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Abstract

We report on the application of the one-level FETI method to the solution of a class of substruc-
turalproblems associated with the Departmentof Energy’s Accelerated StrategicComputing Ini-
tiative (ASCI). We focus on numerical and parallel scalability issues, and on preliminary
performance resultsobtained on the ASCI Option Red supercomputer configured with as many as .
one thousand processors, for problems with as many as 5 million degrees of freedom.
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1. Introduction

In 1996, the US Department of Energy announced its Accelerated Strategic
Computing Initiative (ASCI) aimed at creating predictive simulation and virtual
prototyping capabilities, and accelerating the development of high-performance
computing far beyond what might be achieved in the absence of a focused initia-
tive. More specifically, ASCI’S vision is to shift promptly from test-based methods
to computational-based methods of ensuring the safety, reliabilityy, and perfor-
mance of the US nuclear weapons stockpile. An initial result of this initiative
was the installation in 1997 at the Sandia National Laboratories of an Intel 1.8-
Teraflops (trillion floating-point operations per second) peak massively parallel
system known as the ASCI Option Red supercomputer. Two additional Teraflop
systems known as the ASCI Blue Pacific and ASCI Blue Mountain machines were
subsequently sited at the Livermore and Los Alamos National Laboratories, re-
spectively. Harnessing the power of these ASCI computers and exploiting their
full potential requires the development of scalable numerical algorithms, which
for many applications is a significant challenge.

Part of the ASCI initiative is the development at Sandia of Salinas, a mas-
sively parallel implicit structural dynamics code aimed at providing a scalable
computational workhorse for highly accurate structural dynamic models. Such
large-scale finite element models require significant computational effort, but pro-
vide important information including, vibrational loads for components within
larger systems, design optimization, frequency response information for guidance
and space systems, modal data necessary for active vibration control, and char-
acterization data for structural health monitoring.

As in the case of many other ASCI software research and development
projects, the success of Salinas hinges on its ability to deliver scalable perfor-
mance results. However, unlike many other ASCI computational efforts, Salinas
is an implicit code and therefore requires, among others, a scalable equation solver
in order to meet its objectives. Because all three ASCI machines are massively
parallel computers with thousands of processors, our definition of scalability here
is the ability of an algorithm implemented on an ASCI system to solve an n-times
larger problem using an n-times larger number of processors in a nearly constant
CPU time. Achieving such a scalability requires not only a parallel hardware with
relatively inexpensive interprocessor communication costs, but most importantly
an equation solver that is (a) numerically scalable — that is, with an arithmetic
complexity that grows almost linearly with the problem size, and (b) amenable
to a scalable parallel
number of processors
communication costs.

implemental ion — that is, which can exploit as large a
as possible while incurring relatively small interprocessor
Such a stringent definition of scalability rules out sparse
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direct solvers because their arithmetic complexity is a nonlinear function of the
problem size. Furthermore, for large-scale three-dimensional structural problems
with tens of millions of degrees of freedom (d.o.f.), the memory requirements of
sparse direct solvers can overwhelm even the largest of the current ASCI ma-
chines. This is rather unfortunatee because sparse direct methods offer otherwise
a robustness that is not matched by any iterative algorithm. On the other hand,
several multilevel [I] iterative schemes such as multigrid [2–4] algorithms and
domain decomposition methods with coarse auxiliary problems [5] can be char-
acterized by a nearly linear arithmetic complexity, or an iteration count that
depends only weakly on the size of the problem to be solved. Such algorithms
are prime candidates for a scalable equation solver. For Salinas, the Finite Ele-
ment Tearing and Interconnecting (FETI) [6–12] solver was chosen because of its
underlying mechanical concepts, as well as its potential for delivering a scalable
performance.

FETI is a domain decomposition based iterative method with Lagrange mul-
tipliers. In its simplest form, it is also known as the one-level FETI method, and
can be described as a two-step preconditioned conjugate gradient (PCG) algo-
rithm where subdomain problems with Dirichlet (displacement) boundary con-
ditions are solved in the preconditioning step, and related subdomain problems
with Neumann (traction) boundary conditions are solved in a second step. The
one-level FETI method incorporates a relatively small size auxiliary problem that
is based on the subdomain rigid body modes. This coarse problem propagates
the error globally during the PCG iterations and accelerates convergence.

For second-order elasticity problems discretized by plane stress/strain and/or
solid elements, the condition number of the FETI interface problem precondi-
tioned by the Dirichlet preconditioned [8] grows asymptotically as

K = O(l+logq;

where h denotes the mesh size, and H denotes
Note that h, H, and h/H are indirect measures
ber of subdomains, and the subdomain problem

)) (1)

the subdomain size (Fig. 1).
of the problem size, the num-
size, respectively. Hence, the

condition number estimate (1) establishes the numerical scalability of the FETI
method with respect to both the problem size and the number of subdomains.
In particular, it proves that in theory, when the mesh discretization is refined,
and the number of subdomains is increased as to maintain a constant number of
elements per subdomain, the number of FETI iterations required for convergence
remains asymptotically constant. This theoretical result has been demonstrated
in practice for numerous applications [8–10]. The parallel scalability of the FETI
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method has also been demonstrated on various parallel computers with a num-
ber of processors ranging between 2 and 128 [13,14]. For fourth-order plate and
shell problems, the condition number estimate (1) also holds when the rigid body
based coarse problem is enriched by the subdomain corner modes [11,12]. In that
case, the FETI method is transformed into a genuine two-level algorithm known
as the two-level FETI method.



Fig. 1. Mesh size and subdomain size

An important issue in multilevel methods that pertains to parallel scalabil-
ity is the solution of the lowest level problem, which for domain decomposition
met hods corresponds to the coarse problem. The size of this coarse problem in-
creases with the number of subdomains. Initially, it was advocated to solve the
FETI coarse problems iteratively, using a CG algorithm that is optimized for the
solution of problems with repeated right hand-sides [20,21]. That approach was
motivated by the fact that the CG method requires only matrix-vector products
that can be performed in parallel at the subdomain level, and which necessitate
only short range communication between neighboring subdomains. For small
mesh partitions and therefore small size coarse problems, it was shown that such
a strategy is computationally efficient and allows both one-level and two-level
I?ETI solvers to achieve parallel scalability [10,12]. However, the modified CG
algorithm described in [20,21] is not numerically scalable with respect to the the
size of the coarse problem, and therefore is not suitable for problems involving a
large number of subdomains. Given that the most practical way for implement-
ing domain decomposition methods on distributed memory parallel processors is
to generate and assign one or several subdomains to each processor, it follows
that the specific iterative solution strategy described in [20,21] is not suitable for
ASC1 computational platforms. When the given problem is partitioned into a
large number of subdomains, it was shown in [14] that for shared memory multi-
processors, solving the FETI coarse problems by a direct method is computation-
ally efficient. Hence, a first objective of this paper is to revisit this issue in the
context of the Salinas code, ASCI structural problems, and ASCI computational
hardware.

