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Abstract

This report includes the details of the model building procedure and prediction of
seismic field data. Principal Components Regression, a multivariate analysis technique,
was used to model seismic data collected as two pieces of equipment were cycIed on and
off. Models built that included only the two pieces of equipment of interest had trouble
predicting data containing signals not included in the model. Evidence for poor
predictions came from the prediction curves as well as spectral F-ratio plots. Once the
extraneous signals were included in the model, predictions improved dramatically.
While Principal Components Regression performed well for the present data sets, the
present data analysis suggests further work will be needed to develop more robust
modeling methods as the data become more complex.
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Introduction

Multivariate methods that have been historically applied to chemical data (e.g.,

infrared, mass spectrometry, inductively coupled plasma) have been used to evaluate

seismic data gathered from a field test. The goal of the field test was to evaluate

whether seismic signatures could be used to determine when designated pieces of

equipment were being operated. Using the multivariate technique Principle Components

Regression (PCR)(Wold, Esbensen et al. 1987), models were developed for two pieces

of equipment, using training data collected as the equipment was cycled on and off. The

developed models were used to predict three test sets of data. The test data contained

the signatures from the two pieces of designated equipment, as well as signatures from

additional pieces of equipment.

Data Pre-Processing

Data was received in time-domain format and was transformed to the frequency

domain using the MATLAB function specgram, which performs a Fourier transform of

the data given a windowing function, the number of points in the transform, window

size, and sampling rate. The same specgram parameters were used to convert all data

sets except set D 1, which had a different sampling rate. The MATLAB code is shown

below:

Samprate = 16000; %8000 for D1 data
low_freq=l;
order = fix ( samprate / low_freq );
w = window ( Imr’,order, O ); %code received from G. Elbring – ‘bar’ is

%Bartlett
noverlap=50;
[B,f,t] = specgram ( data, order, samprate, w, noverlap );

Five data sets were received: TRAIN 1, TRAIN2, TEST1, TEST2, TEST3. Each

set of data was obtained at 5 stations (except TEST3, which was obtained at 2 stations).

The stations were indexed as Al, B 1, C 1, D1 and B4. Station Al provided data with the

best signal to noise ratio with B 1, C 1 and D 1 containing progressively decreasing signal

levels. Station B4 was at the same location as B 1, but at a different azimuth, and

provided data with very low signal to noise. The data sets and their dimensions (after
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Fourier transformation) are listed in Table 1. In all cases, only frequencies between O

and 500 Hz were used for analysis.

Table 1

Data Set Dimension—Frequencies x Number of Samples

TRAIN1 500 x 150

TRAIN2 500 x 150

TEST1 500 x 903

TEST2 500x421

TEST3 500 X 622

TRAIN1 contains data collected as Instrument 1 was cycled on and off while

TRAIN2 contains data collected as Instrument 2 was cycled on and off. TEST1, TEST2

and TEST3 contained data collected as both Instrument 1 and 2,were cycled on and off.

In addition, TEST 1, TEST2 and TEST3 contained signals from other pieces of

equipment.

Multivariate Data Analysis Methods: An Introduction

PCA
Principle Components Analysis (PCA), also known as factor analysis, refers to

the transformation of data into an orthogonal basis set. The variance described by the

basis vectors is largest in the first vector and decreases with additional vectors. A data

matrix, X, with r samples, each sample containing n points (r e n), can be interpreted as

an ensemble of r points in n dimensional space. PCA is the process of fitting a series of

“lines and planes of closest fit to systems of points in space’’(Wold, Esbensen et al.

1987). The “closest fit” in this case is the least squares fit.

The vectors within this new basis set are referred to as PCA loadings and scores.

If the noise within the data is randomly varying, it will be contained in later loadings and

scores of the PCA decomposition. Estimating the data set by using only the significant

PCA loadings can effectively filter random noise.

Mathematically, PCA can be described as the decomposition of a data matrix, X,

with rank r, into a series of rank 1 matrices. If X has dimensions r x n then
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X= M,+ M2+M3+... +M,

Each of the rank 1 matrices can be written as outer products of two vectors: a score

vector, th, and a loading vector, p’ h, where the apostrophe (‘) represents the transpose.

x = t,p’, +t2p’2+t3p’3+... +thh+trprr’r

Each vector this r x 1 and each p ‘hvector is 1 x n. The equation above can be

represented in matrix notation as:

X = TP’

The loading vectors, Ph, can be thought of as the spectral, or frequency features, while

the scores, th, can be thought of as the concentration, or amount, of that spectral feature

contained in the sample. The insignificant loading and scores can be deleted and the

data matrix estimated using only the significant PCA factors, 1:k.

