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Abstract

Computationally intelligent recognition of characters and symbols addresses a wide range of
applications including foreign language translation and chemical formula identification. The
combination of intelligent learning and optimization algorithms with layered neural structures
offers powerful techniques for character recognition. These techniques were originally
developed by Sandia National Laboratories for pattern and spectral analysis; however, their
ability to optimize vast amounts of data make them ideal for character recognition. An
adaptation of the Neural Network Designer software allows the user to create a neural network
(NN) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters.
The initial successful recognition of standard capital letters can be expanded to include chemical
and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese.

The NN model constructed for this project uses a three layer feed-forward architecture. To
facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed
to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8
bitmap representations used for these tests are mapped onto the input nodes of the feed-forward
neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a
hidden layer, and the hidden layer feeds into five output nodes correlated to possible character
outcomes. During the training period the GA optimizes the weights of the NN until it can
successfully recognize distinct characters. Systematic deviations from the base design test the
network’s range of applicability. Increasing capacity, the number of letters to be recognized,
requires a nonlinear increase in the number of hidden layer neurodes. Optimal character
recognition performance necessitates a minimum threshold for the number of cases when
genetically training the net. And, the amount of noise significantly degrades character
recognition efficiency, some of which can be overcome by adding noise during training and
optimizing the form of the network’s activation function.
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1 Introduction

The recent development of intelligent learning and optimization algorithms offers an innovative
approach to character and symbol recoguition. Previous work with these algorithms suggests a
strong potential for the pattern recognition capabilities required for identification of characters and
symbols. There are many applications for this form of recognition, but the dual foci of this project
ultimately relates to foreign language translation and chemical formula classification applications.
These applications have been addressed in proposals.

One application includes development of “a new systematic technique for the translation and
inteqxetation of foreign language text.’’[4] 1A succession of artificial neural networks (INNs)could
be trained in character recognition for a target foreign alphabet grammar, and structural rules of
the language. Internal libraries would aid translation. The NN discussed in this paper fmuses on
the identification of capital letters from the Roman alphabet but the same program ean be used to
develop multiple NNs for recognition of a wide variety of characters and symbols. In language
translation high value foreign languages including Chinese and hbic are probable targets. The
ability to recognize and categorize foreign language documents could provide a fas$ reliable
translation methodology applicable in many disciplines.

Another application involves the ident.itlcationand classification of chemical formulas and
equations [5]. This program would require a succession of NNs to encapsulate a chemical formula
in a block of te@ “read” the formul~ and then class@ the chemicals present in the formula or the
type of reaetion. Such a teebnique requires an extensive intend library of chemieals and
mathematical symbols.

The learning capacities of individual NNs are subject to an upper boun~ but multiple NNs can
collectively perform complicated tasks. Ultimately, both of the proposed programs will require the
development of a series of NNs with diffkrent capacities; however, both programs share the initial
stage of character and symbol recognition. This paper fmuses on the development of a fA-
forward neural network which addresses this initial stage. The materials and methods of section 2
review the concepts of artificial neural networks and the genetic algorithms used to train them as
realized by the neural network designer (FIND). In section 3, results are tabulated and plotted. A
discussion of these results ensue in section 4. Conclusions are summarkd and recommendations
are enumerated in sections 5 and 6, respectively.

This work constitutes a preliminmy assessment a f~ibility study, on the use of genetically-
trained neural networks on character and symbol identification problem domains. A brief
assessment will be given at the end of the conclusions seetion.

2 Materials and Methods

The proposed technique for character and symbol recognition involves the implementation of a
super neural structure. A super neural structure consists of “a hybrid layered information
processing structure with at least one layer designed and trained by a genetic or evolutionary
algorithm.”2



NM [1,3] are “based on the known architecture of the bra@ specifically the cerebral corte~”3 but
the behavior of artificial INNsis signiikantly simpler than the activity of a red brain. There are
approximately 1011neurons in the human brain. These neurons transmit a signal from one cell to
another using a long rxxve fiber known as an axon. The transmission will “raise or lower the
electrical potential inside the body of the receiving cell. If this potential reaches a threshol~ a
pulse or action potential of fixed strength and duration is sent down the axon.’~

NN Training Process NN ValidationProcess

Feed into a
population of NNs I

Inputamayinto
the trained

Neural Network
I

I
I

I
I

Create offspringusing
selection, recombinationand

mutation techniques

I

NN remgnizes
charactersand

outputsassociated
characternumbers

F!!!EEland possible character correlations

Figure 1. Outline of NN training and validation processes.

Using an activation fimctio% the neurode of the artificial NN models the neuron’s binary threshold
behavior. The excitatory or inhibitory behavior of the cell transmissions is modeled by the weights
of the connections in the artificial NN. The fidly connected architecture of artificial NNs does not
emulate the complex connection schemes of biological NNs, thereby diminishing the applicability
of artificial NNs as a model for the brain. However, artificial NN structure provides an intelligent
method of efficient problem solving.

