 1995).  If the xi are orthogo-
nal, then
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with the first equality following from Eq. (8.14), and the
second and third equalities following from Eqs. (8.31)
and (8.32).  Thus,
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Because of the inequality

b b a a( ) ( )/ /1 12 1 2 2 1 2− > − (8.37)



41

for a2 + b2 < 1 and 0 ≤ a < b (see Fig. 7, Kleijnen and
Helton 1999a), an ordering of variable importance
based on | px j y | , | c j |  or | rx j y |  produces the same re-

sults when the xj are orthogonal; further, the values for
c j  and rx j y  will be the same and generally different

from px j y .

Many output variables are functions of time or lo-
cation.  A useful way to present sensitivity results for
such variables is with plots of PCCs or SRCs.  An ex-
ample of such a presentation for the pressure curves in
Fig. 7.5 is given in Fig. 8.3, which displays two sets of
curves.  The left set contains SRCs plotted as a function
of time; the right set contains PCCs plotted in a similar
manner.  For both sets of curves, the dependent vari-
ables are pressures at fixed times, and each curve dis-
plays the values of SRCs or PCCs relating these pres-
sures to a single input variable as a function of time.
Many additional examples of the use of PCCs in sam-
pling-based sensitivity analysis also exist (e.g., Helton
et al. 1996, Hamby 1995, Whiting et al. 1993,
Breshears et al. 1992).

Determination of CCs and PCCs involves no statis-
tical assumptions.  However, as previously discussed

for regression coefficients in Sect. 8.3, statistical tests
can be performed conditional on suitable assumptions.
For example,

t r m rxy xy= − −( ) / ( )/ /2 11 2 2 1 2 (8.38)

can be regarded as a random sample from a
t-distribution with m − 2 degrees of freedom when (i)
rxy is calculated from the observations (xk, yk), k = 1, 2,
…, m, and (ii) x and y are uncorrelated and have a bi-
variate normal distribution (p. 631, Press et al. 1992).
Then, the probability of observing a stronger correlation
due to chance variation is given by the relationship in
Eq. (8.28).  The preceding test is identical to the test
involving the t-statistic described in Sect. 8.3 for the
significance of b1 in Eq. (8.30) (p. 70, Myers 1990).
Further,

z r mxy= (8.39)

is distributed approximately normally with mean 0 and
standard deviation 1 when x and y are uncorrelated, x
and y have enough convergent moments (i.e., the tails of
their distributions die off sufficiently rapidly), and m is
sufficiently large (p. 631, Press et al. 1992).  Given
the preceding assumptions, the probability
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Fig. 8.3. Standardized regression coefficients (SRCs) and partial correlation coefficients (PCCs) for five variables
having the largest PCCs, in absolute value, with pressure (Pa) in lower waste panel under undisturbed con-
ditions (i.e., y = E0:WAS_PRES).
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prob r rn xy xy(|~ | | | )>  of obtaining a value ~rxy  for which

|~ |rxy  exceeds | |rxy  is given by

( ) ( )prob r r erfc r mn xy xy xy|~ | | | | |> = 2 , (8.40)

where erfc is the complementary error function (i.e.,

erfc x t dt
x

( ) ( / ) ( ) )= −
∞

2 2π exp  (p. 631, Press et al.

1992).  Significance results obtained with the statistics
in Eqs. (8.38) and (8.39) converge as m increases.  Re-
lated significance results can also be defined for PCCs
(Quade 1989).

As an example, CCs, SRCs and PCCs for y =
E0:WAS_PRES at 10,000 yr are shown in Table 8.3.  Of
the 24 variables under consideration, 5 have CCs with
p-values less than 0.1.  The CCs and SRCs have similar
values, with equality failing to exist because of small
correlations between the 24 variables in the sample (see
Table 5.1).  The PCCs tend to be larger than the CCs
and SRCs.  Because PCCs provide a measure of the
strength of linear relationships after corrections have
been made for the effects of other variables, large PCCs
have the potential to produce misleading impressions of
variable importance; therefore, care should be exercised
in the use and interpretation of PCCs.  In particular, a
large PCC does not necessarily imply that the corre-
sponding input variable makes a large contribution to
the uncertainty in the output variable under considera-
tion.  However, when the sampled variable values are
independent (i.e., orthogonal), use of CCs, SRCs and
PCCs will produce identical rankings of variable im-

portance as previously noted.  The effect of correlations
within the sample can be seen in Table 8.3, with
SALPRES ranked 5 with CCs and 6 with SRCs and
PCCs.

8.5 Stepwise Regression Analysis

When many input variables are involved, the direct
construction of a regression model containing all input
variables as shown in Eq. (8.3) and illustrated in Table
8.2 may not be the best approach for several reasons.
First, the large number of variables makes the regres-
sion model tedious to examine and unwieldy to display.
Second, only a relatively small number of input vari-
ables typically has an impact on the output variable.  As
a result, there is no reason to include the remaining
variables in the regression model.  Third, correlated
variables result in unstable regression coefficients (i.e.,
coefficients whose values are sensitive to the specific
variables included in the regression model; see Sect.
8.7).  When this occurs, the regression coefficients in a
model containing all the input variables can give a mis-
leading representation of variable importance.  As a
side point, if several input variables are highly corre-
lated, consideration should be given to either removing
all but one of the correlated variables or transforming
the variables to correct for (i.e., remove) the correla-
tions between them.  Fourth, an overfitting of the data
can result when variables are arbitrarily forced into the
regression model.  This phenomenon occurs when the
regression model attempts to match the predictions as-
sociated with individual sample elements rather than
match the trends shown by the sample elements collec-
tively.

Table 8.3. Correlation Coefficients (CCs), Standardized Regression Coefficients (SRCs) and Partial Cor-
relation Coefficients (PCCs) for y = E0:WAS_PRES at 10,000 yr

Variable CCb SRCc PCCd

Namea p-Val Rank Value Rank Value Rank Value

WMICDFLG 0.0000 1.0 0.7124 1.0 0.7234 1.0 0.8642
HALPOR 0.0000 2.0 0.4483 2.0 0.4651 2.0 0.7469
WGRCOR 0.0000 3.0 0.2762 3.0 0.2460 3.0 0.5113
ANHPRM 0.0241 4.0 0.1302 4.0 0.1277 4.0 0.2953
SALPRES 0.0855 5.0 0.0993 6.0 0.0639 6.0 0.1526

a Variables for which CC with y has a p-value less than 0.1; variables ordered by p-values for CCs.
b p-value for CC, variable rank based on p-value for CC, and value of CC.
c Variable rank based on SRC and value for SRC for regression model containing 24 variables used in Table 8.2.
d Variable rank based on PCC and value for PCC calculated for 24 variables used in Table 8.2.
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Stepwise regression analysis provides an alternative
to constructing a regression model containing all the
input variables.  With this approach, a sequence of re-
gression models is constructed.  The first regression
model contains the single input variable that has the
largest impact on the uncertainty in the output variable
(i.e., the input variable that has the largest correlation
with the output variable y).  The second regression
model contains the two input variables that have the
largest impact on the output variable:  the input variable
from the first step plus whichever of the remaining vari-
ables has the largest impact on the uncertainty not ac-
counted for by the first variable  (i.e., the input variable
that has the largest correlation with the uncertainty in y
that cannot be accounted for by the first variable).  The
third regression model contains the three input variables
that have the largest impact on the output variable:  the
two input variables from the second step plus whichever
of the remaining variables has the largest impact on the
uncertainty not accounted for by the first two variables
(i.e., the input variable that has the largest correlation
with the uncertainty in y that cannot be accounted for by
the first two variables).  Additional models in the se-
quence are defined in the same manner until a point is
reached at which further models are unable to meaning-
fully increase the amount of the uncertainty in the out-
put variable that can be accounted for.  Further, at each
step of the process, the possibility exists for an already
selected variable to be dropped out if this variable no
longer has a significant impact on the amount of uncer-
tainty in the output variable that can be accounted for
by the regression model; this only occurs when correla-
tions exist between the input variables.

Several aspects of stepwise regression analysis
provide insights on the importance of the individual
variables.  First, the order in which the variables are
selected in the stepwise procedure provides an indica-
tion of their importance, with the most important vari-
able being selected first, the next most important vari-
able being selected second, and so on.  Second, the R2

values (see Eq. (8.11)) at successive steps of the analy-
sis also provide a measure of variable importance by
indicating how much of the uncertainty in the dependent
variable can be accounted for by all variables selected
through each step.  When the input variables are uncor-
related, the differences in the R2 values for the regres-
sion models constructed at successive steps equals the
fractions of the total uncertainty in the output variable
that can be accounted for by the individual input vari-
ables being added at each step (see Eq. (8.14)). Third,
the absolute values of the SRCs (see Eq. (8.15)) in the
individual regression models provide an indication of
variable importance.  Further, the sign of an SRC indi-
cates whether the input and output variable tend to in-

crease and decrease together (a positive coefficient) or
tend to move in opposite directions (a negative coeffi-
cient).

An important situation occurs when the input vari-
ables are uncorrelated.  In this case, orderings of vari-
able importance based on order of entry into the regres-
sion model, size of the R2 values attributable to the in-
dividual variables, the absolute values of the SRCs, the
absolute values of correlation coefficients, and the ab-
solute values of the PCCs are the same.  In situations
where the input variables are believed to be uncorre-
lated, one of the important applications of the previ-
ously discussed restricted pairing technique of Iman and
Conover (Sect. 5.5) is to ensure that the correlations
between variables within a Latin hypercube or random
sample are indeed close to zero.  When variables are
correlated, care must be used in the interpretation of the
results of a regression analysis since the regression co-
efficients can change in ways that are basically unre-
lated to the importance of the individual variables as
correlated variables are added to and deleted from the
regression model (see Sect. 8.7 for an example of the
effects of correlated variables on the outcomes of a re-
gression analysis).

When the stepwise technique is used to construct a
regression model, it is necessary to have some criterion
to stop the construction process.  When there are many
independent variables, there is usually no reason to let
the construction process continue until all the variables
have been used.  It is also necessary to have some crite-
rion to determine when a variable is no longer needed
and thus can be dropped from the regression model.  As
indicated earlier, this latter situation only occurs when
the input variables are correlated.  The usual criterion
for making the preceding decisions is based on whether
or not the regression coefficient associated with an input
variable appears to be significantly different from zero.
Specifically, an F-test or t-test is used to determine the
probability that a regression coefficient with absolute
value as large as or larger than the one constructed in
the analysis would be obtained if, in reality, there was
no relationship between the input and output variable,
and, as a result, the apparent relationship that led to the
constructed regression coefficient was due entirely to
chance (see Eqs. (8.26), (8.27) and associated text).
Sensitivity studies often use an α-value of 0.01 or 0.02
to add a variable to a regression model and a somewhat
larger value to drop a variable from the model.

As models involving more variables are developed
in a stepwise regression analysis, the possibility exists
of overfitting the data.  Overfitting occurs when the
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regression model in essence "chases" the individual
observations rather than following an overall pattern in
the data.  For example, it is possible to obtain a good fit
to a set of points by using a polynomial of high degree.
However, in doing so, it is possible to overfit the data
and produce a spurious model that makes poor predic-
tions.

To protect against overfit, the Predicted Error Sum
of Squares (PRESS) criterion can be used to determine
the adequacy of a regression model (Allen 1971).  For a
regression model containing q variables and constructed
from m observations, PRESS is computed in the fol-
lowing manner.  For k = 1,2,...,m, the kth observation is
deleted from the original set of m observations and then
a regression model containing the original q variables is
constructed from the remaining m − 1 observations.
With this new regression model, the value � ( )y kq  is
estimated for the deleted observation yk.  Then, PRESS
is defined from the preceding predictions and the m
original observations by

( )PRESSq
k

m

k qy y k= −
=1

2
( )� . (8.41)

The regression model having the smallest PRESS value
is preferred when choosing between two competing
models, as this is an indication of how well the basic
pattern of the data has been matched versus an overfit
or an underfit.  In particular, PRESS values will de-
crease in size as additional variables are added to the
regression model without an overfitting of the data (i.e.,
PRESSq > PRESSq+1), with an increase in the PRESS
values (i.e., PRESSq < PRESSq+1) indicating an overfit-
ting of the data.  In addition to PRESS, there are also a
number of other diagnostic tools that can be used to
investigate the adequacy of regression models (Cook
and Weisberg 1982, Belsley et al. 1980).

It is important to use scatterplots, PRESS values
and other procedures to examine the reasonableness of
regression models.  This is especially true when regres-
sion models are used for sensitivity analysis.  Such
analyses often involve many input variables and large
uncertainties in these variables.  The appearance of spu-
rious patterns is a possibility that must be checked for.

An example stepwise regression analysis follows
for the variable y = E0:WAS_PRES previously analyzed
with the regression model presented in Table 8.2.  The
first step selects the input variable xj that has the largest
impact on the output variable y.  Specifically, this is
defined to be the variable that has the largest correla-

tion, in absolute value, with y (see Eqs. (8.29) and
(8.31)).  Thus, it is necessary to calculate the correla-
tions between y and each of the 24 input variables under
consideration.  For illustration, Table 8.4 shows the 7 ×
7 correlation matrix for y and the six input variables
ultimately selected in the stepwise regression, although
the full correlation matrix would actually be (24 + 1) ×
(24 + 1).  Each element in the correlation matrix is the
correlation between the variables in the corresponding
row and column.  As examination of the correlation
matrix in Table 8.4 shows, WMICDFLG has the highest
correlation with waste pressure, which is denoted by
WAS_PRES.  Thus, the first step in the analysis selects
the variable WMICDFLG.  Here and elsewhere in the
stepwise procedure, the selection of variables to enter
the regression model could equivalently be made on the
basis of F-test or t-test values as defined in Eqs. (8.26)
and (8.27).  A regression model relating y to
WMICDFLG is then developed as shown in Eq. (8.8)
with n = 1 and m = 300.  The resultant regression model
is

ŷ = 8.94 × 106 + 2.43 × 106 •  WMICDFLG, (8.42)

which has an R2 value of 0.508, an α-value of 0.0000,
an SRC of 0.712 and a PRESS value of 1.20 × 1015.
This model is summarized as Step 1 in Table 8.5.

The second step selects the input variable xj that
has the largest impact on the uncertainty in the output
variable y that cannot be accounted by WMICDFLG, the
variable selected in the first step.  This selection is
made by defining a new variable

~y = y − �y
= y − (8.94 × 106 + 2.43 × 106 •  WMICDFLG),(8.43)

where �y  is defined in Eq. (8.42), and then calculating
the correlations between ~y  and the remaining variables.
The variable with the largest correlation, in absolute
value, with ~y  is selected as the second variable for
inclusion in the model.  In this example, the selected
variable is HALPOR.  The regression model at this step
will thus involve the two variables WMICDFLG and
HALPOR and is constructed as shown in Eq. (8.8) with
n = 2 and m = 300.  The resultant regression model is

�y = 6.89 × 106 + 2.49 × 106 •  WMICDFLG
  + 1.57 × 108 •  HALPOR. (8.44)

This model is summarized as Step 2 in Table 8.5.
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Table 8.4. Correlation Matrix for Variables Selected in Stepwise Regression Analysis for Pressure in the
Repository at 10,000 yr Under Undisturbed Conditions (i.e., y = E0:WAS_PRES at 10,000 yr
in Fig. 7.5)

WMICDFLG 1.0000
HALPOR −0.0348 1.0000
WGRCOR 0.0272 0.0216 1.0000
ANHPRM 0.0008 −0.0039 0.0130 1.0000
SHRGSSAT −0.0026 0.0395 −0.0171 −0.0042 1.0000
SALPRES 0.0560 −0.0072 0.0010 −0.0117 0.0061 1.0000
E0:WAS_PRES 0.7124 0.4483 0.2762 0.1303 0.0820 0.0993 1.0000

WMICDFLG HALPOR WGRCOR ANHPRM SHRGSSAT SALPRES E0:WAS_PRES

Table 8.5. Results of Stepwise Regression Analysis for Pressure in the Repository at 10,000 yr
Under Undisturbed Conditions (i.e., y = E0:WAS_PRES at 10,000 yr in Fig. 7.5)

Stepa Variablesb SRCc α-Valuesd R2 Valuese PRESSf

1 WMICDFLG 0.712 0.0000 0.508 1.20 × 1015

2 WMICDFLG 0.729 0.0000 0.732 6.59 × 1014

HALPOR 0.474 0.0000

3 WMICDFLG 0.722 0.0000 0.792 5.14 × 1014

HALPOR 0.468 0.0000
WGRCOR 0.246 0.0000

4 WMICDFLG 0.722 0.0000 0.809 4.79 × 1014

HALPOR 0.469 0.0000
WGRCOR 0.245 0.0000
ANHPRM 0.128 0.0000

5 WMICDFLG 0.722 0.0000 0.814 4.70 × 1014

HALPOR 0.466 0.0000
WGRCOR 0.246 0.0000
ANHPRM 0.129 0.0000
SHRGSSAT 0.070 0.0056

6 WMICDFLG 0.718 0.0000 0.818 4.63 × 1014

HALPOR 0.466 0.0000
WGRCOR 0.246 0.0000
ANHPRM 0.129 0.0000
SHRGSSAT 0.070 0.0055
SALPRES 0.063 0.0012

a Steps in the analysis.
b Variables selected at each step.
c Standardized regression coefficients (SRCs) for variables in the regression model at each step; see Eq. (8.15).
d p- or α-values for variables in the regression model at each step; see Eqs. (8.26), (8.27).
e R2 value for the regression model at each step; see Eq. (8.11).
f Predicted error sum of squares (PRESS) value for the regression model at each step; see Eq. (8.41).
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The third step selects the input variable xj that has
the largest impact on the uncertainty in the output vari-
able y that cannot be accounted for by WMICDFLG and
HALPOR, the two variables from the second step.  This
selection is made by defining a new variable

~y = y − �y
= y − (6.89 × 106 + 2.49 × 106 •  WMICDFLG

+ 1.57 × 108 •  HALPOR), (8.45)

where �y  is defined in Eq. (8.44).  The variable with the
largest correlation, in absolute value, with ~y  is selected
as the third variable for inclusion in the model.  In this
example, the selected variable is WGRCOR.  The re-
gression model for this step will thus involve the three
variables WMICDFLG, HALPOR and WGRCOR.  The
resultant regression model is summarized as Step 3 in
Table 8.5.

As shown in Table 8.5, the stepwise procedure then
continues in the same manner through a total of six
steps, until no more variables can be found with an α-
value less than 0.02.  At this point, the stepwise proce-
dure stops.

At each step, the stepwise procedure also checks to
see if any variable selected at a prior step now has an α-
value that exceeds a specified level, which is 0.05 in
this analysis.  If such a situation occurs, the variable
will be dropped from the analysis, with the possibility
that it may be reselected at a later step as other variables
are added and deleted from the model.  This type of
behavior only occurs when there are correlations be-
tween the input variables.  As shown in the correlation
matrix in Table 8.4, the restricted pairing technique has
been successful in keeping the correlations between the
input variables close to zero.  Thus, no variables meet
the criterion to be dropped from the regression model
once they have been selected at a prior step.

Another result of this lack of correlation is that the
regression coefficients do not change significantly as
additional variables are added to the regression model.
As examination of Table 8.5 shows, the regression coef-
ficients for a specific variable are essentially the same
in all regression models containing that variable.  Fur-
ther, as indicated in Eq. (8.14), the R2 values obtained
for successive models can be subtracted to obtain the
contribution to the uncertainty in y due to the newly
added variable.  Thus, for example, WMICDFLG ac-
counts for approximately 51% of the uncertainty in y
(i.e., R2 = 0.508), while WMICDFLG and HALPOR
together account for approximately 73% of the uncer-

tainty (i.e., R2 = 0.732).  As a result, HALPOR by itself
accounts for approximately 73% − 51% = 22% of the
uncertainty in y.  Similar results hold for the other vari-
ables selected in the analysis.

Table 8.5 also reports the PRESS values for the re-
gression models obtained at the individual steps in the
analysis.  A decreasing sequence of PRESS values indi-
cates that the regression models are not overfitting the
data on which they are based.  An increase in the
PRESS values suggests that a model is overfitting the
data, and thus that the stepwise procedure should
probably be stopped at the preceding step.  As shown
by the decreasing PRESS values in Table 8.5, the re-
gression models in this analysis are probably not over-
fitting the data from which they were constructed.

Typically, a certain amount of discretion is in-
volved in selecting the exact point at which to stop a
stepwise regression analysis.  Certainly, α-values and
the behavior of PRESS values provide two criteria to
consider in selecting a stopping point.  Other criteria
include the changes in the R2 values that take place as
additional variables are added to the regression models
and whether or not spurious variables are starting to
enter the regression models.  When only very small
changes in R2 values are taking place (e.g., ≤ 0.01),
there is often little reason to continue the stepwise proc-
ess.  When α-values approach or exceed 0.01 and a
large number of input variables are being considered, it
is fairly common to start getting spurious variables in
the regression (see Fig. 1, Kleijnen and Helton 1999b).
Such variables appear to have a small effect on the out-
put variable which, in fact, is due to chance variation.
In such situations, a natural stopping point may be just
before spurious variables start being selected.  Another
possibility is to delete spurious variables from the re-
gression model.

When the input variables are uncorrelated, a dis-
play of the results of a stepwise regression analysis as
shown in Table 8.5 contains a large amount of redun-
dant information.  A more compact display can be ob-
tained by listing the variables in the order that they en-
tered in the regression model, the R2 values obtained
with the entry of successive variables into the regression
model, and the SRCs for the variables contained in the
final model.  Table 8.6 shows what this summary looks
like for the stepwise regression analysis in Table 8.5.

Numerous examples of the use of stepwise regres-
sion analysis in sampling-based sensitivity analyses are
available in various articles by Helton et al. (1996,
1995b, 1989).
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Table 8.6.  Compact Summary of Stepwise Re-
gression Analysis for Pressure in the Repository at
10,000 yr Under Undisturbed Conditions (i.e., y =
E0:WAS_PRES at 10,000 yr in Fig. 7.5)

Stepa Variableb SRCc R2d

1 WMICDFLG 0.718 0.508
2 HALPOR 0.466 0.732
3 WGRCOR 0.246 0.792
4 ANHPRM 0.129 0.809
5 SHRGSSAT 0.070 0.814
6 SALPRES 0.063 0.818

a Steps in stepwise analysis.
b Variables listed in the order of selection in regression analysis.
c Standardized regression coefficients (SRCs) for variables in final

regression model.
d Cumulative R2 value with entry of each variable into regression

model.

8.6 The Rank Transformation

Regression and correlation analyses often perform
poorly when the relationships between the input and
output variables are nonlinear.  This is not surprising
since such analyses are based on developing linear rela-
tionships between variables.  The problems associated
with poor linear fits to nonlinear data can often be miti-
gated by use of the rank transformation (Iman and
Conover 1979, Conover and Iman 1981, Saltelli and
Sobol’ 1995).  The rank transformation is a simple con-
cept:  data are replaced with their corresponding ranks
and then the usual regression and correlation procedures
are performed on these ranks.  Specifically, the smallest
value of each variable is assigned the rank 1, the next
largest value is assigned the rank 2, and so on up to the
largest value, which is assigned the rank m, where m
denotes the number of observations.  Further, averaged
ranks are assigned to equal values of a variable.  The
analysis is then performed with these ranks being used
as the values for the input and output variables.  In es-
sence, the use of rank-transformed data results in an
analysis based on the strength of monotonic relation-
ships rather than on the strength of linear relationships.

As an example, the strength of the monotonic rela-
tionship between x and y can be measured with Spear-
man’s rank CC (RCC) for x and y, Rxy, which is simply
Pearson’s CC in Eq. (8.29) calculated on ranks.  The
test for zero rank correlation uses a table of quantiles
for | |Rxy  (e.g., Table A10, Conover 1980).  For a sam-

ple size of m ≥ 30,

z R mxy= −1 (8.46)

approximately follows a standard normal distribution if
the rank correlation between x and y is zero (p. 456,
Conover 1980).  Thus, similarly to Eq. (8.40) for rxy,

prob erfcn (| ~ | | | ) (| | / ),R R R mxy xy xy> = −1 2 (8.47)

where prob R Rn xy xy(| ~ | | |>  is the probability that random

variation would produce a value ~Rxy  larger in absolute
value than the observed value Rxy .  Further, standard-
ized rank regression coefficients (SRRCs) and partial
rank CCs (PRCCs) can be calculated analogously to the
corresponding coefficients for raw data.