Strictly speaking, the condition number estimate (1) holds for uniform mesh
discretizations, uniform mesh partitions with a perfect subdomain aspect ratio,
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and homogeneous problems — for example, structural problems with a single ma-
terial, or different materials but with similar constitutive properties. However, it
was shown in [15] that in practice, the numerical scalability of the FETI method
holds for irregular discretizations and arbitrary mesh partitions, as long as the
subdomains have reasonable aspect ratios. Algorithms for generating subdomains
with reasonable aspect ratios can be found in [15–17]. For heterogeneous prob-
lems — for example, structural problems involving materials whose constitutive
properties differ by several orders of magnitude — an improved coarse problem
was proposed in [9] for preserving the numerical scalability of the FETI method.
This alternative coarse problem was further investigated in [18] for model struc-
tural applications. More recently, a simple and virtually no-cost extension of the
FETI preconditioned was proposed in [19] for addressing highly heterogeneous
structural problems, but was also mainly verified on academic applications. Since
ASCI structural problems are typically heterogeneous, a second objective of this
paper is to construct a general strategy that combines both developments exposed
in [9] and [19] for addressing the treatment by FETI of structural heterogeneities,
and validate it for a realistic ASCI application problem.

Finally, a third objective of this paper is to report on preliminary perfor-
mance results obtained on a thousand-processor configuration of the ASCI Op-
tion Red supercomputer, by the Salinas code equipped with the FETI solver, for
various ASCI benchmark and real problems.

For this purpose, the remainder of this paper is organized as follows. In
Section 2, we overview the one-level FETI method as our initial effort focuses
on three-dimensional solid structures. In Section 3, we discuss a revised strat-
egy for solving the subdomain rigid body mode based FETI coarse problem on
a massively parallel processor. We also report some scalability results of the
FETI method on the ASCI Option Red machine configured with as many as one
thousand processors, for benchmark problems with as many as 5 million d.o.f.
In Section 4, we consider the issue of structural heterogeneities and present a
strategy for addressing them when using the FETI solver. In Section 5, we ap-
ply the FETI method to the finite element analysis on the ASCI Option Red
supercomputer of a reentry vehicle, and in Section 6 we conclude this paper.

2. Overview of the one-level FETI method

Stress analyses, implicit linear and a large class of implicit nonlinear dynamic
analyses, and vibration (eigenvalue) analyses lead to the solution of one or several
systems of equations of the form

Ku=f (2)
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where K is in general a symmetric positive definite matrix, u is a vector of
generalized displacements, and f a vector of generalized forces. In the FETI
method, the structure’s computational domain Q is partitioned into N~ non-
ovedapping subdomains ~ts), and Lagrange multipliers A are introduced at the
subdomain interfaces to enforce the compatibility of the subdomain generalized
displacement field u(s). Consequently, Eq. (2) above is transformed into the
equivalent set of equations

K(s)u(s) = f(s) _ B(S)TA S= I,. ..N5

N.

x (3)
B(s)u(s) = O

.s=1

where for each subdomain Q(s), K(s) denotes its generalized stiffness matrix, *S)
its vector of generalized forces, and B ‘s) the signed Boolean matrix that extracts
from a subdomain vector v(s) its signed (+) restriction to the subdomain interface
boundary. The first of Eqs. (3) expresses the local equilibrium of the subdomains
!2(S), and the second of Eqs. (3) the continuity of the subdomain generalized
displacement fields across the subdomain interfaces.

The general solution of the first of Eqs. (3) can be written as

~(s) = K(s)+ (4 )s) _ B(S)TA + R(s)a(s) (4)

where K(s)+ denotes the inverse of K ‘s) if fl(s) has su.fEcient Dirichlet boundary
conditions to prevent K(s) from being singular, or a generalized inverse of K(s) if
~(s) is a floating subdomain. In the latter case, the columns of R(s) represent the
rigid body (or more generally the zero energy) modes of Q(s), i.e. R(s) = ker K(s),
and CY(s)is the set of amplitudes that specifies the contribution of the null space
R.(s) to the Solution u(s). These coefficients can be determined by requiring that

each subdomain problem be mathematically solvable — that is, each floating
sub domain be self-equilibrated — which can be written as

( )R(s)T f(s) _ J3(dT~ = o

Substituting Eq. (4) into the compatibilityy equation and exploiting
condition (5) transforms problem (3) into the interface problem

[ -3T‘:’1[d=[~’l

(5)

the solvability

(6)
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where

FI =

d=

GI =

a=

e=

N.

x B(s) K(s)+#)T

5=1

N,

E B(s)K(s)+f(s)

S=l

[G\)1 . . . G\Nf) ] = [B(l)R.(l) .+. BAR]

[a(l)= ... #~)T ]T
[jfl)T#) ... jfNS)TR(N~)]T

(7)

and where Nf denotes the number of floating subdomains.

The above indefinite interface problem (6) can be transformed into a semi-
definite system of equations as follows. Let Q be any symmetric matrix for which
the product G~QGI is invertible. The self-equilibrium condition G~A = e can
be eliminated from Eqs. (6) by introducing the splitting

A = A“ +P(Q)X (8)

where AO is a particular solution of G~A = e of the form

(9)AO= QGI(G~QGI)-le

and P(Q) is a projector of the form

P(Q) = I – QG1(G~QG1)-lG; (lo)

Note that P satisfies
P2=P G;P = O (11)

Substituting Eq. (8) into the first of Eqs. (6) and premultiplying that equation
by PT transforms the indefinite interface problem (6) into the projected interface
problem

(PTFIP) ~ = PT (d - FIAO) (12)

which is symmetric positive semi-definite for any given matrix Q.

The one-level FETI method consists in transforming the original global prob-
lem (2) into the symmetric positive semi-definite interface problem (12), and solv-
ing the latter system of equations by a PCG algorithm. Note that the projector
P contains the matrix (G~QGI) – 1, which is symmetric when Q is symmetric.
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In general, each subdomain has at most 6 rigid body modes, and therefore the
dimension of G? QGI is at most equal to 61V~.Hence, this matrix defines an aux-
iliary coarse problem that couples all the subdomain computations, and which
was proved to propagate the error globally and accelerate convergence [8,22].

