SANDIA REPORT

SAND98-2717
Unlimited Release
. Printed December 1998

ed Grid Output File to
nt Database

Harry K. Moffat

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94A1.85000.

Approved for public release; further dissemination uniimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responmsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

SAND98-2717
Unlimited Release
Printed December 1998

dgtoexo2:
A Distorted Grid Output File to Exodus Il Finite
Element Database Conversion Utility”

Harry K. Moffat
Chemical Processing Sciences Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0601

Abstract

This report describes how to obtain publication-quality graphics from distorted grid
electronic structure codes using the combination of the conversion utility, dgtoexo2, and
mustafa, an AVS Express application. dgtoexo2 converts scalar function results from a
format applicable to distorted grid codes into the Exodus II unstructured finite element data
representation. mustafa can read Exodus II files and use the AVS Express engine to
visualize data on unix and Windows NT platforms. Though not designed for the purpose,
the dgtoexo2/Exodus Il/mustafa combination is sufficiently versatile to provide for the
specialized graphics needs of electronic structure codes. The combination also scales well,
producing robust performance for problems involving millions of grid points.

o~

*This work was supported by the U. S. Department of Energy, Sandia National Laboratories under
Contract DE-AC04-94A1.85000. There exists a non-exclusive license for use of this work by or on
behalf of the U. S. Government.

Acknowledgment

The author thanks Mike Glass for many helpful discussions
concerning the mustafa graphics package.

Contents

ACKNOWIEAZIMENT ...ttt a e ne s e 4
INEFOQUCTION ...ttt ettt ebe st e b e e n s n s 7
Description Of the TransIatoreieemeiiieiiienernintenteeeeeret et e e eraa e 8
Distorted Grid RePreSentationc.ccceeeecerreriteriesnnsessceieersessserstessesseessssssessnssanans 8
Description of the Finite Element Representation...........c.coceevveeeiiniiiinninneeennsenne 11
Running the Programs........c.cccceeiioierieinieciniiiectireninecene et e ens 13
RUNNING AZIOCKOZ ...ttt st saes e ssese e e e soaes s ssas s b e enn e nnenas 13
Running mustafaccooiiiiiei e 14
Identifying Crystal Planes: slicer_planecccccoveivciiniiiirnniinnninniniecneeseneneenane 15
Tips for Obtaining Publishable Graphics from mustafac.cccociiininininninnnnnn. 17
Future Additions to the Translator ... 20
RELEIENCES.....cueeiieeeeeeceer ettt st s e eas 21
Figures
Figure 1. Structure representing the distorted grid data..........ccoceevenevveinineniinennenienns 9
Figure 2. Show_Mesh Wire Frame Visualization with SPH Particle Field
Visualization used to view atom positions for a 2x2x2 unit cell. 10
Figure 3. Structure for the finite element representation of the data...........ccccceeeeeneeee. 11

Figure

Figure

Figure

Figure

Figure

. Subset of the structure representing information defined for atoms in the FE

representation - the rest of the structure is unused..........c.ccocvveviiniiviinirineenens 12

. Show_Mesh Hidden Line visualization with SPH Particle Field Visualization.

No red atoms are visible; they are inside the unit cell.c.ccoceeiiiinninnnnnnnn. 13

. A combination of External_Edges visualization, Show_Mesh visualization with

hidden lines, and SPH Particle Field visualizationcccoceeeeeeeveeeccecvreevrnnnns 14

. Example of slicer_plane visualization technique combined with the SPH

Particle Field and External Edge Visualization techniques. Some of the
atoms are in the slicer plane and SOmMe are NOL.........cccceieiiinirinirnneeniencneeen. 16

. Example of the isovolume visualization technique. Regions of high charge

density are surrounded by a volume. The values of rho are painted onto the
outside of the VOIUME.cccoevirviriiiiicetitccrcecccee e 19

Intentionally Left Blank

Introduction

This report describes how to obtain publication-quality graphics from distorted grid
electronic structure codes using the combination of the conversion utility, dgtoexo2, and
mustafa, an AVS Express application. dgtoexo2 converts scalar function results from
distorted grid codes into the Exodus II unstructured finite element data representation {3].
dgtoexo? is cognizant of translational symmetry and can take advantage of it. Unit cells in
directions of translational symmetry are completed when translating into the Exodus II data
representation. Also, multiple unit cells may be generated in translational symmetry
directions to provide the viewer with a clearer picture of the symmetry in the problem.

mustafa is an official AVS Express application written by Mike Glass, Div. 9111.
A reduced price license can be bought from AVS to run the mustafa application without
having to pay for the full AVS Express product. mustafa reads Exodus files and then uses
the AVS Express engine to visualize the data. It provides a Motif GUI interface to the
visualization methods most pertinent to fluid mechanics and structural mechanics
applications. mustafa’s capabilities are also sufficient for the visualization of data from
electronic structure codes.

Distorted grid codes employ topologically rectilinear grids. Being an unstructured
finite element format, Exodus II can handle much more complicated meshes than
rectilinear ones. Thus, the conversion to Exodus II has made the underlying data structure
more complex than the original calculation in order to visualize it. Is this necessary? The
short answer is that dgtoexo2/mustafa is sufficiently robust, and it was the easiest
approach given the computational infrastructure at Sandia.The question that I had posed.
above about whether there is a penalty in going to an unstructured representation of
originally structured data is really one of computational speed. The mustafa/AVS Express
combination has shown itself in practice to be sufficiently fast that speed is not a concern.
Also, the ability to customize a front end to mustafa, i.e., the translator, dgtoexo2, meant
that the specialized graphics visualization needs could be accomodated with mustafa’s
existing visualization methods.

