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ABSTRACT

Straightforward algebraic expressions describing the elastic wavefield produced by a line source of finite
length are derived in circular cylindrical coordinates. The surrounding elastic medium is assumed to be
both homogeneous and isotropic, and the source stress distribution is considered axisymmetric. The
time- and space-domain formulae are accurate at all distances and directions from the source; no far-field
or long-wavelength assumptions are adopted for the derivation. The mathematics yield a unified
treatment of three different types of sources: an axial torque, an axial force, and a radial pressure. The
torque source radiates only azimuthally polarized shear waves, whereas force and pressure sources
generate simultaneous compressional and shear radiation polarized in planes containing the line source.
The formulae reduce to more familiar expressions in the two limiting cases where the length of the line
source approaches zero and infinity. Far-field approximations to the exact equations indicate that waves
radiated parallel to the line source axis are attenuated relative to those radiated normal to the axis. The
attenuation is more severe for higher frequencies and for lower wavespeeds. Hence, shear waves are
affected more than compressional waves. This frequency- and direction-dependent attenuation is
characterized by an extremely simple mathematical formula, and is readily apparent in example synthetic
seismograms.
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1.0 INTRODUCTION

Elastic wavefields generated by spatially extended sources are of interest in contexts such as seismic
exploration, earthquake seismology, borehole seismology, mine blasting, and underground nuclear
explosion phenomenology. However, exact algebraic expressions describing the radiated elastic waves
are available only for very few extended sources, even when the surrounding medium is assumed to be
both homogeneous and isotropic. One example is the spherical cavity subject to uniform interior
pressure loading. Another example is the infinite-length line source. The current work is concerned with
a finite-length line source of elastic waves, and demonstrates that the radiated wavefield can also be
characterized by simple time- and space-domain formulae.

The elastic wavefield produced by a line source of finite length h may be obtained from the
corresponding wavefield radiated from a point source via a straightforward spatial convolution operation.
This property is derived and demonstrated in circular cylindrical coordinates (r, &z), with the line source
located in the interval [-h/2,+h/2] on the z-axis. Asymmetric (i.e., independent of @ source
perfomance is assumed. Let subscripts “line” and “point” refer to the wavefields generated by line and
point sources of the same physical type, respectively. Then, particle displacement vectors generated by
each source are related via

where II(x) is the rectangle function of unit height and area, and the asterisk denotes convolution with
respect to the independent variable z. Convolution with a rectangle function corresponds to averaging.
Hence, the line source displacement at coordinate z is the average value, over a spatial aperture of length
h centered at z, of the point source displacement. This expression is valid at all distances and directions
from the line source, and for source fictions with arbitrary time variation; no far-field or long-
wavelength approximations are adopted. IrI the limiting case where the source length h vanishes, the
quantity (1/h)13(z/h) approaches a Dirac delta function d(z). Then, the above relation implies that the line
source displacement reduces to the point source displacement, as expected.

The above expression is derived by solving the elastodynamic equations for a homogeneous and isotropic
wholespace in cylindrical (r, (3z) coordinates. Several investigators (e.g., Heekm, 1953; Jordan, 1962;
Abo-Zena, 1977) have solved these equations, assuming an axisymrnetric prescribed-stress boundary
condition on the interior wall of a circular borehole with radius a. The solution technique involves
Fourier transforming field variables and boundary conditions over the axial coordinate z and time t. An

exact solution exists in the two-dimensional transformed domain. However, inverting the transform
domain solution to obtain time- and space-domain expressions for the elastic wavefield has proved to be
difficult. Approximate results have been achieved by assuming i) the observation point is far from the
finite-length cylindrical source, and ii) the wavelengths of radiation generated by the source are large
with respect to the source dimensions a and h. These assumptions enable the Fourier inversion integrals
to be evaluated approximately via asymptotic techniques such as the stationary phase method.
Alternately, a purely numerical inversion can be effected.

The present work demonstrates that a mathematically exact inversion of the two-dimensional Fourier
transformed solution can be obtained in the case where the borehole radius a vanishes. Hence, the results
correspond to the elastic wavefield radiated from a line source of finite length. The time and space
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domain formulae contain all near-field, intermediate-field, and far-field terms, and are valid for general
sourcing fmctions.

Following Heelan (1953), three distinct source stress distributions are considered. Stresses applied to the
borehole wall may act in the radial (r), axial (z), or azimuthal (f?) directions, either individually or in
concert. Each source stress is uniformly applied over a finite length h of the borehole wall, and is
independent of the azimuthal angle 0. This axisymunetric assumption leads to greatly simplified
mathematical analysis, and also constitutes a reasonable approximation for many practical elastic wave
sources. In the sequel, the three source stress types given above are referred to as pressure, force, and
torque sources, respectively. As the borehole radius a approaches zero, the magnitudes of the applied
stresses must increase without bound in order to generate finite (i.e., nonzero) outgoing wavefields. For
the pressure and torque sources, the stress x volume product remains fixed in this limiting process. For
the force source, the stress x surface area product is held constant.

In addition to conceptual appeal, the convolutional relation between point source and line source elastic
wavefields has great utilitarian value. A line source wavefield can be easily calculated by numerically
evaluating the convolution integral. Expressions describing point source elastic wavefields generated by
a unidirectional force, a unidirectional torque, and a ring pressure are required in the convolution
integral, and are compiled here in Appendix G. Although the point force and point torque wavefields are
reasonably well-known, the exact elastodynamic field radiated from a point pressurized ring source
appears to be unknown. This interesting result is a byproduct of the present analysis.

Theoretical expressions for the far-jield elastic radiation propagated from a line source are obtained
simply by expanding the convolution as a power series in the source length h. The far-field formulae
entail retaining only those terms in the expansion that are proportional to 1/R, where R is the source-
receiver distance. The far-field approximations reveal that waves radiated parallel to the source axis are
attenuated, relative to those radiated in the perpendicular direction. The attenuation is more severe for
higher frequencies, and for lower wavespeeds. Hence, shear waves are affected more than compressional
waves. Previous formulae purportedly describing far-field waves generated by a finite length cylindrical
source (i.e., with nonzero radius a) do not contain this frequency- and direction-dependent filtering effect
(Heelan, 1953; repeated by White, 1983, pages 206-208). In fact, Heelan’s (1953) expressions are
identical to the far-field radial and transverse displacement vector components radiated fi-ompoint force,
torque, and ring pressure sources. In the course of the analysis, Heelan (1953) appears to have
transferred the finite length cylindrical source to a point. Abo-Zena (1977) also makes this criticism,
although his formulae are not obviously correct either.

Several investigators concerned with underground nuclear explosions have examined the elastic
wavefields generated by explosively loaded, axisymmetic cavities (Glenn et al., 1985, 1986; Rial and
Moran, 1986; Glenn and Rial, 1987; Ben-Menahem and Mikhailov, 1995; Gibson et al., 1996). These
studies have established both frequency- and direction-dependent attenuation of far-field radial and
transverse waves radiated from elongated cylindrical and/or ellipsoidal cavities. A variety of numerical,
approximate analytical, and/or heuristic approaches have been employed for the analyses. The line
source is probably a reasonable approximation for an axisymmetric cavity with a large aspect ratio (say,
greater than 10:1). The present results for the pressurized line source are generally consistent with these
earlier results. The current work extends the concept of a frequency- and direction-dependent attenuation
filter to force and torque sources, and provides a simple, easily evaluated expression for the filter
response.



Two previous attempts to derive the elastic wavefield produced by a finite-length line source approach
the problem by considering an elongated ellipsoidal cavity with uniform interior pressure loading (Usami
and Hirono, 1956; Hazebroek, 1966). The elastodynamic equations are solved in prolate spheroidal
coordinates in the homogeneous and isotropic region exterior to the cavity, subject to a normal-stress
boundau-y condition on the cavity surface. As the minor axes of the ellipsoid are reduced to zero, the
radiated wavefield supposedly approaches that generated by a pressurized line source. However, it is
extremely difficult to establish the veracity these results, mainly due to the complexity of mathematical
analysis in prolate spheroidal coordinates. Hazebroek (1966) asserts that Usami and Hirono (1956) did
not apply the stress bounday condition at the ellipsoidal interface correctly. In turn, Hazebroek’s (1966)
expressions for displacement potential impulse responses are physically inadmissible, because they are
unbounded as the time t increases. Eringen and Suhubi (1975, pages 727-734) uncritically repeat
Hazebroek’s (1966) analysis and concussions. It should be emphasized that a proper solution of this
problem will not necessarily reproduce the results obtained herein, because two different limiting
situaticms are considered. The above authors investigate an enclosed ellipsoidal cavity as the transverse
dimensions vanish, whereas the present work is concerned with an infinite-length cylindrical borehole
with vanishing radius. The cavity is uniformly pressurized, while a normal stress is applied over a finite
length of the borehole wall. Different elastic wavefields may very well be produced. A resolution of this
issue is not attempted here.



2.0 DERIVATION

Consider an infinitely long cylindrical borehole of radius a located in a homogeneous and Isotropic
elastic wholespace. The elastic medium is characterized by compressional (P) wavespeed a, shear (S)
wavespeed P, and mass density p If a time-varying traction is applied to the intenor surface of the
borehole, then elastic waves are generated that propagate outward into the wholespace with the P-wave
and S-wave speeds of the medium. The source stress distribution may also vary spatially over the
borehole wall. This problem is amenable to solution in circular cylindrical coordinates (r, (i&)where the
z-coordinate axis coincides with the axis of the borehole. A general solution of the elastodynamic
equations in cylindrical coordinates is developed in Appendices A and B. Fortunately, the general
solution simplifies considerably in the case where the applied stress does not depend on the azimuth
angle 0. This axisymmetric situation is the subject of the current investigation.

Let the radial (r), azimuthal (9, and axial (z) components of the source stress vector applied to the
borehole wall at r = a be denoted s.(z,t), s~z,t), and s,(z,t), respectively. This stress distribution is
considered uniform over the axial coordinate range z = -h/2 to z = +h/2, and zero elsewhere. Then, the
components of the source stress vector are

()Sr(z,l) = SJl ; ~r(~) , ()So(z, t) = sol-l ; we(t), ()S,(z, t) = Szlz ; w,(t),

where II(x) is the rectangle fi.mction of unit height and area (H(x) = 1 for @l< 1/2, zero otherwise). In
these expressions, s,, s& ands= are stress magnitude scalars, and w,(t), wit), and w,(t) are dimensionless
source stress waveforms, normalized to unit maximum absolute amplitude. The solution technique
entails performing a two-dimensional Fourier transformation of all field quantities over the variables z
and t. The corresponding transform variables are denoted k and q respectively. Fourier transforming
the above components of the source stress vector yields

()S, (k,@)= .s,hsinc ~ W,(0), Se(k, 0) = sOhsinc
()

g we(o),

S,(k,O) = s,hsinc
()

~ K(@),

where sine(x) - sin/. In the sequel, upper case symbols refer to Fourier transforms (in one- or
two-dimensions) of lower case counterparts. Hence, E’(co)is the frequency spectrum of the time-domain
fimction w(t).

