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Abstract*

This report summarizes some challenges associated with the use of computa-
tional science to predict the behavior of complex phenomena. As such, the doc-
ument is a compendium of ideas that have been generated by various staff at
Sandia. The report emphasizes key components of the use of computational to
predict complex phenomena, including computational complexity and correct-
ness of implementations, the nature of the comparison with data, the impor-
tance of uncertainty quantification in comprehending what the prediction is
telling us, and the role of risk in making and using computational predictions.
Both broad and more narrowly focused technical recommendations for re-
search are given. Several computational problems are summarized that help to
illustrate the issues we have emphasized. The tone of the report is informal,
with virtually no mathematics. However, we have attempted to provide a useful
bibliography that would assist the interested reader in pursuing the content of
this report in greater depth.

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under Contract DE-AC04-
94AL85000.
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Executive Summary

The purpose of this paper is to discuss some of the issues that we feel are important to
prediction and uncertainty in the modeling of complex phenomena. Complex phenomena
tend to have in common strongly nonlinear and tightly coupled physics, stochastic-like
behavior, and the need for many spatial and temporal scales. Typical examples of what we
mean by “complex phenomena” include: (1) climate modeling; (2) protein folding; (3)
behavior of populations, as in agent-based economic modeling; and (4) materials aging
problems associated with the Department of Energy (DOE) Science Based Stockpile
Stewardship Program (SBSS). Itis a paradigm that the main general method for producing
guantitative predictions from models of such complex phenomena is through computation.
This observation will underlie all of our subsequent discussion. With this in mind, we
observe that these problems lie at the current frontier of computational difficulty. In fact,
these and similar problems motivate the ongoing acceleration of computing hardware
capability beyond the Tera-Op regime.

Because computation is such an important tool, we are naturally stimulated to study
guestions associated with computational complexity, efficient algorithm design, and
correct implementation of these algorithms. However, focusing a discussion of prediction
of complex phenomena only on the accuracy of fundamental models, numerical algorithms,
and computational implementations misses certain additional important issues.

We suggest that the process of prediction is actually a complex interaction between the
mechanics of computational simulation, the comparison with the real world, and the
understanding that hopefully results from this effort. We must formally deal with several
concepts to provide an appropriate framework to discuss prediction, inchademge
Uncertainty, Computation, andData, as well a’rediction. By “Science”, we mean the
fundamental models that we use to describe the phenomenon. “Uncertainty” means the full
range of uncertainty that enters into any prediction of the phenomenon, such as model,
parametric, algorithmic, computational, as well as uncertainty in the basic data that are used
to compare with the prediction. “Computation” includes both fundamental and practical
algorithm issues, as well as implementation characteristics. “Prediction” includes
constraints, such as associated consequences of the prediction, timeliness and accuracy
requirements, as well as the formal predictive content of the model itself. “Data” enter in
both the simulation of the phenomenon, as well as in assessments of the quality of the
prediction, which is typically referred to as “Comparison with data.” The goal for
performing a prediction is not isolated. Rather, we seek “Comprehension,” the achievement
of better understanding of the phenomenon. The process is ultimately iterated, in a
continual effort to improve our next prediction.

Capability for prediction is applied simultaneously to improve our fundamental
comprehension of complex phenomena as well as to apply this comprehension to the
solution of specific problems. One element in the struggle to be predictikedistive
confidencein which we claim measurable confidence in the accuracy, hence utility, of our
predictions. Another elementpsedictive consequenci which we must deal with the
possibilities that our predictions are insufficiently accurate for their planned application.

vii



When high consequence is associated with the use of a prediction of a complex
phenomenon, the element of risk increases drastically. Thus, in addition to the study of
fundamental models, algorithms, and implementations, we must also quantitatively assess
consequence in the application of a complex phenomenon model. Finally, we must define
and quantify the full range of uncertainty associated with the complex phenomenon. High
consequence applications are an important type of prediction that we are concerned with.
In the main body of this paper, we introduce the notions of low-consequence and high-
consequence prediction, to emphasize that consequence is an important factor in prediction.

As the consequence of an intended application increases, so does the importance of
uncertainty quantification. For example, developing and implementing a clever two-phase
flow algorithm, followed by publication in a journal such as the Journal of Computational
Physics, is one end of the spectrum. Actually applying that algorithm in a formal nuclear
reactor safety assessment is quite another. The consequences associated with publishing
versus a reactor safety certification are worlds apart. It is our attempt to deal with this issue
that leads us to fundamental questions about the nature of uncertainty in our simulations.

Uncertainty is in reciprocal relation to predictive content of complex phenomena models -
as uncertainty increases, predictive content decreases. Uncertainty is currently studied
technically using stochastic methods. Thus, if we include uncertainty in our discussion of
prediction, we are also viewing the predictive content of our models in a stochastic manner.
There is no reason to believe that the current technical emphasis on stochastic methods for
analyzing uncertainty will change in the future. One of the best current applications for
these stochastic approaches is found in the fields of nuclear reactor safety and waste
repository assessment. This work has been evolving for more than thirty years. We believe
that much of the existing work in these fields can be applied more generally to uncertainty
guantification in many of the complex phenomena of interest to us.

The important technical problems to be solved in performing stochastic uncertainty
guantification include application of statistical design of experiments to computational
studies, propagation of uncertainty associated with model inputs to the model outputs, and
improving our knowledge in a cyclical way via comparison with data. The latter task is a
difficult inverse problem, and is commonly considered to be a natural application for
Bayesian statistical inference. We say more about these problems in the main body of this
report. Here we simply stress that while significant research problems underlie the solution
of these problems for application to general complex phenomena, there are also a wide
variety of existing methodologies that can be applied. A well-designed program needs to
strike a balance between research and use of existing methodologies.

Serious efforts are underway at Sandia to introduce uncertainty-based technology in
engineering and scientific simulations related to our DOE missions. We also generically
refer to these efforts as “non-deterministic modeling.” Reduction of uncertainty is the most
obvious goal of this effort. Our view is that uncertainty can be reduced only if we can

Develop detailed identification of uncertainty in specific simulation tasks.

Quantify uncertainty in such a way that statistical inference can be utilized.
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Learn how to properly use this quantitative inferential framework in our simulation
environment. We will refer to this as developumgcertainty-based comprehension
and engineering practice

In the body of this paper, we give three examples of recent complex phenomena studies at
Sandia: an application in computational materials science, the prediction of tertiary
structure in proteins, and a micro-agent-based macroeconomic model. These examples help
illustrate critical interactions in attempting to "predict" complex phenomena, which we
characterize with the following questions:

Computation - How do we actually compute the complex phenomena?
Comparison - How do we compare our calculations with “reality”?

Comprehension - How do we know how predictive we really are?

These questions are canonical. Any programmatic attack on the problem of prediction of
some specific complex phenomenon must to some degree attempt to answer all of these
guestions.

In the main body of this report, we recommend topics of a general nature that should be
addressed as part of a broad research program in prediction of complex phenomena. A
subset of these topics are given below, in no particular order by importance.

* We need scientific methodologies for accurate risk assessssmtiated with
prediction of complex phenomena. Typical questions that should be answered are:
Where does low consequence prediction end and high consequence prediction begin?
How do we measure, let alone control, the risk attendant with high consequence
applications in our simulations? We expect systems or operations research approaches
to be particularly useful, as well as ideas in statistical quality control. A good starting
point for applicable methodologies seems to be the nuclear reactor safety and waste
repository assessment communities.

