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Abstract

This report provides an introduction to the various probabilistic methods developed roughly
between 1956-1985 for performing reliability or probabilistic uncertainty analysis on
complex systems.  This exposition does not include the traditional reliability methods (e.g.
parallel-series systems, etc.) that might be found in the many reliability texts and reference
materials (e.g. Kapur and Lamberson, 1977).  Rather, the report centers on the relatively
new, and certainly less well known across the engineering community, analytical
techniques. Discussion of the analytical methods has been broken into two reports.  This
particular report is limited to those methods developed between 1956-1985.  While a bit
dated, methods described in the later portions of this report still dominate the literature and
provide a necessary technical foundation for more current research.  A second report
(Analytical Techniques II) addresses methods developed since 1985.  The flow of this
report roughly follows the historical development of the various methods so each new
technique builds on the discussion of strengths and weaknesses of previous techniques. To
facilitate the understanding of the various methods discussed, a simple 2-dimensional
problem is used throughout the report.  The problem is used for discussion purposes only;
conclusions regarding the applicability and efficiency of particular methods are based on
secondary analyses and a number of years of experience by the author.

This document should be considered a ‘living document’ in the sense that as new methods
or variations of existing methods are developed, the document and references will be
updated to reflect the current state of the literature as much as possible. For those scientists
and engineers already familiar with these methods, the discussion will at times become
rather obvious.  However, the goal of this effort is to provide a common basis for future
discussions and, as such, will hopefully be useful to those more intimate with probabilistic
analysis and design techniques.  There are clearly alternative methods of dealing with
uncertainty (e.g. fuzzy set theory, possibility theory), but this discussion will be limited to
those methods based on probability theory.
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A Survey of Probabilistic
Methods Used In Reliability,
Risk and Uncertainty Analysis:
Analytical Techniques I

Background

Types of Uncertainty
Uncertainties typically fall into one of two categories: probabilistic or possibilistic. However, even
some system aspects that are clearly deterministic, such as the use of a pure sine wave to model
system input, can be characterized using probabilistic methods. Probabilistic techniques are
characterized by the use of random variables to describe the various sources of uncertainty and are
often referred to as reliability methods       by structural engineers.  These techniques are typically
applied when the system under consideration is of small to moderate complexity (100-150 random
variables) and is reasonably well understood. Possibilistic techniques involve the use of fuzzy set
theory or possibility theory to model uncertainty and are particularly useful when dealing with
large, complex systems. In most cases, an exact system model may be impractical or even
impossible to obtain.

Sources of Uncertainty
Discounting ignorance on the part of the user, uncertainty arises from four major sources.     External
system parameters    are very common sources of uncertainty and include a variety of possibilities:
temperature, radiation, road surface, etc. While the engineer can select certain materials for their
strength, wear or corrosion characteristics, the true characteristics can vary considerably when the
system is finally constructed. Material properties are only one example of uncertainty in    internal
system parameters   .

External and internal sources of uncertainty can be roughly characterized by the level of control the
designer has over the range of values that the system might experience. For example, temperature
might be external or internal depending on the ability of the system designer to regulate the extreme
temperatures that the system might be exposed to. In a sense, the more control the engineer has
over the external variables, the more they become part of, or internal to, the system being designed

A third source of uncertainty is the    system model   . By definition the model is only an abstract
representation of the real world. The choice of modeling technique or the level of detail used within
a model might lead to error in the estimated response of the system.  For example, even finite
element models with hundreds of thousands of elements provide a very simple representation of
how the physical system will behave. While appearing to be deterministic, such modeling
uncertainty can often be characterized using various probabilistic or possibilistic analysis
techniques.

A final source of uncertainty is introduced when the engineer attempts to observe the behavior of
the system. Such things as human perception, measurement error, or sensor error compounded by
data fusion are significant sources of     observational uncertainty    .
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Time and Aging
Characterization of the uncertainties inherent in the system and its operating environment is
complicated by time. As the system ages or goes through various upgrades and redesigns, the
uncertainties will also continuously change.

During the initial stages of design, the system progresses through a test-redesign-test cycle. As
testing progresses, faults and design weaknesses are found and design changes are made. Testing
begins again and the cycle continues until the system demonstrates the required reliability
characteristics or it is impractical (i.e. not cost effective) to continue redesign. This process is
referred to as    reliability growth    . However, as soon as the system become operational the system
begins to age. As time passes the microstructure will evolve, corrosion will invade connections and
surfaces will wear. It becomes a constant battle to maintain and support the system; typically the
majority of the costs of a system are incurred during this stage of the system life cycle.

Attention during the design of a system to the inevitable problems associated with aging and
wearout can alleviate much of this cost. In addition, by proper application of uncertainty techniques
later in the system life cycle, failures can be anticipated and addressed pro-actively; generally at
significant savings relative to the costs incurred as a result of a catastrophic system failure.

However, a detailed discussion of the implications of time dependent system uncertainties is
beyond the scope of this current effort and is left to a follow-on report.

Purpose
The purpose of this current report is to document the various methods available for performing
reliability analysis or probabilistic uncertainty analysis on complex systems.  This exposition does
not include the traditional reliability methods that might be found in the many reliability texts and
reference materials (e.g. Kapur and Lamberson, 1977).  Rather, the following discussion centers
on relatively new, and certainly less well known across the engineering community, reliability
analysis techniques. The discussion is directed at the engineer or analyst whose background may
involve an undergraduate probability course.  The report may therefore appear to be simplistic to
those with a much stronger probability and statistics background.

This document should be considered a ‘living document’ in the sense that as new methods or
variations of existing methods are developed, the document and references will be updated to
reflect the current state of the literature as much as possible. For those scientists and engineers
already familiar with these methods, the discussion will at times become rather obvious.
However, the goal of this effort is to provide a common basis for future discussions and, as such,
will hopefully be useful to those more intimate with probabilistic analysis and design techniques.
There are clearly alternative methods of dealing with uncertainty (e.g. fuzzy set theory, possibility
theory), but this discussion will be limited to those methods based on probability theory.

The primary goal of all of these methods is the characterization of uncertainty in system response
due to uncertainty in either internal system parameters (e.g. grain size, yield strength), or external
parameters (e.g. temperature, load).  These two sources of uncertainty will be grouped into a
general vector of uncertainty variables,   x = ( , , , )x x xn1 2 K .  The variations in these variables may or
may not be time dependent.  The response of the system to a particular realization of this vector
will be denoted G( )x .  The initial discussion will concentrate on those situations where the
uncertainties can be described independent of time; the discussion will be expanded in a sequel to
include time dependent system behavior.

A second goal, equally important during system design, is the sensitivity analysis of system
response to uncertainties in the system variables.

