
SANDIA REPORT 
SAND98-I813 
Unlimited Release 
Printed August 1998 

Element 
sion Problems 
Ids and Infinite 

Sandia is a mrAtiprogram laboratory operated by Sandia Corporation, 
a Lockheed MaWin Company, for the United States Department of 
Energy under Contract DE-AC04-94AL85000. 

Approved for public release; further dissemination unlimited. 

m 
Sandia National laboratories 



h 

9 

Issued by Sandia National Laboratories, operated for the United States 
Department of Energy by Sandia Corporation. 

NOTICE: This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Govern- 
ment nor any agency thereof, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, prod- 
uct, or process disclosed, or represents that its use would not infringe pri- 
vately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors. The views and opinions expressed 
herein do not necessarily state or reflect those of the United States Govern- 
ment, any agency thereof, or any of their contractors. 

Printed in the United States of America. This report has been reproduced 
directly from the best available copy. 

Available to DOE and DOE contractors from 
Office of Scientific and Technical Information 
PO. Box62 
Oak Ridge, TN 37831 

Prices available from (615) 576-8401, FTS 626-8401 

Available to the public from 
National Technical Information Service 
U.S. Department of Commerce 
5285 port Royd Rd 
Springfield, VA 22161 

NTIS price codes 
Printed copy: A03 
Microfiche copy: AO1 

1 



SAND98-1813 
Unlimited Release 

Printed August 1998 

A FINITE ELEMENT-BOUNDARY ELEMENT METHOD FOR 
ADVECTION-DIFFUSION PROBLEMS WITH VARIABLE 

ADVECTIVE FIELDS AND INFINITE DOMAINS 

Brian J. Driessen 
Jeffrey L. Dohner 

Structural Dynamics Department 
Sandia National Laboratories 

P.O. BOX 5800 
Albuquerque, NM 87185-0439 

ABSTRACT 

In this paper a hybrid, finite element - boundary element method which can be used to 
solve for particle advection-diffusion in infinite domains with variable advective fields is 
presented. In previous work either boundary element, finite element, or difference 
methods have been used to solve for particle motion in advective-diffusive domains. These 
methods have a number of limitations. Due to the complexity of computing spatially 
dependent Green’s functions, the boundary element method is limited to domains 
containing only constant advective fields, and due to their inherent formulation, finite 
element and finite difference methods are limited to only domains of finite spatial extent. 
Thus, finite element and finite difference methods are limited to finite space problems for 
which the boundary element method is not, and the boundary element method is limited to 
constant advection field problems for which finite element and finite difference methods 
are not. In this paper it is proposed to split a domain into two sub-domains, and for each of 
these sub domains, apply the appropriate solution method; thereby, producing a method 
for the total infinite space, variable advective field domain. 
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Notation 

@i - concentration of a species i 

+’ 
V - mass-averaged velocity of the 

medium 

O! - diffusivity of the medium 

p - average density of the medium 

pi - density of species i in the medium 

+ 
Vi - particle velocity of the species i 

r - surface of control volume 

?3 - normal vector 

W - bases function 

Q ~~~ - interior domain where FEM is 

applicable 

!2 *~~ - exterior domain where BEM is 

applicable 

ri~ - surface of obstacles 

r out - surface shared by f2FE~ and 

Q BEM 

Nin - number of nodes on ri~ 

N oUf - number of nodes on rout 

@-(@i,, . ..$iN)~ 

$ij - j’h Oi v~ue at nodes in QFEM 

Oi. - vector of @i values on rin 

@ out - vector of @i values on rout 

3@i~ 
—- 
an vector of normal derivatives of 

~i on ri~ 

a~ou, —- 
ih vector of normal derivatives of 

~i ‘n ‘o., 

A,B,C - FEM matrices 

G - Green’s fimction 

i. and ? - points in QB~M 

M,D,G - BEM matrices 

V - velocity potential 

u; - velocity of wind at infinity 

. . . 
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1. INTRODUCTION 

Numerical methods are used to analyze the advection and diffusion of particles in complex 

domains. Although a number of numerical methods for advection-diffusion analysis pres- 

ently exist, most are applicable to problems with domains of infinite spatial extent and 

constant advective fields or to problems with domains of finite spatial extent and variable 

advective fields, but few are applicable to problems with domain of both infinite spatial 

extent and variable advective fields. In this paper, a method will be presented which can be 

used to solve for a sub set of advective-diffusion problems with infinite spatial domains 

and variable advective fields. 