In Appendix A, expressions for the three components of the particle displacement vector are derived in
the two-dimensional Fourier transformed domain. For the axisymmetric case, and for r > a, these are

U, = AOkaR~(kar)+ COikkPR~(kFr),

U8 = -EOkflR; (kflr) ,



[)Uz = AOikRO(k~r)+ CO <– k’ R, (kPr),
P

where a prime denotes differentiation of a fimction with respect to its argument. The radial
eigenfunction Ro(x) is either a Hankel fimction or a modified Bessel fiction,
Compressional and shear radial wavenumbers are defined as

respectively. Finally, coefficients Ao, Eo, and COdepend on the transform variables
obtained by solving the linear equations

[

G,, (a) O

0 G22(a)

G,l (a) O

Matrix elements Gti<a)are defined in
yields

Appendix A. Solving these equations for the

of zeroth order.

k and co,and are

three coefficients

Co=[~)sinc(~) [sr~G31(a) -sz~G1l(a)],

where A is the 2x2 determinant A = G11(a)G33(a)- G31(a)G13(a). Defining the source volume V = nzz2h
and the source surface area A = 2mzh, the coefficients can be expressed as

A,= 1 ( )[sine ‘kZ (%&Kf, - (%~)wf,]>
27rpa2

E. =
1

sine
27qpa2 ( )[: (sJ’)w,y3],

co= 1 sine
2zpa 2 ( )[~ (s,v)W,f4 - (szA)~f5],



wherej are factors defined by

aG13(a)
f,= ~ ,

2G33(a)
f,= ~ , f,= -2 2G3,(a)

G,, (a) ‘ f4= * , f,= aya) -

The above expressions are exact, for nonzero borehole radius a. Their limiting forms, as the borehole
radius vanishes, are desired. In this limiting process, the three stress magnitude scalars s,, Sa and s,
increase without bound, such that the products

M, -S*V, Me = Sev , Fz ZSZA,

remain fixed. The choice of symbols is motivated by the fact that a stress-volume product has dimension
moment (force times distance, or energy), whereas a stress-area product has dimension force. The
limiting forms, as a + O,of the three zeroth-order coefficients zlO,CO,and EOare derived in Appendix C.
These expressions are substituted into the above equations for the transformed particle displacement
components. The equations are written in a manner that facilitates subsequent two-dimensional inverse
Fourier transformation. Thus, the radial component equation is:

(ice)’ U, = sine
(E)[($)z [

d (k) 2wyo(kar)~ -mgwpw-]

+(5):{2(ik)'[2wRo(kar,Ya-2wRo(k,r)Y,]-*[2wAo(k=r,c] .}1
The azimuthal component equation is:

Finally, the axial component equation is:

(iO)’ U, = sine (~)[[&){(ik)'[2wRo(kar)Ya-2wRo(kp.)Y,]+*[2KRo(k,r)Yp]}

+(%-1{ [ 112(ik)3 2~Ro(kar)~ - 2yRo(kpr)Yp] - (~~;’~)’ [2yRo(kar)Ya - 4FvrRo(kpr)Yp] .

Y. (where c is either the P-wave speed czor the S-wave speed @ is a simple function of the transform
variables k and co,and is defined in Appendix C. A two-dimensional inverse Fourier transformation on k
and cocan now be applied to each of these equations. Three Fourier transform relations are repeatedly
utilized. First
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where the double-headed arrow signifies two-dimensional Fourier transform pairing, and /i(t) is the Dirac
delta function. Second,

2mo (kcr)~ e
[1

m

&
wt–

2 c“

The validity of this relation is established in Appendix D. Finally,

(Jc)m(i(o)nqr,k, fff)) + ~:;nj-(r,z,t) ,

where F(r,k,@ e j(r~,t), and m and n are non-negative integers. This is a straightforward two-
dimensional generalization of the well-known derivative theorem of Fourier transform theory. Also, in
order to simplifi notation, the traveltimes of compressional and shear waves from the coordinate ongin
to fielclpoint (rz) are denoted as

respectively. Applying these Fourier transfoxm results to the above equations yields the following space-
time fcmnulae for the three components of elastic particle motion.

Radial component:

+[%)*%[,77
Wr(t–r=)–l’vr(t -q)

]-H:-]}]

Azimuthal component:



Axial component:

.

$+(;)*[(:){$[wz(’-;yJ’”’’)]++$[]}]}

(){[M

1[

# w,(t-ra)–wr(t–q) 1 d’ wr(t–ra)–2w, (t–rp)
+ J 2—

47p 623 m ‘–—p’ ad’ 1}1m“
The asterisk denotes one-dimensional convolution over the z-coordinate. These expressions are the
desired results. Evidently, the force source and the pressure source generate simultaneous compressional
and shear radiation, polarized in (r<) planes. The torque source radiates only azimuthally polarized S-
waves. The precise dependence of the wavefields on the spatial coordinates r and z can be readily
obtained by performing the indicated partial differentiations. Appendix E tabulates formulae for several
of the required derivatives. Significant features of these elastic wavefields are discussed in subsequent
sections.



3.0

3.1

GIHWNLkL WAVEFIELD CHAIUCTERISTICS

Velocity and Displacement Wavefields

The foregoing analysis yields the components of the particle acceleration vector in the radial and axial
directions. However, these can be integrated with respect to time t to obtain velocity and displacement
components, after suitable initial conditions are adopted. For example, the radial velocity component v~
is

where a,(t) = ~u,($/& is the radial
compcment:

t.

v, (t) = v, (to)+ jar(r)dr ,
to

acceleration. A second integration yields the radial displacement

tr. .
z4(~)= ZJr(~o)+ JVr(~)~~ = U,(to) +Vr(to)(f –to) + J ja,(~)~~~~.

to to to

Typically, vanishing initial conditions are assumed (i.e., U,(to)= V,(to)= O). Explicit dependence of the
field variables on the spatial coordinates r and z is suppressed for notational convenience. Analogous
formulae exist for the axial velocity and displacement components.

As an example, consider the particle velocity generated by the force source (i.e., set M, = Oand Me = Oin
the general equations). The second partial derivatives (~/~~ and ~/62.2) in the expressions for the
acceleration components are expanded using the formulae in Appendix E, and the results are integrated
in time according to the above procedure. Then, radial and axial components of the particle velocity
vector can be put into the forms

j (J(&)[qr(rzt)-qr(~,z,to)],Vr(r, z,t)–vr(l-,z, to) =—r-1 ~ *

1(J [~)[~z(r>z?t)-q=(r,z,to)],
Vz(r,z, t) –Vz(r,z, to) = ;II ~ *

where quantities q~and gZare defined as

[

W:(t–ra) W;(t– r@)

1+( ) [
3rz Wz(t–ra) Wz(t–rp)

“’(r’z”)= (~’ :2)3’2 a’ - ‘2

—
~’

r’+z a P 1
t-r=

3rz

J‘(r’ ‘22)5’2 -rjwz(r)dr’

and
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[ 1[Zzw; (t–ra)+rzw; (t–rp) +(2Z2 –1-2) Wz(t–ra) %(~-@

‘z(r’z”)= (~’ +:’)3’2 a’ “ (~’ +Z2)2 a - p 1
t-ra

+ (2z2 -r’)

J(r2 +Z2)5’2 ,_r,w’(r)dr”

In the common situation where vanishing initial conditions are specified and the source wavelet w,(t) is
causal with respect to time tO(i.e., wZ(t)= Ofort< tO), then v,(r<,to) = vZ(r~,to)= q.(r<,to) = qZ(r@o) = O.
The above expressions for velocity components reduce to the simpler forms

()[ )FZ 1
v,(r, z,t)=~~ ~ * —

()( )

F,

4?ip
q,(r,z, t), vZ(r,z,t)=—ll z * —

hh 47rp
q,(r,z, t).

Note that both velocity components depend on the source force waveform and its first derivative
evaluated at the P-wave and S-wave retarded times (t - Zaand t - rp, respectively), as well as the integral
of the source wavelet between these two times. Expressions for the particle acceleration components do
not contain this integral term, and thus are somewhat simpler. Hence, the subsequent analysis utilizes the
acceleration formulae only.

3.2 P and S Wavefields

The total elastodynamic wavefield radiated fi-om a finite-length line source is readily separated into
compressional (propagating with the P-wave speed a) and shear (propagating with the S-wave speed @
parts. Let the superscript “P” designate compressional waves. Then, the radial and axial components of
the P-wave particle acceleration vector are given by

d’urp

()
–lH ~ *j4a(r,zJ),

~’ h

where

Interestingly, P-waves radiated from the pressure source depend on the shear wavespeed ~. Next,
superscript “S” refer to the shear wavefield. Utilizing the partial derivative results in Appendix
radial and axial S-wave acceleration components are put into the form

32US

()r – –+H ; *;9P(LQ)>
a’

let the
E, the

where
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The azimuthal component of the S-wave acceleration vector is generated solely by the torque source, and
is

Note that the S-wavefield does not display any dependence on the P-wave speed a.

From tlheabove expressions, it is easily demonstrated that curl ap = Oand div as = O,where ap and as are
particle acceleration vectors. Hence, the P-wavefield is irrotational and the S-wavefield is
equivo luminal.

3.3 Paint Source Wavefields

The equations for elastic particle motions derived in the previous sections involve convolutions (over the
z-coorciinate) with the rectangle function (1/h)II(z/h). Careful examination reveals that all of these
wavetlelds can be written in the generalized form

wavejeld(r, z, t) ,ine ()=+l_I~ *wavejeki(r,z,t) lPOim,,

where subscripts “line” and “point” denote fields generated by line and point sources of identical
physical type (torque, force, or pressure), respectively. Convolution with a rectangle fimction
corresponds to averaging. Thus, the line source response at coordinate z is the average value, over a
spatial aperture of length h centered at z, of the point source response. This is an intuitively appealing

result. As h + O, the rectangle (1/h)II(z/h) approaches the Dirac delta fuction ~z), and the above
expression reduces to an identity, as expected.

