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Abstract

This report describes how to obtain publication-quality graphics from distorted grid
electronic structure codes using the combination of the conversion utility, dgtoexo2, and
mustafa, an AVS Express application. dgtoexo2 converts scalar function results from a
format applicable to distorted grid codes into the Exodus II unstructured finite element data
representation. mustafa can read Exodus II files and use the AVS Express engine to
visualize data on unix and Windows NT platforms. Though not designed for the purpose,
the dgtoexo2/Exodus II/mustafa combination is sufficiently versatile to provide for the
specialized graphics needs of electronic structure codes. The combination also scales well,
producing robust performance for problems involving millions of grid points.
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Introduction
This report describes how to obtain publication-quality graphics from distorted grid

electronic structure codes using the combination of the conversion utility, dgtoexo2,and
mustafa, an AVS Express application. dgtoexo2 converts scalar function results from
distorted grid codes into the Exodus II unstructured finite element data representation [3].
dgtoexo2 is cognizant of translational symmetry and can take advantage of it. Unit cells in
directions of translational symmetry are completed when translating into the Exodus II data
representation. Also, multiple unit cells may be generated in translational symmetry
directions to provide the viewer with a clearer picture of the symmetry in the problem.

mustafa is an official AVS Express application written by Mike Glass, Div. 9111.
A reduced price license can be bought from AVS to run the mustafa application without
having to pay for the full AVS Express product. mustafa reads Exodus files and then uses
the AVS Express engine to visualize the data. It provides a Motif GUI interface to the
visualization methods most pertinent to fluid mechanics and structural mechanics
applications. mustafa’s capabilities are also sufficient for the visualization of data from
electronic structure codes.

Distorted grid codes employ topologically rectilinear grids. Being an unstructured
finite element format, Exodus II can handle much more complicated meshes than
rectilinear ones. Thus, the conversion to Exodus II has made the underlying data structure
more complex than the original calculation in order to visualize it. Is this necessary? The
short answer is that dgtoexo2/mustafa is sufficiently robust, and it was the easiest
approach given the computational infrastructure at Sandia.The question that I had posed
above about whether there is a penalty in going to an unstructured representation of
originally structured data is really one of computational speed. The mus tafa./AVS Express
combination has shown itself in practice to be sufficiently fast that speed is not a concern.
Also, the ability to customize a front end to mustaf a,i.e., the translator, dgtoexo2, meant
that the specialized graphics visualization needs could be accommodated with mustaf a’s
existing visualization methods.

The computational infrastructure at Sandia favored mustaf a. Two unix graphics
packages were looked into to provide a graphics solution: IDL and AVS Express. IDL did
not have any canned solutions for visualizing volumetric data on non-uniform grids. One
attempted solution was to translate the distorted grid solutions onto a regular grid. IDL then
had a canned solution, sli.cer3D, to visualize volumetric information from regular grids.
However, the C program to translate data on a distorted grid to a regular grid turned out to
be slow. Also, the eventual graphics results didn’t turn out to be very pleasing. At least my
initial graphics attempts didn’ t turn out very well, and there was no local IDL expert to go
to for advice. Modules to visualize the mesh would also have required custom subroutines
written in IDL’s parsing language that would have operated on a very low level (writing
out each line in the mesh). There were several positive points to using IDL. It’s cheap on a
per platform basis; there is a large IDL user base and internet repositories of third pmty IDL
graphics functions. Also, the company behind the IDL product, RSI, takes its customer
technical support function very seriously. I would heartily recommend IDL for applications
in which it is traditionally very strong: signal processing, 2D image processing, and 1D
plotting where a cheaply constructed GUI interface is desired.

