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Abstract

Comprehensive management of the battle-space has created new requirements in information
management, communication, and interoperability as they effect surveillance and situational
awareness. The objective of this proposal is to expand intelligent controls theory to produce a
uniquely powerful implementation of distributed ground-based measurement incorporating both
local collective behavior, and interoperative global optimization for sensor fusion and mission
oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfigura-
tion of autonomous robotic agents, we can improve overall robustness and functionality in
dynamic tactical environments without information bottlenecks. In this concept, each sensor is
equipped with a miniaturized optical reflectance modulator which is interactively monitored as a
remote transponder using a covert laser communication protocol from a remote mothership or
operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria,
including terrain overlays and remote imaging data. Information sharing and distributed intelli-
gence opens up a new class of remote-sensing applications in which small single-function autono-
mous observers at the local level can collectively optimize and measure large scale ground-level
signals. AS the need for coverage and the number of agents grows to improve spatial resolution,
cooperative behavior orchestrated by a global situational awareness umbrella will be an essential
ingredient to offset increasing bandwidth requirements within the net. A system of the type
described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial
distributions of measurement signatures which are non-stationary or obscured by clutter and inter-
fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for
example, to field an adaptive ground-penetrating radar for detection of underground structures in
urban environments and to detect chemical species concentrations in migrating plumes. Given is
our research in these areas and a status report of our progress.
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1 Introduction

The report fulfills the requirements for the discretionary LDRD proposal 99-0837 entitled
“Optical Communication System for Remote Monitoring and Adaptive Control of Distributed
Ground Sensors Exhibiting Collective Intelligence”.

The ability of the United States to control emerging threats and to verify nonproliferation
treaty activities is diminishing. This report addresses aspects of this problem, devises a technical
solution, and ultimately implements this solution to counter or thwart these threats and enforce
treaty resolutions.

The Problem. United States strategic doctrine is predicated on a technologically superior intelli-
gence apparatus to protect global interests and aggressively preempt emerging challenges to
national security. To date, reconnaissance has been dominated by stand-off (long-distance)
remote-sensing technologies, satellites and radar systems (e.g., UWAC). Typically, protocol dic-
tates first assess global activity and then initiate some level of human intervention. This method-
ology is wrought with weaknesses in which leaders of hostile countries and international as well
as national terrorists are finding ways to circumvent. As an example, selective concealment of
illicit NBC weapons capability is increasingly employed by adversaries in the aftermath of the
Gulf War. By constructing underground facilities and detaining weapon inspectors, direct obser-
vation by satellite or airborne reconnaissance overflight assets and scientific scrutiny are thwarted.
As a result, the above mentioned reconnaissance tools are increasingly less useful because of their
limited ability to sense (“smell”) chemical and biological agents, to measure (“feel”) what sort of
activity is occurring, to image (“see”) the subtleties of its environment, to assess (“think”) the sit-
uation, and to adapt (“react”) to such an environment. To anticipate and preempt emerging threats
and cclmply with US laws and international treaties necessitates close-up information, collective
intelligence, autonomous un-manned covert methodologies, quick response-times, and immunity
to countermeasures. Strong motivation exists to deploy semi-autonomous, ground- and air-based,
sensin,g networks in combination with secure theatre communication nodes.

A Solution. In the scenario proposed here, mesoscopic-scale mobile robotic warflghters carrying
specialized sensor packages equipped with miniaturized optical reflectance modulators could be
infiltrated to suspected proliferation sites or trip-wire locations, interdiction chokepoints or cease-
fire bclundaries. Data acquisition between a distant mothership or human operative consists of
positicmally registered and interactively monitored remote transponders using a wide-bandwidth,
atmospherically compensated laser communication protocol. To improve robustness of the intel-
ligence gathering process, the robotic agents themselves could be endowed with rudimentary
learning ability for collaborative and organized collective behaviors including local remote-sens-
ing coordination (search, evasion, navigation), self-compensation, and adaptive reconfiguration
for glc~bal optimization of a mapping signature (e.g., signal-to-noise ratio for anthrax, TNT, etc.).
Comprehensive representation of the tactical environment in denied areas using an inter-netted
architecture of modular war-fighters which possess redundancy overlapping mission capabilities
and a degree of decision-making autonomy will significantly enhance operational functionality in
dynamic scenarios subject to hazard uncertainties, imprecise information of competing con-
straints. By creating fault tolerance and improving response-time to active or passive threats
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without information bottlenecking, and intelligent control system which tasks low-level behaviors
in coordinated cooperative fashion can improve the performance of distributed surveillance sys-
tems, particularly in complex, information-dense clutter backgrounds such as hostile urban battle-
space. When combined with next-generation enabling technologies for ground-based measure-
ment and a communication protocol to support multi-robot connectivity and sensor data-sharing,
this approach will form the basis for a new paradigm to remotely exfiltrate critical data with high
spatial resolution and situational awareness from previously undetectable targets such as under-
ground structures and migrating effluents or CBW plumes. Areas of specific concern to be
addressed by this approach would likely include suspected NBC proliferation sites, underground
WMD storage/production facilities in violation of arms-control agreements, terrorist staging and
training centers, and clandestine deployment sites for impending military incursions.

Solution Implementation. Implementation of the above multi-agent system” combines physics-
based many-body particle models, artificial intelligent algorithms and global optimization tech-
niques, and sensor R&D (not discussed here).

The interactions and collective effects of large particle ensembles is the study of physics-
based models. Physical solutions with strong theoretical underpinnings integrate particle-particle
interactions over the ‘entire particle ensemble. Particle (or robot) attributes, such as charge, mass,
or spin, can be linked to macroscopic physical states through known force laws, such as electro-
magnetism and gravity. The introduction of additional attributes represented by various neural
network topologies expands and enhances the autonomy of each robot and the swarm’s collective
response optimized by genetic algorithms to adapt to unexpected threats or opportunities. As a
result, the actual physical motion and decision-making attributes can be studied and generated
from a superposition of real and fictitious forces generated by system decision-making neural pro-
cesses.

Artificial intelligent algorithms realize particle (robotic) attributes. The brains of the robots
consist of genetically-trained neural networks developed using Sandia developed (and subse-
quently enhanced) software package, the neural network designer (NND). Neural networks ana-
lyze and interpret the robot’s sensor values giving it a certain level of consciousness by sensing,
measuring, imaging, assessing, and reacting to its surroundings or a threat. The superposition of
these “smart-” or “pseudo-” forces and the collective forces of the physics-based models give the
swarm the flexibility and the ability to respond rapidly and to optimally readjust in order to fulfill
its mission statement (i.e., swarm theory).

Lattice gas models and plasma dynamics (physics models) are non-linear. Neural networks
are non-linear. Environmental conditions are non-linear. Therefore, a swarm of small, smart,
ground-based, sensor-driven robots is a large, nonlinear-coupled, complex system. Such a system
could as easily destroy itself rather than characterize an unknown effluent. The ensemble’s state
must remain within a certain defined phase-space of its variables (e.g., particle attributes, func-
tional forms of forces, image processing techniques). Using evolutionary techniques such as
genetic algorithms (GAs), the swarm learns how to behave in an optimal fashion. Learning is
inherently nonlinear and discontinuous. GAs implement non-derivative, stochastic methods,
which is better at overcoming local maximums and finding optimal solutions for a larger set of fit-
ness functions. Given a population of swarms, GA operators evolve the swarm’s attributes
(behaviors) to optimally accomplish a given task.

The swarm must be taught how to interact locally in order to maintain desirable global
states. Instead of studying the macroscopic state of well defined particles, can we determine par-
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Figure 1. Global Optimization of a Robotic Swarm for a Specific Mission Using Physics-
Based Models.

title attributes that fulfills an overall mission statement. One may coin the phrase “reverse-phys-
ics” irl analogy to reverse-engineering the BIOS of a PC, cloning. The factors inserted into the
fitness functions when determining the networks and swarm configurations include the derived
physics equations limiting the swarm’s state within a stable phase-space, each robot’s collection
of attributes or neural networks, the communication network topology between robots, and data
image processing or signal enhancement.

The latter fitness function objectives deal with the swarm’s collective intelligence capabili-
ties. IEach robot within the swarm represents a neurode. The interconnections between robots
realizes the synaptic connections of a brain, a neural network, creating a collective intelligence to
the entire swarm. From this architecture, the ultimate goal of remote-sensing is achieved. Differ-
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ent sensors and local data transformations allow for data fusion and complex imaging techniques.
In addition, this global intelligence also provides the swarm with the ability to sense its own state,
providing self-diagnostics (i.e., self-awareness) and furthering robustness.

To recapitulate, our working models have a somewhat hierarchal approach to adaptive behav-
ior and remote-sensing. The potential fields modeled by the LG or PIC simulations provide a fast,
trip-wire response to an immediate target or event. Local, nearest-neighbor neural network mod-
els study this behavior. Local analysis transfomm point sensor information for further processing
and initiates additional pseudo-potential fields to adapt to local disturbances. Collective global
neural networks provide imaging-like capability to determine the swarm’s entire state. Evolution-
ary algorithms teach the swarm which physical attributes are needed to provide desired macro-
scopic dynamics when attaining mission objectives. These mission scenarios attempt to solve real
problems in the theatre of emerging threats. Two targeted threats include hazardous bio-chemical
plume remediation and ground-penetrating radar of underground structures. Our goal is to
develop and apply these ideas both theoretically (and through simulation) and experimentally
leveraging state-of-the art Sandia technologies in the area of emerging threats.

The block diagram in figure 1 interprets the global optimization of a robotic swarm for a
mission using physics-based models. Once a mission statement is decided upon, different
required activities ark linked to environmental conditions, physical abilities (e.g., robotic plat-
forms), collective behavior (e.g., obstacle avoidance or remote-sensing), and decision-making
processes. Accomplishing or dealing with and other factors is realized by modifying and control-
ling the physical ensemble (dynamics) of the agents. Response, avoidance, and sensing all
require a level of intelligence (conscienceless) at both a local (effecting subset of swarm) and a
global (same correlation length as the collective) level. When and at what level one effect domi-
nates (in time) over others (series of tasks) can be determined through global optimization algo-
rithms. The end result is the most efficient and successful method to accomplish the mission.

This paper reports on our physics-based model of an inteHigent, autonomous, multi-agent
system (section 2), implementation of this model during various states of a possible remote-sens-
ing mission (section 3), and our work applied to three project areas (section 4). This report con-
cludes with a brief status (section 5) of our R&D effort.
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2 Model

2.1 Overview/Perspective

As stated in the introduction, our model should include technologies that enhance remote-
sensin,g signals and images while behaving in an autonomous manner, adapting to and overcom-
ing changes within its environment. A simple example would be to follow a plume across a field
(plume mitigation). A more challenging scenario attempts to reconfigure the transmitting and
receiving antennas mounted on each robotic platform to best resolve an underground facility
(ground penetrating radar application).

.Autonomous, adaptive behavior refers to techniques that allow a swarm to either move with
a target, surround a hazardous source, recognize multiple sources, avoid obstacles, and other sim-
ilar skills. The ability to perform these complex behaviors -- plume remediation, ground penetrat-
ing ra(~~ imagery, and ballistic missile interception -- build on the previously mentioned testbed

of intelligent algorithmic capabilities. Our approach is to provide a solid foundation on multi-
agent (swarm and flocking) ideas by developing a model that can be tested both in theory and
through simulations, before apd during hardware development. This section conceptually out-
lines how physics-based models and artificial intelligence can be combined and globally opti-
mized to develop an intelligent swarm methodology. The flow diagram in figure 2 forms a picture
of such a structure and provides additional insight into this methodology.

Overall, the logic is as follows : (1) sample the environment, (2) recognize local and global
interactions, and (3) adaptively modify the physical state of the swarm by applying adiabatic
changes to the potentials.

The macroscopic state of an N-robot swarm can be determined using a physics-based
model, such as a lattice gas or a plasma. The advantage of these models is that their collective

properties depend (almost) entirely on nearest-neighbor interactions, keeping the complexity of
the robots to an absolute minimum. The swarm’s state is defined by three types of forces (1) a
repulsive force, defining a minimum distance between robots; (2) an attractive force, providing
the cohesive “glue” binding the robots into a swarm; and (3) a source potential (in response to a

robot’s sensor readings). Therefore, the strength of these forces, represented by ~, ~, and Y,

define the state of the swarm. In addition to these forces, local neural networks provide additional

potential terms modifying the state represented by the parameters ~ 1, .... 6P . In order for the

swarm to act autonomously, such as overcoming environmental constraints (terrain) and searching
out targets by adaptively configuring, a feedback mechanism must be in place that adiabatically

evolves the swarm’s state equations, Act, A~, Ay and Ab. This mechanism implements a second
neural network or a genetic algorithm, or a combination of both, depending on the mission state-
ment assigned to the swarm. Processed information from each robot is used as input into the glo-
bal net which understands the macroscopic concerns of the swarm’s environment during its
mission, such as obstacle avoidance and source identification (imagery). Eventually, information
and possibly additional processing must be communicated. As with ultra-wideband, short-pulsed
radar, the robots should transfer its findings to the user for verification and mission modification.
A bidirectional communication link provides this capability and additional control over the
swarm’s behavior if and when necessary. This potentially can enhance the adaptability, changing
mission objectives and/or eliminating dead-lock states, thus minimizing physical and
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Evolutionary techniques such as genetic algorithms globally optimize the behavior of the
swarm, efficiently fulfilling its mission objectives. Evolutionary programming techniques have

the advantage of being stochastic, avoiding local minimums or maximums, and not relying on a
function being smooth or continuous (much like ourselves). Incorporating theoretical physics-
based calculations that describe the collective (macroscopic) state of an N-body system, a popula-
tion of swarms evolve (or learn) an optimal form for its nearest-neighbor (microscopic) interac-
tion potentials. Particle attributes lead to forces which, in turn, lead to predictable collective
behavior. Our goal is to reverse such a process. To summarize, through the use of artificially

intelligent algorithms and evolutionary techniques, the robot’s attributes (nearest-neighbor inter-
actions) which recreate not only the desired (macroscopic) state of the swarm but prevent instabil-
ities and promote robustness can be determined. This will be referred to as “reverse-physics”.

The rest of section 2 discusses physics-based models (section 2.2) and artificial intelligent
algorithms (section 2.3). Global optimization through evolutionary programming (section 2.4)
determines the robots’ and swarm’s attributes necessary to perform autonomously (section 2.5).

2.2 I?hysics-Based Models

2.2.1 Introduction

Nature appears to be governed by only four fundamental forces : gravitational, electromag-
netic, weak, and strong. Associated with each of these forces is a coupling constant (which can be
complicated, SU(2) weak interaction) and a “functional form” (mediated) dependent on the
attributes of the particles involved (and the gauge symmetry (or spontaneously broken symmetry)
of the force). A short list of particle attributes includes mass, spin, electric charge, hyper (or
weak~ charge, and color charge. A combination of these forces bind the atom and its nucleus
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together, form planets and galaxies, and determine plasmas and gases. By measuring particle
interaction cross-sections, the form of the interaction potential related to the particles’ attributes
can be determined. It is through various statistical means (i.e., partitions functions, mean field
theones, etc.) that the macroscopic and dynamical state of an many-body system is determined.

Unfortunately, particles alone cannot infiltrate a hostile country and remote-sense under-
ground testing facilities. Something with alittle more intelligence is needed : robots. Forces,
formed by attractive, repulsive, and gradient potentials, require a minimal amount of hardware but
would be no smarter than a gas or plasma. Additional forces are needed to allow the swarm to
adapt according to sensor information. These “pseudo-forces” are local, nearest-neighbor interac-
tions and are associated with a robot’s attribute, a “pseudo-charge”. Realizing the brains of each
robot by a set of geneticallyy-trained neural network topologies (called attributes), a trained can
decipher the conditions within its environmental. Evolutionary progranis determine the form and
strength of the pseudo-forces in response to these local neural nets. The combination of these
forces influences the state of this multi-agent system and allows it to perform complex behavior
patterns. The latter intelligent and evolutionary techniques will be discussed in sections 2.3 and
2.4; but first, two many-body physics models best suited to realize swarm behavior (and incorpo-
rate additional pseudo-potentials) -- lattice gases (LG and LG automata) and Particle-In-Cell
(PIC) codes representing plastias -- are presented.

2.1.2 Lattice Gas Methods

A lattice gas[l ,2] is a collection of particles whose positions take on the interconnecting
points of a square, triangular, hexagonal (or other topological) lattice. Any one lattice site can
allow only a single particle to reside on it. If the kinetic energy of the particles are negligible and
a simple, constant nearest-neighbor potential is introduced, the partition function for such an
ensemble follow that of an Ising model[ 1]. Such a partition function is theoretical y well under-
stood. Therefore, the thermodynamic states of the gas can be derived, such as the volume, pres-
sure, temperature or internal energy, and density, and linked to those of the swarm, such as
communication length, sensor range, cohesiveness, and speed. Current research extends lattice
gas models to include kinematics and the effects of heterogeneous mixtures, thus determining
phase transitions and flows (e.g., hydrodynamics). Our attempt is to modify these models that
realize gaseous systems by endowing them with intelligence (attributes) and train the robots to
follow the well-controlled states predicted by these models.

