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ABSTRACT 

We present a new class of optimization methods that incorporates a Parallel Direct 
Search (PDS) method within a trust-region Newton framework. This approach combines 
the inherent parallelism of PDS with the rapid and robust convergence properties of Newton 
methods. Numerical tests have yielded favorable results for both standard test problems 
and engineering applications. In addition, the new method appears to  be more robust in the 
presence of noisy functions that are inherent in many engineering simulations. 
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1 Introduction 
Optimization of functions derived from the modeling and simulation of some physical process 
constitutes an important class of problems in many engineering and scientific applications. 
Typically, the computer simulation entails the solution of a system af nonlinear partial dif- 
ferential equations (PDE) in two or three dimensions. Other applications include particle 
dynamics simulations or problems in chemical kinetics. The main characteristic of these 
types of problems is that the function evaluation is computationally expensive and domi- 
nates the total cost of the optimization problem. Depending on the nature of the application 
and the solution method employed, there can also be noise associated with the evaluation 
of the objective function. This noise can usually be reduced, but only at the cost of making 
the computation time even greater. In many of these applications, derivative information 
is also not available or must be computed using finite differences, thereby generating noisy 
gradients. Fortunately, the dimension of the optimization problem in many of these optimal 
design problems is small to  medium (usually on the order of tens of parameters). In this 
study, we will concentrate on the development of parallel unconstrained optimization algo- 
rithms for the solution of these types of problems on small to  medium scale shared memory 
processors (SMP’s), where the number of available processors is comparable to the number of 
optimization parameters. The rationale for this decision is that although massively parallel 
computers are available, the majority of computational power in most industrial or scientific 
settings consists of small to  medium scale clusters of SMP’s or networks of workstations 
(NOW’S) that can be used in a similar capacity. 

There have been many attempts at parallelizing nonlinear optimization methods. In 
the area of Newton methods, one of the earliest attempts at parallelization was the work of 
Straeter [17] , who developed a parallel rank-one updating formula for the Hessian approxima- 
tions used in variable metric methods. This formula was later extended by Laarhoven [12] to 
more general updating formulas. Byrd, Schnabel and Shultz [2] also proposed parallel Quasi- 
Newton methods based on speculative gradient and Hessian evaluations. Schnabel [16] gave 
an excellent review of the challenges and limitations in parallel optimization. In that review, 
Schnabel identified three major levels for introducing parallelism: 1) parallelize the function, 
gradient , and constraint evaluations, 2) parallelize the linear algebra, and 3) parallelize the 
optimization algorithm at a high level. 

In this study, we choose to focus on the third option due to the characteristics of the 
problems mentioned above. In particular, the first option is not typically available to us 
because for many situations we do not have access to the source code for the function or the 
constraints. In addition, the dimension of the optimization problems of interest is usually 
small, and therefore parallelizing the linear algebra would not yield any benefits. 

The third option, that of parallelizing optimization at a high level, has recently received 
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more attention. Some attempts that fit into this category include methods such as parallel 
direct search methods [7], genetic algorithms [Ill, and simulated annealing [lo]. These 
methods are inherently parallel and extremely popular in engineering optimization. Although 
direct search methods can be a powerful tool, they suffer from slow convergence and thus 
may require many function evaluations. In a setting where each function evaluation may 
take several CPU hours to  compute this is highly undesirable. 

Newton-based methods, on the other hand, have good convergence properties, but there 
are few options for parallelizing a typical Newton method at a high level. For the purposes 
of this paper, we will assume that the gradient of the objective function is not available 
and that finite differences are used to compute any necessary derivative information. Since 
this calculation is easily parallelized, we will not consider this option. Another approach to 
parallelization is the work by Phua and Zeng [15] in which they use a multiple line search, 
multiple direction algorithm to introduce parallelism into a Newton method. However, it is 
not clear how robust a line search method would be in a situation where the function and 
gradient are noisy. Carter [3] has addressed the issue of inexact gradients for another class 
of algorithms known as trust-region methods and has given conditions under which these 
algorithms will converge. In a separate paper, Carter presented various numerical results [4] 
for this class of algorithms. 

In this paper, we consider a new class of methods that combines the parallel direct 
search method and the trust-region method to produce a new class of algorithms that takes 
advantage of the best properties of both algorithms. In particular, we will show that the rapid 
convergence rates typical of Newton type methods is preserved while gaining the advantage 
of parallelism inherent in the parallel direct search methods. In section 2, we describe the 
new class of algorithms and consider their convergence properties in section 3. In section 4, 
we give numerical results from a set of test problems and an application in optimal design. 
We conclude in section 5 with a summary and a brief discussion of future research directions. 

2 The Trust-Region PDS Algorithm 
Before describing the new class of algorithms, we first give a brief overview of the standard 
trust-region method and the parallel direct search (PDS) method due to Dennis and Torczon 
[7]. In each iteration of a trust-region method, a quadratic model of the objective function, 
f, is formed, and a region in which the model is trusted to approximate the actual function 
accurately is determined. A trial step is then computed by solving the following subproblem: 
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where x, is the current point, s is the step, g(x,), is the gradient of f at the current point, 
H, is the current Hessian approximation, and 6, is the size of the trust region. We will refer 
to this as the trust-region subproblem. In a typical implementation, the step s will be a step 
in the steepest descent direction, the Newton direction, or some convex combination of the 
two. The trust-region method is illustrated in Figure 1. 