Two preconditioners have been proposed in the literature for the FETI
—D-l ~

method: the mathematically optimal Dirichlet preconditioned PF1 P intro-
duced in [8], and the computationally economical even if not numerically scalable

—L–l ~
lumped preconditioned PF1 P proposedin earlier works [6,7]. If each subdo-
main generalized stiffness matrix is partitioned as

(13)

where the subscripts z and b designate the sub domain interior and interface
_D-l

boundary d.o.f., respectively, then the component F1 of the Dirichlet pre-
conditioned can be written as

N,
_D–l

F1 = E [1
w(S)B(S)0 0

0 Sg
B(S)TW(S)

.S=1
where

_L–l

and the component F1 of the lumped preconditioned can be written as

N,
_L–l

F1 = E [1
w(S)B(S)0 0

0 K&)
B(S)TW(S)

S=l

(14)

(15)

_D-l

In the above expressions of F1 ‘L- 1, W(s) is a diagonal “scaling” matrix.and Fz
In its simplest form, W(s) stores in each of its entries the inverse of the multi-
plicity of the corresponding interface node — that is, the inverse of the number
of subdomains attached to that node [23,9,11]. For example, if the i-th Lagrange
multiplier component A(i) acts on an interface node that is shared between 2
subdomains, then W(s)(i) = 1/2; if it acts on an interface node that is shared by
m subdomains, then W(s)(i) = l/m. Such a matrix W(s) is referred to as the
“topological scaling” matrix.

Recently, both Dirichlet and lumped preconditioners have been extended to
address more efficiently heterogeneous structural problems [19]. These extensions
are simply obtained by redefining appropriateely the scaling matrix W ‘s).
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Finally, we note that for homogeneous problems, the simplest choice Q =
I is the most computationally efficient. Most FETI computations reported in
the literature have been performed with this trivial choice. However, it was
shown in [9] that heterogeneous problems call for a matrix Q that is physically
homogeneous to a generalized stiffness. For this reason, two alternative choices

_~–1

for Q were first proposed in [9]: Q = QL = F1 , and Q = QD = F1 . These
_D–l

choices were further investigated in [18] and shown to be effective for model
heterogeneous problems.
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3. Scalability results on the ASCI Option Red supercomputer

3’.1. Implementation of Salinas and F’ETI on massively parallel distributed mem-
ory systems

Like FETI, Salinas is based on substructuring, and relies on the same con-
cept of mesh partitioning. For this reason, interfacing both codes was a relatively
straightforward task. Using an automatic mesh decompose [29,30], a given finite
element structural model is first decomposed into N~ ~ NP subdomains, where
NP denotes the target number of processors. The potential advantages of gener-
ating more subdomains than there are processors are discussed in [14,31], among
other references. Next, the generated subdomains are re-arranged into Np CIUS-

ters containing each one or several subdomains, and each cluster is assigned to
one processor. Most if not all Salinas and FETI computations can be performed
concurrently at the subdomain level, and necessitate interprocessor communica-
tion only between neighboring clusters. As far as FETI is concerned, only the
solution at each PCG iteration k of a coarse problem of the form

(G; QG1)ak = G;wk (16)

deserves special attention. Such a coarse problem is associated with a matrix-
vector multiplication of the form PT Wk or P yk, where Wk and yk denote respec-
tively two vectors generated by the PCG algorithm applied to the solution of the
interface problem (PTFIP)~ = PT(d – FIAO) (12). Hence, it arises twice at
each FETI iteration. Before addressing this issue, we note that

● the system matrix G~QGI is independent of the iteration number k. Only
the right hand side vector G~wk varies throughout the FETI iterations.

● for any Q, the system matrix G~QGI has the same size which depends on
the number of floating subdomains Nf, and the dimensions of the null spaces
ker K(sJ, s = 1, .... Nf. In general, the size of G~QGI is of the order of
6N’.

● for Q = I, G~GI is a sparse symmetric positive matrix. Its sparsity pattern
is dictated by the connectivity of the mesh partition, and is identical to
the sparsity pattern of any finite element matrix obtained by treating each

(s)TG~) # 0 if andsubdomain as a “superelement”. More specifically, GI
only if fl(s) and ii(g) are neighboring subdomains.

for Q = QL = ~~-’
_~-1

* and Q=QD= FI , G~QGI is also a sparse
symmetric positive matrix, and its sparsity pattern is also dictated by the
connectivity of the mesh partition. However, in these two cases G~QGI is
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●

lem

slightly more populated than G~GI. More specifically, G~)~ QG~) # O if
and only if Cl(g) is a neighbor of fl(s), or the neighbor of a neighbor of flis).

for all three choices of Q specified above, G~QGI can be assembled in
parallel using only subdomain level computations, and a small amount of
interprocessor communication between processors mapped onto neighboring
clusters of subdomains.

As mentioned in the introduction, we consider here solving the coarse prob-
(16) by a direct method. Such a strategy improves the robustness of the FETI

method, but complicates its implementation on massively parallel distributed
memory systems. As stated earlier, parallel sparse direct algorithms do not scale
well in the sense defined in this paper, particularly for these small size coarse
problems. Furthermore, we note that because the system matrix G~QGI needs
be factored only once, but the coarse problem (16) must be solved twice at each
FETI iteration, it is essential to focus on a strategy that addresses not only the
factorization of G~QGI, but most importantly the subsequent forward and back-
ward substitutions. Indeed, the scalable parallelization of the direct solution of
sparse lower and upper triangular systems is even more challenging than that of
the factorization of a sparse matrix.

For all of the above reasons, we consider here the following approach for solv-
ing the coarse problem (16) on a massively parallel distributed memory system
such as the ASCI Option Red supercomputer. For the sake of notational sim-
plicity, but without any loss of generality, we assume in the following algorithmic
description that each floating subdomain has exactly 6 rigid body modes.

a) form G~QGz in parallel and replicate this relatively small size sparse matrix
in each processor.

b) request that each processor factor G~QGI.

c) compute in parallel a distributed inverse of G~QGI as follows. For each
floating subdomain L?(j) assigned to processor pj, request that pj performs 6

forward and backward substitutions to solve

(GTQG~)xj= Ij (17)

where Ij cent ains the 6 columns of the identity matrix I that are assigned
to subdomain fl(~) in conjunction with its 6 rigid body modes R(j).

d) at each FETI iteration k, solve each coarse problem of the form given in (16)
by performing a parallel distributed matrix-vector multiplication. Indeed,

12



from Eqs. (7,16,17) it follows that

j=Nf

Q’ = (j)T kX( GfWk) = ~ xj[G1 w ]
j=l

(18)

which shows that the evaluation of CYkcan be performed using subdomain-
by-subdomain parallel computations and requires only one global range com-
munication.

The strategy outlined above for solving the coarse problem (16) is essentially
(composed of three sequences of embarrassingly parallel computations.