For example, the particle displacement generated by the line torque source of length h can be w-itten as

where

Evaluating the partial derivative with the formula in Appendix E gives

[

AL?or ww-~p) + w6(=@
uo point

1

= 4?@2 p(rz +22) (r2 +22)3’2 -

11



This is the cylindrical coordinate representation of the displacement field radiated fi-om a point torque
located at the coordinate origin, and with moment oriented in the +z-direction. A more familiar
expression for the same (Ben-Menahem and Singh, 1981, p. 225, with a sign error) is obtained by
converting to spherical polar coordinates via r = R simp and z = R cosq. This version is given in
Appendix G.

Similarly, the radial and axial acceleration components generated by both the line force source and the
line pressure source are written as

Alr(r>z,t) (1.LJ-JE*6’2ur(r,z,t) 6’2uz(r,z, t) () d’zf,(r,z,t).;I-J;*
~2

,ine h h &* 7 22 ~2 “

point line point

If these equations are compared with previous formulae, then expressions are obtained for the point
source accelerations generated by the force source and the pressure source in cylindrical coordinates.
Converting these to spherical polar coordinates yield the equations given in Appendix G. The
expressions for the point force wavefield are consistent with well known results (Ben-Menahem and
Singh, 1981, p. 156). However, the elastodynamic wavefield generated by the point pressure source is
relatively unfamiliar. Note that this is not identical to the wavefield radiated from a point source of
compression (i.e., an explosion), which would generate only outgoing P-waves (see Ben-Menahem and
Singh, 1981, p. 223). Rather, the present pressure source is better characterized as a “point ring pressure
source”. Recall that it is obtained as the limiting case of a uniform radial stress applied to a finite length
of cylindrical borehole wall, as both the radius a and the length h vanish, and the stress magnitude
increases without bound. As indicated in Appendix G, this type of source simultaneously radiates both
P-waves and S-waves.

3.4 Infinite Line Source Waveiields

As the source length h approaches infinity, cylindrically diverging elastic waves are generated that
depend only on the radial coordinate r and time t. All of the above expressions reduce to appropriate
forms as the limit h + cois applied. In this limiting process, the source strength per unit of source length
must be held constant. Hence, three linear source magnitude densities are defined as

%?8and %?,have physical dimension moment per length (or force) whereas ~, has dimension force per
length. Also, as h - m, the rectangle function II(z/h) + 1. Convolution with unity yields the definite
integral

In the following formulae, subscript “inf” denotes wavefields obtained afier the limit h + cois applied to
the preceding equations for the elastic particle motion components. For the infinite length torque source

12



-%20 (?
—Ie(r,t;p) .

‘e’i”f = 4?@2 a

Only azimuthal (0) component motion is generated. For the infinite length force source

U,inf =0, ?.
24,inf= Iz(r, t;~).

47@2

Thus, this source generates only axial (z) component motion, propagating with the shear wavespeed P.
Finally, for the infinite length pressure source

-%?, d
u, i“f = —I, (r, t;cx),

4@2 a
Uzinf=o.

This source generates only radial (r) component motion, propagating with the compressional wavespeed
a. Expressions for definite integral l(r,t;c) and its radial derivative are derived in Appendix D.
Substituting these into the above equations yields the following formulae for the particle displacement
components radiated fi-omvarious line sources of infinite length.

Torque source:

‘K ()tH t–~
%?* P

U. inf=
27t@2r

w; (t)*

r

2“

t2 –~

P

Force source:

zUzinf=
2n@2

4)t–~PW*(t)*r 2

t’–~

P’

Pressure source:

%?, ()tH t–~
a

ur i“f = w; (t)*
2@?2r

r
2 “

*t’–k

In each equation, H(t) is the Heaviside unit step fimction, and the asterisk denotes convolution in time.
Interestingly, each type of source radiates a distinct elastic displacement component. Moreover, at a
fixed radial distance r, the displacement waveforms exhibit the well-known “diffhsive” character
associated with cylindrically diverging waves. The wavelets possess a decaying, infinitely long tail
(even when the source waveform is fznite duration). The above expression for the axial displacement
generated by the infinite force source is consistent with an analogous formula in Aki and Richards (1980,
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page 231). Also, in the special case where the source pressure waveform w,(t)= H(t) (i.e., step loading),
then the above equation for ~rlin~agrees with an equivalent formula in Eringen and Suhubi (1975, page
661). Both of these formulae are derived via the Cagniard-de Hoop method. The present derivation is
far simpler.

3.5 Pressure Wavefield

Acoustic pressure is another observable feature of the wavefield radiated from a source in an elastic
medium. The pressure within an elastic solid is defined to be p = (- l/3)oj, where Cti is the trace of the
stress tensor. This evaluates to p = -K div u, where K is the bulk modulus and u is the particle
displacement vector. Although an expression for pressure could be derived by calculating div u from the
above cylindrical coordinate components of the displacement vector, it is more easily obtained by two-
dimensional inverse Fourier transformation. From Appendix A, the transformed pressure, under
conditions of axial symmetry, is

‘=41-:y2)02AoRo(kar)
where y= flla. The dimensionless wave speed ratio y ranges from zero to d3 /2 = 0.866 for elastic media
(assuming materials with negative Poisson ratio are allowed). Hence, O <1 -(4/3)~ <1. Substituting in
the limiting form (as a + O)for the zeroth-order coefficient XI.gives

( 42,“(%){(%)(`k)['~Ro(k.')yQl+(P=– l–--y smc

Performing an inverse two-dimensional Fourier transform on k and coyields

Thus, the force source and pressure source each generate an acoustic pressure wavefield that propagates
outward with the P-wave speed a. Also, note that there is no explicit dependence of the radiated pressure
on the mass density p of the elastic medium. Since the torque source generates only S-waves, the
radiated pressure field from this source is identically zero.

The pressure radiated from each type of source is easily put into the form

indicating the relationship between line source and point source wavefields. Appendix G gives
expressions for the acoustic pressure generated by both a unidirectional point force and a point ring
pressure.

Finally, in the limit as h +=co,the acoustic pressure radiated from the line pressure source reduces to
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where %%,is the moment per unit length. Using the expression for the radial displacement ~rlinffrom the
previous section, it is readily verified that Pliti = -K div Ulti. The pressure radiated from the infinite
length force source vanishes, because the outgoing wavefield consists solely of shear waves.

3.6 Traveltirne Function

The traveltirne of an elastic wave (either compressional or shear) propagating from the source to field
point (rz) can be constructed via simple geometric analysis. Thus

~(r,z) = ~, 121<:,
c

T(r,z) _ J~2 +(14-h/2)’c 9 \zl>:,
c

where c = a or c = P. Figure 1 displays the contoured traveltime field as a fimction of dimensionless
radial and axial coordinates r/h and z/h, respectively. The line source resides in the interval [-0.5,+0.5]
on this,plot, and traveltime has been normalized by h/c. Heavy contours depict the line source traveltime
field and light contours give the point source traveltime fimction (1/c)~(?+#), also normalized by h/c.
The ccmtour interval equals 0.5. Obviously, the two traveltime fields agree for z/h= O,and the maximum
difference between the two (equal to 0.5) is obtained along the line r/h= O.
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4.0 EXACT WAVEFIELD FORMULAE

Exact time- and space-domain expressions for the elastodynamic wavefields radiated from the three line
sources are presented in this section. T’he formulae are valid at any distance and direction IYomthe
sources. The torque source generates only azimuthal (@ particle motion. The force and pressure sources
radiate axial (z) and radial (r) particle motion, together with acoustic pressure wavefields.

4.1 Torque Source

The particle displacement radiated from the line torque source of length h is

Since the convolution is with respect to the coordinate z, it can be distributed over the partial derivative
with respect to r, giving

Alternately, the partial derivative can be evaluated with the formula in Appendix E, yielding

4.2 Force Source

From the original formulae, the radial and axial components of the particle acceleration vector generated
by the force source of length h are given by

and

respectively. The equations contain convolutions, over the z-coordinate, with the rectangle function
(1/h)17(z/h). However, two of these convolutions maybe simplified by exploiting the derivative theorem
flx)*g’(x) = ~’(x) *g(x), and the fact that the derivative of a rectangle fimction is a pair of Dirac delta
functions with opposing polarities:
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%(;)=++%(’-3
Thus, the above expressions for the acceleration components are rewritten as

%=[&l[’(z+:)-’(z-:)]*:[wz(’-:

%=(&l{[{z’Hz-3]*:[wz(’-;G
$“(:)*[;-]}

Convcdutions with Dirac delta fuctions are trivial. Also, expressions for the above partial derivatives
are tabulated in Appendix E. In order to simplify notation in subsequent formulae, several definitions are
introduced. First, distances from the ends of the line source at +h/2 to field point (rz) are designated

R+=~-, R_=~-,

respectively. The corresponding traveltimes of P- and S-waves propagating fi-om the ends of the line
source to field point (r<) are

R.
T;=—

a’

Finally, define the functions q+(r<,t)and q.(rz,t) as the following combination of source waveforms and
derivatives:

Performing the above convolutions with the Dirac delta functions then yields the following compact
expressions for the radial and axial acceleration components:

and

( )[& . F,r 9+(~,’>~) g-(r,’,t)
a’ 147@ R: – R: ‘

[ 1{6’2UZ F,

-“(:)”[;-]]

(z-h /2)q+(?-,’,t) (Z+h /2)q_(l-,z,t) + 1.— =—
~2 4xph R: – R? P’
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The acoustic pressure radiated from the line force source is obtained via the same procedure. From the
original expression, this pressure is

p=-(%)(’-:y’)+~(;)”:[;-]
Converting the convolution with the rectangle function to convolutions with Dirac delta f~ctions yields

4.3 Pressure Source

Now that notation and methodology are established, the analysis for the line pressure source of length h
can proceed quickly. The radial and axial components of the particle acceleration vector generated by
this source are

and

respectively. Proceeding in a manner identical to the force source, convolutions with the rectangle
function can be converted to convolutions with Dirac delta fimctions. Thus

%=(%{[’(z+Hz-:)]*22$5[w’

and

%=(2%)[’(’+9-’(’-:)]*{’-S[W’
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1 W;(t – ra) – 2w;’(t – 7P)——
P’ 1}477”

Utilizirlg the formulae in Appendix E for the partial derivatives, and performing the convolutions with
the Dirac delta functions, yield