The bare AVS or AVS Express product may have direct support for topologically
rectilinear grids. However, there is no existing infrastructure that I could work from. I
would have had to created my own networks from scratch. Additionally, I would have had
to figure out a way to provide standardized input to AVS, probably by writing a translation
program equivalent to the one I’ve written for the Exodus II solution, anyway. Instead, I
felt that it was better to go with a translator to Exodus II and take advantage of the large
user base here at Sandia. Once the distorted grid results are in Exodus II format, several
graphics packages are available to view the files [1, 4]. The one most suitable for 3D
viewing is mustafa,which is an application that sits on top of AVS Express, built with the
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Express application development environment. Additionally, AVS visualization
techniques using self-built networks is also an unexplored but attractive possibility. Mike
Glass, mustaf a’sauthor, has written a read_exoII ()module for AVS that may be added
to networks. A benefit of translation to the 13xodus II database format is that Exodus II files
are written in machine independent binary [3]. Exodus II is written on top of UCAR’S
netCDF package [2], which uses the ubiquitous XDR package for its low level IO routines.

I will first describe how dgtoexo2 is structured. Then, I will briefly describe how
to run the dgtoexo2/mustafa combination to obtain visualization results of interest to
electronic structure applications. s1icer~lane, a utility program for the exact
specification of visualization planes, will also be presented. An informal discussion of how
to obtain publication-quality printed output will also be provided, because the potential for
wasting time by an unwary user in obtaining this bottom-line result is high. Finally, a to-do
list for directions in which the dgtoexoz may be improved is provided. All figures in this
report come from a single SiC calculation carried out by Alan Wright and Ellen Stechel on
a 30 x 30 x 30 grid with translational symmetry assumed in all three directions.

Description of the Translator
dgtoexo2 is a mixed Ansi C and Fortran 77 code. Ansi C is used on the top levels

of the program to provide a structural representation of the data and to provide dynamic
memory allocation. Fortran 77 is used to parse ascii input files, because of the author’s
familiarity with the Chemkin Fortran 77 library. Parsing subroutines from that library,
which are robust and have been heavily tested, have been used in this application. A full set
of Ansi C prototypes have been created for these Fortran 77 parsing routines to ensure that
the interface between programming languages is handled correctly. Ansi C has been used
in the subroutine that writes the Exodus II data file, again because of the authors familiarity
with that particular interface.

The internal operation of dgtoexo2 can be described by a few operations involving
the top level structures. The first operation of reading the description and data from the
distorted grid codes is described in the next section. The intermediate operations of
translating the distorted grid code data from a distorted grid data structure to a finite
element data structure is described in the section entitled, Description of the Finite Element
Representation. The final operation of writing the data out to the Exodus II file is also
described in that section.

Distorted Grid Representation

This section will describe how dgtoexo2 reads the results from a distorted grid
code. Currently, it reads the output from Alan Wright’s IIIICCCSprogram. n-kccs is a
translator program that combines the results from several fortran binary files into one ascii
file. dgtoexo2 reads the mkccs output file via a fairly flexible, sophisticated parsing
algorithm, that allows for a variable number of scalar functions to be defined on the
distorted grid. However, there are some formatting limitations in the header file format of
the mkccs ascii output file that must be adhered to when reading that file. The reader is
referred to the III ICCCSsource code for a description of the formatting requirements of the
header. dgtoexo2 also expects to find and read a local file named latfile. latfile
contains information about the lattice vectors in the problem. Rudimentary checking is
carried out between the ascii output file from mkCCSand the file, latfile, in order to make
sure that two files are compatible. However, this process is clearly not bullet-proof.

Figure 1 describes the DG_Struct structure, which is the end result of this rather ill-
defined input process. NUILX,NUITIJ,and NUKL_Zare variables that describe the number of
grid points in the three primary directions. NumFuncValues is equal to the number of scalar
variables defined on the mesh. The actual value of the function variables are stored in
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FuncValues [k][j],where k k the kth scalar function and j is the jth node. FuncNames [k1
is the character string name of the kth scalar function, also read in from mkccs’soutput file.
The name of each scalar variable is taken from the line, “function: namel, nam2. ..”,
that precedes the actual columnar listing of the data. DistortedGridSpace is a flag to
indicate what types of coordinates are to be used in the structure. The default is to use the
real space coordinates, i.e., those read in from the KIICCCSinput file. Distorted grid codes
employ topologically rectilinear structured meshes. The grid point locations are not
regularly spaced in real space. Node points are clustered around regions of large gradients
in the charge density in order to generate better accuracy. If DistortedGridSpace is true,
the real-space coordinates, *Coords [3I in the structure, are overwritten with mesh
coordinates generated from a uniform meshing algorithm based on an equidistribution of
points on the parallelepipeds domain. This is the called “Distorted Grid Space”, because it
is the coordinate system in which the solution actually takes place.