The first one has two caveats. From a computational viewpoint, request-
ing that all processors perform the factorization of the same matrix G~QGI is
equivalent to serializing this computation. This serialization does not significantly
affect the overall performance of FETI, as long as the cost of the factorization of
G~QGI is negligible compared to the cost of the other FETI operations — that
is, as long as the number of subdomains is below a certain critical value NY.
However, because of Amdahl’s law, there also exists a certain number of proces-
~sorsN; beyond which this serialization will prevent FETI from scaling well on a

:massively parallel system. Furthermore, given that the size of G~QGI increases
with the number of subdomains N~, and that N~ increases with the number of
:processors NP, there also exists a critical number of subdomains and/or processors
“beyond which storing G~QGI in a single processor of a local memory system will
not be feasible. However, note that after the Xj column matrices have been com-
:puted, G~QGI can be deleted, which frees memory for other usage, for example,
“by Salinas.

The second sequence (c) of embarrassingly parallel computations is an effec-
tive one from both computational complexity and parallel scalabilityy viewpoints.
‘The third sequence (d) is also perfectly scalable from a parallel processing view-
point. It is also computationally efficient if the size of each cluster of subdomains
is such that the total number of column matrices Xj assigned to a processor pj
is comparable to the average number of nonzero entries in a row of the factors
of the sparse matrix G~QGI. In particular, if one and only one sub domain is
assigned to each processor (NS = NP), the embarrassingly parallel steps (c) and
(d) are both numerically and parallel-wise scalable.

In summary, one can reasonably expect that the FETI method equipped with
the coarse problem solver described above will scale well on massively parallel dis-
tributed memory systems, up to a certain problem and/or machine size (number
of processors) beyond which the storage scheme and factorization method of the
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coarse matrix G~QGI will need to be revisited. Hence, a first objective of this
work is to assess this limit in the context of the solution of three-dimensional
second-order elasticity problems on the ASCI Option Red supercomputer.

3.2. The ASCI Option Red supercomputer

The ASCI initiative supports the ASCI Option Red supercomputer, a mas-
sively parallel processor with a distributed memory multiple instruction and mul-
tiple data architecture, as well as the ASCI Option Blue Mountain and ASCI
Option Blue Pacific supercomputers. The ASCI Option Red and Blue Mountain
systems run MP LINPACK, one of the computer industry’s standard speed tests
for large systems, at 1.3 and 1.6 Teraflops respectively [24].

The ASCI Option Red supercomputer, also known as the Intel Teraflops
machine, is the first large-scale supercomputer built entirely of commodity, com-
mercial, off-the-shelf components. It has 4,536 compute and 72 service nodes each
with 2 Pentium Pro processors, 594 Gbytes of real memory, and two independent
l-Terabyte disk systems. It occupies 1600 sq. ft. of floor-space (Fig. 2). The
system’s 9,216 Pentium Pro processors are connected by a 38 x 32 x 2 mesh.

Fig. 2. The ASCI Option Red supercomputer

The Pentium Pro processor runs at 200 MHz and has a peak floating-point
rate of 200 Mflops (million floating-point operations per second). It has separate
on-chip data and instruction L1 caches of 8 Kbytes each. It has also an L2 cache
of 256 Kbytes packaged with the CPU in a single dual-cavity PGA package. All
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cache lines are 32 bytes wide. The system was delivered with 128 Mbytes of
memory per node, but supports up to 256 Mbytes of memory per node. The
two processors on each node support two on-board PCI interfaces; each of these
interfaces provides 133 Mbytes/see 1/0 bandwidth. The memory subsystem is
structured as four rows of four independently controlled and sequentially inter-
leaved banks of DRAM to produce up to 533 Mbytes/see of data throughput.
Each memory bank is 72 bits wide. The router supports hi-directional band-
widths of up to 800 Mbytes/see over each of six ports. As many as four message
streams can pass on any given port and at any given time.

Two UNIX-based operating systems collectively called the Teraflops OS run
on the ASCI Option Red supercomputer and present a single system image to
the user. Compute nodes run an efficient small operating system called Cougar
[25-27]. Service nodes run POSIX 1003.1 and XPG3, and AT&T System V.3
i~nd 4.3 BSD Reno VFS [28]. The file system is concentrated on a small set of
specialized nodes that process 1/0 requests. Symbios RM20 Redundant Arrays
of Independent Disks (RAIDs) are used for secondary storage. A Symbios RM20
RAID has two bays of ten drives each and two controllers. The disk drives are
Seagate 4-GbytesBarracudas with a 3.5” form-factor [28].

9.3. Preliminary scalability results

Assessing the scalability (in the sense defined in this paper) of both the
FETI method and its massively parallel implementation described in Section 3.2
requires generating, for a given problem, a sequence of finite element models
where the total number of d.o.f. is increased proportionally to an increasing
sequence of number of processors, in order to maintain the ratio problem size over
machine size constant. Generating such a sequence of finite element models and
the corresponding sequence of mesh partitions is in general a tedious task. For this
reason, and because the numerical scalability of the FETI method has already
been established and repeatedly demonstrated for realistic structural problems
[9-14,31], we consider here two simple three-dimensional benchmark problems
that are easy to generate and manipulate for scalability studies. Both benchmark
problems correspond to homogeneous structures uniformly discretized by 8-noded
brick elements, and partitioned into cubic subdomains. For this reason, we set

Q = I for both problems. In both cases, we generate the sequence of finite
element meshes by fixing the size of each cubic subdomain, and increasing the
number of sub domains N~ to match the target number of processors NP. Hence,
we consider here only the case N~ = NP, because we consider large values of
Np ranging between 8 and 1000 processors. We fix the subdomain size to 1728
elements (12 x 12 x 12), which corresponds to the maximum subdomain size
i~ffordable by FETI for one of the two benchmark problems on a single processor
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with 128 Mbytes of memory, after the” Salinas memory requirements have been
met. The two benchmark problems considered here differ as follows

1) in benchmark problem BP1, the structure has a cubic shape and is parti-
tioned into n x n x n subdomains (Fig. 3.). It is clamped at one end, and
subjected to a distributed vertical load at the other.

2) in benchmark problem BP2, the structure has the shape of a rectangular
parallelepipeds and is partitioned into 2 x 2 x n subdomains (Fig. 4.). It is
clamped at one end, and subjected to a distributed vertical load at the other.
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In both cases, the size of the G~GI matrix increases linearly with the number
of subdomains, and the amount of fill-in per row suffered during the factorization
of this matrix grows with the number of the subdomains lying in a plane perpen-
dicular to the main axis of the structure. Hence, for benchmark problem BP1,
this amount of fill-in per row increases as 0 (n2), while for benchmark problem
BP2 it remains constant. Since the parallel implementation of the one-level FETI
method described in Section 3.2 calls for replicating the storage of G~GI in ev-
ery processor, and effectively serializes the factorization of this matrix, it follows
that problems BP1 and BP2 provide a worst-case and best case scenarios, respec-
tively, for the memory requirements and parallel scalability of the FETI method.
In particular, given that the size of each subdomain is fixed to 1728 elements, that
each processor of the target ASCI Option Red supercomputer has 128 Mbytes of
memory only, and that Salinas has its own memory requirements that must be
accommodated, the O (n2) growth of fill-in per row for the factorization of the
coarse problem associated with the benchmark problem BP 1 limits the number
of subdomains that can be considered in this investigation to N. = 1000, and
therefore limits the number of processors to NP = 1000. Of course, this number
of subdomains and/or processors can be increased by decreasing the subdomain
problem size. However, because access to more than 1000 processors on the ASCI
Red Option machine is also a practical challenge by itself, we limit here our in-
vestigation of the performance and scalability of the FETI method on the ASCI
Option Red supercomputer to a maximum number of 1000 processors.