Probabilistic methods are typically applied to address one of two basic questions: What does the
probability density function of the system response look like? Or, alternatively, and at first glance a
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bit more narrow in scope: What is the probability that the system response exceeds a critical level?
From a reliability engineering design and analysis point of view, the latter approach is the most
common since reliability engineers are typically responsible for describing the probability of
system failure relative to a set of design codes or specifications.  Interest in system response is
typically focused on a particular region of interest rather than the entire domain of possible system
responses.  Further, by examining a number of possible ‘critical levels’, clearly the density
function of the system response can be completely characterized (rather than evaluated at simply
one point).  For these reasons, the second approach will be emphasized in this discussion.  When a
particular technique provides additional benefits beyond this objective, these will be highlighted as
much as possible.

Assuming the existence (real or artificial) of a critical level of system performance, the result is the
partitioning of the system parameter domain   x = ( , , , )x x xn1 2 K into two regions: a region Ω  where
combinations of system parameters lead to an unacceptable or unsafe system response and a safe
region Ω  where system response is acceptable.  The surface dividing these regions is generally
referred to as the    limit state surface    or    limit state function    .  The probability of system failure is then
defined by the expression:

  
p f df = ∫∫∫L X x x( )

Ω

where fX x( ) is the joint probability density function (pdf).  Except for some unique limit state
functions and joint density functions (e.g. linear limit state and Gaussian distributed random
variables), the integral can be very difficult to evaluate.  The following discussion centers on the
various methods often used to evaluate this integral.

There are two major categories of
probabilistic methods.  The first category
includes a broad class of random sampling
methods such as classic Monte Carlo or
importance sampling techniques.  These are
characterized by the random selection of
observations of each system parameter xi

such that fX x( ) is satisfied, and these values
are subsequently operated on by the system
performance function G( )x .

The second category of probabilistic
methods is characterized by the use of
analytical techniques to find a particular
point in design space that can be related (at
least approximately) to the probability of
system failure.  This point is often referred
to as the      most probable point    or the     design
point   .

Both of these analysis categories will be
discussed in enough detail to permit the
reader to apply the techniques to simple
problems.  The discussion will borrow
heavily from the available literature, but a
concerted effort will be made to standardize
the notation and terminology.  Significant
differences will be noted where appropriate.
For purposes of discussion and to ease the
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introduction of the techniques to the uninitiated, a single sample problem will be used throughout
the discussion.  Variations on this problem may be introduced to illustrate a particular aspect of a
solution methodology.

Notation
The notation used in the following discussion is consistent with the literature; however, it can be
confusing to the uninitiated.  The following definitions will be consistent throughout.

  x = { , , }x xn1 K :  a vector of independent random variables generally referred to individually as
design variables.  The performance of the system is defined in terms of these variables and
the locus of all feasible combinations of these variables is referred to as the design space.

  y = { , , }y yn1 K :  identical to the vector x with the exception that these random variables are assumed
to be statistically dependent.

  u = { , , }u un1 K : a vector of statistically independent random variables with zero mean and unit
standard deviation.

G g( ), ( )x x : the performance of the system is assumed to be a function of a set of design variables
and is referred to as the system performance function or system response function.  This
function may be explicit or implicit.

φ( )⋅ : standard normal density function -

φ
π

( ) expz
z= −





1
2 2

2

Φ( )⋅ : cumulative normal density function -

Φ( ) expz
s

ds
z

= −



−∞

∫1
2 2

2

π
limit state function: a set defined by the locus of points: G( )x = 0 .
failure region: the limit state function divides the feasible space into (at least) two regions: the

failure or unsafe region G( )x < 0  and the safe region: G( )x > 0 .  These definitions are
based on historical convention rather than a specific requirement.  The use of the terms
‘failure’ is also customary, since only the likelihood of a particular system state may be of
interest rather than system failure.

safety index: β , the safety index, is defined as the scalar distance, in standard normal space,
from the origin to the limit state function.  When used in the context of Φ( )−β  it is
assumed that β > 0 .  For a linear limit state function and Gaussian distributed random

variables, it can be shown that β µ
σ

= G

G

, the ratio of the mean system response and the

standard deviation of the system response (both evaluated at the critical or failure point).

Sample Problem
The problem to be used throughout the discussion involves the growth of voids within an solder
interconnect.  As a result of the integrated circuit manufacturing process residual stresses between
the interconnect and the passivation layer will remain.  These residual stresses will then induce
voids in the grain interfaces.  These voids grow and eventually lead to a loss of transmission
capability in the interconnect line.  For a specific length of time in storage, line geometry, material
properties, the crack size, A, as a function of initial stress,ν0 , and grain size, L, is approximated
by:
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A
L

= − −











ν0 0 01694 0 01353
0 4158

. . exp
.

                                                           [1]

Failure of the interconnect then occurs when the crack size exceeds some critical level Ac:

p A Af c= <{ }Pr  or equivalently:

p A A A
L

gf c c= − <{ } = − − −











<







= <{ }Pr Pr . . exp
.

Pr ( )0 0 01694 0 01353
0 4158

0 00ν x       [2]

(to be consistent with the reliability engineering literature).  Note that here x = = { }{ , } ,x x L1 2 0ν .
The integral of interest is therefore:

p f df

G X

=
<

∫∫ X x x( )
: ( )Ω 0

where fX x( ) is the joint probability density function of ν0  and L.

The following discussion is organized into the two broad categories of probabilistic analysis
techniques discussed earlier.  The analytical methods will be discussed first; following roughly in
chronological order of development.  As such, each method will develop successively on the
weaknesses and strengths of its predecessors.

Mean Value Method
This method is commonly referred to as the mean value first-order second moment (MVFOSM or
simply MV) method since it typically involves a first order expansion about the mean to estimate
the first and second moments.  It is also closely related to differential analysis techniques (both
direct and adjoint).  This discussion is based on the material in [Morgan, et al: pp183-192] and
[Kapur and Lamberson pp95-121]; there are numerous other sources.  In summary the mean value
method involves developing the Taylor series expansion of G( )x  about the nominal or mean values
of the individual random variables.  The moments of the resulting approximating function are then
easily found.  Based on these moments approximate statements can be made regarding the
probability of failure.  (Note that second order terms are included for completeness.)

Development

  

G G x x

G
G

x
x

G

x x
x x H O T

n

ii

n

i i
i ji

n

j

n

i i j j

( ) ( , , )

( )
( )

!
( )
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x
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= = == =

∑ ∑∑
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µ
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where:   µ µ µ= { }1, ,K n .  Taking the expectation of this expression (and neglecting higher order
terms):
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n
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( )
!

( )

x x x
x x

x
x

X

x x

x

≈ + −( )[ ] + −( ) −( )[ ]

= +

=
= = == =

=
=

∑ ∑∑
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µ µ

µ
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µ µ

∂
∂ ∂
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A similar expression for the variance can be found:
V G E G E G

Cov x x
G

x

G

x

V x
G

x
Cov x x

i j
ii

n

j

n

j

i
ii

n

i j

[ ( )] ( ) [ ( )]

,
( ) ( )

[ ]
( )

,

x x x

x x

x

X X

x

= −( )[ ]
≈ [ ]


















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=

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


 + [
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If the random variables are independent, these expressions can be substantially simplified:

E G G
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G

xi
ii
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x x

x
x

x

x
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≈

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




=

==
∑

µ

µ

∂
∂

2

1

                                                                           [6]

Application

Formulation 1
For the discussion here it will suffice to assume that the random variables, ν0  and L are
independent  with known first and second moments, but the exact form of the probability density
functions are unknown.  The mean and coefficient of variation σ µ( )  for each of the random
variables are - ν0 300 0 2: ( , . )U , L : ( . , . )1 25 0 1 .  The line width is assumed to be 3 microns  and the
critical crack length is assumed to occur when it extends across 90% of the interconnect: Ac = 2 7. .