The internal weights of a NN’s structure undergo iterative adjustments during the optimization
stage. There are two distinct methods of achieving ophizatiom unsupervised learning and
supervised learning. In unsupervised learning, the “only available information is in the correlations
of the input data or signals. The network is expected to create categories from these correlations,
and to produce output signals corresponding to the input category.”5 In con- supervised
learning requires a direct comparison of the output of the network with known correct answers.
The NN developed for character recognition has been trained using genetic algorithms in a
supervised learning environment.

Genetic algorithms [2] (GAs) are “search procedures based on the mechanics of natural selection
and natural genetics.’% Genetic training of neural networks produces a population of NNs rather
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than a single network. Often the statistical variation of petiormance by the whole population
provides additional tiormation about the confidence and uncertainty of the population’s answers.
For a particular evaluation test set a “superbug” can be identified. These search procedures are
stochastic; therefore, they do not require a smoo~ continuous function in order to find the global
optimum. GA optimization techniques evolve to yield the best possible solution known as the
“superbug.” There are four primary difilerencesbetween genetic algorithms and more normal
search and optimization procedures:

1. GAswork with a coding of the parameterseg not the parametersthemselves.
2. GAs searchfrom a populationof points, not a single point.
3. GAs use payoff (objectivefunction)informatio~ not derivativesor other auxiliary

knowledge.
4. GAs use probabilistictransition rules, not deterministicrules.’

GAs are described with the terminology of evolutionary genetics. The @t generation consists of
an entire population of potential solutions. Known as “bugs,” each solution has unique “genetic
material” thereby resulting in a wide range of pefiormance capabilities. In the supervised learning
environment the solutions of each bug are compared to the desired solutions, and the fitness of the
bug is evaluated. Applying the principle of the survival of the fittes$ the most fit individuals
experience a higher probability of reproduction. To create the next generatio% the genetic material
of the bugs is randomly combined using a crossover technique. Mutations are introduced with a
pre-specified probability of occurrence. ‘l%eincreased probability of representation of fitter
individuals results in an increasingly fit trend. However, the scope of the population allows a
search of the entire solution space and diminishes the possibility of missing the global maximum in
fiwor of a local maxima. This offers the GA a robust performance that is necessary for
complicated systems with large amounts of information.

The character recognition analysis method consists of a (1) neural network training process
followed by a (2) neural network validation process. An outline of these processes is presented in
figure 1.

2.1 INN Training Process

The training process begins by producing a database of characters to be recognized. A graphics
user interfhce (GUI), the top picture in figure 2, allows the user to develop many different
character images and to save them as a bitmap. In these experiments, a character bitmap is an 8 x
8 array of bits, where a +1.0 indicates an “on” bit and -1 an “off bit. The database contains five
capital Roman letters – ~ B, C, D, and X – bottom of figure 2.

Next, the Neural Net Designer w) is called upon to develop the filly-emu- fd-fonvard
neural network architecture (parameters listed in Appendix A). At the moment we will confine the
NN architecture to a single hidden layer leaving two key parameters to be determined: the number
of hidden-layer neurodes and the form of the activation fimction. By extmcting the two-
dimensional string of bits one row at a timeb, a 64 bit vector represents the input pattern and
defines the number of inputs. Each output represents a single characteq therefore, the total
number of possible outputs is 5. To determine the number of hidden layer neurodes, a CQmmonly
accepted equatiom

Ptop to bottom last bit of previousrowfollowedby first bit of current row
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Figure 2. The top picture represents the GUI used to develop the character bitmaps. The
bottom picture shows the 5 capital Roman letters used for the FFNN tests.

Figure 3. Sigmoid activation function (hyperbolic tangent) as chosen in the Neural Net

Designer

nHLnoaks = &hputs” nOutputs, (1)
sets this value to 17.

The form of the activation fimction is typically sigmoidal.

~(x) = tanh(a. x-b) +C

10

A hyperbolic tangent of the form

(2)



is chosen. Parameters b and c are set to zero. This positions the activation function such that
whenx <0, fix) <0 and when x >0, f(x)> O. Letting a = 5 governs how fh.stthe activated
neurode approaches -1 or +1. The form used is displayed in figure 3.

After developing a candidate character set and determining the architecture of the FFNN, each net
within the population of 64 is shown a random sequence of 25 character images (the number of
cases) and their corresponding outputs. The NN outputs are compared to the expected outputs
(i.e., supeMsed learning). As an example, if the input vector is the image data for the letter B, the
expected output vector is set to [-1, +1, -1, -1, -l], where each output represents a letter as shown
in figure 2. ‘I%enetwork under the guidance of the GA “learns” how to recognize these patterns
and categorize them as letters. The three GA operations used to optimize the net’s weights include
selectio~ recombination, and mutation.