We also note that most realistic problems are neither cube-shaped, nor
parallelepiped-shaped. The decomposition of their meshes seldom generates per-
fectly load-balanced subdomains, or subdomains with a perfect aspect ratio. How-
ever, based on the arguments presented above, we can reasonably argue that the
scalabilityy results of FETI for the benchmark problems BP 1 and BP2 provide
lower and upper bounds of the scalability results to be expected for the solution
by FETI on the ASCI Option Red supercomputer of more realistic problems.

Even though Salinas is primarily a structural dynamics implicit code, we
report here on the scalability of this software equipped with the FETI solver
for linear static analysis. This is because the complexity of solving a system of
equations arising from one step of an implicit structural dynamic (large time-step)
analysis, or from a static analysis, is essentially the same. For the optimization of
FETI to the solution of repeated systems arising form the linear dynamic analysis
or the eigenvalue analysis of a structure, we refer the reader to [10,20,21]. For both
benchmark problems, we equip FETI with the topological scaling matrix W(s).
We report in Table 1 and Table 2 the performance results obtained for problem
BP1 on a 1000-processor configuration of the ASCI Option Red supercomputer,
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using the Dirichlet and lumped preconditioners, respectively. Similarly, we report
in Table 3 and Table 4 the performance results obtained for problem BP2. In all
cases, we use the following stopping criterion

llKu-fll, <10-’ X I]fll, (19)

Table 1
Solution by FETI equipped with the Dirichlet preconditionedof the benchmark problem
13P1 on the ASCI Option Red supercomputer

l-t Np = N. Ndof Nitr Factor G~GI FETI Salinas + FETI

2 8 46,875 14 0.001 sec 209 sec 336 sec

27 151,959 20 0.006 sec 216 sec 346 sec

64 352,947 25 0.05 sec 222 sec 355 sec

:) 125 680,943 27 0.3 sec 225 sec 358 sec

k 216 1,167,051 30 1.1 sec 229 sec 365 sec

343 1,842,375 31 2.9 sec 235 sec 367 sec

6 512 2,738,019 33 5.8 sec 239 sec 380 sec
~) 729 3,885,087 33 14.9 sec 252 sec 405 sec

10 1,000 5,314,683 34 32.4 sec 275 sec 413 sec

Table 2
Solution by FETI equipped with the lumped preconditioned of the benchmark problem
13P1 on the ASCI Option Red supercomputer

n Np = N. Ndof Nitr Factor G~GI FETI Salinas + FETI

2 8 46,875 27 0.001 sec 140 sec 267 sec
:)<) 27 151,959 36 0.006 sec 148 sec 278 sec

2 64 352,947 45 0.05 sec 155 sec 288 sec

125 680,943 48 0.3 sec 157 sec 290 sec

6 216 1,167,051 51 1.1 sec 161 sec 297 sec
-7f 343 1,842,375 55 2.9 sec 167 sec 299 sec

8 512 2,738,019 55 5.8 sec 171 sec 312 sec
f) 729 3,885,087 58 14.9 sec 187 sec 340 sec

i.o 1,000 5,314,683 60 32.4 sec 216 sec 399 sec
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Table 3
Solution by FETI equipped with the Dirichlet preconditioned of the benchmark problem
BP2 on the ASCI Option Red supercomputer

n Np = N, Ndo~ Nitr Factor G~GI FETI Salinas + FETI

2 8 46,875 14 0.001 sec 209 sec 336 sec

7 28 159,375 18 0.007 sec 214 sec 343 sec

16 64 316,875 18 0.018 sec 215 sec 354 sec

31 124 699,375 18 0.038 sec 216 sec 347 sec

54 216 1,216,875 19 0.073 sec 216 sec 350 sec

86 344 1,936,875 19 0.131 sec 217 sec 351 sec

128 512 2,881,875 19 0.203 sec 218 sec 354 sec

182 728 4,096,875 19 0.298 sec 218 sec 355 sec

250 1,000 5,626,875 19 0.414 sec 222 sec 360 sec

Table 4
Solution by FETI equipped with the lumped preconditioned of the benchmark problem
BP2 on the ASCI Option Red supercomputer

n Np = N. Ndof Nat, Factor GfGI FETI Salinas + FETI

2 8 46,875 27 0.001 sec 140 sec 267 sec

7 28 159,375 30 0.007 sec 142 sec 271 sec

16 64 316,875 31 0.018 sec 143 sec 282 sec

31 124 699,375 31 0.038 sec 143 sec 274 sec

54 216 1,216,875 31 0.073 sec 144 sec 278 sec

86 344 1,936,875 31 0.131 sec 144 sec 278 sec

128 512 2,881,875 32 0.203 sec 146 sec 282 sec

182 728 4,096,875 33 0.298 sec 147 sec 284 sec

250 1,000 5,626,875 34 0.414 sec 151 sec 289 sec

The performance results reported in Tables 1-4 show that

● the FETI method equipped with the Dirichlet preconditioned achieves nu-
merical scalability (constant asymptotic iteration count) for both benchmark
problems BP1 and BP2.
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* when equipped with the lumped preconditioned, the FETI method achieves
numerical scalabilityy for problem BP2. It also exhibits a reasonable numer-
ical scalability for problem BP1. For both benchmark problems, the FETI
method performs on average 1.6 times more iterations when equipped with
the lumped preconditioned than when equipped with the Dirichlet precondi-
tioned. However when equipped with the lumped preconditioned, the FETI
method is on average 1.3 times faster (problem BP 1) and 1.5 times faster
(problem BP2) than when equipped with the Dirichlet preconditioned. This
demonstrates the computational efficiency of the lumped preconditioned for
the solution of second-order elasticity problems by the FETI method.