struct DG_Struct {
int Num_x; /* Number of nodes in the x direction */
int Num_y; /’ Number of nodes in the y direction */
int Num_z; /* Number of nodes in the z direction */
int N’Nodes; /* Total number of nodes in the structure ‘/
int NumFuncValues; /* Number of scalar functionsdefined on the

distorted grid */
int NumRecords;/* Read in from the ascii file, but otherwise ignored */
int DistortedGridSpace;

/* Flag to indicatewhether the coordinatesin Coords are in
the distorted grid space or not. If they are, then the nodal
coordinateswill be generated by uniformly gridding along
the lattice vector directions. If they are not (whichis
the default), then the nodal coordinateswill be obtained
from the distorted grid output file. ‘/

int NumAtoms; /* Number of Atoms “/
int NumTypes; /’ Number of different types of atoms ‘/
int TranslationalSymmetry[3]; /* Logical flag indicatingthe presense

of translationalsymmetry in each
direction ‘/

double LatticeVectors[3][3];
/’ Translationalperiodicityin the given direction

LatticeVectors[i][0]:This is the component of
the i_th lattice vector in the x direction. “/

double *Coords[3]; /’ (x,Y,z)Coordinates for the nodes. This
is an array of three pointers to doubles.
Each array has a length NNodes. ‘/

double **FuncValues;/*Values of the scalar functionsdefined on the
distorted grid mesh:
FuncValues[j][i] is the value of the jth function
at the ith mesh point. */

char **FuncNmeS; /’ Vector of character strings representingthe
names of the functions */

double AtomPositions[MAXATOMS][3]; /’ (x,Y,z)locationsof the atoms ‘/
int AtomIDIMAXATOMS]; /’ Type of the atom -> this number must exist as

an entry in the TypeID vector. It usually
ranges from 1 up to the total number of different
types of atoms ‘/

/* Informationabout each type of atom */
int TypeIDIMAXTYPES]; /’ Type ID for the type ‘/
int TypeAtomNum[MAXTYPES];/*TypeAtomNum[i]is the atomicntier of i*/
double TypeStrength[MAXTYPES];
double TypeClength[MAXTYPES];
double TypeCoeff[MAXTYPES];
char Description[80]; /’ Textual descriptionof the current data ‘/

Figure ]’. Structure representing the distorted grid data

The Translational@mnetry[3] and LatticeVectors [31[31 variables haveto
do with the existence of translational symmetry and its specification within the problem
statement. Translational symmetry is specified by lattice vectors . Lattice vectors have the
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lookup function, findTypePos (),isused to associate type ID’s with the index position of
types of atoms, using the array, ~eID [].

In the future, input modules based on the reading the direct binary file output from
a distorted grid code may be constructed. That’s the strength of the current structured,
modular approach. The essential point is that the DG_Struct structure of Figure 1 must be
fully populated, so that the conversion to a finite element data structure described in the
next section, may proceed without knowledge of the origin of the data.

struct FE_Mesh_Struct{
char *Title; /’ Title of the problem ‘/
int Num_x; /“ Number of nodes in the x direction ‘/
int Num_y; /’ Number of nodes in the y direction ‘/
int Num_z; /* Number of nodes in the z direction */
int NElemTotal; /’ Total Number of elements in the structure“/
int NNodes; /* Total number of nodes in the structure ‘/
double *Coords[3]; /’ COOrdillateSfor the nodes. This is an array

of three pointers to doubles. Each array
has a length of NNodes. “/

int NumElemBlks; /* Number of element blocks in the mesh ‘/
int *NElemElk; /* Number of elements in the element block ‘/
char **ElemType; /’ Element type for elements in the block ‘/
int *ElemBlkIDs; /’ Element block id for the element blocks */
int *NumAttrPerElem;/* Number of attributesper element in the element

block ‘/
int *NumNodesPerElem;/* Number of nodes per element */
int **Connect; /’ Connectivitymatrix. Connect[i] is the

connectivityvector for element block, i */
double ●*ElemAttr; /’ Vector of element attributes