[ 1{[d’ur –Mr Zr (Z -h/ 2)~+ (~,Z,t) (Z +h /2)~_(r,z,t)
— :=

R: – ]+X:I*$[7-1}22 4xph R:

and

( ){ [[

3*UZ M, 1—.
(5#2 = 4zph R:

r2 +(1–2y2)(z–h /2)2] ‘:’(}; ‘~) –2r2 ‘:(~~ ‘i) 1

z 9+ (r,.z~) z q (r,z,~)[ z-2(z–h/2) ] R: - 2[r2 - -12(z+h /2) ] ‘R, >+2 r

where functions pi(r@) aredefined as

Functions qf(r~,t) are defined in the same manner as in the previous section, except the pressure source
wavefcmn wr(t) is used instead of the force source waveform w,(t), viz:

Also, recall that y= ~/a. In the expression for the radial acceleration, the convolution with respect to z
may be distributed over the partial differentiation with respect to r, as with the torque source. Finally,
the radiated acoustic pressure field is

P=-(2)(1-32)%)*
which evaluates to
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2(z+h /2) W;(t–r:)+wr(t– r;)—
~: 0.! R_ 1

-L”(i)*[~-]]P’

Note that several of the final formulae, for each source type, contain spatial convolutions, over the
coordinate z, with the rectangle fimction. These are retained in the expressions mainly for ease of
understanding and numerical evaluation. However, it is also possible to expand the convolutions in
various series representations involving elementary functions. Section 5.0 gives one such expansion.
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5.0 FAR-FIELD APPROXIMATIONS

The elastod~arnic wavefields radiated from the torque, force, and pressure sources of length ii entail
spatial convolutions of the form

where H(x) is the rectangle function of unit height and area. Subscripts “line” and “point” denote
waveiklds generated by line and point sources of the same physical type, respectively. The wavefields
are either particle motion components or acoustic pressure. Evaluating the convolution integral explicitly
gives

Thus, the line source wavefield equals the average value of the point source wavefield over a spatial
interval of length h centered at coordinate z. The integrand maybe expanded in a Taylor series about the
point x = z. Hence

M 1 d’ wzvefzeh.i(r,x, t)lpoint
wavejeld(r, x, t) ~Oin~= z (X-z)n.

.=On! an
X=z

Substituting this series into the integral, and integrating term-by-term gives

m

x 1 P wavejield(r, x,t)lpOin,
wavefield(r,z, t) ,in~=

.=O(n+ 1)! i%”

(;)”[1+:1).]

X=z

The quantity [1+(-1)“]/2 equals unity for even n and vanishes for odd n. Hence, the series reduces to

m 1 d2nwavejeld(r,z, t) ~i,, h 2“
wavejield(r, z, t) line= z.=O(2n + 1)! &’n ‘ ()?“

Note that the first term of the above series is the point source wavefield. Subsequent terms involve even-
order partial derivatives of this wavefield with respect to z. There are no obvious general formulae for
the high-order partial derivatives of the elastodynamic wavefields. However, all of these wavefields are
linear combinations of the function

f(r,z,t) =
&Zw[t-7

and/or its partial derivatives with respect to r, z, and t. Here, w(t) stands for one of the source wavelets
w~t), w,(t), or w,(t), and c is either the P-wavespeed a or the S-wavespeed P. As indicated in Appendix
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E, far-field approximations for the partial derivatives of function flr~,t) are readily obtained. These far-
field approximations involve retaining only those terms in the exact formulae that are proportional to l/R,
where R = d(r2+z2) is the distance from the coordinate origin to field point (r~). Hence, far-field
approximations for the derivatives of the point source elastodynamic wavefields are easily constructed by
linear superposition. These, in turn, are substituted into the above series expansion, yielding far-field
series approximations for the wavefields radiated from the various line sources. The analytical procedure
is illustrated below for the torque, force, and pressure sources. Remarkably, each series that arises can be
summed to a simple closed-form mathematical expression. Appendix F establishes that

m

z 1

()

hCOS$92’

~=, (2rz+ 1)! 2C [)
N(t-rc)=+rl * *w(t-rc),

c c

where t.(p) = hlcos~/c, and the convolution is over the common independent variable t. Thisexpression
motivates the definition of a direction-dependent source wavelet:

1
W(t, q) =

[)
—IZ ~ *w(t).
t. (P) t. (9)

Symbolically, the direction-dependent waveform w(t,p) is distinguished from the isotropic wavelet w(t)
via two arguments, rather than one. Hence, the above infinite series sums to the compact form w(t-r, ,P).

As demonstrated in Appendix F, the direction-dependent wavelet is a moving average, over a time
window of duration t.(q),of the physical source wavelet. Hence, w(t, q) is a low-pass/high-cut frequency
filtered version of w(t). All of the far-field elastodynamic wavefields radiated from the various line
sources can be expressed in terms of an appropriate direction-dependent wavelet. The final formulae are
obtained merely by replacing the isotropic source wavelet in the far-field point source equations by the
analogous direction-dependent waveform. This is a highly appealing as well as utilitarian result.

5.1 Torque Source

The even-order partial derivative, with respect to coordinate z, of the azimuthal displacement component
is

Introducing the far-field approximation for the mixed partial derivative from Appendix E gives

where spherical coordinates (R, @ are used. The approximate equality symbol emphasizes that this
relation is valid only at large source-receiver distances R. Substituting this approximation into the series
expansion for particle displacement generated by the line torque yields
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Finally, as indicated above, the series maybe summed to obtain the closed-form expression

[1

MO sin p 3
l,foE —Wj(t–rp, q),

47t@3R ~

where subscript “line” has been omitted for convenience. This expression is quite similar to the far-field
azimuthal displacement radiated from a point torque source (see Appendix G). The only difference is the
direction-dependent wavelet w~t,qj replaces the isotropic source wavelet w~t) in the equation. The time
derivative of the direction-dependent wavelet is given in Appendix F, yielding the alternative form

5.2 Fau-ceSource

A similar analysis yields the far-field motion components generated by the line force source. Consider
the radial acceleration component first. The even-order partial derivative with respect to z is

g{%

.nt}=~{(~l~[w’(t-;;::(t-’’)]}

.(fi]{:;:+,[wz(t-;:;:(t-~~)]}.

The mixed partial derivative is approximated by a far-field spherical coordinate expression from
Appendix E, yielding

Substituting this into the expansion for the radial acceleration generated by the line source gives
series

the

.
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which can be summed to a closed-form expression. Also, for consistency with related results, the second
partial derivative with respect to time (#/i22) is omitted from both sides of the equation to yield the far-
field radial displacement component

An analogous procedure can be performed with the axial motion component,
approximation

giving the far-field

Note that each component includes P-wave motion (propagating with speed cz) and S-wave motion
(propagating with speed fl. These two motions are easily uncoupled by calculating radial and transverse
components in spherical polar coordinates, which can be obtained via the linear combinations

‘R= u, sinq+u, cosp, UO= u, cosp–u~ sinq.

Thus

()F, COS~
‘R= wz(t–~.>fp)>

4zpa2R

Hence, the far-field radial and transverse displacements propagate individually as compressional and
shear waves, respectively. The above two expressions have the same form as the far-field displacement
components radiated from the point force source (see Appendix G), except the direction-dependent
wavelet Wz(t,p)replaces the isotropic source wavelet w=(t).

Finally, by the same procedure, the far-field acoustic pressure is

Performing the differentiation with respect to time gives an alternate expression that depends explicitly
on the physical source wavelet. The time derivative of the direction-dependent wavelet is given in
Appendix F, yielding

P’(%.T)(+2)[W=(t–ra +ta(@/2)-wz(t-ra –ta(@ /2)

t. (P) 1

Recall that y is the dimensionless wavespeed ratio y = fl/a. From the above relations, it is readily
inferred that the ratio of far-field acoustic pressure to far-field radial pafiicle velocity is a positive
constant:
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=pa l–~y2 .
vR far

Thus, radial particle velocity and acoustic pressure are in phase at far-field distances fi-om the line
source. This is a common feature of elastodynamic wavefields radiated from numerous different types of
point sources within a homogeneous and isotropic medium. The current analysis extends this result to a
line force source.

5.3 Pressure Source

The same analytical procedure is used to obtain the far-field displacement components radiated from the
line pressure source. Mathematical details of the derivations are omitted for brevity. The results are

and

Compressional wave and shear wave portions of these wavefields are readily apparent. Combining the
above two equations to obtain radial and transverse components in spherical coordinates gives

‘R=(4z53R)($-2c0s2 %w(’-rQ7q)

As witln the line force source, far-field radial and transverse displacements generated by the line pressure
source propagate individually as P-waves and S-waves, respectively. Also, far-field displacement
components radiated fi-om the line source can be obtained from those generated by the point source
merely by substituting the direction-dependent wavelet for the isotropic source wavelet (see Appendix G
for expressions for the elastic wavefields generated by a point ring pressure source). Performing the
partial differentiations with respect to time t in all of the above equations gives alternative expressions
for the field variables that depend explictly on the physical source wavelet w,(t). Finally, the radiated
far-field acoustic pressure is

Once again, far-field acoustic pressure is in-phase with far-field radial particle velocity.
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5.4 Far-Field Directional Filter

The above formulae indicate that far-field radial and transverse displacement components generated by a
line source are related to the corresponding components radiated from a point source (of the same
physical type) via the frequency-domain expressions

[1UR(R,$9,clqine=UR(R,fo,cd)lwintSine ‘osq ,
@a

where OC= 2xc/h, with c = a or c = ~. Subscripts “R’ and “T” refer to radial and transverse components
of motion, respectively. For the torque source, the transverse displacement is polarized in the Odirection,
whereas for force and pressure sources, it is polarized in the q direction. The multiplicative filter
sinc(cwos@@ characterizes the frequency- and direction-dependent attenuative effects associated with
an extended line source of length h. Figure 2 graphs the amplitude response of this filter as a ,function of
dimensionless angular frequency aioC, and for a range of polar angles q. The high-cut filtering effect is
most severe for the axial propagation direction p = O; the response degenerates to all-pass at p = d2.
Since @P< o., the first notch in the filter amplitude spectrum occurs at a lower angular Ilequency for S-
waves than for P-waves, for a given propagation direction.

Several investigators, using a variety of numerical, approximate analytical, and/or heuristic approaches,
have demonstrated frequency- and direction-dependence of far-field radial and transverse elastic waves
propagated from explosively loaded, axisymmetic cavities (Glenn, et al., 1985, 1986; Rial and Moran,
1986; Glenn and Rial, 1987; Ben-Menahem and Mikhailov, 1995; Gibson et al., 1996). For cavities with
large aspect ratios (i.e., long and thin) their results are broadly consistent with the above results for the
pressurized line source. Waves radiated parallel to the long axis are attenuated relative to those radiated
in the perpendicular direction. The present work extends the concept of a far-field directional filter to
force and torque sources, and provides a simple analytical formula for the filter response.
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6.0 NUMERICAL EXAMPLES

The numerical simulations presented in this section are restricted to far-field particle velocity wavefields
radiated from either point or line sources, mainly because the requisite formulae are quite simple to
implement. Far-field particle velocities depend explicitly on the physical source wavelet w(t), or its first
or seccmd derivatives; no convolution integrals need to be evaluated. Also, acoustic pressure traces need
not be plotted since, in the far-field, they are merely scaled versions of the radial velocity traces.