Although much has been written on the numerical solution of advection-diffusion prob- 

lems, the infinite space problem with non constant advective fields is still immature. Qiu et 

al [1] used a Boundary Element Method (BEM) for solving an infinite space advection- 

diffusion problem with very high Peclet number. However, in their analysis, they used the 

Green’s function associated with a constant advective field; therefore, their analysis was 

only valid for problems with constant field characteristics. Similar in form to advection- 

diffusion, convection-diffusion problems have been studied extensively in the thermal sci- 

ences. Li and Evans [2] used an exponential variable transformation to construct a varia- 

tional principle which lead to a symmetric banded finite element stiffness matrix. As with 

Qiu et al, they assumed the convective field was constant; therefore their solution is lim- 

ited. Moreover, since they use a Finite Element Method (FEM), they were limited to finite 

spatial domains. Taigbenu and Liggett [3] used the non convective Green’s function in an 

integral approach to model convective domains. This required a domain integration which 

when discretized leads to fully dense large domain matrices. Their method could model 
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convection-diffusion with non constant convective fields; however, it was valid only for 

domains of finite spatial extent. 

Liggett [4] gives a very good discussion of the applicability of the BEM and the extent to 

which it can be used for advection-diffusion problems. The main points discussed 

included the fact that the BEM, when it can be applied, is much easier to use than either 

finite differences or finite elements. The method is inexpensive in terms of human effort 

(set-up time) and computer run-time. Another main point was that the BEM can handle 

free surfaces more easily than domain methods; however, it was noted that finite element 

and finite difference methods can be applied to a larger set of applications. 

In conclusion, while problems with either finite domains with variable advective fields or 

infinite domains with constant advective fields have been studied extensively, problems 

with infinite space domains and variable advective fields have been relatively untouched. 

In the following sections, we present a method which allows for the modeling of particle 

motion in infinite space domains with variable advective fields produced by complex 

obstacle boundaries. In this presentation, it is assumed that the total domain can be parti- 

tioned into two sub domains: one sub domain is infinite and contains a constant advective 

field and the other sub domain is finite and contains a variable advective field. The sub 

domain with the variable advective fields is modeled using the FEM, and the sub domain 

with constant advective fields is modeled using the BEM. 
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2. DERIVATION OF EQUATION OF MOTION 

In this section we derive the differential equation of motion for particle advection and dif- 

fusion in an incompressible medium. This derivation is obtained by using Ficks 

diffusion and conservation of mass. In later sections, this equation of motion 

approximated using a FEM and BEM. 

net flux of species i 
through the surface = – J 

h . pj?i~ 

of S2 r 

Law of 

will be 

z 

control volume r 

Figure 1. Mass conservation of species i through the control volume $2 

Consider the control volume in Figure 1. A fluid medium carries a distribution of diffusive 

particle species though this volume. Let @j be the concentration 

medium, ? be the mass-averaged velocity of the medium, a be 

of a species i in the 

the diffusivity of the 

medium, p be the average density of the medium, and pi be the density of the species z’ in 

the medium. From Fick’s Law of diffusion, the particle velocity of the species i, ?i, is the 
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sum of two components--the advection component, ~, and the diffusion component, 

‘%+. [5]. This can be stated analytically as —— 
Pi 1 

+i = $– ~(xv$i (1) 
i 

Notice that if the species concentration, $i, is uniform, then the species simply moves at 

the mass averaged velocity, ~. On the other hand, if $i is not uniform, then the species 

has a velocity relative to ? where the relative velocity, ?i – ?, is in the “downhill” direc- 

tion of the concentration field. 

A differential advection-diffusion equation of motion for @i can be determine by 

and by imposing mass conservation. Assuming no internal particle production, 

conservation of mass, 

accumulation of = net flux of species i through 
species i in Q the surface of Ll. 