The computational infrastructure at Sandia favored mustafa. Two unix graphics
packages were looked into to provide a graphics solution: IDL and AVS Express. IDL did
not have any canned solutions for visualizing volumetric data on non-uniform grids. One
attempted solution was to translate the distorted grid solutions onto a regular grid. IDL then
had a canned solution, slicer3D, to visualize volumetric information from regular grids.
However, the C program to translate data on a distorted grid to a regular grid turned out to
be slow. Also, the eventual graphics results didn’t turn out to be very pleasing. At least my
initial graphics attempts didn’t turn out very well, and there was no local IDL expert to go
to for advice. Modules to visualize the mesh would also have required custom subroutines
written in IDL’s parsing language that would have operated on a very low level (writing
out each line in the mesh). There were several positive points to using IDL. It’s cheap on a
per platform basis; there is a large IDL user base and internet repositories of third party IDL
graphics functions. Also, the company behind the IDL product, RSI, takes its customer
technical support function very seriously. I would heartily recommend IDL for applications
in which it is traditionally very strong: signal processing, 2D image processing, and 1D
plotting where a cheaply constructed GUI interface is desired.

The bare AVS or AVS Express product may have direct support for topologically
rectilinear grids. However, there is no existing infrastructure that I could work from. I
would have had to created my own networks from scratch. Additionally, I would have had
to figure out a way to provide standardized input to AVS, probably by writing a translation
program equivalent to the one I've written for the Exodus II solution, anyway. Instead, I
felt that it was better to go with a translator to Exodus II and take advantage of the large
user base here at Sandia. Once the distorted grid results are in Exodus II format, several
graphics packages are available to view the files [1, 4]. The one most suitable for 3D
viewing is mustafa, which is an application that sits on top of AVS Express, built with the

Express application development environment. Additionally, AVS visualization
techniques using self-built networks is also an unexplored but attractive possibility. Mike
Glass, mustafa’s author, has written a read_exoII () module for AVS that may be added
to networks. A benefit of translation to the Exodus II database format is that Exodus II files
are written in machine independent binary [3]. Exodus II is written on top of UCAR’s
netCDF package [2], which uses the ubiquitous XDR package for its low level 10 routines.

I will first describe how dgtoexo2 is structured. Then, I will briefly describe how
to run the dgtoexo2/mustafa combination to obtain visualization results of interest to
electronic structure applications. slicer_plane, a utility program for the exact
specification of visualization planes, will also be presented. An informal discussion of how
to obtain publication-quality printed output will also be provided, because the potential for
wasting time by an unwary user in obtaining this bottom-line result is high. Finally, a to-do
list for directions in which the dgtoexo2 may be improved is provided. All figures in this
report come from a single SiC calculation carried out by Alan Wright and Ellen Stechel on
a 30 x 30 x 30 grid with translational symmetry assumed in all three directions.

Description of the Translator

dgtoexo2 is a mixed Ansi C and Fortran 77 code. Ansi C is used on the top levels
of the program to provide a structural representation of the data and to provide dynamic
memory allocation. Fortran 77 is used to parse ascii input files, because of the author’s
familiarity with the Chemkin Fortran 77 library. Parsing subroutines from that library,
which are robust and have been heavily tested, have been used in this application. A full set
of Ansi C prototypes have been created for these Fortran 77 parsing routines to ensure that
the interface between programming languages is handled correctly. Ansi C has been used
in the subroutine that writes the Exodus II data file, again because of the authors familiarity
with that particular interface.

The internal operation of dgtoexo2 can be described by a few operations involving
the top level structures. The first operation of reading the description and data from the
distorted grid codes is described in the next section. The intermediate operations of
translating the distorted grid code data from a distorted grid data structure to a finite
element data structure is described in the section entitled, Description of the Finite Element
Representation. The final operation of writing the data out to the Exodus II file is also
described in that section.

Distorted Grid Representation

This section will describe how dgtoexo2 reads the results from a distorted grid
code. Currently, it reads the output from Alan Wright’s mkccs program. mkccs 1S a
translator program that combines the results from several fortran binary files into one ascii
file. dgtoexo2 reads the mkccs output file via a fairly flexible, sophisticated parsing
algorithm, that allows for a variable number of scalar functions to be defined on the
distorted grid. However, there are some formatting limitations in the header file format of
the mkces ascii output file that must be adhered to when reading that file. The reader is
referred to the mkccs source code for a description of the formatting requirements of the
header. dgtoexo2 also expects to find and read a local file named latfile. latfile
contains information about the lattice vectors in the problem. Rudimentary checking is
carried out between the ascii output file from mkccs and the file, 1atfile, in order to make
sure that two files are compatible. However, this process is clearly not bullet-proof.