G L A
Lc( , ) . . exp

.ν ν0 0 0 01694 0 01353
0 4158= − − −











                                         [7]

E G L GG

L

ν µ

µ
µ

µ
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0

2 7 0 01694 0 01353
0 4158

2 7 300 0 01694 0 01353
0 4158
1 25

0 528417780

0

, ( )

. . . exp
.

. . . exp
.
.

.

( )[ ] = ≈

= − − −
















= − − −











=

=x x

                                [8]
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L
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
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
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
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       [9]
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Define the safety index: β µ
σ

= G

G

.  Given the above moments and assuming that the system

response, G( )x , can be modeled as a normally distributed random variable,  approximate
statements can then be made regarding the probability of failure:

p G
G

f
G

G

G

G

G

G

≈ <{ } = − < −







= −






= −( )

Pr ( ) Pr
( )

x
x

0
0µ

σ
µ

σ

µ
σ

βΦ Φ

                                                   [10]

where Φ( )⋅  is the standard normal cumulative density function.  In the example above, the
probability of failure is then approximately: Φ −( ) =1 1875 0 11751. . .  It should be noted that the
assumption of normality of the system response, coupled with the use of the Taylor series
expansion as an approximation of the system response function, are the major sources of error
associated with the use the MV technique.

Formulation 2
A necessary condition for any uncertainty analysis technique is that it should be independent of the
mathematical formulation of the problem as long as the original definition of failure is maintained.
That is, the results of analysis of p R Sf = <{ }Pr  should be equivalent to p R Sf = − <{ }Pr 0  or

p
R

Sf = <


Pr 1 .  For example, an equivalent formulation of the problem is given by:

p A A
A

Lf c
c= − <{ } = − − −











<








Pr Pr . . exp
.

0 0 01694 0 01353
0 4158

0
0ν

          [11]

Based on this equivalent formulation, the mean and variance can once again be found:

E G L G
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L

ν µ

µ µ

µ
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0

0

0 01694 0 01353
0 4158
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

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                                     [12]
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                         [13]

The safety index in this case is: β µ
σ

= =G

G

0 9631944. .  Given the above moments, approximate

statements can then again be made regarding the probability of failure: Φ −( ) =β 0 167725. .
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Clearly, when the MV method is applied on two problems that should give identical results,
difficulties in estimating the probability of failure can be encountered.  The above reformulation is
particularly common when engineers are attempting to deal with dimensionless units. The issue of
solution sensitivity to problem formulation becomes even more problematic when dealing with
very large, complex representations of system behavior.

Response Surface Methods
The response surface (RS) method is very similar to the MV method described above and can be
thought of as a subset of these methods.  While the MV methods deal directly with the performance
function, the RS approach involves approximating the original, complicated system performance
function with a simpler, more computationally tractable system model.  This approximation
typically takes the form of a first or second order polynomial:

  

G G x x a a x a x

a x a x a x x

n n n

n n n n

( ) ( , , )x = ≈ + + + +

+ + + ++ +

1 0 1 1

1 1
2

2
2

2 1 1 2

K L

L L
                                 [14]

Determination of the constants is accomplished through a linear regression about some nominal
value, typically the mean.  Given this new performance function, the analysis then proceeds in
exactly the same manner as the mean value method.  It should be noted that not all response
methods require a polynomial function as an approximation and the response function is not
required to be linear in the parameters.  The reader should be cautioned that there are additional
analytical methods used in uncertainty analysis that are also referred to as ‘response surface
methods’.  These newer methods will be discussed in the First-Order Reliability Methods section
presented later in the document.

Application
As with the MV approach it will suffice to assume that the random variables, ν0  and L are
independent  with known first and second moments, but the exact form of the probability density
functions are unknown.  The application as well as the underlying statistics of the random variables
remain as described earlier; the response function is repeated here for convenience:

G L A
Lc( , ) . . exp

.ν ν0 0 0 01694 0 01353
0 4158= − − −











                                       [15]

By perturbing the two input variables about their respective means, the following input data matrix
can be constructed:

′ =























X

300 1 25

360 1 25

240 1 25

300 1 375

300 1 125

.

.

.

.

.

                                                                                             [16]

where the number of rows n corresponds to the number of observations, or in this case the number
of times the performance function is exercised.  (NOTE: The particular form for the input matrix
has been used by structural reliability engineers since the early 1980’s.  However, Morris (1991)
independently formalized the methodology and a discussion of the formal logic behind the
construction of the ′X  matrix is presented at the end of this section.) Using these values as inputs,
the response of the system can be determined:
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z = [ ]0 5284 0 0941 0 9627 0 6178 0 4228. . . . .
T
                                             [17]

If we had been interested in estimating a second order polynomial the matrix would have been
defined:

  

X =



















1

1

1

11 12 11
2

12
2

11 12

21 22 21
2

22
2

21 22

1 2 1 2

x x x x x x

x x x x x x

x x x xn n n n

M M M M M

L

                                                                 [18]

where n is the number of sample observations.  The minimum number of observations to fit a
second order polynomial is six.  However, for this example, only the linear effects will be included
in the model and only the first two columns are needed.  In general: X 1 X= ′[ ]:

From classical linear regression, the normal equations can be solved for the coefficients:

a X X X z= ( ) = −[ ]−T T T1
1 7219 0 0072 0 7798. . .                                                 [19]

The approximate system performance function is therefore:

G G L( ) ( ) . . .x x≈ ′ = − +1 7219 0 0072 0 77980ν                                                      [20]

For information purposes, it is interesting to contrast the predicted system performance based on
the RSM approximation and the actual system performance:

Predicted Response =

Actual Response

0 5251 0 0909 0 9595 0 6224 0 4277

0 5284 0 0941 0 9627 0 6178 0 4228

. . . . .

. . . . .

[ ]
= [ ]

T

T
               [21]

It appears that a fair approximation of the original function has been found in the neighborhood of
the mean using simply the linear components of the
regression equation.  However, this is not always the
case given the complex nature of problems encountered
in engineering.  The level of accuracy is greatly
dependent on the magnitude of the perturbation used to
construct the input data.  The analyst must be aware of
the limitations of this approximation and, if possible, a
simple validation check is always recommended (e.g. an
additional run with a new perturbation or small Monte
Carlo sample if economically feasible).

Given an approximation to the original performance
function, a number of analysis avenues can be explored.
Traditionally, subsequent to finding the regression
function, the function can be exercised using Monte
Carlo techniques or simply using the MV method
previously discussed. The implication of using a vector
of mean values as the expansion point is that the system
will fail in the neighborhood of the mean.  This problem
is identical to that experienced when using the MV
method.