The source wavelet used for the numerical examples is a causal, finite-duration pulse given by

w(t) =
fi[s’n(%)-is’n(?)]~(+-i)

where T is the wavelet duration. This waveform is antisynrnetric about the center point t= T/2,and has
unit magnitude peaks at t= T/3 and t= 2T/3. Moreover, w(t) and its first two derivatives are continuous.
Thus, elastic particle displacement and velocity components radiated from the force, torque, and pressure
sources are guaranteed to be continuous fimctions of the spatial coordinates and time. The Fourier
amplitude spectrum of the source waveform is

,W(o),=(,gjsinc(l+~j-sinc(l-~) +~sinc[2+~)-~sinc[2-~)
y

where @ = 27zi’T. The main lobe of the spectrum is confined to the angular frequency interval between
zeros at a = O and co= 3@ . Subsequent lobes have very low magnitude. Figure 3 displays w(t)and
IJV(CO)Ias fmctions of dimensionless time t/T and dimensionless angular frequency cd~, respectively.
The duration T= 10 ms (corresponding to 3~0= 3/T = 300 Hz) is used for the following examples.

Figures 4, 5, and 6 illustrate far-field elastic particle velocity components radiated from point force,
torque,, and pressure sources, respectively. Traces in each panel depict the radial or transverse velocity
component observed at polar angle p, from p = 0° to q = 180° in 5° increments, at a fixed radius R = 100
m from the source. Trace length is 150 milliseconds. Earth model parameters used are a = 2000 rnls, ~
= 100C~m/s, and P = 2000 kg/m3. Hence, P-wave and S-wave arrival times are r.= 50 ms and 7P= 100
ms, respectively. Formulae for the far-field velocities are readily inferred from the exact point source
expressions in Appendix G, and are

Force ,Source:

()F COSIJ7
vR point

W’(t
“ 4zpa2R

Torque Source:

v
R point

= o,

[1–Fsinq
v

q point
= 47rp~2R

W’(t – 7P).

()

M sin ~
ve point

W“(t – @ .
= 4n@3R
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Pressure Source:

‘R1p0in=(4z:3R1($-2c0s2p)w’’(’-rQ)y ()iklsin2p ,,
v

= 4zp~3R
W(t–rp).

V point

& equality, rather than an approximation, is used for the radial velocity generated by the torque source,
because this relation is exact at all distances R. Source magnitudes M and F equal unity, and the trace
deflection scale is identical for all plots.

In the far-field, compressional and shear waves decouple into radial and transverse components of
motion, for all three source types. Note that the transverse velocity component radiated from the torque
source is polarized in the azimuthal (~ direction, whereas transverse velocities generated by the force
and pressure sources are polar (q) component motions. The dependence of the various wavefields on
polar angle p is evident. It should be emphasized that these radiation patterns are an attribute of the
various point sources, and are not an effect of extended source length.

Figures 7, 8, and 9 display far-field particle velocity components radiated from line force, torque, and
pressure sources with lengths h = 5 m, respectively. All other parameters used for calculation and
display are identical to those associated with the point source plots. Expressions for line source velocity
components are easily inferred fi-omthe formulae in the previous section, and are

Force Source:

10[Fcosq.) w(t-ra+ta(@ /2)-w(t-r#a( @/2)
VR,ine=

4xpa2R 1
9

t. (P)

10[–Fsinq w(t-rp+tD(q) /2)-w(t -ytfl(q7)/2)
vP line= 47rp~2R tp(~) 1

Torque Source:

1[)[

&f’inq W’(t–rfl +tfl(@/2)–w’(t–rp –tJ@/2)
VR,ine= 0, Ve ,ine=

4zp~3R tp(9) 1
Pressure Source:
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Recall that t.(p) = hlcos~/c where c = a or c = P. The above formulae require modification in the special
case p = 7w’2,where they reduce to the analogous point source equations. Once again, far-field P and S
waves decouple into radial and transverse motions, respectively. The high-cut filtering effect of the
extended line source is quite evident, especially for shear waves propagating near the two axial directions
p= 0° and p= 180°. For S-waves radiated along the polar axis, the first notch in the filter occurs at
fi-equency~p = fl/h = 200 Hz, which is well within the main lobe of the source wavelet’s amplitude
spectrum. For compressional waves, j= = cdh = 400 Hz. Some diminution of P-wave amplitude is
visible on the plots for near-axial propagation directions.

Finally, Figures 10, 11, and 12 depict far-field velocity components radiated fi-om force, torque, and
pressures sources of length h = 10 m, respectively. Attenuation of amplitudes within a broad range of
propagation angles about the axial directions is especially severe.

29



7.0 REFERENCES

Abo-Zena, A.M., 1977, Radiation from a finite cylindrical explosive source: Geophysics, 42, 1384-1393.

Aki, K., and Richards, P.G., 1980, Quantitative seismology, theory and methods, volume 1: W.H.
Freeman and Company.

Ben-Menahem, A., and Mikhailov, O., 1995, Multipole radiation of seismic waves from explosions in
nonspherical cavities and its applications to signal identification: Journal of the Acoustical Society of
America, 97,2675-2698.

Ben-Menahem, A., and Singh, S.J., 1981, Seismic waves and sources: Springer-Verlag.

Eringen, A.C., and Suhubi, E.S., 1975, Elastodynamics, volume 2, linear theory: Academic Press.

Gibson, Jr., R.L., Toksoz, M.N., and Dong, W., 1996, Seismic radiation from explosively loaded cavities
in isotropic and transversely isotropic media: Bulletin of the Seismological Society of America, 86, 1910-
1924.

Glenn, L.A., Ladd, A.J.C., Moran, B., and Wilson, K.A., 1985, Elastic radiation from explosively loaded
ellipsoidal cavities in an unbounded medium: Geophysical Journal of the Royal Astronomical Society,
81,231-241.

Glenn, L.A., Moran, B., Ladd, A.J.C., Wilson, K.A., and Rial, J.A., 1986, Elastic radiation from
explosively-loaded axisymmetic cavities: Geophysical Journal of the Royal Astronomical Society, 86,
119-136.

Glenn, L.A., and Rial, J.A., 1987, Blast wave effects on decoupling with axisyrnmetic cavities:
Geophysical Journal of the Royal Astronomical Society, 91,229-239.

Gradshteyn, 1. S.,and Ryzhi~ I.M., 1994, Table of integrals, series, and products (fiflh edition):
Academic Press.

Hazebroek, P., 1966, Elastic waves fi-om a finite line source: Proceedings of the Royal Society of
London, Series A, 294,38-65.

Heelan, P.A., 1953, Radiation fi-oma cylindrical source of finite length: Geophysics, 18,685-696.

Jordan, D.W., 1962, The stress wave from a finite, cylindrical explosive source: Journal of Mathematics
and Mechanics, 11, 503-551.

Rial, J.A., and Moran, B., 1986, Radiation patterns for explosively-loaded axisymmetric cavities in an
elastic medium: analytic approximations and numerical results: Geophysical Journal of the Royal
Astronomical Society, 86,855-862.

Usami, T., and Hirono, T., 1956, Elastic waves generated from a spheriodal (sic) cavity whose wall is
subjected to normal stress of harmonic type: Papers in Meteorology and Geophysics, 7,288-321.

White, J.E., 1983, Underground sound, application of seismic waves: Elsevier.

30



8.1 APPENDIX A: CYLINDRICAL COORDINATE ELASTODYNAMIC SOLUTIONS

In circular cylindrical coordinates (r, 0<), the components of the elastic particle displacement vector may
be obtained fi-omthree displacement potential fimctions

+(r,o,z,t) , ly(r, o,z, t) ,

(Eringen and Suhubi, 1975, p. 718-723). Assuming no body
dimensional scalar wave equations

~(1-, O,z,t) ,

forces, these potentials satis~ the three-

1 d2@l 1 a’y=o 1 b“x=ov’~.2F. o, v2v.7— ——
pa” “x-p’ d’ ‘

where a and ~ are P-wave and S-wave speeds in the elastic medium, respectively. In cylindrical
coordinates, the Laplacian operator is given by

The three components of the particle displacement vector are expressed in terms of the potential
functions as follows:

Note that the physical dimension of x differs from that of ~ and ~. A general solution of the above
equaticms is obtained after performing a two-dimensional Fourier transformation over the variables z and
t.Definitions of the forward and inverse Fourier transforms utilized here are

+m+cu

F(r,6’,k, co) = J ~~(r, O,z,t)exp[–i(kz + ~t)~zdt,
-m-m
+m+m

f(r,O,z,t) = --&- JjF(r,@,k,@)exP[+i(h+ at)~kdO.
–m–m

In the sequel, upper case symbols designate forward Fourier transforms (either one-or twodimensional)
of lower case counterparts. Transforming the threedimensional scalar wave equations for the potential
functions yields the Helmholtz equations

v%+< 0=0, V’y+!ty=(), V’X+*
P2

X=o.
a P’

Soluticns of these equations that are 1) single-valued in the azimuthal angle 8, 2) bounded as the radial
coordinate r + +@, and 3) outward propagating as angular frequency o + +CO,are

31



cP(r,8, k,co) = ‘$[An(k, co)cos(nO) + D. (k, ~) sin(n~)~n (kar),
“=()

X(r,13,k,co) = ~[Cn (k, o) COS(LZ8)+ F. (k,o) sin(n@lRn (kpr).
n=o

Radial wavenumbers and radial eigenfunctions contained in these expressions are defined as follows.
Let c denote either the P-wave speed a or the S-wave speed P. Then

1) For(aYc)2 -A?> O:

i

kC = ~–kz and R. (X)= Jn(X) -i SgIl(LD)~n(X) = Hn (X)
C2

2) For (aic)2 - ~ <O:

IIkC= ~–k2
c-

canal R. (X)=& (X).

3) For (cJc)2 - & = O:

kC=~ and R.(x) = X-n.
a

J.(x) and N.(x) are Bessel and Neumann functions of integer order n, respectively. For co< O,H.(x) is the
nt’’-orderHankel function of thejh-.st kind, whereas for co> O,Hn(x) is the #’-order Hankel function of the
second kind. Finally, Kn(x) is the modified Bessel function of the third kind, of order n. K.(x) is also
known as the n’~-orderBasset function or Macdonald fimction. All of these fimctions approach zero for
large values of the argument x.