● for problem BP1, the cost of the factorization of the matrix G~GI — which
is the only sequential operation performed by the current implementation
of FETI on massively parallel local memory machines — is shown to in-
crease dramatically with the number of the subdomains and processors, as

N7/3), which is consistent with the O (n2) (n = N~’3) growth ofo (IVY3 = p
the fill-in per row predicted for the factorization of this matrix for problem
BP1. Nevertheless, the results reported in Table 2 show that for the bench-
mark problem BP1, the FETI method equipped with the lumped precondi-
tioned solves 5,314,683 equations in 216 seconds CPU on a 1000-processor
configuration of the ASCI Option Red supercomputer.

● for problem BP2, the CPU time consumed by the sequential factorization of
the coarse problem of the FETI method is reported to grow only linearly with
the number of subdomains. This is consistent with our analytical prediction
that is based on the fact that the size of G~GI grows linearly with the
number of subdomains, and the fact that for problem BP2, the fill-in per
row suffered during the factorization of this matrix is independent of the
number of subdomains. For the benchmark problem BP2, the FETI method
equipped with the lumped preconditioned solves
processors in 151 seconds.

In order to quantify the scalability of the current
method on the ASCI Option Red supercomputer,
definition of the speed-up

5,626,875 equations on 1000

implementation of the FETI
we introduce the following

8XT8 Nciof~~
Sp =

TN, x Nciof8
(20)

where T8 and TNP denote respectively the CPU timings corresponding to 8 and
.~P processors, and Ndof, and NdOf~~ denote respectively the sizes (in d.o.f.)
of the global problems corresponding to 8 and N~ sub domains. Here, the case
.NP = 8 is taken as a reference point. Note that the above definition of the
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speed-up is a strict one: it accounts for both concepts of numerical and parallel
scalabilityy. It assesses the combined performances of the given algorithm, its
parallel implementation, and the parallel hardware on which this algorithm is
executed. For the benchmark problems BP1 and BP2, the speed-ups achieved by
the FETI method are reported Fig. 5 for the case of the Dirichlet preconditioned,
and in Fig. 6 for the case of the lumped preconditioned.
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Fig. 5. Scalability results of the FETI method equipped with the
Dirichlet preconditioned on the ASCI Option Red supercomputer
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From Fig. 5, we conclude that when equipped with the Dirichlet precondi-
tioned, the one-level FETI method implemented on a 1000-processor configuration
of the ASCI Option Red machine, as described in Section 3.1 can be expected to
achieve for realistic second-order elasticity problems a speed-up in the range of
700 to 900, and therefore an efficiency (speed-up per processor) ranging between
70% and 90’ZO. The lower bound of this trend for efficiency suggests that for
NP >1000, maintaining this level of speed-up will require the parallelization of
the factorization of the matrix G~GI of the coarse problem in order to address
the effect of Amdahl’s law.

4. Highly heterogeneous structural problems

Benchmark
mesh partitions

problems BP1 and BP2 are homogeneous problems, and their
are characterized by perfect subdomain aspect ratios. This ex-
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plains the relatively low iteration counts reported in Tables 1–4 for their solution
by the FETI method.

The structural problems targeted by the ASCI initiative are typically het-
erogeneous, with some material properties differing by as much as five orders of
magnitude. For such problems, FETI delivers the same parallel scalability as for
the benchmark problems BP 1 and BP2. However, maintaining the numerical scal-
ability of the FETI method for highly heterogeneous structural problems requires
equipping it with different choices for Q and W(s) than the identity and topo-
logical scaling matrices, respectively. For example, it was argued in [9] that for
heterogeneous structural problems, Q must be chosen as a matrix that captures
the different stiffnesses of the various subdomains. It was also shown in [9] that the

_~–1

two specific choices QD = FI
_~-l

and QL = FI not only meet this requirement,
_~-1 –D-lpT(~;-j =

but also offer a computational advantage because P(FI )FI

FI
_L–l _L–l ~ —L-l–D-lpT(~:-j, a

nd P(FI )FI P~(~~-l ) = ~~-1 P (F1 ). Subsequently,
it was verified numerically in [18] that for highly heterogeneous model problems,
these two specific choices of Q maintain indeed the numerical scalability of the
FETI method with respect to both the mesh size h and subdomain size H.

A variational approach for tuning FETI to the solution of heterogeneous
structural problems was also proposed in [32], then simplified in [19] to provide
computational efficiency. This alternative approach does not focus on the projec-
tor P, and therefore does not affect the choice of the matrix Q. It focuses on the
scaling matrix W(s), and proposes a “superlumped stiffness” scaling procedure
rather than the topological one described in Section 2. The variational theory
exposed in [19] suggests that an efficient scheme for accelerating the convergence
of the FETI method applied to the solution of highly heterogeneous problems is
to construct the diagonal matrix W(’) as follows. If A(i) is the i-th component
of the Lagrange multiplier vector viewed by subdomain o(s) and connecting the
interface displacement d.o.f. u(s) (js ) in C?(s) to the interface displacement d.o.f.
u(q)(jq) in the neighboring subdomain !J(9), then W(s)(z) is set to

(21)

where ~(fl(s) ) denotes the set of neighbors of fl(s), k~~~tis the diagonal coefficient

of the subdomain stiffness matrix K f~) associated with the displacement d.o.f.
U(l)(jz), and jl is such that the displacement d.o.f. u(z)(jl ) and the displacement
d.o.f. u(s)(j5) correspond to the same displacement d.o.f. of the global finite
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element model. Note that if all the subdomains in JV(fl(s) ) have the same material
and discretization properties as subdomain fl(s), then W(s)(i) = 1/m (see Section
2), which shows that the topological scaling overviewed in Section 2 is a particular
case of the superlumped stiffness scaling summarized in Eq. (21). In [19], using
a set of model problems and a few realistic ones, it was shown that the FETI
method equipped with the stiffness scaling matrix W(s) specified in Eq. (21) is
numerically scalable with respect to both the problem and mesh partition sizes.

The superlumped stiffness scaling (21) does not increase neither the com-
putational complexity nor the storage requirements of the FETI method by any
significant amount. Therefore, it can be invoked by default. On the other hand,

_*–l _~–1
equipping the FETI method with QD = FI or QL = F1 increases the com-
putational complexity and storage requirements of the projection steps in FETI
by a small percentage. Hence, a first objective of this section is to investigate
when and whether equipping the FETI method not only with the stiffness scaling
procedure (21) but also with a matrix Q # I is worthwhile.

Furthermore, since both the Q- and W(s) -approach address in an explicit
manner only the structural heterogeneities viewed by the subdomain interfaces, a
second objective of this section is to investigate whether the subdomain interfaces
should include all the mesh boundaries separating the different materials of a
heterogeneous finite element model, which would affect the mesh partitioning
strategy.

Finally, a third objective of this section is to devise a general strategy for
optimizing the solution of highly heterogeneous structural problems by the FETI
method.