» We continue to be driven in practical problems by the need for algorithmic approaches
that reduce fundamental computational “complexity”, as in the protein folding
problem. Is it possible to uncover powerful general principles that can guide algorithm
development in the future for such combinatorially complex problems?

* What new ideas for comparing data with predictions from very complex simulations
are likely to be effective? For example, how do we compare a multi-scale model which
directly calculates from atomic scales to continuum scales with “data?” Are there more
refined methods for assessing data quality and data importance applicable to the
comparison of data with predictions of complex phenomena? What weight should
specific data be given when comparing with a prediction to properly measure the
predictive content of the simulation? In other words, which data count more heavily
when we are trying to assess the predictive quality of simulations of complex
phenomena?



* The entire framework for prediction of complex phenomena, boiled down to a core of
“compute, compare, and comprehend”, probably requires new ideas to be executed in
an optimal manner. We know that we are currently outstripping our ability to
understand the largest problems that are running on our largest current massively
parallel computers. This is because our interfaces to the data, such as graphical tools,
lag the current rapid growth in computing power. What graphical tools are required to
optimize the information we gain by performing comparisons with data. Another
relevant issue, especially for high consequence simulations, is how do we deal with the
possibility of human error in performing and analyzing such simulations. How can we
minimize the potential impact of human error in performing simulations of complex
phenomena for high consequence applications? Can we quantify the uncertainties that
result from the potential for human error?

We also have given recommendations regarding particular technical issues that have arisen
in our current computational work at Sandia. We list a few of these below to give a hint as
to the nature of these recommendations. We suggest that any or all of these issues are
specific technical topics which are relevant to the study of prediction of complex
phenomena.

» We need continued research and development of advanced molecular dynamics and
advanced Monte Carlo methods. These techniques are increasingly important for small
scales in multi-scale problems (e. g. cracking prediction, microstructural evolution,
etc.). Advanced Monte Carlo techniques might also be leveraged for uncertainty
propagation sampling strategies. Better understanding of extreme statistics from
Monte Carlo calculations is additionally of physical interest, as well as useful for
guantitative uncertainty assessment.

» General approaches for multi-time scale and multi-length scale problems are needed,
Multi-scale methods appropriate for long-time problems seem to be particularly
needed. How careful (rigorous) do we have to be in blending different length/time
scale approaches in unified simulation frameworks?

* What are the key issues that are driven by computational complexity when we study
predictability of complex phenomena? For example, how important and canonical is
the strategy of replacing a complex phenomenon by one which is approximate but
solvable with polynomial time algorithms?

* How do we progress beyond operator splitting - the approximate weak coupling or full
decoupling of physics - in simulation of strongly coupled, physically complex
systems?

* We recommend continued study of the connections between recent computer science
developments, for example, and statistical mechanics.

» Well-validated computational libraries for complex phenomena studies should be
developed. This involves sharing and standardization, as well as procedures for
determining candidate algorithms.



Introduction

Prediction and Uncertainty in Computational
Modeling of Complex Phenomena: A Whitepaper

1. Introduction

The purpose of this paper is to discuss some of the issues that we feel are important to the
modeling of complex phenomena, focusing on prediction and uncertainty in the modeling
of such phenomena. As will be clear in the following, we view the latter concepts as
reciprocal to one another. In other words, the quality of being predictable is in inverse
relationship to the quality of being uncertain. In a purely operational sense, therefore,
predictive confidence will and should logically increase when our determined uncertainty
is reduced. Thus, we should attempt to reduce uncertainty in studies of complex phenomena
if we hope to produce reasonable predictions. Much of what we are attempting when we
predict complex phenomena is also nuanced by the overall need to be performing non-
deterministic prediction. This view will be clarified below, but we emphasize that what is
involved is larger than the fact that the physical phenomena themselves might be non-
deterministic.

The study of complex phenomena is a battleground. Elements of fundamental science,
large-scale computation, complicated experimental data, and uncertainties associated with
these components fiercely mix in our efforts to develop meaningful predictions. We
schematically depict the overall complex phenomenon prediction process in Figure 1.

We have suggested in Figure 1 that the process of prediction is actually a complex
interaction between the mechanics of computational simulation, the comparison with the
real world, and the understanding that hopefully results from this effort. By “Science”, we
mean the fundamental models that we use to describe the phenomenon. “Uncertainty”
means the full range of uncertainty that enters into any prediction of the phenomenon, such
as model, parametric, algorithmic, computational, as well as uncertainty in the basic data
that are used to compare with the prediction. “Computation” includes both fundamental and
practical algorithm issues, as well as implementation characteristics. “Prediction” includes
constraints, such as associated consequences of the prediction, timeliness and accuracy
requirements, as well as the formal predictive content of the modeling itself. “Data” enter
in both the simulation of the phenomenon, as well as in assessments of the quality of the
prediction, “Comparison with data.” Finally, “Comprehension” implies that the goal for
performing a prediction to begin with is not isolated. Rather, we seek to use prediction to
achieve better understanding of the phenomenon, and then iterate to improve our next
prediction.
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Figure 1. Components for prediction of complex phenomena.

The factors of computational predictability or uncertainty that are commonly discussed and
analyzed are (1) algorithmic errors and inaccuracy; (2) software implementation errors; and
(3) fundamental model inaccuracies. However, in our view there are two additional
challenges associated with attempts to increase the predictive content of simulations of
complex phenomena. These additional challenges are the associatapplichtion
consequenceith the computational model and tlod range of uncertaintyvhich must be
captured in quantifying the uncertainty of a prediction.

Prediction is applied simultaneously to improve our fundamental comprehension of
complex phenomena as well as to apply this comprehension to the solution of specific
problems. One element in the effort to be predictiy@eslictive confidencan which we

claim measurable confidence in the accuracy, hence utility, of our predictions. Another
element ispredictive consequencen which we must deal with the possibility that our
predictions are insufficiently accurate for their planned application. When high
consequence is associated with the use of a prediction of a complex phenomenon, the
element of risk associated with an incorrect or insufficiently accurate prediction increases
drastically. We might normally ask whether our prediction was right or wrong according to
some chosen measure. Paying attention to consequence of the application of the prediction,
on the other hand, the question we now must ask is whether our predigiaa isnough

for the intended application.

We believe that important issues are ignored if we focus only on the accuracy of
fundamental models, algorithms, and their implementations. In fact, this concern is more
properly the subject oferification- demonstrating the correctness of the implementation
and accuracy of the algorithms - awalidation - demonstrating the correctness of the
fundamental models. Achieving verification and validation is often summarized by the
simple statements “solving the equations correctly” and “solving the correct equations,”
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respectively. (See Knepell and Arangno [25] or the Defense Modeling and Simulation
Organization (DMSO) document [37] for relevant discussions of verification and
validation. In general, this topic is beyond the scope of this paper.)

That something important is missing is simply illustrated by one example. Suppose that we
are given a verified and validated numerical model (assuming this is even possible to begin
with), so that we are solving the correct equations correctly. Apply this code to a high-
consequence application, such as climate or a nuclear weapon. A human being must do this.
How do we deal with the possibility that our human user may make a variety of errors in
the use of the code, such as a bad specification of the problem to be solved? Scientists and
code developers might argue that such a question is beyond the scope of their charter, and
S0 not appropriate for discussing problems of prediction of complex phenomena. However,
this issue is a clear and large component in the overall quantification of uncertainty
associated with that high-consequence modeling activity and so part of our subject. It is
also interesting that such a question becomes more important as the consequence of the
application increases. Thus, the range of uncertainty that should be understood is related to
the consequence of the application.