Figure 2. RS Approximation vs.
Original Performance Function
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There are further directions that can be taken and this will be discussed in detail in a later section.
Using the MV technique, the associated moments are easily found (again assuming independence
among the random variables):

E G L GG′( )[ ] = = ′

= − +
=

′ =ν µ µ0

1 7219 0 0072 300 0 7798 1 25

0 5252

, ( )

. . ( ) . ( . )

.

x
x

                                            [22]

V G V x
G

xG i
ii

n

[ ( )] [ ]
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( ) ( . ) ( . ) ( . )

.

′ = = ′







 =

= +
=

′
==

∑x
x

x

σ ∂
∂ µ

2

2

1

2 2 2 260 0 0072 0 125 0 7798

0 1981

                                                  [23]

The major benefit of RS type approaches over the MV method is that it is not necessary to have an
analytical expression for the performance function to estimate the moments of the system
performance function.  However, approaches based on this initial regression result will also suffer
from the same deficiencies as the MV methods: they are sensitive to the mathematical form used for
the performance function.  If, for example, the regression equation was based on the second
formulation presented in the MV section, the resulting approximation would be quite different.
The estimates for the mean and variance would naturally be different also.

Regardless of the problems with formulation conflicts,
both the MV and the RS methods suffer from
sensitivity to the expansion point.  It is clear from
Figure 2 (and Figure 3) that the approximation
osculates with the original function in the area of the
mean but has significant error outside the region of the
expansion point. Any probabilistic analysis based on
expansion about the mean (as is typical in MV or RS
techniques) will grossly underestimate the likelihood of
failure, unless the underlying performance function is
linear and all random variables can be described using
the Gaussian density function.

In addition, if the random variables are statistically
dependent, the analysis becomes much more difficult.
The general approach is to transform the variables into
a new space where the variables are approximately
independent, perform the MV or RS analysis and then
iterate until conversion is reached.  It is important to
note that the assumption of independence does not
guarantee either an optimistic or a conservative estimate
of the final failure probability.

Construction of the Experimental Matrix
As previously noted, the construction of ′X  has been fundamental element in structural reliability
for a number of years.  However, similar efforts have been underway in the area of sensitivity
analysis.  Morris (1991) suggested an approach for constructing such matrices based on the one-at-
a-time family of experimental designs.  One-at-a-time designs are known to be inefficient when
used in linear regression, however, the experiments discussed here involve no random error in the
model output so the inefficiencies are not an issue.
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Response

Figure 3. 3D view of RS model
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Assume that the number of random variables in the problem is k.  It is of interest to explore p
possible levels or different values of each random variable i across the interval L Ui i,[ ].  The value
of p can be different for each random variable, but for our purposes it will be assumed to be both
even and constant across all the variables.  Define an experiment vector e  composed of integer
values from the interval 0 1≤ ≤ −{ }e pi ( )  each indicating the particular level of xi  to apply in the
performance function.  Define ∆  to be an integer in the interval   { , , ,( )}1 2 1K p − .  The goal of the
effort is the construction of a ( )k k+ ×1  orientation matrix B *.  Each of the rows in B *
represent a possible realization of the experimental vector e  supporting ( )k + 1  function
evaluations.

Define a ( )k k+ ×1  sampling matrix B as a strictly lower triangular matrix of 1’s:

  

B =

























0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1 1

L

L

L

L

L L L L L

Let e *be an initial starting value, which, for the problems considered here is typically a vector
associated with the mean values.  Further, define J( ),k k+1  to be a ( )k k+ ×1  matrix of 1’s and D *
to be a k-dimensional diagonal matrix with each element randomly chosen as either –1 or 1 with
equal probability.  Finally, define P  to be a k k×  matrix obtained by random permuting the
columns of a k k×  identity matrix.  The orientation matrix is then given by the expression:

B J e B J D J P* *( ), ( ), ( ),= +( ) −( ) +[ ]( )+ + +k k k k k1 1 1 12 2∆

Example
Consider a problem involving three random variables.  Therefore k = 3 and let p = 3 ( ei ∈{ }0 1 2, ,
- low, mean, high) and ∆ = 1. The P and D matrices and the e* vector are then generated
randomly:

P =
















0 1 0

1 0 0

0 0 1

,    D = −
















1 0 0

0 1 0

0 0 1

,   e* = [ ]1 1 1 .

The resulting orientation matrix is therefore:

B* =



















2 1 1

2 2 1

1 2 1

2 1 2

.

where each row of B* corresponds to a particular set of values used to exercise the performance
function.  These values constitute the experimental matrix, X’.



Analytical Techniques I

12

Differential Analysis
Differential analysis is not a distinct method for performing uncertainty analysis but is mentioned
here since it appears concurrently in a great many uncertainty discussions.  It has been used in
performing uncertainty analyses for a number of years and, chronologically, became popular at
roughly the same time as the MV and RS approaches and is often compared to these methods.  A
good discussion of the finer points of differential analysis can be found in Zimmerman, et al.
(1989), pp14-26.  In addition, Iman and Helton (1985, 1988) discuss the combination of
differential analysis and Monte Carlo methods and compare this combined approach with Latin
hypercube sampling.

Differential analysis begins with the application of a Taylor series about some nominal point to
approximate the performance function (identical to the MV method).  The calculation of the
(potentially) numerous partial derivatives is then accomplished using one of two differential
analysis techniques: direct or adjoint.  Each of these techniques provides some benefits and costs:
generally the adjoint method is more computationally efficient.  However, as with all methods
based on expansion, the primary source of error arises from the choice of expansion point rather
than the estimation of the partial derivatives.  For application, the reader is referred to the above
MV discussion and the SAND report by Zimmerman.

First-Order Reliability Methods
The following discussions center on a group of analytical techniques loosely referred to as first-
order reliability methods (FORM).  These methods are characterized by the iterative, linear
approximation to the performance function (hence the term ‘first-order’).  Fundamentally, these
methods can be considered as extensions to the MV methods previously discussed and were
developed to address some of the technical difficulties with these methods.  The labels associated
with each technique are not universal in acceptance and represent what appears to the author to be
generally understood phrases used by engineers and analysts when referring to a particular
methodology.  The methods are presented in roughly a chronological order since each method
builds on the previous mathematical developments.

Hasofer-Lind
One of the major problems with all of the techniques discussed thus far has been the lack of
invariance of the solution relative to problem formulation.  Simple algebraic changes in the problem
formulation can lead to significant changes in assessing the propagation of uncertainty.  Hasofer
and Lind (1974) presented a methodology which specifically addressed this issue by requiring
expansion about a unique point in the feasible solution space.  It should be mentioned that
Fruedenthal (1956) also proposed a method suggesting similar restrictions on the expansion point.

