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ABSTRACT

This report describes a new minimization capability added to LAMMPS
V�
�
 Minimization of potential energy is used to 
nd molecular conforma�
tions that are close to structures found in nature
 The new minimization
algorithm uses LAMMPS subroutines for calculating energy and force vec�
tors� and follows the LAMMPS partitioning scheme for distributing large
data objects on multiprocessor machines
 Since gradient�based algorithms
cannot tolerate nonsmoothness� a new Coulomb style that smoothly cuts o�
to zero at a 
nite distance is provided
 This report explains the minimiza�
tion algorithm and its parallel implementation within LAMMPS
 Guidelines
are given for invoking the algorithm and interpreting results
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Parallel Unconstrained Minimization

of Potential Energy in LAMMPS

� Introduction

LAMMPS � ��� is a parallel code developed at Sandia National Laboratories for simulating
molecular dynamics
 LAMMPS can model very large systems of covalently connected atoms
�up to ������� on the Sandia Tera�op machine�� including the calculation of empirical potential
energy and associated force vector
 This paper describes a new capability for LAMMPS Version
�
�� the determination of molecular conformations that minimize potential energy


Some form of gradient�based energy minimization is available in most molecular modeling
codes �e
g
� QUANTA� AMBER� GROMOS�
 The goal is to 
nd molecular structures cor�
responding to a local minimum of potential energy �there are usually many local minima�

Gradient minimization is important for relaxing initial �guessed� conformations that are in�
advertently at high energies� and for investigating structural changes near the global energy
minimum
 Potential energy minimization of very large systems is relevant to Sandia work on
polymer aging� chem�bio sensor analysis and design� and protein�protein docking


The minimization algorithm added to LAMMPS is an implicit Newton method� thus� it
enjoys a fast asymptotic rate of convergence to a highly accurate solution� but requires only
energy and force information
 Potential energy and force calculations are made with calls
to existing LAMMPS subroutines
 The algorithm also requires storage and manipulation of
several large vectors
 These vectors are partitioned for distributed computing in the same
manner as other LAMMPS vectors


In the next section� the minimization algorithm and its parallel implementation is described
in detail
 x� discusses modi
cations to the empirical potential energy function that make it
smooth enough for gradient minimization
 The 
nal two sections show how minimization is
invoked� and how it performs on massively parallel machines


� Minimization Algorithm

Gradient�based minimization methods start with an arbitrary molecular conformation� then
iteratively adjust atom positions in a manner that steadily decreases the potential energy�
eventually� a local energy minimum is reached
 Consider a system of n atoms� and let the
vector p contain the �n position coordinates of these atoms
 The potential energy E�p� is an
algebraic function of the �n unknowns� and �rE�p� is the force vector
 At iteration k of a
minimization algorithm� atom positions are modi
ed by adding a �step� vector d to produce
the next iterate pk�� � pk � d
 Figure � gives a general outline of the minimization process


The simplest algorithm� gradient descent� uses d � ��rE�pk�� a step of length � in the
direction of maximum energy decrease
 The step moves each atom along the force vector that
it experiences
 Gradient descent is easy to code and always works� but is usually very slow in
reaching a minimum �the asymptotic convergence rate is only linear�


�Contact Steve Plimpton� sjplimp�cs�sandia�gov� See http���www�cs�sandia�gov��sjplimp�main�html�

	



start with position vector p�
for k � � to max iters

if su�ciently close to a local minimum then stop

calculate a step d
if E�pk � d� is su�ciently less than E�pk�

then pk�� � pk � d
else pk�� � pk� do something that modi
es calculation of d

continue

Figure �� Outline of a generic minimization algorithm

More e�cient minimization algorithms are based on Newton�s method
 They converge
much faster �theoretically at a quadratic rate�� but require solving linear systems involving the
second partial derivatives of E
 The Hessian matrix of E�p� is de
ned as

r�E�p� �

�
�������

��E�p�

�p��p�
� � � ��E�p�

�p��pn






 
 






��E�p�

�pn�p�
� � � ��E�p�

�pn�pn

�
�������
�

and the exact Newton step is given by d � ��r�E�p����rE�p�


In LAMMPS applications the Hessian matrix is large� expensive to compute and invert�
and di�cult to store as a distributed object
 An excellent alternative is to compute the Newton
step inexactly� using a modi
ed form of conjugate gradient
 Conjugate gradient �CG� requires
only Hessian matrix�vector products� which can be approximated without calculating second
derivatives
 This class of optimization algorithm is known as a Hessian�free truncated Newton

method� and dates back to the work of Dembo� Eisenstat and Steihaug ��� and O�Leary ���

It�s use in molecular modeling was pioneered by Schlick and Overton ���� and is becoming more
common ��� ��


��� Hessian�free algorithm

The detailed pseudo�code for the algorithm implemented in LAMMPS is provided in Algo�
rithms � and �
 The main procedure� Algorithm �� describes the outer iteration� indexed by
k
 Algorithm � shows an inner CG�based iteration� indexed by i� that calculates an inexact
�truncated� Newton step
 Algorithm � is invoked by Algorithm � at ���


Algorithm � encodes a trust region technique that adds robustness to the Newton method
�	� pp
 �����	�
 Newton�s method is based on a two�term Taylor series expansion of the
potential energy that is constructed around the conformation described by pk�

E�pk � d� � E�pk� � dTrE�pk� � ���d
T �r�E�pk��d�

This quadratic function is referred to as the model energy
 Note that when the Hessian matrix
is positive de
nite� the minimum of the model is reached by taking the exact Newton step
d � ��r�E�pk��

��rE�pk�
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Algorithm � Hessian�free trust region method for energy minimization

start with position vector p�� trust radius  � ���
for k � � to max iters

if krE�pk�k� � stop tol then stop ���
calculate d using HFTNCG�p � pk� �  k� � � minf����k� krE�pk�k�g� ���
compute a red � E�pk��E�pk � d� ���
if ja redj � 	mach then stop ���
compute p red � �dTrE�pk�� ���dT �r�E�pk��d�
approximating �r�E�pk��d with ��
�� or ��
�� ���

if �p red 
 � and a red 
 ��� � p red� �	�
then pk�� � pk � d�  k�� �  k ���

repartition atoms� make new neighbor lists� recompute E�pk��� ���
else pk�� � pk�  k�� �  k ����

if  k�� � ��	machkpkk� then stop ����
continue

Algorithm � HFTNCG subroutine for calculating d

enter with atom positions p� trust radius  � and stop tol �
d� � �� r� � �rE�p�� t� � r� ����
for i � � to max sub iters

approximate wi � �r�E�p��ti using ��
�� or ��
�� ����
if wT

i ti � 	macht
T
i ti ����

then 
nd � such that kdi � �tik� �  and return d� di � �ti ����
�i � rTi ri�t

T
i wi ����

di�� � di � �iti ��	�
if kdi��k� 
  ����

then 
nd � such that kdi � �tik� �  and return d� di � �ti ����
ri�� � ri � �iwi ����
if kri��k��kr�k� � � ����

then return d � di�� ����
�i � rTi��ri���r

T
i ri ����

ti�� � ri�� � �iti ����
continue

The quadratic model is a better approximation when the step d is small
 Trust region
methods exploit this fact by insisting that each step satisfy kdk� �  � where  is the trust
region radius �the inequality is enforced in Algorithm ��
 Step ��� of Algorithm � computes
the actual reduction �a red� in potential energy made by d
 Step ��� computes the �predicted�
reduction �p red� corresponding to the quadratic energy model
 Step �	� determines whether
the actual reduction is close enough to the predicted reduction � if so� then d is accepted�
otherwise� d is rejected� the radius  k�� is made smaller� and a new d is calculated
 Trust
region methods are robust precisely because they reduce  when the actual and predicted
reductions disagree
 Eventually  becomes small enough that the quadratic Taylor series

�



expansion can be �trusted� for every step satisfying kdk� �  

Algorithm � computes an approximation to the Newton step using conjugate gradient


The CG subiteration can terminate at ����� ����� or ����� in each case returning a truncated
Newton step d
 Step ���� is the usual CG termination test based on reduction of the residual
in the linear system being solved
 The residual tolerance � is set in step ��� of Algorithm �

It is designed to make d cheap to compute during early iterations� but accurate enough near
an energy minimum to give the overall algorithm an asymptotic quadratic rate of convergence
���
 Steps ��������� handle the situation in which the Hessian is not positive de
nite
 They
detect a direction of negative curvature and reduce the energy by following the direction to
the edge of the trust region
 Step ���� enforces the trust region inequality
 Steihaug proved in
��� that the steps di generated by Algorithm � are monotonically increasing in length� so it is
appropriate to stop as soon as  is exceeded


Steps ��� and ���� multiply the Hessian matrix by a vector
 Geometrically� the product cor�
responds to the curvature of the energy function in the direction of the vector� mathematically�
it is a type of directional derivative
 To avoid forming the Hessian� the directional derivative
is estimated with a 
nite di�erence formula
 A forward di�erence approximation�

�r�E�pk��y � rE�pk � 
fy��rE�pk�


f
� ��
��

requires one extra gradient�force evaluation
 The approximation uses the safeguarded value

f � �

p
����	mach�kyk� ��� pp
 ������
 When the algorithm is close to an energy minimum� a

more accurate central di�erence approximation is used�

�r�E�pk��y � rE�pk � 
cy��rE�pk � 
cy�

�
c
� ��
��

with 
c � ��	 ����	mach�
������kyk�
 The central di�erence estimate requires two extra gradi�

ent�force evaluations


Algorithm � normally terminates when the convergence criterion at ��� is met
 The user can
stop it sooner by limiting the number of outer iterations� or the total number of gradient�force
calculations
 The algorithm also includes a safeguard at ���� that stops execution before
under�ow errors can occur �under�ow is measured in terms of the machine precision 	mach�
approximately ���	 ����� on most machines�
 Step ���� provides an escape for the algorithm
if the stop tol in ��� is set too small