Coefficients An,Bn, C., D., E., and F. depend on axial wavenumber k and angular frequency O, and are
determined by specifying boundary conditions on the cylinder wall at r = a. These boundary conditions
may involve prescribed displacements, stresses, or a combination of each. The particular case where a
stress distribution is prescribed is treated in Appendix B.

Fourier transforming the above expressions for the displacement vector components, and substituting in
the solutions for the displacement potentials, gives the following series solutions for U,, U&and Uz :
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{[ 1U, = ~ A~kaR; (k~r) + B. ~Rn (kpr) + CnikkPR~(kPr) cos(n@)
“=0 r

[ 11+D~k~R~(k~r) – E. ~R. (kPr) + FnikkPR~(kPr) sin(nO) ,
r

{[ 1UO= ~ Dn~R~ (k=r) – EnkpR~(kPr) + F~ikfiR~(kPr) cos(n8)
~=o r r

[ 11–An~R~(k~r) +B~kPR~(kPr) +Cjk~R~(kPr) sin(ne) ,
r r

[

+ DnikRn(k~r) + Fn($-k2)Rn(k,r)]sin(n@)}>

where a prime denotes differentiation of a function with respect to its argument. The expression for U,
may be simplified somewhat by defining &p=sgn[(cdf12 - l?]. Thus

+[D~ikR~(kar) + Fn~pkjRn(kpr)]sin(n(?)}.

In order to solve boundary value problems where tractions are prescribed on a cylindrical surface of fixed
radius, the stress vector acting on a surface with unit normal in the +r direction is required. This is
obtained fi-om the three stress tensor components o,,(r, 19z,I),a,~r,e~,t), and am(r,6z,t); the remaining
stress tensor components are not needed for the analysis. In cylindrical coordinates, these stress tensor
components depend on the displacement vector components via

[

1 al, + ho u,
CT,*= pp2 –— ——— 1rdt?d -r’

where p is the mass density of the elastic medium. Substituting the expressions for the particle
displacement components in terms of the potential fi.mctions into these equations gives
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CTw ;4 2[2+:(%+%)+$%].p(l-2y ’)++2PP

where y- fl/a. Fourier transforming with respect to the variables z and tyields

Finally, substituting the series solutions for the transformed potentials cD, V,
expressions yields the following solutions for the stress tensor components:

r22${[G,,(r)4+G,,(r)~n + G,3(r)Cn]cos(nO)E,, =~
n=o

+[G1,(r)D~ - G,z(r)l?~ + G13(r)Fn]sin(n@},

ZrO = @~ {[ G,] (~)An + G22(r)Bn + G,3(r)c. ]Sin(ne)
r’ n=o

+[–G21(r)Dn + G22(r)En - G23(~)~. ]cos(~@)},

Z= = ~~ {[G31(r)An + G,, (r)~n + G,, (~)c. ]cos(~o)
r2 “=0

and X into the above

Matrix elements Gj(r) depend on k, U, and the index n, in addition to the radius r. They are given by
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()G,,(r) = 2y2(k~r)’R:’(k~r) -(1 -2y2) : 2R&r),

G,, (r) = 2y’n[(k@Rj (kPr) - R. (kpr)] ,

G,,(r) = 2y2ik(kPr)2 R~(kPr),

G2,(r)= -2y2n[(k~r)R: (k~r) -

r

Rn(k~r)],

(7 \ 1

[

G22(r)= –y* 2(kPr)2 R:(lcflr) + [~-k2Jr2Rn(kPr)l,

G2,(r) = -2y2ikn[(kPr)R~ (kPr) -R. (kPr)],

G,,(r) = 2y2ikr(k~r)R~(k~ r),

G,2(r)= y2ikrnR~(kPr) ,

()
G,, (r)=y2 <- 2k2 (kPr2)R~(kflr).

P

Diagonal elements G]~,G22,and G~Jcan be rewritten by defining 8.- Sgn[(dc)z - k’] where c = a or c =
~. Then

G,,(r) = 2y2 (k~r)2 R~’(k~r)- (1– 2y2)(spkj + k2)r2Rn(kar),

G22(r) = -y’ (kPr)2[2R:’(kflr) + &#n(kflr)] ,

G,,(r) = y’kp(spkj - k’ )r2R~(kPr).

These matrix elements possess two-dimensional Hermitian symmetry in the transform variables k and m
That is, Go{r,-k,-co)= GO{r,k,co)*where the asterisk denotes complex conjugation. For (de)’ - k’ <0
(where c = a or c = B, this property follows immediately ilom the definitions given above, and the fact
that the radial eigenfunctions R.(x) are real-valued. For (co’c)*- k’ >0, the relations

R: (X)=;[R~_l (X)- R~,l(x)] , R:’(x) = ~[Rn_2(x) - 2R. (x) + R.+, (x)]>

satisfied by Hankel fimctions can be used to eliminate derivatives from the expressions for the Gti(r).
Hermitian symmetry is then readily inferred. The implications of Hermitian symmetry for the solution of
the unknown series coefficients A. through ~. is discussed in Appendix B.
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Finally, an expression for the pressure wavefield is developed. In an elastic medium, the acoustic
pressure is defined asp = -K div u, where K is the bulk modulus and u is the particle displacement
vector. Using the cylindrical coordinate representation of the divergence operator, as well as K = po? [1-
(4/3)~] gives

Substituting in the expressions for the displacement vector components in terms of potential fictions
gives

( 3y2)v2@=-4-w2p=_p~2 lJ!

Thus, acoustic pressure depends only on the compressional potential ~, which propagates with the P-
wave speed CZ.Fourier transforming on the variables z and t,and substituting the series expansion in

angle 8 for the transformed compressional potential @ yields
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8.2 APPENDIX B: STRESS BOUNDARY CONDITIONS

Elastic waves are initiated by time-varying stresses applied to the cylinder wall at radius r = a. Let the
radial, azimuthal, and axial components of the source stress vector be

sr(e, z,t) , ~e(e,z,~)> Sz(e, z,t) ,

respectively. After two-dimensional Fourier transformation

These transformed
azimuth angle 0:

sr(e,k,~),

stress vector components

SO(O,k,m), SZ(@,k,m).

may be expanded as Fourier cosine and sine series in the

m

S’,(6,k,~) = ~[P~ (k,~)cos(n8) + Q~(k,co)sin(nO)],
n=O –

S8(0,k,~) = ~[~e(k,co)cos(nd) + Q~(k,cn)sin(nO)],
n=o

Sz(6,k,co)-= ~[~(k,@)cos(n6) + Q~(k,cv)sin(nO)].
“=0

Coefficients in each series are determined from the orthogonal properties of the trigonometric functions.
Thus

p’ (k,@)= ~2fSz (~,k, to) cos(n6)d6,n Q; (k,~) = ~2~Sz (O,k,o) sin(n(?)d~,
?-r. To

where d. = 1 for n >0 and do = 1/2. Note that for n = O,the sine series coefficients vanish, and the cosine
series coefficients reduce to average values, over the angular range O to 2i7, of the corresponding
transformed stress vector components.

The stress boundary condition at r = a is mathematically expressed as

Ow(a, o,z, t) = –s,((3,2,?) , Oro(cz,e,z,t) = –s6(8,2,1) , CT=(a,e,z, t) = –Sz(o,z, t) .
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Note the negative signs on the right hand sides of these equations. Fourier transforming on z and t gives

Zrr(a, e,k,co) = –Sr(o,k,a)) , Z,O(a, O,k,co) = –S6(8, k,a), Z=(a,6, k,#) = -S, (8,k, @).

The expressions for the transformed stress tensor components, evaluated at r = a, are substituted into the
left hand sides of these equations. The Fourier series representations of the transformed source stress
vector components are substituted into the right hand sides. Equating individual terms in the infinite
sums yields two 3 x 3 linear algebraic systems that the six unknown coefficients An through ~. must
satisfy:

[ 1[
G,, (a) G,,(a) G13(u)4

G,l (a) GZZ(a) G,,(u)~.
G,,(a) G,,(a) G,,(a) C, [1

Pnr
–a 2

=— Q; ,
pa’ p,

n

G,,(a)

1[1[1
-G,, (a) G,,(a) ~. ‘ Q;

-G21(a) G22(a) -Gz, (a) En = ~ P“e .

G,l (a)
pa

–G32(u) G33(u) ~’ Q:

In principle, the cylindrical coordinate elastodynamic solution in the two-dimensional Fourier
transformed domain is now complete. The above systems are solved for each applicable index n, and the
resulting coefficients are substituted into the series for displacement vector components, stress tensor
components, and acoustic pressure developed in Appendix A.

The above linear systems possess the Hermitian symmetry in k and co required for real-valued
displacement, stress, and pressure solutions. In particular, since the components of the source stress
vector are inherently real, their twodimensional Fourier transforms are Hermitian [i.e., S,(8,-k,-co) =
S,(O,k,@* and likewise for Se and SZ]. This, in turn, implies that the coefficients PJk,co) and Q(k,a$ in
the Fourier cosine and sine expansions are also Hermitian. Finally, since the matrix elements Gj(a,k,aj
have been shown previously to be Hermitian, the coefficients AJk,a$ through F,(k, CO)obtained by
solving the above systems are Hermitian as well. This guarantees that displacement potentials ~, V, Z,
displacement vector components u,, Ua u=, stress tensor components o,,, O,& and a=, and acoustic
pressure p are all real-valued fi,mctions of the variables z and t.

In the impontant special case where the source stress vector does not depend on the azimuth angle /3,the
above formulae simplifj considerably. All Fourier series cosine and sine coefficients vanish for n >0,
implying that only the zeroth-order coefficients A. through F. are required for displacement and stress
solutions. When n = O, matrix elements G12(a), G21(a), G23(a),and G32(a)also vanish, and the above
linear systems reduce to

[
][ ]==$[:]G,,(a) G,3(u) A

G,,(a) G33(a) G
G22(a)Eo = < P:.

pa

Solution is straightforward. The remaining three coefficients Bo,DO,and F. are not needed in the zeroth-
order expressions for displacements, stresses, and/or pressure.
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8.3 APPENDIX C: LIMITING FORMS OF THE ZEROTH-ORDER COEFFICIENTS

When the borehole radius a vanishes, the limiting forms of five factors must be determined. These
factors are defined as

aGIJ(a)
f,= ~ ,

2G,, (a)
f,= ~ 7 f3= -2 2G,1(a)

f,= ~ 7
aG1l(a)

G,2(a) ‘
f,= ~ ,

where,4 is the determinant
A = G,l (a) G33(cz)– G,, (a) G,s(a).