Figure 1: Standard trust-region method 

The parallel direct search algorithm belongs to  a class of optimization methods that do 
not compute derivatives. The PDS algorithm can be briefly described as follows. Starting 
from an initial simplex So, the function value at each of the vertices in SO is computed and 
the vertex corresponding to  the lowest function value, wo, is determined. Using an underlying 
grid structure, So is reflected about w0 and the function values at the vertices of this rotation 
simplex, S,, are compared against the function value at 210. If one of the vertices in S, has 
a function value less than the function value corresponding to  WO, then an expansion step to 
form a new simplex, S,, is attempted in which the size of S, is expanded by some multiple, 
usually 2. The function values at the vertices of S, are compared against the lowest function 
value found in S,. If a lower function value is encountered, then S, is accepted as the starting 
simplex for the next iteration; otherwise S, is accepted for the next iteration. If no function 
value lower than the one corresponding to wo is found in S,, then a contraction simplex is 
created by reducing the size of So by some multiple, usually 1/2, and is accepted for the 
next it eration. 
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Because PDS only uses function comparisons, it is easy to  implement and use. Since 
the rotation, expansion, and contraction steps are all well determined, it is possible to pre- 
compute a set of grid points corresponding to the vertices of the simplices constructed from 
various combinations of rotations, expansions, and contractions. Given this set of grid points, 
called a search scheme, the PDS algorithm can compute the function values at all of these 
vertices in parallel and determine the vertex corresponding to the lowest function value. 
The number of points used in the search scheme is referred to  as the search scheme size and 
it usually is adjusted to be at least equal to the number of processors available. Figure 2 
demonstrates a typical PDS iteration. 

Figure 2: PDS method 

Both methods have advantages and disadvantages, as described in Section 1. In order to 
combine the strengths of these methods, we propose a new class of algorithms which uses the 
PDS method within a trust-region framework. This type of algorithm, which we will refer 
to as TRPDS, is illustrated in Figure 3 and is described below. The controlling framework 
is the same as that for standard trust-region algorithms, but the method of computing the 
new step is different. Rather than solving the trust-region subproblem, the TRPDS method 
solves 

min f(x,+s) 
s. t .  llsllz 5 26,. 
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We will refer to this as the PDS subproblem. There are a few important points to note. The 
first is that the actual objective function is being minimized as opposed to  a quadratic model 
of the objective function. Also, this subproblem is not solved to optimality; only a small 
amount of decrease is required from PDS. Finally, the step length is allowed to be twice the 
size of the trust region. This is to allow for the possibility of taking twice the Newton step, 
as is sometimes done in the Newton framework. 

Figure 3: TRPDS method 

An overview of the TRPDS algorithm appears below, followed by a discussion of the 
critical steps. 

4 
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Algorithm 1. TRPDS 
Given X O ,  go, Ho,  60, and 7 E ( 0 , l )  
for k = 0,1, .  . . until convergence do 

1. Solve H k s ~  = -gk 
for i = 0 , 1 , .  . . until step accepted do 

2. Form an initial simplex using S N  

3. Find an approximate solution si to  (2) using PDS 

if pi > 7 then 

else 

end if 
7. Update 6 

4. Compute pi = ( f ( X k  + sz) - f ( X k ) ) / + k ( S i )  

5. Accept step and set xk+1  = x k  + si 
6 .  Reject step 

end for 
end for 

Here we use the notation, gk = g(xk), and H k  = H ( x k ) .  There are several points to 
consider within this framework. The initial simplex formed in Step 2 needs to be chosen 
carefully. While there is a lot of freedom in the choice of the initial simplex, it will have 
an impact on the solution to (2) and on the performance of the algorithm. There is also a 
question as to  how accurately we should solve (2). In many applications it may be reasonable 
to ask for only a small fraction of decrease in the function since each function evaluation is so 
expensive. This also has a bearing on the decision to accept or reject the new step. Finally, 
the updating of the trust region must be addressed within the context of this framework. In 
the following sections, we address each one of these issues. 

2.1 Choosing the initial simplex 
In Step 2 of the TRPDS algorithm we require the formation of an initial simplex. The 
choice of this simplex is important to the performance of the PDS algorithm and deserves 
careful consideration. There are three points that must be included in the simplex: the 
current point, the Cauchy point, and the Newton point. The Cauchy point is defined to 
be the minimizer of the quadratic model along the steepest descent direction. Likewise, we 
define the Newton point, s N ,  to be the minimizer of the quadratic model along the Newton 
direction. The current point must be in the simplex so that PDS can determine whether or 
not it has found a descent direction. The Cauchy point is required to ensure convergence of 
the algorithm. Finally, the Newton point is necessary to allow for the possibility of rapid 
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convergence in the limit. In practice, all three of these points are not always included, but 
instead related points are used. A discussion of these substitutions follows. 