��� Parallel implementation issues

LAMMPS is a data�parallel SPMD application tailored for massively parallel distributed
computing architectures
 LAMMPS employs a spatial decomposition of data objects based
on the Cartesian coordinates of the atoms ����
 First� a box with sides oriented along the
coordinate axes is constructed to enclose all atoms
 Each side of the bounding box is subdivided
�usually by a power of �� into uniform intervals� creating a grid of equal�sized subblocks that
are assigned to processors on a one�to�one basis
 Each processor is assigned �ownership� of the
atoms located in its subblock� including the data and force calculations associated with those
atoms
 Potential energy interactions extend only a limited distance� involving just the nearest
neighbors of each atom
 For this reason� the spatial decomposition scheme usually makes a
good balance between memory needs� CPU work� and communication costs ����
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The minimization algorithm accesses atom positions and the force vector
 Both of these
are DOUBLE PRECISION arrays of up to ��maxown elements per processor
 Algorithms � and �
need storage for � other vectors that are used to hold intermediate results
 Thus� minimization
requires ����maxown DOUBLE PRECISION words on each processor
 The � arrays are local
variables� so LAMMPS memory requirements are changed only if the minimizer is invoked


All vectors in the minimization algorithm follow the same spatial decomposition layout as
the atom position and force arrays
 LAMMPS subroutines are called to compute the energy
and force
 Additional work by the algorithm is in the form of the Level One BLAS ����
operations daxpy� dcopy� ddot� dnrm� and dscal
 Two of these� ddot and dnrm�� require
simple modi
cations for parallel execution
 As will be seen is x�� the linear algebra costs of
the algorithm are negligible compared to the costs of computing the energy and force


When a new step is accepted in Algorithm �� atom positions are updated at ���
 This
change can impact further calculations in three ways�


 neighbor lists for non�bonded interactions might change� thus altering the energy and
force values�


 processors might transfer the ownership of atoms that move out of their subblock�

 the bounding box surrounding all atoms might change �if the domain is not periodic�


LAMMPS has subroutines for molecular dynamics that address these problems� and they are
called at ��� in Algorithm �
 The user can control the frequency with which these subroutines
are called �see x�
��� but it is recommended that repartitioning and reneighboring take place
after every accepted step


Notice that the energy E�pk � d� computed at ��� does not include reneighboring� even
though the step d might move atoms a signi
cant distance
 This is because minimization must
evaluate d with respect to the quadratic model potential de
ned around pk
 The model should
not be changed until a step passes the acceptance test at �	�
 Then a new model is constructed
around pk��� and minimization continues on this model
 It is possible that the new E�pk���
computed at ��� will di�er from the value E�pk�d� computed at ���� but the two values should
not be compared because they correspond to two di�erent de
nitions of the potential function

In practice these discrepancies are rare and do not a�ect convergence


When LAMMPS repartitions and transfers atoms to new processors� it assumes that no
atom moves more than one subblock from its previous location �the shift can be one subblock
in each coordinate�
 This is a reasonable assumption for molecular dynamics because of the
small time step used in integration� and it limits parallel communication costs
 However� one
iteration of minimization can cause much larger shifts in position� especially for a �stressed�
conformation with high potential energy
 To prevent an error� a check is made and the step d
rejected at �	� if it causes any atom to jump more than one processor
 The check includes the
e�ect of rede
ning the bounding box in nonperiodic problems
 Rejection of the step causes  
to decrease at ����� so that the next step d will not move atoms as far
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� Smoothed Potential Energy Function

The potential energy function used by LAMMPS is patterned after the standard CHARMM
���� ��� formulation
 It is described parametrically by

E �
X
bonds

kb�rij � r�ij�
� �

X
angles

ka�
ijk � 
�ijk�
�

�
X

dihedrals

Edih��ijkl� �
X

impropers

Eimp��ijkl�

�
X

pairs i�j

�coul�rij�kcoul
qiqj
rij

� �L�J�rij� �	ij

�
�
�
�ij
rij

���

�
�
�ij
rij

��
�
� ��
��

�LAMMPS also supplies lumped approximations for long range forces� but these are not con�
sidered here�
 The terms comprising E model� respectively� covalent bond lengths� valence
angles� dihedral rotation barriers between four atoms� improper angles �out�of�plane motions�
between four atoms� and non�bonded coulombic and Lennard�Jones potentials �multiplied by
cuto� functions �coul and �L�J� respectively�
 The variables of interest are rij� the Euclidean
distance between atoms i and j
 Only rij� 
ijk� �ijkl� and �ijkl depend on atom positions� all
other quantities are constants