At every time step within the algorithm, the particle system evolves by applying propagation
and collision operators. The propagation operator moves each robot along a single lattice edge
dependent on the applied vector force. The collision operator (collision rules), defined by the
interaction potentials, determines which edge the particle prefers. Three potentials control the
state of the swarm include a repulsive, an attractive, and a gradient (source) field. The functional
form of these fields can vary, resulting in different state equations. In this paper, the functional

forms of the potentials are F,,PUl (r) = ~ for the repulsive force, Fa,,,ac,(r) = r for the attrac-
r

a Asignal
tive force, and F,,c(r) = ~Signal(r) = Ar for the source force. Each of these forces

interact with their line-of-sight (LOS) nearest-neighbors. Such an interaction range can be real-
ized and measured passively by applying IR or sonar detector responses, or the fusion of both.
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Each robot determines the forces acting on it according to

(1)

optimizing the coupling strength parameters u, P, and y (and eventually the functional forms)
allows, the swarm to reconfigure, adapting to the environment it senses.

Lattice gas computational techniques with the correct choice for the lattice and its collision
rules lead to the macroscopic Navier-Stokes equations, both 2- and 3-dimensional forrns[3].
Leveraging off this methodology and the current research studying various interaction rules, the
swarm’s state can be taught to remain within a stable phase-space (away from turbulent flows) by
introducing the theoretical physical equations (e.g., the Navier-Stokes equations) into the fitness
function. As a result, the swarm’s behavior remains robust and stable. In addition, self-diagnos-
tics, such as global neural networks sampling the swarm’s own state, further reduce divergent
behaviors. Ultimately, a genetic algorithm determined the best form of potential functions that
allow the swarm to react autonomously to its environment, such as avoiding obstacles and analyz-
ing targets.

This model @-gets applications dealing with adaptive reconfiguration of (ground-based)
sensors in the field of remote-sensing. Most detectors in the research community consist of the
same elements (scintillators, solid-state radiation detectors, calorimeters, etc.) but of different
sizes and in different configurations in order to optimize the phase space of a targeted signal. By
assigning different sensors (sensor fusion) on the robots and invoking intelligent algorithms, it can
adaptively form an optimal configuration for a sensitive signal within a changing environment.
Two such applications include characterization and mitigation of gaseous plumes and ground pen-
etrating radar of underground structures.

In order to match simulations of swarms to a lattice gas models additional features are being
explored, such as expanding the nearest-neighbor model to that of a line-of-sight interactions for
the repulsive and cohesive forces, adding pseudo-potentials as the result of local artificial intelli-
gence algorithms (neural networks), deriving phase transitions from gaseous to crystalline states
to better control macroscopic structure of the swarm (i.e., condensing onto a target), and predict-
ing critical phenomena to prevent local instabilities from becoming global instabilities. All of
these results scale relative to the size the swarm, such as the cohesiveness of the swarm. Such the-
oretical work and verification through simulation will establish our ability to control the macro-
scopic state of a swarm through simple, local interactions.

2.1.3 Plasma Physics Methods

Plasma physics[4] deals with the collective effects of a system of electromagnetic fields and
of pzulicles, such as conducting liquid or gas. Particle dynamics, conduction, occurs when the
charged particles move under the action of the applied fields. Due to this dynamical system, the
mass motion of the particles couples with the system and the fields. Biological systems also con-
tain such effects. A flock[5] of interacting individuals or birds must not only communicate with
on another but deal with the wake of the entire group. Simulating self-consistent aerodynamic
forces is a strength of realized by numerical techniques developed through plasma physics mod-
els.

To compute the long-range correlations in a plasma requires a summation of the forces
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between allparticles, which isof O(n2). Particle-in-cell (PIC)codes[6-l l] break up the physical
space into a mesh or cells. The particles in each cell determine the local charge density, from
which the potential fields at the mesh comers are approximated implementing Poisson’s equation.
In effect, an average smeared charge simulates the overall (long range) particle field of the
plasma. Simulations can occur with speeds of O(n), allowing many simulations to run in real-
time. The stability of these algorithms are well documented, using statistical mechanical methods
to determine how mesh size, time scale, particle density, and energy conservation influence per-
formance (stability and consistency).

Direct realization of the PIC codes onto a robotic platform is not inherent due to its averag-
ing effect at the mesh points which simulates the “flocking” force. To alleviate some of these
problems, nearest-neighbor interactions within each cell are included. Two examples of which
are the repulsive and attractive forces that prevents particle collisions and clusters elements
around center-of-mass regions, giving the swarm the ability to divide. Because these forces are of

the form r-l and r-2 (e.g., electrostatic and gravitational interaction types), incorporating these
functional forms into the theoretical structure of multi-particle systems is well understood. As a
result, stable and robust behavior is maintained by training the robot’s intelligence relation to the
derived macroscopic plasma equations.

Two applications in the ~rea of aerodynamics include multiple target condensation and bal-
listic missile intercept simulations. In each case, an external field created by the target is applied
to the mesh. By modifying physical parameters, such as center-of-mass, friction, dissipation,
aerodynamic factors, and thrust, the swarm’s response can be optimized.

2.1.4 Summary

The advantages of modeling swarm dynamics with panticle simulation codes include (1)
these codes have been benchmarked, (2) they provide an accurate dynamical description of N-
body system, (3) the theoretical equations describing the particle ensemble are well developed

and tested, (4) the link between short- and long-range behavior is established, (5) resolves the n2
computational bottleneck, (6) a methodology exists to include and determine swarm behavior
when adding of other features or attributes, and (7) robust training and performance can be built
into the framework of the swarm’s behavior and tested in real-time.

Even though lattice gas automata and PIC codes contain many common and desirable fea-
tures, they can complement one another when realized onto a robotic platform. Direct realization
of the PIC codes onto a robotic platform is somewhat incomplete due to its averaging effect at the
mesh points. However, its ability to efficiently simulate many real-world features, such as inertial
forces, platform constraints, friction and drag effects, gravitational forces, and boundary condi-
tions, in an efficient manner is a large advantage. Our current work applies these codes in the area
of many-body (flock) flight dynamics. Lattice gases also has the inherent problem of being
restricted to a lattice structure (which may be accounted for as an inefficiency), but all of its
dynamics are self-contained in the definitions of its nearest-neighbor interactions. Such a system
can be directly realized by current robotic sensor technology. Similar to plasma physics tech-
niques, LG ensembles can link physical (thermodynamical) parameters. with robotic variables
such as maneuverability and reconfigurability. Applications include the ability to adapt and
reconfigure in order to optimize its remote-sensing capabilities. It is our opinion that these two
concepts will eventually merge together into a single technique resolving any direct realization
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defects, to a robotic platform.

2.3 Artificial Intelligence

2.3.1 l[ntroduction

Artificial intelligent algorithms realize additional particle (robotic) attributes. Therefore, the
robot’s, “brains” consist of genetically-trained neural networks. Neural networks[ 12, 13] analyze
and interpret the robot’s sensor values giving it a certain level of consciousness by sensing, mea-
suring, imaging, assessing, and reacting to its surroundings or a threat. The superposition of these
“smart-” or “pseudo-” forces (strengths ~i) and collective forces (strengths et, B, and ‘y) of the

physics-based models give the swarm the flexibility and the ability to respond rapidly and to opti-
mally readjust in order to fulfill its mission statement (i.e., swam theory).

[nspired by the field of neuroscience, artificial neural network models brain and/or nervous
system activity which realizes intelligence. The basic processing unit is the neuron. A neuron
consists of a stoma or base, called a neurode, and many interconnecting synapses, or connections,
between other neurons (via its dentrites and axon). Associated with each neurode of a neural net-
work is an activation: function+ The form of which is modeled by a squashing function, a nonlin-
ear function which remains at a constant activation once beyond a threshold value, remains in-
activated below a threshold, and has some function form linking these two activation states (“on”
and “off”). The input into a neurode is the superposition of many other neurode output activation
values weighted by individual synaptic connections. Thus, a neurode’s output activation depends
on the weighted sum of previous connected neurode activity and the form of its activation func-
tion. The architecture or structure of the neural network is defined by the inter-connectivity of its
neurocles, the form of the activation function, and the values of its weights. Architectures which
only interconnect between successive layers in the same direction are called feedforward neural
networks (FINNs). If each neurode in one layer is connected to each neurode in the following
layer, IItis called a fully-connected FFNN. Architectures with connections that feedback to previ-
ous layers, called recurrences, are called recument neural networks (RNNs). Different feedback
or recurrent topologies form different types of RNN (e.g., Elman and Jordan).

The process by which one determines the weights of a neural network is called trainingl.
There are two types of training methodologies : supervised and unsupervised learning. The latter
has not been used in these studies; therefore, it will not be discussed. Supervised training com-
pares calculated neural network outputs to the values associated with the inputs, called the
expected outputs. Determination of the weights depends on the output residuals, the differences
between the neural network outputs and the expected outputs. Therefore, training a neural net-
work is an iterative process, pairs of input-expected output pairs are “shown” to a neural network
and the weights are optimized to give the smallest residuals. The network learns to correlate (rec-
ognize) an input pattern by activating certain outputs. Traditional learning algorithms implement
back-propagation or gradient search methods to find an optimal set of weights. However, if the
net’s c~bjective contains discontinuities or if the initial conditions are far from the best solution,
training can get caught within a local minima. Implementation of evolutionary programs, such as
genetic algorithms (GAs)[14], resolves many of the above mentioned problems. GAs are stochas-

1. in the strictestsens this is not completelyaccurate,but this is how it will be defined in the context of this
report.
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tic and based on non-derivative techniques, thus they are less likely to get caught in a local mini-
ma. They also span a larger variable phase-space without requiring a smooth, continuous
objective, thus more likely to find a global optimal solution for a larger set of objectives.

Successful implementation of FFNN and RNN architectures has been employed. Recurrent
neural networks trained to decipher nearest-neighbor information interprets directional (vector)
motion from sensor readings by “remembering” past events. Feedforward networks trained to
recognize bitmap patterns help determine the extent of an obstacle, its edge, or other features that
will be needed to overcome it through adiabatic ensemble transitions.

2.3.2 Immediate Sensor Response

An immediate sensor or trip-wire response is an involuntary reaction to the environment. As
an example, lets consider the situation where a wind-blown plume of toxic gases (biological
agents) propagates toward a community as a result of an overturned truck. Sensors on the robots
measure the gradient of the emerging threat. Through nearest-neighbor interactions, the strength
of source potential increases, causing the swarm’s (dynamical) state to follow the plume or to
track-down the truck. By determining the optimal set of parameters for the potentials,

[~> 6>wlug,l> the swarm cbndenses onto (or beneath) the gaseous effluent. The behavior of

the swarm could also be trained to send a fraction of the robots to follow and the rest to find the
truck. After the swarm reconfigures, it has more time to think, to process sensor information, and
optimize signature signals.

Applying the source potential alone is not a solution. Depending on the relative strengths of

the parameters a, ~, and y, various and important physical parameters are controlled. Cohesive-

ness is maintained by keeping (x relatively large, but not too large so the swarm can no longer fol-

low. The relative ratio of u to ~ has an effect on the radial variance and density of the swarm. A

lower density improves mobility (speed) and maneuverability. Specific ratios may provide pat-
terns advantageous to remote-sensing applications. All three forces combined allows the robots
to adapt to according to the plume’s shape, size, and dissipation rate.

Future work will focus on further development of the state equations for lattice gases imple-
menting statistical mechanical methods. These derivations will allow for a better understanding
how density and temperature relate to communication and sensor ranges and how nearest-neigh-
bor interactions relate to swarm cohesion, condensation patterns, and obstacle avoidance.

2.3.3 Local Intelligence

Referring back to the overturned truck example, determining the wind (or plume) direction
would be helpful. By sharing nearest-neighbor sensor data, a robot determines propagation direc-
tion implementing its local RNN trained to recognize time-dependent sensor information to deter-
mine. This directional or “inertia” pseudo-potential creates a “flocking’’-force toward the source
by modifying the swarm’s state. This section begins to develop the tools, a neural network,
trained to determine the direction of a time-dependent source (TDS). After some introductory
remarks, the neural network design, results from simulations, and conclusions are discussed.

Introduction. An advantage of a swarm is its use of many sensors to spread-out and sample differ-
ent types of data. A neural network processes the data. In turn, these results allow the swarm to
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Figure 4. A feedforward neural network (FFNN) trained to determine the propaga-
tion direction of a gaussian signal. Dark neurodes represent threshold units and
open circles represent neurodes applying sigmoidal activation function.

adaptively reconfigure relative to the source, optimizing data quality. The input data can have
three different time dependencies due to (1) the motion of the robots, (2) the motion of the source,
and (31)the motion of both the swarm and the source. Type two will be considered. These results
will help in the development of remote-sensing applications such as using bio-them sensors rec-
ognizing gaseous plumes and seismic sensors to detect geophysical events.

Each robot processes relative information, sensor data communicated by a neighbor, that
detemnines the path of a simulated plume. Because of the limitations or inappropriateness of the
global delay-line feedforward neural network (see section 2.3.3), a gradual progression in the
analysis is taken. Test case one simulates a l-dimensional (lD) TDS along a line, test case two
simulates a lD TDS in a 2D plane, and test case three simulates a 2D TDS in a 2D plane. The lat-
ter is the objective, but such an analysis can eventually pursue 1-, 2- and 3D TDSS in 3D space. In
each case, the base function representing the form of the source (e.g., a plume) is a gaussian func-
tion. The ability of the chosen neural network architecture to generalize, training a NN with a
limited representation of the entire phase-space yet perform flawlessly over the full phase-space,
is important. The result is a genetically trained recurrent neural network (RNN).

Neural Network Design. Some possible design changes under study include the form of the
inputs, the NN architecture, and the extent at which to communicate information.

Optimally, each robot would like to communicate what it believes to be the path of the
source. Many iterative techniques determine the form of this function (in this case the path of the
TDS) by implementing a Taylor series expansion in the phase-space around a given point (a given
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robot).

f(x, t)

For a robot in the swarm, the

af= f(xo>to) +(l-to)”y+(x-xo).z+... (2)

first term, f(xo,~), represents a (noise) threshold. If the robots’ sen-

sors exceed a threshold of 2%, relative to the TDS’s maximum amplitude, it evokes its NN to pro-
cess the information. The second term represents the time interval (or the sample time-step),

which is defined as z = t– to and held constant during the sequence of an event. In similar fash-

ion, the spatial distance between samples, the third term, is held constant and defined by

8 = x – XO,the nearest-neighbor distance along a line (ID) or on a grid (2D). The time and spa-

tial derivatives, second and third terms respectively, are represented by the quantities

ATO = f(t, X) - f(to, x) , ATI = f (t, Xo) –f (to, xo) > AXO = f (to, xo) – f (to>~) , and

AX ~ = f (t, Xo) – f (t, x). After expanding equation (1) to first-order, a robot need only interrupt

its nearest-neighbor, who communicates its sensor values f ( to, Xj) and f ( to – T, Xj) . It is the

differences in these values tha~ are used as the inputs to first train the NN and later to determine
the direction of the source.

The lD case implements a single, hidden-layer FFNN architecture (see figure 4) with the
four previously described inputs. In addition, a digital realization of the ID case is presented to
evaluate the NN’s performance. In the 2D plane, the robots require knowledge of its previous
state (i.e., memory) in order to resolve the direction of a TDS. By incorporating recurrence into
the FFNN architecture, a RNN (see figure 6) can be trained to recall the necessary information
(that of the hidden layer) about the previous sequence of states, thus resolving the direction of the
TDS.

Typically, the input neurode activation function, IAF(x), differs from the hidden and output
neurodes. IAF(x) usually is equal to x. However, only directional information is needed. Robust
performance is prefen-ed over detailed analysis. Digitizing the inputs using a step function

1 X>o
IAF(x) ~0 x=()

= -1 X<o

forms a bipolar, digital input signal. The activation
neurodes is the hyperbolic

(3)

function representing the hidden and output
sigmoid squashing function

AF(x) = tanh(a. x–b)+c. (4)

The parameters a, b, and c are set to 5 (initially), O, and O, respectively.
Increasing the level of communications includes extending the range or spatial distribution

and the history of the swarm’s sensor readings. In each case, equation (1) can be expanded to
include higher-order terms improving the network’s ability to measure environmental parameters
more precisely or to improve signal-to-noise ratios.

Simulations. Most time dependent sources can be broken-down into a single representative func-
tion. In ID space, a lD gaussian pulse with a constant amplitude and width (sigma) propagates in
the positive or negative x-direction (to the right or left). In a 2D plane, a radially propagating
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gaussian pulse (1D representation) and a 2D gaussian function translated in the x-y plane can be
represented. (From which, future experiments understanding 1-, 2-, and 3-dimensional time-
dependent pulses can be understood). Additional functional forms can be considered as abstrac-
tions or superpositions of different chemicals within a plume having the form

f(x, t) = ~a~“&’(~,@IQ
k

ID Space, ID Gaussian TDS. The FFNN in figure 4 and the activation functions in equations 3
and 4 define the architecture. Sixteen possible input states, 24, exist, but only twelve samples are
viable for a right- and a left-propagating pulse. A genetic algorithm optimizes the weights to rec-
ognize these states. This training session maximizes the fitness function

fitness =
1 (5)

[

nCases nOutputs

)

Y

0.1 + ~ ~ (Ci-o,)’

j i j
>’ :

where ~ is the expected output, O is the neural network’s output, and nCases is the number of ran-
domly sequenced input/output pairs seen by the net for each generation. The results from the
trained neural network are qompared to those from a digital realization (i.e., boolean algebra).
Using a left and right propagating gaussian pulse as the validation test case, an ambiguous state
occurs within the digital model. This error is sensitive to the relative values of 8 and ~, the spatial
and time sampling rates. The trained FFNN resolves this situation.