Fir% the parents are selected by implementing a technique called the roulette-wheel. Building the
roulette-wheel is accomplished by calculating the percentage of fitness space occupied by each bug
in the population

$tness(bug)

‘(bug) = ~fltness(i) -
(3)

population

Depending on the selection methodology, a “pressure” is applied&at evolves the entire population
toward an optimal fitness. Our aualysis defines the fitness function to be of the form

f?tness =
1

0.1+( ~ ~ (Ot@uts - ExpectedOuputs))4 ‘
(4)

Ilcmexnon.tputi

where nCases is the number of cases or characters in the training set for each generation rmdis set
to 25, noutputs is the number of possible outputs (the set of character numbers associated with
each character) and is set to 5, Outputs is the NN determined value for the given character ranging
from -1 to +1, and ExpectedOutputs is the chamcter output value the NN is expected to recognize
either -1 or +1. In other words, the fitness depends on the output residuals for all the characters in
the training set for each generation.

Seccm4 a single-point crossover methodology recombines genetic sequences to produce the next
generation’s offkpring. By randomly choosing a position within the parents’ genetic code of
weights (i.e., its network), contiguous groups of weights are exchanged aud/or swapped. In order
to maintain diversity and successfid candidates, three control parameters apply various degrees of
evolutionary pressure: elitisw propagation (crossover probability), fitness scaling. One, elitists
are bugs with the highest fitnesses. Mter each generatio~ eight neural nets with the highest
fitnesses automatically become offspring in the next generation. By providing a “memory” or
history of past optimal bugs to intermix with the current gene pool, elitism helps local search
convergence rates at the expense of global perspective. Two, only a fraction of the parents are
allowed to successfully mate, in this case 90Y0,finther increasing the convergence pressure.
Three, fitness scaling normalizes the population’s fitness distribution preventing early domination
by extraordinary individuals, while encouraging evolutionary competition amongst near equals
toward the end of convergence. The method used normalims the spread of fitnesses about the
population’s mean in relation to the population’s standard deviation of raw fitnesses.
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Thir& the mutation operator randomly replaces 10% of the genes (or weights) in the FFNN
population with a random number ranging fi-om-1.0 to 1.0. This allows the GA to continually
search the entire phase space of the fitness fimction for its globally optimal value. All nets in the
population are subject to mutation except the elitists.

When the entire population (64 nets) converges toward a fitness of 10.0 and an optimal solution is
foun~ the design of the superbug is tested (or validated).

2.2 NN Validation Process

The validation process randomly chooses a sequence of characters (those in figure 2), represents
these characters as one-dimensional bit-vectors, measures how well the optimal neural network
categorizes these characters, and plots the results.

The first two validation steps in figure 1 implement the same routines used in the training process
except that 100,000 randomly sequenced characters are analy~ thus each character in figure 2
plus a blank is sampled approximately 15,000 times, producing a statistical error less than 1’XO.
The blank pattern is defied as a vector of -l’s with an output sequence of all -1’s. Most of the
results omit those of the blank symbol due to its perfkct recognition efficiency (i.e., it is
uninteresting).

The optimal NN (i.e., the superbug) successfidly categorizes a character when the output
activation representing the input letter exceeds a +0.9 threshold while all other outputs remain
below +0.9. Using this deflnitio~ character recognition efficiency is defined as the iiaction of
times an input character exceeds the threshold plus keeping all other characters outputs below this
threshold. These efficiencies and the raw output activations (-1.0 < Outputs< +1 .0) of all the
character outputs for each character input are tabulated then plotted.

3 Results

3.1 Base Design

The initial or base design is a 3 layer fd-forward neural network with 64 input nodes, 5 output
nodes, and 17 hidden layer nodes. The GA implements (1) a roulette-wheel selection meth~ (2) a
one-point crossover technique keeping 8 (of 64) nets as elitists and allowing 90°/0of the population
to crossover, and (3) a flat or random mutation rate effkcting 10?4oof the population’s genes (i.e.,
weights). After each generation the results horn 25 randomly sequenced characters (i.e., the
number of cases) determine a net’s fitness. The GA searches for and converges toward the global
maximum of this fitness fimctio~ defied by equation 4. These and other parameters realizing this
design within the hrnework of the NND are tabulated in appendix A.

The neural network accurately identities the 64-bit character representations of the training set.
After running the program for 250 generations at about 1 second per generation (a total run-time of
approximately 4 minutes) on a Sun SPARCstation 10 workstation (50 MHz CPU), the fitness
converges to its optimal level of 10. The validation process indicates that the five test characters
(~ B, C, D, and X) have been identified succes.dldly. The results of the character recognition
program are summarized in several informative graphics shown in figyres 4 through 8.
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3.1.1 Neural Network Connection Map

The architecture of the neural network is graphically represented using nodes for the neurodes and
edges for the connections among the neurodes. As seen in figure 4, this results in two fidly
eonneeted graphs. Every input node is eonneeted to every node in the hidden layer, and every node
in the hidden layer is connected to every output node. The colors of the edges correlate to the
weights of eaeh edge. The key to the weight-color correlation is presented on the lower right of
figure 4.