X = Tm~P’w~+E where E = Tt~+lJ:rP’t~+l).,and represents

; = Tm~P’m, where ~ is the estimate of X.

the error.

Many methods exist for calculating scores and loadings. The most readily

interpretable method is based on iterative least squares, (weld 1966), (Geladi and

Kowalski 1986) and is called Nonlinear Iterative Partial Least Squares, or NIPALS.

The method begins by selecting a vector, xl,,, from the data matrix and using it to initiate

the score vector, t.The selection of the initial vector is arbitrary, and some authors have

used a vector of ones.(Weld 1966) The steps of the procedure are outlined below.

1)

2)

3)

4)

5)

tj~j[ = xj:~

The initial least squares estimate of pjnj~is calculated using finir:

p ‘ini~ = (t ‘i~i~*X)/(t‘i~if*ti~i/)

The vector Pi.i, is normalized to length 1:

p ‘inif= p ‘i.ihom(p ‘inif)

The least squares estimate oft is made using the newly estimated p.

t ‘x*piniP4p ‘inir*PiniJnew —

Compare t.e~tO ~inil. If they are the same, the estimation of tand p for

step h is complete. If they are not equal, substitute tnewfor tini~and run

through steps 2-5 until t.,wand tinirconverge.
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Conceptually, one can imagine that the first ‘plane’ calculated (defined by tland pl) sits

at the center of the multidimensional data space. Once the first set of vectors is

calculated (h= 1), the dot product of tl*pf is calculated and removed from X. The

remainder is substituted for X and steps 1-5 are repeated for as many vectors as needed.

From the NIPALS equations, the calculation of the scores, t,and the loadings, p,

can be reformulated into the calculation of the eigenvectors of X’X and XX’. If we let

t ‘inirtinir and p ‘inirpi.ir equal constants Cl and CP, then step 2 and step 4 above become:

P ‘ini~=t‘i~i**X/C’~ and tj.j~=X*p#C~

Substituting gives:

P ‘i.i~=(X*PinilCp)‘*VC1 ~d tj~j~=X*(t‘j.if*WCI) ‘lC/J

Combining CP and Cl into the general constant C and rearranging gives:

C*P ‘ini~=P ‘i~i~*X’* x and C*tj~jf=X* X’ * tj~i~

These equations can be rearranged to form the classic eigenvector-eigenvalue equations:

(C*I-X’*X)*p ‘i~it=(l and (C*l-X*X’)*tinir=o

where 1 is the identity matrix. Thus the loadings and scores are the eigenvectors of X’ *X

&d X*X’ respectively. The MATLAB function for the singular value decomposition,

svd, calculates the eigenvectors of X’ *X and X*X’ directly, given X. The svd function

gives two orthonormal matrices, and a diagonal matrix of singular values. One of the

orthonormal matrices provides the loadings, and the other, when multiplied by the

singular value matrix, provides the scores.

Once the scores and loadings are obtained, they can be used to relate the spectral

information to some external value, such as concentration or class. The singular values

can also be used to evaluate the significance of the factors. The relative size of the

singular values provides an indication of the significance of the factor. For simple data,

the number of significant factors can be estimated by plotting the singular values. More

rigorous methods for determination of the appropriate number of significant factors to

retain involves F-test evaluation(Haaland and Thomas 1988) of the predictive residuals

or comparison of the singular values to known noise levels in the system under

study(Wold, Esbensen et al. 1987).
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PCR

Principle components regression, (PCR), relates the scores and loading matrices

obtained in PCA to an external variable in a least squares sense. Once the data matrix is

estimated by the appropriate number of PCA loadings,

a least squares solution can be found to relate the vector containing the state of the

external variable, y, to ~ . Let us begin with the initial assumption, that the spectral

data is related to some extraneous variable, in this case the status of the instrument:

A

yax

y is typically a vector, with dimensions r x 1, and a is the proportionality symbol. For

the present data, y is a vector of ones and zeros, which designated the status of the