In analytical terms, the accumulation of species i in Cl is 

J 

ap 
$dfl 

Q 

using (1) 

from the 

(3) 

where pi = Qip. Moreover, letting r be the surface of LI and h the outward unit normal 

vector, then the net flux though r is given by 

Combining (4) and (1), and noting that V . ~ = O for an incompressible medium, 

(4) 

(5) 
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Combining (2), (3), and (5) gives 

doi 
— = -~. Voi + 0!V2@i 
at (6) 

which is the governing partial differential equation of motion for incompressible advec- 

tion-diffusion. 

Notice that if ~ were a variable, 

known quantity then (6) reduces 

(6) would be a non-linear equation. However, if ~ is a 

to a linear problem for $i. Therefore, in this paper, to 

avoid the complexity of non-linear analysis, the solution for Qi will be decomposed into 

two steps. In the first step, the mean wind velocity, ?, is calculated assuming potential 

flow (this does not require any knowledge of @i ), and in the second step, the solution ~ is 

substituted into (6) and @i is calculated. Since calculation of the first step is usually 

straight forward, the rest of this paper will be focused toward the calculation of the second 

step. 

In general, (6) cannot be solved for in closed form; therefore, numerical methods must be 

used. To solve (6) using a FEM or BEM, it must be placed into a weak formulation. A 

steady state weak formulation of (6) for a trial function W is 

jW(~V2@i- ? ~ ‘@l)dQ = O. (7) 

Q 

In the following section, a FEM and BEM approximation will be formulated using (7). 



3. DISCRETIZATION OF THE EQUATION OF MOTION 

In this section the equation of motion will be discretized using a FEM and BEM. In many 

problems, obstacles reside in a bounded, finite domain of limited extent, and at distances 

removed from these obstacles, the mean velocity, ~, is practically constant. As will be 

shown, a BEM can be used to model particle motion at locations removed from these 

obstacles, and a FEM can be used to model particle motion at locations in the vicinity of 

these obstacles. In the following subsections, a FEM and BEM are used to produce 

approximations to a weak form of the equation of motion (equation 7). These approxima- 

tions are valid for limited sub domains. To model the total domain, the two approxima- 

tions are then coupled at their domain interfaces. 

3.1 A FEM approximation of the equation of motion 

Consider the simple domain shown in Figure 2. 

+. 

Cl 

‘FEM 

Figure 2. A schematic of a hybrid FEM5EM domain 
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In this 

can be 

domain f2FE~ is an interior, finite sub domain with a variable advective field that 

modeled by using FEM, and f2~~~ is an exterior, infinite sub domain with a con- 

stant advective field that can be modeled by using BEM. Let N denote the number of 

nodes in ~~E~, @=($il, . . . $i~)~ be a vector containing the values of $i at node loca- 

tions, ri~ denote the surface of the obstacles in ~~~~, and rOUt 

face that bounds ~~E&f. Let Ni~ be the number of nodes on the 

N ~Ut be the number of nodes on the outer surface, rOU1. Let @i~ 

denote the exterior sur- 

inner surface, ri~, and 

be 

values of +i on ri~, @OU~ be the vector of nodal values of +i on rOU1, 

a~ou, 
of normal derivatives of $i on ri~, and — 

an 
be the vector of normal 

r out “ 

the vector of nodal 

am. 
& be the vector 

derivatives of @i on 

ao iM?in 
A relation between @, ~f, and — 

an 
can be obtained by a Galerkin approach. Replac- 

ing Win (7) with a finite element basis function w j, where j= 1,.. .~, we obtain 

Applying the first form of Green’s theorem to the first term of (8) gives 

(8) 
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Letting 
N 

(lo) 

j=l 

taking the summation outside the integrals and performing the resulting integrations for 

each j, one arrives at a matrix equation of the form 

‘“+ ’(%5+’(% 
Equation 11 is a FEM formulation for modeling steady 

= o. (11) 

state advection and diffusion in the 

bounded domain, fl~~~. This formulation is not limited to a constant ? field since A is a 

function of ?, but is limited to finite space domains and small Peclet numbers. Since high 

wind velocities are not of concern in this paper, the limitation due to the Peclet number is 

not of relevance; however, the limitation due to the infinite spatial domain is of relevance 

and is overcome by coupling this solution to a BEM formulation. In the next subsections, 

this formulation and its coupling to equation 11 will be discussed. 