For perspective, analyses for y = E0:BRAALIC at
10,000 yr (i.e., the value at 10,000 yr in Fig. 8.4) with
CCs, SRCs and PCCs calculated with both raw and
rank-transformed data are presented in Table 8.7.  The
general patterns exhibited by the analyses with raw data
and by the analyses with rank-transformed data are
similar to those discussed in conjunction with Table 8.3.
However, the two analyses differ in the importance as-
signed to individual variables.  In particular, the analy-
sis with rank-transformed data identifies WMICDFLG
as the most important variable with an RCC of −0.6521;
in contrast, the analysis with raw data identifies
WMICDFLG as the second most important variable
with a CC of −0.3210.  The preceding is a nontrivial
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Table 8.7. Correlation Coefficients (CCs, RCCs), Standardized Regression Coefficients (SRCs, SRRCs)
and Partial Correlation Coefficients (PCCs, PRCCs) with Raw and Rank-Transformed Data
for y = E0:BRAALIC at 10,000 yr in Fig. 8.4a

Raw Data

Variable CC SRC PCC
Name p-Val Rank Value Rank Value Rank Value

ANHPRM 0.0000 1.0 0.5655 1.0 0.5568 1.0 0.6317
WMICDFLG 0.0000 2.0 −0.3210 2.0 −0.2931 2.0 −0.3878
WASTWICK 0.0045 3.0 −0.1639 4.0 −0.1451 4.0 −0.2075
WGRCOR 0.0048 4.0 −0.1628 3.0 −0.1669 3.0 −0.2370
ANHBCEXP 0.0095 5.0 −0.1497 5.0 −0.1155 5.0 −0.1663
WFBETCEL 0.0555 6.0 −0.1105 8.0 −0.0757 8.0 −0.1098
WRBRNSAT 0.0615 7.0 −0.1080 9.0 −0.0733 9.0 −0.1065
HALPOR 0.0934 8.0 −0.0969 6.0 −0.0993 6.0 −0.1435

Rank-Transformed Data

Variable RCC SRRC PRCC
Name p-Val Rank Value Rank Value Rank Value

WMICDFLG 0.0000 1.0 −0.6521 1.0 −0.6533 1.0 −0.8787
ANHPRM 0.0000 2.0 0.5804 2.0 0.5937 2.0 0.8619
HALPRM 0.0014 3.0 0.1850 5.0 0.1443 5.0 0.3817
WGRCOR 0.0057 4.0 −0.1598 4.0 −0.1509 4.0 −0.3963
HALPOR 0.0087 5.0 −0.1518 3.0 −0.1539 3.0 −0.4031
WASTWICK 0.0405 6.0 −0.1185 7.0 −0.0948 7.0 −0.2617

a Table structure analogous to Table 8.3

difference because an RCC of −0.6521 implies that
WMICDFLG can account for 42.5% of the uncertainty
in y in rank-transformed space (i.e., 0.65212 � 0.425)
while a CC of −0.3210 implies that WMICDFLG can
account for only 10.3% of the uncertainty in y in the
original untransformed space (i.e., 0.32102 � 0.103).
Numerous other differences also exist.

Additional perspective on the use of raw and rank-
transformed data in the analysis of y = E0:BRAALIC
can be obtained from examination of the results of
stepwise regression analyses (Table 8.8).  In particular,
the use of rank-transformed data leads to a regression
model with 7 variables and an R2 value of 0.869.  In
contrast, the use of raw data leads to a regression model
with 6 variables and an R2 value of only 0.496.  Thus,
the use of rank-transformed data is resulting in an
analysis that can account for more of the uncertainty in
y than can be accounted for in an analysis with raw data.
As a result, the coefficients in Table 8.7 obtained with
rank-transformed data (i.e., RCCs, SRRCs, PRCCs) are
more informative with respect to the sources of the un-

certainty in y than are the coefficients obtained with raw
data.

When the relationship between the dependent and
independent variables is linear, use of raw and rank-
transformed data tends to produce similar results.
When rank-transformed data are used and there are no
ties in the data, the resulting values for regression coef-
ficients and SRCs are equal; thus, the rank transform
results in an automatic standardization of the data in this
case.

The analysis with rank-transformed data is more ef-
fective than the analysis with raw data because the rank
transformation tends to linearize the relationships be-
tween the independent variables (i.e., the xj’s) and the
dependent variable (i.e., y).  In particular, both
WMICDFLG and ANHPRM show a stronger linear re-
lationship with y after the rank transformation (Fig.
8.5).  The rank transformation improves the analysis
when nonlinear but monotonic relationships exist be-
tween the independent variables and the dependent
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Table 8.8. Comparison of Stepwise Regression Analyses with Raw and Rank-Transformed Data for
Cumulative Brine Flow over 10,000 yr under Undisturbed Conditions from the Anhydrite
Marker Beds to the Disturbed Rock Zone that Surrounds the Repository (i.e., y =
E0:BRAALIC at 10,000 yr in Fig. 8.4)

Raw Data Rank-Transformed Data

Stepa Variableb SRCc R2d Variableb SRRCe R2d

1 ANHPRM 0.562 0.320 WMICDFLG −0.656 0.425
2 WMICDFLG −0.309 0.423 ANHPRM 0.593 0.766
3 WGRCOR −0.164 0.449 HALPOR −0.155 0.802
4 WASTWICK −0.145 0.471 WGRCOR −0.152 0.824
5 ANHBCEXP −0.120 0.486 HALPRM 0.143 0.845
6 HALPOR −0.101 0.496 SALPRES 0.120 0.860
7 WASTWICK −0.010 0.869

a Steps in stepwise regression analysis.
b Variables listed in order of selection in regression analysis with ANHCOMP and HALCOMP excluded from entry into regression model.
c Standardized regression coefficient (SRCs) in final regression model.
d Cumulative R2 value with entry of each variable into regression model.
e Standardized rank regression coefficients (SRRCs) in final regression model.

variable.  When more complex relationships exist, the
rank transformation may do little to improve the quality
of an analysis.  In such cases, more sophisticated proce-
dures are required.  For example, various tests can be
used to check for deviations from randomness in scat-
terplots (Sects. 8.8, 8.9; also see Hamby 1994, Saltelli
and Marivoet 1990, Kleijnen and Helton 1999a).

As for stepwise regression analyses, analyses with
SRCs and PCCs of the type presented in Fig. 8.3 can
often be improved with the use of rank-transformed
data.  When the rank transform is used, the resultant
plots will contain SRRCs and PRCCs.  As an example,
the results of analyzing the cumulative brine inflows in
Fig. 8.4 with both raw and rank-transformed data are
presented in Fig. 8.6, with each plot frame showing the
five variables with the largest, in absolute value, SRCs,
PCCs, SRRCs and PRCCs as appropriate.  As in the
comparisons of stepwise regression analyses with raw
and rank-transformed data (Table 8.8), the analyses
with rank-transformed data in Fig. 8.6 produce out-
comes that indicate stronger effects for individual vari-
ables than is the case for the analyses with raw data.

The rank transformation has become quite popular
in sampling-based sensitivity analyses and many addi-
tional examples of its use exist (e.g., Sanchez and
Blower 1997; Gwo et al. 1996; Helton et al. 1996,
1989; Hamby 1995; Blower and Dowlatabadi 1994;
Whiting et al. 1993; MacDonald and Campbell 1986).

8.7 Effects of Correlations on Sen-
sitivity Analyses

The presence of correlations between uncertain
(i.e., sampled) variables can greatly complicate the in-
terpretation of sensitivity analysis results.  Regression-
based sensitivity analyses for the variables in Fig. 7.4
will be used as an example (Table 8.9).

The regression analyses in Table 8.9 are all rela-
tively successful in the sense that they have R2 values
between 0.86 and 0.91.  However, inspection of the
individual regression analyses indicates that there is an
undesirable complication that results from the rank cor-
relations of −0.99 that are assigned to the variable pairs
(ANHPRM, ANHCOMP) and (HALPRM, HALCOMP)
(Table 3.1).  When no correlations exist between the
sampled variables in the regression model, the regres-
sion coefficients will decrease monotonically in abso-
lute value. In this case, an ordering of the variables by
the absolute value of their regression coefficients pro-
vides a way to rank variable importance.  However,
when correlated variables are included in a regression
model, the sizes and even the signs of the associated
regression coefficients may not properly indicate the
effects of these variables.  This behavior appears in
Table 8.9 for the pair (HALPRM, HALCOMP) in the
regressions for Anhydrites a and b North (E0:BRA-
ABNIC), Anhydrites a and b South (E0:BRAABSIC),
MB 139 North (E0:BRM39NIC), MB 139 South



50

BRAGFLO (E0, R1, R2, R3) BRAGFLO (E0, R1, R2, R3)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Microbial Gas Generation Flag: WMICDFLG Microbial Gas Generation Flag: WMICDFLG

Rank-Transformed Data

Time: 10000 yr
Raw Data

Time: 10000 yr

B
rin

e 
In

flo
w

 D
R

Z
: B

R
A

A
LI

C
 (

10
3  m

3 )

0

40

80

120

160

200

240

280

B
rin

e 
In

flo
w

 D
R

Z
: B

R
A

A
LI

C
 

400 80 120 160 200 240 280

Rank-Transformed Data

BRAGFLO (E0, R1, R2, R3) BRAGFLO (E0, R1, R2, R3)

Time: 10000 yr
Raw Data

Time: 10000 yr

−21.0 −20.5 −20.0 −19.5 −19.0 −18.5 −18.0 −17.5 −17.0

Logarithm Marker Bed Permeability (m2): ANHPRM Logarithm Marker Bed Permeability: ANHPRM

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

B
rin

e 
In

flo
w

 D
R

Z
: B

R
A

A
LI

C
 (

10
3  m

3 )

TRI-6342-5369-0

0

40

80

120

160

200

240

280

B
rin

e 
In

flo
w

 D
R

Z
: B

R
A

A
LI

C
 

400 80 120 160 200 240 280

Fig. 8.5. Scatterplots for cumulative brine discharge (m3) from the marker beds over 10,000 yr under undisturbed
conditions (i.e., y = E0:BRAALIC at 10,000 yr in Fig. 8.4) versus microbial gas generation flag
(WMICDFLG) and marker bed permeability (ANHPRM) with raw (i.e., untransformed) and rank-
transformed data.
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Fig. 8.6. Standardized regression coefficients (SRCs, SRRCs) and partial correlation coefficients (PCCs, PRCCs)
calculated with raw and rank-transformed data for cumulative brine flow from anhydrite marker beds to
disturbed rock zone (DRZ) under undisturbed conditions (i.e., y = E0:BRAALIC in Fig. 8.4) with
ANHCOMP and HALCOMP excluded from calculation.
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Table 8.9. Stepwise Regression Analyses with Rank-Transformed Data for Cumulative Brine Flow
over 10,000 yr into DRZ (E0:BRM38NIC, E0:BRM38SIC, E0:BRAABNIC, E0:BRAABSIC,
E0:BRM39NIC, E0:BRM39SIC, E0:BRAALIC) and into repository (E0:BRNREPTC) under
Undisturbed Conditions (see Fig. 7.4)

MB 138 North:  E0:BRM38NIC MB 138 South:  E0:BRM38SIC Anh a and b North:  E0:BRAABNIC Anh a and b South:  E0:BRAABSIC

Stepa Variableb SRRCc R2d Variable SRRC R2 Variable SRRC R2 Variable SRRC R2

1 ANHPRM 0.75 0.54 ANHPRM 0.73 0.51 WMICDFLG −0.66 0.43 WMICDFLG −0.66 0.43
2 WMICDFLG −0.52 0.80 WMICDFLG −0.55 0.80 ANHPRM 0.60 0.79 ANHPRM 0.59 0.77
3 HALCOMP 0.21 0.84 HALCOMP 0.18 0.83 HALPOR −0.15 0.81 HALPOR −0.16 0.80
4 HALPOR −0.11 0.86 WGRCOR −0.13 0.85 WGRCOR −0.16 0.84 WGRCOR −0.16 0.83
5 WGRCOR −0.12 0.87 HALPOR −0.11 0.86 SALPRES 0.11 0.85 SALPRES 0.11 0.84
6 SALPRES 0.11 0.88 SALPRES 0.10 0.87 WASTWICK −0.09 0.86 HALPRM 0.54 0.85
7 WASTWICK −0.08 0.89 WASTWICK −0.08 0.88 HALPRM 0.49 0.87 WASTWICK −0.09 0.86
8 WGRMICI −0.06 0.89 WGRMICI −0.06 0.88 HALCOMP 0.40 0.87 HALCOMP 0.43 0.86
9 SHRGSSAT −0.04 0.90 SHRGSSAT −0.05 0.88 SHRGSSAT −0.05 0.87 SHRGSSAT −0.05 0.87

MB 139 North:  E0:BRM39NIC MB 139 South:  E0:BRM39SIC MBs Total:  E0:BRAALIC Repository Total:
E0:BRNREPTC

Step Variable SRRC R2 Variable SRRC R2 Variable SRRC R2 Variable SRRC R2

1 WMICDFLG −0.65 0.42 WMICDFLG −0.65 0.43 WMICDFLG −0.65 0.43 HALPOR 0.88 0.77
2 ANHPRM 0.59 0.78 ANHPRM 0.57 0.75 ANHPRM 0.59 0.78 WMICDFLG −0.26 0.85
3 HALPOR −0.16 0.80 HALPRM 0.55 0.79 HALPOR −0.16 0.80 ANHPRM 0.60 0.88
4 HALPRM 0.52 0.83 HALPOR −0.16 0.81 WGRCOR −0.15 0.82 HALCOMP −0.09 0.89
5 WGRCOR −0.15 0.85 WGRCOR −0.15 0.84 HALPRM 0.51 0.85 WRBRNSAT −0.09 0.89
6 SALPRES 0.12 0.86 SALPRES 0.12 0.85 SALPRES 0.12 0.86 WGRCOR −0.08 0.90
7 WASTWICK −0.10 0.87 WASTWICK −0.10 .086 WASTWICK −0.10 0.87 ANHCOMP 0.43 0.91
8 HALCOMP 0.37 0.88 HALCOMP 0.37 0.86 HALCOMP 0.37 0.87 WASTWICK −0.06 0.91

a Steps in stepwise regression analysis.
b Variables listed in order of selection in regression analysis.
c Standardized rank regression coefficients (SRRCs) in final regression model.
d Cumulative R2 value with entry of each variable into regression model.

(E0:BRM39SIC) and MBs Total (E0:BRAALIC), and
for the pair (ANHPRM, ANHCOMP) in the regression
for Repository Total (E0:BRNREPTC).  In particular,
the existence of the strong correlations within the pairs
(HALPRM, HALCOMP) and (ANHPRM, ANHCOMP)
results in a nonmonotonic behavior of the associated
regression coefficients.

As a more detailed example, explicit representa-
tions of the following three regression analyses for MBs
Total (E0:BRAALIC) are shown in Table 8.10: (i) all 31
sampled variables allowed as candidates for inclusion in
the regression model, (ii) ANHCOMP and HALCOMP
excluded as candidates for inclusion in the regression
model, and (iii) ANHPRM and HALPRM excluded as
candidates for inclusion in the regression model.  When

all sampled variables are included as candidates, the
regression coefficients decrease monotonically until
Step 8, when HALCOMP enters the regression model.
With entry of HALCOMP, the regression coefficient for
HALPRM jumps from a value of 0.14 at Step 7 to a
value of 0.51; further, HALCOMP has a regression co-
efficient of 0.37 even though it has essentially no effect
on the R2 value for the regression model (i.e., R2 =
0.86889 at Step 7 and R2 = 0.87203 at Step 8).  When
ANHCOMP and HALCOMP are excluded as candidates
for entry into the regression model, a sequence of 7
regression models is produced that is identical to the
first 7 regression models that are produced when all
variables are allowed as candidates for inclusion.  How-
ever, a different sequence of regression models is con-
structed when ANHPRM and HALPRM are excluded.
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Table 8.10. Detailed Stepwise Regression Analyses with Rank-Transformed Data for Cumulative Brine
Flow From all Marker Beds over 10,000 yr under Undisturbed Conditions (i.e., y =
E0:BRAALIC in Fig. 7.4 and also at 10,000 yr in Fig. 8.4)

All Variables Included ANHCOMP

HALCOMP

Excluded

ANHPRM

HALPRM

Excluded

All Variables ANHCOMP

HALCOMP

Excluded

ANHPRM

HALPRM

Excluded

Variablea SRRCb Variable SRRC Variable SRRC Variable SRRC Variable SRRC Variable SRRC

Step 1c Step 6

WMICDFLG −0.65 WMICDFLG −0.65 WMICDFLG −0.65 WMICDFLG −0.66 WMICDFLG −0.66 WMICDFLG −0.66

R2d 0.43 R2 0.43 R2 0.43 ANHPRM 0.59 ANHPRM 0.59 ANHCOMP −0.59

HALPOR −0.16 HALPOR −0.16 HALPOR −0.16
Step 2 WGRCOR −0.15 WGRCOR −0.15 WGRCOR −0.15

WMICDFLG −0.66 WMICDFLG −0.66 WMICDFLG −0.67 HALPRM 0.14 HALPRM 0.14 HALCOMP −0.14

ANHPRM 0.59 ANHPRM 0.59 ANHCOMP −0.58 SALPRES 0.12 SALPRES 0.12 SALPRES 0.13

R2 0.77 R2 0.77 R2 0.76 R2 0.86 R2 0.86 R2 0.85

Step 3 Step 7

WMICDFLG −0.66 WMICDFLG −0.66 WMICDFLG −0.67 WMICDFLG −0.66 WMICDFLG −0.66 WMICDFLG −0.66

ANHPRM 0.59 ANHPRM 0.59 ANHCOMP −0.58 ANHPRM 0.59 ANHPRM 0.59 ANHCOMP −0.58

HALPOR −0.16 HALPOR −0.16 HALPOR −0.16 HALPOR −0.16 HALPOR −0.16 HALPOR −0.16

R2 0.80 R2 0.80 R2 0.79 WGRCOR −0.15 WGRCOR −0.15 WGRCOR −0.15

HALPRM 0.14 HALPRM 0.14 HALCOMP −0.14
Step 4 SALPRES 0.12 SALPRES 0.12 SALPRES 0.13

WMICDFLG −0.66 WMICDFLG −0.66 WMICDFLG −0.66 WASTWICK −0.10 WASTWICK −0.10 WASTWICK −0.09

ANHPRM 0.60 ANHPRM 0.60 ANHCOMP −0.58 R2 0.87 R2 0.87 R2 0.85

HALPOR −0.16 HALPOR −0.16 HALPOR −0.16

WGRCOR −0.15 WGRCOR −0.15 WGRCOR −0.15 Step 8

R2 0.82 R2 0.82 R2 0.81 WMICDFLG −0.65 No additional No additional

ANHPRM 0.59 variable variable
Step 5 HALPOR −0.16 selected selected

WMICDFLG −0.65 WMICDFLG −0.65 WMICDFLG −0.66 WGRCOR −0.15

ANHPRM 0.59 ANHPRM 0.59 ANHCOMP −0.58 HALPRM 0.51

HALPOR −0.16 HALPOR −0.16 HALPOR −0.16 SALPRES 0.12

WGRCOR −0.15 WGRCOR −0.15 WGRCOR −0.15 WASTWICK −0.10

HALPRM 0.15 HALPRM 0.15 HALCOMP −0.14 HALCOMP 0.37

R2 0.85 R2 0.85 R2 0.83 R2 0.87

a Variables in regression model.
b Standardized rank regression coefficients (SRRCs) for variables in regression model.
c Steps in stepwise regression analysis.
d R2 value for regression model.

In this case, ANHPRM and HALPRM are replaced in
the regression models with ANHCOMP and HAL-
COMP, and the signs of the regression coefficients are
reversed.  Thus, ANHCOMP and HALCOMP appear
with negative regression coefficients where ANHPRM
and HALPRM appear with positive regression coeffi-
cients.  In contrast, HALPRM and HALCOMP both

have positive regression coefficients when they appear
together in the regression model constructed at Step 8
when all variables are included as candidates for entry
into the analysis.  Thus, care must be used in interpret-
ing regression analyses that involve highly correlated
variables.
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8.8 Identification of Nonmonotonic
Patterns

Sometimes regression-based sensitivity analyses
perform very poorly.  The rank transformation has been
introduced as a possible analysis procedure for such
situations (Sect. 8.5).  However, when viewed broadly,
the rank transformation provides only a variant on linear
regression analysis, with a model that seeks to identify
linear relationships being replaced by a model that
seeks to identify monotonic relationships.  A more gen-

eral approach is to attempt to determine if the scatter-
plots of a dependent (i.e., predicted) variable versus
individual independent (i.e., sampled) variables appear
to display nonmonotonic patterns.

As an example, time-dependent pressure in the re-
pository subsequent to an E2 intrusion and an associ-
ated sensitivity analysis based on PRCCs are shown in
Fig. 8.7, with the PRCCs having small values after the
occurrence of the drilling intrusion at 1000 yr.  Further,
as indicated by the regression analyses in Table 8.11 for
pressure at 10,000 yr, the use of neither raw nor rank-
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Fig. 8.7. Uncertainty and sensitivity analysis results for repository pressure for an E2 intrusion into lower waste
panel at 1000 yr (i.e., y = E2:WAS_PRES).

Table 8.11. Stepwise Regression Analyses with Raw and Rank-Transformed Data with Pooled Results
from Replicates R1, R2 and R3 (i.e., for a total of 300 observations) for y = E2:WAS_PRES
at 10,000 yr

Raw Data, E2:WAS_PRES Rank-Transformed Data, E2:WAS_PRES
Stepa Variableb SRCc R2d Variableb SRRCe R2d

1 HALPRM 0.37 0.14 HALPRM 0.36 0.13
2 ANHPRM 0.24 0.20 ANHPRM 0.24 0.19
3 HALPOR 0.14 0.22 HALPOR 0.14 0.20

                                           
a Steps in stepwise regression analysis.
b Variables listed in order of selection in regression analysis with ANHCOMP and HALCOMP excluded from entry into regression model be-

cause of −0.99 rank correlation within the pairs (ANHPRM, ANHCOMP) and (HALPRM, HALCOMP).
c Standardized regression coefficients (SRCs) in final regression model.
d Cumulative R2 value with entry of each variable into regression model.
e Standardized rank regression coefficients (SRRCs) in final regression model.
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transformed data in a stepwise regression analysis pro-
duced a very successful regression model (i.e., R2 val-
ues of 0.22 and 0.20 result for raw and rank-
transformed data, respectively).  Yet, unless there is
some type of error in the calculations, the uncertainty in
the sampled variables must be giving rise to the varia-
tions in the pressure curves in Fig. 8.7a.

As discussed in Sect. 8.1, the examination of scat-
terplots often provides an effective way to identify in-
fluential variables.  In particular, the examination of
scatterplots shows that BHPRM is the dominant variable
with respect to the uncertainty in repository pressure
subsequent to an E2 intrusion (Fig. 8.2).  This is rather
disconcerting as BHPRM was not identified in either the
PRCC analysis in Fig. 8.7b or the regression analyses in
Table 8.11.  Thus, the clearly dominant variable has
been completely missed in the formal analyses in Fig.
8.7b and Table 8.11, and was only identified by an ex-
haustive examination of the scatterplots for the individ-
ual variables.  Clearly, some type of formal procedure
for identifying patterns in scatterplots is desirable; oth-
erwise, the analyst is confronted with the requirement to
manually examine large numbers of scatterplots and
also to subjectively assess the relative strengths of the
individual patterns appearing in these plots.

In this section, three procedures for identifying
nonmonotonic patterns are introduced.  Each of these
procedures is based on determining if some measure of
central tendency for the dependent variable is a function
of individual independent variables.  In particular, the
F-test for equal means, the χ2-test for equal medians,
and the Kruskal-Wallis test are introduced as means of
determining if measures of central tendency for a de-
pendent variable change as a function of the values of
individual independent variables (Sect. 5, Kleijnen and
Helton 1999a).  For convenience, the preceding tests
will be designated as tests for common means (CMNs),
common medians (CMDs) and common locations
(CLs).

The procedures discussed in this section involve an
assessment of the relationship between a dependent and
an independent variable.  For notational convenience,
these variables will be represented by y and x, respec-
tively.  This assessment is based on dividing the values
of x (i.e., xk, k = 1, 2, …, m) into nX classes and then
testing to determine if y has a common measure of cen-
tral tendency across these classes.  The required classes
are obtained by dividing the range of x into a sequence
of mutually exclusive and exhaustive subintervals con-
taining equal numbers of sampled values (Fig. 8.8).
When an x is discrete (e.g., see WMICDFLG in Fig.

8.5), individual classes are defined for each of the dis-
tinct values.  For notational convenience, let q, q = 1, 2,
…, nX, designate the individual classes into which the
values of x have been divided; let Xq designate the set
such that k ∈  Xq only if xk belongs to class q; and let
nXq equal the number of elements contained in Xq (i.e.,
the number of xk’s associated with class q).

The F-test can be used to test for the equality of the
mean values of y for the classes into which the values of
x have been divided (e.g., the intervals defined on the
abscissas of the scatterplots in Fig. 8.8).  Specifically, if
the y values conditional on each class of x values are
normally distributed with equal expected values, then
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follows an F-distribution with (nX − 1, m − nX) degrees

of freedom, where  y y nXq k kk q
=

∈
/

X
 and y  is

defined in conjunction with Eq. (8.15).  Given that the
indicated assumptions hold, the probability of obtaining
an F-statistic of value ~F  that exceeds the value of F in
Eq. (8.48) can be estimated by ( |Fprob F F>�

1, )nX m nX− −  as defined in Eq. (8.23).  A low prob-
ability (i.e., p-value) of obtaining a larger value for F
suggests that the observed pattern involving x and y did
not arise by chance and hence that x has an effect on the
behavior of y.

The χ2-test for contingency tables can be used to
test for the equality of the median values of y for the
classes into which the values of x have been divided
(pp. 143-178, Conover 1980).  First, the median, y0.5, is
estimated for all m observations.  Specifically,

y
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y y
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m m
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if 0.5 is an integer

otherwise,

m
(8.49)

where y(k), k = 1, 2, …, m, denotes the ordering of the y-
values such that y(k) ≤ y(k+1) and [~] designates the
greatest integer function (p. 14, David 1981).  The indi-
vidual classes of x values are then further subdivided on
the basis of whether y values fall above or below y0.5
(Fig. 8.8).  For class q, let nX1q equal the number of y
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Fig. 8.8. Partitioning of the ranges of ANHPRM, BHPRM, HALPRM and HALPOR into nX = 5 classes in an analy-
sis for y = E2:WAS_PRES at 10,000 yr; horizontal lines correspond to the median, y0.5, of y.
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values that exceed y0.5, and let nX2q equal the number
of y values that are less than or equal to y0.5.