A

instrument as ‘on’ or ‘off’. The relationship between y and X can be defined as:

y= X*b+Ej

A

where b is a regression vector relating y to X in a least squares sense and EY is the error

.
vector. So, substituting scores and loadings for X gives:

Y=[T,X~ *(P.X~ )]*b+EY

The regression vector b (n x 1) can be estimated in a least squares sense.

b G [Tm, * (Pm~)]-’ * y

The matrix [Tr. k*(pn. J‘] is probably not square, thus a traditional inverse can’t be

calculated. The psuedoinverse is calculated instead. In MATLAB the function is pinv,

and in the literature is designated by a superscript ‘+’ .( Strang 1980) SO,

[Trxk*(pnxk)’]+ =[p’nxd+*[Trxk]+

The psuedoinverses of the T and P matrices are their left inverses.

[Tr.k*(P. xk) ‘1+= [(pnxk*(pnxk)’)-l*pnxk]*[((Tr-xk)’*Trxk)‘l*(Trxk)’]

Thus b is estimated as:

b~[T,X, *(pnx, )1+*Y
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Once b is estimated using calibration data, the yunhownvalue of an unknown spectrum,

xu~bOW~,can be estimated as:

YwLkn*wn~ X“nknown*b

More details on the least squares procedure, orthonormal matrices, and the singular

value decomposition can be found in Strang.(Strang 1980)

Spectral F-ratio

The ability of a calibration model to adequately predict an unknown sample

depends whether or not the unknown sample resides within the calibration space. While

it is not necessary to know all the components or features within the calibration or

unknown, the calibration should include those states expected in the unknown samples.

A prediction can still be obtained if an unknown sample contains components not

contained in the calibration, however, the confidence in that prediction is decreased.

Often the presence of new components within the unknown can be detected using the

spectral residuals calculated by estimating the spectrum of the unknown sample and

comparing it to the true spectrum. The size of the residuals is then compared to the

calibration residuals, resulting in a single number called the spectral F-ratio. An F-test

can then be performed on the resulting value. Since computing the degrees of freedom

can be difficult(Haaland and Thomas 1988), the resulting spectral F-ratios are not used

as absolute value for comparison to F-test tables. Rather, they are typically used as a

guide to flag possible outliers within the context of the data being examined.

Data Analvsis

Prior to PCR analysis, PCA was used to evaluate each data set. Singular value

plots, loadings and scores were examined for each data set. Data exploration provided

information regarding outliers (spurious signals not consistent with the other data within

the set), locations of instrument transition signals, as well as changes in overall intensity.
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Evaluation of Training Data

Shown in Figure 1 is a plot of singular values 1-10 for training set TRAIN l_Al,

after the mean of the data was removed. The singular values level off beginning at

factor 2 suggesting that there is 1 primary factor in this data set. This result is consistent

with the information that TRAIN l_A 1 data contained only 1 instmment signal vmYing

between two states.
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Figure 1 Singular values for TRAIN1 _Al after data was mean centered.

Examination of the scores for factor 1 (see Figure 2) indicates the time at which

Instrument 1 was turned on. A very distinct fall and rise of the scores corresponds to the

times Instrument 1 was turned on and off. Interestingly, the second and third factors,

although only accounting for 0.72% and 0.61 ?io of the information contained in the data,

show spikes in the score plots during the ‘rise’ and ‘fall’ time for the instrument, as the
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Figure 2 Loadings and Scores for TRAINl_Al

instrument is being turned on and off. Thk may indicate that the signal seen during

these transient periods is slightly different than that seen at equilibrium. Loading vector

1, noted as evl in Figure 2, provides an indication as to those frequencies that are

important to identification of the signal from Instrument 1, in the presence of

background signal only.
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Combining the data from TRAINl_Al and TRA~2_Al provided the singular

value plot shown in Figure 3. In this case, there appear to be two significant factors

within the data. Examination of the first two loading and scores vectors for the

combined data set (see Figure 4) shows scores for factor 1 that are increasing at those

times when either Instrument 1 or Instrument 2 is turned on. Thus, this factor provides

information regarding the average intensity of the signal throughout the entire data set.

The scores for factor two are positive when Instrument 1 is on and negative when

Instrument 2 is on, indicating that factor 2 is providing the difference between the two

signals.