Fundamental to the approach is the concept of a limit state function.  Assuming the existence of a
critical level of system performance, the limit state function partitions the system parameter domain

  x = ( , , , )x x xn1 2 K into two regions: a region Ω  where combinations of system parameters lead to

an unacceptable or unsafe system response and a safe region Ω  where system response is
acceptable.  The probability of system failure is then defined by the expression:
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p f df = ∫∫∫L X x x( )

Ω

Perhaps the simplest way of explaining this
approach is to examine the simplest case of
two independent random variables.  Let R
represent a random variable describing the
strength of a system and let S represent a
random variable describing the stress or load
placed on the system.  System failure occurs
when the stress on the system exceeds the
strength of the system: Ω = >{( , ) | }r s S R .
Figure 4 depicts the concepts of a limit state
function and the associated failure/success
regions.

The probability of failure is given by:

p R S

R S

R S

f = <

= − <
= <

Pr{ }

Pr{ }

Pr{ / }

0

1

                 [24]

where each of the algebraic expressions
should give identical results.  The limit
state function is defined as that locus of
points where:

G R S R S( , ) : − = 0                  [25]

Hasofer and Lind suggested that the first
step in overcoming the problem of
invariance is to transform the random
variables to a set of independent random
variables through an orthogonal
transformation.  One possible
transformation, the Rosenblatt
transformation, is discussed in a later
section.  For now, assume that it is
possible to transform the system variables
to a set of independent random variables.
These random variables are then
normalized into a set of reduced variables

through the transformation: u
x

i
i i

i

= − µ
σ

,

where  µi and σ i are respectively the mean and standard deviation of the random variable, Xi .  A
new limit state function is then defined in terms of the reduced variables.  In the above example,
the limit state function becomes the locus of points where:

G u u G r s u uR r R S s S R r R S s S( , ) ( , ) ( ) ( )µ σ µ σ µ σ µ σ+ + = = − − − = 0                      [26]

and: u
R

r
R

R

= − µ
σ

 and u
S

s
S

S

= − µ
σ

.  Since this is a linear transformation, no information has been

lost.  Graphically, the new limit state function appears in Figure 5.  In the new space of basic
variables, let the minimum distance from the origin to the limit state function be | |β  (see Figure 6.)

R

S

Acceptable Region
R>S

R<S

Limit State Function
G(R,S)=0

Unacceptable Region

Figure 4. Limit State Function
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−(µR-µS)
σR

σR
2+σS

2

µR-µSβ=

σR
2+σS

2

σS(µR-µS)

σR
2+σS

2

− σR(µR-µS)

MPP

Figure 5. New Limit State Function
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The point on the limit state that lies closest to
the origin,  u

* * * *( , , , )= u u un1 2 K , is often
referred to as the most probable point
(MPP).

There is a direct relationship between the
safety index and the probability of failure.
As depicted in Figure 6 (and Figure 7), as β
increases the limit state moves away from the
origin and the probability of failure
decreases.  In general, this relationship is
only approximate, but in the unique case of a
linear limit state function and Gaussian
distributed random variables, the relationship
is exact: pf = −( )Φ β .  In any case, this
situation provides a convenient foundation
for developing preliminary skills in analytical
uncertainty methods.  In addition, many
preliminary analyses can be accomplished
using these assumptions.

Returning to the simple example with two
independent random variables, it is a simple problem in analytical geometry to show that the
minimum distance from the origin to the limit state surface in reduced space is:

d R S

R S

G

G

= −
+

= =µ µ
σ σ

µ
σ

β
2 2

                                                                                       [27]

As previously mentioned, given a linear limit state and independent Gaussian distributed random
variables, the probability of failure is given by:

p
w

dwf = −





= −

∞

∫ 1
2 2

2

π

β
β

exp

( )Φ

                                                                                   [28]

In general, the distance from the point u* to the limit
state G( )x = 0 is given by the expression:

d uii

n
=

=∑ *

1
                                  [29]

The difficulty then lies in determining the minimum
distance for a general nonlinear function.  This is
essentially a nonlinear, constrained optimization
problem:

minimize :

subject to : (equivalently 

d u

G G

ii

n T= =

= =
=∑ * * * /( )

( ) ( ) )
1

1 2

0 0

u u

u x
[30]

Shinozuka (1983) demonstrated that, in general, the
minimum distance is given by:

ur

us Limit State Function
G(ur,us)=0
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us*

MPP

Unacceptable Region

Acceptable Region

β

Figure 6. Safety Index
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Figure 7. Depiction of joint
probability density function and

limit state function
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                                                                 [31]

where the gradient is defined: 
  

∇ =






=

* , , ,T

n

G

u

G

u

G

u

∂
∂

∂
∂

∂
∂1 2

L
u u*

Ang and Tang (1984 p345) present an excellent first order interpretation of these results.  As with
the MV method, take a Taylor Series expansion of the system performance function, but this time
expand about the MPP:

  
G G x x G

G

x
x x H O Tn

ii

n

i i( ) ( , , ) ( )
( )

. . .*x x
x

x x

x x

*

*

= ≈ + −( ) +=
= =
∑1

1

K
∂

∂
                             [32]

but since x* is on the failure surface G( )x x x*= = 0 .  Putting the expression in terms of reduced
variables:

x x u u u ui i i i i i i i i i i− = −( ) − −( ) = −( )* * *σ µ σ µ σ                                                     [33]
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∂
∂

∂
∂ σ

∂
∂

G

x

G

u

u

x

G

ui i

i

i i i

( ) ( ) ( )x u u=






=






1
                                                                   [34]

Therefore:

  
G u u

G

ui i
ii

n

( )
( )*x
u

u u*

≈ −( ) +
= =
∑ ∂

∂1

L                                                                      [35]

Approximate expressions for the mean and variance of the system performance function can then
be found (for independent random variables):

µ ∂
∂

σ ∂
∂

G i
ii

n

G
ii

n

u
G

u

G

u

≈ −






≈






= =

=
=

∑

∑

* ( )

( )

*

*

u

u

u u

u u

1

2

2

1

                                                                                     [36]

In terms of the approximate mean and variance, the safety index is:

β

∂
∂

∂
∂

µ
σ

=
−













===

=
=

∑

∑

u
G

u

G

u

i
ii

n

ii

n

G

G

* ( )

( )

u

u

u u

u u

*

*

1

2

1

                                                                            [37]

It should be noted that for the unique situation where the random variables are independent and the

performance function is linear: G a a xi ii

n
( )x = +

=∑0 1
 the expressions for performance moments
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µ σG G, , are exact.  If, in addition, the random variables can be transformed into independent
Gaussian random variables, then exact probabilistic statements can be made regarding the system

performance: pf
G

G

= −






= −( )Φ Φµ
σ

β .  Other than in these very limited situations, the

probabilistic characterization of the system performance is only an approximation.