A second simulation introduces the gaussian pulse

-“’r”ri?;)’r
g(x, t) = A(t) . e

(6)

&
whereA(?) = Aoe ‘~r and G(t) = ~oe Ywhich simulates a TDS with a decaying amplitude and

a spatially spreading width. Setting ct and ~ in the [0, 0.1 ] range attempts to replicate the charac-
teristics of a wind-blown, gaseous plume into the validation set. The successful validation results
indicate that this architecture (the inputs) provides a fairly general solution with minimal training.
2D Space, 2D Gaussian TDS. In figure 5, a 2D gaussian pulse propagates in the +x-direction (of

the xy-plane). The swarm consists of three robots at the center of this plane, top graphs. Each
robot samples the pulse, every ~, and communicates its sensor values to their nearest-neighbors, a
distance 8 apart. The plots in the bottom right (bottom left) project the pulse as seen by a robot
onto the x-axis (y-axis). Two orthogonal modes are evident. The propagation angle e depends on
the ratio of these two modes : (1) a lD gaussian pulse with a time-dependent mean, and (2) a lD
gaussian pulse with a time-dependent amplitude (see equation 7).

signal(e) = cl((l) . A(t)e ‘(w) + Cll(e) . Aeg(w(r)). (7)

A FINN cannot be trained to distinguish between these two modes. In some instances, the results
show that all but one state can be learned. Like the ID simulations, it is the propagation direction
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Figure 6. Recurrent Neural Network Architectures.
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of the pulse that causes difficulty. As an example, pulses with a 8 of 45° (the -x and +y directions)

and -45° (the +x and -y directions) show at least one input state belonging to both states in equa-
tion 7; therefore, the FFNN can never train correctly. Even when eliminating this state from the
training set, the validation results remain poor. Thus, a FFNN of any configuration, such as
changing the number hidden layers and hidden nodes and forming different activation functions,
cannot resolve such a superposition. By recalling past patterns, it may be possible to resolve
directional motion.

Recurrence is equivalent to feedback loops within the network and effectively stores the
knowledge of the previous states in its weights over time. Having the ability to recall past infor-
mation allows the robot to separate out the two modes in equation 7. Thus, geneticallyy-trained,
recurrent neural-networks (RNNs), shown in figure 6, stores the time-dependent history of the 2D
gaussian pulse. The three RNNs in figure 6 contains a weighted feedback loop of its own hidden
layer output new-ode to itself (top graph), a fully-connected, weighted feedback of its output hid-
den nmrodes to its inputs (center graph), and a weighted feedback loop of its hidden layer neu-
rodes for two time-steps to itself (bottom graph). Each robot determines the direction of the TDS
along the grid (right or left, up or down), and it is the sum of these determinations for the entire
swarm that resolves the pulse’s direction. Each RNN architecture (see figures 6a, 6b, and 6c) is
trained the same way and theirperformances are compared.

The training set for the RNNs consists of the set of 2D gaussian pulses propagating at an

angle 6 lying between Oto 45°, 135° to 180°, 180° to 225°, and 315° to 360° (regions 1, 4, 5, and
8 in the top left plot of figure 7), with an initial radial distance between 3 and 8 units from the cen-
ter of the swarm. For these tests, the pulse’s width and amplitude remain constant. To optimize
convergence, each generation has as its training set four sequences of states, where each sequence
is generated from the four regions listed above. The activation functions IAF(x) and AF(x) are
defined by equations 3 and 4.

Comparing the validation results provides a measure of the RNN performance for those
regions excluding the training set. The validation results are plotted in figure 6 for all three RNN

confi~urations, where the validation set samples the entire phase space (O <0< 360°) in 5° incre-
ments. The direction of the pulse is determined by taking the average directions,

NoxAverage Output = ~ . Oi ,

i

(8)

where Oi is +1 or -1, i is the state related to the time increment, t = z’.T, and N is the total num-

ber of sensor readings taken by the swarm over the duration of the pulse. The graphs on the right
plot the average output in the x-direction as a function of (3,and the plots on the left represent the
y-direction. There is very little difference between validation plots for the three RNN architec-
tures. Because the training of the network is successful, the results in regions 1, 4, 5, and 8 are
expected to be good. Outside these regions, the network generalizes by producing a smooth tran-
sition from a left-propagating, average output of -1, to a right-propagating, average output of +1,
pulse. and back again. In addition, the shape of the curves in the y-direction (see figure 7) are the

same and include the anticipated 90° phase shift. Therefore, a limited training set is capable of
generalizing to the full phase-space for the time sequence of events.
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Conclusions. Using only nearest-neighbor information, a swarm of robots with recurrent neural
networks genetically-trained to recognize sequential events can determine the direction of a pulse
in two dimensions. The lack of feedback loops in the networks architecture (i.e., FFNN) cannot
decipher two-dimensional motion. Thus, local INNs has the potential to transform raw data into
more useful form such as direction. Such a transformation can also enhance global pattern recog-
nition (e.g., gradient maps). Multiple transformation in combination with sensor fusion tech-
niques can provide the swarm with a level on consciousness not yet explored.

How well does this system handle noise? Because nearest neighbor interactions are close in
space and time, the noise response in both the sensors will be approximately the same; therefore,
the differential inputs into the neural network are minimized (excluding noise due to communica-
tion errors). However, if this is not true, noise could affect the RNN results. To simulate
these results, the input values are no longer discrete but follow a sigmoidal function, like that of
equation 4. Letting the parameter a become large (a=lO), the activation function approaches a
step function, thus the inputs are nearly discrete. However, as the slope, AF(x=O), decreases, the
network has difficulty distinguishing between the motion of the two modes described by equation
7, within the region of the peak from that within the tails. A consequence is that a small dip in the

training and validation results occurs at 0°, 90°, 180°, and 270° degrees. As the slope decreases,
these peaks become pronounced. Reverting back to equation 2, the first term requires refinement.
The addition of a second threshold, which is set to a value indicating the strong presence of a sig-
nal (i.e., a sensor value greater than A~2), would provide the NN the knowledge to resolve this

discrepancy and improve the swarms tolerance to noise. In addition, increasing the number of
nearest-neighbor communications also provides for an improved signal to noise ratio (SNR).
Such ideas can be linked to physical models such as the Ising model providing a measure to ambi-
ent noise levels represented by the thermodynamic quantity T, temperature.

The next step is to add motion to the robots. While the robots are in motion, an additional
input into the RNN is their previous motion (left or right and/or up or down). Alot of flocking
behavior recognizes their nearest neighbors, the motion of the flock (macroscopic inertia), and
their own previous motion. Ideally, these values can be inserted into a RNN (with short-term
memory capabilities) to recall past motion of themselves, the flock, and a time-dependent distur-
bance.

2.3.4 Global Intelligence

Global or collective intelligence provides two key initiatives : mission oversight (e.g., deter-
mining the swarm’s state) and remote-sensing (e.g., image processing, sensor fusion). Refernng
back to the hypothetical incident of an overturned truck, a global neural network interconnects all
the robots (as if they were neurodes) and determines whether the swarm has moved ahead or
fallen behind the plume and how fast the plume is dissipating. Depending on the mission, the
swarm may wish to modify its entire state, speeding ahead and reconfiguring to optimize the
swarm’s ability to remote-sense chemical concentrations or to break apart to remote-sense and
find the position of the truck.

Two levels of pattern recognition have been performed. The first implements a delay-line
feedforward neural network to determine plume characteristics. The second classifies bitmap
images.

2.3.4.1 Characterizing a Plume Implementing a Feedforward Neural Network
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Figure 8. Simulated training sets for a wind-blown gaseous plume propagating at 120° (first

row), 270° (second row), 10° (third row), and 180° (fourth row).

A swarm of robots individually registers and stores sensor information over time. By com-
municating their knowledge, a delay-line feedforward neural network attempts to characterize a
wind-blown plume. This analysis implements a stationary swarm, in other words an intelligent
remote-sensing array. Results are incomplete mainly due to insufficient training set and limited
CPU power. However, these tests develop the form of the fitness function, resolving convergence
issues that influence this, previous and subsequent genetically-trained models and neural network
designs.

This implementation begins by describing the plume simulations followed by a description
of the neural network architecture. The next section outlines the genetically trained process, con-
centrating on the form of the fitness function, and the validation process. Finally, results are tabu-
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Figure 9. A schematic of a delay-line feedforward neural network with a single hidden layer.

lated and conclusions drawn.

Simulation ofa Gaseous Plume. The simulated plume consists of 103 particles of equal mass. Its
momentum distribution is gaussian. The wind blows the centroid of the plume with momentum

Pplume ‘n ‘he ‘irection ‘. Each robot senses those elements comprising the gaseous plume and is

capable of measuring its own position. A sample event shown in the top row of figure 8 depicts
the kinematics of the plume as it propagates, spreads, and passes over a swarm. The origin of this
plume is at (xP, yP) of (900,10), the magnitude of its momentum is pplume which is set to 50 units,

its direction of motion is defined by the angle 6 which is set to 120°, and it spreads and dissipates
according to crp which is set to 0.1 pPIUme Perpendicular to the wind direction the plume moves

with a momentum pl which is set to zero and spreads with standard deviation of crpl which is set

to 4.0 pplume. The kinematics remain independent of time. The center of the swarm is (Xc,yc)

which is set to (500,250). The robots’ distribution includes the swarm’s center, (xC,yC),which is

set to (500,250), and its radius of extent, rex, which is set to 250. A robot’s sensor range, r~, is set

to 10 (shown as circles in figure 8). Training and validation processes vary (Xc,yc), O, and (XP,YP).

The simulation procedure follow the following steps : determine the momentum distribution
of the panticles, calculate its path according to its kinematics, iterate with a time step equivalent to
a 50 unit displacement of the plumes centroid, measure the number of particles falling within a
robot’s sensor range, and finally input these sensor values, the robots’ positions, and information
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from the two previous time steps into the neural network, which is used during the training pro-
cess.

Once trained, the optimal GA-designed NN must be validated. The validation routine reads
in simulated plume data, feeds this information to the NN, and calculates the characteristics of the
plume -- xP, yP, e, p, ~pl. Further analysis determines whether the network has learned to recog-

nize the above characteristics.

The structure of the MY This analysis implements a FFNN with a single hidden layer. Other test
runs measure the performance of a delay-line FFNN with 2 hidden layers. Depicted in figure 9 is
the architecture of an m-step delay-line FFNN used in these tests. The net’s inputs consist of each
robot’s position, (xi, yi), and sensor value, si. In addition, a time-dependent history of these values

are also inputted. Therefore, if there are n robots and m time steps, the number of inputs is

3- m ~n. The number of weights also depends on the number of hidden and output nodes, h and

q; therefore, the total number of weights is (3 . m. n + q) . h. These weights represent the genes

or variables of the GA. Most of the tests implement a 32-robot sensor array (n), 3 time-delayed
inputs (m), 5 to 17 hidden nodes (h), and somewhere between 1 and 5 outputs (q).

Training Process. Training d~ta in a two dimensional plane consists of four nearly orthogonal

wind-blown directions -- east (100), west (1800), north (1200), and south (270°) -- the parameters
of which are listed in table 1 and shown in figure 7. In addition, the swarm’s central positions rel-
ative to the plumes and its direction also vary in distance (radial distance) and angle (q). Also, a
certain number of sensors must register non-zero measurements (5), labeled as “Time Steps
Implemented”.

Table 1: The training data set for a wind-blown plume.

i

Training Set (xp>Yp)
0 Radial Time Steps

(degrees) (deg~ees) Distance Implemented

1 900,10 120 45 442 5-9

2 500,800 270 53 390 4-7

3 50,300 10 13 762 10-15

4 1000,0 180 32 610 9-11

IDevelopment of the fitness function serves two important purposes. One, it provides a mea-
sure c~fthe net’s performance during training. Two, it should provide consistent results, i.e.,
steady-state. The rest of this section outlines the process deriving a fitness function these quali-
ties.

The fitness function depends on the errors in the network’s output values. The form of the
reduced-chisquare is used :

p-1

fitness = ~ 1
~=o(o.l+~j2) ‘

(9)
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where p is the number of patterns. A pattern is defined as the set of NN inputs over three consec-
utive time steps, called test cases. These test cases are used to train the NN. The reduced-
chisquare is defined as

X2 = ‘~1 (( ExPectedO:fPuts~ - 0k))2 , (lo)

k=O

where ExpectedOutputs is the assigned outputs for the given input pattern. The procedure to
genetically train this NN consists of the following steps : (1) randomly choose a training set listed
in table 1, (2) randomly choose three consecutive time steps within this training set, (3) calculate
its fitness, and (4) execute the GA operators of selection, crossover, and mutation. Successful
training occurs when the GA converges toward a maximum fitness of 10.

Upon closer inspection, the outputs contain five spurious (discrete, unique) states even while
the population’s” fitness remains at 10. These states are independent of the network’s structure but
dependent on the GA’s training methodology. As an example, the groups of time steps {3,4,5},
{4,5,6}, and {5,6,7} produce consistent results, but the addition of{ 6,7,8 } causes the GA to fluc-
tuate between three distinct but closely spaced states. After modifying the fitness function to

.“ i

~ilness = 1 ,

[O1+~lxJl

2
(11)

j=(l

the GA converges to a single state.
A second modification improves the GA’s convergence rate. Training set 3 converges rela-

tively slowly compared to the others. Tests show that by tuning the sigmas improved the concur-
rent convergence of all four parameters. The ratio of the sigmas used is

Oq
(12)0~=~z=~4=fi~

where the magnitude of each sigma is set to 0.1. This factor appears to better define or enhance
the fitness’s phase space near its solution, 03. However, attempts to anneal each sigma with its

own schedule proved inconsequential.
It most runs, the fitness initially converges toward a local minima defined by the residuals

calculated for training sets 1, 2, and 4. Increasing the mutation rate and the addition of equation 4
improves global convergence of the GA for all four training sets. Consistent training performance
occurs after setting all sigmas to 0.1 or 0.05 and inserting an additional penalty term into the fit-
ness function,,

fitnessn,w [1=fitness x 1- ~ ,
(13)

where

G=
1

[

(P-1) ”(9-1)

1

0.1+ ~ (%6)2

k

(14)
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of delay-line FFNN are genetically-trained to

In equation 6, ok is the sigma of the residual distribution when plotting differences between FIN
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outputs and ExpectedOutputs and ~-bar is the average of all these deviations. One may consider
such a term as a renormalization of the errors or as a pseudo-annealing schedule. With the addi-
tion of this penalty term, modest convergence-rate improvements indicate that this form of the
fitness function may help the GA better avoid local minima. All subsequent analysis implements
equations 3 through 6.

Validation data. Table 2 lists additional simulations with a variety of plume dynamics and swarm
distributions. The data from these simulations are used to test the optimal genetically-trained neu-
ral network design.

Table 2: The Plume Validation Data Set

Validate Set (xp,Yp)
theta phi Radial Time Steps

(degrees) (degrees) Distance Implemented

1 (10,10) 45 0 339 2-11

2 (10;10) 45 0 339 2-11

3 (80il,400) ‘ 120 0 707 9-17

4 (500,1000) 270 71 403 5-9

5 (10,900) 345 40 914 12-17

6 (800,800) 225 0 424 4-1o

Results. Displayed in figure 10 is a flow diagram of an example training process. The training set
of robot positions and sensor values and the expected plume’s characteristics are realized onto a
delay-line FFNN. The genetic algorithm operators evolve the weights of the networks over 1000
generations. Convergence and stability of the outputs are verified. The optimal design, the
weight distribution, characterizes simulations with plume dynamics. Tests include measuring NN
performance for angles the network is trained to recognize, for angles not in the training set, for
different neural network architectures, for different numbers of time-sequenced training sets, and
for noisy training sets.

Validation results for the optimal net are listed in table 3. The first four rows (Training Data

Table 3: Neural-Network Performance (input data consists of three time steps, i.e.,
m=3)

Training Data Set Validation Data Set

1 2 3 4 ‘1 2 3 4 5 6

mean 120 249 9.5 176 106 84 203 36 12 74

std. dev. 17 2 1.7 5 46 12 6 1 0 31

Set) indicate the network learned to recognize those trained angles. However, angles and robot
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distributions not presented in the training set are incorrect.
The net’s performance is also tested relative to the number of hidden neurodes and layers

and the form of its activation function. Increasing the number of hidden layer neurodes or the

number of hidden layers did not improve performance. An N-5-1 architecture recognizes a 225°

angle as 74°. An N-17-1 architecture recognizes 225° angle as 103°. An N-47-1 recognizes a

2250 as 122°. And, an N-17-5-1 recognizes a 225° angle as 1020. Changing the activation func-

tion from a sigmoidal function to a linear function improved the averaged outputs to 225° but with

large (deviations, a standard deviation near 100°, indicating inconsistency over time. A linear

squashing function gives similar results as the sigmoidal function, output angle of 124°.
The most revealing test compares the delay-line FFNN performance as a function of the

number of input time steps, trained with a sequence of 1, 2, and 3 time steps (m) of sensor data.
Both training and validation results are very similar to those in table 3, indicating that the net did
not take the time sequenced data into account

Past experience indicates that noise minimizes memorization and improves generalization.
Two types of noise are added to the sensor readings -- random amplitude and placement and
smearing si according to a gaussian distribution. Because the results for both techniques me simil-

ar, angle recognition results f~r type 1 noise has been displayed, see table 4.

Table 4: The effects of noise during training.