Figure 1 describes the DG_struct structure, which is the end result of this rather ill-
defined input process. Num_x, Num_y, and Num_z are variables that describe the number of
grid points in the three primary directions. NumFuncvalues is equal to the number of scalar
variables defined on the mesh. The actual value of the function variables are stored in

FuncValues [k] [§], where k is the kth scalar function and j is the j*] h node. FuncNames [k]
is the character string name of the kM scalar function, also read in from mkccs’s output file.
The name of each scalar variable is taken from the line, “function: namel, nam2...”,
that precedes the actual columnar listing of the data. bistortedGridSpace IS a ﬂag to
indicate what types of coordinates are to be used in the structure. The default is to use the
real space coordinates, i.e., those read in from the mkccs input file. Distorted grid codes
employ topologically rectilinear structured meshes. The grid point locations are not
regularly spaced in real space. Node points are clustered around regions of large gradients
in the charge density in order to generate better accuracy. If DistortedGridspace is true,

the real-space coordinates, *Coords([3] in the structure, are overwritten with mesh
coordinates generated from a uniform meshing algorithm based on an equidistribution of
points on the parallelepiped domain. This is the called “Distorted Grid Space”, because it
is the coordinate system in which the solution actually takes place.

struct DG_Struct {

int Num_x; /* Number of nodes in the x direction */
int Num_y; /* Number of nodes in the y direction */
int Num_z; /* Number of nodes in the z direction */
int NNodes; /* Total number of nodes in the structure */
int NumFuncValues; /* Number of scalar functions defined on the
distorted grid */

int NumRecords;/* Read in from the ascii file, but cotherwise ignored */
int DistortedGridSpace;

/* Flag to indicate whether the coordinates in Coords are in
the distorted grid space or not. If they are, then the nodal
coordinates will be generated by uniformly gridding along
the lattice vector directions. If they are not (which is
the default), then the nodal coordinates will be obtained
from the distorted grid output file. */

int NumAtoms; /* Number of Atoms */

int NumTypes; /* Number of different types of atoms */

int TranslationalSymmetry([3]; /* Logical flag indicating the presense
of translational symmetry in each
direction */

double LatticeVectors([3][3]:

/* Translational periodicity in the given direction
LatticeVectors[i) [0]}: This is the component of
the i_th lattice vector in the x direction. */

double *Coords[3]; /* (x,¥,z) Coordinates for the nodes. This
is an array of three pointers to doubles.
Each array has a length NNodes. */
double **FuncValues;/* Values of the scalar functions defined on the
distorted grid mesh:
FuncValues[j] [i] is the value of the jth function
at the ith mesh point. */
char **FuncNames; /* Vector of character strings representing the
names of the functions */
double AtomPositions [MAXATOMS]([31; /* (x,y,z) locations of the atoms */
int AtomID[MAXATOMS]; /* Type of the atom -> this number must exist as
an entry in the TypeID vector. It usually
ranges from 1 up to the total number of different
types of atoms */
/* Information about each type of atom */
int TypelD [MAXTYPES] ; /* Type ID for the type */
int TypeAtomNum [MAXTYPES] ; / *TypeAtomNum([i] is the atomic number of i*/
double TypeStrength[MAXTYPES];
double TypeClength[MAXTYPES];
double TypeCoeff [MAXTYPES];
char Description[80]; /* Textual description of the current data */

}i
Figure 1. Structure representing the distorted grid data

The TranslationalSymmetry[3] and LatticeVectors{3] [3] variables have to
do with the existence of translational symmetry and its specification within the problem
statement. Translational symmetry is specified by lattice vectors. Lattice vectors have the

10

Intentionally Left Blank

property that translation via integer units of a lattice vector yields identical scalar function
values. If there is symmetry in all directions, then there will be three lattice vectors, and the
concept of a unit cell may be used. The unit cell is specified by a parallelepiped determined
by vectors emanating from a single point with lengths and directions equal to the three
lattice vectors. The mesh constructed by distorted grid codes span this unit cell. The last
mesh plane in each direction of the unit cell is typically dropped in the calculation and in
writing out the solution to the output file. Translational symmetry requires the last mesh
plane in the unit cell to be equal to the first mesh plane. It is important when visualizing the
solutions to add this last plane back into the mesh to make evident the translational
symmetry in the problem. This process of adding the last plane back in I have nicknamed,
“completing” the unit cell. By default, completing the unit cell is done when translating the
distorted grid results represented by Fig. 1 into the finite element representation. There is
an internal flag in dgtoexo2 to turn off the completion of the last unit cell, if so desired.

Figure 2. Show_Mesh Wire Frame Visualization with SPH Particle Field visualization
used to view atom positions for a 2x2x2 unit cell. The Jast unit cell in each
lattice vector direction is completed, generating more atoms of type 1, blue,
than there are of type 2, red, since the blue atom was located at the origin of
the unit cell while the red atom is located inside the unit cell.

Atom positions and properties of atom types are also stored in the DG_struct
structure. The positions and type ID for the i atom in the cell are stored in
AtomPosition[i] [3] and AtomID[i], respectively. AtomicNumber[]],
TypeS_tre'ngil:I‘l[:'i],:{‘r}l/peClength[j],TypeCoeff[j], and TypeID:iih] refer to properties
associated with the j type of atom. TypeIDI[3] is the type ID of the j= type of atom. A

11

12

Intentionally Left Blank

lookup function, £indTypePos (), is used to associate type ID’s with the index position of
types of atoms, using the array, TypeID[].