The result of this partitioning is a 2 × nX contin-
gency table with nXrq observations in each cell.  The
following statistic can now be defined:

T nX nE nErq rq rq
rq

nX
= −

==

( ) / ,2

1

2

1

(8.50)

where

nE nX nX nXrq rq
r

rq
q

nX
= �
�

�
�

�

�

�
�

�
�
�

= =1

2

1

/

and corresponds to the expected number of observations
in cell (r, q).  If the individual classes of x values,
q = 1, 2, …, nX, have equal medians, then T approxi-
mately follows a χ2 distribution with (nX − 1)(2 − 1) =
nX − 1 degrees of freedom (p. 156, Conover 1980).
The probability prob T T nX

χ2 1(
~

| )> −  of obtaining a

value ~T  that exceeds T in the presence of equal medi-
ans is given by

prob T T nX Q nX T
χ2 1 1 2 2( ~ | ) [( ) / , / ]> − = − , (8.51)

where Q(a, b) designates the complement of the incom-
plete gamma function (p. 215, Press et al. 1992).  A
small value (i.e., p-value) for prob T T nX

χ2 1( ~ | )> −

indicates that the y’s conditional on individual classes
have different medians and hence that x has an influence
on y.  To maintain the validity of the χ2-test in the
analysis of contingency tables, Conover suggests using
a partition in which nErq ≥ 1 (p. 156, Conover 1980).

The Kruskal-Wallis test statistic, T, is based on
rank-transformed data and uses the same classes of x
values as the F-statistic in Eq. (8.48) (pp. 229-230,
Conover 1980).  Specifically,

T R nX m m sq q
q

nX
= − +�
�

�
�

=

( / ) ( ) /2 2

1

21 4 , (8.52)
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and r(yk) denotes the rank of yk.  If the y values condi-
tional on each class of x values have the same distribu-
tion, then the statistic T in Eq. (8.52) approximately
follows a χ2 distribution with nX − 1 degrees of free-
dom (pp. 230 - 231, Conover 1980).  Given this ap-
proximation, the probability prob 2χ

( ~ | )T T nX> −1  of

obtaining a value ~T  that exceeds T  in the presence of
identical y distributions for the individual classes is
given by Eq. (8.51).  A small value for 2prob

χ

( | 1)T T nX> −�  (i.e., a p-value) indicates that the y’s
conditional on individual classes have different distri-
butions and thus, most likely, different means and medi-
ans.  Hence, a small p-value indicates that x has an ef-
fect on y.

For y = E2:WAS_PRES, the three tests for non-
monotonic relationships introduced in this section (i.e.,
CMNs, CMDs, CLs) all identify BHPRM as the most
influential variable (Table 8.12).  In contrast, the effect
of BHPRM was missed in analyses based on correlation
coefficients with raw and rank-transformed data (Table
8.12).  Further, the three tests assign identical rankings
to all variables with p-values below 0.1.  After BHPRM,
the next two most important variables as indicated by p-
values are HALPRM and ANHPRM.  These variables
were also indicated as having effects with correlation
coefficients with raw and rank-transformed data; how-
ever, as indicated by the low R2 values in the associated
regression models (i.e., 0.20 and 0.19 in Table 8.11),
these variables by themselves are not very effective in
accounting for the uncertainty in y in a regression-based
analysis.

8.9 Identification of Random
Patterns

The three tests described in the preceding section
attempt to identify departures from monotonic trends.
An even less restrictive approach to identifying influen-
tial variables is to determine if the scatterplot for the
points (xk, yk), k = 1, 2, …, m, appears to be random
conditional on the marginal distributions for x and y.
Specifically, the χ2-test can be used to indicate if the
pattern appearing in a scatterplot appears to be
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Table 8.12. Comparison of Variable Rankings with Different Analysis Procedures for y = E2:WAS_PRES
at 10,000 yr and a Maximum of Five Classes of Values for Each Variable (i.e., nX = 5)

Variable CCb RCCc CMN:  1 × 5d CMD:  2 × 5e CL:  1 × 5f

Namea Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val

HALPRM 1.0 0.0000 1.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000
ANHPRM 2.0 0.0000 2.0 0.0000 3.0 0.0002 3.0 0.0007 3.0 0.0000
HALPOR 3.0 0.0090 3.0 0.0184 5.0 0.0415 5.0 0.0700 5.0 0.0940
ANHBCEXP 7.0 0.1786 8.0 0.2373 4.0 0.0405 4.0 0.0595 4.0 0.0602
BHPRM 10.0 0.3651 6.0 0.1704 1.0 0.0000 1.0 0.0000 1.0 0.0000
ANRBRSAT 19.0 0.7133 14.0 0.4378 7.0 0.1513 6.0 0.0823 7.0 0.1304
a Variables for which at least one of the tests (i.e., CC, RCC, CMN:1×5, CMD:2×5, CL: 1×5) has a p- or α-value less than 0.1; variables or-

dered by p-values for CCs
b Ranks and p-values for CCs
c Ranks and p-values for RCCs
d Ranks and p-values for CMNs test with 1×5 grid
e Ranks and p-values for CMDs test with 2×5 grid
f Ranks and p-values for CLs (Kruskal-Wallis) test with 1×5 grid

nonrandom (Sect. 7, Kleijnen and Helton 1999a, Wag-
ner 1995).  For convenience, the χ2-test for nonrandom
patterns will be denoted as a test for statistical inde-
pendence (SI).

With the χ2- test, the values for the sampled vari-
able (i.e., the x values on the abscissa) are divided into
classes (Fig. 8.9).  As in Sect. 8.8, let q, q = 1, 2, …,
nX, designate the individual classes into which the val-
ues of x have been divided; let Xq designate the set such
that k ∈  Xq only if xk belongs to class q; and let nXq
equal the number of elements contained in Xq (i.e., the
number of xk’s associated with class q).  Similarly, the
values for the dependent variable (i.e., the y values on
the ordinate) are also divided into classes (Fig. 8.9).
For notational convenience, let p, p = 1, 2, …, nY, des-
ignate the individual classes into which the values of y
are divided; let Yp designate the set such that k ∈  Yp
only if yk belongs to class p; and let nYp equal the num-
ber of elements contained in Yp (i.e., the number of yk’s
associated with class p).  Typically, the classes Xq and
Yp are defined by ordering the xk’s and yk’s, respec-
tively, and then requiring the individual classes to have
similar numbers of elements (i.e., the nXq are approxi-
mately equal for q = 1, 2, …, nX, and the nYp are ap-
proximately equal for p = 1, 2, …, nY).

The partitioning of x and y into nX and nY classes
in turn partitions (x, y) into nX nY classes (Fig. 8.9),
where (xk, yk) belongs to class (q, p) only if xk belongs
to class q of the x values (i.e., k ∈  Xq) and yk belongs to
class p of the y values (i.e., k ∈  Yp).  For notational
convenience, let Oqp denote the set such that k ∈  Oqp

only if k ∈  Xq (i.e., xk is in class q of x values ) and also
k ∈  Yp (i.e., yk is in class p of y values), and let nOqp
equal the number of elements contained in Oqp.  Fur-
ther, if x and y are independent, then

( / )( / ) /qp p q p qnE nY m nX m m nY nX m= = (8.53)

is an estimate of the expected number of observations
(xk, yk) that should fall in class (q, p).

The following statistic can be defined:

2

1 1
( ) /

nX nY

qp qp qp
q p

T nO nE nE
= =

= − . (8.54)

Asymptotically, T follows a χ2-distribution with (nX−1)
(nY−1) degrees of freedom when x and y are independ-
ent. Thus, the probability 2 [ |prob T T

χ
>�

( 1)( 1)]nX nY− −  of obtaining a value of ~T  that ex-
ceeds T when x and y are independent is given by Eq.
(8.51).

The preceding probability provides a way to iden-
tify scatterplots that appear to display a significant rela-
tionship (i.e., pattern) involving the x and y variables on
the abscissa and ordinate.  In particular, 2prob

χ

[ | ( 1)( 1)]T T nX nY> − −�  is the probability that a larger
value of the statistic would occur due to chance varia-
tion (i.e., a p-value).  A small p-value indicates that,
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Fig. 8.9. Examples of the partitioning of the ranges of x = HALPRM and x = BHPRM into nX = 5 classes and the
range of y = E2:WAS_PRES at 10,000 yr into nY = 5 classes.

under the assumptions of the test, an outcome equal to
or greater than the observed value of the statistic is un-
likely to occur due to chance.  Thus, the implication is
that the pattern in the scatterplot arose from some un-
derlying relationship involving x and y rather than from
chance alone.

As an example, a ranking of variable importance
based on p-values for y = E2:WAS_PRES and a 5 × 5
grid (Fig. 8.9) is given in Table 8.13 under the heading
SI:  5 × 5.  The most important variable is BHPRM,
which is consistent with the well-defined pattern in the
corresponding scatterplot in Fig. 8.9b.  In contrast, this
pattern is completely missed by the regression analyses
in Table 8.11.  The next most important variable is
HALPRM, with an effect that is discernible but rather
weak in the corresponding scatterplot (Fig. 8.9a).  In
particular, the dependent variable tends to increase as
HALPRM increases but with much noise around this
trend.  After BHPRM and HALPRM, small possible
effects are indicated for WGRCOR and ANHPRM, with
the corresponding scatterplots showing what are at best
rather weak patterns (Fig. 8.8).  After BHPRM,
HALPRM, WGRCOR and ANHPRM, the p-values in-
crease rapidly (Table 8.13), and there is little reason to
believe that the ordering of the remaining variables on
the basis of their p-values is due to anything other than
chance.  Similar variable rankings were also obtained in
the analyses with CMNs, CMDs and CLs (Table 8.12).

The χ2-statistic for identifying nonrandom patterns
is based on superimposing grids on the scatterplots un-
der consideration (Fig. 8.9).  As a result, the outcome of
such an analysis can depend on the grid selected for use.
In particular, different grids can lead to different order-
ings of variable importance, although the identification
of strong patterns is probably relatively insensitive to
reasonable grid selections (i.e., grids that do not have an
excessive number of cells relative to the number of
points in the scatterplots under consideration).  As an
example, a ranking of variable importance based on p-
values for y = E2:WAS_PRES and a 10 × 10 grid is
given in Table 8.13 under the heading SI:  10 × 10.  The
rankings with 5 × 5 and 10 × 10 grids produce similar
but not identical results, with both grids resulting in the
identification of BHPRM as the most important variable
and the identification of BHPRM, HALPRM, WGRCOR
and ANHPRM as the four most important variables.
Both analyses suggest that none of the remaining vari-
ables have a discernible effect on E2:WAS_PRES.
Similar robustness is also present in the analyses of y
with CMNs, CMDs and CLs (Table 24, Kleijnen and
Helton 1999a; see Tables 8, 14 and 19 of Kleijnen and
Helton 1999a for comparisons with additional vari-
ables).

The p-values used to identify important variables in
Table 8.13 are calculated with statistical assumptions
that are not fully satisfied.  In particular, the sample
from the x’s consists of three pooled LHSs rather than a
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random sample (see Eq. (5.16)).  A Monte Carlo simu-
lation can be used to assess if the use of formal statisti-
cal procedures to determine p-values is producing mis-
leading results.  Specifically, a large number of samples
(10,000 in this example) of the form

(xk, yk), k = 1, 2, …, 300, (8.55)

can be generated by pairing the 300 values for x (i.e.,
the 300 values for the particular x under consideration
contained in the samples indicated in Eq. (5.16)) with
the 300 predicted values for y (i.e., the 300 values for y
that resulted from the use of the sample elements indi-
cated in Eq. (5.16)).  The specific pairing algorithm
used was to randomly and without replacement assign
an x value to each y value, which is similar to boot-
strapping (Efron and Tibshirani 1993) except that the
sampling is being performed without replacement.  This
random assignment was repeated 10,000 times to pro-
duce 10,000 samples of the form in Eq. (8.55).  Each of
the 10,000 samples can be used to calculate the value of

the χ2-statistic.  The resulting empirical distribution of
the χ2-statistic can then be used to estimate the p-value
for the χ2-statistic actually observed in the analysis.
Comparison of the p-value obtained from Eq. (8.51)
with the p-value obtained from the empirical distribu-
tion provides an indication of the robustness of the vari-
able rankings with respect to possible deviations from
the assumptions underlying the formal statistical proce-
dure in Eq. (8.51).

As indicated by comparing the results in columns
SI:  5 × 5 and SIMC:  5 × 5 in Table 8.13, the analytical
determination of p-values in Eq. (8.51) and the just de-
scribed Monte Carlo determination of p-values are pro-
ducing similar results.  Thus, at least in this example,
the variable rankings are not being adversely impacted
by the use of Eq. (8.51).  Similar comparisons were also
obtained in the analyses for y with CMNs, CMDs and
CLs (Table 24, Kleijnen and Helton 1999a; see Tables
8, 14 and 19 of Kleijnen and Helton 1999a, for com-
parisons with additional variables).

Table 8.13. Comparison of Variable Rankings with the χ2-statistic for y = E2:WAS_PRES at 10,000 yr
Obtained with a Maximum of Five Classes of x Values (i.e., nX = 5) and Analytic Determina-
tion of p-Values with Variable Rankings Obtained with (i) a Maximum of Ten Classes of x val-
ues (i.e., nX = 10) and Analytic Determination of p-Values and (ii) a Maximum of Five Classes
of x Values (i.e., nX = 5) and Monte Carlo Determination of p-Values (Table 23, Kleijnen and
Helton 1999a; see Table 10.23, Kleijnen and Helton 1999c, for omitted results)

Variable SI:  5 × 5b SI:  10 × 10c SIMC:  5 × 5d

Namea Rank p-Val Rank p-Val Rank p-Val

BHPRM 1.0 0.0000 1.0 0.0000 1.5 0.0000
HALPRM 2.0 0.0002 4.0 0.0082 1.5 0.0000
WGRCOR 3.0 0.0002 2.0 0.0028 3.0 0.0002
ANHPRM 4.0 0.0049 3.0 0.0032 4.0 0.0033
SHRGSSAT 5.0 0.0698 22.0 0.8482 5.0 0.0699
SHBCEXP 6.0 0.1010 15.0 0.3495 6.0 0.0989
WGRMICI 7.0 0.1985 11.0 0.1646 7.0 0.2013
ANHBCVGP 8.0 0.2427 14.0 0.3398 8.0 0.2380

…
SHPRMHAL 24.0 0.9064 24.0 0.8863 24.0 0.9102
SHPRMCON 25.0 0.9898 20.0 0.5316 25.0 0.9933

a Twenty-six (25) variables from Table 3.1 included in analysis, with (i) ANHCOMP and HALCOMP not included because of the −0.99 rank
correlations within the pairs (ANHPRM, ANHCOMP) and (HALPRM, HALCOMP) and (ii) BPCOMP, BPINTPRS, BPPRM and BPVOL not
included because brine pocket properties are not relevant to the E2 intrusion under consideration.

b Variable rankings and p-values obtained with a maximum of five classes of x values (i.e., nX = 5), five classes of y values (i.e., nY = 5) and
analytic determination of p-values (see Eqs. (8.54) and (8.51)).  Discrete variables (e.g., WMICDFLG, which has only three distinct values)
are divided into less than nX classes when they have less than nX distinct values.

c Variable rankings and p-values obtained with a maximum of ten classes of x values (i.e., nX = 10), ten classes of y values (i.e., nY = 10) and
analytic determination of p-values.

d Variable rankings and p-values obtained with a maximum of five classes of x values (i.e., nX = 5), five classes of y values (i.e., nY = 5) and
Monte Carlo determination of p-values.
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9.0  Test Problems

Selected test problems from Campolongo et al.
2000 will now be used to illustrate sampling-based
methods for uncertainty and sensitivity analysis.  No
attempt is made to present results for all test problems.
Rather, the problems to be discussed were selected be-
cause they either provided representative results or in-
teresting analysis challenges.  To illustrate the effects of
sampling procedures, each problem was evaluated with
10 independent LHSs of size 100 each and also 10 in-
dependent random samples of size 100 each.  Sensitiv-
ity analysis results will be presented for 1 LHS of size
100 (i.e., nLHS = 100); in some instances, sensitivity
analysis results will also be presented for the 1000 sam-
ple elements that result from pooling the 10 LHSs (i.e.,
nLHS = 1000).  The sensitivity analysis procedures
and/or measures considered will include correlation
coefficients (CCs), rank correlation coefficients
(RCCs), common means (CMNs), common locations
(CLs), common medians (CMDs), statistical independ-
ence (SI), standardized regression coefficients (SRCs),
partial correlation coefficients (PCCs), standardized
rank regression coefficients (SRRCs), partial rank cor-
relation coefficients (PRCCs), stepwise regression
analysis with raw and rank-transformed data, and ex-
amination of scatterplots.  It is hoped that the presenta-
tion of these results will help the reader develop insights
with respect to the behavior and effectiveness of the
techniques under consideration.

9.1 Linear Test Problems

The first linear test problem (Model 1 in Cam-
polongo et al. 2000) is defined by

f x x x xi
i

( ) , [ , , ],x x= =
=

1 2 3
1

3

(9.1)

with 1: ( , ), 3 ,i
i i i i i ix U x x x −− σ + σ =  σi ix= 0 5.  for i

= 1, 2, 3, and x:U(a, b) used to indicate that x has a uni-
form distribution on [a, b].

The distributions assigned to the xi lead to a distri-
bution for f(x), with Latin hypercube sampling tending
to produce more stable estimates of this distribution
than random sampling (Fig. 9.1).

For the nLHS = 100, CCs, RCCs, CMNs, CLs,
CMDs and SI all identify x3 as the most important vari-
able; CCs and RCCs also indicate an effect for x2 (Ta-
ble 9.1).  Due to the large size of the p-values (i.e., >
0.05), CMNs, CLs, CMDs and SI do not indicate an
effect for x2, and none of the tests indicate an effect for
x1.
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Fig. 9.1.  Stability of estimated CDF for linear test problem with Model 1 (see Eq. (9.1)).
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For nLHS = 1000, CCs, RCCs, CMNs, CLs, CMDs
and SI identify x3 and x2 as the two most important
variables (Table 9.1).  Further, CCs, RCCs, CMNs and
CLs also indicate an effect for x1.  Thus, as might be
expected, the larger sample is leading to more resolu-
tion in the sensitivity analysis.  However, CCs and
RCCs were able to identify the two most important
variables with a sample of size 100.

Examination of scatterplots clearly shows the
dominant effect of x3 (Fig. 9.2).  The effect of x2 is
barely discernible in the scatterplot for nLHS = 100 but
is easily seen for nLHS = 1000.  The scatterplots for x1
(not shown) indicate no visually discernible effect for
nLHS = 100 and a barely discernible effect for nLHS =
1000.

In addition to various tests of significance (Table
9.1) and the examination of scatterplots (Fig. 9.2), vari-
ous coefficient values (e.g., CCs, SRCs, PCCs, RCCs,
SRRCs, PRCCs) can also be used to assess variable
importance (Table 9.2).  In Table 9.2 and other similar
tables in this section, CCs and RCCs are calculated
between individual pairs of variables, and SRCs and
SRRCs are calculated with all sampled variables in-
cluded in the regression model (i.e., x1, x2, x3 in this
example; see Eq. (9.1)).  In the complete absence of

correlations between the sampled variable values, corre-
sponding CCs and SRCs would be the same and so
would corresponding RCCs and SRRCs.  As indicated
by the similarity of the values for CCs and SRCs and
also for RCCs and SRRCs, there is little correlation
between the sampled variables.  Further, because an
exact linear model is under consideration, PCCs and
PRCCs are equal to one.  Thus, for a linear model,
PCCs and PRCCs provide no information on the im-
portance of individual variables.  Because of the linear-
ity of the model, the sample of size nLHS = 1000 gives
results almost identical to those in Table 9.2 for nLHS =
100.

An alternative summary of the SRCs and SRRCs in
Table 9.2 is to present the sensitivity results in the form
of a stepwise regression analysis (Table 9.3).  Then,
variable importance is indicated by the order in which
the variables entered the regression model, the sizes and
signs of the SRCs or SRRCs, and the changes in R2

values as additional variables are added to the regres-
sion model.  Because a linear model is under considera-
tion, the stepwise process ultimately produces a regres-
sion model with an R2 value of 1.00.  However, the last
variable added to the regression model (i.e., x1) has
little effect and only raises the R2 value from 0.99 to
1.00.  The regression coefficients do not provide

Table 9.1. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Linear Test Problem
with Model 1 (see Eq. (9.1))

Sample Size:  nLHS = 100

Variable CCb RCCc CMNd CLe CMDf SIg

Namea Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x3 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
x2 2.0 0.0015 2.0 0.0027 2.0 0.0502 2.0 0.0779 2.0 0.5249 2.0 0.2954
x1 3.0 0.5091 3.0 0.5694 3.0 0.7528 3.0 0.7089 3.0 0.7358 3.0 0.8392

Sample Size:  nLHS = 1000

Variable CC RCC CMN CL CMD SI
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val

x3 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
x2 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000
x1 3.0 0.0007 3.0 0.0017 3.0 0.0155 3.0 0.0313 3.0 0.4748 3.0 0.1164

a Variables ordered by p-values for CCs.
b Ranks and p-values for CCs.
c Ranks and p-values for RCCs.
d Ranks and p-values for CMNs test with 1×5 grid.
e Ranks and p-values for CLs (Kruskal-Wallis) test with 1×5 grid.
f Ranks and p-values for CMDs text with 2×5 grid.
g Ranks and p-values for SI test with 5×5 grid.
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Fig. 9.2.  Scatterplots for linear test problem with Model 1 (see Eq. (9.1)).
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Table 9.2. Sensitivity Results Based on Coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs)
and Sample Size nLHS = 100 for Linear Test Problem with Model 1 (see Eq. (9.1))

Variable CCb SRCb PCCb RCCb SRRCb PRCCb

Namea Rank Value Rank Value Rank Value Rank Value Rank Value Rank Value
x3 1 0.9439 1 0.9459 2 1.000 1 0.9466 1 0.9482 2 1.000
x2 2 0.3175 2 0.3156 2 1.000 2 0.3018 2 0.2987 2 1.000
x1 3 0.0660 3 0.1054 2 1.000 3 0.0572 3 0.0976 2 1.000

a Variables ordered by p-values for CCs.
b Ranks and values for CCs, SRCs, PCCs, RCCs, SRRCs and PRCCs as indicated.

Table 9.3. Sensitivity Results Based on Stepwise Regression Analysis with Raw (i.e., Untransformed)
Data and Sample Size nLHS = 100 for Linear Test Problem with Model 1 (see Eq. (9.1))

Variablea R2b RCc SRCd p-Valuee

x3 0.89098 1.0000E+00 9.4588E−01 0.0000E+00
x2 0.98891 1.0000E+00 3.1558E−01 0.0000E+00
x1 1.00000 1.0000E+00 1.0541E−01 0.0000E+00

a Variables in order of entry into regression model.
b Cumulative R2 value with entry of each variable into regression model; see Eq. (8.11).
c Regression coefficients (RCs); see Eq. (8.8).
d Standardized regression coefficients (SRCs); see Eq. (8.15).
e For variable in row (i.e., xj), p- or α-value for addition of xj to regression model containing remaining variables; see Footnote n, Table 8.1.

information on variable importance (i.e., they are all
1.00); rather, it is the SRCs that provide an indication of
variable importance.  The results in Table 9.3 are for
raw data; use of rank-transformed data produces similar
results.

When a linear relationship exists between a pre-
dicted variable and multiple input variables, stepwise
regression analysis provides more information on vari-
able importance than simply examining correlation co-
efficients.  First, the changes in R2 values as additional
variables are added to the regression model provides an
indication of how much uncertainty can be accounted
for by each variable.  For example, the R2 values pro-
duced with the addition of each variable to the regres-
sion model in Table 9.3 are 0.89, 0.99 and 1.00, re-
spectively.  Thus, the last variable selected (i.e., x1)
only changes the R2 value from 0.99 to 1.00.  Second,
the F-test for the sequential addition of variables to the
regression model is more sensitive than the test for the
significance of a single CC.  For example, the p-value
obtained with nLHS = 100 for the CC associated with x1
is 0.5091 (Table 9.1); in contrast, the p-value for the
entry of x1 into the regression model that already con-
tains x3 and x2 is less than 10−4.

The second linear test problem (Model 3 in Cam-
polongo et al. 2000) is defined by

f c xi i
i

( ) ( / ),x = −
=

1 2
1

22

x = [x1, x2, …, x22], (9.2)

with xi : U(0, 1) and ci = (i − 11)2 for i = 1, 2, …, 22.

Latin hypercube and random sampling produce es-
timates of similar stability for the CDF for f(x) (Fig.
9.3).  This is different from the first linear function,
where Latin hypercube sampling produced more stable
estimates (Fig. 9.1).  This stability probability results
from the fact that the model can be written as

[ ]

22 22
10

22
1

( ) ( 1/ 2)

 ( 1/ 2) ( 1/ 2) ,i i i
i

f c x

c x x −
=

= −

+ − + −

x

(9.3)

which tends to smooth the effects of the random sam-
pling.
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Fig. 9.3.  Stability of estimated CDF for linear test problem with Model 3 (see Eq. (9.2)).

For the LHS of size nLHS = 100, CCs and RCCs
identify the same variables as affecting f (i.e., x22, x21,
x1, x20, x3, x2, x19, x18, x4 with p-values less than 0.05)
(Table 9.4).  Similar identifications are also made for
CMNs and CLs; in contrast, CMDs and SI fail to iden-
tify some of the variables identified by CCs and RCCs.
For the LHS of size nLHS = 1000, all tests identify
more variables as affecting f (Table 9.4).  Further, there
is more agreement between the tests on the most im-
portant variables (i.e., smallest p-values).  However, a
number of variables are not identified as having an ef-
fect on f by any of the tests (e.g., x7, x15, x14, x8, x9, x12,
x13, x11, x10 have p-values greater than 0.05 for most
tests).

Given that a linear model is under consideration,
stepwise regression provides a more informative sum-
mary of variable effects than the coefficients in Table
9.4 (Table 9.5).  In particular, the stepwise regression
analysis with nLHS = 100 identifies the effects of all 21
variables that influence the evaluation of f (i.e., all vari-
ables except x11, which has a coefficient of zero).  The
results for nLHS = 1000 (not shown) are essentially
identical with those for nLHS = 100; thus, no improve-
ment in the results of the stepwise regression analysis is
obtained by increasing the sample size.  Thus, the tests
of significance used with the stepwise regression analy-
sis are more effective in identifying the effects of indi-
vidual variables than the tests used in conjunction with

Table 9.4.  In particular, the stepwise regression in Ta-
ble 9.5 correctly identifies the effects of all variables
influencing f with a sample of size nLHS = 100; the test
based on CCs in Table 9.4 does not identify the effects
of all variables with a sample of size nLHS = 1000 (i.e.,
same variables have p-values greater than 0.1).