160 1 1 1 I 1 1 I 1

\,

\

nl 1 1 1 I I 1 1 1

“1 2 3 4 5 6 7 8 9 10
Factor Number

Figure 3 Singular value plot for the combined set, TRAINl_Al + TRAIN2_Al

Interpretation of scores and loadings plots is relatively straightforward for simple

systems. As the number of signals increase and overlap, interpretation becomes much

more difficult. For instance, TEST2_A 1 contains a variety of signals, including
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Figure 4 Loadings and Scores for Combined Set, TRAIN1 _Al + TRAIN2_A1
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Instrument 1 and Instrument 2. Shown in Figure 5 is the singular value plot for the

TEST2_Al data set. Again, there is a slight increase in the variance explained by the

higher factors, suggesting an increase in complexity. Figure 6 and Figure 7show the

loadings and scores for the first six factors calculated from TEST2_Al. The scores for

the first factor indicate the change in signal intensity as equipment is turned on or off.

Interpretation of the scores plots becomes more difficult, however, since the

experimental protocol is unknown. Without knowledge of the experiment, one cannot

say with certainty whether each step corresponds to a piece of equipment being turned

on, since it could be that as one piece of equipment is being turned on, another with

similar characteristics is being turned off. Combined with predictive information

however, the scores data can aid in interpretation. The other seismic data sets were

similarly evaluated using PCA, but will not presented here.
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Figure 5 Singular values for TEST2_Al
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Figure 6 Loadings and scores for factors 1-3 of TEST2_Al.
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Input spectra: ev #4 scores for ev#4 (%var=O.29)
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Figure 7 Loadings and scores for factors 4-6 of TEST2_Al.
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PCR A40dels-TRAINl_AI + TRAIN2_Al

The combination of data from TRAINl_Al and TRAIN2_Al was used for model

building. Instrument status values were assigned as O for off, and 1 for on. Only data

collected at steady state were used for model building, meaning data comprising the

transitions from on state to another were removed from model building. Score plots

were used to determine the appropriate data to remove. Single-sample cross validation

was used to evaluate model size. Cross validation refers to a leave-one-sample-out

procedure, such that each sample is removed sequentially and the remaining data is used

to predict the removed sample. Samples that are dependent on one another should be

removed as a group and predicted separately. If the samples removed during each cycle

are independent, a reasonable estimate of predictive ability can be obtained by the cross

validation method, using only calibration data. For the present data, the individual

samples were not independent, however given that there were only two states for each

instrument (off or on) within the data, cross validation pulling a state out at a time was

not feasible. Single-sample cross validation for the present data may have provided

models that overilt the calibration data. Final evaluation of the models was not made on

the basis of the fit to the calibration data, rather the model evaluation was based on the

model predictions of the test data.

The PCR model created for Instrument 1 based on TRAINl_Al + TRAIN2_Al

data contained 2 factors, and produced a correlation coefficient ( R* ) of 0.98 between

the predicted and reference calibration data. The model created for Instrument 2 also

contained 2 factors and produced an R* of 0.99 between the predicted and reference

calibration data. Using these models to predict TEST l_A 1, TEST2_A 1 and TEST3_Al

provided the time profile curves shown in Figure 8.

Prediction of TEST_Al data shows an increase in the predicted signal for

Instrument 1 immediately, reaching the ‘on’ state of 1 after approximately 3 samples.

The predicted signal for Instrument 1 is noted to decrease at Sample 63, at the point in

time where the predicted signal for Instrument 2 is increasing. It is unlikely that the

drop in signal intensity to a value other than 1 or O is real behavior, since the instruments

on/off signals were defined with two states, 1 and O. The most probable explanation for

the intensity change is that the model used to predict the TEST l_A 1 data does not have
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adequate information to predict Instrument 1 in the presence of Instrument 2. This also 

implies that the two signals are not strictly additive. The spectral F-ratios calculated 

from the prediction residuals of TESTI-A1 support this conclusion. Shown in Figure 9, 

the spectral F-ratios provide an indication of those samples that do not fit the calibration 

model. For TEST1-A1, a change in the size of the spectra F-ratio is noted at sample 63, 

indicating that those samples containing signals from both Instrument 1 and Instrument 

2 are different tiom samples within the model. 