Newton�based minimization requires that the function being minimized have continuous
second derivatives
 The potential energy function used in LAMMPS meets this criteria� except
for the cuto� options
 Both the coulomb and Lennard�Jones interactions typically use a sharp
cuto� function de
ned by the rules

if r � rcut then ��r� � �
if r � rcut then ��r� � � 


This function is not continuous� and causes a signi
cant jump in the magnitude of the coulomb
potential unless rcut is very large �for kcoul � ��������� qi � qj � ���� the discontinuity at ��!A is
�
�� kcal�mol�
 The jump creates insurmountable problems for a gradient�based minimization
algorithm� causing it to halt prematurely
 The reason for this is not too hard to explain


Suppose a pair of atoms with charges of like sign become situated during minimization with
interatomic distance rij slightly greater than rcut
 The atoms are considered �neighbors� and
a repulsive coulomb force exists� but is truncated to zero by �coul
 If other forces conspire to
push the atoms closer together� then the trial step d generated by Algorithm � will change the
atom positions so that their distance is less than rcut
 Step ��� suddenly sees the repulsive force
when computing E�pk � d�� but it is still truncated to zero in the quadratic model employed
in ���
 The step is therefore rejected at �	�� the trust radius is decreased� and the algorithm
seeks a new� shorter� step d with the same quadratic model
 Iterations continue in this manner
until  is so close to zero that the algorithm halts at ����
 No step can be accepted because
the smooth quadratic model cannot represent the nonsmooth coulomb cuto� function
 And it
is easy to see that the �unlucky� circumstance of two repulsive atoms becoming situated with
rij just slightly greater than rcut is not coincidental
 When rij is larger� steps that cross the
discontinuity are rejected� but a shorter step pk � d that does not decrease rij below rcut is
accepted
 The algorithm therefore accepts a series of small steps that nudge the atoms closer
and closer towards an interatomic distance of rcut
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To make minimization possible� the new release of LAMMPS includes the smooth coulomb
cuto� function used in CCEMD ����
 This cuto� is a cubic polynomial 
tted between the
cuto� distance rcut and a smaller threshold distance rinner�

if r � rinner then �coul�r� � �

if rinner � r � rinner then �coul�r� �
�rcut � r���rcut � �r � �rinner�

�rcut � rinner��

if r � rcut then �coul�r� � ��

This function has continuous second derivatives� and has the virtue of leaving coulomb potential
terms unchanged when r � rinner
 It executes about ��" slower than the simpler sharp cuto�
function


A corresponding smooth cubic cuto� function for Lennard�Jones potentials was not imple�
mented
 LAMMPS Version �
� currently supplies the sharp cuto� function described earlier�
and a �switched� cuto� option de
ned by

if r � rinner then EL�J�r� � �	

	

�

r

���

�


�

r

��
�
� b

if rinner � r � rcut then EL�J�r� � a� � a��r � rinner�� a��r � rinner�
���

�a��r � rinner�
���� a	�r � rinner�

	��� b
if r � rcut then EL�J�r� � ��

where

a� � �	

	

�

rinner

���

�



�

rinner

��
�

a� �
	

rinner

	
��



�

rinner

���

� ��



�

rinner

��
�

a� � � 	

r�inner

	
��	 ��



�

rinner

���

� 		 ��



�

rinner

��
�

a� � � �

�rcut � rinner��



a� �

�

�
�rcut � rinner�a�

�

a	 � � �

��rcut � rinner��
�a� � ��rcut � rinner�a��

b � a� � a��rcut � rinner�� a��rcut � rinner�
���

�a��rcut � rinner�
���� a	�rcut � rinner�

	���

The switched Lennard�Jones cuto� is smooth and goes to zero for r � rcut� however� it does
not equal the standard Lennard�Jones potential for r � rinner


The sharply cuto� Lennard�Jones potential usually has only a small discontinuity
 For
example� the Lennard�Jones interaction between two alpha carbons is characterized by 	 �
������� � � �����
 The discontinuity at ��!A is ���� 	 ���
 kcal�mol� and the jump at ��!A is
only ���� 	 ���� kcal�mol
 Unless minimization is carried to extremely high accuracy� these
minute discontinuities will not cause di�culties
 Thus� the Lennard�Jones cuto� style can be
used� provided that rcut is not too small
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� Using the Software

��� Inputs

LAMMPS uses a text 
le of control commands to set up parameters and direct execution

Three new commands are de
ned for the minimization algorithm�

min file �lename

min style hftn

minimize stop tol max iters max force calculations

The 
rst command speci
es a 
lename for the minimization output
 Any existing 
le is
deleted as soon as minimization begins
 If the line is omitted� no output 
le will be created


The second command selects a minimization algorithm
 Currently only hftn is de
ned�
but other algorithms may be implemented in the future


The last command begins execution of the minimizer
 Its three parameters determine how
the algorithm stops
 The parameter stop tol maps directly to step ��� of Algorithm �� and stops
execution as soon as the magnitude of every force vector component is less than or equal to it