In the future, input modules based on the reading the direct binary file output from
a distorted grid code may be constructed. That’s the strength of the current structured,
modular approach. The essential point is that the DG_struct structure of Figure 1 must be
fully populated, so that the conversion to a finite element data structure described in the
next section, may proceed without knowledge of the origin of the data.

struct FE_Mesh_ Struct {

char *Title; /* Title of the problem */

int Num_x; /* Number of nodes in the x direction */

int Num_y; /* Number of nodes in the y direction */

int Num_z; /* Number of nodes in the z direction */

int NElemTotal; /* Total Number of elements in the structure */
int NNodes ; /* Total number of nodes in the structure */
double *Coords([3]; /* Coordinates for the nodes. This is an array

of three pointers to doubles. Each array
has a length of NNodes. */

int NumElemBlks; /* Number of element blocks in the mesh */

int *NElemBlk; /* Number of elements in the element block */

char **ElemType; /* Element type for elements in the block */

int *ElemBlkIDs; /* Element block id for the element blocks */

int *NumAttrPerElem; /* Number of attributes per element in the element

block */

int *NumNodesPerElem; /* Number of nodes per element */

int **Connect; /* Connectivity matrix. Connect[i] is the
connectivity vector for element block, i */

double **ElemAttr; /* Vector of element attributes

Elemattr[k] is a pointer to the vector of attributes
fomr the kth element block */
int DistortedGridSpace;

/* Flag to indicate whether the coordinates in Coords are in
the distorted grid space or not. If they are, then the nodal
coordinates will be generated by uniformly gridding along
the lattice vector directions. If they are not (which is
the default), then the nodal coordinates will be obtained
from the distorted grid output file. */

int NumAtoms; /* Number of atoms */
int NumTypes; /* Number of different types of atoms */
ATOM_STRUCT *Atoms; /*Vector of pointers to atom structures

Atoms{i] is the atom structure for the ith
atom in finite element description. */

int NumNodeSets; /* Number of node sets defined in the mesh */
struct NodeSetStruct *NodeSetData; /* Data for each node set */

int NumSideSets; /* Number of side sets defined in the problem */
struct SideSetStruct *SideSetData; /* Data for each side set */

int NumFuncValues;/* Number of scalar functions defined on nodes*/
double **FuncValues; /* Value of the functions at the nodes

FuncValues[i] is a vector containing
the value of the ith function at all nodes*/
char **FuncNames; /* Vector of strings containing the
of the functions, FuncNames[i] is the name
of the ith function */
/*

}i
Figure 3. Structure for the finite element representation of the data

Description of the Finite Element Representation

The translation process from the distorted grid representation to the finite element
model representation is carried out in two steps. In the first step, the mesh representation
and data on the mesh are translated. In the second step, the atom representation described
in Fig. 1 is added onto finite element model using additional nodes and spherical elements
defined at new nodes. Both steps are complicated by completing the last unit cell and by
creating multiplications of the unit cell in directions of translational symmetry. Fig. 2 is an
example. For a 2x2x2 unit cell representation, where the first type of atom is located at the

13

origin and the second type of atom is located in the middle of the unit cell, 27 atoms of the
first type and 8 atoms of the second type are generated.

Figure 3 contains the top level structure which defines how the finite element data
is internally represented in dgtoexo2. This representation is closely related to the Exodus
IT application program interface (API). Therefore, the code to write out the data to an
Exodus II file is short and straightforward. The first step, the translation of the mesh
representation, is carried out by treating each meshed region as a hexagonal finite element.
Trilinear interpolation is used in the hexagon and in mustafa. Thus, the first type of
element in the list of types of elements, ElemType[0], Will be of type “HExXS”. A
connectivity array for the mesh in the first element block, Connect [0], is built. The
connectivity array is a one dimensional vector of length NElemBlk([0]*
NumNodesPerElem[0], which describes the node-to-element mapping of the mesh [3].

Entries for node sets and side sets in the FE_Mesh_Struct structure are not used in
this application. FuncvValues[k] [i] contains the values of all variables defined at nodes.
k refers to the element block, while i refers to the node number. There are no element based
variables defined in the FE Mesh_struct structure. The pistortedcridspace flag is
propagated from the distorted grid structure to indicate what type of coordinates,
Coords (3] [i], have been propagated from that data structure. The finite element mesh
data structure doesn’t include any of the entries describing the symmetry in the problem.
Symmetry properties have already been applied in forming the elements of the
FE_Mesh_Struct structure, so their description is no longer needed.

struct Atom_Struct {
double Position[3];
double TypeStrength;
double TypeClength;
double TypeCoeff;

int AtomicNumber; /* Atomic number of the atom */
char *Name ;
int Type; /* Type of the atom -> this number must range

from 1 up to the total number of different
types of atoms */
double Radius_for_Vis;

};
Figure 4. Subset of the structure representing information defined for atoms in the FE
representation - the rest of the structure is unused.

In the second step, atom positions and atom type information is added to the
FE_Mesh_Struct structure. This is done by adding additional element blocks of spherical
elements for each different type of atom. Each spherical element is connected to one
underlying node through the connectivity matrix, Connect [k] [3]. The position of the
sphere is specified by the position of the node. New nodes have been added to the overall
list of nodes for the sole purpose of specifying atomic positions. This is done for two
reasons. The first is that atom positions are not restricted to falling on nodes of the
underlying distorted grid geometry. The other reason is that the addition of new nodes
creates new nodal variables, which can then be used to advantage within mustafa, as
described below. Each spherical element takes one attribute, the radius of the sphere. An
initial radius of 1.0 is inserted into the ElemaAttr[k] [j] array (k is the element block
number, and 3 is the element number in the k™ block). The relative sizes of all atoms can
be modified later within mustafa. The new version of mustafa supports the visualization
of spherical elements, specified by a position and radius, via the SPH Particle Field
visualization method. In that method, atoms are colored according to the value of a
particular nodal variable. I have included logic in dgtoexo2 to encode the type of the atom
into one of the nodal variables, by default the variable entitled “J*1/2”. Thus, different
types of atoms will be visualized within mustafa using different colors.