Our view is that uncertainty is a fundamentally stochastic concept. Probabilistic
indeterminacy has been fundamental in modeling of complex phenomena for as long as we
have had formal definitions of probability. Whether we are discussing stochastic variation
in manufactured parts, or whether we are applying a Monte Carlo algorithm to compute a
prediction of a complex phenomenon, direct treatment of stochastic behavior has been one
of our tools for prediction for the past century. However, we now also include the
probability of having incorrectly parameterized fundamental models, of having incorrect
values for the parameters, of making mistakes in either execution of a simulation or in the
analysis of its results. Worrying about these possibilities under a logical umbrella of
probability is more akin to work that has been done for the past thirty years in nuclear
reactor safety studies and waste management than in classical non-deterministic physics
and engineering.

If “predictive” is indeed the reciprocal of “uncertain”, then the result is that necessary
concepts of prediction themselves are stochastic. This statement demands that “confidence
assessments” associated with high-consequence computational simulation go well beyond
the classic concerns of numerical analysis. We believe that this is true, and that simple
principles can be defined which clarify the need for stochastic inference in discussions of
prediction for complex phenomena.

Having set the stage, we will now summarize the content of the remainder of this paper.
Section 2 will expand our above discussion. The main point of that section is that an
important variable for consideration in the discussion of prediction of high consequence
phenomena is the product of consequence and complexity, not simply isolated measures of
the two. Our argument, of course, is mere persuasion. Theorems are lacking in this area.
We will discuss the broad scope of modeling uncertainty in Section 3, as well as its
influence on prediction. We will also discuss particular issues related to the propagation of
uncertainty in simulations and the need to optimize the inferential content of simulations in
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the presence of uncertainty. The only equations that appear in this paper are presented in
this section. Particular, and particularly difficult, complex phenomena modeling activities

at Sandia are sampled in Section 4. A major reason for doing this is to make more concrete
our philosophical framework, as well as to guide the reader’s thinking as they move into
Section 5. There, we give our recommendations regarding important needs and future
directions for any program which seeks to address uncertainty and prediction of complex
phenomena. Finally, we conclude this paper in Section 6 by taking the preacher’s advice
and saying it all again, in a far less wordy manner of course!

Where our discussion is technically specific, we will tend to mainly focus on applications
at Sandia, as well as Sandia bibliographic references. This not because we are parochial,
but simply because we understand our own context considerably better than other efforts.
This understanding is important for the purposes of this Whitepaper.

2. Complex Phenomena and Complex Calculations

Complex Phenomena - Physical Complexity is Important

The complexity we are concerned with must be described more precisely than to simply say
that we are interested in problems which are harder than solving single ordinary differential
equations, and easier than predicting the local weather over the United States one year from
now. Attempting to specify the “complexity” in complex phenomena, someone with a
sense of humor might observe that, while we can’t exactly define this complexity, we sure
know it when we see it. Recent general references that seek to capture at least some of the
broad scope of what “complex” really means are the books of Badii and Politi [2] and Bar-
Yam [3].

A more formal attempt at definition could involve comparison with a precise metric of
complexity. A complex phenomenon would then be one that satisfies the metric. For
example, Feldman and Crutchfield [13] argue in favor of a statistical metric, in which limits
of fully ordered and fully disordered systems are considered to be simple, and intermediate
systems are (roughly speaking) complex. Such metrics might be algorithmic as well. If
computer models which simulate complex phenomena enter the picture we might as well
center metrics on the complexity of the code itself.

Anderson [1] has suggested a taxonomy of attributes of complex systems, including
algorithmic complexity, complex adaptivity, randomness, and emergence. He also suggests
that a truly complex system possibly contains all of the taxonomic features he catalogs. The
important point we are stating here is that the way we approach and think about complexity
may be more a matter of intellectuaekturethan technicatontent in the sense that the

word “texture” captures a little better the more integrated viewpoint that is required when
we examine very complex phenomena. This is certainly a reasonable way to view our
difficulties in discussing predictability of these same complex phenomena.
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“Emergence” is worth isolating in the context of our focus on simulations. It is generally
believed that complexity manifests itself in the emergence of complicated behavior from a
collective of simple behaviors. For example, the information that can emerge from simple
computational cellular automata can be enormously complex. It is also believed that the
emergence of simplicity from seemingly extraordinarily complicated dynamics hints at
complexity. An example of this phenomenon is the appearance of coherent structures in
turbulent flows.

A simulation framework can also support emergence, even in a formal sense. The ability of
simulations to produce emergent behavior is studied abstractly, for example, by Rasmussen
and Barrett [31]. Anybody who has spent a fair amount of time performing complex
modeling tasks does not need an abstract treatment to know that complicated computer
models are likely more than the sum of their parts, possibly producing emergent (and
unwanted) behavior in many situations. We might reasonably claim that attempting to
make a rational, consequential prediction from an enormous calculation like that performed
in climate modeling, or what ASCI hopes to accomplish, is an act of emergent simplicity.
Along these lines, a general question is whether or not complex phenomena fundamentally
require complex simulations. Conversely, are complex simulations truly representative of
the complex phenomena they purport to simulate?

The paper of Brownet al [8] captures important notions of physical complexity in
modeling that are present in the examples we present in Section 4. The common drivers for
complex phenomena and their correspondingly complex simulations suggested in [8] are
nonlinearity, stochasticity, and the presence of multiple time and length scales. In addition,
a wide range of physics is usually important. Hence, for example, to perform predictive
materials modeling a suitable simulation might utilize micro-scales and quantum
mechanics, meso-scales and statistical mechanics, and macro-scales and continuum
mechanics, with a dense fabric of nonlinearity and stochasticity coupling these scales
tossed in. Such a problem seems to be so physically formidable that we automatically tend
to weakly couple or actually decouple the physics when we approach such problems
currently. Macro-scales are modeled mainly independently of the micro-scales, for
example, with ad hoc prescriptions serving as the only means for providing even weak
coupling. This approach has seemed to work in the past mainly because the engineering
applications of natural materials have, for the most part, been amenable to macro-scale
treatments. Metastable engineered materials, of increasing importance to human
technology, are far less amenable to this approach. One of the deep conceptual issues
mentioned in [8] is to develop better rational understanding of reductions in the complexity
of physics coupling for simulation of complex phenomena.

A similar point could be made about each of the complex phenomena - SBSS, climate,
financial (and political) modeling, and so on - which happen to be mentioned in Reference
[8]. The general methodological issues that arise in complex phenomena include
complexity of “real” data, multi-scale treatments, fundamental versus perceived

stochasticity, fundamental measures and treatment of uncertainty in models, and
complexity of simulation implementations. These methodological issues are a fundamental
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current running through all of our attempts to predictively simulate complex phenomena
and capture a good part of the pulse of the associated complexity.

There is at least one other issue which is equally important. This is the impact of formal
algorithmic complexity, and its transmutation into formal computational complexity in real
simulation implementations. Some discussion of this is found in the books mentioned
above [2, 3], as well as in Svozil's book [36]. We will illustrate this current specifically in
the examples we present in Section 4.