ElemAttr[k]is a pointer to the vector of attributes
fomr the kth element block ‘/

int DistortedGridSpace;
/“ Flag to indicatewhether the coordinates in Coords are in

the distortedgrid space or not. If they are, then the nodal
coordinateswill be generatedby uniformly gridding along
the latticevector directions.If they are not (which is
the default), then the nodal coordinateswill be obtained
from the distortedgrid output file. ‘/

int NumAtoms; /’ Number of atoms ‘/
int NumTypes; /* Number of different types of atoms ‘/
ATOM_STRUCT *Atoms; /*Vectorof pointers to atom structures

Atoms[i] is the atom structure for the ith
atom in finite element description. */

int NumlJodeSets; I* Number of node sets defined in the mesh ‘/
struct NodeSetStruct*NodeSetData;/’ Data for each node set */
int NumSideSets; /’ Number of side sets defined in the problem ‘/
struct SideSetStruct*SideSetData;/’ Data for each side set ‘/
int NumFuncValues;/*Number of scalar functions defined on nodes*/
double **FuncValues; /’ Value of the functions at the nodes

FuncValues[i]is a vector containing
the value of the ith function at all nodes*/

char **FuncNames; /’ Vector of strings containing the
of the functions,FuncNames[i] is the name
of the ith function */

/*

Figure 3:’ Structure for the finite element representation of the data

Description of the Finite Element Representation

The translation process from the distorted grid representation to the finite element
model representation is carried outin two steps. In the first step, the mesh representation
anddata onthe mesh are translated. In the second step ,the atom representation described
in Fig. 1 is added onto finite element model using additional nodes and spherical elements
defined atnew nodes. Both steps arecomplicated by completing the lastunitcell andby
creating multiplications ofthe unit cell in directionsof translational symmetry. Fig. 2isan
example. Fora 2x2x2unitcell representation, wherethe first type ofatomis located atthe
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onigin and the second type of atom is located in the middle of the unit cell, 27 atoms of the
first type and 8 atoms of the second type are generated.

Figure 3 contains the top level structure which defines how the finite element data
is internally represented in dgtOeXOQ. This representation is closely related to the Exodus
II application program interface (API). Therefore, the code to write out the data to an
Exodus II file is short and straightforward. The first step, the translation of the mesh
representation, is carried out by treating each meshed region as a hexagonal finite element.
Trilinear interpolation is used in the hexagon and in rnustaf~. Thus, the first type of
element in the list of types of elements, ElemType [01, will be of type “HEX8”. A
connectivity array for the mesh in the first element block, Comect [o I, isbuilt. The
connectivity array is a one dimensional vector of length NE1emBlk [01*
NumNodesPerElem [o],which describes the node-to-element mapping of the mesh [3].

Entries for node sets and side sets in the FE_Mesh_Struct structure are not used in
this application. FuncValues [k][i] contains the values of all variables defined at nodes.
k refers to the element block, while i refers to the node number. There are no element based
variables defined in the FE_MeSh7strUCt structure. The DistortedGridSpaceflag iS
propagated from the distorted grid structure to indicate what type of coordinates,
Coords [3][i1,have been propagated from that data structure. The finite element mesh
data structure doesn’t include’ any of the entries describing the symmetry in the problem.
Symmetry properties have already been applied in forming the elements of the
FE_Mesh_Struct structure, so their description is no longer needed.

struct Atom_Struct {
double Position[3];
double TypeStrength;
double TypeClength;
double TypeCoeff;
int AtomicNumber; /* Atomic number of the atom */
char *Name;
int Type; /* Type of the atom -> this number must range

from 1 up to the total number of different
types of atoms */

double Radius_for_Vis;

Figure 4. )‘ Subset of the structure representing information defined for atoms in the FE
representation - the rest of the structure is unused.