Recall that in the standard trust-region algorithm, the step length is limited by the trust 
region. When the Cauchy point or the Newton point falls outside of the trust region, it is 
projected onto the trust region. As we are seeking to preserve as much of the trust-region 
framework as possible, the construction of the initial simplex includes similar features. There 
are three different scenarios that must be addressed. 

1. Both the Cauchy point and the Newton point are inside the trust region. This case 
is straightforward. The Cauchy point and the Newton point are used in the initial 
simplex. 

2. The Cauchy point is inside the trust region, and the Newton point is outside the trust 
region. The Cauchy point is used in the initial simplex. The dogleg point ( [ 6 ] ,  p. 139) 
is computed and replaces the Newton point in the initial simplex. 

3. Both the Cauchy point and the Newton point are outside the trust region. Both points 
are projected onto the trust region, and the resulting points are used in the initial 
simplex. 

For a problem of dimension n, PDS requires the initial simplex to have n+ 1 vertices. We 
have described the selection of only three. The question of how to pick the remaining n - 2 
vertices remains. While there are many logical ways to choose these points, the only real 
restriction on them is that they be chosen such that the initial simplex is not degenerate. 
Our current implementation uses n - 2 vertices from a right angle simplex. This simplex 
can be generated by defining the remaining vertices to  be a fixed distance in each of the n 
coordinate directions from the Newton point (or its projection). The distance from each of 
these vertices to the Newton point is the same as the radius of the trust region. 

By constructing the simplex in the manner described here, there are two situations in 
which it may be degenerate. One case can arise in the first iteration of the trust-region 
method. If the initial Hessian is a multiple of the identity, then the Newton direction and 
the Cauchy direction will be the same, so the simplex needs to  be constructed in a slightly 
different manner in the first iteration. We use the current point, the Newton point, and 
n - 1 of the vertices from the right angle simplex around the Newton point. The distance 
between the Newton point and the remaining points is the same as the radius of the trust 
region. The other case of degeneracy arises if the edges of the simplex are badly scaled. This 
is easily corrected by 
Note that this-allows 
the Cauchy edge. 

re-scaling all of the edges to be the same length as the Newton edge. 
longer steps than if all edges were re-scaled to be the same length as 
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2.2 Solving the PDS subproblem 
One way to think about the TRPDS algorithm is to imagine using an optimization algorithm 
within an optimization algorithm. As such, the PDS method needs algorithmic parameters 
in order to  solve the PDS subproblem. The initial simplex just described is only one of these 
parameters. The PDS method evaluates the function at a set of pre-determined reflection, 
contraction, and expansion points in order to determine a trial step. Recall, that the search 
scheme for the PDS method can be determined ahead of time and need only be generated 
once. However, during the Optimization phase, the PDS method must determine how many 
points in the search scheme to evaluate at each iteration. One possible choice in a parallel 
setting, is to set this number equal to  the number of processors that are available. PDS also 
needs to know the size of the trust region, as that constrains the size of the step. In practice, 
we relax the trust-region constraint in order to allow for the possibility of taking twice the 
Newton step. Another constraint is that the step taken must satisfy a fraction of Cauchy 
decrease condition according to some model; the implications of using various models are 
considered in section 3. 

Since the PDS subproblem is not solved to optimality, we use three criteria to determine 
when to return a new step. The first is a simple decrease requirement. If a point with 
a function value that is less than some large fraction of the function value at the current 
point is found, then PDS returns the associated step. If such a step is not found, then 
PDS returns when it has exceeded either the maximum number of function evaluations or 
the maximum number of iterations allowed. In our implementation, we set the maximum 
number of function evaluations to be the same as the search scheme size. This usually limits 
PDS to one iteration. However, vertices of the simplex that are outside of the trust region are 
not evaluated (because they are infeasible); thefore PDS may require additional iterations to  
reach the maximum number of function evaluations so we also limit the number of iterations. 
Currently, we use an upper bound of 1-3 iterations, though we find that this bound is not 
usually needed in practice. 

2.3 Acceptance/Rejection of step 
Once a step has been computed, it is necessary to  determine whether or not it is acceptable. 
This is handled by the trust-region framework. If there is sufficient decrease, then the 
step will be accepted. Otherwise, the step is rejected. In a standard trust-region method, 
sufficient decrease is determined by computing f k  as given in Step 4 of the algorithm and 
comparing it to some tolerance that depends on the computational expense of the function. 
If it is greater than the tolerance, then the decrease is sufficient.. There are two situations 
that arise in the TRPDS algorithm that require minor modifications to  this scheme. It is 
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possible that PDS will find no decrease, and thus return a step of zero length. In this case, 
f k  is not computed, and the step is rejected immediately. Because PDS minimizes the actual 
function and not the quadratic model, it may compute a step for which the model predicts 
increase. Again, P k  is not computed, but the step is accepted since there is reduction in the 
actual function. 

2.4 Updating the trust region 
The procedure for updating the trust region is based on the value of p and on the length of 
the computed step. At each iteration, the trust region is updated as follows: 

Here E is the longest edge of the final PDS simplex, and 71,772, 73 E (0 , l ) .  Notice that when 
the trust-region size is reduced, the radius of the new trust region may not be any larger 
than E ,  thus eliminating the possibility of re-checking points that are already known to be 
unacceptable. In our algorithm, we also impose a maximum trust region that is allowed at 
any iteration. 