Complex Phenomena - Consequence is Important

In high-consequence applications of predictions of complex phenomena, the results of
modeling error become dramatic. This could be as straightforward as the result that people
may die if an aircraft control system software implementation is faulty. As a more subtle
example, which is more closely related to the scientific modeling that we are most
interested in, there is also now increasing consequence associated with climate modeling.
This is because there is more national and world policy dependence upon the predictions of
climate modeling. The long term impact of determining uncertainty in such a policy
consequential scientific simulation is not clear, but is potentially large. Although climate
modeling is such a complex scientific problem that it is on anybody’s list of grand
challenge simulation problems, we should not let complexity alone dwarf the other issues.
The coupling of significant risk to climate simulations places a much greater burden on
those who must extract predictions from this modeling. Such a situation certainly lends
itself to further discussion. An alternative example that we could have used here is
increasing dependence upon accurate earthquake prediction.

Consider another example. This is the challenge of high consequence simulation resulting
from the movement of the maintenance and evolution of the U. S. nuclear weapons
stockpile from an underground test centered program to a program with an intended real,
predictive, consequential simulation component. This so-caBettnce Based
Stockpile Stewardship  program will dramatically increase the quantitative
consequences of simulations focused on stockpile applications, and will almost certainly
increase the qualitative consequences as well. The Accelerated Strategic Computing
Initiative (ASCI) [27, 38] is designed to be the major technology enabler for this
transformation of the computing component of the stockpile program. Many of the
software and hardware issues that are at the core of ASCI combine overwhelming
technological complexity with almost overwhelming application consequence.

Figure 2 presents a notional view of a key observation. There, we have depicted a generic
list of problems (it could start with climate modeling and end with predicting the dynamics

of a gyroscope - the reader is invited to provide their own favorite starting and ending
problems). This list is arranged so that the apparent and formal complexity of the modeling
task is decreasing as we move from left to right through the list of problems. At the same
time, we suggest that there is some consequence or risk associated with each problem that
grows (again, we do not claim that this consequence is particularly easy to measure
objectively) as we move through the list.
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Figure 2. The formal modeling complexity of a problem may decrease, yet the predic-
tive challenge might become more difficult.

It may be harder to “predict” with suitable accuracy the physically simpler, but higher
consequence, problems. Our confidence in the prediction of more consequential problems
may decrease simply due to increased consequence, even if the purely technical challenge
may be dramatically simplified.

At the risk of an unfair simplification, we choose to distinguisgh consequence
predictionfrom low consequence predictiowe believe that much of the energy which we
devote to studying prediction in complex phenomena should be aimed at the first kind of
prediction, rather than the second. This is certainly where the thrust of applications in SBSS
lies, for example. The ultimate purpose of the general complex phenomena discussed in [8]
also points in this direction. We have summarized a few distinctions between low and high
consequence prediction in Figure 3.

Our intention is to persuade the reader that consequence is an important variable in
prediction for complex phenomena. It may become the dominant variable depending upon
the necessity for high consequence prediction. This suggests that an appropriate scaling for
effort (and funding) in prediction and uncertainty of complex phenomena relies on a
product of complexity and consequence, rather than isolated contributions from each. We
have captured this notion in Figure 4, although a three-dimensional plot, with “effort” as
the third axis, would make this easier to appreciate.
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Low Consequence Prediction: High Consequence Prediction:
- Discovery - We MUST quantify and minimize
the uncertainty
- Analysis
- Specific predictions lead to
- Synthesis specific consequences
- Much uncertainty and we can - Somebody will act (die?) based
live with it on the prediction

Figure 3. The transition from low consequence prediction to high consequence predic-
tion is necessary for high consequence predictions of complex phenomena.
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Figure 4. High complexity and high consequence really makes things tough.

Complex Phenomena - Computation is Fundamental

We stress that very large scale computing is the common denominator which appears in all
of the complex phenomena modeling with which we are concerned. The problems that are
subsumed by the phrase “complex phenomena” are, for the most part, too complex for any
predictive attack other than via computing. Computing is the heart and soul of all of our
efforts to be predictive when we confront problems of complex phenomena.

If we focus on computation, and consider our general view presented in Figure 1, then there
are three questions that we need to associate with predictive simulations of complex
phenomena. These questions serve to provide general structure to our discussion of
particular examples in Section 4. Any programmatic effort devoted to prediction of
complex phenomena should attempt to answer all of these questions. These questions are:
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Computation - How do we actually compute the complex phenomena?
Comparison - How do we compare our simulations with “reality”?

Comprehension - How do we understand how predictive our simulations really are?

Computation is generally centered around issues of algorithmic complexity, serves as a
driver for hardware development, and directly reflects issues of “fidelity” which are often
heard when discussions of grand challenge computing problems arise.

Comparison is a rather more subtle problem. The primary need for care appears by asking
what exactly we mean by “reality?” One of the apparent facts that we can’t quite seem to
formally characterize for complex systems is that complex systems pose significant
difficulties to revealing their secrets by experimental probing. For one thing, it may be hard
to gather any data at all. For another, there are fundamental problems in distinguishing the
important and relevant data from the trash. (Ransacking a garbage dump for a valuable
antique comes to mind as an analogy.) Finally, even if we have a set of critical data that we
actually believe, the act of comparing that data with a complex calculation may involve
research in and of itself.

Comprehension brings consequence into our picture. tealey understand, we are more
willing to risk the consequences associated with the application our predictions. Lack of
comprehension is measured by increasing uncertainty in the effectiveness of the
predictions.

3. Calculations

What is Uncertainty and Why Do We Care?

As claimed above, correctly addressing the dimension of consequence in prediction of
complex phenomena requires fully grasping the scope of uncertainty in our modeling
endeavors. We have opined in Section 1 that the true range of uncertainty in high-
consequence complex simulations goes beyond the traditional concerns of only algorithms,
implementations, and fundamental models. One of the largest sources of uncertainty is the
category often referred to as “the unknown unknowns.” In other words, what is it that will
destroy our predictive effectiveness and about which we have no clue? Generally speaking,
one way that science progresses is through chasing, capturing, and elucidating the unknown
unknowns through the confrontation with data. This is very much the way that unknown
unknowns in simulations must also be identified.

Gell-Mann [17] has addressed the influence of unknown unknowns in the consideration of
the limits of predictability of a very fundamental model. There are two specific points in

that lecture that are worth keeping in mind when we speculate about simulation
predictability of complex phenomena. First, he emphasizes the role of our information
gathering ability, which effectively operates to smooth or average uncertainty. In this
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regard, we find it helpful to consider a software system as an information gatherer about
the complex phenomenon it is modeling. Second, Gell-Mann emphasizes that the details of
the models can serve to amplify our uncertainty (or ignorance). He mentions the presence
of chaos as a clear example of this, but this effect is also quite apparent in the operational
aspects of performing simulations of complex phenomena.

It is important to emphasize that the numerical accuracy of a simulation is only one factor

in the overall assessment of uncertainty associated with that simulation and its application.
Once again, as the consequence of the intended application increases, the scope of the
uncertainty quantification effort also transcends the question of accuracy. For example,
developing and implementing a clever two-phase flow algorithm, followed by publication

in a journal such as the Journal of Computational Physics, is one issue. Actually applying
that algorithm in a formal nuclear reactor safety assessment is quite another. The
consequences associated with publishing versus a reactor safety certification are worlds
apart. It is our attempt to deal with this that leads us to fundamental questions about the
nature of uncertainty in our simulations.

Oberkampf and his colleagues [28] have recently taken a systems approach to assess the
very wide range of uncertainty issues arising in simulation of complex phenomena. Here,
we will simply summarize a few of the main points. The interested readers can study the
article themselves.