Neu ml Network Connection Map
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Figure 4. Trained neural network with weights designated by color.

3.1.2 Weights Hktogram
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The weights histogram on the lower left of figure 4 plots the number of times eaeh weight is
represented on the neural network connection map. The values of the weights range from -1

3.1.3 Fitness

to 1.

The four fitness plots in Figure offer information about the fitness of the neural network based on
the fitness fimetion. A perfii fitness is 10.0. The graph entitled “Raw Fitness” plots fitness as a
fimction of eaeh individual bug (64 in total) in the generation. The “Sealed Fitness” plots the
(sigma-truncated) scaled fitness versus the individual bug. The “Best Raw Fitness” plots the
fitness of the superbug versus the generation. The “Average Raw Fitness” plots the average fitness
of the population versus the generation.

us
t i

o.~
o as

ldMd uol

Best Raw Fitness

‘:~
o m

Gcrwdiin

Average Raw Fkness
101 /’-- I

o 63; o 2s4
Irdiillal :1 G?nsrotin

Figure 5. Fitness plots.

3.1.4 BrainScan

F@re 6. BrainScan of the NN displaying the distribution of weights
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The brainscan plots the weights of each connection between neurodes. The input layer to hidden
layer 1 displays the weights of the connections between the input layer and the hidden layer, and
the hidden layer 1 to output layer displays the weights of the connections between the hidden layer
and the output layer. Such a plot reveals those input regions dominating (weights near +1),
inhibiting (weights near -l), or unnecessary (weights near O)to character recognition.

3.1.5 Character Recognition Results

The character recognition results in Figure plot the probability that the NN has successfidly
identified each letter. The red squares indicate the average outputs after recognition for each
character. These probabilities provide useful informatio~ but the NN measures its success based
on the binary threshold model provided by the activation iimction. A probability of recognition
about 0.9 is regarded as a perfect recognition. This allows a definitive recognition or lack thereof
for each character, and it is indicated by the blue circles.

Chamctw Recagnltlon R~ult~ PmbabilRy af Succass vs. Letter
l.lm

)
p:
S4

?-!u ❑ E !3

O.moh I
o 1 2 3 4 s 8

M&r

Figure 7. Probability that a letter will be correctly identMed for letters in the initial character set.

3.1.6 Contour Array

As seen figure 8, the contour array plots the input character number versus the recognized output
character number. This allows the user to ident@ any undesirable correlation between two
separate characters. In a perfect recognitio~ the contour plots are evenly ranged around they= x
line. In an irnperfkct recognition contour lines will appear in unexpected locations and alert the

Caniour Array
R , , ,

1r..:-’L “’\:/”- “’”\:<-
0 :--- ~.&..............L .. ... . ...........L... ..... .......L
o 1 2 3 4 6 6

Choroctu Numlmr

Figure 8. Contour plot depicting correlations between characters.
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user to the NN’s confhsion. For example, if the neural net confhses a B and a P, then the contour
array points (B, P) and (P, B) may have values that are not equal to -1. This would result in an
island of contour lines appearing at those points, thereby indicating that the NN had con.fbsedthe
letters B and P.

Training Set # of HL neurodes Convergence Valiahtion
Results

Attempts Successes Successes
1 % 3.. 3:
2 3 3 2
3 3 3 3
6 3 3 3
2 3 1 0
3 5 3 3
4 3 3 1
5 j.” 3 3“
9 3 3 3
4 7 3 1
5 2 1 1
7 8 3 2
8 6 5 3

l:Q””
~ (.

3 3
5 4“ o
7 7 2 0
9 7 2 2
11 5 3 3

5 3 3
;:;,,. $: $$, $;.:

Table 1. Tabulated results measuring the convergence and performance of the genetically-
trained net as a function of character set size and number of hidden layer neurodes

This collection of graphics allows a realistic evaluation of the capacity of the neural network. The
graphics were developed in IDL and incorporated into the program though an interface.

3.2 Systematic

To understand the range of applicability of the current desi~ various key parameters influencing
the network’s ability to recognize characters are systematically modified. Three such variables
include the number of hidden layer neurodes, the number of cases in the training set per generatio~
and noise level.

3.2.1 The Number of Hidden Layer Neurodes
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Figure 9. The number of hidden layer neurodes and multiplicative factor (hidden
neurodes/iiput characters) needed as a function of the number of characters.

rabulated in table 1 are the convergence and perllormance results for dMerent character training
set sizes (capacitance) and number of hidden layer neurodes. Columns 1 and 2 list the training and
validation character sets and the number of hidden layer neurodes implemented in the net’s design.
Columns 3 and 4 record the attempts and convergence successes of the GA. Of those times the GA
converg~ the runs resulting in perfect validation results, 1000/0efficient character recognitio~ are
shown in eolunm 5. The shaded regions indicate perfect convergence and performance and are
plotted in figure 9. These results reveal an increasingly nonlinear response of the hidden layer
neurodes relative to the network’s capacity.