3 Convergence Results 
Since our new algorithm can be viewed as a special case of a trust region algorithm the stan- 
dard convergence results can be applied. However, it is interesting t o  note that Algorithm 1 
can be viewed as a specific instance of the more general framework for approximation models 
described in [I]. Within that framework the PDS subproblem (2) is a subcase of the approx- 
imation models proposed in that report. As such, if we make the standard assumptions used 
for the classical trust-region algorithms and the approximation model satisfies two additional 
conditions described in [l], then convergence for the new algorithm is easy to prove. 

In particular, we must assume that the sequence of iterates satisfies a condition commonly 
known as fraction of Cauchy decrease. That is, there exist constants, ,8 > 0 and C > 0, 
independent of k ,  for which the step s k  taken at iteration k satisfies 
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where a k  denotes the model being used to approximate the objective function. In addition, 
the approximation model, a k ,  used within the trust-region framework must also satisfy the 
following two conditions: 

Theorem 3.1 Assume that f is uniformly continuously diflerentiable, bounded below, and 
the Hessian approximations are uniformly bounded. Furthermore assume that the sequence 
of iterates generated b y  Algorithm 1 satisfies (3)-(5). Then 

In our particular case, the approximation model is exactly the objective function that 
we are seeking to minimize. Using the terminology in [l] this would correspond to a second- 
order model. Note that we are only using function information to  solve the PDS subproblem 
and hence we do not take advantage of any first or second order information inherent in 
the model. However, this information is used outside the subproblem to compute the initial 
Newton step and Cauchy point. Thus, this method has characteristics of both zero-order 
and second-order methods. 

In fact, since Algorithm 1 uses widely accepted criteria for updating the steps within the 
trust-region framework, it is easy to show that the stronger condition 

holds. 
This is satisfying, in that the new class of algorithms inherits all of the good theoretical 

convergence properties of the classical trust region methods while incorporating all of the 
practical advantages of PDS for typical engineering optimization problems. 

4 Numerical Results 
In order to evaluate the performance of the TRPDS algorithm in practice, we chose a set 
of test problems from the literature. These problems were obtained from papers by Mor& 
Garbow, and Hillstrom [14], Byrd, Schnabel, and Shultz [2], and Conn, Gould, and Toint 
[5]. Some of these problems are also used by Phua and Zeng [15]. For comparison purposes, 
we also solved these problems using a standard BFGS trust-region algorithm. 
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The starting points used for these problems were the same as those given in the references. 
Computation of finite difference gradients is currently not parallelized. All initial conditions 
are listed below: 

Initial Trust Region 
Machine Epsilon 

Maximum Step 
Minimum Step 
Maximum Iter 

Maximum Fcn Eva1 
Step Tolerance 

Function Tolerance 
Gradient Tolerance 

0.1 * 1180112 

2.22045 * 
4000 
1.49012 - 
500 
1,000,000 
1.49012 * 

1.49012. lo-' 

The step tolerance, the function tolerance, and the gradient tolerance are used as stopping 
criteria for the optimization algorithms. At the end of each iteration the step length relative 
to the size of the current point, the change in the function relative to  the current function 
value, and the size of the gradient relative to the current function value are determined. 
When one of these falls below the associated tolerance, the algorithm has converged. 

The results of the experiments appear in Tables 1-3. While reporting the number of 
iterations taken may be useful in some settings, we believe that it is not useful here. In 
our applications, the most important measure of performance is the total time to solution 
of the problem. Since the computational cost of the function evaluations dominates the cost 
of the algorithm, we base our comparison of TRPDS with BFGS on the number of function 
evaluations. Since the TRPDS algorithm is run in parallel and the trust-region method is 
serial, comparing the total number of function evaluations required for each is not a fair 
method of comparison. 

Instead, we compare the number of concurrent func t ion  evaluations defined as follows. 
Suppose that p processors are available, where p 2 1. If p independent function evaluations 
are required, then each processor can be tasked to  perform one of them. This means that 
all function evaluations can be done simultaneously. Thus, we define a concurrent funct ion 
evaluation to be one instance of p function evaluations being performed simultaneously. 
Comparing the number of concurrent function evaluations is therefore roughly equivalent 
to comparing total wall clock time. The numbers that appear in Tables 1-3 are the ratios 
of the number of concurrent function evaluations taken by the TRPDS algorithm to the 
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number of concurrent function evaluations taken by the serial trust region method. Each 
table corresponds to a different dimension for the problem set (represented by n). Ratios 
less than one indicate that the TRPDS algorithm will take less overall time. 

The tests were run on a 64-processor SGI Origin 2000 with the IRIX 6.4 operating system. 
For the TRPDS algorithm, the ideal situation is to have the same number of search scheme 
points as processors so that each processor evaluates the function at  one search scheme point 
per iteration. However, with limitations on the available resources, this was not always 
possible. In particular, in the 16-dimensional problems with a search scheme size of 128, 
each processor evaluated two search scheme points per iteration. 