The cumulative R2 values with the entry of each
variable into the regression model are shown in Table
9.5.  The increase in the R2 value with the entry of a
variable shows the fraction of the total uncertainty that
can be accounted for by that variable in a linear regres-
sion model (e.g., x21 accounts for a fraction 0.36279 −
0.20948 = 0.15331 of the total uncertainty).  As indi-
cated by the incremental R2 values, no single variable
dominates the uncertainty in f.

For perspective, scatterplots for the first two vari-
ables selected in the stepwise process (i.e., x22, x21) are
shown in Fig. 9.4.  Although the patterns are discerni-
ble, they are not strong, which is consistent with the
incremental R2 values of 0.20948 and 0.15311 associ-
ated with x22 and x21.

Both regression coefficients and SRCs are given in
Table 9.5.  The SRCs are a better measure of variable
importance because they incorporate the effects of a
variable’s distribution and also remove the effects of
units.  Except for the effects of correlations within a



66

Table 9.4. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Linear Test Problem
with Model 3 (see Eq. (9.2))a

Sample Size:  nLHS = 100
Variable CC RCC CMN CL CMD SI

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x22 1.0 0.0000 1.0 0.0000 1.0 0.0001 1.0 0.0002 1.5 0.0009 2.0 0.0208
x21 2.0 0.0001 2.0 0.0002 2.0 0.0004 4.0 0.0018 9.0 0.1074 1.0 0.0086
x1 3.0 0.0002 3.0 0.0003 5.0 0.0024 5.0 0.0043 7.0 0.0289 8.5 0.1137
x20 4.0 0.0003 4.0 0.0005 7.0 0.0070 7.0 0.0131 11.0 0.2311 5.0 0.0615
x3 5.0 0.0015 5.0 0.0016 6.0 0.0064 6.0 0.0086 4.0 0.0103 3.0 0.0239
x2 6.0 0.0028 7.0 0.0037 3.0 0.0006 2.0 0.0012 3.0 0.0051 6.0 0.0791
x19 7.0 0.0037 6.0 0.0025 10.0 0.0699 10.0 0.0445 5.0 0.0123 10.5 0.1785
x18 8.0 0.0238 8.0 0.0197 8.0 0.0318 8.0 0.0294 6.0 0.0146 12.0 0.2202
x4 9.0 0.0444 9.0 0.0289 9.0 0.0399 9.0 0.0295 10.0 0.1991 8.5 0.1137
x17 10.0 0.1095 10.0 0.1135 12.0 0.1476 12.0 0.1515 15.5 0.4060 10.5 0.1785
x16 11.0 0.1379 11.0 0.1154 20.0 0.7358 18.0 0.6699 13.5 0.3546 4.0 0.0316
x5 12.0 0.2668 12.0 0.3349 4.0 0.0012 3.0 0.0016 1.5 0.0009 7.0 0.1010
x6 13.0 0.4991 13.0 0.4195 18.0 0.6822 19.0 0.6835 18.0 0.5249 14.0 0.4186
x9 14.0 0.5118 18.0 0.6595 17.0 0.3711 16.0 0.4258 18.0 0.5249 15.5 0.4884
x7 15.0 0.5261 16.0 0.5194 19.0 0.7351 20.0 0.7596 15.5 0.4060 18.0 0.5987
x8 16.0 0.5368 15.0 0.5006 14.0 0.3476 17.0 0.4307 18.0 0.5249 13.0 0.3239
x12 17.0 0.5487 14.0 0.4632 16.0 0.3656 14.0 0.3570 20.0 0.7358 18.0 0.5987
x13 18.0 0.7118 17.0 0.6491 13.0 0.2392 13.0 0.2676 13.5 0.3546 15.5 0.4884
x14 19.0 0.8221 21.0 0.9223 21.0 0.9511 21.0 0.9651 22.0 0.9825 18.0 0.5987
x15 20.0 0.8317 20.0 0.7924 22.0 0.9922 22.0 0.9929 21.0 0.9384 20.0 0.6359
x11 21.0 0.8909 19.0 0.7495 11.0 0.0716 11.0 0.1020 8.0 0.0404 21.0 0.7440
x10 22.0 0.9217 22.0 0.9840 15.0 0.3507 15.0 0.3963 12.0 0.3084 22.0 0.7776

Sample Size:  nLHS = 1000
Variable CC RCC CMN CL CMD SI

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x22 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
x21 2.0 0.0000 2.0 0.0000 2.0 0.0000 3.0 0.0000 2.0 0.0000 3.0 0.0000
x1 3.0 0.0000 3.0 0.0000 3.0 0.0000 2.0 0.0000 3.0 0.0000 2.0 0.0000
x2 4.0 0.0000 4.0 0.0000 4.0 0.0000 4.0 0.0000 6.0 0.0000 4.0 0.0000
x20 5.0 0.0000 5.0 0.0000 5.0 0.0000 5.0 0.0000 4.0 0.0000 5.0 0.0000
x3 6.0 0.0000 6.0 0.0000 6.0 0.0000 6.0 0.0000 5.0 0.0000 6.0 0.0000
x19 7.0 0.0000 7.0 0.0000 7.0 0.0000 7.0 0.0000 7.0 0.0000 7.0 0.0000
x18 8.0 0.0000 8.0 0.0000 8.0 0.0000 8.0 0.0000 8.0 0.0000 9.0 0.0001
x4 9.0 0.0000 9.0 0.0000 9.0 0.0000 9.0 0.0000 9.0 0.0000 10.0 0.0003
x5 10.0 0.0000 11.0 0.0000 10.0 0.0000 10.0 0.0000 10.0 0.0002 8.0 0.0000
x17 11.0 0.0000 10.0 0.0000 11.0 0.0002 11.0 0.0002 12.0 0.0040 12.0 0.0121
x16 12.0 0.0011 12.0 0.0002 12.0 0.0124 12.0 0.0035 11.0 0.0004 13.0 0.1164
x6 13.0 0.0018 13.0 0.0014 13.0 0.0252 13.0 0.0212 13.0 0.0206 11.0 0.0019
x7 14.0 0.0637 14.0 0.0776 14.0 0.0267 14.0 0.0697 16.0 0.1538 14.0 0.1164
x15 15.0 0.0959 15.0 0.0892 22.0 0.6771 20.0 0.5827 21.0 0.7431 21.0 0.6691
x14 16.0 0.2579 18.0 0.3909 18.0 0.4664 19.0 0.5414 18.0 0.4809 15.0 0.1843
x8 17.0 0.3165 16.0 0.2949 19.0 0.5583 18.0 0.4750 14.0 0.0425 17.0 0.2509
x9 18.0 0.3907 19.0 0.4178 20.0 0.5701 21.0 0.7113 22.0 0.9437 18.0 0.2899
x12 19.0 0.4606 17.0 0.3616 16.0 0.3026 16.0 0.1976 15.0 0.1402 16.0 0.1944
x13 20.0 0.4625 21.0 0.5867 15.0 0.1438 15.0 0.1348 17.0 0.2792 19.0 0.2954
x11 21.0 0.6626 20.0 0.5806 17.0 0.3446 17.0 0.3143 19.0 0.4932 20.0 0.4530
x10 22.0 0.7892 22.0 0.7117 21.0 0.6605 22.0 0.7753 20.0 0.5512 22.0 0.9950

a Table structure same as in Table 9.1.
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Table 9.5. Sensitivity Results Based on Stepwise Regression Analysis with Raw (i.e., Untransformed)
Data and Sample Size nLHS = 100 for Linear Test Problem with Model 3 (see Eq. (9.2))a

Variable R2 RC SRC p-Value
x22 0.20948 1.2100E+02 4.6052E−01 2.7828E−08b

x21 0.36279 1.0000E+02 3.8038E−01 2.7828E−08
x1 0.50981 1.0000E+02 3.8141E−01 2.7828E−08
x20 0.63339 8.1000E+01 3.0763E−01 2.7828E−08
x2 0.73563 8.1000E+01 3.0830E−01 2.7828E−08
x3 0.80541 6.4000E+01 2.4338E−01 2.7828E−08
x19 0.86382 6.4000E+01 2.4317E−01 2.7828E−08
x18 0.90285 4.9000E+01 1.8642E−01 2.7828E−08
x4 0.93449 4.9000E+01 1.8614E−01 2.7828E−08
x5 0.95728 3.6000E+01 1.3677E−01 2.7828E−08
x17 0.97297 3.6000E+01 1.3665E−01 2.7828E−08
x6 0.98146 2.5000E+01 9.5070E−02 2.7828E−08
x16 0.98978 2.5000E+01 9.5121E−02 2.7828E−08
x15 0.99340 1.6000E+01 6.0789E−02 2.7828E−08
x7 0.99710 1.6000E+01 6.0905E−02 2.7828E−08
x8 0.99833 9.0000E+00 3.4256E−02 2.7828E−08
x14 0.99950 9.0000E+00 3.4263E−02 2.7828E−08
x9 0.99974 4.0000E+00 1.5206E−02 2.7828E−08
x13 0.99997 4.0000E+00 1.5225E−02 2.7828E−08
x10 0.99999 9.9999E−01 3.8041E−03 2.7828E−08
x12 1.00000 1.0000E+00 3.8018E−03 2.7828E−08
x11 1.00000 −3.0113E−05 −1.1426E−07 2.6792E−01

a Table structure same as in Table 9.3.
b Identical values result from lack of resolution in algorithm used in the calculation of very small p-values.

sample, CCs and SRCs are the same; thus, the CCs be-
tween the xi and f(x) are also available from Table 9.5.
For example, Fig. 9.4 contains scatterplots with associ-
ated CCs of approximately 0.46052 for x22 and 0.38038
for x21.

9.2 Monotonic Test Problems

The first monotonic test problem (Model 4 in
Campolongo et al. 2000) is defined by

f x x( ) ,x = +1 2
4   x = [x1, x2], (9.4)

with xi : U(0, 1) for i = 1, 2 (Model 4a), xi : U(0, 3) for i
= 1, 2 (Model 4b) or xi : U(0, 5) for i = 1, 2 (Model 4c).
Thus, f is the same in Models 4a, 4b, and 4c, but the
distributions assigned to the xi change.  In the follow-
ing, Models 4a and 4c will be considered as this incor-
porates the two extremes in the behavior of f.

Latin hypercube sampling produces more stable
estimates of the CDFs for Models 4a and 4c than is the

case for random sampling (Fig. 9.5).  This stability is
particularly noticeable for Model 4c, where the value of
f(x) is dominated by a strong nonlinear relationship
involving x2; in this problem, the stratification associ-
ated with Latin hypercube sampling produces CDF es-
timates that are much more stable than those obtained
with random sampling.

Sensitivity analysis for Model 4c is not very inter-
esting due to the dominance of f(x) by x2 (Fig. 9.6),
with the result that all of the sensitivity analysis proce-
dures under consideration identify x2 as the dominant
variable.  Sensitivity analysis is more interesting for
Model 4a as both x1 and x2 affect f(x).  Therefore, only
sensitivity analysis for Model 4a will be discussed.

All procedures identify x1 and x2 as affecting f(x)
for Model 4a and the sample of size nLHS = 100 (Table
9.6).  The well-defined effects of x1 and x2 can be seen
in the corresponding scatterplots (Fig. 9.7).  The pat-
terns are better defined in the scatterplots for nLHS =
1000 but still easily recognizable in the scatterplots for
nLHS = 100.
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Linear Test Problem: Model 3, nLHS = 100
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Fig. 9.4.  Scatterplots for linear test problem with Model 3 (see Eq. (9.2)).
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Fig. 9.5.  Stability of estimated CDFs for monotonic test problem with Models 4a and 4c (see Eq. (9.4)).
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Monotonic Test Problem: Model 4c, nLHS = 100
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Fig. 9.6. Scatterplot with nLHS = 100 for monotonic
test problem with Model 4c (see Eq. (9.4)).

For perspective, various coefficients (i.e., CCs,
SRCs, PCCs, RCCs, SRRCs, PRCCs) involving x1, x2
and f(x) are presented in Table 9.7.  As should be the
case, CCs and SRCs are similar in size and PCCs are
larger than CCs and SRCs; similar patterns also hold for
RCCs, SRRCs and PRCCs.  In this example, the coeffi-
cients calculated with raw (i.e., untransformed) data
have values that are similar to those of the correspond-
ing coefficients calculated with rank-transformed data.
Thus, the problem is not as nonlinear over the distribu-
tions of x1 and x2 as might be suggested by the defini-
tion of f in Eq. (9.4), which is consistent with the linear
trends appearing in the scatterplots in Fig. 9.7.  The use
of samples of size nLHS = 100 and nLHS = 1000 pro-
duce similar coefficient values.  Thus, the behavior of
the function is being adequately captured with nLHS =
100, and little is gained by using a large sample size

(although the scatterplots are more visually appealing
for nLHS = 1000).

The sensitivity results for Model 4a can also be
summarized as the outcome of a stepwise regression
analysis (Table 9.8).  As already observed in conjunc-
tion with Table 9.7, x1 is identified as having a stronger
effect on the uncertainty in f(x) than x2, and analyses
with raw (i.e., untransformed) data and rank-
transformed data produce similar results.  Use of the
sample of size nLHS = 1000 produces little improve-
ment in the regression analyses, with R2 values for the
final regression model changing from 0.88580 and
0.87966 with raw and rank-transformed data with nLHS
= 100 to 0.88356 and 0.88482 for nLHS = 1000 (re-
gressions not shown).  Thus, as previously noted, in-
creasing the sample size in this example does not im-
prove the results of the sensitivity analysis.

The use of regression analysis with rank-
transformed data rather than raw data produced no im-
provement in the resultant regression model for Model
4a (Table 9.8).  However, the potential exists for con-
siderable improvement when the dependent variable is a
nonlinear but monotonic function of the independent
variable(s).  For example, a nonlinear but monotonic
relationship exists between x2 and f(x) for Model 4c
(Fig. 9.6).  In the analysis of this model, a regression
with rank-transformed data relating f(x) to x2 with nLHS
= 100 produces a regression model with an R2 value of
0.97574; the corresponding regression with raw data
produces a regression model with an R2 value of
0.75003.

The second monotonic test problem (Model 5 in
Campolongo et al. 2000) is defined by

f b x e bi i
i i

bi
i( ) exp ( ) / ,x = �

�
�
�

− ∏ −
= =1

6

1

6
1

 x = [x1, x2, …, x6], (9.5)

Table 9.6. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Monotonic Test
Problem with Model 4a (see Eq. (9.4)) and nLHS = 100a

Variable CC RCC CMN CL CMD SI
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val

x1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000

x2 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0004 2.0 0.0000
a Table structure same as in Table 9.1.
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Fig. 9.7.  Scatterplots for monotonic test problem with Model 4a (see Eq. (9.4)).
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Table 9.7. Sensitivity Results Based on Coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs)
for Monotonic Test Problem with Model 4a (see Eq. (9.4))

Sample Size:  nLHS = 100
Variable CCb SRCc PCCc

Namea p-Value Rank Value Rank Value Rank Value
x1 0.0000 1.0 0.7367 1.0 0.7401 1.0 0.9097
x2 0.0000 2.0 0.5814 2.0 0.5857 2.0 0.8662

Variable RCCe SRRCf PRCCf

Named p-Value Rank Value Rank Value Rank Value
x1 0.0000 1.0 0.7688 1.0 0.7723 1.0 0.9122
x2 0.0000 2.0 0.5322 2.0 0.5373 2.0 0.8401

Sample Size:  nLHS = 1000
Variable CC SRC PCC

Name p-Value Rank Value Rank Value Rank Value
x1 0.0000 1.5 0.7310 1.0 0.7263 1.0 0.9051
x2 0.0000 1.5 0.5967 2.0 0.5910 2.0 0.8660

Variable RCC SRRC PRCC
Name p-Value Rank Value Rank Value Rank Value

x1 0.0000 1.5 0.7531 1.0 0.7489 1.0 0.9108
x2 0.0000 1.5 0.5692 2.0 0.5637 2.0 0.8567

a Variables ordered by p-values for CCs.
b p-values, ranks and values for CCs.
c Ranks and values for SRCs and PCCs as indicated.
d Variables ordered by p-values for RCCs.
e p-values, ranks and values for RCCs.
f Ranks and values for SRRCs and PRCCs as indicated.

Table 9.8. Sensitivity Results Based on Stepwise Regression Analysis for Monotonic Test Problem with
Model 4a (see Eq. (9.4)) and Sample Size nLHS = 100a

Raw Data
Variable R2 RC SRC p-Value

x1 0.54273 1.0070E+00 7.4014E−01 2.7828E−08
x2 0.88580 7.9861E−01 5.8573E−01 2.7828E−08

Rank-Transformed Data
Variable R2 RRCb SRRCc p-Value

x1 0.59099 7.7229E−01 7.7229E−01 2.7828E−08
x2 0.87966 5.3728E−01 5.3728E−01 2.7828E−08

a Table structure same as in Table 9.3.
b Rank regression coefficient (RRC).
c Standardized rank regression coefficient (SRRC).
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with b1 = 1.5, b2 = b3 = … = b6 = 0.9 and xi : U(0, 1)
for i = 1, 2, …, 6.

Latin hypercube sampling produces more stable
estimates of the CDF for f(x) than does random sam-
pling (Fig. 9.8).  However, the distribution has a long
tail to the right, and both sampling procedures show
considerable variation across replicates in the largest
observed value for f(x).  Thus, if accurate estimates of
the upper quantiles of the CDF were required, then it
would be necessary to use a large sample size or
possibly switch to an importance sampling procedure.
For functions that are as inexpensive to evaluate as f, it
would be wasteful to invest the effort to design an im-
portance sampling procedure.  However, as the cost of
evaluating the function (i.e., model) increases, at some
point use of importance sampling may become cost ef-
fective.

All tests (i.e., CCs, RCCs, CMNs, CLs, CMDs, SI)
identify x1 as the most important variable for nLHS =
100 (Table 9.9); further, CCs and RCCs identify effects
for all six xi.  Given the definition of f, x1 is the most
important variable with respect to the uncertainty in
f(x), and x2, x3, …, x6 have equal-sized effects on this
uncertainty.  For nLHS = 1000, all tests identify effects
for all six xi.

The coefficients (i.e., CCs, SRCs, PCCs, RCCs,
SRRCs, PRCCs) involving the xi and f(x) are presented
in Table 9.10.  The largest coefficients involve x1; x2,
x3, …, x6 have similar-sized coefficients; CCs and
SRCs are essentially equal, as is the case for RCCs and
SRRCs; PCCs and PRCCs are larger than the corre-
sponding CCs and RCCs, respectively; and all coeffi-
cients are positive, which is consistent with the use of
the xi in the definition of f(x).  Samples of size nLHS =
100 and nLHS = 1000 produce similar coefficient esti-
mates.

The scatterplots for x1 and x2 show discernible, but
not particularly strong, patterns (Fig. 9.9).  As should be
the case given the definition of f(x) and the distributions
assigned to the xi, the scatterplots for x1 show somewhat
stronger patterns than the scatterplots for x2.  The scat-
terplots for x3, x4, x5, x6 are similar to those for x2.

The sensitivity results for Model 5 can also be pre-
sented as stepwise regression analyses with raw and
rank-transformed data (Table 9.11).  The regression
analyses with both raw and rank-transformed data iden-
tify the effects associated with all six xi’s.  Further, the
regression analyses with rank-transformed data produce

models with higher R2 values than the regression analy-
ses with raw data (i.e., 0.94119 versus 0.74993 for
nLHS = 100 and 0.96285 versus 0.80030 for nLHS =
1000).  There is little difference in the regression results
obtained with nLHS = 100 and nLHS = 1000 (not
shown).

9.3 Nonmonotonic Test Problems

The first nonmonotonic test problem (Model 7 in
Campolongo et al. 2000) is defined by

8

1 2 8
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(9.6)

with a1 = 0, a2 = 1, a3 = 4.5, a4 = 9, a5 = a6 = a7 = a8 =
99, and xi: U(0, 1) for i = 1, 2, …, 8.

Latin hypercube sampling produces estimates of the
CDF for f(x) that are more stable than those produced
by random sampling (Fig. 9.10).

Tests based on CCs and RCCs fail to identify any
of the xi as affecting f(x) for nLHS = 100 and also for
nLHS = 1000 (Table 9.12).  In contrast, tests based on
CMNs, CLs, CMDs and SI identify significant effects
for x1 and x2 for both nLHS = 100 and nLHS = 1000,
with the exception that the SI test does not identify x2
for nLHS = 100.  In addition, smaller effects are indi-
cated for x3 (CMN, CL, CMD) and x4 (CMN, CL,
CMD, SI) for nLHS = 1000.  Tests based on CCs and
RCCs fail to identify the effects of x1 and x2 on f(x)
because these effects are both nonlinear and non-
monotonic (Fig. 9.11).  In contrast, such effects are
readily identified by CMNs, CLs, CMDs and SI.  All
the coefficients involving f(x) and the xi’s (i.e., CCs,
SRCs, PCCs, RCCs, SRRCs, PRCCs) are essentially
zero; similarly, the regression analyses with raw and
rank-transformed data produce no meaningful results.

The second nonmonotonic test problem (Model 8
in Campolongo et al. 2000) is defined by

[ / 2]2

2 2 1 2
0

( ) ( ) ( ) ( , ),
x

i i
i

f h x c x g x x
=

=x  x = [x1, x2], (9.7)

where h, ci and gi are defined by
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Fig. 9.8.  Stability of estimated CDF for monotonic test problem with Model 5 (see Eq. (9.5)).

Table 9.9. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Monotonic Test
Problem with Model 5 (see Eq. (9.5))a

Sample Size:  nLHS = 100
Variable CC RCC CMN CL CMD SI

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
x4 2.0 0.0005 5.0 0.0009 3.0 0.0161 4.0 0.0095 6.0 0.1468 5.0 0.2436
x5 3.0 0.0007 6.0 0.0029 2.0 0.0006 2.0 0.0011 3.0 0.0342 2.0 0.0156
x2 4.0 0.0041 4.0 0.0007 4.0 0.0211 5.0 0.0098 2.0 0.0087 3.0 0.0180
x6 5.0 0.0051 3.0 0.0004 6.0 0.0840 6.0 0.0184 4.0 0.0477 6.0 0.4530
x3 6.0 0.0052 2.0 0.0003 5.0 0.0464 3.0 0.0070 5.0 0.0780 4.0 0.0540

Sample Size:  nLHS = 1000
Variable CC RCC CMN CL CMD SI

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
x5 2.0 0.0000 6.0 0.0000 3.0 0.0000 4.0 0.0000 5.0 0.0000 5.0 0.0000
x2 3.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000 2.0 0.0000
x4 4.0 0.0000 4.0 0.0000 5.0 0.0000 3.0 0.0000 3.0 0.0000 4.0 0.0000
x3 5.0 0.0000 3.0 0.0000 4.0 0.0000 6.0 0.0000 6.0 0.0000 6.0 0.0000
x6 6.0 0.0000 5.0 0.0000 6.0 0.0000 5.0 0.0000 4.0 0.0000 3.0 0.0000

a Table structure same as in Table 9.1.
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Table 9.10. Sensitivity Results Based on Coefficients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs)
for Monotonic Test Problem with Model 5 (see Eq. (9.5))a

Sample Size:  nLHS = 100
Variable CC SRC PCC
Name p-Value Rank Value Rank Value Rank Value

x1 0.0000 1.0 0.5078 1.0 0.5223 1.0 0.7221
x4 0.0005 2.0 0.3459 3.0 0.3446 3.0 0.5673
x5 0.0007 3.0 0.3371 2.0 0.3509 2.0 0.5739
x2 0.0041 4.0 0.2868 5.0 0.2952 5.0 0.5080
x6 0.0051 5.0 0.2803 6.0 0.2837 6.0 0.4929
x3 0.0052 6.0 0.2793 4.0 0.2973 4.0 0.5108

Variable RCC SRRC PRCC
Name p-Value Rank Value Rank Value Rank Value

x1 0.0000 1.0 0.5852 1.0 0.6013 1.0 0.9273
x3 0.0003 2.0 0.3596 2.0 0.3763 2.0 0.8404
x6 0.0004 3.0 0.3591 3.0 0.3669 3.0 0.8339
x2 0.0007 4.0 0.3405 4.0 0.3456 4.0 0.8183
x4 0.0009 5.0 0.3334 5.0 0.3317 5.0 0.8071
x5 0.0029 6.0 0.2992 6.0 0.3142 6.0 0.7912

Sample Size:  nLHS = 1000
Variable CC SRC PCC
Name p-Value Rank Value Rank Value Rank Value

x1 0.0000 1.0 0.5259 1.0 0.5217 1.0 0.7594
x5 0.0000 2.0 0.3412 2.0 0.3367 2.0 0.6017
x2 0.0000 3.0 0.3297 4.0 0.3241 4.0 0.5871
x4 0.0000 4.0 0.3275 3.0 0.3251 3.0 0.5882
x3 0.0000 5.0 0.3274 5.0 0.3220 5.0 0.5846
x6 0.0000 6.0 0.3032 6.0 0.3044 6.0 0.5629

Variable RCC SRRC PRCC
Name p-Value Rank Value Rank Value Rank Value

x1 0.0000 1.0 0.5960 1.0 0.5917 1.0 0.9508
x2 0.0000 2.0 0.3624 2.0 0.3558 2.0 0.8792
x3 0.0000 3.0 0.3553 4.0 0.3486 3.0 0.8751
x4 0.0000 4.0 0.3484 5.0 0.3462 5.0 0.8736
x6 0.0000 5.0 0.3467 3.0 0.3486 4.0 0.8751
x5 0.0000 6.0 0.3431 6.0 0.3380 6.0 0.8687

a Table structure same as in Table 9.7.
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Fig. 9.9.  Scatterplots for monotonic test problem with Model 5 (see Eq. (9.5)).
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Table 9.11. Sensitivity Results Based on Stepwise Regression Analysis for Monotonic Test Problem with
Model 5 (see Eq. (9.5)) and Sample Size nLHS = 100a