Atom information is also included in FE_Mesh_sStruct in a duplicate way. A vector
of pointers to Atom_struct structures of length, NumAtoms, is created. Figure 4 contains

14

the definition of the Atom_struct structure. It encompasses all of the atom type
information originally contained in the distorted grid structure.

Running the Programs
Running dgtoexo2

The translator program is invoked via the following command line.
dgtoexo2 [-m multilnitCell] [-dgs] dgName [exoName]

Errors in command line usage will generate a printout of the correct usage on standard
output. dgName, the only required parameter, is the name of the output file from mkces. The
-dgs token is optional, and if specified, changes the coordinates in the finite element
Exodus II file to distorted grid space coordinates. The -m multiUnitCell option specifies
the number of unit cells in each lattice vector direction, multiUnitCell is equal to the
number of cells requested. The ExodusII output file name, exoName, is optional, because
default names are generated. If the -dgs option is specified, the default Exodus II file name
is the the value of dgiName with the suffix, “_dgs.exo11” appended to it. If the -dgs option
is not used, the Exodus II file name is the value of dgName with the suffix, “.exor1”
appended to it. Additionally, a small ascii file named “latfile” most be present in the
local directory. Examples of the format are given in the dgtoexo2 distribution directory.

~TF i

R e

R a
e e 2

S

Figure 5. Show_Mesh Hidden Line visualization with SPH Particle Field vilsualization.
Red atoms inside the unit cell are invisible. Mesh is two pixels wide.

15

16

Intentionally Left Blank

Running mustafa

mustafa operates via a fairly simple paradigm at its top-most level. First, the
Exodus I mesh is read in using the File -> Exodus II/PDS (PXI)... menu command. Then,
various filters can be used to cull the objects in the Exodus II file, modify the nodal
positions, or mirror the Exodus II model about a plane of symmetry. I have found these
filters to be unnecessary for the electronic structure visualizations. Then, various
visualization methods are used to display the model and data in a view window. There can
be more than one view window. Usually, I just use one view window at a time. Within a
view window, more than one visualization method can be visible at any time. For example,
many of the images created in this report have been generated by additive combinations of
visualization methods. Each visualization method has a group of widget controls associated
with it. Those controls are visible in mustafa’s widget control window when that particular
visualization method has been “selected.” Visualization methods can also either be visible
or invisible. Being invisible means that mustafa still remembers the method and the
current value of its widget controls; however, it is just not visible in the current view
window..

! e h Ch

! 1.24e-01

9.27e-02

6.18e-02

3.08e- 02

0.00e+00

Figure 6. A combination of External_Edges visualization, Show_Mesh visualization
with hidden lines, and SPH Particle Field visualization

17

18

Intentionally Left Blank

Other useful visualization methods include the isovolume and isosurface methods.
The two methods are very similar in that they both explore what surfaces of a constant
scalar function look like in three dimensions. Both methods have the capability to create a
surface using one variable and then color that surface using another variable. The
isovolume method, example of which is provided in Fig. 8, renders a volume surrounding
two isosurfaces and the element block boundaries. The isosurface visualization method
provides a rudimentary capability for creating traditional contour plots within mustafa.

Identifying Crystal Planes: slicer_plane

One mismatch of the visualization needs of electronic structure codes with
mustafa’s capabilities has been remedied with an auxiliary program. For electronic
structure calculations, one would desire representations of scalar quantitics on planes
whose normal and translational position are exactly specified. However, AVS Express only
provides widget controls meant to provide fuzzy positioning of slicer planes. Therefore,
there needs to be an additional utility that can exactly position slicer planes in mustafa
according to the value of the surface normal. I wrote a stand-alone program,
slicer_plane, to accomplish this task.

slicer_plane will calculate the values of the widget controls that must be entered
into the plane transform dialog box of mustafa slicer plane visualization method.
slicer_plane takes as its input, three points. These three points define the visualization
plane. More than a generic specification of a plane is actually needed for the slicer widget
control. The slicer widget is a finite-dimensioned rectangle with an origin, a vector that
defines the right-hand-side of the plane and another vector perpendicular to the right-hand-
side vector that defines the left side of the rectangle. The extent of the rectangle can be
further specified via a scale input widget control box that increases or decreases the relative
size of its initial extent. The initial extent is determined roughly by the data being plotted.

slicer_plane will use the first point to specify the origin of the slice plane. It will
use the difference between the second point and the origin of the first point to specify the
right-hand-side of the slicer plane used by mustafa. The third data point is differenced with
respect to the first data point to create the second vector needed to uniquely identify the
surface normal. With these additional definitions, the orientation and position of the slicer
widget is completely specified. It’s still not unique, however, because there is a degeneracy
with respect to the top and bottom surface normal still to account for.