The matrix elements Go(r) are defined in Appendix A. However, the expressions given there contain
first and second derivatives of the radial eigenfunctions R.(x). These derivatives can be eliminated via
the relations

R: (X)=-+[Rn+, (X)- SCR~_,(x)] , R:(x) = :[R.+, (X)- 2ScRn(X)+R“., (x)],

which lhold for both Hankel fimctions [SC= +1 implying Rn(x) = 27.(x)] and modified Bessel fi.mctions [s=
= -1 implying R.(x) = K.(x)]. Evaluating the relevant matrix elements for n = Oand r = a then yields

G,l (a)= y2(k@a)2[R2 (kaa) - gRO(k~a)],

G22(a) = -y’ (kPa)* R2(kPa),

G,,(a) = y2a(k2 – &#j)(kPa)R1 (kPa),

G,,(a) = y’ik(kPa)2[R, (kPa) - &flRo(kfla)],

G,,(a) = -2y2iku(kaa)R, (k~a),

where g = [(1-2~)(k/kJ2 + s~l -j)]/~. Recall that z.= sgn[(dc)2 - k’] with c = czor c = P, and y= @a.

For the analysis in this Appendix, define two dimensionless arguments x = k~ and y = k~, where k. and
kfl are radial wavenumbers associated with compressional wave and shear wave propagation,
respectively. In the limit of vanishing borehole radius a, each approaches zero, but the ratio x/y remains
fixed. In terms of x and y, the five factorsj become

f,=
ik[y2R2 (Y) – SPY21G(Y)]

y2ii(x,y) ‘

2(k’ - ePkj)[yR] (Y)]
f’=

y’i(x,y) ‘
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f3= 2 f,=
-4ik[xR, (x)] ~,= [X’%(x) -gx’%(x)]

Y2[Y2~2(Y)]’ y%(x,y) ‘ y2i(x,y) ‘

where

&x,Y) = (k’ - spk~ )[YR1(y)][x21?2 (x) - gx2Ro (x)] - zk’ [xR1(X)][Y2R2 (y) - CSPY2R0(y)] .

The quantities in square brackets in the above expressions approach well defined limits as x and y vanish.
Consider thesituationea=+l first. kthiscase, theradial eigenfunctions are Hmkelhctions of the
first or second kind. For small argument x, these low order Hankel fimctions are approximated as

HO(X)
()

= –isgn(co)zln ~ ,
()

H,(x) z i sgn(co) ~ ,
n m ()4H, (x)= i sgn(~) — .

72X2

Hence

limX+OX’HO(x) = O, limx+O XH1(x) = i sgn(co)~, limX+OX2H2(x) = isgn(co)~.
z n

Next, consider the situation S.= -1. The radial eigenfunctions are modified Bessel fuctions, with small
argument approximations

()Ko(x)=hl ~ ,
x

Thus

limX+OX2KO(X) = o,

KI(X)J,
x

limX+OXK,(x) = 1,

K’(x)+.
x

limx+OX2K2(X) =2.

Clearly, exactly the same limits hold when the cases SP= +1 are examined, with the argument y replacing
x in the above expressions. Applying these limits to the factorsj gives

f,+-ik-$-Ya,

f,+$ Y-, f, +2ik$YP,

where Y. (with c = a or c = fl is defined as

~=

{

–i ~ sgn(@), (a)/c)* -k’> O

1, (o#c)2 -k’< O “

f5+$$Yp,

Obviously, Y. can be rewritten as
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The limiting forms as a + O of the three zeroth-order coefficients &, CO, and & required for
axisynnmetric particle displacement solutions can now be obtained. The above limits for the factorsj are
utilized, together with the stress-volume and stress-area scalars M,, M& and F, defined in the text.
Applying these limits to the formulae for the coefficients yields

AO+ ‘ sinc(’)[Alr~[2k2 -$)-FZ~ik]Y.,
2zpa2

E, + 2z;p2’inc(~)[~ewelyP7

co+ 1
( )[sine ‘k~ 2M,~ik+~Wz]Yfl.

2?rp@2
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8.4 APPENDIX D: EVALUATION OF A TWO-DIMENSIONAL FOURIER TRANSFORM

Consider the function

[1j-(r,z,t) = , w t-
-4A c’

where w(t) is an arbitrary fimction of time t,and c is a wavespeed. The two-dimensional Fourier
transform offlr~,t) with respect to the variables z and t is defined as

+m+m

F(r, k, co) = ~ ~f(r,z,t) exp[–i(kz + tot)ldzdt.
-m-m

The transform over the time variable t maybe performed immediately, yielding

–a

where JV(co)is the one-dimensional Fourier transform of w(t). Expanding the two complex exponential
in terms of cosine and sine functions, and exploiting the even and odd symmetries of these trigonometric
fhnctions, gives the expression

where sgn(x) is the sign function. These integrals are evaluated with the aid of formulae 3.876 (items 1
and 2) on pages 507-508 in Gradshteyn and Ryzhik (1994). Thus, for r >0 and lcvl/c> Ikl>0:

where Jo(x) and No(x) are Bessel and Neumann fimctions of order zero, respectively. For r >0 and Ikl>

Itljlc>o:

r)
F(r, k,co) = 2FV(CD)K0r k2 –< ,

c
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where Ko(x) is the modified Bessel function of the third kind, of zero order. Ko(x) is also Imown as the
zeroth-order Basset fimction or Macdonald function. The above two equations are easily consolidated
into a single expression. Define the quantities

and

{

Jo(x) – isgn(co)No(x), &c =+1
Ro(x) =

K. (X), &c=–l .

Then, the two-dimensional Fourier transform becomes

F(r,k,a)) = 2W(@)Ro(kCr)
{(%[-’%~)]+(~)}.

Finally, defining

yields the two-dimensional Fourier transform formula utilized in the text:

F(r, k,co) = 2W(co)Ro(kCr)~ .

~(r,k,ti~) is demonstrated to be the forward two-dimensional Fourier transform of fir~,t). Then, by
Lerch’:s theorem, flrz,t) differs nom the inverse two-dimensional Fourier transform of ~(r,k,~) by at
most a null function of the variables z and t.

The definite integral

I(r,t;c) = ‘Jf(r,z,t)dz
-m

is needed for calculating the elastic wavefield radiated from an infinite-length line source. However, this
is just the one-dimensional inverse Fourier transform of F’(r,O,a$:

I(r, t; c) = :~~(r>o>o)e.,(+za)do.

Evaluating F(r,k,aj at wavenumber k = Ogives

F(l-,o,(0)= -nw(@)[No[y]+isw(@,Jo(+]].
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Substituting F’(r,O,co)into the one-dimensional Fourier inversion integral, and exploiting the symmetry
properties of the integrand, gives the temporal convolution l(r-,t;c) = w(t)*g(r,t;c), where

The above integrals are evaluated with formulae 6.671 (items 1 and 4) on page 750 of Gradshteyn and
Ryzhik (1994), yielding

1]

()
Ht–~

I(r, t;c) = 2w(t)*
c

r

2’

tz–;

c

where H(t) is the Heaviside unit step function. The partial derivative of l(r, t;c) with respect to the radius
r is also required for calculating infinite line source responses. From the above expression

a(r, t;c)

-a-

However, in order to avoid convergence
written in the equivalent form

2r
y w(t)*
c

r

4) r
t ——

c

2%

()

t+

c
L-

problems with various convolution integrals, this derivative is

~(r,t;c) = 2

11

()
tH t–~

c

a
–—w’(t)*

r

r

2’

tz–;

c

where the theoremfix)*g’(x) =~’(x)*g(x) is used.
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8.5 APPENDIX E: PARTIAL DERIVATIVES

Several partial derivatives of the fimction

[)Jc2
‘(’’z”)=J&w‘- ‘

are recluired for the analysis. In cylindrical coordinates (rz) the first-order derivatives are

Three second-order partial derivatives utilized are

&J= ?-2W”(’– rc) + (2r2 –z2)w’(t – rc) + (2r2 –z2)w(t – rc)

a2 c2(~2+’2)3’2 ‘(r2 +’2)2 (r’ +“)5’2 ‘

%= rzw”(t – r=) + 3nzw’(t– rc) + 3rzw(t – rc)

aa c2(~2+Z2)3’2 c(~2 +Z2)2 (~2 +’2)5’2 ‘

#J= z2w’’(t - Cc) + (2’2 -r2)w’(t - rc) + (2Z2 -r2)w(t - Zc)

‘2 c2(~2 +Z2)3’2 ‘(r2 +Z2)2 (r2 ‘z2r’2 “

Finally, the two third-order partial derivatives needed are

~=_ rz2w’”(t– ~c) r(5z2 – r2)w”(t – rC) 3r(4z2 – r2)w’(t – r,)

adz’
c3(r2 +22)2 - c2(r2 +’2)5’2 - ‘(r’ “2)3

3r(4z2 – r2)W(t – rc)—

(r2 +’2)7’2 ‘

&J=_ z’w’”(t – cc) 32(z2 - r2)w”(t – r=) 3Z(2Z2– 3r’)w’(t – rC)
~’

c3(r2 +Z2)2 - ‘2(r2 +Z2)5’2 - ‘(r’ “2)3

3Z(2Z2– 3r2)w(t – rC)—

(r2 +07’2 “
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In these expressions, c is a wavespeed, w(t) is a differentiable fimction of time, and rC= (UC) d(r2+#) is
the propagation time of a wave from the origin to field point (r~). It is easily established that j(r~,t)
satisfies the homogeneous three-dimensional scalar wave equation

vzf-$~=o,

where V2= #/#+( 1/r)dd-+~/c522 is the axially symmetric Laplacian operator in cylindrical coordinates.
Converting the above expressions to spherical polar coordinates via r = R sinp, z = R cosp, and rz+ Z2=
R2gives

z
[

sinq w’(t–rC)+w(t–rC)—=——

1

@-

[

Cosp W’(t – rc) + W(t – rc)—=__
&R c R’ L2R c 1R’

6’2f

[

_ = ~ sin’ qmv”(t – rC) + (2 –3cos2 fp)w’(t – 7C) + (2 – 3COS2q)w(t – rC)

&2 R C2 CR R’ 1>
22f

[

sinpcosp w“(t-7C) + 3w’(t–7C) + 3w(t–7C)—=
aa R C2 CR 1R2 ‘

82f

[

_ = ~ COS2fpv”(t – rc) + (3COS2q– l)w’(t – rc) + (3COS2(p– l)w(t – 7,)
# R

C2 CR R2 1
?