3.2.2 The Number of Cases

The top six graphs in figure 10 plot eaeh character’s recognition efficiency for three separate runs
that converged (series 1,2, and 3) and their average (series 4) for nCases, the number of cases
parameter, equal to 1,5,7, 10, 17, and 25. When nCases ranges from 1 to 7, the geneticdly-
trained network samples eaeh character less than 1.4 times per generation. Even though the GA
converged to an optimal state according to the fitness fimetio~ a value of 1.4 is insufficient for
learning and the network’s performance remains poor. As nCases increases somewhere between
10 and 17, performance (efficiency) and learning (convergence) greatly improves, with only one of
the three sample runs unable to concurrently recognize all five characters. Once beyond a ease
number of 25, the network’s tmining and performance is optimal.

The graphs in figure 1O(B)plot the average number of generations over the three runs for the GA
to search out a superbug and for the entire population to eonverge to this state. Notice that the
population’s first found optimal bug is insensitive (i.e., flat) to the number of cases, while the
convergence of the entire population improves for larger case numbers.

3.2.3 Noise
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Figure 10. (A) Character recognition efficiency of all five letters when trained with 1,5,7,10,
17, and 25 number of cases. (B) The number of generations until the superbug and average

of population converges.
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Scanners will not reproduce a character’s bitmap image without inefficiencies caused by such
effkcts as smearing, character variations (as in hand-written characters), or differing fonts. All of
these effkcts are considered noise. To begin to understand the effects of noise, a battay of tests
measure the effbcts of noise during the validation process where noise is defined by randomly
flipping bits. This is followed by incorporating noise into the training session in the hope of
improving the net’s overall performance through genetition. Therefore, there are two sources
of noise: one during training and the other during validation.

As stated above, noise is equivalent to flipping bits within a character’s bitmap image. Tests
include training the neural network with character images that have (i) no bits flipped (BF), (ii)
half the images with OBF and the other half with 1 BF, (iii) a third of the images with OBF, a third
with 1 BF, and a third with 2 BF, and (iv) a fifth of the images with OBF, a MM with 1 BF, and so
on up to 4 BF. The second source of noise, which is implemented a little differently compared to
the trainings~ is during the validation process. Validation results measure eight different
character recognition efficiencies for those images with BF set only to O, 1, 2, 3,4, 6, 8, and 10,
respectively. Results from this analysis are displayed in figures 11 and 12.

In figure 11, the efficiency for each character is plotted as a fimction of both validation and

_ BF. Note the W (bottom) grapk This graph plots the average for all five characters for
each training method.

In figure 12, changes in the character recognition efficiency and average outputs relative to the zero
BF validation results are shown.

Additional results not shown indicate that training the network with character images having O
through 4 BF and with nCases set at 25 causes the GA to converge to a non-optimal set of
efficiencies. After increasing the number of cases to 100, the GA converges consistently to an
optimal value.

3.2.4 Form of the Activation Function

Figure 13 displays the results for a net trained using 250 cases per generatio~ an activation
fiction with the parameter set to 25 which approaches the form of a step fimctio% and training
images containing Othrough 4 randomly flipped bits. Unfortunately, the Ii-actionof times the GA
converges within 104generations is small (1 out of 4) and has not been pursued until fhster
machines and parallel algorithms can be employed.

The left graph in figure 13 plots the character recognition efficiency as a fimction of noise. The
symbols B and D are much improved and begin to drop off precipitously beyond 4 BF, the BF
training set limit. Other letters are still much improved but till off more gradually with noise.

The right graph in figure 13 plots the average character recognition efficiency over all five
characters as a fimction of BF. Also plotted are the curves for the other four training techniques
shown in figure 11. Tuning the activation fimction and increasing the number of cases show great
improvement when overcoming a noisy environment.
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(see figure 11).

4 Discussion

In its initial stage, the NN developed for character and symbol recognition has yielded promising
results. If the NN is training properly, the fitness will converge to its optimal level. A perfkct
fitness is defied as having a value of 10.0. A convergence to the optimum fitness correlates with
perftxt character recognition. This is a strong indicator that an appropriate fitness fiction has
been defined. The plot of the best raw fitness has a steeper slope than that of the average raw
fitness because it plots the performance of the superbug of each generation. The average raw
fitness indicates the speed (the number of generations) at which the population converges to a
maximum. When the optimal fitness is attain~ a set of ideal weights have been identified. The
weights on individual nodes may dii%erfrom run to w but consistent results of optimal fitness
indicate that the NN is tmining properly. The optimal weights determine the multivariate solution:
the superbug NN.

After training the NN, the program tests the success of recognition of the characters with a test set
of data. The results from this test are plotted in the character recognition results. The character
recognition results indicate perfect recognition of the characters in the test set approximately 900/0
of the time, in the base design. The runs in which recognition was irnperfii also show that fitness
did not converge. It is unclear whether the fitness would converge in these cases if the GA was
allowed to proceed for additional generations.