Raw Data
Variable R2 RC SRC p-Value

x1 0.25787 4.4071E+01 5.2230E−01 2.7828E−08
x5 0.37674 2.9727E+01 3.5091E−01 2.9036E−08
x4 0.49249 2.9194E+01 3.4459E−01 2.9872E−08
x2 0.58539 2.4960E+01 2.9519E−01 1.7598E−07
x3 0.66967 2.5164E+01 2.9734E−01 1.5130E−07
x6 0.74993 2.4008E+01 2.8369E−01 4.1674E−07

Rank-Transformed Data
Variable R2 RRC SRRC p-Value

x1 0.34245 6.0130E−01 6.0130E−01 2.7828E−08
x6 0.48424 3.6689E−01 3.6689E−01 2.7828E−08
x3 0.62262 3.7628E−01 3.7628E−01 2.7828E−08
x2 0.73162 3.4561E−01 3.4561E−01 2.7828E−08
x4 0.84275 3.3165E−01 3.3165E−01 2.7828E−08
x5 0.94119 3.1419E−01 3.1419E−01 2.7828E−08

a Table structure same as in Table 9.8.
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Fig. 9.10.  Stability of estimated CDF for nonmonotonic test problem with Model 7 (see Eq. (9.6)).
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Table 9.12. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Nonmonotonic Test
Problem with Model 7 (see Eq. (9.6))a

Sample Size nLHS = 100
Variable CC RCC CMN CL CMD SI

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x1 1.0 0.1657 1.0 0.2382 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
x3 2.0 0.4400 3.0 0.4666 3.0 0.2294 3.0 0.3469 7.0 0.7358 3.0 0.1010
x8 3.0 0.4518 2.0 0.4090 7.0 0.7298 8.0 0.7661 7.0 0.7358 8.0 0.9489
x6 4.0 0.4566 6.0 0.5905 5.0 0.6637 6.0 0.7193 4.5 0.5918 7.0 0.8666
x7 5.0 0.4758 4.0 0.5528 8.0 0.7360 7.0 0.7623 7.0 0.7358 6.0 0.6728
x5 6.0 0.6796 5.0 0.5860 6.0 0.7179 5.0 0.4218 4.5 0.5918 2.0 0.0698
x2 7.0 0.7545 8.0 0.9833 2.0 0.0010 2.0 0.0055 2.0 0.0206 4.0 0.1601
x4 8.0 0.9581 7.0 0.9002 4.0 0.4531 4.0 0.3902 3.0 0.0916 5.0 0.5615

Sample Size nLHS = 1000
Variable CC RCC CMN CL CMD SI

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x7 1.0 0.2089  1.0 0.1838  7.0 0.7123  7.0 0.7153 6.0 0.2873 6.0 0.4153
x6 2.0 0.2644  3.0 0.2813  8.0 0.8882  8.0 0.7586 7.0 0.6411 8.0 0.9394
x8 3.0 0.2943  2.0 0.2345  6.0 0.6228  6.0 0.4925 8.0 0.7652 7.0 0.6544
x4 4.0 0.3376  4.0 0.4287  4.0 0.0045  4.0 0.0140 4.0 0.0224 3.0 0.0156
x2 5.0 0.6614  6.0 0.9430  2.0 0.0000  2.0 0.0000 2.0 0.0000 2.0 0.0000
x1 6.0 0.7620  8.0 0.9708  1.0 0.0000  1.0 0.0000 1.0 0.0000 1.0 0.0000
x5 7.0 0.8045  7.0 0.9433  5.0 0.4128  5.0 0.3011 5.0 0.1712 5.0 0.2412
x3 8.0 0.9197  5.0 0.7315  3.0 0.0001  3.0 0.0034 3.0 0.0220 4.0 0.1178

a Table structure same as in Table 9.1.
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and x1: U(−1, 1), x2: DU(5), [~] designates the greatest
integer function, and x:  DU(n) indicates that x has a
uniform distribution over the integers j = 1, 2, …, n.

Latin hypercube sampling and random sampling
produce estimates of the CDF for f(x) that exhibit simi-
lar stability (Fig. 9.12).  This behavior is in contrast to
the other examples, where Latin hypercube sampling
tends to produce more stable CDF estimates than ran-
dom sampling.

For nLHS = 100, tests based on CMNs and SI
identify an effect for x1 (i.e., p-values < 0.05) (Table
9.13).  The test based on CLs with a p-value of 0.0723
also suggests an effect for x1.  None of the remaining
tests (i.e., CCs, RCCs, CMDs) indicates an effect for x1.
The test based on SI with a p-value of 0.0698 suggests a
possible effect for x2; none of the other tests have p-
values that suggest an effect for x2.  For nLHS = 1000,

all tests indicate an effect for x1, and the test based on
SI also indicates an effect for x2.

This example has complex patterns involving x1
and x2 (Fig. 9.13).  These patterns partially emerge for
nLHS = 100 and are readily apparent for nLHS = 1000.
Of the tests under consideration, the test based on SI is
most effective in identifying these patterns.  Due to the
complexity of the relations involving x1, x2 and f(x),
none of the previously considered coefficients (i.e.,
CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs) have values
that provide any useful insights on these relationships.
Similarly, stepwise regression analyses with raw and
rank-transformed data fail to provide any useful in-
sights.

The third nonmonotonic test problem (Model 9 in
Campolongo et al. 2000) is defined by

f x A x Bx x( ) sin sin sin ,x = + +1
2

2 3
4

1
x = [x1, x2, x3], (9.8)

with A = 7, B = 0.1, and xi: U(−π, π) for i = 1, 2, 3.
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Nonmonotonic Test Problem: Model 7, nLHS = 1000
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Fig. 9.11.  Scatterplots for nonmonotonic test problem with Model 7 (see Eq. (9.6)).
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Fig. 9.12.  Stability of estimated CDF for nonmonotonic test problem with Model 8 (see Eq. (9.7)).

Table 9.13. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Nonmonotonic Test
Problem with Model 8 (see Eq. (9.7))a

Sample Size nLHS = 100
Variable CC RCC CMN CL CMD SI

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x1 1.0 0.1968 2.0 0.3458 1.0 0.0346 1.0 0.0723 1.0 0.1468 1.0 0.0003
x2 2.0 0.2412 1.0 0.2722 2.0 0.7078 2.0 0.7449 2.0 0.9384 2.0 0.0698

Sample Size nLHS = 1000
Variable CC RCC CMN CL CMD SI

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000
x2 2.0 0.6222 2.0 0.0659 2.0 0.9090 2.0 0.2553 2.0 0.1847 2.0 0.0000

a Table structure same as in Table 9.1.
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Fig. 9.13.  Scatterplots for nonmonotonic test problem with Model 8 (see Eq. (9.7)).
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For this example, the CDF estimates obtained with
Latin hypercube sampling are more stable than those
obtained with random sampling (Fig. 9.14).

In sensitivity analyses with nLHS = 100, all tests
identify x1 as affecting f(x) (Table 9.14).  In addition,
the CMNs, CLs, CMDs and SI tests also identify an
effect for x2.  None of the tests identifies an effect for
x3.  For nLHS = 1000, all tests indicate an effect for x1,
and tests based on CMNs, CLs, CMDs and SI indicate
an effect for x2.  In contrast, CCs and RCCs fail to indi-
cate an effect for x2.  Further, the test based on SI also
identifies an effect for x3.

Examination of scatterplots clearly shows that x1,
x2 and x3 have readily discernible influences on f(x)
(Fig. 9.15).  The tests based on CCs and RCCs are
completely missing the nonlinear and nonmonotonic

patterns induced in f(x) by x2 and x3.  Tests based on
CCs and RCCs are able to identify a slight increasing
pattern in the relationship between x1 and f(x); but this
is only part of the patterns appearing in Fig. 9.15.  Tests
based on CMNs, CLs and CMDs identify the pattern
associated with x2 but fail to identify the pattern associ-
ated with x3 that tends to produce similar means and
medians across the entire range of x3.  In contrast, this
pattern was detected by the test for SI with nLHS =
1000.

Due to the lack of strong linear or monotonic rela-
tionships between x1, x2, x3 and f(x), individual coeffi-
cients (i.e., CCs, SRCs, PCCs, RCCs, SRRCs, PRCCs)
are close to zero and provide little useful information to
help in determining the effects of x1, x2 and x3 on f(x).
For the same reasons, stepwise regression analysis with
raw or rank-transferred data is not very informative.
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Fig. 9.14.  Stability of estimated CDF for nonmonotonic test problem with Model 9 (see Eq. (9.8)).
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Table 9.14. Sensitivity Results Based on CCs, RCCs, CMNs, CLs, CMDs and SI for Nonmonotonic Test
Problem with Model 9 (see Eq. (9.8))a

Sample Size nLHS = 100
Variable CC RCC CMN CL CMD SI

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 2.0 0.0001 1.0 0.0000
x3 2.0 0.5667 2.0 0.6361 3.0 0.6917 3.0 0.5495 3.0 0.9384 3.0 0.0615
x2 3.0 0.8327 3.0 0.8393 2.0 0.0000 2.0 0.0000 1.0 0.0000 2.0 0.0008

Sample Size nLHS = 1000
Variable CC RCC CMN CL CMD SI

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val
x1 1.0 0.0000 1.0 0.0000 1.5 0.0000 1.5 0.0000 2.0 0.0000 1.5 0.0000
x3 2.0 0.0162 2.0 0.0187 3.0 0.0438 3.0 0.0347 3.0 0.1446 3.0 0.0000
x2 3.0 0.9799 3.0 0.9999 1.5 0.0000 1.5 0.0000 1.0 0.0000 1.5 0.0000

a Table structure same as in Table 9.1.
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10.0  Performance Assessment for the
Waste Isolation Pilot Plant

10.1 Stochastic and Subjective
Uncertainty

As indicated in Sect. 2, many large analyses in-
volve two distinct sources of uncertainty: stochastic or
aleatory uncertainty, which arises because the system
under study can behave in many different ways, and
subjective or epistemic uncertainty, which arises from
an inability to specify an exact value for a quantity that
is assumed to have a constant value within a particular
analysis.  An example of such an analysis is the U.S.
Nuclear Regulatory Commission’s reassessment of the
risk from commercial nuclear reactors in the United
States (commonly referred to as the NUREG-1150
analysis after its report number), where stochastic un-
certainty arose from the many possible accidents that
could occur at the power plants under study and subjec-
tive uncertainty arose from the many uncertain quanti-
ties required in the estimation of the probabilities and
consequences of these accidents (U.S. NRC 1990-1991,
Breeding et al. 1992, Helton and Breeding 1993).  Nu-
merous other examples also exist (e.g., McKone 1994,
Allen et al. 1996, Price et al. 1996, Payne et al. 1992,
PLG 1983, PLG 1982).

This presentation will use the PA carried out in
support of the DOE’s 1996 Compliance Certification
Application (CCA) for the WIPP as an example of an
analysis involving both stochastic and subjective un-
certainty.  Parts of this analysis involving the model for
two-phase flow in the BRAGFLO program (Sect. 3)
have already been introduced and used to illustrate un-
certainty and sensitivity analysis in the presence of
subjective uncertainty.  Although the analyses with
BRAGFLO were an important part of the 1996 WIPP
PA, they constitute only one component of a large
analysis.  The following provides a high-level overview
of sampling-based uncertainty and sensitivity analysis in
the 1996 WIPP PA.  The need to treat both stochastic
and subjective uncertainty in the 1996 WIPP PA arose
from regulations promulgated by the U.S. Environ-
mental Protection Agency (EPA) and briefly summa-
rized in the next paragraph.

The following is the central requirement in the
EPA’s regulation for the WIPP, 40 CFR 191, Subpart
B, and the primary determinant of the conceptual and
computational structure of the 1996 WIPP PA
(p. 38086, U.S. EPA 1985):

§ 191.13 Containment requirements:

(a) Disposal systems for spent nuclear
fuel or high-level or transuranic radioactive
wastes shall be designed to provide a reason-
able expectation, based upon performance
assessments, that cumulative releases of radi-
onuclides to the accessible environment for
10,000 years after disposal from all significant
processes and events that may affect the
disposal system shall:  (1) Have a likelihood of
less than one chance in 10 of exceeding the
quantities calculated according to Table 1
(Appendix A)1; and (2) Have a likelihood of
less than one chance in 1,000 of exceeding ten
times the quantities calculated according to
Table 1 (Appendix A).

(b) Performance assessments need not
provide complete assurance that the require-
ments of 191.13(a) will be met.  Because of the
long time period involved and the nature of the
events and processes of interest, there will
inevitably be substantial uncertainties in pro-
jecting disposal system performance.  Proof of
the future performance of a disposal system is
not to be had in the ordinary sense of the word
in situations that deal with much shorter time
frames.  Instead, what is required is a reason-
able expectation, on the basis of the record
before the implementing agency, that compli-
ance with 191.13(a) will be achieved.

The EPA also promulgated 40 CFR 194 (U.S. EPA
1996), where the following elaboration on the intent of
40 CFR 191.13 is given (pp. 5242-5243, U.S. EPA
1996):

§ 194.34 Results of performance assessments.

(a) The results of performance assess-
ments shall be assembled into “complemen-
tary, cumulative distribution functions”
(CCDFs) that represent the probability of

                                                          
1 Radionuclide releases normalized to amount of radio-
active material placed in the disposal facility; see U.S.
EPA 1985 or Helton 1993a for a description of the
normalization process.
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exceeding various levels of cumulative release
caused by all signficant processes and events.
(b) Probability distributions for uncertain
disposal system parameter values used in
performance assessments shall be developed
and documented in any compliance applica-
tion.  (c) Computational techniques, which
draw random samples from across the entire
range of the probability distributions devel-
oped pursuant to paragraph (b) of this section,
shall be used in generating CCDFs and shall be
documented in any compliance application.
(d) The number of CCDFs generated shall be
large enough such that, at cumulative releases
of 1 and 10, the maximum CCDF generated
exceeds the 99th percentile of the population
of CCDFs with at least a 0.95 probability.  (e)
Any compliance application shall display the
full range of CCDFs generated.  (f) Any com-
pliance application shall provide information
which demonstrates that there is at least a 95
percent level of statistical confidence that the
mean of the population of CCDFs meets the
containment requirements of § 191.13 of this
chapter.

In addition to the requirements in 40 CFR 191.13 and
40 CFR 194.34 just quoted, 40 CFR 191 and 40 CFR
194 contain many additional requirements for the certi-
fication of the WIPP for the disposal of TRU waste.
However, it is the indicated requirements that determine
the overall structure of the 1996 WIPP PA.

Together, 191.13(a) and 194.34(a) lead to a CCDF
and boundary line as illustrated in Fig. 10.1, with the
CCDF for releases to the accessible environment re-
quired to fall below the boundary line.  The CCDF de-
rives from disruptions that could occur in the future and
is thus characterizing the effects of stochastic uncer-
tainty.  In contrast, 194.34(b) and (c) require the char-
acterization and propagation of the effects of subjective
uncertainty.  Ultimately, this uncertainty will lead to a
distribution of CCDFs of the form illustrated in Fig.
10.1, with this distribution deriving from subjective
uncertainty.

Analyses that maintain a distinction between sto-
chastic and subjective uncertainty require the introduc-
tion of a probability space (Sst, st, pst) for stochas-

tic uncertainty and a probability space (Ssu, su,
psu) for
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Fig. 10.1. Boundary line and associated CCDF speci-
fied in 40 CFR 191, Subpart B (Fig. 2, Hel-
ton et al. 1998b).

subjective uncertainty (Sect. 2).  The probability space
(Ssu, su, psu) for subjective uncertainty used in the
1996 WIPP PA has already been introduced in Sect. 3,
with Table 3.1 listing 31 of the 57 uncertain variables
associated with the elements xsu of Ssu.  Specifically,
xsu is a vector of the form

],,,[ 5721 xxxsu �=x (10.1)

in the 1996 WIPP PA, where x1, x2,…, x31 are listed in
Table 3.1 and the remaining elements of xsu (i.e., x32,
x33, …, x57) are listed in Table 5.2.1 of Helton et al.
1998a.  The probability space (Ssu, su, psu) was
defined by specifying distributions for the elements of
xsu as indicated in Eq. (1.3) and illustrated in Fig. 4.3.

In the 1996 WIPP PA, the probability space (Sst,

st, pst) for stochastic uncertainty derives from the
many different disruptions that could occur at the WIPP
over the 10,000 yr regulatory time frame imposed on it.
In particular, regulatory guidance and extensive review
of potential features, events and processes (FEPs) that
could affect the WIPP led to the elements xst of the
sample space Sst being defined as vectors of the form
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(10.2)

where n is the number of exploratory drilling intrusions
for natural resources (i.e., oil or gas) that occur in the
immediate vicinity of the repository, ti is the time (yr) of
the ith intrusion, li designates the location of the ith in-
trusion, ei designates the penetration of an excavated or
nonexcavated area by the ith intrusion, bi designates
whether or not the ith intrusion penetrates pressurized
brine in the Castile Fm, pi designates the plugging pro-
cedure used with the ith intrusion (i.e., continuous plug,
two discrete plugs, three discrete plugs), ai designates
the type of waste penetrated by the ith intrusion (i.e., no
waste, contact-handled (CH) waste, remotely handled
(RH) waste), and tmin is the time at which potash mining
occurs within the land withdrawal boundary (Chapt. 3,
Helton et al. 1998a).  The definition of (Sst, st, pst)
was then completed by assigning a distribution to each
element of xst (Chapt. 3, Helton et al. 1998a).

The FEPs review process also led to the identifica-
tion of processes and associated models for use in the

estimation of consequences (e.g., normalized radionu-
clide releases to the accessible environment in the con-
text of the EPA regulations) for elements xst of Sst (Fig.
10.2, Table 10.1).  Symbolically, this estimation process
can be represented by

( ) ( ) ( ),st C st SP st B stf f f f= + ��x x x x

[ ] ( ){ }, , ( ) ,DBR st SP st B st B stf f f f+ x x x x

( ) ( )
( )

, ,

,
MB st B st DL st B st

S st B st

f f f f

f f

+ +� �� �

+ � ��

x x x x

x x

( ){ ( ) },0 ,0, , , ,S T st S F st N P st B stf f f f− − −+ ��x x x x
(10.3)

where f(xst) ~ normalized radionuclide release to the
accessible environment associated with xst and, in gen-
eral, many additional consequences, xst ~ particular
future under consideration, xst,0 ~ future involving no
drilling intrusions but a mining event at the same time
tmin as in xst, fC st(x )  ~ cuttings and cavings release to
accessible environment for xst calculated with
CUTTINGS_S, fB st( )x  ~ results calculated for xst
with BRAGFLO (in practice, fB(xst) is a vector con-
taining a large amount of information including time-
dependent pressures and saturations for gas and brine),
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Table 10.1.  Summary of Computer Models Used in the 1996 WIPP PA (Table 1, Helton et al. 1998b).

BRAGFLO:  Calculates multiphase flow of gas and brine through a porous, heterogeneous reservoir.  Uses finite
difference procedures to solve system of nonlinear partial differential equations that describes the mass conserva-
tion of gas and brine along with appropriate constraint equations, initial conditions and boundary conditions.  Ad-
ditional information:  Bean et al. 1996; Sect. 4.2, Helton et al. 1998a.

BRAGFLO_DBR:  Special configuration of BRAGFLO model used in calculation of dissolved radionuclide re-
leases to the surface (i.e., direct brine releases) at the time of a drilling intrusion.  Uses initial value conditions
obtained from calculations performed with BRAGFLO and CUTTINGS_S.  Additional information:  Stoelzel et
al. 1996; Sect. 4.7, Helton et al. 1998a.

CUTTINGS_S:  Calculates the quantity of radioactive material brought to the surface in cuttings and cavings and
also in spallings generated by an exploratory borehole that penetrates a waste panel, where cuttings designates
material removed by the drillbit, cavings designates material eroded into the borehole due to shear stresses result-
ing from the circular flow of the drilling fluid (i.e., mud), and spallings designates material carried to the borehole
at the time of an intrusion due to the flow of gas from the repository to the borehole.  Spallings calculation uses
initial value conditions obtained from calculations performed with BRAGFLO.  Additional information:  Berglund
1992, 1996; Sects. 4.5, 4.6, Helton et al. 1998a.

GRASP-INV:  Generates transmissivity fields (estimates of transmissivity values) conditioned on measured
transmissivity values and calibrated to steady-state and transient pressure data at well locations using an adjoint
sensitivity and pilot-point technique.  Additional information:  LaVenue and Rama Rao 1992, LaVenue 1996.

NUTS:  Solves system of partial differential equations for radionuclide transport in vicinity of repository.  Uses
brine volumes and flows calculated by BRAGFLO as input.  Additional information:  Stockman et al. 1996; Sect.
4.3, Helton et al. 1998a.

PANEL:  Calculates rate of discharge and cumulative discharge of radionuclides from a waste panel through an
intruding borehole.  Discharge is a function of fluid flow rate, elemental solubility and radionuclide inventory.
Uses brine volumes and flows calculated by BRAGFLO as input.  Based on solution of system of linear ordinary
differential equations.  Additional information:  Stockman et al. 1996; Sect. 4.4, Helton et al. 1998a.

SANTOS:  Solves quasistatic, large deformation, inelastic response of two-dimensional solids with finite element
techniques.  Used to determine porosity of waste as a function of time and cumulative gas generation, which is an
input to calculations performed with BRAGFLO.  Additional information:  Bean et al. 1996; Stone 1997a, 1997b;
Sect. 4.2.3, Helton et al. 1998a.

SECOFL2D:  Calculates single-phase Darcy flow for groundwater flow in two dimensions.  The formulation is
based on a single partial differential equation for hydraulic head using fully implicit time differencing.  Uses
transmissivity fields generated by GRASP-INV.  Additional information:  Roache 1993, Ramsey and Wallace
1996; Sect. 4.8, Helton et al. 1998a.

SECOTP2D:  Simulates transport of radionuclides in fractured porous media.  Solves two partial differential
equations:  one provides two-dimensional representation for convective  and diffusive radionuclide transport in
fractures and the other provides one-dimensional representation for diffusion of radionuclides into rock matrix
surrounding the fractures.  Uses flow fields calculated by SECOFL2D.  Additional information: Roache 1993,
Ramsey and Wallace 1996; Sect. 4.9, Helton et al. 1998a.
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f fSP st B st[ , ( )]x x  ~ spallings release to accessible en-
vironment for xst calculated with the spallings model
contained in CUTTINGS_S, { , [ ,DBR st SP stf fx x

( )] ,B stf x  ( )}B stf x  ~ direct brine release to accessi-
ble environment for xst calculated with a modified ver-
sion of BRAGFLO designated BRAGFLO_DBR,

[ ,MB stf x  ( )]B stf x  ~ release through anhydrite marker
beds to accessible environment for xst calculated with
NUTS, f fDL st B st[ , ( )]x x  ~ release through Dewey
Lake Red Beds to accessible environment for xst cal-
culated with NUTS, f fS st B st[ , ( )]x x  ~ release to land
surface due to brine flow up a plugged borehole for xst
calculated with NUTS or PANEL as appropriate,

,0( )S F stf − x  ~ flow field calculated for xst,0 with
SECOFL2D, f fN P st B st− [ , ( )]x x  ~ release to Culebra
for xst calculated with NUTS or PANEL as appropriate,
and f f f fS T st S F st N P st B st− − −{ , ( ), [ , ( )]}, ,x x x x0 0  ~
ground water transport release through Culebra to ac-
cessible environment calculated with SECOTP2D (xst,0
is used as an argument to fS−T  because drilling intru-
sions are assumed to cause no perturbations to the flow
field in the Culebra).

The probability space (Sst, st, pst) for stochastic
uncertainty and the function f indicated in Eq. (10.3)
lead to the required CCDF for normalized releases to
the accessible environment (Fig. 10.1).  In particular,
this CCDF can be represented as an integral involving
(Sst, st, pst) and f (Fig. 10.3).  If (Sst, st, pst) and
f could be unambiguously defined, then the CCDF in
Fig. 10.3 could be determined with certainty and com-
pared against the specified boundary line.  Unfortu-
nately, such certainty does not exist in the 1996 WIPP
PA, which leads to the probability space (Ssu, su,
psu) for subjective uncertainty.

When the elements xsu of Ssu are included, the
function f in Eq. (10.3) has the form f(xst, xsu).  In turn,
the expression defining the CCDF in Fig. 10.3 becomes

( | )

[ ( , )] ( | ) ,

su

R st su st st su st
st

prob Rel R

f d dV

>

= δ

x

x x x x
S

(10.4)

where δR[f(xst, xsu)] = 1 if f(xst, xsu) > R and 0 if f(xst,
xsu) ≤ R.  Uncertainty in xsu as characterized by
(Ssu, su, psu) then leads to a distribution of CCDFs,
with one CCDF resulting for each xsu in Ssu (Fig. 10.4).
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Fig. 10.3. Definition of CCDF specified in 40 CFR
191, Subpart B as an integral involving the
probability space (Sst, st, pst) for sto-
chastic uncertainty and a function f defined
on Sst (Fig. 4, Helton et al. 1998b).
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Fig. 10.4. Individual CCDFs conditional on elements
xsu of Ssu (i.e., CCDFs represented by [R,
prob(Rel > R|xsu)]; see Eq. (10.4)) and asso-
ciated mean CCDF (i.e., CCDF represented
by [R, prob (Rel > R)]; see Eq. (10.7)).
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10.2 Implementation of Analysis

The guidance in 194.34(a) was implemented by de-
veloping the probability space (Sst, st, pst), the
function f(xst, xsu), and a Monte Carlo procedure based
on simple random sampling (Sect. 5.1) for the approxi-
mation of the integral, and hence the associated CCDF,
in Eq. (10.4).  Conditional on an element xsu of Ssu, the
Monte Carlo approximation procedure has the form

,
1

( | ) [ ( , )] / ,
nS

su R st i su
i

prob Rel R f nS
=

> = δ�x x x (10.5)

where xst,i, i = 1,2,…, nS = 10,000, is a random sample
of size nS from (Sst, st, pst).  This approximation
procedure required evaluating the models in Table 10.1
for a relatively small number of elements of Sst and then
using these evaluations to construct f(xst,i, xsu) for the
large number of sample elements (i.e., nS = 10,000)
used in the summation in Eq. (10.5) (see Helton et al.
1998a for numerical details).