The parameter max iters caps the number of outer iterations made by Algorithm �
 The third
parameter limits the number of force calculations made by the algorithm
 It provides the best
way to control execution time� because force calculations are the dominant cost in large prob�
lems
 The algorithm may make one or two force calculations beyond max force calculations if it
is in the middle of a 
nite di�erence approximation
 Default values for these three parameters
are �
����� ���� and ����
 Since this command starts the algorithm� the 
rst two commands
should precede it


A few other LAMMPS input commands have an e�ect on the minimization algorithm
 As
described in x�� the coulomb force 
eld option must be

coulomb style coul�smooth inner outer

Two of the parameters set by the �neighbor� command also have an e�ect�

neighbor skin neighstyle neighfreq neighdelay neightrigger

The skin parameter implicitly limits step sizes by causing any step which moves an atom
more than ��� the skin depth to be rejected
 If skin is zero� atoms can move up to �!A
 The
neighfreq parameter controls how many accepted steps elapse between the repartitioning and
reneighboring calls made at ��� in Algorithm �
 The recommended value is one �reneighbor
after every step�� since the costs are small compared to the large number of force calculations
made to compute each step d


��� Outputs

Figure � shows a portion of the output created by the minimizer
 At the top of the output
the stopping criteria� force 
eld styles� and other input control parameters are echoed
 Then
comes a detailed breakdown of the potential energy at the start of minimization � a similar
breakdown is printed at the bottom of the output for the 
nal conformation generated by the
algorithm
 These two printouts should match the LAMMPS log 
le output exactly
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Find local energy minimum using truncated Newton CG
  Stop minimization if:
       ||grad||_inf .LE. 1.000E-05            OR
       max number force calculations >  50000 OR
       max number iterations         >   1000
  Max atom displacement per step is  5.000 Ang
  Exchange & reneighbor after      1 accepted steps

Coulomb forces smooth, cut off between    10.00 and    20.00 Angstroms
L-J     forces sharply cut off at         20.00 Angstroms

====================================================================
  Total PE  =     -1263.6073
  E (bond)  =         9.0474          E (coulomb) =     -1353.2352
  E (angle) =        25.0634          E (VDW)     =       -19.7982
  E (dih)   =        71.1870          E (long)    =         0.0000
  E (imprp) =         4.1283
====================================================================

Truncated Newton CG with trust regions on   1365 unknowns

     Iter      f(x)    ||grad||_inf   Delta     ||step||  f evals     ared        pred       CG iters
    -----  -----------  ----------  ---------  ---------  -------  ----------  ----------    --------
        0  -1.2636E+03  7.2020E+01  3.695E+00                   1
   <forward diffs>
        1  -1.4801E+03  1.5901E+02  7.389E+00  3.695E+00       12   2.165E+02   2.394E+02       9  TR
   (       -1.4800E+03  1.5898E+02                             13      after reneighboring )
        2  -1.5786E+03  1.6475E+02  7.389E+00  7.389E+00       28   9.856E+01   2.993E+02      13  TR
   (       -1.5787E+03  1.6475E+02                             29      after reneighboring )
rej     3  -1.2944E+03              3.010E+00  7.389E+00       48  -2.844E+02   3.959E+02      17  TR
        4  -1.8784E+03  1.8260E+02  6.021E+00  3.010E+00       63   2.996E+02   3.039E+02      13  TR
   (       -1.8783E+03  1.8262E+02                             64      after reneighboring )
        .                                                       .
        .                                                       .
      273  -2.8846E+03  6.3343E-02  1.474E+00  7.372E-01    24480   1.966E-02   2.003E-02     376  TR
   (       -2.8846E+03  6.3343E-02                          24481      after reneighboring )
      274  -2.8846E+03  9.6155E-03  1.474E+00  1.308E-01    25698   5.458E-04   5.445E-04    1215  Nw
   (       -2.8846E+03  1.0489E-02                          25699      after reneighboring )
      275  -2.8846E+03  1.9118E-05  1.474E+00  4.134E-03    26767   1.098E-06   1.022E-06    1066  Nw
   (       -2.8846E+03  1.9118E-05                          26768      after reneighboring )
   <central diffs>
      276  -2.8846E+03  1.9220E-07  1.474E+00  4.015E-05    30257   4.129E-10   4.091E-11    1743  Nw
   (       -2.8846E+03  1.9220E-07                          30258      after reneighboring )
 +++ ||g||_inf less than tolerance

  Number of force calcs                      =    30258
  Number of force calcs without non-bonded E =    29777
  Number of repartitionings                  =      205

CPU time for minimization, per proc (secs):
  (raw) avg =    7630.21  (per f&g eval) avg =   0.2522
        max =    7664.60
CPU time in Compute_f_g, total:
  (raw) avg =    7393.13  (per f&g eval) avg =   0.2443
        max =    7434.39
CPU time in Compute_f_g, just energy:
  (raw) avg =      88.97  (per f&g eval) avg =   0.0029
        max =      89.29
CPU time in Compute_f_g, lost due to load imbalance:
  (raw) avg =    3744.59  (per f&g eval) avg =   0.1238
        max =    5619.92