E
o% 2.5% 5% 7.5% 10%

train 1 0.505 0.506 0.485 0.5 0.48

ti(aun2 0.723 0.709 0.747 0.73 0.72

train3 0.348 0.342 0.334 0.34 0.33

train4 0.035 0.031 0.033 0.033 0.035

valid225 75 75 60 68 104

sigma 29 22 24 31 31

As before, the net successfully recognizes trained angles, but generalization to other angles
remains difficult due to the small training set.

Conclusions. This analysis is fairly complicated. The cause of the validation failures is due to an
insufil cient training set. Four angles and swarm positions covers a very small sample of the full
phase-space for plume motions and swarm distributions. Because of this situation, all other
results are somewhat limited in interpretation except modifying the time steps. As m is changed
from 1 to 3, the results remain very similar. This result alone indicates that m may be too small.
If this is the case, an inordinate amount of memory and communications may be necessary to do
pattenn recognition of time-series data at a global level. Either some preprocessing of the data
should be performed or pattern recognition should be static.

The successes of this analysis is the development of a reliable form of the fitness function
and the technique used to train the net. Both of which has been used successfully in other applica-
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Figure 11. Top row, typical patterns needed to be recognized when a swarm avoids obstacles.
Bottom row, images implemented in tests.

tions. Training a net to learn multiple outputs has also shown to be possible.
Providing a more compl?le training set should provide good results. This task is feasible if

additional compute power or smarter algorithms can be acquired. Both of which has been demon-
strated in other areas (see section 2.4).

2.3.4.2 Character Recognition Using Genetically Trained Neural Networks

Introduction. The neural network model constructed for pattern recognition uses a three layer
feedforward architecture. To facilitate the input of patterns or characters, a graphic user interface
(GUI) has been developed to convert the traditional representation of each character or pattern to
a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes
of the FFNN in a one-to-one correspondence. The input nodes feed forward into a hidden layer,
and the hidden layer feeds into five output nodes correlated to possible character outcomes. Dur-
ing the training period the GA optimizes the weights of the NN until it can successfully recognize
distinct characters. Systematic deviations from the base design test the network’s range of appli-
cability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase
in the number of hidden layer neurodes. Optimal character recognition performance necessitates
a minimum threshold for the number of cases when genetically training the network. And, the
amount of noise significantly degrades character recognition efficiency, some of which can be
overcome by adding noise during training and optimizing the form of the network’s activation
function.

This section focuses on the development of a feedforward neural network which addresses
the initial stage of its pattern recognition capabilities. The following topics will be discussed
within this section : a description of the NN training set, the NN architecture, the training process,
the validation process, systematic performance analysis, and conclusions. A more complete anal-
ysis and discussion can be found in the following reference [16].

Training Set. A character bitmap is an 8 x 8 array of bits, where a +1.0 indicates an “on” bit and a
-1 an “off” bit. The database contains five capital Roman letters --A, B, C, D, and X -- displayed
in bottom row of figure 11. By extracting the two-dimensional string of bits one row at a time, a
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64 bit vector, representing the input pattern, defines the NN inputs. The total number of outputs is
5, one for each pattern or character. Assigned to each input pattern is the expected outputs vector
which contains a +1 for the that character inputted into the network and a -1 for the other outputs.
As an example, if the input vector is the image data for the letter B, the expected output vector is
set to [-1, +1, -1, -1, - 1], where each output represents a letter.

Neural Network Architecture. The base design [16] is a single hidden layered feedforward neural
network with 64 inputs nodes, 17 hidden nodes, and 5 output nodes. The form of the activation
function is the hyperbolic tangent sigmoidal squashing function of equation 4 with parameter a
equal to 5 and parameters b and c set to zero.

Training Process. The GA implements (1) a roulette-wheel selection method, (2) a one-point
crossover technique keeping 8 out of the 64 (population size) networks as elitists and allowing
90% of the population to crossover, and (3) a flat or random mutation rate effecting 10% of the
population’s genes (i.e., weights). After each generation, the results from 25 randomly sequenced
characters (i.e., the number of cases, nCases) determine a network’s fitness. The GA searches for
and converges toward the global maximum of the fitness function,

; i

fitness =
1

( )

4
(15)

0.1 + ~ ~ ~Outputs-ExpectedOutputs/
nCasesn Outputs

This form of the fitness function is similar to that of equation 11, proportional to the inverse of the
output residuals summed over the case numbers within a generation.

Each net within the population of 64 is shown a random sequence of 25 character images
(the number of cases, nCases) and their corresponding outputs. The NN outputs are compared to
those that are expected, ExpectedOutputs (defined as supervised learning). The network under
the guidance of the GA “learns” how to recognize these patterns and categorize them as letters.
When the entire population of 64 nets converges toward a fitness of 10.0, an optimal solution has
been found. This optimal NN design can then be tested or validated. A flow diagram of this train-
ing as well as the validation processes and their results implementing the base design are shown in
figure 12.

Validation Process. The validation process randomly chooses a sequence of characters, repre-
sents these characters as one-dimensional bit-vectors, measures how well the optimal neural net-

work categorizes these characters, and plots the results. First, 105 randomly sequenced characters
are analyzed. Each character plus a blank is sampled approximately 15,000 times, producing a
statistical error less than 1%. (The blank pattern is defined as an input vector of -1s and an output
sequence of all - 1s.) Next, the optimal NN successfully categorizes a character when the output
activation representing the input letter exceeds a +0.9 threshold while all other outputs remain
below +0.9. Using this definition, character recognition efficiency is defined as the fraction of
times an input character exceeds the threshold while keeping all other characters outputs below
this threshold. Both these efficiencies and the raw output activations (-1.0 < Outputs< +1 .0) of all
the character outputs for each character input are tabulated, averaged, and then plotted. Correla-
tions (or NN confusions) between pairs of letters can be seen by plotting the average activation
values of each character output as a function of the character input. This data can be represented
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Figure 13. The left graph plots validation character recognition efficiencies for noisy images with
the number of bits flipped (BF), ranging from Oto 10, when the NN is trained with noisy images (O
through 4 bits flipped). Also plotted, and labeled as ActFtn, is when the activation function
approaches a step function. The graph on the right is a plot of the average efficiency results for
different training methods.

by a contour plot where only the y=x line is expected to be populated when validation is optimal.
Both plot types are shown in the bottom right of figure 11.

Systematic. To understand the range of applicability of the current or base design, various key
parameters influencing the networks ability to recognize characters are systematically modified.
Three such variables include the number of hidden layer neurodes, the number of cases in the
training set per generation, and noise level.

The Number of Hidden Layer Neurodes. Using the definition for NN performance in reference
[16], results indicate an increasingly nonlinear response of the hidden layer neurodes relative to
the network’s capacity.

The Number of Cases. The average character recognition efficiency over three convergent runs
for nCases equal to 1,5,7, 10, 17, and 25 reveals a threshold value somewhere near 25, where the
networks training and performance is optimal. In other words, increasing the number of times

each character is seen by the genetically-trained neural network during each generation appears to
better map the fitness function’s phase space, thus increasing the NN’s pattern recognition capa-
bilities.

Noise. Noise is defined as randomly flipped bits within a character’s bitmap image. For a multi-
agent system, a flipped bit translates into a false measurement or decision from a single robot.
The question becomes how does noise effect the pattern recognition capabilities of the collective.
Two sources of noise are implemented : (1) flipping bits during the training process and (2) flip-
ping bits during the validation process.
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Tests include training the neural network with character images that have (i) no bits flipped
(BF), (ii) half the images with O BF and the other half with 1 BF, (iii) a third of the images with O
BF, a third with 1 BF, and a third with 2 BF, and (iv) a fifth of the images with OBF, a fifth with 1
BF, and so on up to 4 BF. The second source of noise is during the validation process. Validation
results measure eight different character recognition efficiencies for those images with BF set
only to O, 1, 2, 3, 4, 6, 8, and 10, respectively. Results from this analysis are displayed in figures
13.

Noise within the validation set, but not within the training set, can significantly effect recog-
nition efficiency, by nearly 30% when 4 bits are flipped. Training with images with up to 4 bits
flipped improves efficiencies by about 6 to 7 percent. Efficiencies for individual characters can
improve up to 17 percent.

The Form of the Activation Function. Finally, a net trained using 250 cases per generation, an
activation function with the parameter set to 25 which approaches the form of a step function, and
training images containing O through 4 randomly flipped bits. Results are shown in figure 13.
Looking at the left graph, the character recognition efficiency is plotted as a function of noise.
The symbols B and D ire much improved and begin to drop off precipitously beyond 4 BF, the BF
training set limit. Other Iettem are still much improved but fall off more gradually with noise.
Looking at the right graph, the average character recognition efficiency is plotted over all five
characters as a function of BF. The same curves produced from the other four training techniques
are also plotted for comparison. Thus, tuning the activation function and increasing the number of
cases show greatly improves the net’s ability to overcome a noisy environment or inefficiencies.

Conclusions. Genetically training a 3 layer FFNN to recognize capital Roman letters of limited
resolution has been shown to be successful. Basic rule-of-thumb calculations have been used to
determine the architecture of the network and the parameters of the GA. Tests indicate increasing
the capacity of the network in order to recall all 26 letters of the full alphabet would appear diffi-
cult unless additional character recoe~ition techniques are incorporated. The number of cases
plays a role in convergence rates but more importantly performance (i.e., character recognition
efficiency). Attempts to quantify the minimum number of cases as a function of the neural net-
works architecture is instructive but somewhat limited. The major problem appears to be the abil-
ity of the network to overcome noise. Flipping bits within the characters bitmap image degrades
recognition efficiency. Additional training with noisy characters regains some efficiency, but only
a modest percentage 4 bits flipped has a 30% loss while training with noise only gains 6 to 7~0

back. However, the greatest improvement comes from an activation function that approaches the
form of a step function. On average, almost 70.% percent of the base design losses are regained
with a modified activation function. One can conclude that speed (a parallel version of the code)
and improved techniques (architecture, training, character resolution) need to be explored.

As a final note, realization onto a multi-agent system appears promising. Because a large
percentage of weights are close to zero (approximately 80%), communication requirements can
be relaxed or optimized. In other words, communication network theories can be added to the fit-
ness function, thus both interconnections between nodes (communication topology) and the NN’s
pattern recognition capabilities can be concurrently optimized into a single, flexible design,

2.4 Global Optimization
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The ability to produce desirable macroscopic, collective swarm behavior from local, near-
est-neighbor interactions is a huge multivanate analysis problem. Genetic algorithms 14,15] are
stochastic and based on non-derivative techniques, thus they are less likel y to get caught in a local
minimum. They also span a larger variable phase-space without requiring a smooth, continuous
objective, thus more likely to find a global optimal solution for a larger set of objectives.

A genetic algorithm performs three operations onto the elements of a population, e.g., a
population of neural networks or swarms. Three operations form the basis of a GA. The first
operation is selection. Here, the fitness of each element in the population is calculated according
to its fitness function, which represents how well the neural network recognizes the inputs by
determining its output residuals. The smaller the output residuals, the higher the fitness for that
element in the population. Therefore, selection preferentially chooses high fitness elements. The
second operation is crossover (e.g., mating). Here, selected elements share sequences of genetic
material. In single-point crossover, a common point is chosen along the genetic code (e.g.,
weights of neural network) of two selected elements, called the parents. Sequences of genes are
exchanged about this point. The result is a population of offspring which contains pieces of its
parent’s solution space,. The third operation is mutation. To prevent the population from evolving
toward and remaining within a local minima, mutation continually adds new random values (i.e.,
diversity) into the po~ulation. *As a result, a larger parameter (weight) phase-space is continually
spanned for a global optimum. Like the back-propagation method, a GA is iterative, where each
iteration is called a generation. By showing the neural network many input-output pairs over
many generations, the population converges to an optimal solution and is considered to have been
successfully trained.

Implementation of a genetic algorithm (GA) on top of a collective behavior model to opti-
mize the swarm’s performance requires compute power. Our new parallel master-slave GA, opti-
mizi”n,gour LG model, is one step toward reducing simulation time. In order to make parallel the
GA, the CPU intensive lines must be determined, extracted, and distributed among many proces-
sors. This piece of the code is the calculation of the fitness function which requires a full simula-
tion of the physics-based models. Implementing a Master/Slave architecture allows the Master to
distribute the population of swarms, LG simulations, among N processors or Slaves (N is equal to
20 in most applications). After a slave finishes a simulation implementing the genetics represen-
tative of that particular swarm, it returns a fitness value to the Master. The Master performs the
selection, crossover, and mutation operators and redistributes the population of swarms to the
Slaves. The language used is called MPI, message passing interface. Thus, the Master sends the
genetics and a execute command to each Slave and continuously polls the Slaves to determine
whether they have calculated a fitness value. Both information and transfer rates are minimal.
GA execution on the Master is much faster than LG simulations. Speedup is essentially linear.

Two initial applications implementing these codes are obstacle avoidance (section 3.3. 1) and
ground-penetrating radar (section 4.2.2). First, simulations implementing nearest-neighbor inter-
actions reveal that rather mundane conditions can cause a swarm to become unstable (ie., break
apart) when an obstacle is introduced. By allowing a robot’s potential strength parameters to
depend on time and/or space, a genetic algorithm evolves a population of competing swarms
determining which set of spatial regions (or time steps) should change its potential fields. The
result is enhanced performance. Two, a swarm of robots fitted with antennas has been simulated
implementing a GA to control the relative position of the robots and the phase of the emitted high-
frequcncy radar pulses, optimizing the signal’s intensity on an underground facility probing a two
dielectric sub-temain profile. Both the signal’s phase and robots’ positions are varied, deriving
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and simulating sensitivities to wave coherence and signal amplitude. Also, various physical
parameters, such as the robot-robot attractive and repulsive forces, the target’s relative potential
strength, friction and drag, and others, are modified to determine swarm behavioral changes for
the effluent plume (LG) and ballistic missile (PIC) scenarios. From which the swarm’s response -
-speed of pursuit, cohesive properties (i.e., when to break into two swarms following two targets),
and obstacle avoidance -- are controlled.

2.5 Autonomy

Autonomy is the ability of the swarm to achieve a goal without the necessity of a leader, an
“alpha-” robot, if you will. Tasks can be as simple as following a target or as complicated as

imaging an underground structure. Some jobs require only the basic set of instinctive forces in

order to respond autonomously, such as following a wind-blown gaseous plume; others require an
increase in the level of intelligence necessary, such as obstacle avoidance, multiple target identifi-
cation, and triangulation; while a group requires the highest levels of intelligence and coordina-
tion, such as remediation, GPR, and BMD (Ballistic Missile Defense). At this time, a conceptual
behavior for three different behaviors are discussed within the above mentioned framework.
Later, simulation results refine~these concepts providing additional insight into the most challeng-
ing tasks.

2.5.1 Following a Target

A wind-blown plume of toxic gases propagates toward a community due to an overturned

muck. Sensors on the robots measure the gradient of the emerging threat. Through nearest-neigh-
bor interactions, a pseudo-potential is applied causing the swarm’s state to follow the plume or
find the truck (the origin). By determining the optimal set of parameters for the potentials,

[~, P, Y>~lfMget>the swarm follows and condenses onto the target, or a fraction of the robots fol-

low while other robots move toward the truck. The direction of the plume is determined when
each robot shares nearest-neighbor sensor data and implements its RNN trained to recognize
time-dependent sensor information. An additional “inertia” potential is introduced, modifying the
swarm’s state. A global neural network interconnects all the robots and determines whether the
swarm has moved ahead or fallen behind the plume. Depending on the mission, the swarm may
wish to modify its state so it can speed ahead of the plume, reconfigure, and determine the ongin
of the plume, or break into two swarms and do both. Depending on the relative parameters

CX,~, and y, the number of robots following the swarm (swarm cohesiveness) can be controlled.

Maximum cohesiveness is accomplished by keeping a relatively large. (3 has an effect on the

mdial variance (i.e., density) of the swarm, decreasing depending on the pulse shape, size, and
dissipation rate. Knowing the above parameters determines the state equations through statistical
mechanical methods for lattice gases. Understanding how the density and temperature changes as
a function of communication and sensor ranges and the number of nearest-neighbor interactions
can feedback into the design.

~a5.2 obstacle Avoidance

Two simple realizations of autonomous adaptive behavior include obstacle avoidance and
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multiple source identification. When avoiding an obstacle, the swarm first recognizes that a sta-
tionary (non-source) object falls along its path. It modifies its form (e.g., state) in order to move
arouncl the obstacle while remaining cohesive and preventing instabilities. Once overcoming the
object, it returns to an optimal state. Referring to the flow diagram in figure 1, the initial state of

the swarm, [et, ~, y ,S]O,follows a plume, possibly optimized for speed along the plume’s direc-

tion of motion. It encounters an obstacle. Each robot’s local NN recognizes that the object is in
its path. The global NN combines information from all robots and determines the extent of the

image (object)., forming a new state -- [% D, Y,810b.facie” This new state reduces the swarm’s

density and elongates in the direction perpendicular to the obstacle by modifying its pseudo-
potential field. Therefore, the swarm is capable of determining a path around the object and pro-
viding additional space to maneuver around this obstacle. Such a transition --

[~, ~, y, ~lo+ [% B,‘Y,51~~~~a.~. + [UJP,Y? ’10-- must be adiabatic, meaning the swarm’s state

must remain in a steady-state, thereby preventing instabilities. To achieve this transition requires
additicmal “adiabatic” terms in the GA’s fitness function. However, the return or final state need
not be the initial state due to the perturbation (in both space and time) of the swarm relative to the
source. .“ <

2.5.3 Multiple Sources

,4 second example of autonomous adaptive behavior is a swarm reacting to multiple sources
(or targets). The swarm’s initial state reacts to a time-dependent event, seismic activity. Each
robot communicates asynchronously with its nearest-neighbor, processes their information using

a neural network, modifies the swarms’s state through 6, and begins to move in the direction

where it thinks the origin of the activity occurred. While gathering additional information, a sec-
ond scurce, a discharge of gases, propagates nearby. Processing the swarm’s vector image, the
global network recognizes two types of sources and computes their directions. The state of the

swarm changes -- a/y decreases as does the range of the forces -- allowing the swarm to expand

and split into two. As the population of the swarm decreases, the state must also change in order
to maintain the cohesiveness of each swarm separately.