3.2. A BEM approximation of the equation of motion 

The steady state equation of motion can also be expressed in integral equation form, and 

from this form, a BEM can be used to produce a discrete approximation. The integral rep- 

resentation is derived from (7) and the Green’s function, G. For constant advective fields, 

this Green’s function can be easily computed; however, for variable advection, calculation 

of the Green’s function becomes complex. Therefore, the BEM is seldom used to model 

particle motion in non constant advective domains. In this paper, the BEM is used to 

model particle motion in only the constant advection portion of the total domain. 
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Replacing the basis function Win (7) with the Green’s function G, the weak form becomes 

J( aGV2qi– G$ . V@i)df2~~~ = 0. (12) 
Q BEM 

Applying the divergence theorem and the second form of Green’s theorem to (12) gives 

~ (~@iV2G+$i~ ~ VG)dQ.E~ = ~ (fi ~ (-~GV@i+ ~@iVG+ OiG~))~OUt. (13) 
Q BEh4 r our 

Since, by definition of the Green’s function, G, satisfies 

ctV2G+ ? . VG = –6(?. – ~) 

where }0 and } are points in Ll~E~, (13) becomes 

- ~ ii ~ (~GV@i-~@iVG-@iG~)~OU1 %(~())o(~()) – r 

our 

where co is determined by the surface solid angle at >0. 

When ? is not a constant or is not a very simple function of spatial location, the closed 

(14) 

(15) 

form solution to (14) is difficult to calculate; however, 

form solution for G is well known (see Qiu et al [1]) and 

when ~ is constant, the closed 

is given by 

;(R + (X-XJ) 

G(?, ).) = &Re 

where 

(16) 

(17) 

? = u;, and u is a constant. 

Equation 15 is an integral representation of the equation of motion. Since (14) is difficult 

to solve for when ? is not a constant, this equation of motion is seldom (if ever) used to 

model problems with non constant advective fields. Nevertheless, since it contains only a 

surface integration, it can easily be used to model infinite space problems. 
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The surface integral in (15) can be approximated using the BEM. Using shape functions on 

r ~U1 that are compatible with the shape functions in (8), one can arrive at a matrix equation 

of the form 

da 
co~our 

() 
= M@ou, + G ~’ . 

From (18), we have 

aoou, @ out 
() 

= D@ = (COI-M)-lG ~ . 

(18) 

(19) 

3.3. Coupling of the FEM and BEM equations 

The coupled N + Nout equations, (11 ) and (19), can be solved simultaneously to yield the 

a~ou, a~. 
variables @ and 

() 
—. In particular with & 

an 
known, the coupled matrix equation to 

be solved is 

[ 
A B 1 
[D -(COI - M)-*(4 

(20) 

Equation (20) is mostly sparse with O(N) non zero entries except for the relatively small 

dense sub-matrix in the lower right associated with the BEM. It can be solved with an itera- 

tive method such as the generalized minimum residual method [6] or with a direct sparse 

solver. For most problems, solving (20) is not difficult since N + Noul is usually small. 
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4. NUMERICAL RESULTS 

Fluid flow about obstacles produces non constant advective fields; however, in many prob- 

lems, when no obstacles are present, the advective 

described in Section 3, advection-diffusion in finite 

advective fields can be modeled using FEM while 

field is or almost is constant. As 

space domains with non constant 

the advection-diffusion in infinite 

domains with constant advective fields can be modeled using BEM. Therefore, near obsta- 

cles a FEM is used to model particle motion and away from obstacles a BEM method is 

used. In this section results using this hybrid FEM-BEM of solution are presented. When 

an exact solution exists, it will be presented with these results for the purpose of quantify- 

ing numerical error. 

Three problems will be presented in this section. In the first problem, a point source dif- 

fuses particles into an infinite domain in the presence of constant wind. A closed form 

solution exists for this problem; therefore, a comparison between the exact and numerical 

solutions can be made. In the second problem, the point source is replaced with a source of 

spherical geometry, and in the third problem, the FEM-BEM is used to model particle 

motion around a set of realistic complex obstacles. 

4.1. Numerical solution for a constant advective$eld 

The first problem is shown in Figure 3. A constant flux of particles flow from a point 

source in an infinite domain. Within the domain a constant wind is blowing. Therefore, the 

advective field is constant. The solution to this problem is well known [7] and therefore, 

provides a method to veri~ the FEM-BEM solution. 
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~ particle source 

? 