Figure 5 depicts the phases needed to develop a computational prediction of a complex
phenomenon as discussed in [28]. Oberkarapfal propose to distinguish variability,
uncertainty, and error in the development of the predici@miability means inherent
variation in the physical system or environment that is under consideration. Thus, while we
do not expect the laws of quantum chromodynamics to vary, if we are called on to model a
complex manufactured component, such a thing is indeed subject to stochastic variations
associated with production, handling history, usage, and other fddtmertaintyis used

in [28] to capture the notion of deficiency in any phase or activity of the simulation process
that originates in lack of knowleddeérror is then defined to be a recognizable deficiency

in any phase or activity of the simulation process that is not due to lack of knowledge.

A systematic characterization is offered of the simulation components addressed in Figure
5 in these terms. These results are simply summarized in Figure 6. We feel that such a
systems approach to studying sources of limitations in simulations is extremely useful. We
also emphasize how difficult the process of identifying variability, uncertainty, and error in
particular complex phenomenon can be.

The authors of [28] call for the development of more comprehensive procedures for
“representing, aggregating, and propagating individual sources [of variability, uncertainty,
and error] through the entire modeling and simulation process.” Let us now turn our
attention to some specifics associated with the quantifiability of uncertainty in simulations.

10
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Physical System
(Existing or Proposed)

Conceptual Modeling
of the Physical System

Mathematical Modeling
of the Conceptual Model

Discretization of the
Mathematical Model

Computer Programming
of the Discrete Model

Numerical Solution of the

Representation of the
Computer Program Model

Numerical Solution

Figure 5. Phases for development of a simulation of complex phenomena.

Uncertainty Quantification

The discussion in the above section was oriented at discussing needs and problems
associated with identifying uncertainty. Quantifying and using uncertainty and its
inferential methods is a problem that many people have studied and are continuing to study.
A key part of our view of the problem of prediction of complex phenomena is simply to
begin applying existing research and methodology to a wider class of scientific problems.
Uncertainty quantification of the kind we seek to apply is perhaps best discovered in work
over the past few decades associated with nuclear reactor safety and waste repository
assessments. We will not attempt to even briefly summarize the methodologies in this work
which hold promise for application to predictions for more general complex phenomena.
Helton’s article [22] is recommended for those readers interested in studying the nuclear
reactor safety analog for these problems more deeply.

In almost all technical treatments of uncertainty quantification and its associated problems,
the underlying framework is assumed to be stochastic. This immediately provides an
inferential framework that is statistical, rather than deterministic. If understanding

prediction requires understanding the simulation uncertainty, which we believe, then
understanding prediction requires a similar inferential framework. A recent survey of

various aspects of probabilistic methods for use in risk, reliability and uncertainty analysis
is Robinson [34].

11
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Conceptual Modeling Mathematical Modeling
Activities Activities
System/Environment Specification Conservation Equations
(Uncertainties) (Uncertainties and Acknowledged Errors)
Scenario Abstraction . Auxiliary Physical Equations _—

(Uncertainties) (Variabilities and Uncertainties)
Stochastic Specifications Boundary and Initial Conditions
(Variabilities and Uncertainties) (Variabilities and Uncertainties)

Discretization

Computer Programming Activities
Activities Discretization of PDEs
Input (Acknowledged Errors)
(Unacknowledged Errors) Discretization of BCs
Programming B (Acknowledged Errors) |
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Temporal Convergence Programming
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(Acknowledged Errors) (Acknowledged Errors)
Computer Round-off Data Interpretation
(Acknowledged Errors) (Unacknowledged Errors)

Computational Results
(Total Variability, Uncertainty, and Error)

Figure 6. Identifying primary variability, uncertainty, and error in simulation phases.

Serious efforts are underway at Sandia to introduce uncertainty quantification
methodologies into engineering and scientific simulations related to our DOE missions. We
also generically refer to these efforts as “non-deterministic modeling.” Systematic
reduction of uncertainty is the most obvious goal of this effort. Generally, our view is that
uncertainty can be reduced only if we can

Develop detailed identification of uncertainty in specific simulation tasks.
Quantify uncertainty in such a way that statistical inference can be utilized.

Learn how to properly use this quantitative inferential framework in our simulation
environment. We will refer to this as developing uncertainty-based judgement and
engineering practice.

12
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To facilitate the following discussion, the only equations that appear in this paper will now
be written. It is convenient to summarize the problem of simulating some particular
complex phenomenon as

F() = C (1)

Here,F is merely an input-output relationship which could be as simple as an algebraic
equation or as complex as a 1 million line shock wave physics code. We will refer to is as
an “operator” below.l is a set of inputs that drive the simulation. These could be
geometries, boundary conditions, material properties, parameters appearing in fundamental
models, or anything that someone could control when performing the simufation.  is the

output of the operatdf

Stochasticity may arise in equation (1) in a variety of ways. In one case, a stochastic
procedure might have been used to develop some of the data used by the Bperator . More
directly, the equation (1) might manifestly represent a fundamental stochastic process
underlying its models. An example of what we have in mind by this is the Kardar-Parisi-
Zhang equation [4]:

OyGe ) = viy+ 30y +n(x, b )

in which a stochastic term is explicitly present, the uncorrelated white noise (&m)
Equation (2) emerges in a particular sense as the macroscopic limit of a random,
microscopic process, in this case random particle deposition on a surface with an
interaction.

More directly related to the sense of our concerns for uncertainty quantification is the
simple random linear wave equation governing longitudinal waves in a randomly varying
one-dimensional medium:

2 2
0P -2 P
0P - Erd L. @3)
ot 0x

In equation (3).c(x) might be a one-dimensional random field that describes stochastic
variation in the sound speed of the medium. However, we could also simply claim that we
don’t know what the sound speed of this particular medium is. We might believe that it lies
between two logical limits, but that may be all that we know. We may know that we can
assign a particular stochastic distribution to this variable. Or we may only be able to state
that we simply don’t know precisely what it is. We typically are concerned with how our
characterization of this variable may influence the solution of the equation (3). In a recent
paper [19], Glimm and Sharp address stochastic issues in partial differential equations.
Complementary discussion can also be found in Glimm’s review [18].

13
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There are two classes of problems associated with addressing uncertainty in the general
equation (1). The first problem igncertainty propagation There are several tasks
associated with uncertainty propagation. First and most generic is to answer the following
guestion: givenl as well as an associated probability distribution which measures its

uncertainty, what is the resulting probability distribution @r ? A subsidiary question
which is obviously of considerable interest is how well does the inferred probability
distribution actually characterize the uncertaintin ~ ? This question can not be answered
using uncertainty propagation alone. Another important question is to assess the sensitivity
of the outputO to the parameter family . This is most simply measured in terms of partial
derivatives of various orders @  with respect to the elemenits of . A further question is

exactly how the probability distribution that characterizes uncertainty in  is chosen in
specific problems.

We will not attempt to summarize the literature that exists on uncertainty propagation and
sensitivity analysis. Sensitivity analysis, for example, has a vast number of papers
associated with deterministic methods such as adjoint differentiation, direct differentiation,
automatic differentiation, finite difference differentiation approximation, and others. For
example, in-line direct differentiation approaches coupled with perturbation theory
(restricting attention to first order sensitivity coefficients) are being implemented at Sandia
in the area of thermal conduction problems, with the intent to apply them to more general
problems occurring in simulation of fire environments [6].