1.2 
Prediction of Test 1 

1 
- 0"- 

0.8 - 

1.2 
Prediction of Test 2 

1 

0.8 

0.8 

0.0 

0.2 

Prediction of Test 3 
1.2, I 

500 
Sample Number 

I 
200 400 

Samole Number Sample Number 

Figure 8 Predicted time profiles of the TEST data from station A1 using PCR model based on TRAINI-AI + 
TFWN2-AI. Blue indicates prediction of Instrument 1; red indicates prediction of Instrument 2. 
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I I 
0.5 0 

~am'p% Number 400 

Figure 9 Spectral Pratios calculated for each TEST set TRAIN1-A1 + TRAIN2-A1 data was used for the 
model. Since model sizes for both instruments are the same (2 factors), the spectral Pratios are identical for both 
instruments. 



The prediction profiles for TEST2_Al in Figure 8 show step changes to values

other than O or 1. Again, this may mean that the model does not have enough

information to predict all the states present in the TEST2_A 1 data. Indeed, examination

of the spectral F-ratios for the prediction of TEST2_A 1 (Figure 9) indicates a large jump

after sample 122, indicating dissimilarity between the model and those samples after

122. Prediction profiles for TEST3_Al show step changes as well. Spectral F-ratios

calculated from the residuals of TEST3_Al indicate that samples 1-307 are different

than those in the calibration.

PCR Robustijication – Adding TEST1 samples

In order to improve the predictive ability of the calibration models, data from the

test sets were added to the training data. Based on the predictive ability of the

TRAIN l_A 1 + TRAIN2_Al models, an educated guess was made as to the instrument

status of the test data. In particular, spectral data from TEST l_A 1was chosen that

appeared to contain signals from both instruments. Samples 800 through 903 from

TESTl_Al were added to the training data. The instrument status of both instruments

was set to 1 for the added data. Using this ‘robustified’ data set, new PCR models were

created for both instruments. Each model contained 3 factors, and provided R2 values of

0.98 and 0.99 between the reference and predicted calibration values for Instrument 1

and Instrument 2 respectively. The increase in the number of factors used for the model

indicates the added complexity of the model over that contained in the TRAIN l_Al +

TRAIN2_Al model. The increase in the number of factors also suggests that the

presence of the simultaneous signals within the data is not a simple addition of the

individual signals. Predictions and spectral F-ratios using the TRAIN l_Al +

TRAIN2_Al + TESTl_A 1 model are shown in Figure 10 and Figure 11 respectively.

The prediction profiles for TEST l_Al show maxima at 1.0. The predicted signal from

Instrument 1 climbs immediately and reaches the maximum value after five samples.

The predicted signal from Instrument 2 remains at zero until sample 63. Spectral F-

ratios for the prediction residuals from TEST l_A 1 are all at approximately the same

level, indicating all predicted samples now appear to be within the model space.
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Prediction profiles for TEST2-A1 also show a maximum at 1.0; however 

plateaus are also seen at 0.4 and 0.6 in both prediction profiles for samples 123-244. 

Spectral F-ratios calculated for the prediction residuals indicate samples 123-244 are 

different from those in the calibration model, suggesting the presence of new signals 

within this range. From the prediction plots for TEST2-A1, it appears that Instrument 1 

and Instrument 2 are being turned on at 184 and 245 respectively. It is possible, 

however, that these signals are from other instruments with similar signals. Also 

notable in the prediction profile of Instrument 2 (red) are two additional steps at samples 

303 and 365. 
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figure 10 Prediction of TEST data from station A1 using training data 'robustified' with data from TESTl-AI. 
Blue indicates prediction of Instrument 1; red indicates prediction of Instrument 2. Circles in prediction protile of 
TESTI-A1 indicate those samples included in calibration model. 
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Figure 11 Spectral F-ratios calculated from the spectral residuals of TEST141. =-A1 and TEST3-A1 
using a TRAINlAl + TRAIN2-A1 + TESTlAl  model. Circles indicate those samples used in the calibration. 
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Prediction of TEST3_Al shows similar behavior to that seen in the prediction of

TEST2_Al. Instrument 1 and 2 are on at the beginning of the test and appear to be

turned off at 153 and 124 respective y. Instead of reaching zero, the predicted signals

hit at plateau of approximately 0.6. The signals remain at 0.6 until sample 307. At

sample 307, both predicted signals go to zero. Spectral F-ratios calculated from the

residuals of TEST3 indicate sample 140-307 to be different from those in the calibration.