Table 1: Ratios of concurrent function evaluations for the TRPDS algorithm versus a stan- 
dard BFGS trust-region method. 

erosen 
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Table 2: Ratios of concurrent function evaluations for the TRPDS algorithm versus a stan- 
dard BFGS trust-region method. 

erosen 
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Table 3: Ratios of concurrent function evaluations for the TRPDS algorithm versus a stan- 
dard BFGS trust-region method. 

erosen 

The results shown in Tables 1-3 allow us to make some general observations about the 
effect of the search scheme size and the dimension of the problem. For a given problem, the 
size of the search scheme has very little, if any, effect on the performance of the algorithm in 
comparison to  the standard trust region algorithm. The dimension of the problem appears 
to have an effect in some cases, but there is no clear trend. 

Schnabel [16] presents an argument for the merits of a line search algorithm with specu- 
lative gradient evaluation. This entails using extra processors to  compute the components of 
a finite difference gradient at the current point while the function is being evaluated at that 
point. In essence, he argues that it is difficult to develop a parallel line search algorithm that 
will perform better than a speculative gradient algorithm, particularly when the dimension 
of the problem is not much larger than the number of available processors. We present a 
theoretical comparison between our algorithm and a speculative gradient algorithm based on 
the analysis presented by Schnabel. The number of concurrent function evaluations required 
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by the speculative gradient algorithm is given by 

where n is the dimension of the problem, p is the number of processors, and It ,  is the number 
of iterations. So [y] is the number of concurrent function evaluations required to compute 
the function and the gradient at a successful trial point. The variable T~ denotes the average 
number of unsuccessful trial points per iteration. Note that rejecting ys points per iteration 
corresponds to performing yS concurrent function evaluations per iteration. For the TRPDS 
algorithm, each iteration requires [SI concurrent function evaluations for the gradient, IS] 
for the initial simplex, and [?I for the search scheme points, where SSS is the search 
scheme size. Therefore, the total number of Concurrent function evaluations is given by 

Note that we are assuming that the PDS algorithm takes one iteration. Also, it is necessary 
to add 2 * Ynpds. This is because rejecting one step in the TRPDS algorithm corresponds to 
performing two additional concurrent function evaluations, one for the initial simplex and 
one for the search scheme. In order for the TRPDS algorithm to beat the speculative gradient 
algorithm, it must take fewer concurrent function evaluations, and thus the following must 
be true: 

7 s  + [y] 
sss * 

< I t n p d s  

I t s  2 * 7 n p d . s  $- 2 * [SI + 1 7 1  
Tables 4-6 show the ratios of the number of iterations taken by the TRPDS algorithm 

to the number taken by the standard trust-region method. The contours in Figures 4-6 
represent break-even points, as given by the right-hand side of 6, for various values of p and 
SSS. For the purpose of the figures, yS = ynpds = 0. By using the tables and figures together, 
it is possible to  determine for which tests the TRPDS algorithm will be competitive with 
speculative gradient. For example, consider problem vardim with n = 4. When SSS = 5 ,  
Table 4 shows that the TRPDS algorithm took 38% of the iterations required for the standard 
trust-region method. Now turning our attention to Figure 4, we can compare this number 
to various break-even points. When p = 5, the break-even point is 33%, so a speculative 
gradient algorithm would be faster than TRPDS. However when p = 4, the break-even point 
is SO%, and thus the TRPDS algorithm would be faster than speculative gradients, in that 
case. 
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Table 4: Ratio of number of nonlinear iterations for the TRPDS algorithm versus the trust- 
region method. 

n = 4  
problem 
broydenla 
broydenl b 
broyden2a 
broyden2b 
chain singular 
chebyquad 
cragglevy 
epowell 
erosen 
gen-brown 
penalty1 
penalty2 
toint -t rig 
tointbroy 
trig 
vardim 
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Comparison of Newtpds to BFGS with speculative gradient 
(dim = 4) 
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Table 5: Ratio of number of nonlinear iterations for the TRPDS algorithm versus the trust- 
region method. 

t oint broy 
trig 

erosen 

0.71 0.71 0.86 0.93 
0.71 0.71 0.64 0.61 " 

vardim 

- I  

I 

0.56 I 1.28 I 1.39 1 1.17 I 
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Comparison of Newtpds to BFGS with speculative gradient 
(dim = 8) 

10 12 14 16 
Number of processors 

Figure 5:  Contour plot of break-even points for dim = 8 
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Table 6: Ratio of number of nonlinear iterations for the TRPDS algorithm versus the trust- 
region method. 

n = 16 
problem 

Search Scheme Size 
n+l  I 2 * n  I d*n I g * n  

erosen 
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Comparison of Newtpds to BFGS with speculative gradient 
(dim = 16) 
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Figure 6: Contour plot of break-even points for dim = 16 

Based on these results, we can draw several conclusions. Again, we notice that the size of 
the search scheme has little effect on the performance of the TRPDS algorithm. There are 
several factors that may be contributing to this effect. The first is that we have biased the 
search directions towards the Newton point through our method for constructing the initial 
simplex. The second factor is the order in which the search scheme points are chosen and 
evaluated. In the standard PDS algorithm, the reflection points are evaluated first, followed 
by the contraction points and the expansion points. Since the Newton point is often a good 
trial point we would not expect nearby points to have a lower function value and that we 
need to take a large step before finding a better point. Due to the construction of the search 
pattern this requires a large search scheme before we start to  evaluate the expansion points. 