Sensitivity can also be determined as part of the uncertainty propagation treatment.
Stochastic uncertainty propagation begins with attempts to characterize the output
distribution by sampling it. Our greatest concerns arise when the cost of determining the

output is very large. We are also typically interested in situations where is a very large

vector (perhaps hundreds or thousands of parameters). Sensitivity analysis might allow us
to ultimately reduce the size of this vector. Sampling strategies then become very

important. Monte Carlo based methods are discussed in [19], but clearly more sophisticated
sampling strategies are required for very complex and expensive problems. This topic is of
recognized importance and is discussed, for example, in [29, 26], as well as the vast
literature associated with risk analysis for nuclear reactors and waste repositories.

An important problem in all uses of stochastic methods for propagating uncertainty, such
as reliability techniques or response surface constructions, is the precise characterization of
the probability distributions that must be associated Wwith . A deeper issue is whether
guantitative characterization of our uncertainty in these parameters actually can be captured
by probability theory, or is something more general required. For example, we could
fundamentally question whether we have even captured most of the important
characteristics of a complex phenomenon with a fixed choice of parameters. Is this question
solvable using a stochastic inference framework? Such a question does not arise if the
phenomena which are parameterized using are “truly” stochastic (as in non-deterministic
phenomena such as manufacturing variabilities). A great deal of work remains to be done
simply applying existing stochastic methods to current complex phenomenon prediction

14
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problems. We believe that it is best to pursue this direction until we have sharper
understanding of where this approach may fail for specific phenomena.

The notion of synthesis of the output uncertainty leads naturally to the inverse problem of
using uncertainty analysis to “improve” the operdtor in (1) itself. In other words, how
can knowledge of the output be used to learn more dbout | and ? A Bayesian framework
for doing this, in which a posterior distribution for is inferred from its prior distribution

and theO distribution, seems to be the first recourse, although there are other possibilities.
Reference [19] discusses this problem specifically for applications associated with
multiphase dynamic fluid mixing and porous flow in geologic media. A more general
discussion is found in Draper [10], who casts the entire issue of fundamental modeling
uncertainty associated with equation (1) in a Bayesian framework. Determining
“improved” input parameters from outputs in this sense is also callestem identification
problem An excellent discussion of this can be found in Beck’s article [5], while a more
recent reference to current research activities at Sandia is Red-Horse [32].

The practical problems of statistical design of experiments appropriate for computational
simulations remain important. The experimental design has a strong influence on the

inference of a posterior from a prior distribution bn . Once a design strategy has been
defined and performed, one can also proceed to approximate the operator by a surrogate

or “approximate” operatoF . The major advantage of an operator su€h as is that it may
have far less expense associated with evaluating it. The issues of sensitivity analysis,
statistical parsimony (that is, the assumption that only a few of the paraineters are really

statistically important), and parameter interactions may then be studiedrusing . If, indeed,
only a few parameters are then found to be important, one can proceed with a strategy of
redoing the uncertainty analysis restricted to these parameters with the exact operator and
a denser sampling scheme, such as Monte Carlo. See Romero and Bankston [35] for some
recent work which studies this approach. Red-Horse and Paez [33] also discuss improving
understanding of the probabilistic content of surrogates using statistical bootstrapping
techniques.

Once an inferential approach involving both uncertainty propagation and the inverse
problem has been established, regardless of how it is actually accomplished, one can think
about trying to optimize predictions emerging from an equation like (1). This might involve
directly optimizing some aspects of the operdtor , or improving the apparent output
accuracy by modifying the inputs and parameters systematically. An illustration of
optimizing material parameters using such an approach is given in Fossum’s work [14-16],
as well as in a recent study by Booker and colleagues [7]. Systematic procedures might be
utilized to optimally select simulation parameters, such as nonlinear regression techniques
suggested by Cox and his colleagues [9]. But, the computational requirements associated
with such an approach for function evaluations that might take hours or days on a teraflop
computer, and codes that may have 1000 input parameters, are overwhelming. Clearly,
deep investigations of these methodologies will be required in the future to understand their
limits of applicability to simulation problems associated with various complex phenomena.
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At Sandia, significant effort is being expended to make methodologies for this kind of
uncertainty inference available as standard tools for simulation practitioners working on
key engineering problems. One example is the implementation of experimental design
procedures and uncertainty propagation techniques within the DAKOTA [11] optimization
software framework. Problems of interest that seem to be likely candidates for melding
stochastic uncertainty techniques with high complexity and high consequence simulations
to better assess prediction quality include risk assessment, predictive engineering,
predictive materials modeling, reverse engineering, certain grand challenge computing
problems such as protein folding (leading to drug design methodologies), SBSS
applications, and ASCI code verification and validation needs.

4. Some Examples

In this section, we will illustrate some of the issues discussed above by examining a series
of problems of current topical interest at Sandia. While far from inclusive of all of the
prediction problems that we are concerned with, each of these problems highlights the way
that questions of computation, comparison, and comprehension are woven through the
work in progress.

Multi-Scale Materials Modeling

Our first illustration is an example of a type of problem that will become increasingly
important under the guise of predictive materials science. In Figure 7, we illustrate a
simulation approach aimed at predictive modeling of anisotropic thermal strain induced 3-
D cracking in polycrystalline materials. The straightforward goal of this effort is to make
apriori (and accurate) predictions of the thermomechanical fatigue of solder joints under a
potentially wide variety of environmental effects [12].

To perform such a task requires a wide range of length and time scales, as well as the
coupling of complex nonlinear physics. In other words, the problem is characteristic of our
general view of what makes up a complex phenomenon. The figure illustrates some of the
elements necessary for possible success. First, an accurate material grain structure must be
produced. Second, a microscopic and accurate model of crack nucleation, growth, and
interaction must be implemented. There are at least two types of crack dynamics that must
be explicated in the illustrated case: so-called inter-granular cracking, and so-called intra-
granular cracking. There may also be grains of different material types, adding to the
variety of possible cracking characteristics that must be modeled. Third, not depicted, the
mechanisms at the microscopic scales illustrated in the figure must be related in an accurate
and self-consistent way to phenomena at scales that are relevant for assessing the electrical
behavior of actual macroscopic solder joints. Finally, the macroscopic behavior of the
joints must then be calculated in a way that has substantive predictive content.
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“grain
boundary

2-D grain structure calculation + crack growth

3-D grain structure === intergranular cracking
calculation == transgranular cracking

Figure 7. lllustration of a multi-scale materials modeling challenge - grain scale stress
cracking [12].

The problem is fundamentally stochastic. Solution algorithms are used, such as Monte
Carlo Potts modeling for developing the grain structure, which are fully stochastic. The
“environmental” component of the problem - the thermal and mechanical history as well as
current driving terms - are also characterized with random components. Finally, some
randomness is introduced by the manufacturing variabilities in producing actual solder
joints. Quantifying the environmental and manufacturing uncertainties associated with this
problem is non-trivial. All of these factors directly contribute to uncertainty in predictions
emerging from the model.

The computing challenge associated with this problem is significant, ultimately requiring
multi-teraflops of computing power. Part of the algorithmic complexity emerges from the
significant challenge of proper coupling of the non-linear processes across disparate time
and length scales. Current computational issues are how to develop more efficient
algorithms and best use massively parallel computing to increase the fidelity of these
simulations

The complexity of the physics coupling and of bridging length scales does not lend itself to
easy resolution through comparison with experimental data. Dynamic (time-resolved)
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meso-scale data are hard to come by. It is interesting that much of the significant macro-
scale data associated with solder joints are electrical, not mechanical, in this particular
problem. Yet the modeling we are discussing is purely mechanical at this time. Again, there
are certain issues to be addressed associated with the predictive nature of this model when
assessed via electrical data.