The guidance in 194.34(b) was implemented by
developing the probability space (Ssu, su, psu).
Latin hypercube sampling (Sect. 5.3) was selected as
the sampling technique required in 194.34(c) because of
the efficient manner in which it stratifies across the
range of each sampled variable.  For a Latin hypercube
or random sample of size n, the requirement in
194.34(c) is equivalent to the inequality

1 − 0.99n > 0.95, (10.6)

which results in a minimum value of 298 for n.  In con-
sistency with the preceding result, the 1996 WIPP PA
used an LHS of size 300 from the probability space
(Ssu, su, psu) for subjective uncertainty.  Actually,
as discussed below, three replicated LHSs of size 100
each were used, which resulted in a total sample size of
300 (Sect. 5.6).  Further, the requirement in 194.34(d) is
met by simply providing plots that contain all the indi-
vidual CCDFs produced in the analysis (i.e., one CCDF
for each LHS element; i.e., plots of the form indicated
in Fig. 10.4).

The requirement in 194.34(f) involves the mean of
the distribution of CCDFs, with this distribution result-
ing from subjective uncertainty (Fig. 10.4).  In particu-
lar, each individual CCDF in Fig. 10.4 is conditional on
an element xsu of Ssu and is defined by the points [R,
prob(Rel > R|xsu)], with prob(Rel > R|xsu) given in Eq.

(10.4). Similarly, the mean CCDF is defined by the
points [ , ( )]R prob RRel > , where

prob R( )Rel >  = mean probability of a release
greater than size R

= >prob R d dVsu su su su
su

( | ) ( )Rel x x
S

[ ( , )] ( | )

  ( )

R st su st st su st
su st

su su su

f d dV

d dV

�
= δ�

�
x x x x

x
S S

(10.7)

and dsu(xsu) is the density function associated with (Ssu,

su, psu).

The integral over Ssu in the definition of
prob R( )Rel >  is too complex to be determined ex-

actly.  The EPA anticipated that a sampling-based inte-
gration procedure would be used to estimate this inte-
gral, with the requirement in 194.34(f) placing a condi-
tion on the accuracy of this procedure.

Given that Latin hypercube sampling is to be used
to estimate the outer integral in Eq. (10.7), the confi-
dence intervals required in 194.34(f) can be obtained
with a replicated sampling technique proposed by Iman
(1982).  In this technique, the LHS to be used is repeat-
edly generated with different random seeds.  These
samples lead to a sequence ),( RlReprobr >  r = 1, 2,
…, nR, of estimated mean exceedance probabilities,
where )( RlReprobr >  defines the mean CCDF ob-

tained for sample r (i.e., )( RlReprobr >  is the mean
probability that a normalized release of size R will be
exceeded; see Eq. (10.7)) and nR is the number of inde-
pendent LHSs generated with different random seeds.
Then,

prob R prob R nRr
r

nR
( ) ( ) /Rel Rel> = >

=1

(10.8)

and

2

1

( ) ( ) ( )
nR

r
r

SE R prob Rel R prob Rel R
=

�= > − >� ����
�

1/ 2

/ ( 1)nR nR �−
�

(10.9)
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provide an additional estimate of the mean CCDF and
estimates of the standard errors associated with the in-
dividual mean exceedance probabilities.  The t-
distribution with nR−1 degrees of freedom can be used
to place confidence intervals around the mean exceed-
ance probabilities for individual R values (i.e., around
prob R( )Rel > ).  Specifically, the 1−α confidence in-

terval is given by prob R( )Rel > ± t1−α/2 SE(R), where
t1−α/2 is the 1−α/2 quantile of the t-distribution with
nR−1 degrees of freedom (e.g., t1−α/2 = 4.303 for α =
0.05 and nR = 3).  The same procedure can also be used
to place pointwise confidence intervals around percen-
tile curves.  The implementation of this procedure is the
reason for the three replicated LHSs indicated in Sect.
5.6.

At the beginning of the computational implementa-
tion of the 1996 WIPP PA, only the 31 variables in Ta-
ble 3.1 that are used as input to BRAGFLO had been
fully specified (i.e., their distributions Dj had been un-
ambiguously defined); the remaining variables that
would be incorporated into the definition of xsu were
still under development.  To allow the calculations with
BRAGFLO to proceed, the LHSs indicated in Sect. 5.6
were actually generated from nX = 75 variables, with
the first 31 variables being the then specified inputs to
BRAGFLO and the remaining 44 variables being as-
signed uniform distributions on [0, 1].  Later, when the
additional variables were fully specified, the uniformly
distributed variables were used to generate sampled
values from them consistent with their assigned distri-
butions.  This procedure allowed the analysis to go for-
ward while maintaining the integrity of the Latin hyper-
cube sampling procedure for the overall analysis.  As
previously indicated, 26 additional variables were
eventually defined, with the result that the elements xsu
of Ssu had an effective dimension of nX = 57.

10.3 Uncertainty and Sensitivity
Analysis Results

The CCDF used in comparisons with the EPA re-
lease limits (Figs. 10.1, 10.3) is the most important sin-
gle result generated in the 1996 WIPP PA.  This CCDF
arises from stochastic uncertainty.  However, because
there is subjective uncertainty in quantities used in the
generation of this CCDF, its value cannot be known
with certainty.  The use of Latin hypercube sampling
leads to an estimate of the uncertainty in the location of

this CCDF (Fig. 10.5), with the individual CCDFs
falling substantially to the left of the release limits.  The
left frame (Fig. 10.5a) shows the individual CCDFs
obtained for replicate R1, and the right frame (Fig.
10.5b) shows the mean and selected quantile curves
obtained from pooling the three replicates.  The mean
curve in Fig. 10.5b is formally defined in Eq. (10.7),
and the construction procedures used to obtain the indi-
vidual curves in Fig. 10.5b are described in conjunction
with Fig. 7.8.

The replicated samples described in Sect. 5.6 were
used to obtain an indication of the stability of results
obtained with Latin hypercube sampling.  For the total
release CCDFs in Fig. 10.5, the results obtained for the
three replicates (i.e., R1, R2, R3) were very stable, with
little variation in the locations of the mean and quantile
curves occurring across replicates (Fig. 10.6a).  Indeed,
the mean and quantile curves for the individual repli-
cates overlay each other to the extent that they are al-
most indistinguishable.  As a result, the procedure indi-
cated in conjunction with Eqs. (10.8) and (10.9) pro-
vides a very tight confidence interval around the esti-
mated mean CCDF (Fig. 10.6b).

The sampling-based approach to uncertainty analysis
has created a pairing between the LHS elements in Eq.
(5.16) and the individual CCDFs in Fig. 10.5a that can
be explored with the previously discussed sensitivity
analysis techniques.  One possibility for investigating
the sources of the uncertainty that give rise to the distri-
bution of CCDFs in Fig. 10.5a is to determine what is
giving rise to the variation in exceedance probabilities
for individual release values on the abscissa.  This
variation in exceedance probabilities can be investi-
gated in exactly the same manner as the variation in
pressure at individual times was investigated for the
pressure curves in Fig. 7.5 and presented in Fig. 8.3.
Specifically, PRCCs, SRRCs, or some other measure of
sensitivity can be calculated for the exceedance prob-
abilities associated with individual release values.  This
measure for different sampled variables can be plotted
above the corresponding release values on the abscissa
and then connected to obtain a representation for how
sensitivity changes for changing values on the abscissa.
For the CCDFs in Fig. 10.5a, this analysis approach
shows that the exceedance probabilities for individual
release values are primarily influenced by WMICDFLG
and WTAUFAIL (shear strength of waste), with the ex-
ceedance probabilities tending to increase as
WMICDFLG increases and tending to decrease as
WTAUFAIL increases (Fig. 10.7).



92

10–5 10–4 10–3 10–2 10–1 100 101 102

Normalized Release (EPA units), R

10–5

10–4

10–3

10–2

10–1

100

101

P
ro

ba
bi

lit
y 

V
al

ue
 >

 R

Total Normalized Releases:  R1, R2, R3
300 Observations, 10000 Futures/Observation

EPA Limit
Overall Mean
90th Pooled Quantile
50th Pooled Quantile
10th Pooled Quantile

Frame 10.5bFrame 10.5a

10–5 10–4 10–3 10–2 10–1 100 101 102

Normalized Release (EPA units), R

10–5

10–4

10–3

10–2

10–1

100

101

P
ro

ba
bi

lit
y 

V
al

ue
 >

 R
Total Normalized Releases:  R1
100 Observations, 10000 Futures/Observation

EPA Limit

TRI-6342-6045-0

Fig. 10.5. Distribution of CCDFs for total normalized release to the accessible environment over 10,000 yr: (a) 100
individual CCDFs for replicate R1, and (b) mean and percentile curves estimated from 300 CCDFs ob-
tained by pooling replicates R1, R2 and R3 (Figs. 6, 7, Helton et al. 1998b).

EPA Limit

Overall Mean
90th Quantile
50th Quantile

10th Quantile

Total Normalized Releases:  R1, R2, R3
300 Observations, 10000 Futures/Observation

Total Normalized Releases:  R1, R2, R3
300 Observations, 10000 Futures/Observation

Mean
EPA Limit
Overall Mean
Upper 95th CI
Lower 95th CI

TRI-6342-5000-0

10–5 10–4 10–3 10–2 10–1 100 101 102

Normalized Release (EPA units), R

10–5

10–4

10–3

10–2

10–1

100

101

P
ro

ba
bi

lit
y 

V
al

ue
 >

 R

10–5 10–4 10–3 10–2 10–1 100 101 102

Normalized Release (EPA units), R

10–5

10–4

10–3

10–2

10–1

100

101

P
ro

ba
bi

lit
y 

V
al

ue
 >

 R

Frame 10.6a Frame 10.6b

Fig. 10.6. Stability of estimated distribution of CCDFs for normalized release to the accessible environment: (a)
mean and quantile curves for individual replicates, and (b) confidence interval around mean CCDF ob-
tained by pooling the three individual replicates (Fig. 8, Helton et al. 1998b).



93

Total Normalized Releases: R1, R2, R3
300 Observations, 10000 Futures/Observation

Dependent Variable
    TOTREL

WMICDFLG
WTAUFAIL

10−5 10−4 10−3 10−2 10−1 100 101 102
–1.00

–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

P
ar

tia
l R

an
k 

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

TRI-6342-5181-0

Normalized Release (EPA units)

Fig. 10.7. Sensitivity analysis based on PRCCs for
CCDFs for normalized release to the acces-
sible environment (Fig. 14, Helton 1999).

Another possibility is to reduce the individual
CCDFs to expected values over stochastic uncertainty
and then to perform a sensitivity analysis on the resul-
tant expected values.  In the context of the CCDF repre-
sentation in Eq. (10.4), this expected value can be for-
mally defined by

.)|()],()|( =
st

stsuststsustsu dVdfRE
S

xxxxx (10.10)

The LHS in Eq. (5.16) then results in a sequence of
values E(R | xsu,k), k = 1,2, …, nLHS, that can be ex-

plored with the previously discussed sensitivity analysis
procedures.  For example, stepwise regression analysis
shows that WMICDFLG and WTAUFAIL are the domi-
nant variables with respect to the uncertainty in

( ),| suRE x  but with lesser effects due to a number of
additional variables (Table 10.2).

This section briefly describes the 1996 WIPP PA
and illustrates uncertainty and sensitivity analysis in the
context of this PA.  Additional details are available in
other presentations (Helton et al. 1998a, Helton 1999,
Helton et al. 1999).

Table 10.2.  Stepwise Regression Analysis with
Rank-Transformed Data for Expected Normalized
Release Associated with Individual CCDFs for
Total Release Due to Cuttings and Cavings,
Spallings and Direct Brine Release (Table 5, Hel-
ton 1999)

Expected Normalized Release
Stepa Variableb SRRCc R2d

1 WMICDFLG 0.60 0.40
2 WTAUFAIL −0.39 0.55
3 WGRCOR 0.21 0.59
4 WPRTDIAM −0.19 0.63
5 HALPOR 0.17 0.65
6 BHPRM −0.17 0.68
7 HALPRM 0.16 0.71
8 WASTWICK 0.11 0.72
9 ANHPRM 0.09 0.73

a Steps in stepwise regression analysis.
b Variables listed in order of selection in regression analysis

with ANHCOMP and HALCOMP excluded from entry into
regression model.

c Standardized rank regression coefficients (SRRCs) in final
regression model.

d Cumulative R2 value with entry of each variable into regres-
sion model.
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11.0  Summary

Sampling-based methods for uncertainty and sensi-
tivity analysis have a number of desirable properties,
including (i) conceptual simplicity, (ii) ease and flexi-
bility in adaptation to specific analysis situations, (iii)
stratification over the range of each uncertain variable,
(iv) direct estimation of distribution functions to char-
acterize the uncertainty in model predictions, and (v)
availability of a variety of sensitivity analysis tech-
niques.

The results of sampling-based uncertainty and sen-
sitivity analyses are conditional on the distributions
assigned to the uncertain (i.e., sampled) variables.
Thus, care must be used in assigning these distributions.
A possibility is to carry out multiple iterations of an
analysis.  The first iteration could be performed with
rather crude distribution assumptions to determine the
most important variables.  Then, additional resources
could be focused on characterizing the uncertainty in
these variables before a second iteration of the analysis
is carried out.

A number of techniques for sensitivity analysis
have been described.  However, many additional tech-
niques for analyzing multivariate data exist that could
be productively applied in a sampling-based sensitivity
analysis.  In particular, there are undoubtedly many
pattern recognition techniques that could be success-
fully adapted for use in sensitivity analysis.

Sampling-based uncertainty and sensitivity analyses
are usually performed for two reasons: (i) to determine
the uncertainty in model predictions (e.g., to ascertain if
model predictions fall within some region of concern),
and (ii) to determine the dominant variables that give
rise to the uncertainty in model predictions (e.g., to

identify the variables on which limited research funds
should be concentrated).  However, there is also a third
reason to perform a sampling-based uncertainty and
sensitivity analysis: (iii) to verify that the model under
consideration is operating correctly.  Due to the concur-
rent variation of many model inputs and the efficacy of
sensitivity analysis procedures in identifying the effects
of model inputs on individual model predictions, sam-
pling-based uncertainty and sensitivity analysis proce-
dures provide a powerful tool for model and analysis
quality assurance.

Sampling-based sensitivity analysis procedures are
based on identifying patterns in a mapping between
model inputs and predictions.  Different procedures are
predicated on the identification of different types of
patterns.  Thus, a procedure will not perform well if the
mapping under consideration does not contain the type
of pattern that that particular procedure seeks to iden-
tify.  As a result, a good sensitivity analysis strategy is
to use several different procedures that seek to identify
different types of patterns.  With this approach, there is
a reasonable chance that each important model input
will be identified by at least one of the procedures.

Sensitivity analysis provides a way to identify the
model inputs that most affect the uncertainty in model
predictions.  However, sensitivity analysis does not
provide an explanation for such effects.  This explana-
tion must come from the analysts involved and, of
course, be based on the mathematical properties of the
model under consideration.  An inability to develop a
suitable explanation for the effects of a particular model
input is often indicative of an error in the development
of the model or the implementation analysis.



95

References

Allen, B.C., T.R. Covington, and H.J. Clewell.  1996.
“Investigation of the Impact of Pharmacokinetic Vari-
ability and Uncertainty on Risks Predicted with a Phar-
macokinetic Model for Chloroform,” Toxicology.  Vol.
111, no. 1-3, 289-303.

Allen, D.M.  1971.  The Prediction Sum of Squares as a
Criterion for Selecting Predictor Variables.  Report No.
23.  Lexington, KY:  University of Kentucky, Depart-
ment of Statistics.

Anderson, T.W.  1984.  An Introduction to Multivariate
Statistical Analysis.  2nd ed.  New York, NY:  John
Wiley & Sons.

Apostolakis, G.  1990.  “The Concept of Probability in
Safety Assessments of Technological Systems,” Sci-
ence.  Vol. 250,  no. 4986, 1359-1364.

Barry, T.M.  1996.  “Recommendations on the Testing
and Use of Pseudo-Random Number Generators Used
in Monte Carlo Analysis for Risk Assessment,” Risk
Analysis.  Vol. 16, no. 1,  93-105.

Bean, J.E., M.E. Lord, D.A. McArthur, R.J. MacKin-
non, J.D. Miller, and J.D. Schreiber.  1996.  "Analysis
Package for the Salado Flow Calculations (Task 1) of
the Performance Assessment Analysis Supporting the
Compliance Certification Application."  Albuquerque,
NM:  Sandia National Laboratories.  (Copy on file in
the Sandia WIPP Central Files, Sandia National Labo-
ratories, Albuquerque, NM as WPO #40514.)

Belsley, D.A., E. Kuh, and R.E. Welsch.  1980.  Re-
gression Diagnostics:  Identifying Influential Data and
Sources of Collinearity.  New York, NY:  John Wiley &
Sons.

Berger, J.O.  1985.  Statistical Decision Theory and
Bayesian Analysis.  New York, NY:  Springer-Verlag.

Berglund, J.W.  1992.  Mechanisms Governing the Di-
rect Removal of Wastes from the Waste Isolation Pilot
Plant Repository Caused by Exploratory Drilling.
SAND92-7295.  Albuquerque, NM:  Sandia National
Laboratories.

Berglund, J.W.  1996.  "Analysis Package for the Cut-
tings and Spallings Calculations (Tasks 5 and 6) of the
Performance Assessment Calculation Supporting the
Compliance Certification Application."  Albuquerque,

NM:  Sandia National Laboratories.  (Copy on file in
the Sandia WIPP Central Files as WPO #40521.)

Bernstein, P.L.  1996.  Against the Gods:  The Remark-
able Story of Risk.  New York, NY:  John Wiley &
Sons.

Blower, S.M., and H. Dowlatabadi.  1994.  “Sensitivity
and Uncertainty Analysis of Complex Models of Dis-
ease Transmission:  an HIV Model, As an Example,”
International Statistical Review.  Vol. 62, no. 2, 229-
243.

Bonano, E.J., S.C. Hora, R.L. Keeney, and D. von
Winterfeld.  1990.  Elicitation and Use of Expert
Judgment in Performance Assessment for High-Level
Radioactive Waste Repositories.  NUREG/CR-5411,
SAND89-1821.  Albuquerque, NM:  Sandia National
Laboratories.

Bonano, E.J., and G.E. Apostolakis.  1991.  “Theoreti-
cal Foundations and Practical Issues for Using Expert
Judgments in Uncertainty Analysis of High-Level Ra-
dioactive Waste Disposal,” Radioactive Waste Man-
agement and the Nuclear Fuel Cycle.  Vol. 16, no. 2,
137-159.

Breeding, R.J., C.N. Amos, T.D. Brown, E.D. Gorham,
J.J. Gregory, F.T. Harper, W. Murfin, and A.C. Payne.
1992.  Evaluation of Severe Accident Risks:  Quantifi-
cation of Major Input Parameters:  Experts’ Determi-
nation of Structural Response Issues.  NUREG/CR-
4551, SAND86-1309.  Vol. 2, Part 3, Rev. 1.  Albu-
querque, NM:  Sandia National Laboratories.

Breshears, D.D., T.B. Kirchner, and F.W. Whicker.
1992.  “Contaminant Transport Through Agroecosys-
tems: Assessing Relative Importance of Environmental,
Physiological, and Management Factors,” Ecological
Applications.  Vol. 2, no. 3, 285-297.

Campolongo, F., A. Saltelli, T. Sorensen,/ and S. Ta-
rantola.  2000.  In press.  “Hitchhiker’s Guide to Sensi-
tivity Analysis,” Mathematical and Statistical Methods
for Sensitivity Analysis.  Eds. A. Saltelli, K. Chan, and
E.M. Scott.  New York, NY:  John Wiley & Sons.

Chan, M.S.  1996.  “The Consequences of Uncertainty
for the Prediction of the Effects of Schistosomiasis
Control Programmes,” Epidemiology and Infection.
Vol. 117, no. 3, 537-550.



96

Clemen, R.T., and R.L. Winkler.  1999.  “Combining
Probability Distributions from Experts in Risk Analy-
sis,” Risk Analysis.  Vol. 19, no. 2, 187-203.

Conover, W.J.  1980.  Practical Nonparametric Statis-
tics.  2nd ed.  New York, NY:  John Wiley & Sons.

Conover, W.J., and R.L. Iman.  1981.  “Rank Trans-
formations as a Bridge Between Parametric and Non-
parametric Statistics,” American Statistician.  Vol. 35,
no. 3, 124-129.

Cook, R.D., and S. Weisberg.  1982.  Residuals and
Influence in Regression.  New York, NY:  Chapman
and Hall.

Cook, I., and S.D. Unwin.  1986.  “Controlling Princi-
ples for Prior Probability Assignments in Nuclear Risk
Assessment,” Nuclear Science and Engineering.  Vol.
94, no. 2, 107-119.

Cooke, R.M.  1991.  Experts in Uncertainty, Opinion
and Subjective Probability in Science.  New York, NY:
Oxford University Press.

Cullen, A.C., and H.C. Frey.  1999.  Probabilistic
Techniques in Exposure Assessment:  A Handbook for
Dealing with Variability and Uncertainty in Models
and Inputs.  New York, NY:  Plenum Press.

Daniel, C., and F.S. Wood.  1980.  Fitting Equations to
Data:  Computer Analysis of Multifactor Data.  2nd ed.
New York, NY:  Wiley-Interscience.

David, H.A.  1970.  Order Statistics.  New York, NY:
John Wiley & Sons.

Draper, N.R., and H. Smith.  1981.  Applied Regression
Analysis.  2nd ed.  New York, NY:  John Wiley & Sons.

Efron, B., and R.J. Tibshirani.  1993.  Introduction to
the Bootstrap.  New York, NY:  Chapman & Hall.

Eisenhart, C.  1964.  “The Meaning of ‘Least’ in Least
Squares,” Journal of the Washington Academy of Sci-
ence.  Vol. 54,  24-33.

EPRI (Electric Power Research Institute).  1989.  Prob-
abilistic Seismic Hazard Evaluations at Nuclear Plant
Sites in the Central and Eastern United States:  Reso-
lution of the Charleston Earthquake Issue.  NP-6395D.
Palo Alto, CA:  Electric Power Research Institute.

Feller, W.  1971.  An Introduction to Probability
Theory and Its Applications.  Volume II.  2nd ed.  New
York, NY:  John Wiley & Sons.

Fishman, G.S.  1996.  Monte Carlo:  Concepts, Algo-
rithms, and Applications.  New York, NY:  Springer-
Verlag New York, Inc.

Golub, G., and C.F. van Loan.  1983.  Matrix Compu-
tations.  Baltimore, MD:  Johns Hopkins University
Press.

Gwo, J.P., L.E. Toran, M.D. Morris, and G.V. Wilson.
1996.  “Subsurface Stormflow Modeling with Sensitiv-
ity Analysis Using a Latin-Hypercube Sampling Tech-
nique,” Ground Water.  Vol. 34, no. 5, 811-818.

Hacking, I.  1975.  The Emergence of Probability:  A
Philosophical Study of Early Ideas About Probability,
Induction and Statistical Inference.  New York, NY;
London, England:  Cambridge University Press.

Hamby, D.M.  1994.  “A Review of Techniques for
Parameter Sensitivity Analysis of Environmental Mod-
els,” Environmental Monitoring and Assessment.  Vol.
32, no. 2, 135-154.

Hamby, D.M.  1995.  “A Comparison of Sensitivity
Analysis Techniques,” Health Physics.  Vol. 68, no. 2,
195-204.

Harper, F.T., R. J. Breeding, T.D. Brown, J.J. Gregory,
A.C. Payne, E.D. Gorham, and C.N. Amos.  1990.
Evaluation of Severe Accident Risks:  Quantification of
Major Input Parameters.  Expert Opinion Elicitation on
In-Vessel Issues.  NUREG/CR-4551, SAND86-1309.
Vol. 2, Part 1, Rev. 1.  Albuquerque, NM:  Sandia Na-
tional Laboratories.

Harper, F.T., A.C. Payne, R.J. Breeding, E.D. Gorham,
T.D. Brown, G.S. Rightley, J.J. Gregory,  W. Murfin,
and C.N. Amos.  1991.  Evaluation of Severe Accident
Risks:  Quantification of Major Input Parameters.  Ex-
perts’ Determination of Containment Loads and Molten
Core Containment Interaction  Issues.  NUREG/CR-
4551, SAND86-1309.  Vol. 2, Part 2, Rev. 1.  Albu-
querque, NM:  Sandia National Laboratories.

Harper, F.T., R.J. Breeding, T.D. Brown, J.J. Gregory,
H.-N, Jow, A.C. Payne, E.D. Gorham, C.N. Amos, J.C.
Helton, and G. Boyd..  1992.  Evaluation of Severe Ac-
cident Risks:  Quantification of Major Input Parame-
ters.  Experts’ Determination of Source Term Issues.



97

NUREG/CR-4551, SAND86-1309.  Vol. 2, Part 4, Rev.
1.  Albuquerque, NM:  Sandia National Laboratories.