~.1. Findings and recommendations

In our numerous experimentations with the solution of heterogeneous prob-
lems by the FETI method, we have observed the following

01) in addition to QD and Q L, the following matrix should be considered

N,
SL _Q– x [

W(S)B(S) 0 0
0 diag(K$)) 1

@TW(S)

S=l

(22)

This matrix is a diagonal (lumped) approximation of the lumped precondi-
tioned. Hence, we refer to it as the superlumped matrix QSL, which explains
the SL superscript. Equipping the projector P with the superlumped ma-
trix QSL can be interpreted as preconditioning the coarse problem by the
superlumped stiffness scaling procedure (21). This matrix is inexpensive to
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T ‘L GI has the same sparsity patterncompute and store, and is such that GI Q
— and therefore the same memory requirements — as G~GI.

02) if all the subdomain interfaces separate regions with similar high jumps in the
material properties, then the FETI method equipped with the superlumped
stiffness scaling procedure (21 ) performs well, and converges even faster than
when the problem is homogeneous. We have observed this behavior of FETI
even for mesh partitions with poor subdomain aspect ratios.

03) if some but not all of the subdomain interfaces separate regions with similar
high jumps in the material properties, then FETI exhibits a good convergence
when equipped with the superlumped stiffness scaling procedure (21) and
Q #I, and when the mesh partition has good subdomain aspect ratios. By
Q #I, we mean here Q = QD, or Q = QL, or Q = QSL.

Based on these observations, some of which are illustrated in the next section,
we make the following recommendations for the solution of highly heterogeneous
structural problems by the FETI method

RI) by default, use the superlumped stiffness scaling matrix (21), and equip
FETI’s projector P with Q ‘L (10). This improves the convergence of FETI
at almost zero additional storage and computational cost.

R2) if possible, design a mesh partition where all subdomain interfaces are along
boundaries between materials with similar jumps in their properties. Unfor-
tunately, this may be possible only for cyclic structures, or academic prob-
lems where the number of materials matches the desired number of subdo-
mains.

R3) in the general case, partition the mesh along the material boundaries, then
refine the obtained partition to generate the target number of subdomains
N.. If, because of topological reasons, this process can be expected to create
subdomains with poor aspect ratios, modify this strategy as follows. First,
re-organize the material groups into a smaller number of clusters each con-
taining materials with relatively similar properties. Then, decompose the
mesh along the boundaries of the clusters, and refine the obtained mesh par-
tition to generate the desired number N. of balanced subdomains. If needed
for ensuring good subdomain aspect ratios, include in a cluster a neighboring
mat erial even if it has significantly different properties.

4.2. Justifications

In order to highlight the importance of the recommendations formulated
above, we consider here the stress analysis of the heterogeneous cantilever struc-
ture shown in Fig. 7. This structure has a length Lz = 4, a depth Lv = 1, a
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thickness th = 0.01, and a Poisson ratio v = 0.3. It is constructed by gluing
together 8 slices of 3 different materials Ali in the following sequence: A41, Alz,
A.13,A4z, Ml, IM2, M3, M2 (Fig. 7). The Young moduli Ei of the materials ~z

are such that

El = 1000 x 132 and 132 = 100 x Es = 2.05 x 1011 (23)

Hence, 13~”Z/Z@” = 105.

Ml M2 M3 M2 Ml M2

NL
4

Fig. 7. A heterogeneous cantilever problem

We uniformly discretize this structure by 80 x 20 plane stress elements, and
generate several M x N mesh partitions with different characteristics. For each
mesh partition, we solve the corresponding system of equations by the FETI
method equipped with the lumped and Dirichlet preconditioners, and with Q = I,

Q = QD, Q = QL, and Q = QSL. In all cases, Weuse the superlumped stiffness
scaling procedure (21). We adopt the stopping criterion (19) and report the
obtained iteration counts in Table 5.
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Table 5
Iteration count for FETI applied to the solution of the heterogeneousproblem graphi-
cally depicted in Fig. 7

Lumped preconditioned Dirichlet preconditioned

N, (M X N) AR I SL
Q Q’ I QSL QD

4(4X1) 1 18 17 17 55 4
1

8(8X1) 1/2 23 23 23 77 6
r

16 (16 X 1) 1/4 I 43 42 41 I 19 17 22
I

16 (8 X 2) 1 34 21 19 22 15 15

40 (40 x 1) 1/10 113 112 112 82 81 81

40 (8 X 5) 1/2 68 37 35 53 25 27
t 1

64 (4 X 16) 1 66 20 19 52 14 17

From Fig. 7 and the results summarized in Table 5, the reader can check
that

●

●

●

●

for both 4 x 1 and 8 x 1 mesh partitions, all subdomain interfaces separate re-
gions with high jumps of Young’s modulus. In both cases, the FETI method
performs well, particularly when equipped with the Dirichlet preconditioned,
which is in agreement with the general observation 02.

both 16 x 1 and 8 x 2 mesh partitions have the same number of subdomains.
In both cases, only half the subdomain interfaces separate regions with high
jumps of Young’s modulus. However, the subdomains of the 8 x 2 mesh
partition have a better aspect ratio (AR = 1) than the subdomains of the
16 x 1 decomposition (AR = 1/4). This explains why FETI performs better
for the 8 x 2 mesh partition than for the 16 x 1 decomposition.

similarly, both 40 x 1 and 8 x 5 mesh partitions have the same number of
sub domains, same number of homogeneous interfaces, and same number of
heterogeneous interfaces. However, the subdomains of the 8 x 5 decomposi-
tion have a better aspect ratio (AR = 1/2) than those of the 40 x 1 mesh
partition (AR = 1/10). Consequently, FETI performs better for the 8 x 5
mesh partition than for the 40 x 1 decomposition.

the 16 x 4 mesh partition is another example of a mesh partition with both
homogeneous and heterogeneous subdomain interfaces. For this decomposi-
tion and Q # I, the FETI method performs as well as for the 8 x 2 mesh
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●

●

●

●

partition, which is also characterized by a uniformly perfect subdomain as-
pect ratio.

in all cases, the FETI method equipped with QSL performs almost as well
as when equipped with QD or QL, and in some cases it performs even better
(because of variations in the initial residual). In a few cases the FETI method
equipped with Q # I performs much better than when equipped with Q = I.
These two observations are consistent with the general observations 01 and
03.

the Dirichlet preconditioned is needed when the mesh partition has poor
subdomain aspect ratios.

Q # I is justified and needed when the mesh partition has heterogeneous
crosspoints.

when the recommendations formulated in the previous section are followed,
FETI exhibits a reasonable numerical scalability with respect to the number
of subdomains.

Next, we consider the case of a realistic ASCI-type heterogeneous structural
problem, and illustrate in particular the importance of recommendation R3.

5. Application to the analysis of a mockup reentry vehicle

Here, we report on the performance of the FETI method applied to the
finite element analysis of a mockup reentry vehicle (RV) on the ASCI Option
Red supercomputer.