2.5.4 GPR

Phased-amay, short-pulsed, ground-penetrating radar (GPR) and plume remediation require
sophisticated imagery techniques beyond the design criteria of the robots. Probing for subterrain
structures can be thought of as an inverse scattering problem. The goal is to develop a technique
that can identify structural geometries, such a triangular or conical shapes, in an unknown dielec-
tric medium. Initially, surveillance or the autonomous activity of the swarm (sensing the pulsed
seismic source and triangulating to find the epicenter) positions the swarm near a target. By con-
trolling the position and phase of the antenna-flavored robots, an iterative process is employed to
map out the sub-terrain and optimize imaging of the underground structure. First, each robot
transmits a pulse and receives a signal. From the time-of-flight and strength of the measured sig-
nal, depth and attenuation (dielectric) is determined. Second, an image of the subterrain just
beneath the swarm is developed from which the beginnings of a potential field is formed. Third,
image processing (time-frequency spectra) by a trained neural network searches for possible tar-
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gets. Fourth, a GA incorporates the potential field into its fitness function and determines an opti-
mal configuration by changing its state variables. Fifth, after repositioning, the phases of the
antenna array are optimized, probing deeper into the ground. Sixth, the optical potential is
updated and inserted into the GA, further improving the position of the swarm and its robots.
Finally, as the swarm is grouped into fewer and larger clusters of phased-array antennas, the
swarm can image structures deep within the sub-ten-sin, scanning horizontally by modifying its
phase or angle.’ Once a target image is suspected, the GA reconfigures the swarm providing the
highest quality data for image extraction and target verification.

2.5.5 Remediation

Plume remediation “bum” biological agents within a wind-blown, gaseous plume. A three
step processes is envisioned. One, biochemical sensors indicate the presence of anthrax (trip-wire
configuration). Two, the swarm follows the plume and adaptively reconfigures to surround the
plume. The global neural network uplinks the information where the user analyses the images
and verifies the threat. An igniter, such as magnesium or titanium dust, is inter-dispersed within
the plume. Third, an external signal (e.g., optical communications) triggers a pulsed solid-state
laser from each rob~t igniting the edges of the plume. After remediation, the swarm enters a
search (or validation) mode, providing further remediation and verification.
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3 Mission Strategy

In its simpliest form, a multi-robot system on a data-gathering mission can be broken-down
into five steps : (1) initial configuration, (2) search methodology, (3) target convergence, (4) adap-
tive/optimal sensor position, and (5) communication. This section explores each topic.

3.1 Initial Configuration

Initial configuration of a swarm considers the ssvarm’s makeup (e.g.., sensor heterogeneity),
the distribution pattern (e.g., the number of swarms and its geometrical positioning), the intelli-
gent algorithms necessary to complete a mission (e.g., neural network architectures), and other
similar parameters deemed important to accomplish a mission. Because the success of a mission
depends on how efficiently the swarm performs these mission steps, initial configuration is deter-
mined last.

Evolutionary programming (i.e.,genetic algorithms) can determine the number of swarms
and their heterogeneity, how many robots of each sensor type are needed to efficiently carry out a
mission. Currently, artificial “performance” or “mission” functions are being considered to simu-
late the steps within a mission. From this, a (parallel) GA determines the number of swarms, the
number of robot types, and parameters describing the physical state of the swarm or swarms. An
exan-q?le mission implementing many of the above mentioned qualities is bio/them plume remedi-
ation (see section 4.1). First, an initial trip-wire position requires fast response-times. Tracking
and characterization of the plume occurs. Two different robot types reconfigure. And, adaptive
behavior after the remediation process occurs. Many of these tasks are currently being simulated.
Once the complete mission has been simulated, global optimization of the entire process imple-
menting evolutionary techniques will determine the number of each type of robot and the distrib-
utionof robots as it evolves over time in order to ensure success.

3.2 Search Methodology

Search methodology or strategy is defined as the optimal technique a swarm uses to find a
source or target. How a swarm scans a hostile region depends on its ability to maneuver quietly
and efficiently. Two methods or test cases are employed : a random-walk and a GA determined
path.

Test case one simulates a multi-agent system consisting of 32 randomly positioned and ran-
domly walking robots searching a target. Analysis compares target seeking and condensation per-
formance as a function of the swarm’s initial geometry, the number of swarms deployed, the
robot”s ability to communication information, and the collective motion of the swarm through the
introduction of a pseudo robot-to-robot interaction potential. These tests indicate that the random
motion of the robots overshadow many of the above parameters, dominating the performance of
the swarm to search out a ttiget. As a result, only the distance between the swarm and the target
is correlated to performance, leaving many of the above parameters statistical y ineffective. What
is miming is an optimal collective search pattern.

Test case two begins to address the shortcomings of a random-walk search strategy. The
simplicity of random walkers is an attractive attribute but can be inefficient. Providing an open
communications channel between robots alleviates some problems, but the overhead can make it
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more complex. The aim is to determine a robot’s optimal trajectory within a pre-defined search
area. Here, optimal means energy conservation, i.e., covering that maximum area in the fewest
moves. Obstacles, such as boundary conditions, features in the terrain, and other robots, perturb
this trajectory. Implementation of a GA determines the path type and the resources, memory and
sensor parameters, necessary to create the path.

First, the introduction outlines the two test cases to be simulated : a random walk and GA
determined path. Second, results are compared. Third, conclusions are discussed.

3.2.1 Introduction

Test Case 1. A multi-robot system on a data gathering mission can be broken down into five steps.
The initial random-walk algorithm handles each step (except the last) by (1) randomly distributing

32 robots over an area that is 200 x 200 units2, (2) initiating a random-walk procedure for each
individual robot, searching this area for a source (or si=~al), (3) communicating the coordinates of
the robot that first contacts the target, and (4) equally distributing all the robots at the center of the
target. The only constraint is that a robot cannot step outside the search area (i.e., a boundary con-
dition).

The diagnostics used to measure the performance of the robotic system consist of three
graphs : (i) the number of robots reaching the target as a function of step number, (ii) the number
of robots entering the target
region as a function of CPU
usage, and (iii) the single-step
CPU usage as a function of
communication step number. In
most cases, the number of steps
taken to find a target (first con-
tact) and the CPU usage for
each step are used to measure
performance, where the step
number is iterated only after all
32 robots have moved one step.
For this test case, performance
is measured relative the step
number of first contact. Realis-
tic sceneries include a robot’s
microscopic specifications
(description), for example sen-
sor range, motion detection,
communication range, commu-
nication efficiency, noise sup-
pression, and duration of
communications, and its collec-
tive macroscopic characteristics,
for example deployment, multi-
ple swarms, coverage, and col-
lective motion.

Genetic
Sequence

—
go

~1

g2

g3

~4

135

g6

g7

g8

g9

glo

‘gll

g12

g13

g14

Definition

No Obstacles
Obstacle to the Left (L)

Obstacle to the Right (R)

Left and Right (L+R)

Obstacle Above (U)

Left and Above (L+U)

Right and Above (R+~

Left, Right, and Above (L+R+U)

Obstacle Below (D)

Left and Below (L+D)

Right and Below (R+D)

Left, Right, and Below (L+R+D)

Above and Below (U+D)
Left, Above, and Below (L+U+D)

Right, Above, and Below (R+U+D)

I!zl15 Right, Left, Above, and Below (R+L+U+D)

Figure 14. The genetic sequence for a robot.
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Test Case 2. Here, the objective is to determine a robot’s trajectory which searches the largest
area in the fewest moves, i.e., energy conservation. Additional constraints such as remaining
covert (i.e., no communications) and controlling the swarm’s collective state (e.g., flocking
dynamics) are and will eventually be implemented if not already through the use of PIC codes
(see section 2.1.3).

A robot’s search mode is defined by a simple micro-instruction set. These instructions (or
commands) represent the genes of the genetic algorithm. Therefore, the values assigned within
the robot’s genetic sequence as shown in figure 14 defines a robot’s path, a GA optimized microp-
rogram. This path depends on the robot’s ability to conserve energy while avoiding obstacles,
such as other robots, boundary conditions, terrain, countermeasures, and other constraints. Con-
fining a robot to roam on a square lattice and restricting the robot’s sensing capabilities to its near-
est-neighbors (left, right, up, down (L, R, U, D)), its programmed genetic sequence accounts for
any immediate contingency. As an example, if the situation (the environment) fulfills the criterion
of the fourth gene -- an obstacle to the left and the right of the robot’s current position -- the solu-
tion is the value of g3. The g3 response allows the robot to move left, right, up, down, or stand-

still (the set {L, R, U, D, SS } which has a cardinality of 5 defined by the lattice structure). As a
result, 16 possible genes each acquiring one of 5 values exist.

The simulation allows a population of 64 (and 128) single robot swarms to move within a 10

x 10 unit” square lattice. The GA evolves the population until the robot’s genetic sequence (i.e.,
trajectory) corresponds to the global optimum of the GA’s fitness function, equation 16. The sim-
ulation steps are as follows : (1) chosen are a random set of genetic values and of initial robot
positions; (2) the robot moves 100 steps guided by its genetic code; (3) a robot’s fitness is calcu-
lated, .

fitness =
1

[[

nMovesnRobots

1)

(16)

0.1 + A~O1al- ~ ~ ‘tsk,’ ‘
k i

(e.g., 100 units2), nMoves is the total number of moves of a

is equal to 100), nRobots is the size of the swarm, and pts~i

where ATO1alis the total grid area

robot (for a single robot, nMoves

keeps count of the number of grid points each robot traverses; (4) a roulette wheel technique
selects two robots at a time to mate; (5) single-point crossover method produces genetically-
rnixed. offspring; (6) mutation occurs randomly over the entire population; and, (7) each offspring
randomly chooses its initial position before steps 2 through 6 are repeated. In these tests, an
obstacle is defined as a boarder, a
guishable to a robot). After a few
mal search pattern.

3.2.2 Results and Discussion

neighboring robot, or the previous move (all three are indistin-
hundred generations, the genetic sequence evolves into an opti-

Test Case 1. The performance of the random motion search algorithm is evaluated as a function
of w-uious charactencs of the swarm : (1) the swarm’s initial distribution, (2) the number of
swarms, (3) the communication between robots, and (4) the influence of a pseudo-potential gov-
erning the robot’s movements.
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First, simulations study the swarm’s
performance in relation to its shape. The firstContact
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between swarm shapes. Figure 15. Top graph is a plot of the distance between

Second, robot clustering, i.e., the the source and nearest swarm versus the number of
number of swarms, is tested. 32 robots steps needed to make first contact. The bottom graph
covering 10% of the total search area are is the same plot for different swarm sizes.
grouped different y. Again, results reveal
no obvious correlation. Even though one may argue that 32 randomly spaced robots is slightly
better than 4 swarms of 8 robots, the underlying cause does not appear to be related to the number
of swarms. To see this, the minimum distance from the center of a swarm to the target is plotted
as a function of step number (see figure 15). This plot indicates that the distance to the nearest
swarm is correlated to the number of steps necessary to make first contact, but only up to 100
units, where the distribution becomes random. As the number of swarms increases, this correla-
tion breakdown-distance decreases (for 4 swarms down to 60 units and for 8 swarms down to 30)
because fewer robots comprising a swarm means fewer directions eminating from the center of
that swarm are being probed.

Third, a communication range is enforced. Once a robot locates a target, it broadcasts a sig-
nal to all robots within its communication range (e.g., 12.5, 25, or 50 units). This signal lasts for a
brief time -- 1,5, or 25 steps. Therefore, once a robot senses a target, it broadcasts for N steps to
those robots within its communication range, who in turn, communicates this same information
for N steps to all its neighbors lying within its communication range. Eventually, all communicat-
ion stops and M (< 32) robots converge upon the target. In table 5, results are tabulated. As the
communication range increases, the time (i.e., the number of steps) needed to broadcast the signal
decreases in order to attract the same number of robots. This effect can also depend on the size
and distribution of the swarm. Such parameters are important if the objective of the swarm is to
remain covert.

Fourth, the influence of a nearest-neighbor potential field on the search dynamics is
explored. The robot-robot interaction consists of (1) a repulsive hard-core contribution so if the
distance between two robots is less than the maximum allowable step size, the chosen direction
for the robots is in opposite directions (OD), (2) a “turn-off” piece so if the robot moves outside
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16 Swarms 1 swarm
Communica

tion time Comm. Comm. Comm. Comm. Comm. Comm.

interval Range Range Range Range Range Range
12.5 units 25 units 50 units 12.5 units 25 units 50 units

1 step 1 <20>

5 steps 1 <22> 3 10 32

10 steps 5 <23> 32

25 steps <23> <21> 32

50 steps <23> 32

100 steps 5 32

L

Table 5. The number of robots reaching the target after 1200 steps (steady-state condition)
as a function of communication range (12.5, 25, 50 units) and the number of swarms (1 and
16).

the ccmmmnication range of its nearest neighbor, the robot remains dormant (STOP), and (3) a
random-walk section inbetween these two extemes causes the robots to move in a random direc-
tion (WI). In essence, this logic is similar to a fuzzy set for the motion parameter, expanding the
robot’s kemal of motion. However, the end result is somewhat uninteresting. The swarm of
robots diffuse outward and essentially stop (reaching a somewhat steady-state condition, lattice).
Additional intelligence is necessary to cause the swarm to propagate in an efficient manner. One
can imagine that the shape of the swarm will depend on the average number of robots a single
robot must remain in communication with. However, this parameter can also effect the ability of
the swarm to overcome obstacles.

Test case 2. The genetic rnicro-instmctions of figure 14 does not provide the robots with knowl-
edge of past events, i.e., no memory. As a result, the optimal genetic sequence traces out a box, a

path following the circumference (the boarder) of the 10 x 10 unit2 square lattice. A maximum

area between 43 and 49 units2 depending on the robot’s initial position is covered. At the opposite
extreme, a map representing the lattice sites stores the full history of the robot’s trajectory, perfect
recall. This is not unprecedented, in biological systems passive communication (“memory”)
occurs by modifying the environment. Ants deposit chemicals (pheromones) indicating the pres-
ence of food, danger, or another ant (had passed this way). Implementing the same GA, the genet-

ics recreate a square-wave trajectory, covering an area from 90 to 100 units2 depending on its
initial conditions (figure 17C). An interesting feature of this analysis is the last gene, g15, an

obstacle in all four directions. In this situation, the robot can SS or it must move in a direction
that minimizes any overlap with other regions. A property that may need to be exploited in future
work.
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The decision making processes of the robots must include past events. The next two simu-

lations, incorporate genes that depend on the robot’s previous move (figure 16) and two previous

moves. The optimal solution resuls in a square wave trajectory covering 87 to 98 units2 (figure
17A), differing from: the full memory case in how the track begins to move. Going from zero to
one previous move increases the genetics by a factor of five, going from one to two previous
moves creates a robot with 400 genes. Simulations also reach a total search area from 87 to 98

units~ (figure 17B), but the GA converges more slowly due to the size of the genetic sequence.
These results indicate that the robots require only short-term memory, thus keeping the genetic
code simple.

The addition of other robots (2, 4, and 8) perturbs the basic pattern. Qualitatively, each
robot attempts to follow a similar square-wave path but in a restricted region near its initial posi-
tion. Overlapping paths does depend on memory.

3.2.3 Conclusions

The random-walk technique dominates the performance of the search algorithm overshad-
owing other parameters such as deployment strategy. Implementing a GA enhances efficiency
until the density of robots within the search region becomes significant. At this point, differences
between the methods are minimal.

A.low density of robots with short-term memory, knowledge of its previous step and recogni-
tion of obstacles (boundary, other robots), can efficiently search an area for a signal. Complex
systems, which includes obstacle recognition and a higher density of robots, perturbs this path.
Overcoming such complexity requires aditional memory and the means to access it. Obstacles
and lCIWdensities of robots need only short-term memories, but efficient, global swarm move-
ments require a game plan, the influence of a long-term memory. One technique that efficiently
realizes short-term memory is a recurrent neural network architecture. Long-term memory may
need to be genetically determined and programmed into the robot’s actions or “being”.

Future directions may include (1) enhancing the GA performance and assuring results are
position independent, (2) recognizing and responding to different obstacles such as terrain,
boundary, and other robots, (3) determining the effect of swarm size and its state variables, (4)
accounting for sensor range dependencies, (5) studying time-dependent genetic sequences, and
(6) combining long- and short-term memory. Implementation of global optimization techniques
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Figure 18A. A swarm of robots controlled by the potentials fields collectively follow a dissipat-
ing, wind-blown gaseous plume modeled as a gaussian pulse.

can not only determine the genetic micro-program within each robot, but develop individual neu-
ral network structures for each robot designed to handle environmental conditions by accessing
various levels of memory.

