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Abstract

Thisreport provides an introduction to the various probabilistic methods devel oped roughly
between 1956-1985 for performing reliability or probabilistic uncertainty analysison
complex systems. This exposition does not include the traditional reliability methods (e.g.
parallel-series systems, etc.) that might be found in the many reliability texts and reference
materials (e.g. Kapur and Lamberson, 1977). Rather, the report centers on the relatively
new, and certainly less well known across the engineering community, analytical
techniques. Discussion of the analytical methods has been broken into two reports. This
particular report islimited to those methods devel oped between 1956-1985. While a bit
dated, methods described in the later portions of this report still dominate the literature and
provide a necessary technical foundation for more current research. A second report
(Analytical TechniquesIl) addresses methods developed since 1985. The flow of this
report roughly follows the historical development of the various methods so each new
technique builds on the discussion of strengths and weaknesses of previous techniques. To
facilitate the understanding of the various methods discussed, a simple 2-dimensional
problem is used throughout the report. The problem is used for discussion purposes only;
conclusions regarding the applicability and efficiency of particular methods are based on
secondary analyses and anumber of years of experience by the author.

This document should be considered a‘living document’ in the sense that as new methods
or variations of existing methods are devel oped, the document and references will be
updated to reflect the current state of the literature as much as possible. For those scientists
and engineers aready familiar with these methods, the discussion will at times become
rather obvious. However, the goal of this effort isto provide a common basis for future
discussions and, as such, will hopefully be useful to those more intimate with probabilistic
analysis and design techniques. There are clearly alternative methods of dealing with
uncertainty (e.g. fuzzy set theory, possibility theory), but this discussion will be limited to
those methods based on probability theory.
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Background

Types of Uncertainty

Uncertainties typically fall into one of two categories: probabilistic or possibilistic. However, even
some system aspects that are clearly deterministic, such asthe use of a pure sine wave to model
system input, can be characterized using probabilistic methods. Probabilistic techniques are
characterized by the use of random variables to describe the various sources of uncertainty and are
often referred to as reliability methods by structural engineers. These techniques are typically
applied when the system under consideration is of small to moderate complexity (100-150 random
variables) and is reasonably well understood. Possibilistic techniques involve the use of fuzzy set
theory or possibility theory to model uncertainty and are particularly useful when dealing with
large, complex systems. In most cases, an exact system model may be impractical or even
impossible to obtain.

Sources of Uncertainty

Discounting ignorance on the part of the user, uncertainty arises from four major sources. Externa
system parameters are very common sources of uncertainty and include avariety of possibilities:
temperature, radiation, road surface, etc. While the engineer can select certain materialsfor their
strength, wear or corrosion characteristics, the true characteristics can vary considerably when the
system isfinally constructed. Material properties are only one example of uncertainty in internal
System parameters.

External and internal sources of uncertainty can be roughly characterized by the level of control the
designer has over the range of values that the system might experience. For example, temperature
might be external or internal depending on the ability of the system designer to regulate the extreme
temperatures that the system might be exposed to. In a sense, the more control the engineer has
over the external variables, the more they become part of, or internal to, the system being designed

A third source of uncertainty is the system model. By definition the model is only an abstract
representation of the real world. The choice of modeling technique or the level of detail used within
amodel might lead to error in the estimated response of the system. For example, even finite
element models with hundreds of thousands of elements provide a very simple representation of
how the physical system will behave. While appearing to be deterministic, such modeling
uncertainty can often be characterized using various probabilistic or possibilistic analysis
techniques.

A final source of uncertainty isintroduced when the engineer attempts to observe the behavior of
the system. Such things as human perception, measurement error, or sensor error compounded by
data fusion are significant sources of observational uncertainty.

June 1998 1
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Time and Aging
Characterization of the uncertainties inherent in the system and its operating environment is

complicated by time. As the system ages or goes through various upgrades and redesigns, the
uncertainties will aso continuously change.

During theinitial stages of design, the system progresses through a test-redesign-test cycle. As
testing progresses, faults and design weaknesses are found and design changes are made. Testing
begins again and the cycle continues until the system demonstrates the required reliability
characteristics or it isimpractical (i.e. not cost effective) to continue redesign. This processis
referred to as reliability growth. However, as soon as the system become operational the system
beginsto age. Astime passes the microstructure will evolve, corrosion will invade connections and
surfaces will wear. It becomes a constant battle to maintain and support the system; typically the
magjority of the costs of a system are incurred during this stage of the system life cycle.

Attention during the design of a system to the inevitable problems associated with aging and
wearout can alleviate much of this cost. In addition, by proper application of uncertainty techniques
later in the system life cycle, faillures can be anticipated and addressed pro-actively; generdly at
significant savings relative to the costs incurred as aresult of a catastrophic system failure.

However, adetailed discussion of the implications of time dependent system uncertaintiesis
beyond the scope of this current effort and is left to afollow-on report.

Purpose

The purpose of this current report is to document the various methods available for performing
reliability analysis or probabilistic uncertainty analysis on complex systems. This exposition does
not include the traditiona reliability methods that might be found in the many reliability texts and
reference materials (e.g. Kapur and Lamberson, 1977). Rather, the following discussion centers
on relatively new, and certainly less well known across the engineering community, reliability
analysis techniques. The discussion is directed at the engineer or analyst whose background may
involve an undergraduate probability course. The report may therefore appear to be smplistic to
those with amuch stronger probability and statistics background.