The set of reduced variables corresponding to the MPP can be found in a number of ways.  It is
obviously a straightforward nonlinear optimization problem.  However, a number of algorithms
have been suggested all generally following an approach involving the iterative solution of the
equations:

u

u

i i

G

*

*( )

= −

=

γ β

0
                                                                                                      [38]

where:

γ

∂
∂

∂
∂

i

i

i
i

n

G

u

G

u

=













=

=
=∑

( )

( )

u

u

u u

u u

*

*

2

1

                                                                                  [39]

A typical approach:

1. Formulate the limit state in terms of the reduced variables.

2. Assume an initial value for u*.  Typically the value for the first iteration is taken as the mean so

  u
* ( , , , )= 0 0 0K

3. Evaluate the partial derivatives:  
∂

∂
G

ui

( )u

u u*







=

4. Evaluate each γ i

5. Formulate each reduced variable in terms of the safety index: ui i
* = −γ β

6. Solve for β given G( )γβ = 0

7. Using the result from step 6 form a new candidate for MPP: ui i
* = −γ β

8. Repeat steps 2-7 until convergence is reached

It should also be noted that the Hasofer-Lind approach is independent of the underlying
distributions of the random variables.  The estimation of the safety index can be accomplished
independently of this information and even crude estimates of the failure probability can be made.
However, if it is desired to accurately characterize performance in probabilistic terms, it is required
that the distribution information be utilized to the greatest extent possible.
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Application
The application to be used is once again the stress voiding problem   The original limit state
function is repeated here for completeness:

G L A
Lc( , ) . . exp

.ν ν0 0 0 01694 0 01353
0 4158= − − −











                                      [40]

Since the random variables are independent, the first step is to transform the random variables into
reduced space:

u u

u
L

L uL

L
L L

1
0

0 1

2 2

0

0

0 0
=

−
→ = +

= − → = +

ν µ
σ

ν µ σ

µ
σ

µ σ

ν

ν
ν ν

                                                                  [41]

The new limit function, now in terms of the reduced variables, is then given by the expression:

G u u A u
uL L c

L L

( , ) . . exp
.µ σ µ σ µ σ

µ σν ν ν ν0 0 0 01 2 1
2

0 01694 0 01353
0 4158+ + = − +( ) − −

+( )

















          [42]

u1
* u2

* γ 1 γ 2 β

2.0 2.0 -0.9706 0.2407 1.1713

1.1277 -0.3195 -0.9619 0.2733 1.1712

1.1274 -0.3204 -0.9619 0.2733 1.1712

Table 1. H-L Application Results
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The new limit state function (in reduced space) is depicted in Figure 8.  For a two dimensional
problem such as this the minimum distance to the failure surface and the associated MPP can be
found graphically.  To demonstrate the algorithm a full set of iterations was performed. Table 1.
outlines the results from the intermediate steps.

Intermediate Summary of Results
The analytical techniques that follow begin to explicitly consider information regarding the
underlying density function.  Until this point, only information regarding the first and second
moments of the density functions have been required.  Before moving on to the next level
techniques, it might be informative to contrast the results available thus far.  Table 2 provides this
summary.  Note that for the RS method, only one formulation has been documented: the results
from the second formulation (as in the MV method) would have been equally disastrous.

Mean Value I Mean Value II Response Surface Hasofer-Lind
µG - mean 0.5284 0.0018 0.5252 0.5370

σ G - standard deviation 0.4445 0.0508 0.4451 0.4514

Table 2. Intermediate Results

(Please note that the similarity of the results of the MV and the H-L methods is an artifact of the
unfortunate choice of the problem chosen as an example.  Future editions of this summary will
contain additional examples.)

Sensitivity Analysis
Sensitivity analysis can provide information to support additional testing in an efficient manner.  If
the probabilistic characteristics of the response of a system are not significantly impacted by
statistical variation in certain parameters, those parameters can (and possibly should) be omitted

-0.5

0

0.5

1

1.5

2

Load

-4 -2 2 4

Grain Size

 
Figure 8. New Limit State Function and Distance Function
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from the probabilistic analysis.  In addition, testing efforts required to more fully characterize the
density functions of important variables can be accomplished in a more concerted effort.

Sensitivity measures when used in the context of analytical methods are often referred to as
importance factors.  The magnitudes of these factors characterize the impact of each of the random
variables on the safety index and thereby, their impact on the probability of failure.

The importance factors represent the direction cosines of the individual random variables in
reduced space and are defined (see Figure 9):

γ
β

∂
∂

∂
∂

i
i i

i
i

n

u

G

u

G

u

= − =













=

=
=∑

*

( )

( )

u

u

u u

u u

*

*

2

1

                                                                      [43]

As a computation check it is noted that: γ i
i

n
2

1

1
=
∑ =  and − ≤ ≤1 1γ i .

These factors were implicitly discussed in the previous material and are calculated as a natural
element in the analysis.  In particular, refer to Table 1.  The importance factors for the initial stress,
ν0 , and the grain size, L, are: -0.9619 and 0.2733, respectively.  Clearly, the uncertainty in the
initial stress is the dominant contributor to the probability that the system will fail.

Rackwitz-Fiessler
As previously mentioned, the above techniques do not rely on the availability of detailed
probability density function information.  As such these techniques are very commonly applied
early in the analysis to get a feel for the importance of design variables.  However, the next logical
step in a complete probabilistic analysis is the incorporation of as much statistical information as
possible.  This was a key impetus for extending the Hasofer-Lind approach.  Rackwitz and
Fiessler (1978) suggested one approach improving the accuracy of Φ −( )β  as an approximation to

the true underlying probability density
function of the system response.

When using Φ −( )β  as an
approximation, it is inherently
assumed that the system response can
be accurately represented (at least
locally) by a linear combination of
Gaussian distributed random variables.
When the true underlying distributions
are significantly non-Gaussian, the
approximation can have significant
error, particularly when investigating
regions in the tails of the distributions.
The Rackwitz-Fiessler (R-F) method,
also referred to as the ‘equivalent
normal’ (EN) method, is based on
developing a better Gaussian
approximation to the true probability
density functions in the area of interest
within the design space (i.e. x-space).

u1

Acceptable Region

Unacceptable Region

Limit State Function

u2

u1*

u2*

i =
-ui

*
= -cos    

Sensitivity Coefficient

β
γ

i 

ϕ

ϕ

Figure 9.  Depiction of Sensitivity
Coefficients
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It is still assumed that the limit state
function is approximately linear.

As mentioned, previous techniques
have assumed that the true underlying
probability density function associated
with a design parameter can be
approximated with a Gaussian
distribution having the same first and
second moments.  Figure 10 depicts the
approximation of Weibull probability
density function with a Gaussian pdf.
The Weibull density function has
positive support while the Gaussian
density function is defined over the
entire real line.  The accuracy is
obviously very limited in the tail
regions, and there is also no guarantee
that the approximation is adequate even
in the central regions of the probability
density functions.  The R-F technique
forces the two density functions to have

similar statistical properties in the area of primary interest in the probabilistic analysis; specifically
in the region of the MPP.