CPU times from LAMMPS, per proc (secs), % of    7630.2050
           Avg Time      %      Max Time      %
         ------------  -----  ------------  -----
Bond          20.5361   0.27       40.0022   0.52
Angle         67.4046   0.88      135.0166   1.77
Dihedral     127.4567   1.67      260.9897   3.42
Improper      29.3723   0.38       60.1945   0.79
Nonbond     3268.8508  42.84     6785.8693  88.93
Long           0.8139   0.01        0.8210   0.01
Neighbor      25.4444   0.33       46.3401   0.61
Chk neigh      0.3487   0.00        0.6540   0.01
Exchange       0.4386   0.01        0.5142   0.01
Comm          84.1061   1.10       92.3113   1.21
Rev Comm      41.0251   0.54       50.9747   0.67
IO            15.3540   0.20       17.0566   0.22
(other)     3949.0538  51.76

====================================================================
  Total PE  =     -2884.5698
  E (bond)  =        12.3621          E (coulomb) =     -3029.2057
  E (angle) =        72.1164          E (VDW)     =       -68.1287
  E (dih)   =       122.8032          E (long)    =         0.0000
  E (imprp) =         5.4828
====================================================================

Figure �� Sample output from the minimization algorithm
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The middle of the output contains a long table with nine columns of information
 Each
numbered line in the table gives a summary of one minimization iteration
 If the iteration
resulted in a step that was rejected� then the letters rej appear at the beginning of the line�
otherwise� it may be assumed the trial step was accepted
 Data in the nine columns refer to
values at the end of an iteration� except for the trust region radius
 The nine columns of data
are�

Iter Iteration number k in Algorithm �
f�x	 Energy at the end of the iteration �units here are kcal�mol�


grad

 inf Largest magnitude of a force component �i
e
� krE�p�k��
Delta Trust radius  at the start of the iteration

�note all other data refers to the end of the iteration�


step

 Length of the step d in Angstroms �i
e
� kdk��
f evals Cumulative number of force evaluations made so far
ared Actual reduction in energy made by d �see ��� in Algorithm ��
pred Predicted reduction in energy �see ��� in Algorithm ��
CG iters Number of inner iterations in Algorithm �� and why it exited�

TR � exceeded the trust radius at ����
Nw � converged to a Newton step at ����
ng � encountered a direction of negative curvature at ����
it � reached max sub iters in Algorithm �
FD � approximation ��
�� was inadequate in ����

After each accepted step a line in parentheses shows the new energy and gradient�force norm
computed after repartitioning and reneighboring
 For example� the energy after iterations ��
�� and � changed slightly as a result of reneighboring� but iterations �	� and �	� did not
�step sizes near a solution are usually very small�
 Before iteration �	� the message �central
diffs� indicates that the algorithm switched from equation ��
�� to ��
�� for greater accuracy


At the end of the table in Figure � is a message beginning with 


 that tells why the
minimizer stopped � in this example because it converged
 Then come three lines of summa�
rizing totals
 Next are a group of four CPU times
 The cumulative raw time� averaged over
all processors� is listed� followed by the same time divided by the number of force calculations
�per f�g eval�
 This last average is the best way to assess scalability of the software� since
the exact number of minimization iterations is sensitive to the number of processors �roundo�
errors change the inner iteration at which Algorithm � exits�
 The 
rst of the four CPU times
gives the total time of LAMMPS execution
 The second measures the time spent computing
energy and force vectors
 The third and fourth numbers break the second number down into
more detail
 Procedure Compute f g 
rst uses LAMMPS subroutines to compute local force
vector components in parallel� then swaps information between processors to get the total
force� then makes an additional calculation of non�bonded potential energy
 Usually the mini�
mization algorithm only wants the force� so the energy calculation is skipped
 The third CPU
time gives the cost of the additional energy computations� averaged over all force calculations
�which is admittedly a little misleading�
 The fourth CPU time is measured between the end
of the local force calculations and the start of synchronous interprocessor force vector com�
munications� thus� it gives time lost due to work load imbalances
 Of course there are other
places where time is lost due to load imbalance� but this is by far the most signi
cant


Finally� Figure � contains a list of CPU times and percentages from LAMMPS timers

The second and third columns are the most useful
 They show the CPU time spent by an
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average processor on each task
 The other time is largely accounted for by adding the times
for Compute f g� just energy and Compute f g� lost due to load imbalance
 In this
example� those tasks take ����	��	����� � ������� of the ������� seconds in other
 The rest
of other is largely due to linear algebra computations in the minimization algorithm