As seen in both the Neural Network Connection Map and the Weights Histogram in figure 4, and
in the Brainscan in Figure, there are many connections in the NN which are weighted at O. This
distribution suggests that the NN maybe capable of tmining for the information contained in a
much larger character set. The solid recognition results of the initial set of five 64-bit characters
demonstmtes encouraging evidence that a single NN maybe successfidly trained to recognize
multiple characters.

22



The contour plot seen figure 8 maintains an approximately regular distribution around the line y =
~ thus indicating that the input of a given letter will result in the output of that letter. Moving
away from the correlation points (AA), @,B), . ... (X,X) the contours show a fast descent from the
1 of correlation to the -1 of non-correlation. The contour plot has been effbctive in locating a NNs
confhsion when it either fhils to recognize a character or it mistakes one character for another.

The number of hidden nodes has a direct effit on the capacity, convergence, and success of the
net. A somewhat qualitative graph of the character capacity versus the number of hidden layer
neurodes appears to be nonlinear (and in the wrong direction). In order to train a 3 layer feed-
forward neural nehvor~ a prohibitively large number of hidden layer neurodes may be required (in
contradiction to the large tlaction of zero weights). However, the statistics are poor. More
mmningfhl results requires a clear set of rules or thresholds to be introduced when deciding what is
an appropriate convergence or success rate.

A successfid search of the fitness fiction’s optimal state depends on the number of cases, nCases.
If increasing the number of times each character is seen by the genetically-trained net during each
generation provides a more complete picture of the fitness fimction’s space, performance is
enhanced and near perlkct character recognition efficiency is assured. A clue to the effect of
nCases maybe deduced from the plots in figure 10B. These plots indicate that the number of
generations needed to search out an optimal solution is flat while that of the entire population
increases (freer generations). One may surmise that the superbug search is dominantly stochastic
while that of the entire population is dependent on evolutionary pressure. A larger number of cases
may better represent (or define) the fitness fimction and its global optinmm. However, execution
speed times will increase requiring one to make a trade-off between nCases and performance.

Can the relatively abrupt change in net performance in relation to ncases be explained ?
Fir% let us assume that the input to the fitness fimction at each generation is a bit vector of length
nInputs. nCases. If the sequence of bits (or letters) is important the population size of unique
input patterns is equal to m’, where m is the cardirudity of the character set (nOutputs), and n is the
number of cases (nCases). The lower bound on the number of (random) training samples
providing an appropriate level of generalization for a FFNN with a single hidden layer is of the
order [6]

Q()w—
&’

(5)

where W is the number of weights and& is the acceptable error rate. With approximately 103
weights and a 10-2error rate, a sample group consisting of 105elements is needed to draw from.
Or,

log(w/&) 5
nCases w .— .

log(m) - log(5) - 7“1“
(6)

Looking at the plots in figure 10A a noticeable improvement in performance occurs between 7 and
10 cases, even though convergence rate remains low. It is not until the 17 to 25 range when the
efficiency peaks (or flattens out). Instead of assuming all combinations of a As, b Bs, c Cs, d Ds,
and x Xs to be distinct and equally distributed we should consider some combinations to be more
probable than others (e.g., AABC occurs more often than BA4A). This effectively reduces m and
increases the number of cases. Taking one step finther, a random set of noisy characters may
produce a much more complicated fitness fimction and or provide too large a training population.
If the former, increasing the number of cases maybe helpfhl or nec.essmy.
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Noise defined by the number of bits flipped bits (BF) can significantly effect chamcter recognition
efficiency – a reduction of -30’Yowhen 4 bits are flipped (see figure 11). By tmining the net with
character images consisting of up to 4 bits randomly flipped and with nCases at 100, a 6 to 7
percent improvement is seen. The plots in figure 12 reveal that each character pefiorms
dMerently. Improvements for the letters B, C, and D range from 11 to 17 percent. Part of the
fhilures occurs when more than one output exceeds the 0.9 threshold. This eff- can be inferred
from the average outputs plots (right side of figure 12) which shows a significant change in the
average outputs compared to the efficiencies. In additiom this effect is also corroborated by a few
small islands off-axis in the contour plots (but not entirely).

M@g the form of the activation fimction has proven beneficial. By increasing the parameter a
Ilom 5 to 25 in the sigmoidal fimction of equation 2, the activation approaches a step fiction.
Combining this effkct with an increase of ncases to 25 dramatically improves the character
recognition efficiency -20 percent over the base design. Therefore, optimking the architectural
design of the artificial neural network (e.g., the form of the activation fimctions) will be important.

A consequence of the improved training method is slower convergence and high CPU usage.
Training with noisy characters requires 10x more generations to converge and 4x the number of
cases to assure a global optimum. A parallel version of the NND becomes important.