Because of the difficulty of determining exactly how tightly coupled the multiple processes
are (and must be) in this problem, it is unlikely that computation by itself will allow full
understanding of this phenomenon, especially in the absence of time-resolved meso-scale
data.

The intended application of this modeling implies a high level of consequence associated
with the modeling. Thus, the amount of risk associated with incorrect predictions from this
simulation effort should be considered to be large.

Protein Folding

The basic problem underlying this example is designing computational tools for predicting
protein conformations using physical lattice models [20, 21]. Predictive solutions to
problems of this general type have significant applications to a variety of pharmacological
problems. The main intent for such applications is to increase the fidelity and speed with
which drugs are designed and brought to the market. It is implicit that the use of such
predictions in the pharmaceutical industryis accompanied by significant financial
consequence.

These statistical mechanics lattice models provide a simplification of the biophysical
process; they preserve some of the protein-like properties of the naturally occurring
proteins. As the computational complexity of various models for protein folding has been
found to be computationally intractable, i.e., NP-complete (see [23]), in order to provide
tools for biophysicists to validate their models, one has to consider approximate
predictions. In this context, the research needs to focus on approximations of the native
conformations that can be constructed in polynomial time, and have mathematically
guaranteed error bounds on the accuracy of prediction. This work [20, 21, 23] provided the
first such near-optimal approximation algorithms for protein lattice models.

The structures of the naturally occurring proteins recorded in the Protein Data Bank provide
the atomic coordinates of the atoms in the native structures. The statistical mechanics of
lattice models cannot be compared directly with the off-lattice conformations of the real
proteins. They provide avenues of "comprehension” of the principles of protein folding.
Such avenues include initial - close to optimal - structures for molecular simulations, data
for inferring empirical energy potentials, methods for simulations of the stability of
predictions, and sequence-to-structure threading potentials.

The image in Figure 8 shows near to optimal conformation (better than 99% of the optimal

energy) of a naturally occurring protein from PDB for a lattice model with explicit side
chains. We used linear time algorithms based on the self-assembly of protein side-chains
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(as self-assembly of materials), paired with threading algorithms to obtain the guaranteed
error-bounds conformation.

This problem illustrates how far removed we can be from real comprehension (of the type
necessary for hard prediction, at any rate). Our ability to predict protein structure has
undergone very limited progress, even after decades and enormous effort in the laboratory.
What we mean by comprehension is not even clear at this point in time. Yet the
consequences of reasonably confident modeling could be enormous.

Agent-Based economic modeling

The problem we summarize here is developing agent-based microanalytic models which
accurately predict features of the U. S. macroeconomy. A particular M&REN, has

been formulated and implemented [30]. The intent is to use this type of model, or its
extensions, to perform quantitative economic forecasting. One particular result from
ASPEN is shown in Figure 9, where the appearance of business cycles is predicted by the
model. Cycles are rarely predicted by most financial forecasting models, and could be
considered to be emergent behavior in the underlying dynamical system of the model. This
application is effectively a complex adaptive system. Its implementation relies upon
evolutionary learning strategies, as well as massively parallel computing techniques.

Requirements for massively parallel (MP) computing are driven by fidelity considerations
and the need for ensemble averaging to produce prediction. Many simulations of given
initial conditions or statistically varying initial conditions are performed to produce
predictions which are appropriate averages. Unlike the protein problem, however,
computation is not the central issue. Rather, it is understanding a complex adaptive system
and its emergent behavior.

Suitable macroeconomic data exists, but in this case using it to tune the micro-scale agent
behavior is a difficult inverse (backward prediction) problem. Using uncertainty
methodologies to develop appropriate surrogates for optimizing agent behaviors would be
an interesting research problem. The difficulty inherent in this inverse problem is typical
also of one facet of complexity that we mentioned earlier - emesyaquticity. The
predicted macroeconomic cycles represent simplification of the myriad, adaptive,
complicated micro-interactions simulated BYSPEN. It is difficult to use simple, or
simplified, information to tune the details of a more complex, collective behavior.
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Unfolded state

Figure 8. “Near-optimal”’ protein configuration computed using lattice techniques [21].

Simulations produce a very rich data set. Even attempting to extract cause and effect from
the data produced is a difficult problem, and characteristic of many other kinds of complex
adaptive systems. The model is one attempt at predicting the behavior of groups, one of the
major complex phenomena areas of study called out in [8]. Comprehension problems
produced by this model are thus characteristic of problems that will arise in general attacks
on that area.

5. General Needs and Future Directions

In this section we will briefly discuss general needs in the prediction of complex
phenomena that can be addressed by a research program. We also draw attention to some
specific activities that are of interest within the Sandia research community. We feel that
the following logic constrains elements of mathematical research in this program:
application needsor the predictive accuracy requirements implicit in investigating a
complex phenomenon, driagorithmic requirementswvhich create useful directions for
mathematical research
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Figure 9. Macroeconomic oscillations from micro-scale agent based interaction [30].

Recommended General Directions for Study
of Prediction of Complex Phenomena

Below, we give recommendations regarding important technical directions that are
required to support the extraction of reasonable predictions from simulations of complex
phenomena for high consequence applications. These recommendations are listed below,
in no particular order by importance.

* We need scientific methodologies for accurate risk assesassrtiated with
prediction of complex phenomena. Typical questions that should be answered are:
Where does low consequence prediction end and high consequence prediction begin?
How do we measure, let alone control, the risk attendant with high consequence
applications in our simulations? We expect systems or operations research
approaches to be particularly useful, as well as ideas in statistical quality control. A
good starting point for applicable methodologies seems to be the nuclear reactor
safety and waste repository assessment communities.

* We need to fully understand the applicability of statistical (or more general)
methodologies for dealing with uncertainty in large scale scientific computation. Our
experience applying uncertainty quantification to high consequence scientific
applications, such as climate or SBSS-related phenomena, is limited. Also, there is a
fundamental challenge which concerns the general applicability of stochastic
methods for quantifying the uncertainty in scientific calculations. Would fuzzy logic
be more appropriate?
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* We continue to be driven in practical problems by the need for algorithmic
approaches that reduce fundamental computational “complexity”, as in the protein
folding problem. Is it possible to uncover powerful general principles that can guide
algorithm development in the future for such combinatorially complex problems?

 Alternatively, are there alternate approaches to, e.g., NP-complete problems which
allow one to obtain well-controlled answers to the scientifically relevant questions?
One possibility is large-scale Monte Carlo simulations. Another more recent example
is the density matrix renormalization group (DMRG) approach, which can be used to
obtain high- or even machine-precision expectation values for certain statistical
mechanics problems where explicitly computing the partition function is formally
NP-complete (e.g., 2D Ising models with more than nearest-neighbor interactions).

* What new ideas for comparing data with predictions from very complex simulations
are likely to be effective? For example, how do we compare a multi-scale model
which directly calculates from atomic scales to continuum scales with “data?” Are
there more refined methods for assessing data quality and data importance applicable
to the comparison of data with predictions of complex phenomena? What weight
should specific data be given when comparing with a prediction to properly measure
the predictive content of the simulation? In other words, which data count more
heavily when we are trying to assess the predictive quality of simulations of complex
phenomena?

» How can we develop a simplified or “approximate” model of the complex
phenomenon that can be used to predict and understand uncertainty in a more
complete, more complex model? Our ability to develop such an “approximate” model
is part of the process of comprehension.