��� Software structure

Algorithms � and � are coded in the Fortran source 
le min algs�f
 Supporting subroutines
that interface it to LAMMPS are in the 
le min support�f
 The minimization algorithm
requires the following standard BLAS ���� routines� which can be obtained from netlib#ornl
gov
or http���www
netlib
org� daxpy�f� dcopy�f� ddot�f� dnrm��f� and dscal�f
 Appendix A
provides a table of source 
les in the new release of LAMMPS


A small number of global variables were added to the LAMMPS set de
ned in the 
le
lammps�h
 The source code for these additions is given below


CHARACTER��� opt�outfile

INTEGER opt�algthm� opt�max�iters� opt�max�fns

REAL�� opt�stop�tol

DOUBLE PRECISION opt�time�� opt�time�� opt�time�

COMMON �bk���� opt�outfile

COMMON �bk���� opt�algthm� opt�max�iters� opt�max�fns

COMMON �bk���� opt�stop�tol

COMMON �bk���� opt�time�� opt�time�� opt�time�

� Performance of the Minimization Algorithm

Newton�based minimization methods have a characteristic convergence behavior on molec�
ular structures with covalent bonds
 Figure � plots the potential energy E and force magnitude
krEk� against execution time for a test molecule �Transcription Regulation Protein �ROP
����� consisting of ��� atoms�
 Only data for accepted steps are plotted� so the energy de�
creases monotonically
 Note that the lower graph plots the log of krEk�� thus� at the 
nal
conformation all force vector components have magnitudes smaller than �	 ���� kcal�mol�!A

Figure � shows that most of the energy decrease occurred in the 
rst ���� seconds of

execution � the last 	��� seconds reduced the energy only �� kcal�mol
 Algorithm behavior
from ���� seconds to ���� seconds was particularly vexing
 Here the potential energy decreased
only �
� kcal�mol� yet the force magnitude indicated the conformation was still far from a local
minimum
 This poor performance is due to ill�conditioning in the potential energy function�
which can be traced primarily to the covalent bond terms ��� ���
 Ill�conditioning can be
reduced with special preconditioners ��� �� �	� or distance constraints ���� ���


The minimization algorithm has been tested on the Sandia Tera�op machine� Intel Paragon�
and a Silicon Graphics Power Challenge
 Tests indicate that ��" of CPU time is spent in
subroutine Compute f g� which uses LAMMPS routines to calculate force vectors and potential
energy
 Thus� the linear algebra of minimization accounts for less than �" of CPU time� and
the parallel scalability of minimization should be quite similar to the scalability of molecular
dynamics simulations
 Minimization requires use of the new coul�smooth force 
eld� which
appears to run about ��" slower than the coul�cut option


�	
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Figure �� Minimization performance on a protein containing ��� atoms
The upper graph shows the decrease in potential energy �in kcal�mol� as a function of execution time� The

lower graph plots the corresponding change in the logarithm of krEk�� Atoms experience forces of more than

one kcal�mol	
A for the �rst �


 seconds of minimization� even though the energy barely decreases after �




seconds� The slow convergence in this region is due to ill	conditioning� Final convergence �beyond the �




second mark� is at a quadratic rate�

The minimization algorithm did not always obtain good performance when scaled to a large
number of processors
 Subroutine Compute f g� where ��" of CPU time is spent� incurs some
losses due to processor load imbalance
 Each processor computes force terms on the atoms it
�owns�� then synchronously distributes the results to neighboring processors
 The time delay
between the last local force term calculation and receipt of the 
rst communication message
is idle time
 It is reported in the output as CPU time in Compute f g� lost due to load

imbalance �near the bottom in Figure ��
 The time loss is larger in processors that are lightly
loaded


Tables I and II show algorithm performance for di�erent numbers of processors
 Table I
results from minimization of the �ROP protein on the Tera�op machine
 Table II contains
data from the Paragon for a periodic block of cross�linked polymer strands �sulfur cured EPDM
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rubber �� containing ������ atoms
 If perfect scaling were achieved on these tests� then the total
time ��nd column� would decrease in proportion to the number of processors
 The �th column
indicates that some speedup loss is due to interprocessor communication costs
 However� much
greater loss is due to work load imbalance of the force calculations� as shown by the �th column

The work load becomes more unbalanced because the spatial decomposition re�ects 
ne grain
inhomogeneities in the molecule�s geometry
 The imbalance ratios �last two columns� measure
mismatch in the work load
 For example� a perfectly balanced distribution of ��� atoms over
�� processors would put 	 or � atoms in each processor� in practice� the geometry of �ROP
concentrates �� atoms in one processor �giving a ratio of ����������� � ����� and leaves zero
atoms in several others


Table I� Algorithm performance � ��� atoms

Time per eval� in msec Communication Imbalance ratios
� procs total E and force imbalance costs local � atoms local � neighbors
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Table II� Algorithm performance � ������ atoms

Time per eval� in msec Communication Imbalance ratios
� procs total E and force imbalance costs local � atoms local � neighbors

��� ������ ������ ����� ��� � 
��� 
��

��� ����� �

�� ����� ��� � 
��� 
���
��� ����� ����� ����� ��
 � 
��� 
���
�
�� ����� ����� ����
 ���� � 
��� 
���

Each line in a table shows the performance for a di�erent number of processors �� procs�� All values are

the average for one processor� Columns under Time per eval are further averaged over the number of calls to

subroutine Compute f g� The three columns give the average time spent in one call to the subroutine �total��

average time for one force�energy computation �E and force�� and the average time wasted in a force computation

due to load imbalance �imbalance�� Communication costs are a percentage of CPU time measured by adding

the LAMMPS times labeled Exchange� Comm� and Rev Comm near the bottom of Figure �� Imbalance ratios are

derived from LAMMPS summary statistics� The two columns give the average number of atoms owned by a

processor divided by the maximum number owned by the most heavily loaded processor �local � atoms�� and a

similar ratio involving the number of neighboring atoms stored by a processor �local � neighbors��

Table III and Figure � summarize the speedup analysis for the ��� atom example
 Force
computation imbalance and interprocessor communication costs account for most of the perfor�
mance decrease observed in this problem
 The last column of Table III implies that some other
loss mechanism becomes signi
cant for large numbers of processors� probably a load imbalance
in Level One BLAS linear algebra operations
 Practically� one may conclude it doesn�t make
much sense to run this small problem on more than � or � processors


�Supplied by J�	L� Faulon� Sandia National Laboratories�
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Table III� Speedups � ��� atoms

Speedup after Speedup after
� procs Speedup �ideal� imbalance imbalance and comm

removed removed

� � ��� � �
� ���� ��� ���� ����
� ���� ��� ���� ����
� ��
� ��� ���� ����
�� ���� ���� ���
 ���

�� ���� ���� ���� ���

�� ���� ���� ���� ����

Data is derived from Table I� Speedup is the total time for one processor ������ msec� divided by the total time

for a larger number of processors� ideally� it equals the number of processors used� This speedup is divided

by the average of the two imbalance ratios in Table I to estimate the speedup after imbalance removed� The

last column estimates the speedup if communication costs are also factored out� Example calculation� for �

processors� speedup is ���������� � ����� after removing load imbalance it is �����
���� � ����� and after further

removing communication costs it is ��������
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Figure �� Speedups plotted from Table III
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Table IV shows speedup for the ������ atom polymer
 This molecular system is one piece
of a much larger polymer structure� so it should be more homogeneous� nevertheless� for a
su�ciently large number of processors� local geometric inhomogeneities again cause signi
cant
work load imbalance


Table IV� Speedup � ������ atoms

� procs Speedup �ideal�

��� � ���
��� ���� ���
��� ���� ���
�
�� ���
 ���

� Conclusion

A gradient�based minimization algorithm has been added to LAMMPS V�
� to enable cal�
culation of molecular conformations with minimal potential energy
 The algorithm is a Newton
method� but uses conjugate gradient and 
nite di�erence approximations to avoid construct�
ing the Hessian matrix of second derivatives
 The parallel implementation uses distributed
vectors that follow the LAMMPS spatial decomposition scheme� and linear algebra operations
performed by parallelized Level One BLAS routines
 A smooth coulomb cuto� function based
on cubic spline interpolation has been added to overcome pathological minimization behav�
ior
 Testing shows that the algorithm has an asymptotic quadratic rate of convergence� but
progresses slowly during intermediate stages of minimization because of ill�conditioning in the
potential energy function
 Nearly all CPU time is spent computing force vectors
 This calcu�
lation became signi
cantly unbalanced for both test problems when the number of processors
increased too much
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Appendix A LAMMPS Source File Status

communicate�f unchanged
daxpy�f new 
le
dcopy�f new 
le
ddot�f new 
le
diagnostic�f unchanged
dnrm��f new 
le
dscal�f new 
le
ewald�f unchanged
ewald coeff�f unchanged
finish�f modi
ed for smooth coulomb
fix�f unchanged
force�f modi
ed for smooth coulomb
force bond�f unchanged
force class��f unchanged
force many�f unchanged
force respa�f modi
ed for smooth coulomb
initialize�f modi
ed for minimization
input�f modi
ed for minimization and smooth coulomb
integrate�f modi
ed for smooth coulomb
integrate respa�f unchanged
lammps�f modi
ed for smooth coulomb
lammps�h modi
ed for minimization and smooth coulomb
min algs�f new 
le
min support�f new 
le
misc�f unchanged
neighbor�f unchanged
output�f unchanged
param�h unchanged
parlib unix�f unchanged
pppm�f unchanged
pppm coeff�f unchanged
pppm��f unchanged
pppm� coeff�f unchanged
pppm� remap�f unchanged
random�f unchanged
read data�f unchanged
read restart�f unchanged
setup�f unchanged
setup special�f unchanged
start�f modi
ed for smooth coulomb
string�f unchanged
stringlib unix�f unchanged
thermo�f modi
ed for smooth coulomb
velocity�f unchanged
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