5 Conclusions

Genetically training a 3 layer FFNN to recognize capital Roman letters of limited resolution has
been shown to be successfid. Basic rule-of-thumb calculations have been used to determine the
architecture of the network and the parameters of the GA. Tests indicate increasing the capacity of
the network in order to recall all 26 letters of the fill alphabet would appear dif3icult unless
additional character recognition techniques are incorporated. The number of cases plays a role in
convergence rates but more importantly performance (i.e., character recognition efficiency).
Attempts to quant@ the minimum number of cases as a fimction of the neural network’s
architecture is instructive but somewhat limited. The major problem appears to be the ability of
the network to overcome noise. Flipping bits within the character’s bitmap image degrades
recognition efficiency. Additional training with noisy characters regains some efficiency, but only
a modest percentage -4 bits flipped has a 30% loss while training with noise only gains 6 to 7°A
back. However, the greatest improvement comes from an activation fimction that approaches the
form of a step fimction. On average, almost 70% percent of the base design losses are regained
with a modified activation fi.mction. One can conclude that speed (a parallel version of the code)
and improved techniques (architecture, training, character resolution) need to be explored.

Both the foreign language translation and the chemical formula classification applications require a
higher degree of sensitivity than the 8 x 8 representation can provide. To enhance the resolution of
the characters and symbols in the training set of the NN, the bitmap representation has been
increased to 256 (a 16 x 16 grid) and 1024 points (a 32 x 32 grid), both successful at recognizing
bitmap irnagcs of numbers and letters, respectively.

A graphical user interfhce (GUI) has been developed and incorporated into the Neural Net
Designer to facilitate data entry as training sets for the NN increase. The GUI and relevant males
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that have been developed to convert a matrix representation to a bit array in C+t format offer the
option ofcreating an8x8grita 16x 16gri~a32x 32gri~anda 64x64 grid.

The resolution enhancement of the characters and symbols is an important issue for both the
foreign language and the chemical classiikation applications. Visual assessment indicates that the
32x 32 grid will offer a level of resolution adequate for both applications. To utilize the GUI, the
user simply clicks on boxes of the 32 x 32 grid until the desired pattern is present. Then the
bitmap is converted into an array of 1024 points and read into the Neural Net Designer software.
This method will allow great flexibility of data input and it will allow the program to be
generalized for multiple character set datibases used in various applications.

Current mainstream scanner and printer technology offers resolution of 600 dots per inch. This is
approximately a factor of 2 greater than the 32 x 32 grid representation therefore appropriate
scaling measures should be trivial to implement. It is reasonable to assume that the 32 x 32 grid
representation will be easily scaled from scanner input data.

The higher resolution offered by a 1024 point array will also provide a means by which the ef%ct
of noise in the data can be measured. The variances of font orientation or smudged paper will be

. . .
mummzed by the number of points in a 1024 point array. Noise introduction can be accomplished
by randomly flipping bits. A systematic method for introducing random noise into the test set
should be implemented for all of the characters during training of the NN with 1024 input nodes.

In order to meet the demands of a high level of resolutio~ it will be neceswuy to determine the
efl%ctsof a large number of inputs on the program run time. The current run time for 64 input
nodes is approximately 1 generation per second on a Sun SPARCstation 10 with fitness
convergence in 250 generations. The scaling of the run time with respect to the inputs is unkno~
but it is suspected that 1024 input nodes may create a prohibitively long run time. Prehminary
efforts have indicated that a NN with 1024 input nodes and a 67 node hidden layer will take over
two hours to evolve 250 generations. In additioq it does not seem probable that fitness
convergence will be achievable in 250 generations given these parameters.

There are several methods by which this run time could be significantly decreased. Firstly, the
bitmap representations of the characters are essentially sparse arrays. This indicates that methods
of sparse matrix manipulation maybe usefid. In additiog parallelization of the processing would
contribute to a more efficient run time. It should also be noted that a fhster machine would also
significantly impact the run time of the program.

As stated in the introductio~ this paper represents a feasibility study on the effectiveness of using
neural networks to recognize characters and symbols and to assess the amount of resources needed.
Increasing the level of sophistication in our tmining methodology -- the number of cases and
training with noise – enhances character recognition performance at the cost of computational time.
This effkt has increased with higher character resolutions. By moving to fhster machines (50MH.z
to 400+MHz), implementing a parallel version of the NND, and incorporating simulated annealing
techniques into the GA convergence rates and times can be improved somewhere between two and
three orders-of-magnitude. It is important to note that these techniques are already in use in our
other project areas. As for man/woman-power, the vast majority of the analysis has been
accomplished by a college student through the internship program at SNL. During this time frame,
approximately 3 weeks of her time was spent understanding C+, IDL, and the NND code and
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another 3 week to perfiormthe analysis. Therefore, genetically-trained neural networks appear to
be a viable technique to use when recognizing characters (and symbols). Further progression
should require minimal rnan/woman-power and leverage available resources and current
methodologies.