\ 

=u; —–—–– 
4 #’v 
,? 

-“” > 

Y 
——— — . 

J 

-:’-> a~ .6 *.. —-—* ——- 
.-. ,,, —— ———-—— —~ ,,. . ,, 

t“ 

..- 
x 

/ 

v ‘.= ——. —— — —— 

/ 
~ particle trajectory advective field 

/’z 
Figure 3. Problem 1 geometry: Particles diffuse from a 
point source in a domain with a constant advective field 

Figure 2 is an illustration of the mesh used to solve this problem. Due to the difficulty of 

applying a Dirac Delta function to model the point source in the FEM domain, the center 

a~. 
portion of the mesh has been removed and the forcing term & was calculated from the 

exact solution and applied on rin. The value of @i could then be predicted at points in 

93 

270 

Figure 4. Problem 1 results: A comparison of the FEM/E3EM 

solution to the exact solution, 0- FEM/BEM solution, -- exact 
solution 
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In Figure 4, the closed form and the numerical solution are compared. In this figure, the 

value of ~i is plotted for a =1 and various values of 6 where 0 is the angle and a is the 

magnitude of a vector in the xy plane shown in Figure 3. In this example, a =1, and the 

vector points to points in ri~. Figure 4 is a polar plot with radial distance equal to ~i for 

various 6 values. The maximum error shown in this plot between the FEM-BEM solu- 

tion and the exact solution is 270. Overall the FEM-BEM solution agreed very well with 

the exact solution. 

4.2. Numerical solution for a variable advectivefield 

The second problem is shown in Figure 5. In this problem, particles flow from a spherical 

source. The source not only emits particles but also alters the flow of wind in the domain. 

Therefore, the advective field is not constant but varies near the source; however, far from 

the source, the wind flow and therefore the advective field is almost constant. 

—— — —- 

—— Y 

t 

—- 
—— —_ 
— I 

— 

/ 

particle trajectory 

--+’-5----- A ~~—. 
r *–’ x’___ 
>= . 

m 

~’fl,’— -- -. 
b +.. ---- .e “-— 

\ /’ I __— _ 

‘A / 
advective field 

— 

— 

— 

— 

— 

— 

— 

— 

— 

— 

— 

— 

Figure 5. Problem 2 geometry: Particles diffuse from a spherical 
source in a domain with a non constant advective field 
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An exact solution for the flow of wind around a spherical obstacle exists [8]. If ~ is the 

mean velocity potential, then for this obstacle 

ub3x 
yJ=ux+— 

2a3 
(21) 

where b is the radius of the obstacle, a is the distance from the center of the obstacle, 

$ = VV, and x = a - cos O as (3 and a are defined in Figure 5. The difference 

between u;, the velocity at infinity, and the true velocity at any point in f2F~~ or n~~~ 

3 

decays as ~ where the biggest difference between these velocities occurs along the x- 
a 

axis. For the true velocity to be within 29i0 of u;, a = 3b. In other words, for this prob- 

lem, the finite element mesh must be about 2 obstacle radii thick or must have a radius 3 

times that of the obstacle for the solution to be accurate. 

The mesh used to model this problem is also illustrated in Figure 2. The boundary condi- 

tions for a uniform particle flux were applied on ri~, and the resulting coupled equa- 

ao 
tions (20) were used to solve for @ and =1. A polar plot of Qi versus El on the circle 

a = 1 is given in Figure 6 for two different mesh 

these mesh densities, the solution has converged 

densities. As seen in this figure, for 

14 



90 
0.83048 

180 

270 

Figure 6. Problem 2 results: A plot of particle concentration 
at locations in the xy plane for a 2750 and 3250 DOF mesh, 
0-2750 DOF mesh, + -3250 DOF mesh 

4.3. Numerical solution for realistic obstacles 

A more realistic problem is illustrated in Figure 7. A set of buildings block the flow of 

wind in an infinite space domain. In proximity to these buildings is a particle source distri- 

bution. This distribution emits particles into the domain which both diffuse through the 

wind and are carried by the wind around and over the buildings. The buildings are 

assumed to be impervious to both the diffusion of the particles and to the flow of the wind. 
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