In the second step, atom positions and atom type information is added to the
FE_Mesh_Struct structure. This is done by adding additional element blocks of spherical
elements for each different type of atom. Each spherical element is connected to one
underlying node through the connectivity matrix, Connect [k][j1.The position of the
sphere is specified by the position of the node. New nodes have been added to the overall
list of nodes for the sole purpose of specifying atomic positions. This is done for two
reasons. The first is that atom positions are not restricted to falling on nodes of the
underlying distorted grid geometry. The other reason is that the addition of new nodes
creates new nodal variables, which can then be used to advantage within mustafa,as
described below. Each spherical element takes one attribute, the radius of the sphere. An
initial radius of 1.0 is inserted into the ElemAttr Ik ] Ij] array (k is the element block
number, and j is the element number in the kth block). The relative sizes of all atoms can
be modified later within rnustafa. The new version of mustafa supports the visualization
of spherical elements, specified by a position and radius, via the SPH Particle Field
visualization method. In that method, atoms are colored according to the value of a
particular nodal variable. I have included logic in dgtoexo2 to encode the type of the atom
into one of the nodal variables, by default the variable entitled “JA1/2”. Thus, different
types of atoms will be visualized within mustafa using different colors.

Atom information is also included in FE_Mesh_Struct in a duplicate way. A vector
of pointers to Atom_Struct structures of length, NUIDAtoms, iscreated. Figure 4 contains
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Other useful visualization methods include the isovolume and isosurface methods.
The two methods are very similar in that they both explore what surfaces of a constant
scalar function look like in three dimensions. Both methods have the capability to create a
surface using one variable and then color that surface using another variable. The
isovolume method, example of which is provided in Fig. 8, renders a volume surrounding
two isosurfaces and the element block boundaries. The isosurface visualization method
provides a rudimentary capability for creating traditional contour plots within must afa.

Identifying Crystal Planes: slicer_plane

One mismatch of the visualization needs of electronic structure codes with
mustafa’s capabilitieshas been remedied with an auxiliaryprogram. For electronic
structurecalculations,one would desirerepresentationsof scalarquantitieson planes
whose normal and translationalpositionareexactlyspecified.However, AVS Expressonly
provideswidget controlsmeant toprovidefuzzypositioningof slicerplanes.Therefore,
thereneeds to be an additionalutilitythatcan exactlypositionslicerplanesinmustafa
according to the value of the surface normal. I wrote a stand-alone program,
s 1icer=lane, toaccomplishthistask.

s1icer=l ane willcalculatethevaluesofthewidgetcontrolsthatmust be entered
into the plane transform dialog box of mustafa slicerplane visualizationmethod.
s1iceralane takesasitsinput,threepoints.These threepointsdefinethevisualization
plane.More thana genericspecificationofa planeisactuallyneeded fortheslicerwidget
control.The slicerwidget isa finite-dimensionedrectanglewith an origin,a vectorthat
definestheright-hand-sideoftheplaneand anothervectorperpendiculartotheright-hand-
sidevectorthatdefinestheleftsideof therectangle.The extentof therectanglecan be
furtherspecifiedviaa scaleinputwidgetcontrolbox thatincreasesordecreasestherelative
sizeofitsinitialextent.The initialextentisdeterminedroughlyby thedatabeingplotted.

sIicer=lane willusethefirstpointtospecifytheoriginofthesliceplane.Itwill
use thedifferencebetween thesecondpointand theoriginof thefirstpointtospecifythe
right-hand-sideoftheslicerplaneusedby mustafa.The thirddatapointisdifferencewith
respectto thefirstdatapointtocreatethesecond vectorneeded touniquelyidentifythe
surfacenormal.With theseadditionaldefinitions,theorientationand positionoftheslicer
widgetiscompletelyspecified.lt’sstillnotunique,however,becausethereisa degeneracy
withrespecttothetopand bottom surfacenormal stilltoaccountfor.