6 Recommendations

The initial stages of character recognition using genetically trained neural networks have been
successfully demonstrated. The development of a GUI significantly fiwilitates the input of new
character or symbol sets, and a series of neural networks can be trained to recognize a vast library
of alphabets and symbols. Additional areas for exploration in the area of character recognition are
as follows:

. fiu-therinvestigate the correlation between the number of input nodes and the number of nodes
in the hidden layeq

● investigate ways to improve convergence and/or run time of the program;
. investigate techniques to train with and overcome the effxts of noise, such as font or smudged

backgrour@
. determine the robustness of the NN under conditions of translatio~ rotatio~ or dilation of the

test character (possibly through a second hidden layer of neurodes); and
● incorporate the network’s architectural parameters as part of the genetics.

Following the initial stage of character recognition%the NNs necessary for completion of the
foreign language translation or chemical classification projects would diverge.

Foreign language translation would require NNs that could be trained to recognize grammar
principles of the target language. In additiom they would need to be able to etlkctively translate the
meaning of foreign words in the absence of a specific English counterpart. Eventually, the NN
could be robust enough to perform with noisy (possibly smudged or damaged) data input a variety
of fonts or handwriting styles, and with languages that differ significantly from English in terms of
grammar and/or structure. The size of the character inputs could also be a fiwtor for the NNs to
address.

It is anticipate that the large cardinality of the Chinese character set and the cursive nature of
kbic will present additional challenges; however, these challenges are representative of work
with foreign character sets. The techniques developed to overcome these challenges would be a
usefhl and significant contribution to the field since the problems of cardinality and CQnnected
characters occur in many applications.

NN recognition of superscripts and subscripts would be especially important in the recognition and
classification of chemical formulas. This could be implemented with a two part process in which
the first stage would class@ a character as normal, superscript, or subscript and the secondary
stage would complete the identification. Chemical formula classiikation would also require an
expansive library of chemical nomenclature.
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Appendix A

The super neural structure for character and symbol recognition was developed using Neural Net
Designer software created at Sandia National Laboratories. The Neural Net Designer includes
parameters for both the GA and the NN. The values of each parameter used in the character
recognition initialization file for the basis design are indicated in italics.

PARAMETERS FOR THE GA

Crossover Method
This allows the designer to choose the method of recombination for the genetic material of
the bugs during reproduction. The options are even/@ one point, randou two point
and tiOlm.

Crossover Probability
This determines the probability that crossover will occur. It is generally between 0.8 and
1.0. Character recognition NNvaIue: 0.9.

Fitness Scaling Method
This determines the method by which the fitness is scaled. The options are linear, no
scaling, power law, and sigma truncation. In the final output both the raw fitness data
and the scaled fitness data are presented.

GA Type
This determines the type of genetic algorithm to be used during training. The options are
deme, incremental, simple, and steady-state.

Mate Selection Method
This determines the method by which mates are selected during reproduction. The options
are deterministic sampling (IX), ~ roulette wheel, stochastic remainder sampling,
tOU~~~ and UnifOllll

Mutation Method
This determines the method by which the bug’s genetic material is mutated. The options
are creep, geometric creep, random, replacement, and swap.

Mutation Probability
This is the probability that mutation will occur. Generally, it does not exceed 0.2.
Character recognition NNvalue: 0.05.

Number Of Generations
This determines time that the GA is allowed to run. The number of generations must be
sufficient for the fitness optimization. However, after the fitness attains its optimal level,
additional generations add unnecessary run time to the program. Character recognition
AN vaIue: 250.

Optimization Mode
This dictates whether the GA will attempt to ~“mize or ~ its solution.

Population Size
This determines the number of bugs to be included in each generation. Character
recognition NN value: 64.

PARAMETERS FOR THE NN

Number of Hidden Layers
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This determines the number of hidden layers in the NN architecture. Although the Neural
Net Designer is capable of including up to four hidden layers, this number rarely exceeds
one. Character recognition NN value: 1.

Number of Neurodes
This determines the number of neurodes, u present in the hidden layer. The correlation
between n and the number of inputs/outputs has not been extensively investigated.
However, the literature suggests that n should be approximately the square root of the
number of inputs multiplied by the number of outputs. In additiow n must be relatively
prime to the number of neurodes in the input @or output layers, therefore n should be
prime in order to maintain the robustness of the program. Character recognition NN
value: 17.

Activation Function
This determines the activation fimction used to provide a threshold above which the
neurode ‘%res.” This fimction can be defied as constant functio~ Gaussian fimctio~
step functiorq or sigmoidfinction (either logistic or hyperbolic tangent). Each of these
fictions contains three parameters. As seen in figure 3, the Neural Net Designer provides
the equation of the activation fimction in terms of the parameters, z b, and c. These
parameters are listed as Neurode Activation FunctionParameterl (a), Neurode Activation
Function Parameter2 (b), and Neurode Activation Function Parameter3 (c). Parameter is
set to 5.0, Parameter2 is to 0.0, and Parameter3 is set to 0.0.
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