The algorithm used in slicer_plane starts with the method for finding the right-
side vector of the slicer plane. The right side of the slicer plane transforms especially easily.
With all three widget controls set at zero, the right side vector of the slicer plane falls along
the positive x axis, and the surface normal points in the positive z direction. The x angle
widget control doesn’t affect the orientation of the right-side vector; it does affect the value
of the surface normal.

cosBZcos—Gy r.
—sinﬂzcos—Gy =qry| = r (1)
sin(—ey) r,

r is the normalized vector representing the right-side vector of the plane.6, and 6, are the
values of the angle widget controls in the plane transform dialog box. There are always two
solutions to the above equation. They correspond to the slicer plane being flipped 180
degrees about the right side line, i.e., the top and bottom surface normals respectively. The
degeneracy is related by the following transformation:

19

20

Intentionally Left Blank

i

(8,
(8,

0, + 180°)
180°-9,)

2

0, and 8, are also valid solutions to Eqn. 1. Thus, we restrict our initial solution search
for -0, to specify that -0, always be in the +x quadrants, i.e., -t/2< -8, <n/2. With
this restriction, the solution to Eqn. 1 becomes unique and straightforward. ’

rho

[.24e=01

g 02702

6.18e—-02

A
/ \
3.09¢-02 \\

\

\

0.00e+00

Figure 7. Example of slicer_plane visualization technique combined with the SPH Par-
ticle Field and External Edge visualization techniques. Some of the atoms are
in the slicer plane and some are not. The origin and axes are also made visi-
ble by turning on that option in the view window of mustafa. The external
edge visualization method provides a means todraw a bounding box about
the computational domain.

The slicer plane in AVS Express is oriented via all three angle widgets. The normal
to the slicer plane may be calculated by a formula involving the following rotational
matrices operating on the z axis vector, which is the initial orientation of the slicer plane’s
surface normal:

cosf, sinB, O
z rotational matrix: —sinB_ cos® 0| = ROTZM
Z K4

0 0 1

21

22

Intentionally Left Blank

cosB, O sinB,
y rotational matrix: 0 1 0

ROTYM

—siney 0 cos Gy_

1 0 0
X rotational matrix: 0 cos8, —sin6,

ROTXM

0 sin®, cosB,

0
[N] = [ROTZM][ROTYM}[ROTXM]|g (3)

1

N is the vector specifying the surface normal of the slicer plane. We have already
determined 0, and 6, from the calculation of the right-side vector. Thus, we only need
Eqn. 3 to calculate 6, and we have completely specified the three angle widgets.

An example of how to run slicer_plane in conjunction with mustafa’s slicer
plane visualization technique is provided below. Let’s say that we want to obtain the charge
density along a plane that cuts diagonally through the center of the unit cell containing the
atom in the middle of the unit cell. If the three lattice vectors of the unit cell are
(4.09,0,4.09), (0,4.09,4.09), and (4.09,4.09,0), then such a plane is specified by
setting the right-side vector to the first lattice vector, and the other vector to the sum of the
remaining two lattice vectors. A slicer_plane sessions would then produce the following
output:

zuzax.pchem.sandia.gov 218: slicer_plane
Enter three points on three separate lines:
0. 0. 0.
4.09 0. 4.09
4.09 8.18 4.09
NORMAL = (-.707106781186548,.0,.7071067811865475)
Set Widget controls to:
Turn on Absolute toggle switch

Theta_X = .000
Theta = -45.000
Thetas = .000
Translate X = 000
Translate Y = .000
Translate Z = 000

Adjust the Scale dialog box to encompass the data

These widget control settings on the plane transform box were used to produce the
orientation of the slicer plane in Figure 7.

Tips for Obtaining Publishable Graphics from mustafa

All mustafa results have been created with version 1.24.3, July 24, 1998. The
underlying version number of AVS Express was v. 3.4. The current version number of the
Exodus library application is v. 2.06. All of the above influence the tips that I give below.
Bugs come and go with evolving version numbers of these applications and with the base
system graphics software. In general, it is a good idea to keep up to date with vendor-
supplied bug fixes for the graphics subsystem and rendering software on your computer.

To obtain quality output from mustata, the best technique is to use the tiff export
option from Output->Write_Raster_File dialog box. The reason for this is that the images

23

eventually all end up as bitmaps anyway. Even the regular postscript output option
produces a bitmap. Tiff images have the advantage that they may be created with a known
bits per inch resolution. If care is taken never to scale the image by a non-integer factor,
direct mapping between the bits in the image and the bits in the output device can be made
to occur, leading to the best possible output. Tiff files exported from mustafa may be
imported as images into Framemaker and other programs. In Framemaker, the resolution
of the image in bits-per-inch may be specified at the time the image is imported. This serves
to scale the image using integer factors. A value of 600 bits per inch ensures that value of
resolution in the final printed image. All of the images created in this report were generated
using this procedure. There is a known bug in AVS Express with scaling xfont text in the
tiff export method. These fonts don’t scale with the resolution of the image in the tiff output
file. However, for quality output, it has been suggested to not include text in the export
image but to add it later in Framemaker or some other graphics program such as Adobe
Illustrator. Note, stroke text, the other font type option for legends does scale, but doesn't

look particularly good to start with. An example of stroke text is given in Fig. 6. and in Fig.
7.