The algorithmused inSIicer~lane startswiththemethod forfindingtheright-
sidevectoroftheslicerplane.The rightsideoftheslicerplanetransformsespeciallyeasily.
With allthreewidgetcontrolssetatzero,therightsidevectoroftheslicerplanefallsalong
thepositivex axis,and thesurfacenormal pointsinthepositivez direction.The x angle
widgetcontroldoesn’taffecttheorientationoftheright-sidevector;itdoesaffectthevalue
of the surface normal.

[

Cos (3ZCos–ey

–sin (3Zcos–e}

sin (–OY) . ‘1
rx

= r
‘Y

(1)

-rz

r is the normalized vector representing the right-side vector of the plane. ev and e, are the
values of the angle widget controls in ~heplfie transform dialog be-x. Ther& are alfiays two
solutions to the above equation. They correspond to the slicer plane being flipped 180
degrees about the right side line, i.e., the top and bottom surface normals respectively. The
degeneracy is related by the following transformation:

19



Intentionally Left Blank

20





Intentionally Left Blank

22



[ 1cos OY O sin ~Y

y rotational matrix:

x rotational matrix:

[N] = [Rm’zi14

N is the vector sDe~

[ 10

O COS6X–sint3X = ROTXA4

1 10 sin8X cos ex

no[ROTYM][R07’XM] () (3)

.fvin~ the surface normal of the slicer tAme. We have alreadv
determined (3Yand (3Z~ro~ the calculation of the right-side ve~tor. Thus, we only nee~
Eqn. 3 to calculate eX, and we have completely specified the three angle widgets.

An example of how to run slicermlane in conjunction with must afa’s slicer
plane visualization technique is provided below. Let’s say that we want to obtain the charge
density along a plane that cuts diagonally through the center of the unit cell containing the
atom in the middle of the unit cell. If the three lattice vectors of the unit cell are
(4.09, O, 4.09), (O, 4.09, 4.09), and (4.09, 4.09, O), then such a plane is specified by
setting the right-side vector to the first lattice vector, and the other vector to the sum of the
remaining two lattice vectors. As I-icerfllane sessions would then produce the following
output:

zuzax.pchem.sandia.gov 218: slicer~lane
Enter three points on three separate 1ines:
0. 0. 0.
4.09 0. 4.09
4.09 8.18 4.09
NORNAL = (-.707106781186548,.0,.7071067811865475)
Set widget controls to:

Turn on Absolute toggle switch
Theta_X = .000
Theta . -45.000
Thetas = .000
Translate X = .000
Translate Y = .000
Translate Z = .000
Adjust the Scale dialog box to encompass the data

These widget control settings on the plane transform box were used to produce the
orientation of the slicer plane in Figure 7.

Tips for Obtaining Publishable Graphics from mustafa

All mustafa results have been created with version 1.24.3, July 24, 1998. The
underlying version number of AVS Express was v. 3.4. The current version number of the
Exodus library application is v. 2.06. All of the above influence the tips that I give below.
Bugs come and go with evolving version numbers of these applications and with the base
system graphics software. In general, it is a good idea to keep up to date with vendor-
supplied bug fixes for the graphics subsystem and rendering software on your computer.

To obtain quality output from mustafa, the best technique is to use the tiff export
option from Output->Write_Raster_File dialog box. The reason for this is that the images
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eventually all end up as bitmaps anyway. Even the regular postscript output option
produces a bitmap. Tiff images have the advantage that they maybe created with a known
bits per inch resolution. If care is taken never to scale the image by a non-integer factor,
direct mapping between the bits in the image and the bits in the output device can be made
to occur, leading to the best possible output. Tiff files exported from must afa may be
imported as images into Framemaker and other programs. In Framemaker, the resolution
of the image in bits-per-inch maybe specified at the time the image is imported. This serves
to scale the image using integer factors. A value of 600 bits per inch ensures that value of
resolution in the final printed image. All of the images created in this report were generated
using this procedure. There is a known bug in AVS Express with scaling xfont text in the
tiff export method. These fonts don’t scale with the resolution of the image in the tiff output
file. However, for quality output, it has been suggested to not include text in the export
image but to add it later in Framemaker or some other graphics program such as Adobe
Illustrator. Note, stroke text, the other font type option for legends does scale, but doesn’t
look particularly good to start with. An example of stroke text is given in Fig. 6. and in Fig.
7.