3.3 Target Convergence

Physics-based models -- lat-
tice gases (LG) and plasmas (sec-
tion 2.2) -- quantify the
macroscopic state of an N-body sys-
tem through its microscopic, near-
est-neighbor interaction potentials.
By defining the swarm’s collective
state by its partition function, ther-
modynamic properties can be calcu-
lated which would allow density to
be related to speed or maneuverabil-
ity and parameters like pressure,
tension, temperature, and internal
energy to be related to cohesiveness.
Current research in statistical phys-
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Figure 18B. The radial variance of the swarm as function of
time as it follows a target.
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ics extends LG models by incorporating additional particle species, linked to heterogeneity, and
outside potentials, called pseudo-potentials. By incorporating measured sensor and robotic trans-
fer functions into these models realizing molecular, gaseous, and plasma systems, well-controlled
and understood states for the swarm can be derived.

In these next two examples, simulations of a swarm of ground-based sensors using a LG
model and an airborne UAVS implementing PIC codes track various moving targets. The goal is
to determine whether cohesive, macroscopic states of the swarm can be maintained implementing
only nearest-neighbor forces.

3.3.1 Simulation of a Swarm Tracking a Gaseous Plume

Three potentials control the state of the swarm --a repulsive, an attractive, and a gradient (or
source) potential. Displayed in figure 18A is a LG simulated swarm following a source, a 2-

dimensional gaussian pulse expanding and dissipating. The potential strengths --a, (3,and y -- are
tuned so that the swarm remains intact and follows the gradient of the signal’s field. The func-
tional form of the forces follows from equation 1, but eventually the GA will determine an opti-
mal fen-m. For this simple example, density and possibly internal energy (or temperature) are
impoflant thermodynamic parameters controlling the size and speed of the swarm. Plotted in fig-
ure 18B is the time dependent radial distribution of the swarm. The initial peak signifies the
swarm’s ability to spread-out, amoeba-like, toward the pulse. The average radial variance pla-
teaus to a minimum after condensing onto the source, and the swarm’s density slowly decreases as
a result of the pulse dissipating over time. Quantifying such macroscopic states relative to swarm
behavior will verify the physics equaiton which will allow for autonomous behavior during the
training of the swarm. With the ability of the global neural networks to monitor the environment
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(through pattern recognition) and its own state, the swarm will be able to autonomously deter-
mine, control, and change its macroscopic state by modifying its local interactions.

In conclusion, the connection between performance or behavioral patterns can be linked to
physics-based models. Simulations such as in figure 18 begin to match density (radial variances)
with such quantities as cohesiveness and maneuvorability, two important swarm state parameters.

3.3.2 Simulation of an Airborne Swarm Tracking Multiple Targets

Introduction. Swarm dynamics can be modeled using particle simulation concepts. The interac-
tions between individuals can be modeled through the standard force equations and equations of
motion. This allows localized, collective behavior and collision avoidance to be handled.

Additional, problem-specific forces can be handled by using vector addition to combine them
to the individual interaction forces. This permits the modeling of a variety of physical effects
such as the macroscopic center-of-mass or swarming force, friction, dissipation, and aerodynamic
forces, gravitation, thrust (currently implemented as an attraction to or repulsion from another
individual), and other environmental forces such as obstacles, boundaries, terrain, and weather
(only :periodic and reflective boundties are currently implemented).

As shown in figure 19,Ja plasma molecular dynamics code has been modified to simulate
flight dynamics and collective behavior[19]. Force laws for friction, drag, and inertia, a pursuer’s
swarming and target seeking forces, and a target’s swarm avoidance force are added. A target’s or
pursuer’s charge and mass are specified to control their relative attractionh-epulsion and agility.
For efficiency and maximum flexibility, the swarm model implements grid-optional particle simu-
lation concepts. The main window and configuration menu of our simulator. In the main window,
the frames in figures 18, 19, and 20, targets are shown as squares and their pursuers are shown as
triangies. Although the simulator is merely a prototype at this point, it is robust and easily exten-
sible. The code runs on both a Unix (Sun Solaris) workstation and a Windows NT workstation.

Simz.ktions. Our first example (figure 19) starts with a single swarm tracking two targets. The
targets are close to one another but have divergent headings. At time step 50, the targets diverge
and the swarm begins to rapidly overtake them. At time step 100, the swarm overshoots the tar-
gets and begins to reverse course. At time step 150, the swarm spreads out between the two
diverging targets. At time step 200, the swarm separates tracking both targets. By time step 250,
the splitting of the swarm is well underway. This example shows a swarm’s ability to split and
track multiple targets.

(Oursecond example (figure 20) starts with two swarms tracking two targets. The targets are
close to one another and on a collision course heading away from the swarms. At time step 25,
the targets converge and the swarms are in the process of merging. At time step 50, the combined
swarm overtakes both targets and envelops them. At time step 75, the targets reverse direction
and the swarm remains in pursuit. At time step 100, one of the targets changes direction. So, the
targets are now moving in opposite directions. The swarm concentrates on only one target. By
time step 125, the two targets are well separated and the swarm is pursuing only one of them.
This example shows that targets can work together to “spoof” their pursuers, by forcing swarms to
join, allowing one of the targets to escape.

our final example (figure 21) starts with two, closely-spaced targets on intersecting paths.

Each target is pursued by a small swarm. At time step 25, the targets’ paths cross and the swarms
are in the process of colliding. At time step 50, the targets begin to separate and the combined
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swarm overshoots them. At time step 75, the two targets continue to separate and the swarm
spreads out between them. At time step 100, the swarm splits apart following both targets. By
time step 125, the two, well-separated targets are now being pursued by two separate swarms.
This example shows that, with a slight decrease of the pursuers’ swarming force, swarms can
cross without joining ensuring that a target cannot escape.

To summarize, the ability to model swarms of UAVS and/or fighter aircraft using grid-
optional particle simulation concepts has been successfully demonstrated. Three examples of a
target/interceptor scenario show that the model is capable of very complex behaviors. The model
is easily (and has been) extended to 3-dimensions and can be used for land-, air-, and sea-based
scenarios.

3.4 Adaptive Behavior/Optimal Sensor Position

As mentioned in section 2.5, autonomous behavior means the swarm must be capable of
adapting to its environment while tracking, following, or searching for a source. Therefore, the
ability to overcome obstacles due to objects or variations in the terrain must be considered. Simu-
lations implementing nearest-neighbor interactions reveal that rather mundane conditions can
cause the swarm to break apafi. Obstacles, such as a wall, causes the swarm to spread itself thin
until a critical number of connections or connection length (which can be related to communicat-
ion and sensor ranges) causes the swarm to divide. The objective of the GA is not only to glo-
bally optimize neural network designs but to optimize the potential fields. In other words,
including physics parameters into the fitness function has the advantage of training the robots to
perform pattern recognition (at both the individual and collective level) and assert additional
pseudo-potentials. One type of behavior presented next is obstacle avoidance in the form of a
wall:

3.4.1 Obstacle Avoidance

Introduction. The setup begins with a swarm configured in a square with its lower left robot occu-
pying the coordinate (0,0), see top left picture in figure 24. A plume, represented by a 2-dimen-
sional gaussian pulse initially at the coordinates (-5.6, +1.0), propagates according to the wind’s
velocity vector (+0.43, +0.40), dissipates exponential y in amplitude with a decay constant 0.015,
and spreads exponentially in width with x and y constants of (0.015, 0.015). A simulation of such
a signal at nine different time steps is shown in figure 24.

By tuning the three potential strength constants for the attractive, gradient, and repulsive
forces (a, P, and y), the swarm not only remains in contact with the source but remains intact. The
addition of a 1 unit thick wall placed at a y of 20 and spanning a length from -10 to 13 in x pre-
vents the swarm from following the target. Using the values of U, ~, and y described in section
3.3.1, simulations show the swarm stopped at the wall with only an occasional robot or two split-
ting apart remaining in contact with the plume. Instead, the (parallel) genetic algorithm evolves a
population of swarms optimizing nearest-neighbor potential strengths (e.g., realized by amplifier
gains). These variables can change as a function of time (time-dependent genes) or their position
relative to the obstacle (spatially-dependent genes). The former technique modifies the state of
the swarm in time, while the latter modifies the potential of individual robots as they enter differ-
ent regions of space. In the end the results are similar; therefore, only the space-dependent behav-
ior will be shown.
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Region No. (X~*,yfi~) (%naxJYnlax) u B ‘Y

1 (28,15) (28,28) 94.8 5.8 63.1

2 I (3,7) I (15,37) I 5.7 I 82.7 I 5.7

3 (12,9) (22,18) 15.1 92.2 14.2

4 (10,5) (19,40) 62.3 89.1 86.1

5 I (6,6) I (30,30) I 10.4 I 87.3 I 82.4

rable 6. The GA results for the potential field strengths within the 5 different regions displayed in
the top left picture of figure 22.

Simulations. Without any intelligence, i.e., NN induced pseudo-potentials, can a swarm of robots
interacting with only its nearest-neighbors according to equation 1 overcome an obstacle. A par-
allel CIA (section 2.3.3) optimizes potential strengths within five regions relative to the obstacle.
During each generation, every swarm within the population simulates the LG algorithm nine
times, defined as the number of cases. The fitness function represents a measure of the average
number of robots finishing in the region where the gaussian exits the field of view beyond the bar-
rier -- x> 10 and y> 17-- at time step 70.

fitness =

[

~ (nB~ts - nFol/!o~j) ‘
0.1 + nCases

nCases
1

where nBots is the size of the swarm (25), nl?ollow is the number of robots finishing in the above
mentioned region, and nCases is set to 9. Equation 17 produces a reasonable convergence rate;

(17)

however, it is more
instructive to plot the
average number of
robots over the nine
cases for the optimal
swarm solution in the
population as a function
of the generation num-
ber. This plot is shown
in figure 22. Due to the
low statistics, i.e., a
swarm of 25 robots, the
density of values (fit-
nesses) near the maxi-
mum is small and the
form of the fitness func-

Number of Robds Overcoming Obstack

o 200 400 600 ado lm 1200 1400
&nerotian

Figure 22. The GA converges toward an optimal set of potential field
strengths that allows the swarm to overcome an obstacle.
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Figure 23. Top right, the potential field regions relative to the wall. Top left, bottom left, bottom 
right: 3D surface plots of the gradient versus attractive, repulsive versus attractive, and repulsive 
versus gradient potential field strengths. 

tion, the fitness appears discrete. The variation in the plot is created by the randomness in the 
robots' movements from one LG simulated run to the next. By increasing nCases, these devia- 
tions decrease (proportional to the square root of nCases), allowing the GA to converge faster. 
The choice of nine for the number of cases is a trade-off between compute time and convergence 
rate. 

The results of the GA are tabulated in table 6 graphically displayed in figure 23, where the 
top right plot shows the placement of the five weighted regions and the upper right, lower left, and 
lower right surfaces compare the relative magnitudes for a, 0, and y, the gradient versus attractive, 
repulsive versus attractive, and repulsive versus gradient fields, respectively. Three observations 

. 
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are defined by table 6.
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Figure 25. The type of move made by all robots, the average density, and the distance from the
plume plotted as a function of time step for the simulation shown in figure 23.

can be made. One, initially the swarm is guided by the source potential which remains high rela-
tive to both repulsive and attractive forces. Two, as the swarm is obstructed by the wall, the repul-
sive force increases. especially at the comer and on the other side. Three, during this whole
sequence the source ‘potential ;emains relatively constant.

The potential field distributions determined by the GA and graphed in figure 23 are inserted
into the LG simulation code. Pictured in figure 24 are snap-shots in time of the swarm’s behavior
as it follows and attempts to overcome the wall. Initially, the swarm quickly condenses onto and
tracks the simulated plume. As the wall impedes the motion of the swarm, the robots collect at
and begin to spread out along this barrier. Closer to the edge, the repulsive forces dominate. As a
result, the decrease in density improves the swarm’s maneuverability and increases its speed, but
at the cost of a cohesiveness, which the GA compensates for. The plots in figure 25 track the
swarm’s movements, its average density, and its distance from the center of the plume. As the
plume begins to separate from the swarm at time step 25, the right-most plot in figure 25, the
repulsive forces increase, thus lowering the average density, the center plot, and increasing its
maneuverability, left-most plot. The swarm quickly turns the comer and catches up to the target
during time-steps 40 to 50 (right-most plot of figure 25 and frames 6 through 8 in figure 24). Due
to the somewhat ambiguous fitness criteria requiring all robots to finish within a specified region,
the swarm is prevented from condensing back onto the plume for time steps greater than 50. This
situation can be easily resolved by upgrading equation 17.

To summarize, the GA modifies the swarm’s state (and its behavior) in order to overcome an
obstacle while remaining intact, i.e., a collective unit. Simulations measure speed, average den-
sity, and separation distances between the plume and swarm. Matching the theoretical equations
to these measurements is progressing. By leveraging the pattern recognition techniques (section
2.3.3) to determine boundaries and edges of obstacles, the swarm will be capable of overcoming
many obstacles autonomous y.

3.5 Communication Pathways

Interconnectivity requires communication techniques internal to the swarm and external to
a host. The former realizes the interconnectivity or networking of the swarm, which can be repre-
sented by the synapses of a neuron; the latter provides a means for the swarm to communicate its
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findings to others (e.g., battalion commander).

3.5.2 Internal Communications

The elements of a swarm share information with their nearest-neighbors. A simple imple-
mentation would be a laser communication system. A directed communication link to a neighbor-
ing robot can provide local, line-of-sight communication channels. This eliminates

electromagnetic broadcast systems. Even though a viable technique, it prevents multiple users
talking at the same time or many frequency bands, complicating designs. Directed laser pathways
are covert and controllable.

Information must also be available to the entire swarm, global intelligence. One scenario
would be for a single element in the swarm to require a broadcast of information. If such polling
is limited (which is realistic), broadcasting is viable. Over time different robots within the swarm
calls upon the global intelligence of the swarm to decide whether to change state. This informa-
tion is gradually ,passed onto other robots. Thus global intelligence constantly upgrades the

swarm’s state and does so in an adiabatic fashion by separate robots within the swarm implement-
ing its global intelligence algorithms and passing this information to the swarm. Some work has
evolved in networking methock and their protocols to replace broadcast methods; however, noth-
ing has been simulated to date.

3.5.3 External Communications

A major weakness limiting the operational utility of unguided optical communication chan-
nels in atmosphere has been sensitivity to dispersive scattering and turbulence noise sources (scin-
tillation) which cumulatively degrade signal fidelity, gain aperture, and reception distance. We
have cieveloped a frequency-agile adaptive receiver system based on optical parametric amplifica-
tion capable of overcoming these adverse effects without compromising transmission rates or
minimum BER threshold levels. Undistorted data streams from an E/O reflectance modulator can
be detected through scattering layers (clouds) a time-gated optical amplifier (mixer) properly
compensated for wavefront distortion with high bandwidth and gain. For a nonideal detector
characterized by thermal noise, optical preamplification can improve resulting electrical SNR
despite the 3 dB ASE floor. By working in a type II phase matching geometry at the degenerate
point, both direct incoherent (classical amplifier) and enhance local oscillator homodyne coherent
detection (phase sensitive quantum amplifier) modes of operation are possible by adjusting input
polarization. Common mode rejection techniques can be incorporated to mitigate pulse stack-up
and improve the noise We have constructed a baseline laboratory prototype based on the OPA
receiver concept for proof-of-principle experiments under variable visibility conditions to detect
knowIl reference signals. The transmitter is a Ti:sapphire femtosecond laser operating at a KHz
pulse repetition rate which is wavelength shifted to 1.31 microns to match the properties of a San-
dia-built miniaturized surface normal reflectance modulator.
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4 Applications

The application domain for an adaptive array of sensors or an intelligent multi-agent system
is large and permeates throughout our technology base. Three currently relevant areas of emerg-
ing threats include bio-chemical terrorism or warfare, nuclear and biological weapons research
and its concealment, and ballistic missile defense against these weapons. Such a study determines
how to overcome an emerging threat before, during, and after initiation of the threat. Three pro-
posals -- remediation, ground-penetrating radar (GPR), and ballistic missile defense (BMD) -- are
presented, implementing our swarm models in order to destroy, prevent, and intercept weapons of
mass destruction.

4.1 Remediation

Remediation means the ability to kill or inactivate dispersed biological/chemical agents and/
or toxins (Vx, anthrax, etc.) by a controlled thermodynamic combustion process. Such a process
can be performed autonomously implementing an intelligent multi-robotic system.

.. J

4.1.1 Introduction

Detection, identification, and remediation of biological toxins in dispersed plumes generated
by hostile military forces, terrorists, or illicit proliferation activities pose a challenging security
problem. Characteristic spectral signatures are transient in nature due to prevailing wind currents,
exhibit significant wavelength diversity, and can be disguised by natural obscurants or interfer-
ences which make quantitative chemical recognition by conventional optical measurements prob-
lematic. The limited field-of-view of laser sources makes stand-off detection and hazard-
interdiction over realistic operational areas impractical for countermeasures. An alternative
approach is to spatially map the migrating plume using an intelligent constellation of robots
deployed with sensitive agent-specific point sensors.