There are several options in the Output->Write_Raster_file dialog box. The most
important is the image scale option. The image scale determines the ratio of the number of
pixels created in the tiff file to the number of pixels actually on the screen. For example, a
4 to 1 scale creates a tiff images with 16 times more pixels than the current screen size.
Most importantly, tiff files with extra pixels have better resolution. Intelligent choices are
made for the new pixels. Lines which are defined to be one pixel wide at screen resolution
are one pixel wide at the scaled image resolution. This can create extremely narrow lines,
when the image scale is set to 4 to 1 (see Fig. 2 for an example of this). The default RLE
(run length encoding) compression option was used in all cases. Other types of
compression algorithms didn’t work within mustafa on HPUX 10.20 (a bug report was
generated). Even with the compression, 4-to-1 tiff files are typically 15 megabytes in size
and take 15 minutes each to print on networked laser printers. The result, as mentioned
above, is that the images have true 600 bits-per-inch resolution.The final image size can
also be related to the original Mustafa window size by simple arithmetic. For example, if
the final image size is 6 inches by 5 inches and 4 to 1 scaling and 600 dots per inch
resolution is required, then the inital Mustafa window size should be set to 900 by 750 bits.
The end product is spectacular. All of the images in this report were written into
Framemaker at 600 dpi density. They were printed on a Tektronics Phaser 550 laserprinter
with 600 dpi resolution. I see no reason why the tiff output file procedure can’t be carried
out at even higher resolutions such as 1200 dpi resolution, the minimum resolution needed
for high quality images used in magazine covers.

There are two types of postscript output from mustafa, regular and vector
postscript. The regular postscript option puts out a bitmapped image. Therefore, it has all
of the pitfalls of using bit-mapped images and none of the benefits of using the tiff image
format mentioned above. It too suffers from the xfont scaling problem. To increase the
resolution of bit-mapped postscript images, the “3D horizontal resolution” slider bar in the
Write Postscript/CGM dialog box can be increased.

The vector postscript output produced unpleasing output due to a triangularization
of some of the images.This is a known bug in AVS Express whose time scale for resolution
is unknown. The toggle box option, color subdivision, with its associated dialog box
entitled color tolerance may help to reduce the effect of these triangles. The default option
is to use the color subdivision scheme, “None”. Changing the option to “Precompute” and
then fiddling with the color tolerance value may help the triangle problem (decreasing the
color tolerance value certainly leads to monumentally large output files quickly). The fonts
in vector postscript come out looking great, however. I have recently discovered that the
spherical primitives render as points in vector postscript output, no matter what rendering
scheme was used. A bug report was generated.

24

Tiff files created by mustafa are readily importable into MS Word and Adobe
lustrator on the Mac and PC. However, memory limitations prevented me from reading
in large tiff files into these applications on my Mac.

Different renderers do produce different results. The choice of renderers can be
made in the Editors->View dialog box in mustafa’s view window. The software renderer
option is available on all platforms. The default renderer on HPUX systems, PEX, has a
bug in it. PEX will display spherical primitives (such as the ones used for displaying
spherical elements in mustafa) as points instead of as finite spheres. On HP systems,
change the default renderer to OpenGL or to the software renderer in order to display the
atoms correctly using the SPH Particle Field visualization method.

Under the Editor->Camera dialog box of the view window is another important
widget control. The camera jiggle control determines how much accuracy is used in the
hidden lines algorithm within mustafa. Frequently the default value of 1.0 isn’t sufficient
for proper rendering of large meshes created with dgtoexo2. Setting this widget control to
0.1 solves these rendering issues.

/ [o i

rho
alm-m k x ’
F ll T 1:.' ; ¥ "?ﬁ

4
' :;__;_._

=0 17e-0]

Biue = silicon, fed = earhon

Figure 8. Example of the isovolume visualization technique. Regions of high charge
density are surrounded by a volume. The values of rho are painted onto the
outside of the volume. Textual annotations are also added.

The default background color in mustafa is black. To change this to white, go to
the Editors->View dialog box in the View window of mustafa. The default background
color is specified there. I have found white to be the best background color for printing, and
it doesn’t waste toner. Using a white background, however, requires you to change the
color settings on the fonts and mesh lines from the default white to black in order for these

25

26

Intentionally Left Blank

to be visible. In output dialog boxes where the background mode needs to be specified, I
invariably use the mode, “keep”. This produces no unexpected results.

Typically, one would like to print slicer_plane images in 2D mode. Once one has
gone through the trouble of defining a plane and all of the image content is in that plane,
one would like to make sure that that plane’s normal is orthogonal to the picture screen and
thus to the eventual printed page. This objective can be achieved using two steps, assuming
that the plane’s surface normal is given by (0, Oy, 8,) values which are round numbers.
The first step is to adjust the image of the plane so that its surface normal is roughly
orthogonal to the screen. Then, go into the dialog box, Editors->Transform, and adjust the
angle widget controls there to round numbers. Chances are that the objective of a 2D picture
will have been achieved.

Future Additions to the Translator, dgtoexo2

Below is a to-do list. The single biggest improvement to the rebustness in the code
is one that would improve the interface between the distorted grid code and dgtoexo2. A
more precise definition of the output file format from the distorted grid codes would help
tremendously. The best solution would involve the adoption of netCDF [2] for output file
format of the distorted grid code. However, barring this, adding the information contained
in “1atfile” to the the mkecs output file would be a step in the right direction, since the
problem statement would reside with the problem data.