There are several options in the Output->Write_Raster_file dialog box. The most
important is the image scale option. The image scale determines the ratio of the number of
pixels created in the tiff file to the number of pixels actually on the screen. For example, a
4 to 1 scale creates a tiff images with 16 times more pixels than the current screen size.
Most importantly, tiff files with extra pixels have better resolution. Intelligent choices are
made for the new pixels. Lines which are defined to be one pixel wide at screen resolution
are one pixel wide at the scaled image resolution. This can create extremely narrow lines,
when the image scale is set to 4 to 1 (see Fig. 2 for an example of this). The default RLE
(run length encoding) compression option was used in all cases. Other types of
compression algorithms didn’t work within must afa on HPUX 10.20 (a bug report was
generated). Even with the compression, 4-to- 1 tiff files are typically 15 megabytes in size
and take 15 minutes each to print on networked laser printers. The result, as mentioned
above, is that the images have true 600 bits-per-inch resolution. The final image size can
also be related to the original Mustafa window size by simple arithmetic. For example, if
the final image size is 6 inches by 5 inches and 4 to 1 scaling and 600 dots per inch
resolution is required, then the inital Mustafa window size should be set to 900 by 750 bits.
The end product is spectacular. All of the images in this report were written into
Framemaker at 600 dpi density. They were printed on a Tektronics Phaser 550 laserprinter
with 600 dpi resolution. I see no reason why the tiff output file procedure can’ t be carried
out at even higher resolutions such as 1200 dpi resolution, the minimum resolution needed
for high quality images used in magazine covers.

There are two types of postscript output from must afa, regular and vector
postscript. The regular postscript option puts out a bitmapped image. Therefore, it has all
of the pitfalls of using bit-mapped images and none of the benefits of using the tiff image
format mentioned above. It too suffers from the xfont scaling problem. To increase the
resolution of bit-mapped postscript images, the “3D horizontal resolution” slider bar in the
Write Postscript/CGM dialog box can be increased.

The vector postscript output produced unpleasing output due to a triangularization
of some of the images .This is a known bug in AVS Express whose time scale for resolution
is unknown. The toggle box option, color subdivision, with its associated dialog box
entitled color tolerance may help to reduce the effect of these triangles. The default option
is to use the color subdivision scheme, “None”. Changing the option to “Recompute” and
then fiddling with the color tolerance value may help the triangle problem (decreasing the
color tolerance value certainly leads to monumentally large output files quickly). The fonts
in vector postscript come out looking great, however. I have recently discovered that the
spherical primitives render as points in vector postscript output, no matter what rendering
scheme was used. A bug report was generated.
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to be visible. In output dialog boxes where the background mode needs to be specified, I
invariably use the mode, “keep”. This produces no unexpected results.

Typically, one would like to print slicer_plane images in 2D mode. once one has
gone through the trouble of defining a plane and all of the image content is in that plane,
one would like to make sure that that plane’s normal is orthogonal to the picture screen and
thus to the eventual printed page. This objective can be achieved using two steps, assuming
that the plane’s surface normal is given by ((3X,OY,8Z) values which are round numbers.
The first step is to adjust the image of the plane so that its surface normal is roughly
orthogonal to the screen. Then, go into the dialog box, Editors->Transform, and adjust the
angle widget controls there to round numbers. Chances are that the objective of a 2D picture
will have been achieved.