Given a cumulative density function F x( )  and the associated density function f x( ).  It is desired
to find the mean ′µ  and standard deviation ′σ  of an ‘equivalent’ Gaussian density function such
that the cumulative density functions and the probability density functions at the MPP are both
equivalent.  That is:

F x
x

f x
x

( )

( )

*
*

*
*

= − ′
′







=
′

− ′
′







Φ µ
σ

σ
φ µ

σ
1

                                                                                         [44]

where Φ( ), ( )⋅ ⋅φ  are the standard normal cdf and pdf respectively.  Solving these two equations
with two unknowns:

′ = − ′ [ ]

′ =
[ ]{ }

−

−

µ σ

σ
φ

x F x

F x

f x

* *

*

*

( )

( )

( )

Φ

Φ

1

1            [45]

These two moments are then substituted into the
moments used during the H-L iterations.  Note that
since the equivalent normal parameters are
functions of x* , the equivalent moments must be
updated at the beginning of each H-L iteration.
Figure 11 is a graphical depiction of the
approximation.

Equivalent
Gaussian

Weibull

xx* Area of
Approximation

Figure 11. Equivalent Normal
Approximation
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u
xx*

f(x)

F(x*)

u*

Standard Normalf(u)

f(u)f(x)

F(u*)

Weibull

Figure 10. Gaussian Approximation
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Application
Assume that the random variables, σ 0 and L are independent with known first and second
moments, but now the exact form of the probability density functions are known.  To permit
comparisons, the moments of the distributions will remain the same.  Let the initial stress on the
interconnect be characterized by a Weibull distributed random variable σ 0 300 0 2~ ( , . )W with
probability functions:

f x
t t

t

F x
t

( ) exp ,

( ) exp

= −

















≥

= − −

















−α
η η

η

α

β

α

α

1

0

1

                                                                  [46]

Maintaining the previously defined moments the parameters are therefore: α = 5 687.  and
η = 324 34. .  The grain size parameter will be assumed to be a lognormally distributed random
variable L Ln~ ( . , . )1 25 0 1 :

f x
x

x

F x
s

s
ds

x

( ) exp
ln( )

( ) exp
ln( )

= −
−[ ]








= −
−[ ]






−∞

∫

1

2 2

1

2 2

2

2

2

2

πξ
λ

ξ

πξ
λ

ξ

                                                               [47]

The parameters of the distribution are therefore: λ = 0 2182. , and ξ = 0 09975. .  Once again, the
line width is assumed to be 3 microns and the critical crack length is assume to occur when it
extends across 90% of the interconnect: Ac = 2 7. .

Since the random variables are independent, the first step is to transform the random variables into
reduced space, now using the moments of the equivalent normal distribution:

u u

u
L

L uL

L
L L

1
0

0 1

2 2

0

0

0 0
=

− ′
′

→ = ′ + ′

= − ′
′

→ = ′ + ′

σ µ
σ

σ µ σ

µ
σ

µ σ

σ

σ
σ σ

                                                                 [48]

Using initial estimates of the equivalent normal moments, a full series of H-L iterations is
performed until the safety index converges. Using the new estimate of the MPP that results from
the H-L algorithm, a new set of moments for the equivalent normal distributions, a second
application of H-L is performed.  This continues until once again the safety index converges.
Table 3 outlines the results from the intermediate steps.

It should be noted that the quick convergence of both the H-L and R-F methods is common for
performance functions without major discontinuities.

A major disadvantage of all the methods discussed thus far is the difficulty in addressing statistical
dependency between the random variables.  The last major development in analytical methods has
been to improve the capability of analytical methods to explicitly include these dependencies.  One
approach to this problem is employed by the advanced first order reliability method.
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′µ1 ′σ1 ′µ2 ′σ 2 u1
* u2

* β Φ −( )β

300 60 1.25 0.125 2.0 2.0 1.1713 0.1208

1.1277 -0.3195 1.1712 0.1208

309.58 51.57 1.316 0.384 1.1274 -0.3204 0.9777 0.1641

0.6499 -0.7303 0.9777 0.1641

305.59 56.13 1.379 0.309 0.6472 -0.7328

Table 3. Results of Rackwitz-Fiessler Method

Advanced First Order Reliability Method
The advanced, first-order reliability method (AFORM) is one of the last major steps in addressing
the difficulties with the previous techniques.  This approach was proposed by Hohenbichler and
Rackwitz in 1981 and will be referred to in this document either as AFORM or the H-R method.  It
includes the normalization procedure of the H-L technique. In addition, it includes the probability
density function approximation approach from the R-F method, and also addresses the issue of
dependency among the random variables.  Embedded within the iterative AFORM is a technique
for transforming the original, non-Gaussian, dependent random variables into a set of independent,
standardized Gaussian random variables.  This latter feature is based on the general transformation
method developed by Rosenblatt (1952).  In the interests of completeness, the following
discussion outlines the fundamental approach of the transformation method.

Rosenblatt Transformation
Notationally, x will refer to a vector of independent random variables, while y will be a vector of
statistically dependent random variables. Let the joint probability and cumulative density functions
of   y = ( , , , )y y yn1 2 K be defined as: f ( )y  and FY ( )y  respectively.  Define the marginal density
functions and cumulative marginal distribution functions:

  

f y y y f y y y s s ds ds

H y y y y
K

f y y y s ds

i i i i i n i n

i i i
i

i i i i

yi

( , , , ) ( , , , , , , )

( | , , , ) ( , , , , )

1 2 1 2 1 1

1 2 1 1 2 1

1

K K K K

K K

= ⋅ ⋅ ⋅

=

+ +
−∞

∞

−∞

∞

− −
−∞

∫∫

∫
                             [49]

  
where :  K f y y y s dsi i i i i= −

−∞

∞

∫ ( , , , , )1 2 1K and H y F y1 1 1 1( ) ( )= .  The new set of independent,

standardized Gaussian random variables are then given by:

  
u = = [ ] [ ] [ ]{ }− − −

−( , , , ) ( ) , ( | ) , , ( | , , , )u u u H y H y y H y y y yn n n n1 2
1

1 1
1

2 2 1
1

1 2 1K K KΦ Φ Φ      [50]

Typically, the necessary conditional joint density functions are difficult to obtain except in rare
situations.  The alternative is to obtain the conditional density function through numerical means.
It should be noted the Rosenblatt transformation reduces to the traditional rotation and translation
transformation for dependent Gaussian distributed random variables.

A factor that certainly lends suspicion to the use of any transformation method is the very limited
availability of data to support confident characterization of the joint density functions; it is common
to resort to characterizing random variables in such a manner that analytical transformation
techniques can be used.  This difficulty exists regardless of whether the analysts are using
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analytical or Monte Carlo-based techniques.  The point here is that gross assumptions about
statistical dependency are often made with insufficient justification regardless of the uncertainty
analysis method being used.