PCR Robushyication - Adding TESTI and TEST2 samples

Further robustification of the calibration model was done using samples from

TEST2_Al. Samples 140-160 and 210-230 were chosen from TEST2_Al to add to the

calibration model. Samples 140-160 were assigned the values O and O for both

instruments (both off). Samples 210-230 were assigned the values 1 and O, indicating

Instrument 1 was on and Instrument 2 was off. These instrument values were estimated

using the previous prediction values and spectral F-ratio values as a guide. The PCR

model created for Instrument 1 based on TRAIN l_A 1 + TRAIN2_A 1 + TEST l_Al +

TEST2_A 1 data contained 5 factors while the model created for Instrument 2 contained

3 factors. The R2 values for the calibration data were 0.98 and 0.99 for Instrument 1 and

Instrument 2 respectively. The increase in the number of factors for Instrument 1 may

indicate a similarity between the new signals within the added TEST2_A 1 data and the

signal from Instrument 1, and the need for more factors to delineate the difference.

Using these models to predict TEST l_Al, TEST2_Al and TEST3_Al provided the

time profile curves shown in Figure 12. The spectral F-ratio values, shown in Figure 13,

indicate the models are now explaining the predicted data adequately. The spectral F-

ratios for TEST2_A 1 show several samples that are significantly higher than the rest.

These do not appear to be associated with spurious signals. Rather, these appear to be

associated with the transition of an instrument from one state to another. It is very likely

that these signals are different from those reached at steady state, and were not included

in the model.
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Using robustifid model TRAINl-Al + TRAIN2_Al+ TESTl-Al + TEST2Pl  to 
predict test dafa from &Herent locations 

The robustified model TRAIN1-A1+ TRAIN2-A1+ TESTI-A1 + TESn-A1 

was used to predict test data recorded on a different instrument at a different location. 

Only prediction of TEST2 data sets will be presented here. Prediction of TEST2-B 1, 

TEST2-C 1, TEST2-Dl and TEST2-B4 using the robustified A1 model are presented in 

Figure 14-17 along with the resulting spectral F-ratio values. 
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12 M e t i o n  of TESTdata from A1 station using TRAINI-AI + TRAINLA1 + TESTlAl+ 
TESl2A1 model. Circles indicate those aamples used in the calibration. 
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Figure W Spectral F-ratios calculated from prediction of TEST data from A1 station using TRAINIAI + 
TRAIN2AI + TESTLA1 +TESTLA1 model. 



Prediction of data from the different locations using the A1 model is marginal, at 

best. Most of the spectral F-ratios for the predicted data are higher than was seen with 

the Al model predicting the A1 test data, suggesting the data collected at different sites 

is dissimilar to that collected at Al. If the signals collected at the different sites differed 

from the A1 data by only a scalar value (i.e., decrease in intensity), it would be expected 

that the prediction profdes would be similar in shape to those seen when predicting the 

A1 data. In addition, the resulting spectral F-ratios would be similar to those seen after 

the prediction of A1 data by an Al model. As this is not the case, the data collected 

from the sites other than Al  appears to be inherently different than that collected from 

Al. These differences could result from environmental parameters local to the specific 

detector or differences in the detectors (e.g. sensitivity, response) 
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Figure 14 Prediction of TEST,?-B I data using TRAIN1AI+TRAIN2-A1+TESTl~A1+~-A1 model 
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Figure 15 Prediction of TESIZ_CI data using TRAINlAl  + W 2 - A 1 +  TEST1-A1+ TESTLAI model 
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e r e  17 Prediction of TESTLB4 data using TRAIN1-A1+W2-AI+TESTlIA1+TEST22A1 model 

Specific Site Mode& Predicting TESZ? Data 

New models were created using B I, C1, Dl and B4 data from TRAIN 1, 

TRAIN;?, TEST1 and TEST2 files. Samples used from each set were equivalent to 

samples used in the A1 model in terms of collection time. These site-specific models 

were then used to predict TEST2 data from the same site. The quality of the models was 

noted to be. dependent on the location of the sensor, as it was reflected in the R' value 

between the predicted and reference calibration data for each instrument. Table 2 lists 

the model, the number of factors and the R' between the reference values and the 



predicted values for the cross validated model. For comparison, the same values are 

listed for the A1 model as well. 