In a situation where we are far away from the solution or the function or gradient is 
noisy, the Newton point might not be a good trial point. In this case, the reflection and 
contractions points may yield better trial points than the Newton point and thus increasing 
the search scheme size might improve the performance of the algorithm. This is a point that 
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will require further investigation. It would also be interesting to try different methods for 
creating the initial simplex to determine the effect on the algorithm’s efficiency. 

Figures 4-6 indicate that our algorithm is within striking distance of the speculative 
gradient algorithm when the number of processors is equal to the dimension of the problem 
and when the search scheme size is less than or equal to the number of processors. Another 
point to note is that when the number of processors is twice the dimension, a speculative 
gradient technique could be implemented within the TRPDS algorithm. To summarize, the 
TRPDS algorithm can be competitive with the speculative gradient algorithm in two cases: 

1. S S S L p = n ,  

2. p > 2 * n .  

4.1 Furnace design test problem 
As another test case, we chose an optimization problem derived from a design problem of 
a vertical, multi-wafer furnace. Vertical furnaces can process up to 200 silicon wafers in 
a single batch and have been used for thin film deposition, oxidation, and other thermal 
process steps. The evolution of vertical furnaces has been driven by the need for process 
uniformity (that is, wafer-to-wafer and within-wafer uniformity) and high wafer throughput. 
A recent variation of the multiwafer reactor design is the small-batch7 fast-ramp (SBFR) 
furnace. The SBFR is designed to heat-up and cool-down quickly, thus reducing cycle time 
and thermal budget. The SBFR consists of a stack of eight-inch diameter silicon wafers 
enclosed in a vacuum-bearing quartz jar. The stack is radiatively heated by resistive coil 
heaters contained in an insulated canister. The heating coils can be individually controlled 
or ganged together in zones to  vary the emitted power along the length of the reactor; a 
seven-zone configuration is shown in Figure 7. There are six control zones (each containing 
several heating coils) along the length of the furnace and one heater zone in the base. The 
zones near the ends of the furnace are usually run hotter than the middle zones to make up 
for heat loss. 

The thermal design optimization problem can be described as follows. Given a set number 
of fixed heating coils, how can the coils be grouped in the fewest number of control zones 
such that the temperature deviation about a fixed set-point is minimized. For this example, 
we concentrate on finding the optimal power settings and related temperature uniformity for 
a fixed zone configuration. The objective function, F ,  is defined by a least-squares fit of the 
N discrete wafer temperatures, Tw,i, to a prescribed profile, Ts,i, 

N 

F ( P A  = - Ts,i)” 
i=l 
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................................. ................................ ................................. 

Figure 7: Vertical Batch Furnace with Seven Control Zones 

where the pj  are the unknown power parameters. 
The engineering heat transfer model used in this example was developed by Houf [9] 

specifically for the analysis of vertical furnaces (the actual simulation code used in our 
experiments is called TWAFER). Given a set of powers, p j ,  each call to TWAFER produces 
a set of temperatures for the entire furnace from which the wafer temperatures are extracted. 
The heat transfer formulation is simplified by using mass lumping and one-dimensional 
approximations. The nonlinear transport equations are solved using the TWOPNT solver [8], 
which uses a Newton method with a time evolution feature that computes the steady state 
solution. By varying the tolerances for the TWOPNT solver it is possible to increase the 
accuracy of the steady-state solution at  the cost of increasing the computational time. In 
particular, we have chosen to vary a parameter that determines the relative convergence 
tolerance, RTOL, for the steady-state solution of the underlying PDE. 

There are many different parameter combinations that have been considered in previous 
studies of the TWAFER code [13]. For this particular example we used only one configura- 
tion, namely a design problem with 7 heater zones: one bottom heater and six equally-sized 
side heaters. Each simulation used a model that contained 100 wafers with ten discretization 
points per wafer. Our initial guess for the powers was: po = { 100,200,300,2700,100,400,2000). 

Table 7 contains the total number of iterations as well as the total wall clock time by each 
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method to compute a solution. With respect to the total wall clock time, the new method 
is competitive with the standard BFGS method in almost all cases. In addition, the new 
method is more robust for the larger values of RTOL. These values correspond to a very 
loose convergence tolerance for the PDE solver in the TWAFER modeling code. In these 
cases, the standard BFGS method did not converge to  a solution while the new method 
still manages to proceed. In these cases, the algorithm terminated with the trust region 
shrinking below its minimum allowed size. This failure to  converge is probably due to large 
inaccuracies in the gradient evaluations due to the loose tolerances in the PDE solutions. 

Table 7: Number of nonlinear iterations and wall clock time. 