» The entire framework depicted in Figure 1, boiled down to a core of “compute,
compare, and comprehend”, probably requires new ideas to be executed in an optimal
manner. We know that we are currently outstripping our ability to understand the
largest problems that are running on our largest current massively parallel computers.
This is because our interfaces to the data, such as graphical tools, lag the current rapid
growth in computing power. What graphical tools are required to optimize the
information we gain by performing comparisons with data. Another relevant issue,
especially for high consequence simulations, is how do we deal with the possibility
of human error in performing and analyzing such simulations. How can we minimize
the potential impact of human error in performing simulations of complex
phenomena for high consequence applications? Can we quantify the uncertainties
that result from the potential for human error?

Recommended Specific Technical Directions
Based On Work At Sandia

We also have recommendations regarding particular technical issues that have arisen in our
current computational work at Sandia, similar to that illustrated in Section 4 of this paper
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are listed below. We suggest that any or all of the following are specific technical topics
which are relevant to the study of prediction of complex phenomena.

We need continued research and development of advanced molecular dynamics and
advanced Monte Carlo methods. These techniques are increasingly important for
small scales in multi-scale problems (e. g. cracking prediction, microstructural
evolution, etc.). Advanced Monte Carlo techniques might also be leveraged for
uncertainty propagation sampling strategies. Better understanding of extreme
statistics from Monte Carlo calculations is additionally of physical interest, as well as
useful for quantitative uncertainty assessment.

General approaches for multi-time scale and multi-length scale problems are needed,
Multi-scale methods appropriate for long-time problems seem to be particularly
needed. How careful (rigorous) do we have to be in blending different length/time
scale approaches in unified simulation frameworks?

We need to better understand how to balance brute force computational power and
more sophisticated statistical inference procedures for uncertainty analysis.

We need to understand the limitations of the “approximate” models defined above for
use in both forward and backward prediction in physically complex phenomena. In
addition, can we automate the process of constructing such “approximate’ models
from more elaborate simulation results?

What are the key issues that are driven by computational complexity when we study
predictability of complex phenomena? For example, how important and canonical is
the strategy of replacing a complex phenomenon by one which is approximate but
solvable with polynomial time algorithms?

What are the important model descriptions that logically follow mean field theory and
which are relevant to non-equilibrium statistically complex systems? As an example,
what are appropriate algorithms and data structures for the general void percolation
problem?

How do we progress beyond operator splitting - the approximate weak coupling or
full decoupling of physics - in simulation of strongly coupled, physically complex
systems?

What are the limits of application of agent-based modeling?

How do we map empirical information about computational bottlenecks onto
rigorous knowledge about algorithmic deficiencies?

What are optimal strategies for calculating parameter sensitivity coefficients for
complex and expensive code calculations?

Can the stochastic finite element method be made into a general and useful tool for
performing forward prediction in complex phenomena governed by systems of
partial differential equations?

We should continue to study the connections between recent computer science
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developments, for example, and statistical mechanics.

» Well-validated computational libraries for complex phenomena studies should be
developed. This involves sharing and standardization, as well as procedures for
determining candidate algorithms.

» How far can we push formal software verification techniques for application to codes
for predicting complex phenomena?

* We are interested in quantitative studies that tell us how software may or may not
introduce its own complexity into the simulations of complex phenomena.

6. Conclusions

We have stressed in this whitepaper that the predictability of complex phenomena has
several strands that pass beyond fundamental model development, algorithm development
and implementation, and calculation. We drew attention to the need to perform
computation, compare with data, and develop improved comprehension of the
phenomenon from this process as an integrated problem. We also emphasized that
uncertainty, both in scope and in the risk it imposes, must be analyzed for high consequence
predictions.

Our experience tells us that a computer program which implements models of complex
phenomena on a massively parallel computer is itself a complex systerat of problems

must be addressed which are associated with model validity, and with algorithm and
implementation correctness. Also, we note that the system which produces predictions -
including code developers, the code itself, and its users - behaves somewhat like a complex
adaptive system.

On top of this, we observed that the current exponential increase in computer power is
already leading to grave difficulties in assessing the content of simulations of complex
phenomena, as well as comparing them with high quality experimental data. Among other
challenges, this situation leads to the erroneous possibility of thinking that because output
is complex, we must be successfully modeling complex phenomena.

Because increasing consequence may dramatically weight the effectiveness of prediction
we now suggest that formal calculation of consequence, or of the risk of inadequate
prediction, should also be one of the main themes in the study of prediction of complex

phenomena. We believe that the entire computational process for extracting predictions
from models of complex phenomena needs to be enhanced to suitably quantify this latter
factor. Programs that aim to study predictability of complex phenomena should aim to

achieve this enhancement.

Let us conclude with one last example. We regard the computation shown in Figure 10 [24]
as a paradigm for our concerns in this paper. There, an Eulerian shock wave calculation is
shown. The shock wave is reactive, propagating through a bed of HMX crystals. The mesh
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resolution is such that individual crystals can be resolved. The shock is induced by the
impact of a copper plate at 1.0 km/s. Thus, this calculation models a relatively
straightforward shock initiation experiment that can be performed at a variety of facilities
worldwide. On any scale of complexity, this calculation is of only fair complexity. Solving
the fundamental equations, and the code technology for doing this usefully (the Sandia code
CTH), has been available for a long time. What is new is the resolution. To run 1.2 billion
cells in such a calculation requires a currently unique piece of computing hardware, the
DOE/Intel Teraflop computer located at Sandia in Albuquerque. This resolution bends our
minds so to speak. Straightforward questions, such as does the reaction induced by the
shock grow to detonation, rapidly become complex questions, such as: how sensitive is the
computed reaction evolution to microscopic details of the crystal array (an ensemble
guestion); are there collective effects that have an influence on the reaction evolution; how
poor is the chemistry treatment; is there any data that can resolve reactive flow details down
to the level of individual grains.

If such a simulation should be used to, say, assess the environmental degradation of a
granular reactive material for larger purposes than scientific investigation, we are also led
to ask: How reliable is the calculation? How accurate is the calculation? What are the
largest uncertainties that influence the calculation? We don’t even ask questions like: is the
code implemented correctly? We already know the answer - NO. No person who uses any
large computer code can claim that the code is bug free. Will lurking errors in our code be
dramatically amplified in such calculations? Or, will their effect, heretofore undiscovered,
remain in the background? How long will it be until we discover an important bug? Given
this point of view, what do we mean by asking such calculations to be predictive, anyway?
Such questions must be answered as the consequence of such a calculation rapidly
increases.

The calculation in Figure 10 is also complex in that it is difficult to understand what it is
telling us. The sheer volumes of data that are produced in a 1 billion cell calculation far
exceeds our ability to comprehend at this time. We literally have difficulties even moving
the data to something that could be used to produce the plots shown in this figure. The really
novel information problems generated by the technology that ASCI is developing are well
known at this time and of major concern to ASCI.

Thus, even such a “straightforward” calculation as that in Figure 10 gives us clear
illustrations of the four challenges that we have emphasized in this paper. Computation,
Comparison, Comprehension, and Calculated consequence. We state again: the product of
complexity and consequence seems to be the most important variable that we must deal
with in high-consequence simulations of complex phenomena.
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1.2 mm/side, upto 5 um resolution

Pressure field

Figure 10. “Typical” ASCI-scale physical modeling is mind-boggling. In this calcula-
tion, up to 1.2 billion cells are used in an Eulerian calculation. The calculation is per-
formed on the DOE/Intel ASCI “Red” MP computer at Sandia. The calculation is of a
copper plate striking an HMX crystal array with simplified chemical reactions at 1 km/s.
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