Rosenblatt Transformation Examples
This first example is due to Hohenbichler and Rackwitz (1981).Let the joint cumulative distribution
function for two random variables Y Y1 2, be defined (for y y1 2 0, ≥ ):

F y y y y y y y y( , ) exp( ) exp( ) exp( )1 2 1 2 1 2 1 21= − − − − + − − − θ                                [51]

Therefore:

Φ Φ

Φ Φ

( ) ( ) ( )

( ) ( | ) ( | )

u H y u H y

u H y y u H y y

1 1 1 1
1

1 1

2 2 2 1 2
1

2 2 1

= ⇒ = [ ]
= ⇒ = [ ]

−

−
                                                   [52]

where:

H y y

H y y
f y s ds

f y

y y y y y

y

x

1 1 1

2 2 1

10

1

1 2 2 1 2

1

1

1
2

( ) exp( )

( | )
, exp( ) ( )exp( )

exp( )

= − −

=
( )
( ) = − − + − −

−
∫ θ θ                      [53]

and finally:

u = − −[ ] − + − −[ ]{ }− −Φ Φ1
1

1
2 2 1 21 1 1exp( ) , ( )exp( )y y y y y

T
θ θ                           [54]

Notationally, we will denote this vector of standardized, independent random variables as:

  
u u

y

* * *, ,
*

= { } =u un1 K , where the subscript indicates evaluation of the transformation at a particular

point, y* .

This second example is from Ang and Tang (1984). Let Y1be a Gaussian distributed random
variable with mean µ1and standard deviation σ1 .  Let Y2be a lognormally distributed random
variable with probability density function:

f y
y

y
( ) exp

ln( )= − −

















1
2

1
2ξ π

λ
ξ

.                                                                  [55]

Assume that Y Y1 2,  are correlated such that ρ12 0 6= . .  Applying the Rosenblatt Transformation:

Φ
Φ

( ) ( )

( ) ( | )

u H y

u H y y
1 1 1

2 2 2 1

=
=

                                                                                              [56]

where:

H y y
y y

2 2 1
2 1 1 1

21
( | )

ln( ) ( / )( )= − − −
−













Φ λ η ξ σ µ
ξ η

                                                  [57]

and:

η ρ
ξ

σ
µ

=




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2

2

                                                                                                          [58]
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The new vector of reduced space random variables is therefore composed of:

 

u
y

u
y y

1
1 1

1

2
2 1 1 1

21

= −

= − − −
−

µ
σ

λ η ξ σ µ
ξ η

ln( ) ( / )( )
                                                                      [59]

Note that since the lognormal distribution function can be transformed into a Gaussian distribution
function, the reduced space random variables could have been characterized without resorting to
the Rosenblatt Transformation (and the results are identical).

AFORM Algorithm
The Advanced First Order Reliability Method can be summarized in a rather straightforward series
of operations.  As with the previously discussed methods, a point in design space is chosen to
initiate the algorithm.  While not necessarily the best place to start, the most common point is the
vector of nominal or mean values   y

* { , , , }= µ µ µ1 2 K n .

1. Using the Rosenblatt transformation, find the vector of standardized, independent random
variables evaluated at the current design point: u u* | *=

y
.

2. Calculate the Jacobian transformation matrix evaluated at the current design point:
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For convenience note that:
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3. Evaluate the performance function and the associated gradient at the current design point:
g g

g

T

g
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J
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where the gradient is defined:
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4. Move to a new design point and calculate a new safety index:
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u u u

J u u

=
∇ ∇
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and the safety index is then:

β

β

= ( )
= −∇

∇













u u

u

* *

*

*
*˜

T

T

1
2

or

5. Using the results from Step 4 as the new expansion point, repeat steps 1-4 until convergence is
reached for the safety index

Application
Assume that the initial stress σ 0 is a Gaussian distributed random variable with mean µ1 300=  and
coefficient of variation: κ1 0 2= . .  Let the grain size L be a lognormally distributed random variable
with median and coefficient of variation: ˜ .y2 1 25= , κ 2 0 1= . .  The initial stress and grain size will
be assumed to be negatively correlated with correlation coefficient: ρ = −0 5. .  As before, the line
width is 3 microns and the critical crack length is 90% of the interconnect width: Ac = 2 7. .

Applying the Rosenblatt Transformation:

u H y
y

u
y y
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1

1
1 1

1

2
2 1 1 1
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= [ ] = −
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−Φ ( )
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µ
σ

λ η ξ σ µ
ξ η

                                                                       [60]

Using some useful relationships for the lognormal probability density function:
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and:

η ρ
ξ

σ
µ

=






= − ( ) = −2

2

0 5
0 09975

0 1 0 50125
.

.
. .                                                               [62]
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The Jacobian can then be determined and evaluated at the current design point,
y* { , } { , . }= =µ µ1 2 300 1 2563 :
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Given the original performance function:
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The gradients can also be calculated and evaluated:
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The new design point (in reduced space) and the associated safety index are therefore:
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β = ( ) =u u* * .
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and in the original design space:
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These results are then used as input to the next iteration.  Table 4 summarizes the input and results
from five iterations of the algorithm.

Summary
The purpose of this report was to document and, when appropriate, identify strengths and
weaknesses of an initial family of analytical techniques.  As noted earlier, discussion was directed
at the engineer or analyst whose background may involve an undergraduate probability course.
The report may therefore appear to be simplistic to those with a much stronger probability and
statistics background.  It is important to note that the overall goal of this report is to assist the
design engineer in moving away from the use of safety factors as the sole criteria for component
design.  As material and manufacturing costs escalate, alternative design methodologies must be
explored.  In addition, as design criteria move away from the component to system level
specifications, the use of safety factors or margins of safety becomes difficult and generally overly
conservative.  With proper application, probabilistic methods have been shown to result in designs
with 10-35% reduction in materials in conjunction with a reduced likelihood of failure, when
compared to similar safety factor based designs.

However, while the goal is to encourage the use of these analytical methods by design engineers,
there is a place for these methods in the field of risk analysis as well as the much broader area of
uncertainty analysis.  The methods outlined in this report, some almost 50 years old, are generally
unknown in the field of uncertainty analysis.  And, while uncertainty analysis has flourished
without these techniques, there is room for new ideas and concepts.  Hopefully this report will

Input Result
s

Iteration y* x* g( )*x µg
* σ g

* β Φ −( )β

1 300 1 2563, .{ } { , }0 0 0.5333 0.533
3

0.4887 1.0911 0.1376

2 364 5 1 1686. , .{ } 1 075 0 698. , .−{ } -0.0195 0.602 0.5201 1.1574 0.1235

3 367 98 1 212. , .{ } 1 133 0 354. , .−{ } -0.0009 0.603
8

0.5118 1.1797 0.1190

4 369 3 1 222. , .{ } 1 155 0 2412. , .−{ } -0.00004 0.604
6

0.5100 1.186 0.1179

5 369 6 1 225. , .{ } 1 161 0 2427. , .−{ } -0.2e-5 0.604
8

0.5095 1.187 0.1176

Table 4. Summary of Hohebichler-Rackwitz Iterations
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provide an introduction to the growing area of probabilistic methods for those statisticians and
analysts involved with risk, reliability or uncertainty analysis.

The second part of this report entitled: A Survey of Probabilistic Methods Used in Reliability
and Uncertainty Analysis: Analytical Methods II, will build on the analysis techniques
discussed in this first segment.  While the majority of the techniques developed since 1985 have
been variations of the methods outlined here, new and exciting approaches have been developed
that will also be discussed.
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