RTOL 

10-3 
10-4 
10-5 
10-6 
10-7 
10-8 
10-9 
10-lO 
1o-I' 
10-12 

BFGS 
iter 

3* 
30* 
64 
31 
39 
34 
31 
31 
31 
31 
31 

- 

- * indicates tl 

time 
154.471 
1603.75 
4470.97 
2729.82 
4145.88 
4516.57 
4612.38 
5 152.05 
6044.57 
6576.52 
6600.24 
: methoc 

NEWTPDS 
iter 
100 
100 
100 
25 
33 
24 
26 
25 
22 
28 
23 

- time 
5217.98 
6872.32 
8857.03 
2786.17 
4468.22 
3832.82 
4548.66 
4969.36 
5101.78 
6915.97 
5774.78 

did not converge 

The resulting power values were then given to  the TWAFER simulation using a value 
of RTOL = Figures 8-9 show the wafer temperatures that result with the computed 
powers. The interesting point here is that even with relatively large values of the parameter 
RTOL the resulting temperatures are still quite reasonable. As we have already noted, for 
these same values of RTOL the BFGS algorithm did not converge. 
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Figure 8: Computed temperatures for various values of RTOL using NEWTPDS 
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Figure 9: Computed temperatures for various values of RTOL using BFGS 

Summary 
We have described a new class of algorithms for parallel optimization. The general framework 
consists of a trust-region model where the standard subproblem is solved using a parallel 
direct search method that takes advantage of parallelism to solve the problem more effi- 
ciently on multiprocessors. This new algorithm can be shown to have the same convergence 
properties as trust-region methods. In addition, the practical properties of the parallel direct 
search methods can be used to  solve engineering optimization problems that are noisy, or 
lack analytic derivatives. 

This new class of algorithms was tested on a standard set of test problems where it 
performed favorably against the traditional BFGS method. We also tested this new algorithm 
on a test case derived from an optimal design problem for a chemical vapor deposition 
furnace. The results indicate that the new method is competitive with the traditional BFGS 
method. In addition, the new method is more robust in the presence of noise that is generated 
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by the use of less accurate PDE solvers. This is an important feature since many users would 
prefer to  use less accurate PDE solvers in order to reduce the total computational time. 

There are many new options to explore. In particular, it would be useful to develop 
strategies for bound constrained and general inequality constrained problems. We also need 
to address some issues related to the distribution of function evaluations in order to im- 
prove the efficiency of the algorithm. It would also be interesting to  explore more general 
approximation models within this new framework. 

Acknowledgments. We wish to thank J.E. Dennis, Jr. and M. Heinkenschloss for 
many helpful discussions and for pointing out the relationship between our new algorithm 
and the framework for approximation models. 

References 
[I] N. ALEXANDROV, J .  E. DENNIS, JR., R. M. LEWIS, AND V. TORCZON, A trust 

region framework for managing the use of approximation models in optimization, Tech. 
Report 97-50, ICASE, Hampton, VA, 1997. 

[2] R. H. BYRD, R. B. SCHNABEL, AND G. A. SHULTZ, Parallel quasi-newton methods 
for unconstrained optimization, Mathematical Programming, 42 (1988) , pp. 273-306. 

[3] R. G. CARTER, On the global convergence of trust region algorithms using inexact 
gradient information, SIAM J. Numer. Anal., 28 (1991), pp. 251-265. 

141 - , Numerical experience with a class of algorithms for nonlinear optimization using 
inexact function and gradient information, SIAM J. Sci. Comput., 14 (1993), pp. 368- 
388. 

[5] A. R. CONN,  N. I. M. GOULD, AND P. L. TOINT, Testing a class of methods for solv- 
ing minimization problems with simple bounds on the variables, Tech. Report Research 
Report CS-86-45, University of Waterloo, Waterloo, CA, 1986. 

[6] J. E. DENNIS, JR. AND R. B. SCHNABEL, Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations, Prentice-Hall, Inc., Englewood Cliffs, N J ,  1983. 

[7] J. E. DENNIS, JR. AND V. TORCZON, Direct search methods on parallel machines, 
SIAM J. Opt., 1 (1991), pp. 448-474. 

[8] J .  F. GRCAR, “T WOPNT Program for Boundary Value Problems, Version 3. IO”, Tech. 
Report SAND91-8230, Sandia National Laboratory, Livermore, CA, April 1992. 

31 



[9] W. G. HOUF, J .  F. GRCAR, AND W. G.  BREILAND, “A Model f o r  Low Pressure 
Chemical Vapor Deposition in a Hot- Wal l  Tubular Reactor”, Materials Science Engi- 
neering, B, Solid State Materials for Advanced Technology, 17 (1993), pp. 163-171. 

[IO] L . INGBER, Simulated annealing: practice versus theory, Mathematical Computer Mod- 
eling, 18 (1993), pp. 29-57. 

[Ill P. JOG, J. SUH, AND D. VAN GUCHT, Parallel genetic algorithms applied to  the 
traveling salesman problem, SIAM J. Opt., 1 (1991), pp. 515-529. 

[12] P. J. M. LAARHOVEN, Parallel variable metric algorithms f o r  unconstrained optimiza- 
t ion,  Mathematical Programming, 33 (1985), pp. 68-81. 

[13] C .  D. MOEN, P. A. SPENCE, AND J. C. MEZA, Automat ic  diflerentiation forgradient-  
based optimization of radiatively heated microelectronics manufacturing equipment, in 
Proceedings of 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and 
Optimization, Bellevue, WA. , September 1996. 

[14] J. J. MORE, B. S. GARBOW, AND K.  E. HILLSTROM, Testing unconstrained opti- 
mization software, ACM Transactions on Mathematical Software, 7 (1981), pp. 17-41. 