Future Additions to the Translator, dgtoexo2
Below is a to-do list. The single biggest improvement to the robustness in the code

is one that would improve the interface between the distorted grid code and dgtoexo2. A
more precise definition of the output file format from the distorted grid codes would help
tremendously. The best solution would involve the adoption of netCDF [2] for output file
format of the distorted grid code. However, barring this, adding the information contained
in “lat file” to the the mkccs output fde would be a step in the right direction, since the
problem statement would reside with the problem data.

The visualization of a scalar function on one grid plane of the distorted grid maybe
a desirable feature. Because each grid plane is curved in space, the slicer plane visualization
technique would not be sufficient to accomplish this task. However, using the concept of
side sets [3], visualization of a grid plane could be achieved. I’ve included hooks into the
FE_Mesh_Struct structure,specificallythe pointer, struct SideSetStruct
*SideSetData, to accommodate the definitionof side sets into the finiteelement
representationof thegrid.An identifiedgridplanecouldthenbe definedas a sidesetin
Exodus IIlingoand writtenout to theExodus IIdatabase.A capabilitywhich willbe
includedinmustafa atsome pointifitisn’talreadyistovisualizedataon sidesetsby using
colorsto representthe value of a function.Thus, a curved isosurfacewith colors
representingscalarfunctiondatadefinedon thesurfacemay be visualized.

Another approachtovisualizingfunctionson surfacescreatedby thedistortedgrid
istoadd threenodal-basedvariablestotheExodus file.These nodalbased variableswould
correspondto theoriginalgridintegergridoffsets(i.e., i, j, k nomenclature). Then, one
could use these new variables in the Scalar->Iso-surface visualization method to plot
variables on curved surfaces of constant grid coordinate (e.g., surfaces of constant i). The
iso-surface tool has the capability to form the surface using one variable but create the color
map on that surface according to the value of another variable.

I had originally planned to visualize atom positions by visualizing spheres meshed
with hexagonal elements. It would not take too long to implement this approach, if there
were a need to visualize information centered at atomic positions.

dgtoexo2 has only been tested on problems with translational symmetry in all three
lattice directions. At a low level it has been designed to be capable of handling cases with
less symmetry. However, with any software program, a feature which has not been tested
may not work. dgtoexo2 should also be capable of generating meshes with different
multiples of the unit cell in each lattice vector direction. Again, this capability hasn’t been
tested.

The use of trilinear interpolation between each grid point may not adequately reflect
the true quality of the data produced by the distorted grid electronic structure code. These
codes use a sophisticated global coordinate transformation of the unit cell based on a
smooth Jacobian that is anything but trilinear. Also, the scalar fimctions calculated from the
electronic structure code, which employ spectral techniques, use a global basis set
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representation. A local finite element representation may not be functionally adequate.
Thus, interpolating scalar variables within mustafa based on a trilinear approximation may
produce inaccurate values. How inaccurate are the interpolations? Does accuracy really
matter in a graphics visualization application? One approach to quantify these questions
would be to bisect all grid points in the domains. Then, calculate the values of the scalar
functions at the new grid points using a method consistent with the original basis set
representation and coordinate transformation. An error tolerance can be introduced at this
point to make decisions about whether the addition of the new grid points is warranted or
whether additional bisections should occur. must afa, as well as the underlying graphics
rendering software, is based on a localized interpolation scheme. This can’t be changed.
What can be changed is adding resolution to what’s fed into must afa.

To enhance slicer_plane visualization plots, the capability to only include atoms in
the finite element database that lie along a particular plane should be added. A potential
source of confusion when looking at plots created with the slicer plane visualization
method in combination with the SPH Particle Field visualization method would be
eradicated. Currently, it is hard to distinguish whether atoms actually lie in the slicer plane
or not.

The dgtoexo2/mustaf a combination scales well to millions of nodal points. For
example, I created a 1.7 million node finite element model using dgtoexo2 in30 seconds
and easily manipulated it within mus tafa on an HP J2240 workstation with an FX-2
graphics board. Thus, considering its versatility and its scalability, The dgtoexo2/mustaf a

combination may have appeal, after appropriate modification, for the visualization needs
of other large scale density functional calculations done at Sandia.
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