Harter, H.L.  1983.  “Least Squares,” Encyclopedia of
Statistical Sciences.  Vol. 4:  Icing the Tails to Limit
Theorems.  Eds. S. Kotz, N.L. Johnson, and C.B. Read..
New York, NY:  John Wiley & Sons.  Vol. 4, 593-598.

Helton, J.C.  1993a.  “Risk, Uncertainty in Risk, and the
EPA Release Limits for Radioactive Waste Disposal,”
Nuclear Technology.  Vol. 101, no. 1, 18-39.

Helton, J.C.  1993b.  “Uncertainty and Sensitivity
Analysis Techniques for Use in Performance Assess-
ment for Radioactive Waste Disposal,” Reliability En-
gineering and System Safety.  Vol. 42, no. 2-3, 327-
367.

Helton, J.C.  1994. “Treatment of Uncertainty in Per-
formance Assessments for Complex Systems,” Risk
Analysis.  Vol. 14, no. 4, 483–511.

Helton, J.C.  1996.  “Probability, Conditional Probabil-
ity and Complementary Cumulative Distribution Func-
tions in Performance Assessment for Radioactive Waste
Disposal,” Reliability Engineering and System Safety.
Vol. 54, no. 2-3, 145-163.

Helton, J.C.  1997.  “Uncertainty and Sensitivity Analy-
sis in the Presence of Stochastic and Subjective Uncer-
tainty,” Journal of Statistical Computation and Simula-
tion.  Vol. 57, no. 1-4, 3-76.

Helton, J.C.  1999.  “Uncertainty and Sensitivity Analy-
sis in Performance Assessment for the Waste Isolation
Pilot Plant,” Computer Physics Communications.  Vol.
117, no. 1-2, 156-180.

Helton, J.C., and R.J. Breeding.  1993.  “Calculation of
Reactor Accident Safety Goals,” Reliability Engineering
and System Safety.  Vol. 39, no. 2, 129-158.

Helton, J.C., and D.E. Burmaster.  1996.  “Guest Edito-
rial:  Treatment of Aleatory and Epistemic Uncertainty
in Performance Assessments for Complex Systems,”
Reliability Engineering and System Safety,  Vol. 54, no.
2-3, 91-94.

Helton, J.C., and H.J. Iuzzolino.  1993. “Construction
of Complementary Cumulative Distribution Functions
for Comparison with the EPA Release Limits for Ra-
dioactive Waste Disposal,” Reliability Engineering and
System Safety.  Vol. 40, no. 3, 277-293.

Helton, J.C., R.L. Iman, J.D. Johnson, and C.D. Leigh.
1989.  “Uncertainty and Sensitivity Analysis of a Dry
Containment Test Problem for the MAEROS Aerosol
Model,” Nuclear Science and Engineering.  Vol. 102,
no. 1, 22-42.

Helton, J.C., J.D. Johnson, M.D. McKay, A.W. Shiver,
and J.L. Sprung.  1995a.  “Robustness of an Uncertainty
and Sensitivity Analysis of Early Exposure Results with
the MACCS Reactor Accident Consequence Model,”
Reliability Engineering and System Safety.  Vol. 48, no.
2, 129-148.

Helton, J.C., J.D. Johnson, A.W. Shiver, and J.L.
Sprung.  1995b.  “Uncertainty and Sensitivity Analysis
of Early Exposure Results with the MACCS Reactor
Accident Consequence Model,” Reliability Engineering
and System Safety.  Vol. 48, no. 2, 91-127.

Helton, J.C., J.E. Bean, B.M. Butcher, J.W. Garner,
J.D. Schreiber, P.N. Swift, and P. Vaughn.  1996.  “Un-
certainty and Sensitivity Analysis for Gas and Brine
Migration at the Waste Isolation Pilot Plant:  Fully
Consolidated Shaft,” Nuclear Science and Engineering.
Vol. 122, no. 1, 1-31.

Helton, J.C., J.E. Bean, J.W. Berglund, F.J. Davis, K.
Economy, J.W. Garner, J.D. Johnson, R.J. MacKinnon,
J. Miller, D.G. O’Brien, J.L. Ramsey, J.D. Schreiber, A.
Shinta, L.N. Smith, D.M. Stoelzel, C. Stockman, and P.
Vaughn.  1998a.  Uncertainty and Sensitivity Analysis
Results Obtained in the 1996 Performance Assessment
for the Waste Isolation Pilot Plant.  SAND98-0365.
Albuquerque, NM:  Sandia National Laboratories.

Helton, J.C., J.D. Johnson, H.-N. Jow, R.D. McCurley,
and L.J. Rahal.  1998b.  “Stochastic and Subjective
Uncertainty in the Assessment of Radiation Exposure at
the Waste Isolation Pilot Plant,” Human and Ecological
Risk Assessment.  Vol. 4, no. 2, 469-526.

Helton, J.C., D.R. Anderson, H.-N. Jow, M.G. Marietta,
and G. Basabilvazo.  1999.  “Performance Assessment
in Support of the 1996 Compliance Certification Appli-
cation for the Waste Isolation Pilot Plant,” Risk Analy-
sis.  Vol. 19, no. 5, 959-986.

Hoffman, F.O., and J.S. Hammonds.  1994.  “Propaga-
tion of Uncertainty in Risk Assessments: The Need to
Distinguish Between Uncertainty Due to Lack of
Knowledge and Uncertainty Due to Variability,” Risk
Analysis.  Vol. 14, no. 5, 707-712.



98

Hora, S.C., and R.L. Iman.  1989.  “Expert Opinion in
Risk Analysis:  The NUREG-1150 Methodology,” Nu-
clear Science and Engineering.  Vol. 102, no. 4, 323-
31.

Ibrekk, H., and M.G. Morgan.  1987.  “Graphical
Communication of Uncertain Quantities to Nontechni-
cal People,” Risk Analysis. Vol. 7, no. 4, 519-529.

Iman, R.L.  1992.  “Uncertainty and Sensitivity Analy-
sis for Computer Modeling Applications,” Reliability
Technology - 1992, The Winter Annual Meeting of the
American Society of Mechanical Engineers, Anaheim,
California, November 8-13, 1992.  Ed. T.A. Cruse.
AD-Vol. 28.  New York, NY:  American Society of
Mechanical Engineers, Aerospace Division.  153-168.

Iman, R.L., and W.J. Conover.  1979.  “The Use of the
Rank Transform in Regression,” Technometrics.  Vol.
21, no. 4, 499-509.

Iman, R.L., and W.J. Conover.  1982.  “A Distribution-
Free Approach to Inducing Rank Correlation Among
Input Variables,” Communications in Statistics:  Simu-
lation and Computation.  Vol. B11, no. 3, 311-334.

Iman, R.L., and J.M. Davenport.  1980.  Rank Correla-
tion Plots for Use with Correlated Input Variables in
Simulation Studies.  SAND80-1903.  Albuquerque,
NM:  Sandia National Laboratories.

Iman, R.L., and J.M. Davenport.  1982.  “Rank Corre-
lation Plots for Use with Correlated Input Variables,”
Communications in Statistics:  Simulation and Com-
putation.  Vol. B11, no. 3, 335-360.

Iman, R.L., J.M. Davenport, E.L. Frost, and M.J.
Shortencarier.  1980.  Stepwise Regression with PRESS
and Rank Regression (Program and User’s Guide).
SAND79-1472.  Albuquerque, NM:  Sandia National
Laboratories.

Iman, R.L., and J.C. Helton.  1988.  “An Investigation
of Uncertainty and Sensitivity Analysis Techniques for
Computer Models,” Risk Analysis.  Vol. 8, no. 1, 71-90.

Iman R.L., and J.C. Helton.  1991.  “The Repeatability
of Uncertainty and Sensitivity Analyses for Complex
Probabilistic Risk Assessments,” Risk Analysis.  Vol.
11, no. 4, 591-606.

Iman, R.L., J.C. Helton, and J.E. Campbell.  1981a.
“An Approach to Sensitivity Analysis of Computer
Models, Part 1.  Introduction, Input Variable Selection

and Preliminary Variable Assessment,” Journal of
Quality Technology.  Vol. 13, no. 3, 174-183.

Iman, R.L., J.C. Helton, and J.E. Campbell.  1981b.
“An Approach to Sensitivity Analysis of Computer
Models, Part 2.  Ranking of Input Variables, Response
Surface Validation, Distribution Effect and Technique
Synopsis,” Journal of Quality Technology.  Vol. 13, no.
4, 232-240.

Iman, R.L. and M.J. Shortencarier.  1984.  A Fortran 77
Program and User’s Guide for the Generation of Latin
Hypercube and Random Samples for Use with Com-
puter Models.  NUREG/CR-3624, SAND83-2365.
Albuquerque, NM:  Sandia National Laboratories.

Iman, R.L., M.J. Shortencarier, and J.D. Johnson.
1985.  A FORTRAN 77 Program and User’s Guide for
the Calculation of Partial Correlation and Standard-
ized Regression Coefficients.  NUREG/CR-4122,
SAND85-0044.  Albuquerque, NM:  Sandia National
Laboratories.

Keeney, R.L., and D. von Winterfeldt.  1991.  “Eliciting
Probabilities from Experts in Complex Technical
Problems,” IEEE Transactions on Engineering Man-
agement.  Vol. 38, no. 3, 191-201.

Kleijnen, J.P.C., and J.C. Helton.  1999a.  “Statistical
Analyses of Scatterplots to Identify Important Factors in
Large-Scale Simulations.  1:  Review and Comparison
of Techniques,” Reliability Engineering and System
Safety.  Vol. 65, no. 2, 147-185.

Kleijnen, J.P.C., and J.C. Helton.  1999b.  “Statistical
Analyses of Scatterplots to Identify Important Factors in
Large-Scale Simulations.  2:  Robustness of Tech-
niques,” Reliability Engineering and System Safety.
Vol. 65 , no. 2, 187-197.

Kleijnen, J.P.C., and J.C. Helton.  1999c.  Statistical
Analyses of Scatterplots to Identify Important Factors
in Large-Scale Simulations.  SAND98-2202.  Albu-
querque, NM:  Sandia National Laboratories.

L’Ecuyer, P.  1998.  "Random Number Generation,"
Handbook of Simulation:  Principles, Methodology,
Advances, Applications, and Practice.  Ed. J. Banks.
New York, NY:  John Wiley & Sons.  93-137.

LaVenue, A.M.  1996.  "Analysis of the Generation of
Transmissivity Fields for the Culebra Dolomite."  Al-
buquerque, NM:  Sandia National Laboratories.  (Copy



99

on file in the Sandia WIPP Central Files as WPO
#40517.)

LaVenue, A.M., and B.S. RamaRao.  1992.  A Model-
ing Approach To Address Spatial Variability Within the
Culebra Dolomite Transmissivity Field.  SAND92-
7306.  Albuquerque, NM:  Sandia National Laborato-
ries.

Ma, J.Z., and E. Ackerman.  1993.  “Parameter Sensi-
tivity of a Model of Viral Epidemics Simulated with
Monte Carlo Techniques.  II.  Durations and Peaks,”
International Journal of Biomedical Computing.  Vol.
32, no. 3-4, 255-268.

Ma, J.Z., E. Ackerman, and J.-J. Yang.  1993. “Pa-
rameter Sensitivity of a Model of Viral Epidemics
Simulated with Monte Carlo Techniques.  I.  Illness
Attack Rates,” International Journal of Biomedical
Computing.  Vol. 32, no. 3-4, 237-253.

MacDonald, R.C., and J.E. Campbell.  1986.  “Valua-
tion of Supplemental and Enhanced Oil Recovery Proj-
ects with Risk Analysis,” Journal of Petroleum Tech-
nology.  Vol. 38, no. 1, 57-69.

McKay, M.D., R.J. Beckman, and W.J. Conover.  1979.
“A Comparison of Three Methods for Selecting Values
of Input Variables in the Analysis of Output from a
Computer Code,” Technometrics.  Vol. 21, no. 2, 239-
245.

McKone, T.E.  1994.  “Uncertainty and Variability in
Human Exposures to Soil Contaminants Through
Home-Grown Food:  A Monte Carlo Assessment,” Risk
Analysis.  Vol. 14, no. 4, 449-463.

Meyer, M.A., and  J.M. Booker.  1991.  Eliciting and
Analyzing Expert Judgment:  A Practical Guide.  New
York, NY:  Academic Press.

Mosleh, A., V.M. Bier, and G. Apostolakis.  1988.  “A
Critique of Current Practice for the Use of Expert
Opinions in Probabilistic Risk Assessments,” Reliability
Engineering and System Safety.  Vol. 20, no. 1, 63-85.

Myers, R.H.  1990.  Classical and Modern Regression
with Applications. 2nd ed..  Boston, MA:  PWS-Kent
Publishing Co.

Neter, J., and W. Wasserman.  1974.  Applied Linear
Statistical Models:  Regression, Analysis of Variance,
and Experimental Designs.  Homewood, IL:  Richard
D. Irwin.

NRC (National Research Council).  1983.  Risk Assess-
ment in the Federal Government: Managing the
Process.  Committee on the Institutional Means for As-
sessment of Risks to Public Health, Commission on Life
Sciences.  Washington, DC:  National Academy Press.

NRC (National Research Council).  1992.  Combining
Information:  Statistical Issues and Opportunities for
Research.  Panel on Statistical Issues and Opportunities
for Research in the Combination of Information, Com-
mittee on Applied and Theoretical Statistics, Board on
Mathematical Sciences, Commission on Physical Sci-
ences, Mathematics, and Applications.  Washington,
DC:  National Academy Press.

NRC (National Research Council).  1996.  The Waste
Isolation Pilot Plant:  A Potential Solution for the Dis-
posal of Transuranic Waste.  Committee on the Waste
Isolation Pilot Plant, Board on Radioactive Waste Man-
agement, Commission on Geosciences, Environment,
and Resources.  Washington, DC:  National Academy
Press.

Ortiz, N.R., T.A. Wheeler, R.J. Breeding, S.C. Hora,
M.A. Meyer and R.L. Keeney.  1991.  “Use of Expert
Judgment in NUREG-1150,” Nuclear Engineering and
Design.  Vol. 126, no. 3, 313-331.

Owen, A.B.  1992.  “A Central Limit Theorem for Latin
Hypercube Sampling,” Journal of the Royal Statistical
Society.  Series B.  Methodological.  Vol. 54, no. 2,
541-551.

Paté-Cornell, M.E.  1996.  “Uncertainties in Risk
Analysis:  Six Levels of Treatment,” Reliability Engi-
neering and System Safety.  Vol. 54, no. 2-3, 95-111.

Payne, A.C., S.L. Daniel, D.W. Whitehead, T.T. Sype,
S.E. Dingman, and C.J. Shaffer.  1992.  Analysis of the
LaSalle Unit 2 Nuclear Power Plant: Risk Methods
Integration and Evaluation Program (RMIEP).
NUREG/CR-4832, SAND92-0537.  Albuquerque, NM:
Sandia National Laboratories.  Vols. 1-3.

PLG (Pickard, Lowe, and Garrick, Inc., Westinghouse
Electric Corporation, and Fauske & Associates, Inc.).
1982.  Indian Point Probabilistic Safety Study.  Pre-
pared for the Power Authority of the State of New York
and Consolidated Edison Company of New York, Inc.
Irvine, CA:  Pickard, Lowe, and Garrick, Inc.

PLG (Pickard, Lowe, and Garrick, Inc.).  1983.  Se-
abrook Station Probabilistic Safety Assessment.  PLG-
0300.  Prepared for Public Service Company of New



100

Hampshire and Yankee Atomic Electric Company.
Irvine, CA:  Pickard, Lowe, and Garrick, Inc.  Vols. 1-
6, Summary Report.

Press, W.H., S.A. Teukolsky, W.T. Vetterlings, and
B.P. Flannery.  1992.  Numerical Recipes in
FORTRAN:  The Art of Scientific Computing.  2nd  ed.
New York, NY:  Cambridge University Press.

Price, P.S., S.H. Su, J.R. Harrington, and R.E. Keenan.
1996.  “Uncertainty and Variation of Indirect Exposure
Assessments:  An Analysis of Exposure to Tetrachloro-
dibenzene-p Dioxin from a Beef Consumption Path-
way,” Risk Analysis.  Vol. 16, no. 2, 263-277.

Quade, D.  1989.  “Partial Correlation,” Encyclopedia
of Statistical Sciences.  Eds. S. Kotz, N.L. Johnson, and
C.B. Read.  New York, NY:  John Wiley & Sons.  Sup-
plement Vol., 117-120.

Raj, D.  1968.  Sampling Theory.  New York, NY:
McGraw-Hill.

Ramsey, J.L., and M.G. Wallace.  1996.  "Analysis
Package for the Culebra Flow and Transport Calcula-
tions (Task 3) of the Performance Assessment Calcula-
tions Supporting the Compliance Certification Applica-
tion."  Albuquerque, NM:  Sandia National Laborato-
ries.  (Copy on file in the Sandia WIPP Central Files as
WPO #40516.)

Rechard, R.P.  1999.  Historical Background on As-
sessing the Performance of the Waste Isolation Pilot
Plant.  SAND98-2708.  Albuquerque, NM:  Sandia
National Laboratories.

Risk Assessment Forum.  1997.  Guiding Principles for
Monte Carlo Analysis.  M. Firestone, P. Fenner-Crisp,
T. Barry, D. Bennett, S. Chang, M. Callahan, A.-M.
Burke, M. Olsen, J.M. Chand, P. Cirone, D. Barne,
W.P. Wood, and S.M. Knott.  EPA/630/R-97/001.
Washington, DC:  U.S. Environmental Protection
Agency.

Roache, P.J.  1993.  “The SECO Suite of Codes for Site
Performance Assessment,” High Level Radioactive
Waste Management, Proceedings of the Fourth Annual
International Conference, Las Vegas, NV, April 26-30,
1993..  La Grange Park, IL:  American Nuclear Society;
New York, NY:  American Society of Civil Engineers.
Vol. 2, 1586-1594.

Saltelli, A., and J. Marivoet.  1990.  “Non-Parametric
Statistics in Sensitivity Analysis for Model Output:  A

Comparison of Selected Techniques,” Reliability Engi-
neering and System Safety.  Vol. 28, no. 2, 229-253.

Saltelli, A., and I.M. Sobol’.  1995.  “About the Use of
Rank Transformation in Sensitivity Analysis of Model
Output,” Reliability Engineering and System Safety.
Vol. 50, no. 3, 225-239.

Sanchez, M.A., and S.M. Blower.  1997.  “Uncertainty
and Sensitivity Analysis of the Basic Reproductive
Rate.  Tuberculosis as an Example,” American Journal
of Epidemiology.  Vol. 145, no. 12, 1127-1137.

Seber, G.A.F.  1977.  Linear Regression Analysis. New
York, NY:  John Wiley & Sons.

Silverman, B.W.  1986.  Density Estimation for Statis-
tics and Data Analysis.  New York, NY:  Chapman &
Hall.

Stein, M.  1987.  “Large Sample Properties of Simula-
tions Using Latin Hypercube Sampling,” Tech-
nometrics.  Vol. 29, no. 2, 143-151.

Steinberg, H.A.  1963.  “Generalized Quota Sampling,”
Nuclear Science and Engineering.  Vol. 15, 142-145.

Stockman, C., A. Shinta, and J.W. Garner.  1996.
"Analysis Package for the Salado Transport Calcula-
tions (Task 2) of the Performance Assessment Analysis
Supporting the Compliance Certification Application."
Albuquerque, NM:  Sandia National Laboratories.
(Copy on file in the Sandia WIPP Central Files as WPO
#40515.)

Stoelzel, D.M., and D.G. O’Brien.  1996.  "Analysis
Package for the BRAGFLO Direct Release Calculations
(Task 4) of the Performance Assessment Calculations
Supporting the Compliance Certification Application."
Albuquerque, NM:  Sandia National Laboratories.
(Copy on file in the Sandia WIPP Central Files as WPO
#40520.)

Stone, C.M.  1997a.  SANTOS - A Two-Dimensional
Finite Element Program for the Quasistatic, Large
Deformation, Inelastic Response of Solids.  SAND90-
0543.  Albuquerque, NM:  Sandia National Laborato-
ries.

Stone, C.M.  1997b.  Final Disposal Room Structural
Response Calculations.  SAND97-0795.  Albuquerque,
NM:  Sandia National Laboratories.



101

Thompson, K.M., and J.D. Graham.  1996.  “Going
Beyond the Single Number:  Using Probabilistic Risk
Assessment to Improve Risk Management,” Human and
Ecological Risk Assessment.  Vol. 2, no. 4, 1008-1034.

Thorne, M.C.  1993.  “The Use of Expert Opinion in
Formulating Conceptual Models of Underground Dis-
posal Systems and the Treatment of Associated Bias,”
Reliability Engineering and System Safety.  Vol. 42, no.
2-3, 161-180.

U.S. DOE (U.S. Department of Energy).  1996.  Title
40 CFR Part 191 Compliance Certification Application
for the Waste Isolation Pilot Plant.  DOE/CAO-1996-
2184.  Carlsbad, NM:  U.S. Department of Energy,
Waste Isolation Pilot Plant, Carlsbad Area Office.
Vols. I-XXI.

U.S. EPA (Environmental Protection Agency).  1985.
“40 CFR Part 191:  Environmental Standards for the
Management and Disposal of Spent Nuclear Fuel, High-
Level and Transuranic Radioactive Wastes; Final Rule,"
Federal Register.  Vol. 50, no. 182, 38066-38089.

U.S. EPA (Environmental Protection Agency).  1993.
“40 CFR Part 191:  Environmental Radiation Protection
Standards for the Management and Disposal of Spent
Nuclear Fuel, High-Level and Transuranic Radioactive
Wastes; Final Rule," Federal Register.  Vol. 58, no.
242, 66398-66416.

U.S. EPA (Environmental Protection Agency).  1996.
“40 CFR Part 194:  Criteria for the Certification and

Re-Certification of the Waste Isolation Pilot Plant’s
Compliance With the 40 CFR Part 191 Disposal Regu-
lations; Final Rule,” Federal Register.  Vol. 61, no. 28,
5224-5245.

U.S. NRC (Nuclear Regulatory Commission).  1990-
1991.  Severe Accident Risks:  An Assessment for Five
U.S. Nuclear Power Plants.  NUREG-1150.  Washing-
ton, D.C.:  U.S. Nuclear Regulatory Commission, Of-
fice of Nuclear Regulatory Research, Division of Sys-
tems Research.  Vols. 1-3.

Wagner, H.M.  1995.  “Global Sensitivity Analysis,”
Operations Research.  Vol. 43, no. 6, 948-969.

Weisberg, S.  1985.  Applied Linear Regression.  2nd
ed.  New York, NY:  John Wiley & Sons.

Whiting, W.B., T.-M. Tong, and M.E. Reed.  1993.
“Effect of Uncertainties in Thermodynamic Data and
Model Parameters on Calculated Process Performance,”
Industrial and Engineering Chemistry Research.  Vol.
32, no. 7, 1367-1371.

WIPP PA (Performance Assessment).  1996.
BRAGFLO, Version 4.00, User’s Manual.  Albuquer-
que, NM:  Sandia National Laboratories.  (Copy on file
in the Sandia WIPP Central Files as WPO #30703.)



Federal Agencies 

US Department of Energy (4) 
Office of Civilian Radioactive Waste Mgmt. 
Attn: Deputy Director, RW-2 

Director, RW-56 

Distribution List 
SAND99-2240 

US Department of Energy (3) 
Office of Environmental Management 
Office of the Deputy Assistant Secretary 

For Project Completion 

Office of Human Resources & Admin. 

Attn: J. Turi, EM-43, Trevion II 
19901 Gennantown Road 
Gennantown, MD 20874-1290 

Director, RW-53 
Office of Program Mgmt. & Integ. US Department of Energy 

Director, RW-44 
Office of Waste Accept., Stor., & Tran. 