Envisioned in figure 26 is a distributed sensing architecture in which forward-deployed
autonomous elements act initially as an advanced warning trip-wire and then act collectively
under a coordinating situational awareness umbrella to optimize interrogation and remediation of
the sampling space. First, a robotic swarm positions to secure an area. The robots’ platforms
would be equipped with a sophisticated optical spectrometer capable of measuring anthrax con-
centration levels at 1 cfu. Second, using advanced intelligent algorithms, the swarm characterizes
the plume and coordinates those robots with laser ignition devices. The same laser providing
optical detection of the bio-hazard locally stimulates optical ignition of a munition of UAV-
deployable chemical energy source (e.g., magnesium dust) which is remotely targeted into the .
plume. Third, the robots tailor their collective behavior to insure destruction of the hazard by con-
trolled combustion from the plume boundary, indiscriminate dispersal by convection and radial
shock waves can be avoided. By manipulating the control state vector, it may be possible to
actively orchestrate convective flow mechanics and local combustion kinetics so as to permit seg-
regation of the hazardous agent into a prescribed spatial region or to define optimal placement for
fuel-air explosives.

An outline in section 4.1.2 realizes the remediation process, discussing technical issues and
providing simulations allowing such a process to occur in real-time. This application concludes
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Figure 26. The remediation process. Left picture indicates swarm initially configured in a trip-
wire distribution. Middle picture shows swarm adaptively reconfiguring around the perimeter of
hazardous effluent and the inter-dispersal of combustible dust via a mortar shell. Right picture has
coherent ignition about the circumference, an inward explosion.
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4.1.2 Realization of the Remediation Process

The outline of this section consists of the following topics : the spectrometer or bio/them
sensor, the deployment and optical ignition of the munitions dust, the simulations of a heteroge-
neous swarm adaptively reconfiguring as realized by our physics-based model of a LG, and the
discussion of the Monte Carlo simulation process.

Spectrometer Mounted on each robot is a biological/chemical sensor that is based on surface-
enhanced Raman spectroscopy (SERS). This technique leverages previously developed optical-
receptor tags which integrate specific molecular recognition sensors using engineered enzymatic
or mcmoclonal antibody transduction. The high-gain resonant Raman process interrogates the

immobilized receptor site which acts as a concentrator, and generates a unique fingerprint of the
agent complex with modest laserrequirements. Therefore, such a design is amenable to miniaturi-

zation and allows it to be realized by on-board microchip lasers. Sandia proprietary multivariate
chemical analysis tools implementing genetic algorithms determine optimal spectral regions sen-
sitive to various hazardous biological and train the neural networks to distinguish between van-
ous a{gents. To date, prototypes have measured sensitivities at the 1 cfu level.

Zgnitor The remediation process requires the dispersement of a UAV or munition-deployable
chermcal energy source (e.g., magnesium or titanium dust) and the optical ignition of this chemi-
cal.

(1) Igniter Material. The properties of the chemical energy source should be essentially
inert, easily dispersed, and releasing an amount of energy necessary to destroy hazardous toxins
or bicJogicals. Magnesium and/or titanium dust fulfills these criteria.

(2) Optical Ignition. On-board microchip lasers or PCSS-enabled diode arrays are used to
locally stimulate optical ignition/implosion of the magnesium or titanium dust (right picture in
figure 26). Because ignition and combustion methods are expected to be relatively S1OWcom-

pared to plume dynamics, we do not expect timing issues to be critical compared to current tech-
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nology. Laboratory tests will be performed calibrating pulse power and duration as a function of
igniter material and dispersal fraction. Due to the chain reaction mechanism, the major dominant
variable will be ignition threshold, rendering most parameters insensitive relative to combustion.

Deployment of Igniter Dust. Different mission scenarios may require specialized igniter applica-
tion techniques. Three techniques are envisioned. The first discharges a mortar shell from a plane
just above the plume (center picture in figure 26). The combination of instrumenting a GPS
devise on a robot and allowing the swarm to emit a beacon effectively draws a “bulls-eye” on the
plume for the fighter jet pilot. The second slightly less sophisticated method utilizes mortar shells
targeted from nearby ground artillery. The third model realizes a swarm of airborne robots
deploying its titanium dust (igniter) while being guided by the ground-based robots. Such a sys-
tem would provide an autonomous intercept system. To date, PIC code fighter aircraft simulation
dynamics exists, and these codes can be modified to anticipate mission specific scenarios such as
remediation.

Autonomous, Intelligent, Multi-Agent Swarm of Robots. Leveraging physics-based models, such
as lattice gas (LG) statistical models, quantifies both the robot’s collective state and its dynamics
but in a novel way achieving multiple objectives. Trained intelligent algorithms, such as artificial
neural networks (NNs), assess the environment and autonomously reconfigures the swarm’s state
(adaptive behavior).

(1) A Trip-Wire Mode and Follow Response. The robot’s initial configuration should secure
sensitive or highly-populated areas, a trip-wire mode (left picture in figure 26). Activating the
sensors allows the swarm to coalesce and follow beneath the effluent which is subject to the pre-
vailing wind patterns. By minimizing the communication over-head and only requiring obstacle
detection sensors to maintain the swarm’s cohesiveness and orchestrate its movements, the
swarm’s response time is maximal.

(2) Perimeter and Sensor-Array Distribution. Two “flavors” (types) of robots -- igniter
robots and remote-sensing robots -- must be positioned to monitor and initiate combustion.
Realizing the physics-based model for a swarm, the robot positions (i.e., density of states) are
controlled by applying two inter-connected pseudo-potential fields. One field is highly-attractive
near the edges of the plume, thus attracting the igniter-flavored robots (center picture in figure
26); and, the second combines a flat and inverse-radial field, thus distributing remote-sensing-fla-
vored robots evenly beneath or inside the plume and sparsely (but not zero) beyond the plume’s
perimeter. We have shown that cetiain desired swarm behavioral patterns can be achieved by
genetically training (evolutionary algorithms) potential field parameters. As an example, modify-
ing the strength of the local nearest-neighbor forces keeps the swarm cohesive and provides con-
trol over macroscopic parameters such as density and speed (e.g., maneuverability) while
heterogeneous potentials adaptively redistribute the sensors and igniters.

Remote-sensing robots image the spectral dynamics of combustion within the plume’s
region and beyond its perimeter. After the controlled inward-directed combustion, the thermal
imaging sensors mounted onto the robot’s platform, the swarm measures the thermodynamic
spectral images during remediation. Trained neural networks (using Monte Carlo simulation
data) determine anomalous (time-series) patterns such as jets, mis-ignited regions, and anticipated
motion of plume due to forces of implosion. We expect our image recognition database (various
neural network architectures) to correctly identify suspicious patterns and autonomously react to
them.
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Figure 27. Simulation of a heterogeneous swarm of robots performing the remediation
process.

The swarm must reconcile between different forms of sensor imagery types : the pIume’s
cheti cal and biological makeup and its physical and dynamical properties. Spectrometer results
determine hazardous concentration levels. Back-lighting LIDAR techniques measure the physical
and dynamical macroscopic properties of the plume, characterizing its direction of motion, speed,
and dissipation or expansion. We propose to enhance and expand our intelligent algorithm test-
bed tc~better control the swarm’s physical state. The robots will measure and encircle the plume’s
perimeter by sampling and communicating information at the local level and then perform pattern
recognition utilizing the entire sensor array and applying neural networks for global (macro-
scopic) information. To control such behavior, successful local implementation of recurrent neu-
ral networks to decipher a sequence of events (images or patterns) will be expanded to extract
global information.

In figure 27 is a 2D graphical display of a simulated swarm following a gaseous effluent that

is propagating at a constant speed and angle (45°) and exponentially dissipating (with a constant
of 5%). The time evolution of the igniter (circles) and remote-sensing (inverted triangles) robots
reveal the effects of the two inter-connecting pseudo-potentials. Starting out with a random distri-
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bution of robots (top left picture in
figure 27), the swarm coalesces
onto and propagates with the source
(top right, bottom left and right pic-
tures). After time 30, nearly all the
robots have condensed onto the tar-
get (see figure 28 and between the
top right and bottom left pictures in

figure 27). Just before this time, the
pseudo-potentials are turned-on.
The full complement of both peri-
meterand sensor force-fields allow
the heterogeneous swarm to recon-
figure and adapt to the plume --
-igniter robots at. the edges and
remote-sensing robots. interior and

exterior to the plume. The final
plot indicates the” steady-$tate
behavior of this distribution as the
plume continually expands and
propagates.

(3) Autonomously Adapting

0 10 20 30 43 50

time

Figure 28. Angular distribution of robots about plume.

Asterisk, first quadrant, 0° to 90°. Box, second quadrant, 90°

to 180°. Triangle, third quadrant, 180° to 270°. Diamond,

fourth quadrant, 270° to 360°. Swarm recognizes when con-
densation ends and redistribution begins.

to Environmental Conditions and Remediation Verification. The robots correlate and adapt their
actions relative to the environment (i.e., terrain) and its influence on the plume (i.e., wind direc-
tion). Once collected beneath the plume, reconfiguring the number of robots beyond the plume’s
perimeter and directly beneath it while it is propagating and expanding can be correlated to the
swarm’s density state. If the wind direction changes or a large obstacle must be overcome, the
swarm adapts remaining in contact, redistributing, and measuring an acceptance level for relative
positioning. This is important to account for environmental influences while maintaining optimal
signature measurements and final verification.

Environment Factors. Wind-shifts, perimeter expansion, terrain, obstacles are all examples
of environmental factors that can hinder or abort remediation attempts can be accounted for
through modified force constants (follow), application of pseudo-potentials (pictured to the left),
and changing genetically optimized potential and pseudo-potential field strengths (obstacle avoid-
ance). Thus, these real-time adaptive techniques improve the swarm’s autonomy and behavior
allowing it to perform within a variety of environments.

Verification. Each stage of remediation must be verified as well as the final result. Error or
validity-functions determine whether the constituents of the effluent are threatening, when the
robots are in place, when the igniter dust has been applied, whether combustion was self-con-
tained, if environmental conditions changed before, during, or after remediation, and how suc-
cessful. The latter has not yet been considered. After remediation a search strategy can be
employed to scan a region for contaminants. We propose to employ a set of robot instructions that
searches the fall-out area and “scrubs” (laser eradication or isolated remediated events) pockets of
surviving biological agents.

Monte Carlo Simulations. Existing Monte Carlo atmospheric physics-based analysis codes simu-
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late combustion (and convective flow) dynamics, such as turbulence, flares, and shock-waves.
These codes will determine three technical issues. First, the technical difficulty would be to
inwardly-direct the combustion, confining both the extent of the implosion and its fall-out. GAs
in combination with MC codes can determine the phase (coherence), duration, and position of the
optical igniters. Second, it is the images reproduced from these simulations that help train the
neural networks to recognize suspicious combustion patterns which the swarm keys during verifi-
cation. The final technical problem resolved by MC analysis is the correlation response times
between plume dynamics and ignition. The swarm’s autonomous behavior should produce a fast
response times compared to expected plume dynamics. However, in situations where this should
become a factor, the sequence recognition capability of the RNNs can be implemented to deter-
mine when the dynamics is acceptable for ignition procedure.

4.1.3 Summary

Both state-of-the-art sensor technology and autonomous, adaptive, remote-sensing tech-
niques analyze and assess the emerging threat. Our autonomous, adaptive, physics-based models
of a swarm allows added control, stability, and robustness (to counter-measures) by including
dynamical physical parameters in the fitness function (to optimize swarm behavior). Also, by
training the robot’s behavior via intelligent algorithms to overcome natural obscurants and artifi-
cial interferences in its pursuit of the emerging threat, its sensor contact with the plume’s toxic
elements maximizes, increasing its sensitivity to remote-sense trace chemical elements. This pro-
posed, novel technique overcomes many of the difficulties subject to conventional remote-sensing
optical stand-off measurements, such as line-of-sight interferences and transient responses. Next,
by miniaturizing the spectrometer (Biopraxis CRADA) and combining Sandia patented spectral
anal ysis algorithms, mobile sensors capable of unprecedented sensitivityy to detecting minute lev-
els (1 cfu) of chemical and biological warfare molecules can be strategically positioned. Global
optimization implementing GA incorporates physics Monte Carlo analysis teach the swarm how
to behave in order to control combustion dynamics. Finally, a methodology to simulate asynchro-
nous communication networks and protocol realized by a swarm of intelligent robots realizes
real-time neural network imaging capabilities through the use of parallel processing systems vali-

dating hazardous extinction.

4.2 Ground-Penetrating Radar (GPR)

Ultra-wideband, short-pulsed phased-array antenna array provides image data in both time
and frequency domains enhancing structure identification. Combining these techniques with the
adaptability of a reconfigurable, mobile, N-element antenna structure incorporated with intelli-
gent algorithms adds positional information to the (hyperspectral) imagery. Such a system has the
ability to find those optimal pathways and to leverage these pathways so as to image man-made
structures deployed deep within the subterrain.

4.2.1 Introduction

Detection of deeply buried underground structures in cluttered terrain or urban environ-
ments with unknown geological strata is very difficult to accomplish surreptitiously without
recourse to indirect detection methods (e.g., remote vibrometry, secondary signatures) prone to
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misinterpretation or simple countermeasure. More direct sensing methods such as ground-pene-
trating backscatter or synthetic aperture radars have offered limited utility for covert applications
against subsurface targets because of conflicting practical requirements concerning antenna size
scaling versus broadcast frequency content to offset attenuation and dispersion of the electromag-
netic pulse in penetrating layered soil media. Because of range losses to the ground surface and
impedance mismatch in air, large waveguide antenna geometries with easily detectable microw-
ave emission signatures are required from airborne platforms.

An alternative approach known as a fully adaptive phased array radar, despite many theoret-
ical advantages, has been plagued by the added complexity and longer convergence times that
accompany a control loop involving many degrees of freedom. As an example of the new type of
cooperative remote-sensing and synchronization problems which can be addressed with a distrib-
uted hierarchical architecture of mobile robots operating cooperatively at the local level subject to
global optimization criteria, we propose the ad hoc construction of a phased impulse radar aper-
ture in denied territory using an intelligent, self-organizing robotic collective of remotely acti-
vated rf pulsers. Each basic radiating element of the distributed grid will consist of an omni-
directional dipole antenna (50- 100MHz) combined with a compact optically triggered photocon-
ductive semiconductor switch (PCSS), transmission line, and time-delay circuit or phase-shifter
module. Detection will be accomplished using the same receivers in a time-gated cooperative lis-
tening mode following the initial impulse to eliminate multi-path dispersion and clutter echoes.
Using intelligent algorithms operating synergistically at both the local (repositions,” internal tim-
ing) and expert level (image quality, resolution), the assembled array can be iteratively optimized
in individual phase (synchronization with broadcast laser pulse), amplitude, and spatial orienta-
tion (1/2 spacing to avoid grating sidelobes) relative to other nearby sensors to create by electro-
magnetic superposition a directive illumination pattern with modifiable aperture robustly
adaptable to local environmental factors such as soil type, dispersion, and anomalous reflections.
Since antenna characteristics are determined primarily by the geometric position of the radiators
and their relative amplitude and phase excitation, the outgoing radiation pattern would exhibit
controllable sidelobe reduction for minimizing clutter and jamming by external noise sources.
Active beam steering and the creation of shaped transfer functions as part of an adaptive control
loop to maximize signal-to-noise ratio (SNR) could be used to correct for sensing errors, cross-
talk, and accommodate building shadowing or constrained search modes. Therefore, beam
manipulation and signal management would be orchestrated locally by sub-arrays. This design
concept has the advantage of being amenable to covert infiltration and compact packaging, and
can be overlaid with other autonomous ground sensor measurements including co-registered
range-resolved optical imagery and passive extoreceptive signatures. Laser vibrometry when
combined with change algorithms, novelty filters, and frame-to-frame difference processing could
detect vibrations of natural specular reflections as corroborating evidence. Ongoing Sandia
research has developed optically triggered high-gain GaAs semiconductor switch technology as
impulse sources for UWB ground-penetrating radar transmitters[l 8, 19].

In the following sections, a GA controlled simulated phased-array antenna structure probes
a various subterrain profiles. The GPR section concludes with a summary or our work.

4.2.2 Simulations

The setup used in these simulations is shown in figure 29. The subterrain’s cross-sectional
area covers 1500 cm by 1500 cm. Each of the swarm’s 8 robots transmits a single 15 cm wave-
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Figure 29. Schematic diagram of the adaptive phased-array structure

for simulation tests.

length monocycle cosine pulse. This simulates an end-fire antenna radiation profile similar to the
Yagi-~Jda antenna in experimental section.The target resides at a depth of 15.0 m and an x-posi-

tion of 7.5 m and measures the total transmitter signal amplitude reaching it. Measured relative to

the depth (or y) axis, the angle, 0, indicates the wave’s direction, which is related to the time

delay or phase of the transmitted pulse.

‘The signal’s path (or ray) depends on the robot’s position relative to the source and the rela-

tive phase (to those of the swarm) of its transmission. These parameters depend on the subter-

rain’s dielectric cross-sectional profile. Dielectric materials affect the signal amplitude and path-

length or angle of transmission, 0. Ignoring dispersion, Snell’s Law, the subterrain’s profile

defined by their index’s of refraction, and the robot’s positions forma transcendental equation in

(3. Numerical techniques (Newton’s method) solve for each robots’ transmission angle defining

the shcxtest path through the subterrain to the target. Therefore, each subterrain profile requires a

different transcendental equation to solve. Except for the simple case of a single dielectric mate-

rial with an index of refraction, n, of 1.0, three other subterrains (or test cases) are simulated : a

horizcmtal dielectric layer (figure 30), a vertical dielectric layer (figure 33), and a horizontal layer

with an opening (figure 32). A genetic algorithm determines the swarm’s optimal phased-array

structure.
~~ptimizing the adaptive phased-amay structure provided by the swarm has the GA maximiz-

ing the total si~al reflecting off the target. scattering and signal reception will be done later, only

the signal at the target is considered here. The parameters controlling the phased-amay are a
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robot’s position and time-delay (tDelay) or phase of the transmitted pulse. These are the GA’s
genes, 16 in total since there are eight robots. After a population of 32 swarms with random
phases and positions are produced, the three GA operations are performed on this population : (1)
selection, (2) cross-over, and (3) mutation. The tests performed in this section implement a rou-
lette-wheel selection technique (with one or two elitists), one-point crossover method (with 90%
probability), and a flat, random mutation profile (set at 5% of all genes).