~=

[

–Sinq COSZ@v’”(t – rC) + (6cos2 q – I)w”(t – r=)

~622 R C3 C2R

3(5COS2p – l)w’(t – r=) + 3(5COS2p – l)w(t - rc)
r

CR2 R3 1
9

83f =

[

–COS~ COS2@v’”(t – 7,) + 3(2cos2 q– l)w”(t – rC)

~’ R C3 C2R

+3(5COS2 (p– 3)w’(t – rc) + 3(5COS2q – 3)w(t - rc)

CRz R3 19
where the traveltime Z-Cnow equals R/c.

There are no obvious general formulae for the high-order (i.e., n > 3) partial derivatives. However, far-
field approximations are readily obtained by retaining only terms proportional to l/R. A progression is
easily recognized in the above expressions, yielding the far-field approximations

46



()g=~–Cosq) “w(n)(t – rc) >

and

s:(-;~)i-c:s~)nw’”+’’(’-’c)

where W(n)(t)denotes the nth-orderderivative of w(t) with respect to its argument.
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8.6 APPENDIX F: DIRECTION-DEPENDENT WAVELET

The infinite sum
m

z 1

()

hCOS~2n
*=,(2TZ+ 1)! 2C

W(’n)(t)

arises repeatedly in the derivation of far-field approximations for the elastic wavefields radiated by
various line sources of length h. w(n)(t)denotes the n’~-orderderivative of the source wavelet w(t)with

respect to its argument, and c is a wavespeed (either the compressional wavespeed a or the shear
wavespeed B. Fourier transforming on the time variable tyields

.[-(@h7’)’1”W(O)Z~2n:~),

The infinite sum is a power series representation of the function sine(x) = sin(m)/(m), evaluated at
argument x = dcowp 127rc.Hence

Inverse Fourier transforming back to the time-domain gives

co

z 1

()

h COS~2“
~=,(2?2+ 1)! 2C ()

d’”’(t) = *H J *w(t),
c tc(p)

where II(x) is the rectangle fimction of unit height and area, and tC(@= hlcosq.j/c. Defining a direction-
dependent source wavelet as

W(t,q) =
()

~n ~ *w(~),
t. (P) t. (Q)

yields the following compact expression for the infinite series:

m

z 1

()

h COS~2“
W(’”) (t) = W(t,q) .

~=o(2n + 1)! 2c

Symbolically, the directiondependent waveform w(t,p) is distinguished from the isotropic wavelet w(t)

via two arguments, rather than one.

Note that the direction-dependent source wavelet is a moving average of the physical source wavelet over
a time window of duration t.(p):
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W(t, fp) = -&’:~wr
c t ?,

The length of the time window depends on the polar angle q. As p + zi2, t=(q)+ O, and thus
[l/tC(q)]l_I[t/tC(q)] approaches a temporal Dirac delta fimction i5(t).Hence, w(t,zd2) = w(t). In the
perpendicular bisector plane to the line source, the direction-dependent wavelet is identical to the
physical source wavelet. The averaging window length t.(p)has a simple geometric interpretation. It is
the time required for a plane wave, advancing with speed c in the direction q, to propagate a distance h
parallel to the z-coordinate axis. Alternately, the apparent speed of the plane wave along the z-axis is
h/tC(@.

Finally, some of the far-field elastodynamic wavefields depend on the time derivative of the direction-
dependent wavelet. Using the theorem d/dx~x)*g(x)] =f ‘(x)*g(x) = j@)*g’(x), it is easily established
that

a’t(t, (0) 1
–—=----[m+tc2)/m@ )m2)]*w(t)=t)= w(’+’.(~)’~;q~-’c(~z)z).

ac c

Note that dv(t,ni2)/d = w’(t), as expected.
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8.7 APPENDIX G: POINT SOURCE WAVEFIELDS

Expressions for the wavefields radiated from three different point sources located in a homogeneous and
isotropic elastic wholespace are tabulated below. The medium is characterized by P-wave speed a, S-
wave speed ~, and mass density p A spherical polar coordinate system originates at the source point.
P-wave and S-wave traveltimes from the origin to radial distance R are r. = R/a and TP= RIP,
respectively. Polar angle p (O s q < @ is measured fi-om the +z-axis. The wavefields are axially
symmetric; they exhibit no dependence on the azimuthal angle @. All source wavelets are given by the
dimensionless waveform w(t), which is normalized to unit maximum absolute amplitude. Finally, a
prime designates differentiation of a fmction with respect to its argument.

8.7.1 Unidirectional Torque

The particle displacement generated by a point torque of magnitude M oriented in the +Zdirection is

The displacement propagates outward as an S-wave polarized in horizontal planes (SH motion). No
compressional (P) waves or vertically polarized shear (SV) waves are generated. Both far-field
(proportional to l/R) and near-field (proportional to l/R2) terms exist. The sinq radiation pattern implies
that the displacement vanishes along the axis of the torque (p = O and q = z), and is maximum
perpendicular to the torque vector (p = m’2). Since the displacement wavefield is equivoluminal, the
pressure radiated from a point torque is identically zero.

8.7.2Unidirectional Force

The particle acceleration components radiated from a point force of magnitude F oriented in the +Z
direction are

6’2UR

[ 1{[

Fcos~ W“(f – ra) + 2w’(t – ra) + 2w(t – 7=)
— =

~2 4zpR a’ d R’
point 1

d2u,

[ ){[

F sin p W’(t–ra)+w(t–ra)

d’ = 47qpR aR R’
point

1
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The equations contain far-field terms (proportional to l/R) and near-field terms (proportional to l/R2 and
l/R3) for both compressional and shear radiation. Far-field P-waves are longitudinal and far-field S-
waves are transverse. Particle displacement waveforms for each are identical to the source force
wavefbrm w(t). Radiation patterns for the radial and polar components of motion exhibit cosine and sine
dependence on the polar angle q, respectively. However, it is apparent that this holds for the entire
wavefleld (P and S, near and far) rather than just the far-field P and S portions, respectively. The
pressure wavefield radiated from the unidirectional point force is

where y= @a. Note that the propagating pressure wavelet changes shape from the near-field to the far-
field. In the far-field, it is proportional to the derivative of the source force waveform. Moreover, the
pressure wavefield vanishes on the nodal plane defined byp = m’2.

8.7.3 Ring Pressure

The pwticle acceleration components radiated from a point pressurized ring source with symmetry axis
oriented along the z-coordinate axis are compactly expressed as

6%.lR

( ){(

M a2

)[

W’”(t– Ta) + W“(t- Ta)—— =— —–2cos2f9
1 }

- 2(3cos2 q – l)q(l?,t) ,
a 2 4zpR ~2 a3

point
a2R

a2u,

( ){[

Msin2q W’”(t – q) + W“(t – 7P)
— =

1}
– 2q(R,t) ,

22 47q7R P’ ~2R
point

where

W“(t – Ta) W“(t – 7P) + 3w’(t – ra) 3w’(t – 76) + 3w(t – ra) –3M7(t – 7P)
q(R,t) =

a2R ~2R aR2 - ~R2 R3

M is the moment magnitude of the point ring source. Like the unidirectional point force, the ring source
simultaneously radiates compressional and shear waves, with motion polarized in vertical (R,@ planes.
Also, far-field (proportional to I/R) P-wave and S-wave motions are longitudinal and transverse,
respectively. In contrast to the force source, far-field displacement wavelets equal the first derivative of
the source waveform, rather the source waveform itself. Near-field terms are proportional to 1/Rn where
n = 2, 3, and4.

The radiation pattern for radial component motion exhibits some complexities not previously evident.
Far-field P-waves have the classic (cdf12-2cos2p angular dependence, first identified by Heelan (1953).
Thus, this radiation pattern depends on the medium properties in addition to the polar angle P. Near-field
radial acceleration has a dl~ferent radiation pattern. The radiation pattern for transverse component
motion is much simpler: the entire transverse wavefield (P and S, near and far) is subject to sin2q
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angular dependence. Hence, SV-waves are strongly beamed at angles p = m’4and q = 3ni4 with respect
to the source axis.

Finally, the acoustic pressure wavefield radiated from the ring source is

~lw.=(fi)(`-:~2){[;-'`o`2~lw''(:~`a)+`'-3c0s'~'[w'(:`a)+w(`i~a)l}

Thus, the far-field pressure wavelet is proportional to the second derivative of the source waveform. The
far-field pressure has the same radiation pattern as the far-field radial acceleration, and there is no nodal
plane on which the entire pressure wavefield vanishes.
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9.0 F[GURES

Figure 1: Traveltime fields for a line source (heavy contours) and a point source (light contours). Each
traveltime fimction is normalized by Iz/cand is displayed with a contour interval of 0.5.

Figure 2: The source wavelet w(t) and its frequency amplitude spectrum IB4(co)lused in the the
numerical examples. T is the wavelet duration and @ = 27R’Tis a characteristic angular frequency. The
amplitude spectrum is normalized to unit peak magnitude for plotting purposes.

Figure 3: Response functions of the far-field directional filter sinc(amosqicoc) that converts a point
source wavefield to a line source wavefield. OC= 2nc/h is a characteristic angular frequency of the
source. Seven curves are plotted corresponding to polar angles p = 0° (inline response) to p = 90°
(broadside response) in increments of 15°. The broadside response equals 1.0 for all dimensionless
angular frequencies ai~..

Figure 4: Far-field radial and transverse particle velocity traces generated by a point force source. Trace
length is 150 ms.

Figure 5: Far-field radial and transverse particle velocity traces generated by a point torque source.
Trace length is 150 ms.

Figurle 6: Far-field radial and transverse particle velocity traces generated by a point ring pressure
source. Trace length is 150 ms.

Figurle 7: Far-field radial and transverse particle velocity traces generated by a line force source with
length h = 5 m. Trace length is 150 ms.

Figurte 8: Far-field radial and transverse particle velocity traces generated by a line torque source with
length h = 5 m. Trace length is 150 ms.

Figure 9: Far-field radial and transverse particle velocity traces generated by a line ring pressure source
with length h = 5 m. Trace length is 150 ms.

Figurte 10: Far-field radial and transverse particle velocity traces generated by a line force source with
length h = 10 m. Trace length is 150 ms.

Figurte 11: Far-field radial and transverse particle velocity traces generated by a line torque source with
length h = 10 m. Trace length is 150 ms.

Figure 12: Far-field radial and transverse particle velocity traces generated by a line ring pressure
source with length h = 10 m. Trace length is 150 ms.
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