Office of Environmental Management 
Attn: S. Schneider, EM-44, Trevion II 
19901 Gennantown Road 
Gennantown, MD 20874-1290 

Forrestal Building 
1000 Independence Avenue, SW 
Washington, DC 20585 

US Department of Energy 
Yucca Mountain Site Characterization Office 
Director, RW-3 
Office of Quality Assurance 
MS 523 
P.O.1551 Hillshire Drive, Suite A 
Las Vegas, NV 89134 

US Department of Energy 
Research & Waste Management Division 
Attn: Director 
200 Administrative Road 
Oak Ridge, TN 37831 

US Department of Energy (6) 
Carlsbad Area Office 
Attn: 1. Triay 

G. T. Basabilvazo 
D. Galbraith 
M. McFadden 
B. Bennington (Acting) 
D. Mercer 
Mailroom 

P.O. Box 3090 
Carlsbad, NM 88221-3090 

US Department of Energy 
Office of Environmental Management 
Office of the Deputy Assistant Secretary 
For Project Completion 
Attn: M. Frei, EM-40 
Forrestal Building 
1000 Independence Avenue, SW 
Washington, DC 20585-0002 

US Department of Energy (2) 
Office of Environment, Safety & Health 
Attn: C. Borgstrom, EH-42 
Office ofNEP A Policy and Assistance 
1000 Independence Avenue, SW 
Washington, DC 20585 

US Department of Energy (2) 
Idaho Operations Office 
Fuel Processing & Waste Mgmt. Division 
850 DOE Drive 
Idaho Falls, ID 83401 

US Environmental Protection Agency (2) 
Radiation Protection Programs 
Attn: M.Oge 
640lA 
1200 Pennsylvania Avenue, NW 
Washington, DC 20460 

ACTA 
Tim Hasselman 
2790 Skypark Dr, Suite 310 
Torrance, CA 90505-5345 

Institute for Defense Analysis 
Operational Evaluation Div. 
HansMair 
1801 North Beauregard Street 
Alexandria, VA 22311-1772 

US Department of Energy 
Juan Meza 
DP 51 
1000 Independence Ave., SW 
Washington, DC 20585 

Distribution - 1 



Timothy M. Barry 
Chief, Science - Policy, Planning, and 
Evaluation 
Pm 223X U.S. EPA 
Washington, DC 20460 

Boards 

Defense Nuclear Facilities Safety Board 
Attn: Chairman 
625 Indiana Ave. NW, Suite 700 
Washington, DC 20004 

Nuclear Waste Technical Review Board (2) 
Attn: Chairman 
2300 Clarendon Blvd. Ste 1300 
Arlington, VA 22201-3367 

State Agencies 

Attomey General of New Mexico 
P.O. Drawer 1508 
Santa Fe, NM 87504-1508 

Environmental Evaluation Group (3) 
Attn: Library 
7007 Wyoming NE 
Suite F-2 
Albuquerque, NM 87109 

NM Environment Department (3) 
Secretary ofthe Environment 
1190 St. Francis Drive 
Santa Fe, NM 87502-0110 

NM Bureau of Mines & Mineral Resources 
Socorro, NM 87801 

Laboratories/Corporations 

Battelle Pacific Northwest Laboratories 
P.O. Box 999 
Richland, WA 99352 

Dr. Pamela Doctor 
Battelle Northwest 
P.O. Box 999 
Richland., W A 99352 

Los Alamos National Laboratory (8) 
Mail Station 5000 
P.O. Box 1663 
Los Alamos, NM 87545 
Attn: B. Erdal, MS J591, E-ST 

M. D. McKay MS F600 
S. Doebling MS P946 
S. Keller-McNulty MS F600 
H. Martz MS F600 
K. Hanson MS P940 
E. Kelly MS F600 
C. Nitta MS L-096 

Tech Reps, Inc. 
Attn: 1. Chapman (I) 

Loretta Robledo (2) 
5000 Marble NE, Suite 222 
Albuquerque, NM 87110 

Westinghouse Electric Corporation (5) 
Attn: Library 

J. Epstein 
J. Lee 
R. Kehrman 

P.O. Box 2078 
Carlsbad, NM 88221 

S. Cohen & Associates 
Attn: Bill Thurber 
1355 Beverly Road #250 
McLean, VA 22101 

Len Schwer 
Schwer Engineering & Consulting 
6122 Aaron Court 
Windsor, CA 95492 

Southwest Research Institute 
Charles E. Anderson 
P.O. Drawer 28510 
San Antonio, TX 78284 

Naval Research Laboratory 
Allen J. Goldberg 
Cod 5753, 
4555 Overlook Avenue 
S.W. Washington D.C. 20375 

Naval Research Laboratory 
Robert Gover 
Cod 5753, 
4555 Overlook Avenue 
S.W. Washington D.C. 20375 

Distribution - 2 



B. John Garrick 
Garrick Consulting 
923 SouthRiver Road, Suite 204 
St. George, UT 84790-6801 

Christopher G. Whipple 
rCF Kaiser Engineers 
1800 Harrison St., 7th Floor 
Oakland, CA 94612-3430 

Dr. Kenneth T. Bogen 
LLNLlENV SCI DIVL - 453 
P.O. Box 808 
Livennore, CA 94550 

David E. Bunnaster 
ALCEON Corporation 
P.O. Box 382669 
Harvard Square Station 
Cambridge, MA 02238-2669 

Scott Ferson 
Applied Biomathematics 
100 North Country Road 
Setauket, NY 11733 

Dr. Robert J. Budnitz 
Future Resources Associates 
2039 Shattuck Avenue, Suite 402 
Berkeley, CA 94704 

Dr. Tom Cotton 
JK Research Associates 
2650 Park Tower Drive, Suite 800 
Vienna, VA 22180 

Dr. John Kessler 
Electronic Power Research Institute 
3412 Hillview Avenue 
Palo Alto, CA 94304-1395 

D. Warner North 
Decision Focus Incorporated 
650 Castro Street, Suite 300 
Mountain View, CA 94041-2055 

Duke Engineering and Services (6) 
Attn: S. David Sevougian 

Joon Lee 
Bryan Bullard 
Kevin Mons 
Ahmed Monib 
Rob Howard 

CRWMS M&O 
1180 Town Center Drive 
Las Vegas, NV 89134 

Michael B. Gross 
Michael Gross Enterprises 
21 Tradewind Passage 
Corte Madera, CA 94925 

Beta Corporation Int. 
Attn: E. Bonano 
6613 Esther, NE 
Albuquerque, NM 87109 

Center for Nuclear Waste Regulatory Analysis 
(CNWRA) 
Southwest Research Institute 
Attn: B. Sagar 
P.O. Drawer 28510 
620 Culebra Road 
San Antonio, TX 78284 

Duke Engineering and Services (2) 
Attn: Banda S. Ramarao 

Srikanta Mishra 
9111 Research Boulevard. 
Austin, TX 78758 

Senes Oak Ridge, Inc (2) 
Center for Risk Analysis 
Attn: Steve Bartell 

F. Owen Hoffman 
102 Donner Drive 
Oak Ridge, TN 37810 

National Academy of Sciences 
WIPP Panel 

Tom Kiess (15) 
Staff Study Director 
RmHA456 
2101 Constitution Avenue, NW 
Washington, DC 20418 

Universities 

University of New Mexico 
Geology Department 
Attn: Library 
200 Yale Boulevard 
Albuquerque, NM 87131 

University of Washington 
College of Ocean & Fishery Sciences 
Attn: G. R. Heath 
201 Old Oceanography Bldg. 
Seattle, WA 98195 

Distribution - 3 



University of Pennsylvania 
Department of Systems Engineering 
Chun-Hung Chen 
220 South 33'd St. 
Philadelphia, P A 19104-6315 

Vanderbilt University 
Department of Civil and Environmental 
Engineering 
Sankaran Mabadevan 
Box 6077, Station B 
Nashville, TN 37235 

New Mexico State University 
College of Engineering, MSC 3449 
Richard Hills 
P.O. Box 30001 
Las Cruces, NM 88003 

Prof. G. E. Apostolakis 
Department of Nuclear Engineering 
Massachusetts Institute of Technology 
Cambridge, MA 02139-4307 

Prof. V. M. Bier 
Department of Industrial Engineering 
University of Wisconsin 
Madison, WI 53706 

Prof. M. Elisabeth Pate-Cornell 
Department ofIndustrial Engineering and 
Management 
Stanford University 
Stanford, CA 94305 

Prof. C. Frey 
Department of Civil Engineering 
Box 7908INCSU 
Raleigh, NC 27659-7908 

Prof. Yacov Y. Haimes 
Center for Risk Management of Engineering 
Systems 
D 111 Thornton Hall 
University of Virginia 
Charlottesville, VA 22901 

Prof. D. B. Hattis 
CENTED 
Clark University 
950 Main Street 
Worcester, MA 01610 

Prof. Ali Mosleh 
Center for Reliability Engineering 
University of Maryland 
College Park, MD 20714-2115 

Prof. T. G. Theofanous 
Department of Chemical and Nuclear Engineering 
University of California 
Santa Barbara, CA 93106 

Prof. Steve Hora 
Institute of Business and Economic Studies 
University of Hawaii, Hilo 
523 W. Lanikaula 
Hilo, HI 96720-4091 

Prof. Thomas E. McKone 
School of Public Health 
University of California 
Berkeley, CA 94270-7360 

Prof. Herschel Rabitz 
Princeton University 
Department of Chemistry 
Princeton, NJ 08544 

Prof. Robert L. Winkler 
Fuqua School of Business 
Duke University 
Durham, NC 27708-0120 

F. E. Haskin 
90 I Brazos Place, SE 
Albuquerque, NM 87123 

Thomas H. Pigford 
Department of Nuclear Engineering 
4159 Etcheverry Hall 
University of California 
Berkeley, CA 94720 

C. John Mann 
Department of Geology 
245 Natural History Bldg. 
1301 West Green Street 
University of Illinois 
Urbana, IL 61801 

Frank W. Schwartz 
Department of Geology and Mineralogy 
Ohio State University 
Scott Hall 
1090 Carmack Road 
Columbus, OH 43210 

David M. Hamby 
University of Michigan 
109 Observatory Street 
Ann Arbor, MI 48109-2029 

Distribution - 4 



Rodney C. Ewing 
Nuclear Engineering and Radiological Science 
University of Michigan 
Ann Arbor, MI48109-2104 

David Okrent 
Mechanical and Aerospace Engineering 
Department 
University of California 
48-121 Engineering IV Building 
Los Angeles, CA 90095-1587 

W. E. Kastenberg 
Department of Nuclear Engineering 
University of California, Berkeley 
Berkeley, CA 94720 

Adrian E. Raftery 
Department of Statistics 
University of Washington 
Seattle, WA 98195 

Bruce Beck 
University of Georgia 
D.W. Brooks Drive 
Athens, GA 30602-2152 

Dr. Alison Cullen 
University of Washington 
Box 353055 
208 Parrington Hall 
Seattle, W A 98195-3055 

U. M. Diwekar 
Center for Energy and Environmental Stndies 
Carnegie Mellon University 
Pittsburgh, PA 15213-3890 

G.McRae 
Department of Chemical Engineering 
Massachusetts Institnte of Technology 
Cambridge, MA 02139 

M. D. Morris 
Department of Statistics 
Iowa State University 
304 Anedecor Hall 
Ames,IW 50011-1210 

D. E. "Steve" Stevenson 
Clemson University 
Computer Science Department 
442 Edwards Hall- Box 341906 

Libraries 

Thomas Branigan Memorial Library 
200 Picacho Avenue 
Las Cruces, NM 88001 

Government Publications Department 
Zimmerman Library 
University of New Mexico 
Albuquerque, NM 87131 

New Mexico Junior College 
Pannell Library 
5317 Lovington Highway 
Hobbs, NM 88240 

New Mexico State Library 
Attn: N. McCallan 
1209 Camino Carlos Rey 
Santa Fe, NM 87505-9860 

New Mexico Tech 
Martin Speere Memorial Library 
801 Leroy Place 
Socorro, NM 87801 

WIPP Information Center 
P.O. Box 3090 
Carlsbad, NM 88221 

Foreign Addresses 

Atomic Energy of Canada, Ltd. 
Whiteshell Laboratories 
Attn: B. Goodwin 

T. Andres 
Pirtawa, Manitoba, CANADA ROE lLO 

Dr. Arnold Bonne 
Acting Head of the Waste Technology Section 
Division of Nuclear Fuel Cycle and Waste 
Management 
International Atomic Energy Agency 
P.O. Box 100 
A-1400 Vienna 
AUSTRIA 

Distribution - 5 



Claudio Pescatori 
AERIINEAlOECD 
LeSeine St. Germain 
12 Boulevard des iles 
92130 Issy-les-Moulineaux 
FRANCE 

Francois Chenevier (2) 
ANDRA 
Pare de la Croix Blanche 
1-7 rue Jean Monnet 
92298 Chatenay-Malabry Cedex 
FRANCE 

Claude Sombret 
Centre d'Etudes Nuc1eaires de la Vallee Rhone 
CENNALRHO 
S.D.H.A. B.P. 171 
30205 Bagnols-Sur-Ceze 
FRANCE 

Commissariat a L'Energie Atomique 
Attn: D. Alexandre 
Centre d'Etudes de Cadarache 
13108 Saint Paul Lez Durance Cedex 
FRANCE 

Ghislain de Marsily 
University Pierre et Marie Curie 
Laboratorie de Geologie Applique 
4, Place Jussieu 
T.26 - 5e etage 
75252 Paris Cedex 05 
FRANCE 

Bundesanstalt fur Geowissenschaften und 
Rohstoffe 
Attn: M. Langer 
Postfach 510153 
30631 Hannover 
GERMANY 

Bundesministerium fur Forschung und 
Technologie 
Postfach 200 706 
5300 Bonn 2 
GERMANY 

Gesellschaft fur Anlagen und Reaktorsicherheit 
(GRS) 
Attn: B. Baltes 
Schwertnergasse 1 
50667 Cologne 
GERMANY 

Forshunginstitute 
GRS (2) 
Attn: Eduard Hofer 

B. Kryzkacz-Hausrnann 
Forschungsgelande Nebau 2 
85748 Garching 
GERMANY 

Tamas Turanyi 
Eotvos University (ELTE) 
P.O. Box 32 
1518 Budapest 
HUNGARY 

Jan Marivoet 
Centre d'Etudes de L'Energie 
Nuc1eaire 
Boeretang 200 
2400 MOL 
BELGIUM 

Prof. 1. Papazoglou 
Institie of Nuclear Technology-Radiation 
Protection 
N.C.S.R. Demokritos 
Aghia Papakevi 
153-10 Athens 
GREECE 

European Commission (4) 
Attn: Francesca Campolongo 

Karen Chan 
Stefano Tarantola 
Andrea Saltelli 

JRC Ispra, ISIS 
21020 Ispra 
ITALY 

Enrico Zio 
Politecnico di Milano 
Via Ponzia 34/3 
20133 Milan 
ITALY 

Ricardo Bolado 
Poly technical University of Madrid 
Jose Gutierrez, Abascal, 2 
28006 Madrid 
SPAIN 

David Rios Insua 
University Rey Juan Carlos 
ESCET-URJC, C. Humanes 63 
28936 Mostoles 
SPAIN 

Distribution - 6 



Dr.-Ing. Klaus Kuhn 
TU Clausthal Institut fur Bergbau 
Erzstr.20 
38678 Clausthal-Zellerfeld 
GERMANY 

Shingo Tashiro 
Japan Atomic Energy Research Institute 
Tokai-Mura, Ibaraki-Ken, 319-11 
JAPAN 

Toshimitsu Homma 
Nuclear Power Engineering Corporation 
3-17-1 Toranomon, Minato-Ku 
Tokyo 1015 
JAPAN 

Netherlands Energy Research Foundation ECN 
Attn: J. Prij 
P.O. Box I 
1755 ZG Petten 
THE NETHERLANDS 

Prof. Roger Cooke 
Department of Mathematics 
Delft University of Technology 
P.O. Box 5031 2800 GA Delft 
THE NETHERLANDS 

Louis Goossens 
Safety Science Group 
Delft University of Technology 
P.O. Box 5031 2800 GA Delft 
THE NETHERLANDS 

Prof. J.P.e. Kleijnen 
Department ofInformation Systems 
Tilburg University 
5000 LE Tilburg 
THE NETHERLANDS 

A. Seebregts 
ECN P.O. Box 1 
1755 ZG Petten 
THE NETHERLANDS 

Willem Van Groenendaal 
Ti1burg University 
P.O. Box 90153 
5000 LE Tilburg 
THE NETHERLANDS 

Svensk Kambransleforsorjning AB 
Attn: F. Karlsson 
Project KBS (Kambrans1esakerhet) 
Box 5864 
10248 Stockholm 
SWEDEN 

Prof. S. E. Magnusson 
Lund University 
P.O. Box 118 
22100 Lund 
SWEDEN 

Prof. Christian Ekberg 
Chalmers University of Technology 
Department of Nuclear Chemistry 
41296 Goteborg 
SWEDEN 

Nationale Genossenschaft fur die Lagerung 
Radioaktiver Abfalle (2) 
Attn: S. Vomvoris 

P. Zuidema 
Hardstrasse 73 
5430 Wettingen 
SWITZERLAND 

AEA Technology 
Attn: J. H. Rees 
D5W 129 Culham Laboratory 
Abingdon, Oxfordshire OX14 3ED 
UNITED KINGDOM 

AEA Technology 
Attn: W. R. Rodwell 
044/A31 Winfrith Technical Centre 
Dorchester, Dorset DT2 8DH 
UNITED KINGDOM 

Daniel A. Galson 
Galson Science Ltd. 
35, Market Place 
Oakham 
Leicestershire LE 15 6DT 
UNITED KINGDOM 

David Draper 
University of Bath 
Claverton Down 
Bath BA2 7AY 
UNITED KINGDOM 

Distribution - 7 



AEA Technology 
Attn: J. E. Tinson 
B4244 Harwell Laboratory 
Didcot, Oxfordshire OXII ORA OQJ 
UNITED KINGDOM 

Prof. Marian Scott 
Department of Statistics 
University of Glasgow 
Glasgow Gl2 BQW 
UNITED KINGDOM 

Prof. Simon French 
School ofInfonnatics 
University of Manchester 
Coupland I 
Manchester MI3 9pl 
UNITED KINGDOM 

Arthur Jones 
Nat. Radio. Prot. Board 
Chilton, Didcot 
Oxon OXllORQ 
UNITED KINGDOM 

Prof. M. Newby 
Department of Acturial Sci and Statistics 
City University 
Northhampton SQ 
London ECIV OHB 
UNITED KINGDOM 

Prof. Russell Cheng 
University of Kent at Canterbury 
Cornwallis Building 
Canterbury, Kent, CT2 7NF 
UNITED KINGDOM 

B.G.J. Thompson 
20 Bonser Road 
Twickenham 
Middlesex, TWI 4RG 
ENGLAND 

Ben-Haim Yakov 
Department of Mechanical Engineering 
Technion-Israel Institute of Technology 
Haifa 32000 
ISRAEL 

Mauro Cicchetti 
European Commission Joint Research Centre 
Space Applications Institute 
P.O. Box 262 
Via E. Fenni I 
21020 Ispra (VA) 
ITALY 

Andrzej Dietrich 
Oil and Gas Institute 
Lubicz25 A 
31-503 Krakow 
POLAND 

Suzan Gazioglu 
University of Glasgow 
Department of Statistics 
Mathematics Building 
Glasgow Gl2 8QW 
SCOTLAND 

Mikhail Iosjpe . 
Protection Authority 
Norwegian Radiation 
Grini N aringspark 13 
P.O. Box 55 
13320esteraas 
NORWAY 

Thierry Alex Mara 
Universite de la Reunion 
Lab. De Genie Industriel 
15, Avenue Rene Cassin 
BP 7151 
97715 St. Denis 
La Reunion 
FRANCE 

Pedro Prado 
CIEMAT, 
Avda Complutense 22, 
28040 Madrid 
SPAIN 

P. Rigney 
Andra 
1-7 rue Jean Monnet 
Parc de la Croix Blanche 
92298 - Chatenay Malabry 
FRANCE 

A.P. Bourgeat 
Equipe Analyse Numerique 
Faculte des Sciences 
42023 St. Entienne Cedex 2 
FRANCE 

Distribution - 8 



1. Jaftre Prof. Charles Fairhurst 
INRIA - Roquencourt 417 5th Avenue N 
B.P. lOS South Saint Paul, MN 55075 
78153 Le Chesnay Cedex 
FRANCE P.S. Price 

129 Oakhurst Road 
M. J. W. Jansen Cape Elizabeth, ME 04107 
Dienst Landbouwkundig 
Onerzoek Dr. Gareth Parry 
Centrum voor 19805 Bodmer Ave 
Plantenveredelings-en Poolesville, MD 200837 
Reproduktieonderzoek 
(CPRO-DLO) 
Postbus 16 Internal Addresses 
6700 AA Wageningen 
THE NETHERLANDS ~ Qm,. 

0191 3010 K. W. Larson 
Professor A. O'Hagen 0191 3010 J. D. Miller 
Department of Probability and Statistics 0417 9800 R. G. Easterling 
University of Sheffield 0434 12334 R. 1. Breeding 
Hicks Building 0557 9133 T. L. Paez 
Sheffield S3 7RH 0557 9133 A. Urbina 
UNITED KINGDOM 0701 6100 P. B. Davies 

0708 6214 P. S. Veers 
Tim Belford 0716 6805 C. E. Olson 
TUDelft 0716 6805 R. L. Hunter 
Mekelweg4 0716 6805 P. G. Kaplan 
2928 CD Delft 0718 6141 L. J. Dotson 
THE NETHERLANDS 0720 6804 K. B. Sorenson 

0720 6850 S. M. Howarth 
BerndKraan 0731 6805 J. T. Schneider (2) 
TU Delft 0734 6803 L. D. Bustard 
Mekelweg4 0735 6115 E. Webb 
2628 CD Delft 0735 6115 T. F. Corbet, Jr. 
THE NETHERLANDS 0735 6115 B. Holt 

0735 6115 L. C. Meigs 
Roberto Pastres 0746 6411 R. M. Cranwell 
University of Venice 0746 6411 D. J. Anderson 
Dorsuduro 2137 0746 6411 J. E. Campbell 
30123 Venice 0746 6411 L. P. Swiler 
ITALY 0747 6410 A. Camp 

0747 6410 G. D. Wyss 
Ilya Sobol 0748 6413 J. J. Gregory 
Russian Academy of Sciences 0748 6413 R. D. Waters 
Miusskaya Square 0748 6413 D. G. Robinson 
125047 Moscow 0755 6233 M. D. Siegel 
RUSSIA 0759 5845 M. S. Tierney 

0771 6000 W. D. Weart 
0771 6800 M. Chu 

Other 0771 6800 S. Y. Pickering 
0776 6852 E. J. Nowak 

Leonard F. Konikow 0776 6852 C. D. Leigh 
US Geological Survey 0776 6852 H. W. Papenguth 
431 National Center 0776 6852 K. M. Economy 
Reston, VA 22092 0776 6852 R. D. McCurley 

0776 6852 D. K. Rudeen 
Dr. Bob Andrews 0776 6852 J. D. Shreiber 
1280 Town Center Dr. 0776 6852 M. 1. Shortencarier 
Las Vegas, NV 89314 0776 6852 J. L. Ramsey 

0776 6852 R. P. Rechard 

Distribution - 9 



0776 6852 A. R. Schenker 1395 6821 M. Marietta 
0776 6852 R. Aguilar 1395 6821 B. L. Baker 
0776 6852 N. D. Francis, Jr. 1395 6821 M-A. Martell 
0776 6852 B. W. Arnold 1395 6821 M. E. Fewell 
0776 6852 C. L. Axness 1395 6821 J. W. Garner 
0776 6852 S. P. Kuzio 1395 6821 T. Hagdu 
0778 5355 H. A. Dockery 1395 6821 P. Vaughn 
0778 6850 J. J. Loukota 1395 6822 F. D. Hansen 
0778 6851 P. N. Swift 1395 6822 M. K. Knowles 
0778 6851 S. G. Bertram 1395 6822 L. H. Brush 
0778 6851 M. G. Wallace 1395 6822 R. L. Beauheim 
0778 6851 G. E. Barr 1395 6822 B. A. Howard 
0778 6851 J. H. Gauthier 1395 6823 Y. Wang 
0778 6851 R. 1. MacKinnon 1395 6860 M. Marietta (Acting) 
0778 6851 M. L. Wilson 1397 6822 L. H. Brush 
0778 6851 C. T. Stockman 1399 6850 A. Orrell 
0778 6851 R. G. Baca 1399 6855 P. E. Sanchez 
0778 6851 S. G. Bertram 0731 6805 NWM Library (20) 
0779 6805 L. S. Gomez 9018 8940-2 Central Technical Files 
0779 6821 A. H. Treadway 0899 9616 Technical Library (2) 
0779 6821 N. Belcourt 0612 9612 Review and Approval Desk, 
0779 6821 J. Reyoolds For DOE/OSTI 
0779 6849 J. C. Helton (25) 
0779 6848 H. N. Jow 
0779 6849 D. R. Anderson 
0779 6849 J. E. Bean 
0779 6849 F. 1. Davis 
0779 6849 J. N. Emery 
0779 6849 J. D. Johnson 
0779 6849 J. A. Rollstin 
0779 6849 L. C. Sanchez 
0779 6849 M. Williamson 
0779 6849 P. J. Chen 
0779 6849 A. R. Lappin 
0779 6849 R. W. Barnard 
0779 6849 W. G. Perkins 
0781 5800 J. J. Danneels 
0819 9211 T. G. Trucano 
0825 9115 L. W. Young 
0828 9133 M. Pilch 
0828 9133 B. F. Blackwell 
0828 9133 K. J. Dowding 
0828 9133 W. L. Oberkampf 
0828 9133 C. Romero 
0828 9133 V. J. Romero 
0829 12323 M. L. Abate 
0829 12323 B. M. Rutherford 
0830 12335 K. V. Diegert 
0834 9100 T. Y. Chu 
0847 9123 A. F. Fossum 
0847 9124 D. R. Martinez 
0847 9124 K. F. Alvin 
0847 9211 M. S. Eldred 
0847 9211 J. R. Red-Horse 
0977 6524 S. M. DeLand 
1035 7112 A. S. Reiser 
1110 8950 L. J. Lehoucq 
1137 6535 G. K. Froehlich 
1137 6535 H. C. Ogden 
1395 6810 P.E. Shoemaker 

Distribution - 10 


	1.0  Introduction
	2.0  Classification of Uncertainty
	3.0  Example Analysis Problem
	4.0  Definition of Distributions for Subjective Uncertainty
	5.0  Sampling Procedures
	5.1	Random Sampling
	5.2	Importance Sampling
	5.3	Latin Hypercube Sampling
	5.4	Comparison of Random and Latin Hypercube Sampling
	5.5	Correlation Control
	5.6	Latin Hypercube Sampling in the 1996 WIPP PA

	6.0  Evaluation of Model
	7.0  Uncertainty Analysis
	7.1	Scalar Results
	7.2	Functions
	7.3	Stability of Results

	8.0  Sensitivity Analysis
	8.1	Examination of Scatterplots
	8.2	Regression Analysis
	8.3	Statistical Tests in Regression Analysis
	8.4	Correlation and Partial �Correlation
	8.5	Stepwise Regression Analysis
	8.6	The Rank Transformation
	8.7	Effects of Correlations on Sensitivity Analyses
	8.8	Identification of Nonmonotonic Patterns
	8.9	Identification of Random �Patterns

	9.0  Test Problems
	9.1	Linear Test Problems
	9.2	Monotonic Test Problems
	9.3	Nonmonotonic Test Problems

	10.0  Performance Assessment for the �Waste Isolation Pilot Plant
	10.1	Stochastic and Subjective �Uncertainty
	10.2	Implementation of Analysis
	10.3	Uncertainty and Sensitivity Analysis Results

	11.0  Summary
	References