The fitness function used in the GA depends on the transmitted pulse’s amplitude and phase.
The amplitude is determined by the cosine function,

Nbots

( )

(2m) (r+ c. tDehzy) ,residAmp = 2“Nbots– ~ COS ~. (18)

i

and the relative phase of the swarm is defined as

Nbots

residPhase = E phase(robot(l)) -phase(robot(i)), (19)
>“ L i

where

phase(r, tDelay) = r + c . tDelay . (20)

As before, the fitness function is proportional to the inverse of both the amplitude and phase resid-
uals,

fitness =
1

(0.1 + residTotal) ‘
(21)

where

residTotal = a . residAmpp + ~ . residPhaseq (22)

In the above equation, CLand ~ are set to 1.0, and p and q are set to 4. This normalizes the fitness
function so the GA converges toward a value of 10. To prevent calculating fitnesses from small
values, a final normalization scheme of the signal’s amplitude at the target is implemented :

Amplitude +
Amplitude

H

r , (23)

dTgt

where the target’s depth, dTgt is 15.0 m.
The results of the GA produce a time delay with an arbitrary offset since residPhase of equa-

tion 19 depends on the phase of the first robot (by definition). To determine the minimal time
delay, the term

Nbots

residtDelay = ~ tDelayi (24)

i
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. . . --- .
has been added to equation 22 with a

strength of 1 and an exponent of 4 (as well
as 1 and 2). For two different runs, the
phases, of the robots converge to the values
1815 cm and 1680 cm, an integer number
of wavelengths. In addition, convergence is
longer, from approximately 100 to 600 gen-
erations. It appears the basin of the fitness
function representing the optimal solution
is somewhat flat and would require anneal-
ing techniques in order for the GA to con-
verge toward the global minimum. A real-
time application would benefit from such
an improvement. Incorporating additional

physics-based equations and imaging anal-
ysis tools into the fitness function will
probably dominate convergence. At this
time, jt does did not make sense to continue
using the additional term of equation 23 to
remove the timing offset; therefore, this has
been dropped.

Test Case One. In figure 30, the subterrain
consists of a horizontal layer of dielectric
material (n=2) ranging in depth from 5 to
10 m (shaded region). The signal ampli-
tude within this material degrades accord-
ing the measured attenuation factor for

i~~eolus rock (-1 dB/m). For the above
mentioned physical cross-section, the
amplitude degrades by a factor ranging
from 0.15 to 0.35 depending on the path
length. By renorrnalizing the amplitude in
equatton 24 to account for these additional
losses, the fitness maintains an optimal
convergence value of 10.

Initially, the swarm positions itself in
the range from 2750 to 3000 cm (far right
in diagram). Their positions and phases are
concumently optimized by the GA, the
results from which are shown in figure 30.
Plotted in the top two graphs are the final
fitness distribution for the population of
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Figure 30. GA phase-array results for a subterrain

consisting of a horizontal layer of dielectric mate-
rial. Top plot, fitness for each swarm in the popula-
tion and the maximum and average fitness for each
generation. Bottom plot, final array configuration
and signal path.

swarms and the population’s maximum and average fitnesses during the evolution process.
Because these plo~s ‘me produced after mutation is
the average fitness keeping it from plateauing at 10.
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GA-determined solution. \
Fiiness

Intuitively, one would expect the
—..-..-.. . . ., . . . . . ...... . . . .

optimal solution having all the robots ~ s :
transmit their signal from a position ~ $ ~:
directly above the target. This is essen- ~ E
tially what happens (bottom picture in fig- ~ ~

4-

ure 30). Even though the magnitude of the ~ 2-
x

signal at the target does depend on the i o . x . .

total distance from each robot, it is a weak ~
o 10 Xi 30 m

Zwarm NO

relationship. Once above the target’s loca- 1
tion and the extent of the swarm is small ! 10 -

relative to depth, the superposition of the ~
& ,.. .

❑ - ‘..:,*,,,,.>>..’.:,..,9.,- .,.-,.:,”J’..-:....-..,,.. ~.--,:... . . ..
amplitudes changes by less than 1 percent. ~ ., ~:

,..’:’,.’,..‘J>...,. ,. ,=,,,.,. ,

The contribution of the amplitude, ~ %
,..

&

residAmp, in the fitness function is no ~
K4 —

/;longer dominant, equation 18, leaving the ‘ z : ,_.*..
phase term as the more sensitive parame- ~

.+..
o ~’
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Ge nemtia n

Adding the dielectric material
focuses the electromagnetic waves, modi-
fying the angle, e, and therefore the phase,
tDelay, and reduces the wave’s amplitude.
This focusing causes the path length [

through the dielectric is nearly indepen-
dent of the angle, rays are nearly parallel 500 t

(see figure 30). If one plots the path
length, the angle, and the propagation time 3 t

to the target for different robot positions ~
relative to the x-position of the target (i.e.,
transcendental equation), it shows that for 1DDO -

small distances, the curves are either flat
(path length and propagation time) or lin-
ear (angle). This flattens and widens the
fitness function’s phase-space near the
optimum solutions, explaining why the

GA has some difficulty converging o 1COO 2000 30G9

X POsitmfl

(slowly) to the absolute minimum. ‘hUs’ Fiwre 31. GA phase-array results for a subterrain
relatively speaking, the index of refraction
has a small effect on the angle and path

co~sisting of a vertical layer of dielectric material.

length curves, but a large effect on the
propagation times (i.e., time delays). Relative timing is important.

Test Case Two. Instead of restricting the dielectric (n=2) in depth, it is allowed to occupy a band
in x surrounding the target --600 cm to 1000 cm (see figure 31). Results are plotted in figure 31.
The maximum path length through the dielectric material would degrade the signal’s amplitude
by 96 percent. The optimal position of the swarm is shown in figure 31, where the GA moves the
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swarm to the side
with the smaller
dielectric barrier.
As before, the
dielectric profile
appezrs to be the
denominating fac-
tor. As for test
case one, a series
of plots relating
the angle, the path
length, and the
propagation time
to the robot’s rela-
tive position from

II 513 1m 150 200 250

Genemtian

the target indi- Figure 32. plot of the fitness as a function of generation.
cates an effect
essentially oppo- : .

site tcl that of a horizontal profile. The farther the robots are from the target, the smaller the differ-
ence between the path length and the angle (phase) for various indexes of refraction, excluding
propagation time. Figure 31 reveals that focusing all the energy of the robots at a single point
near the target may be sufficient to achieve an image of the target. However, these positions will
change because the scattering energy must propagate through to the opposite side of the dielectric.
To optimize target detection and image quality which depends on f3,the sensitivity of the transmit-
ted and received signals will probably be sensitive to the slope of the curves produced by the tran-
scendental equations which are linked to the subterrain profile. Incorporating such terms into the
fitness function will help determine swarm behavior that would enhance resolution.

Test Case Three. The final simulation considers a hole, a minimal resistant pathway, into a hori-
zontal strata of dielectric material (n=2). As pictured in figure 32, the hole spans in x from 5 to 8
m. The evolution of the population’s maximum (triangles) and average (diamonds) fitnesses is
shown in figure 32 as well as the optimal GA-produced ray-tracing solution after 5, 25, 50, 100,
and 200 generations. The results indicate a dichonomy between positional and relative phase con-
vergence, where the first 50 generations position the swarm above the hole and the next 100 gen-
eraticms optimize the relative phases of the transmitter pulses.

Conclusions. These three test cases provide insight into how a GA optimized adaptable phased-
array antenna can determine an optimal path through the subsurface, avoiding or minimizing the
effects of large dielectric barriers. One, a horizontal dielectric barrier focuses the electromagnetic
waves and degrades the amplitude of all transmitters equally. Two, a vertical cross-section of
dielectric material causes the swarm to behave quite differently, probing a target from the sides of
the dielectric. Three, a hole in the horizontal strata indicates a two stepped process : amplitude
measurement dominates the swarm’s global position (and distribution) and then local or phase
optimization improves and refines image processing of the target structure. The choice depends
on the geometry of the subterrain. Enhancing the amplitude mode can be accomplished by puls-
ing the monocycle signalfor extended periods of time. Here, a stochastic (a GA) method may
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converge fastest. Local phase refinement (implementing monocycle pulses on]y) may converge
more quickly implementing gradient search methods in conjunction with local substrata and tar-
get (stmctural) imaging based on ultra-wideband, short-pulsed EM techniques.

To recapitulate, initial analysis help better understand what abilities a swarm of robots require
in orcler to adaptively reconfigure a phased-array antenna. By implementing intelligent algo-
rithms, such as GAs and ANNs, optimal signal transmission and swarm distribution can be taught
to quickly find (converge) optimal pathways which can enhance structural GPR imagery.

4.2.3 Summary

Implementing radar techniques to probe an unknown (possibly changing) dielectric medium
is a challenging problem requiring novel techniques. By finding optimal imaging pathways and
artificially intelligent analysis techniques, it may be possible to probe deeper and image clearer
beneath the subterrain for structures. The technique discussed in this section implements an
autonomous, adaptive phased-amay antenna realized by a swarm of robots.

From the analysis thus far, an iterative approach is hypothesized. The robots fitted with
antennas reconfigure into groups of different densities, their signals phased in such a way so as to
probe a certain layer: of depth pver a certain area. Ultra-wideband, short-pulsed radar techniques
implemented over the spatial distribution of the swarm provide 3D (hyperspectral) images (posi-
tion-time-frequency) outlining the profile of the subterrain. Analyzing this imagery using the
swarm’s global neural network intelligence, the genetically trained swarm reconfigures along
optical pathways increasing penetration depth. It is this basic loop where the GA optimizes the
swarm’s ability to reconfigure and adapt to various subterrains by interpreting the GPR images (as
well as its ability to maneuver on the surface). Some of this work will occur on-line, requiring
fast convergence rates. From the simulations, hybrid-optimization schemes improve convergence
rates by matching subterrain profiles to algorithmic techniques (i.e., artificially intelligent swarm).

4.3 Ballistic Missile Defense

4.3.1 Introduction

To date, the United States Ballistic Missile Defense (e.g., the PATRIOT) is dominated by a
single sophisticated rocket intercepting a launched missile (e.g., a SCUD) from a hostile country
or terrorist organization. The difficulty in shooting down a missile has been compared to inter-
cepting a shot bullet by shooting it at it. In contrast, a flock of simple airborne UAVS possessing
collective intelligent behavior has a greater capacity to intercept a moving target. As a result, the
flock’s behavior reconfigures, developing an interconnected web that drastically increases the
missile intercept cross-section. Realistic dynamics are possible through the implementation of
physics-based particle-in-cell (PIC) codes, see sections 2.1.3 and 3.3.2. Measured or well-under-
stoocl environmental conditions effecting flight dynamics are represented by potential fields. UAV
aerodynamic parameters, their nearest-neighbor influences, and the entire flock are not only be
simulated but optimized using evolutionary programming techniques when considering a robot’s
design and its collective state. Heterogeneity may be required if a variety of payloads and multi-
ple strikes are needed to missile intercept and detonate different missiles or their launch position.
But it is the swarm’s ability to learn that assures high performance within an operational theatre
where countermeasures must be overcome. All of these considerations can be simulated in real-
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time due to the reduced processing time afforded by PIC algorithms.

4.3.2 !$irnulations

The simulation results for the interception of a missile implementing a flock of eight air-
borne UAVS are shown in figure 34. At time step zero, a missile is launched. Eventually, all of its
fuel is spent and it begins to descend, around time step 300. At time step 330, a swarm of airborne
UAVS sense the missile’s position, by radar, and begins to condense toward the target. At time
step 380, segments of the swarm reach the missile. Time steps 381 through 389 show the swarm
multiply striking the missile detonating its payload.

Gravitational forces dominate the missile’s trajectory. The use of PIC codes have a long and
successful history when simulating dynamics in gravitational and electrodynarnical potential
fields, i.e., astrophysics and plasmas. Simulations of the aerodynamics not only include the
energy spent by “the fuel to propel the missile but also the drag and friction forces due to the atmo-
sphere. Also, the UAV’S flight dynamics affect each element of flock onto one another (e.g.,
wake) which is also dependent on how fast, how close, and how different maneuvers effect the
flock (e.g.. pitch, thrust). All of these forces -- the flocking force, the flight dynamics, and the
attractive potential due to the missile’s presence -- are distributed onto the PIC code’s mesh. Due
to the computational technique of PIC codes, these additions add minimally to the overall calcula-
tions providing real-time simulation results.

4.3.3 Conclusions

The dynamics of BMD techniques implementing swarms of airborne UAVS can be simu-
lated in real-time. Leveraging our intelligent algorithms, a network of these UAVS has the ability
to increase missile intercept probabilities and overcome counter-measures.

4.4 optical Communications

Laser optical communication potentially offers significant advantages for remote coordina-
tion and data exfiltration from covert distributed ground-sensing networks. The spatial coherence
of laser transmitters offer favorable gain scaling with low probability of intercept, and the relative
temporal coherence of the optical carrier can support tremendous information bandwidth without
baseband interference or frequency allocation problems. A major weakness limiting the opera-
tional utility of nonideal optical communication channels propagating in atmosphere, however,
has been adverse effects of extinction (loss), scattering (dispersion), turbulence (degraded coher-
ency), and fade which degrade realizable transmission bandwidth and gain aperture for acceptable
bit error rate. We have investigated the use of a previously developed active reflectance imaging
technique based on an optical parametric amplifier (OPA) receiver[20] to enhance detector sensi-
tivity and error rate performance for unguided digital communication links affected by cloud-like
conditions. Using a kilohertz repetition rate femtosecond laser system operating at eyesafe wave-
lengths, we have evaluated the role of signal-spontaneous OPA beat noise (s-ASE) on amplified
si=~al, noise figure, and channel sampling capacity for various binary modulation formats in both
direct and coherent detection modes to establish fundamental response limitations as a function of
turbidity.

The optical communication and laser vibrometry designs are synergistic requiring a single
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experimental platform. In figure 35, an experimental block dia=~am shows signal amplification
and modulation in preparation for transmission, scattering material, and an OPA adaptive receiver
reconstructing the original data stream. Binary data is first amplified by an OPA (120 fs widths),
modulated by a carrier, and transmitter through an attenuator (e.g., vapor). Variations of the OPA
concept phase-matched near the degenerate point are expected to have cross-functional benefit to
remote laser vibrometry (a precursor to sensor placement) and noiseless quantum amplification
for robust cornmunicatiordimaging links. Future work will incorporate multiplexing in time and
frequency to access terahertz bandwidths. An increased bandwidth in combination with fast opti-
cal filter techniques allows for pseudo-random encryption methodologies securing data pathways.
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5 Summary

The major theoretical achievements are the development of two physics-based collective
behavior simulation codes, the development of parallelized genetic algorithm for optimization of
behavioral characteristics, and new results focused on local/global coordination of collective
behavior and adaptive reconfiguration of swarms looking at plumes and underground structures.
Two new physics-based collective models -- a lattice gas (LG) and a PIC (plasma-based) codes --
model. collective behavior, such a system has the advantage of being a well-benchmarked physics
design tool. Each robot’s potential fields modeled by the LG or PIC simulations provide fast, trip-
wire responses to an immediate target or event, point sensor inforrnationltransformation for fur-
ther processing (target vector direction implementing recurrent neural networks), application of
pseudo-potential fields (linked to genetically-trained neural network decisions) to adapt to local
disturbances, and global imaging-like capabilities to study and respond to the environment.
Development and implementation of a parallel GA on top of collective behavior models optimizes
spatial- and time-dependent nearest-neighbor potential interactions that realized adaptability in
the swarm’s performance -- obstacle avoidance, ground-penetrating radar, and remediation.
Behavioral performance has ~so been studied versus other physical parameters, such as friction
and drag during flight dynamics, to determine swarm behavioral changes for the ballistic missile
(PIC) defense. As a result, successful simulations implementing a heterogeneous swarm inter-
nally reconfigure while characterizing a wind-blown plume demonstrates autonomous execution
of the remediation process and global positioning of a phased-array antenna is capable of finding
the best imaging pathways through a layered dielectric subterrain to a target.

Laser optical communication potentially offers significant advantages for remote coordina-
tion and data exfiltration from covert distributed ground-sensing networks. We have investigated
the use of a previously developed active reflectance imaging technique based on an optical para-
metric amplifier (OPA) receiver to enhance detector sensitivity and error rate performance for
unguided digital communication links affected by cloud-like conditions. Using a kilohertz repeti-
tion rate femtosecond laser system operating at eyesafe wavelengths, we have evaluated the role
of signal-spontaneous OPA beat noise (s-ASE) on amplified signal, noise figure, and channel sam-

pling capacity for various binary modulation formats in both direct and coherent detection modes
to establish fundamental response limitations as a function of turbidity. Incorporating phase II
OPA techniques (“optical phase-locked loop”) are expected to minimize error rates and provide
realizable optical transmission capabilities.
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