The visualization of a scalar function on one grid plane of the distorted grid may be
a desirable feature. Because each grid plane is curved in space, the slicer plane visualization
technique would not be sufficient to accomplish this task. However, using the concept of
side sets [3], visualization of a grid plane could be achieved. I’ve included hooks into the
FE_Mesh_Struct structure, specifically the pointer, struct SideSetStruct
*SideSetData, to accommodate the definition of side sets into the finite element
representation of the grid. An identified grid plane could then be defined as a side set in
Exodus II lingo and written out to the Exodus II data base. A capability which will be
included in mustafa at some point if it isn’t already is to visualize data on side sets by using
colors to represent the value of a function. Thus, a curved isosurface with colors
representing scalar function data defined on the surface may be visualized.

Another approach to visualizing functions on surfaces created by the distorted grid
is to add three nodal-based variables to the Exodus file. These nodal based variables would
correspond to the original grid integer grid offsets (i.e., i, j, k nomenclature). Then, one
could use these new variables in the Scalar->Iso-surface visualization method to plot
variables on curved surfaces of constant grid coordinate (e.g., surfaces of constant i). The
iso-surface tool has the capability to form the surface using one variable but create the color
map on that surface according to the value of another variable.

I had originally planned to visualize atom positions by visualizing spheres meshed
with hexagonal elements. It would not take too long to implement this approach, if there
were a need to visualize information centered at atomic positions.

dgtoexo2 has only been tested on problems with translational symmetry in all three
lattice directions. At a low level it has been designed to be capable of handling cases with
less symmetry. However, with any software program, a feature which has not been tested
may not work. dgtoexo2 should also be capable of generating meshes with different
multiples of the unit cell in each lattice vector direction. Again, this capability hasn’t been
tested.

The use of trilinear interpolation between each grid point may not adequately reflect
the true quality of the data produced by the distorted grid electronic structure code. These
codes use a sophisticated global coordinate transformation of the unit cell based on a
smooth Jacobian that is anything but trilinear. Also, the scalar functions calculated from the
electronic structure code, which employ spectral techniques, use a global basis set

27

representation. A local finite element representation may not be functionally adequate.
Thus, interpolating scalar variables within mustafa based on a trilinear approximation may
produce inaccurate values. How inaccurate are the interpolations? Does accuracy really
matter in a graphics visualization application? One approach to quantify these questions
would be to bisect all grid points in the domains. Then, calculate the values of the scalar
functions at the new grid points using a method consistent with the original basis set
representation and coordinate transformation. An error tolerance can be introduced at this
point to make decisions about whether the addition of the new grid points is warranted or
whether additional bisections should occur. mustafa, as well as the underlying graphics
rendering software, is based on a localized interpolation scheme. This can’t be changed.
What can be changed is adding resolution to what’s fed into mustafa.

To enhance slicer_plane visualization plots, the capability to only include atoms in
the finite element database that lie along a particular plane should be added. A potential
source of confusion when looking at plots created with the slicer plane visualization
method in combination with the SPH Particle Field visualization method would be
eradicated. Currently, it is hard to distinguish whether atoms actually lie in the slicer plane
or not.

The dgtoexo2/mustafa combination scales well to millions of nodal points. For
example, I created a 1.7 million node finite element model using dgtoexo2 in 30 seconds
and easily manipulated it within mustafa on an HP J2240 workstation with an FX-2
graphics board. Thus, considering its versatility and its scalability, The dgtoexo2/mustafa
combination may have appeal, after appropriate modification, for the visualization needs
of other large scale density functional calculations done at Sandia.

References

1. M. W. Glass, “MUSTAFA User’s Guide Version 1.23.x,” Sandia Report, SAND#.,
Sandia National Laboratories, Albuquerque, NM 1997.

2. R. K. Rew, G. P. Davis, S. Emmerson, H. Davies, “NetCDF User’s Guide - An In-
terface for Data Access, Version 2.4,” University Corporation for Atmospheric Re-
search, Boulder, Colorado, Feb. 1996.

3. L. A. Schoof, V. R. Yarberry, “EXODUS II: A Finite Element Data Model,” Sandia
Report, SAND92-2137, Sandia National Laboratories, Albuquerque, NM 1994.

4. A. P. Gilkey, J. H. Glick, “BLOT - A Mesh and Curve Plot Program for the Output

of a Finite Element Analysis,” Sandia Report, SAND88-1432, Sandia National
Laboratories, Albuquerque, NM 1992.

28

DISTRIBUTION

[U0 T Sy GRS TS §)

—_

MS0601
MS0601
MS0601
MS0826
MS0826
MS1111
MS1111
MS1415
MS1417
MS1421

MS0899
MS9018
MS0619

1126
1126
1113
9111
9111
9221
9221
1113
1100
1153

4916
8940-2
15102

H. K. Moffat
J. Y. Tsao

J. S. Nelson
M. K. Glass
W. L. Hermina
J. S. Shadid

A. S. Salinger
A. F. Wright
T. S. Picraux
N. Modine

Technical Library
Central Technical Files
Review & Approval Desk
for DOE/OSTI

29

	Abstract
	Acknowledgment
	Contents
	Introduction
	Description of the Translator
	Distorted Grid Representation
	Description of the Finite Element Representation

	Running the Programs
	Identifying Crystal Planes: slicer_plane
	Tips for Obtaining Publishable Graphics from mustafa

	Future Additions to the Translator, dgtoexo2
	References
	DISTRIBUTION