Table 2 

The model for the B4 data is extremely poor. It is believed that the B4 data have a 

signal to noise ratio too low to extract good models. 

The prediction profiles for the appropriate set of TEST2 data using the models 

B1, C1 and Dl are shown along with the spectral Fratios in Figures 18- 20. Prediction 

profiles of the TEST2-B 1 and TEST2-C 1 data using the B 1 and C 1 models 

respectively, resemble the prediction profiles of the A1 data using A1 models, indicating 

data from these sensors had adequate signal to noise for calibration and prediction. The 

prediction profiles for Dl are quite noisy, although some suggestion of a rise and fall of 

signal is present. Predictions using the B4 model are not shown, due to the lack of a 

good model. 
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Figure 18 Prediction of the TEST2-B1 data using a TRAINI-B 1 +TRAIN2-B 1 + TESTI-B1+ TESTZ-B1 
model. Circles indicate data points used in the calibration. 
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Figure 19 Prediction of the TEST2-CI data using a TRAIN1-C1+~22Cl+TESTI-C1+TEST2~C1 model. 
Circles indicate data points used in the calibration. 
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Figure U) Prediction of the TEST2-Dl data using a TRAIN1-Dl t TRAIN2-Dl + TESTlDl + TESn-Dl 
model. Circles indicate data points used in the calibration. 

Multivariate data analysis of frequency data obtained from a field test of seismic 

sensors was performed. The goal of the field test was to evaluate whether seismic 

signatures could be used to determine when designated pieces of equipment were being 

turned on or off. Using the multivariate technique Principle Components Regression 



(PCR), models were developed for two pieces of equipment using training data collected

as the equipment was cycled on and off.

Data was collected from five different sensors: Al, B 1, C 1, D 1 and B4,

corresponding to data containing decreasing signal to noise. Models created using

TRAINl_Al and TRAIN2_Al data had difficulty in predicting data that contained

additional signals over those contained in TRAIN l_Al and TRAIN2_A 1. Spectral F-

ratios calculated using the residuals of the predicted data providing insight as to those

points in which new or different signals were present. Addition of data comprising the

new signals created more robust models as evaluated by the decrease in the number of

sample points predicted to be values other than O or 1.

A new Al model was created using additional data from TEST l_Al and

TEST2_Al. This robustified model was used to predict Al -B4 TEST2 data. While the

prediction of TEST2_Al was good, the prediction of B 1-B4 TEST2 was poor. The

spectral F-ratios for B 1-B4 TEST2 data were generally high (>3), suggesting the data

obtained from the B 1, C 1, D 1 and B4 sensors contain new or inherently different signals

as compared to the data collected from the A 1 sensor. Using data from the B 1, C 1, D 1

and B4 sensors to create new models, better prediction results of the B 1, C 1, and D 1

TEST2 data were obtained. Good models could not be created using data from the B4

sensor, suggesting that the data contain signal to noise too low for model building.

This preliminary investigation into the application of PCR to seismic data

resulted in prediction data that looks promising. Application of other multivariate

methods or variation of PCR may yield fin-ther improvements. For instance, PCR

Augmentation, the method of adding unknown data to the calibration solely for the

definition of the loading vectors, may provide an approach to adding unknown signals to

the calibration without having to know the instrument status of the unknown samples.

Calibration transfer methods, developed for transferring models from one instrument to

another, are a possible technique to be employed for using the A 1 models to predict the

data from sensors at other locations.

Accounting for the transition status between onto off may also improve

calibration and predictions. Once the transition states are included in the calibration,
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Partial Least Squares (PLS) methods may offer an advantage over PCR calibration

methods.

Finally, prudent selection of calibration samples may also improve calibration

and prediction. The models presented above used all the calibration data from TRAIN1

and TRAIN2 and thus were heavily weighted toward data from those sets. Balancing

the data from TRAIN 1, TRAIN2, TEST 1 and TEST2 such that each instrument state

was weighted equally could provide improvement in the prediction of those states less

heavily weighted in the original model.
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