An RV can be expected to experience different loadings in normal and hostile
environments. Its structural response during vibration is usually predicted by a
modal analysis, while its shock response is usually simulated by a direct transient
analysis. The predictive computation of responses at component levels requires a
detailed finite element model of the full body as well as individual components.

We focus on a large-scale finite element model of a mockup RV with 330,300
elements, and 334,759 nodes. With slightly more than one million d.o.f., this
model requires significant computational power, and provides a reasonable bench-
mark for massively parallel computational platforms. All elements of the mesh
are either 8-noded brick or 6-noded wedge elements. Decomposing this mesh into
subdomain with good aspect ratios is a difficult task because the RV shown in Fig.

8 has a thin wall tubular-like overall structure. Hence, the finite element model
considered herein poses serious computational challenges to substructure-based
methods.

There are eight different materials that are scattered within the RV model
(Fig. 8), and their Young’s moduli vary from 102 psi to 3 x 107 psi. Hence, this RV
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structure is a highly heterogeneous one with ~~aZ /Emin = 3 x 105, and therefore
can be expected to challenge any iterative solver. For the same reasons described
in Section 3.3, we consider here only the stress analysis of this RV model using
Salinas equipped with the FETI solver.

The results of the analysis performed in Section 3.3 (see Tables 1–4) suggest
that the solution by FETI of this million d.o.f. problem requires (the memories of)
at least 216 processors of the ASCI Option Red supercomputer. For this reason,
we consider partitioning the given RV mesh into 250 subdomains and assigning
each subdomain to one processor. We also consider partitioning this mesh into
500 subdomains for computations on 500 processors, in order to provide at least
one example of the parallel scalability for a fixed problem size of our current
massively parallel implementation of the FETI method. More specifically, in order
to illustrate recommendation R3, we consider three different mesh decomposition
strategies

● partitioning the mesh as is, with particular attention to the subdomain aspect
ratio using the optimizers described in [15,16].

● partitioning the mesh along its material boundaries, then refining the ob-
tained mesh partition to generate the requested number of subdomains. In
that case, the subdomain aspect ratio optimizer [15,16] is applied locally,
within each material group.

● re-organizing all the material groups of the RV finite element model into two
clusters and partitioning each cluster independently from the other.

Furthermore, our mesh decompose [29] automatically post-processes each
mesh part ition to remove any internal mechanism generated by the partitioning
algorithm, in order to allow a robust evaluation of the rigid body modes and
generalized inverse of the stiffness matrix of each floating subdomain [33]. For
this reason, and because of other issues associated with the clustering process,
the number of generated subdomains N. may differ from the requested number
of subdomains N~eg, usually by less than 5 !ZO.

Following recommendation RI, we equip FETI with the superlumped stiff-
ness scaling procedure (21). However, as stated earlier, the topology of the RV
model shown in Fig. 8 is such that mesh partitions with good subdomain aspect
ratios cannot be reasonably expected. For this reason, we employ the Dirichlet
preconditioned. Furthermore, we equip FETI’s projector P with Q = QD, be-
cause the three other choices discussed in this paper turned out to be ineffective.
We monitor the convergence of FETI with the stopping criterion (19), and report
in Table 6 the obtained performance results.
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Fig. 8. Mockup reentry vehicle: each color indicates a different material

Table 6
Solution by FETI on the ASCI Option Red supercomputer of the RV problem with
1,004,277 d.o.f. (Fig. 8)

Nyq Np = N, Type Nit. Factor G~QDGI FETI Salinas + FETI

i50 252 Regular 290 1.8 sec 378 sec 474 sec
250 251 Material 463 1.7 sec 563 sec 657 sec
~50 257 Cluster 221 1.5 sec 261 sec 350 sec
500 513 Regular 325 8.8 sec 167 sec 219 sec

500 505 Material 584 10.6 sec 443 sec 502 sec
500 517 Cluster 276 11.6 sec 162 sec 218 sec

For both requested numbers of subdomains, the following trend can be ob-
served

● the FETI method performs better on the regular mesh partition than on the
material based mesh partition. This can be explained as follows. Many of
the material interface boundaries run parallel to the longitudinal axis of the
RV, within its thin wall structure. Consequently, each material group defines
a substructure with a poor aspect ratio. Partitioning this substructure into
tens of subdomains generates subdomains with poorer aspect ratios than
partitioning the original mesh.
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● on the other hand, the FETI method performs much better for the cluster
based decomposition, which highlights the relevance of recommendation R3.
Again, we remind the reader that this notion of clustering is motivated here
by topological reasons and the objective of generating subdomains with as
good an aspect ratio as possible.

For the cluster based mesh decompositions, the performance results reported
in Table 6 demonstrate a reasonable numerical scalability of the FETI method
for this highly heterogeneous problem. They also show that the CPU time of the
FETI method is reduced by a factor equal to 1.6 when the number of processors
is increased from 257 to 517. This corresponds to an efficiency of 8070, which
demonstrates a good parallel scalability of our implementation of FETI on the
ASCI Option Red supercomputer.

Finally, from Table 1 and Table 6, the reader can observe that the perfor-
mance of the FETI method for this heterogeneous RV problem is consistent with
that of the BP1 problem with 216 subdomains.

6. Closure

We have presented an initial implementation of the FETI method on the
ASCI Option Red supercomputer, reported on its incorporation within the Sali-
nas structural dynamics code, and its application to the solution of highly hetero-
geneous problems. This initial implementation of FETI on a massively parallel
distributed memory system is characterized by (a) the redundant storage of the
sparse matrix G~QGI of the FETI coarse problem in every processor, (b) the
serialization of the factorization of this matrix, but (c) the perfect and efficient
parallelization of the subsequent forward and backward solves associated with
this matrix via an inverse matrix approach. For up to 1000 subdomains and 1000
processors with 128 Mbytes each, this implementation delivers a good scalabil-
ityy. For a larger number of subdomain and processors, it must be revisited to
distribute the storage of the sparse matrix of the coarse problem among a group
if not all of the processors, and perform in parallel the factorization of this ma-
trix. For heterogeneous structural problems, we recommend equipping FETI by
default with the superlumped stiffness scaling procedure fully described in [19],
and the superlumped version (22) of the heterogeneous projector presented in
[9]. However, some problems may require equipping FETI’s projector with the
Dirichlet QD matrix. We also recommend generating mesh partitions whose in-
terface boundaries include the mesh material boundaries. If doing so prevents the
generation of subdomains with good aspect ratios, we recommend clustering the
materials into groups with different but relatively similar properties before parti-
tioning the mesh. When these recommendations are followed, the FETI method
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achieves a good combined numerical/parallel scalability for highly heterogeneous
structural problems.
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