[15] P. K. P H U A  AND Y .  ZENG, Parallel quasi-newton algorithms f o r  large scale optimiza- 
tion. Web report, 1995. 

[16] R. B.  SCHNABEL, A view of the limitations, opportunities, and challenges in parallel 
nonlinear optimization, Parallel Computing, 21 (1995), pp. 875-905. 

[17] T. A. STRAETER, A parallel variable metric optimization algorithm, Tech. Report 
NASA T N  D-7329, NASA, Langley Research Center, Hampton, VA, 1973. 

32 



DISTRTBUTION: 

1 Dr. Richard H. Byrd 
University of Colorado 
Department of Computer Science 
Campus Box 430 
Boulder, CO 80309 

1 Dr. Thomas F. Coleman 
Cornell University 
Department of Computer Science 
725 ETC 
Ithaca, NY 14853-7501 

1 Dr. Edward J. Dean 
University of Houston 
Department of Mathematics 
4800 Calhoun Road 
Houston, TX 77004-2601 

1 Dr. John E. Dennis, Jr. 
Department of Mathematical Sciences 
MS 134 
Rice University 
P. 0. Box 1892 
Houston, TX 7725 1 - 1 892 

1 Dr. Matthias Heinkenschloss 
Department of Mathematical Sciences 
MS 134 
Rice University 
P. 0. Box 1892 
Houston, TX 77251-1892 

1 Dr. Jorge More 
Argonne National Laboratories 
Mathematical and Computer 
Science Division 
Argonne, IL 60439-4.803 

m- 

a 

33 



Dr. Stephen Nash 
Operations Research and Applied Statistics 
George Mason University 
Fairfax, VA 22030-4444 

Dr. Jorge Nocedal 
Department of Electrical Engineering and Computer Science 
Northwestern University 
Evanstown, IL 60208-0001 

Dr. Linda R. Petzold 
Department of Mechanical and Environmental Engineering 
University of California 
Santa Barbara, CA 93 106 

Dr. Robert Schnabel 
Department of Computer Science 
University of Colorado at Boulder 
Campus Box 430 
Boulder, CO 80309-0430 

Dr. William Symes 
Department of Mathematical Sciences 
MS 134 
Rice University 
P.O. Box 1892 
Houston, TX 7725 1-1 892 

Dr. Richard Tapia 
Dept. of Mathematical Sciences 
MS 134 
Rice University 
P.O. Box 1892 
Houston, TX 77251-1892 

Dr. Virginia Torczon 
Department of Computer Science 
College of William and Mary 
P. 0. Box 8795 
Williamsburg, VA 23 187 

34 



Dr. Margaret Wright 
AT&T Laboratories 
Room 2C-462 
600 Mountain Avenue 
Murray Hill, NJ 07974 

Dr. Stephen Wright 
Argonne National Laboratory 
MCS Division 
Argonne, IL 60439 

Stephen A. Vavasis 
Department of Computer Science 
493 Rhodes Hall 
Cornel1 University 
Ithaca, NY 14853 

Stephen A. Wirkus 
Center for Applied Mathematics 
657 Rhodes Hall 
Cornel1 University 
Ithaca, NY 14853 

Thomas R. Nicely 
Department of Mathematics 
Lynchburg College 
150 1 Lakeside Drive 
Lynchburg, VA 24501 

MS 9001 T. 0. Hunter, 8000 
Attn: J. B. Wright, 2200 

D.L. Crawford, 5200 
M.E. John, 8100 
L.A. West, 8200 
W.J. McLean, 8300 
P.N. Smith, 8500 
P.E. Brewer, 8600 
T.M. Dyer, 8700 
L.A. Hiles, 8800 

MS 9003 D. R. Henson, 8909 
MS 9007 R. C. Wayne, 8900 
MS 901 1 P. W. Dean, 8903 

1 MS 9011 B. Hess, 8910 

35 



1 MS 9011 J. C. Meza, 8950 
1 MS 901 1 M. Rogers, 8960 
1 MS 901 1 J. A. Larson, 8970 
1 MS 9012 K. Hughes, 8 9 p  
1 MS 9012 S. Gray, 8930 
1 MS 9019 B. A. Maxwell, 8940 
1 MS 9037 J. Berry, 8930-1 
1 MS 1202 M. Fox, 89aQ 
10 MS 9214 P. D. Hough, 8950 
1 MS 9214 T. Kolda, 8950 

3 
1 
1 MS 902 1 Technical Communications 

1 MS 902 1 Technical Communications 

MS 90 18 Central Technical Files, 8940-2 
MS 0899 Technical Library, 4916 

Department, 88 1 5ITechnical Library MS 0899,491 6 

Department, 88 15 For DOE/OSTI 

36 


	A Class of Trust-Region Methods for Parallel Optimization
	ABSTRACT
	1 Introduction
	2 The Trust-Region PDS Algorithm
	2.1 Choosing the initial simplex
	2.2 Solving the PDS subproblem
	2.3 Acceptance/Rejection of step
	2.4 Updating the trust region

	3 Convergence Results
	4 Numerical Results
	4.1 Furnace design test problem

	5 Summary
	References
	DISTRTBUTION