This document should be considered a*living document’ in the sense that as new methods or
variations of existing methods are developed, the document and references will be updated to
reflect the current state of the literature as much as possible. For those scientists and engineers
already familiar with these methods, the discussion will at times become rather obvious.
However, the goal of this effort is to provide acommon basis for future discussions and, as such,
will hopefully be useful to those more intimate with probabilistic analysis and design techniques.
There are clearly aternative methods of dealing with uncertainty (e.g. fuzzy set theory, possibility
theory), but this discussion will be limited to those methods based on probability theory.

The primary goa of al of these methods is the characterization of uncertainty in system response
due to uncertainty in either internal system parameters (e.g. grain size, yield strength), or external
parameters (e.g. temperature, load). These two sources of uncertainty will be grouped into a
general vector of uncertainty variables, X = (x,X,,...,X,). Thevariationsin these variables may or
may not be time dependent. The response of the system to a particular realization of this vector
will be denoted G(x). Theinitia discussion will concentrate on those situations where the
uncertainties can be described independent of time; the discussion will be expanded in a sequel to
include time dependent system behavior.

A second goal, equally important during system design, isthe sensitivity analysis of system
response to uncertaintiesin the system variables.

Probabilistic methods are typically applied to address one of two basic questions: What does the
probability density function of the system response look like? Or, alternatively, and at first glance a
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bit more narrow in scope: What is the probability that the system response exceeds a critical level?
From areliability engineering design and analysis point of view, the latter approach is the most
common since reliability engineers are typically responsible for describing the probability of

system failure relative to a set of design codes or specifications. Interest in system responseis
typically focused on a particular region of interest rather than the entire domain of possible system
responses. Further, by examining a number of possible ‘critical levels', clearly the density
function of the system response can be completely characterized (rather than evaluated at Ssmply
one point). For these reasons, the second approach will be emphasized in this discussion. When a
particular technique provides additional benefits beyond this objective, these will be highlighted as
much as possible.

Assuming the existence (real or artificia) of acritical level of system performance, the result isthe
partitioning of the system parameter domain x = (Xx;,X,,...,X,)into two regions: aregion Q where
combinations of system parameters lead to an unacceptable or unsafe system response and a safe
region Q where system response is acceptable. The surface dividing these regionsis generally
referred to as the limit state surface or_limit state function. The probability of system failure isthen
defined by the expression:

p; = . [f (X)dX

NI

where f, (x) isthejoint probability density function (pdf). Except for some unique limit state
functions and joint density functions (e.g. linear limit state and Gaussian distributed random
variables), theintegral can be very difficult to evaluate. The following discussion centers on the
various methods often used to evaluate thisintegral.

There are two magjor categories of
probabilistic methods. Thefirst category
includes a broad class of random sampling
methods such as classic Monte Carlo or
importance sampling techniques. These are
characterized by the random selection of
observations of each system parameter X

i such that f, (x) issatisfied, and these values
‘ are subsequently operated on by the system
o] performance function G(x).

The second category of probabilistic
methods is characterized by the use of
analytical techniquesto find aparticular
point in design space that can be related (at
least approximately) to the probability of
system failure. This point is often referred
to as the most probable point or the design

point.

Both of these analysis categories will be
discussed in enough detail to permit the
reader to apply the techniquesto smple
problems. The discussion will borrow
heavily from the available literature, but a
concerted effort will be made to standardize
the notation and terminology. Significant

) differences will be noted where appropriate.
Figure 1. G(X) for Sample Problem For purposes of discussion and to ease the

Initial _Stress
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introduction of the techniques to the uninitiated, a single sample problem will be used throughout
the discussion. Variations on this problem may be introduced to illustrate a particul ar aspect of a
solution methodol ogy.

Notation

The notation used in the following discussion is consistent with the literature; however, it can be
confusing to the uninitiated. The following definitions will be consistent throughout.

X ={x,...,X}: avector of independent random variables generally referred to individually as
design variables. The performance of the system is defined in terms of these variables and
the locus of all feasible combinations of these variablesis referred to as the design space.

y ={y,,...,Y,}: identical to the vector x with the exception that these random variables are assumed
to be statistically dependent.

u={u,...,u.}: avector of statistically independent random variables with zero mean and unit
standard deviation.

G(x),9(x): the performance of the system is assumed to be a function of a set of design variables
and is referred to as the system performance function or system response function. This
function may be explicit or implicit.

@D standard normal density function -

1

_ 0 20
A= T2 P 28

@ (DL cumulative normal density function -

1 ¢ [0Os0
P@= o JoPT S HS

limit state function: a set defined by the locus of points: G(x) = 0.

failureregion: the limit state function divides the feasible space into (at least) two regions. the
faillure or unsafe region G(x) <0 and the saferegion: G(x) > 0. These definitions are
based on historical convention rather than a specific requirement. The use of the terms
‘faillure’ isalso customary, since only the likelihood of a particular system state may be of
interest rather than system failure.

safety index: [, the safety index, is defined asthe scalar distance, in standard normal space,
from the origin to the limit state function. When used in the context of ®(-p) itis
assumed that 8> 0. For alinear limit state function and Gaussian distributed random

variables, it can be shown that g = %, the ratio of the mean system response and the
G
standard deviation of the system response (both evaluated at the critical or failure point).

Sample Problem

The problem to be used throughout the discussion involves the growth of voids within an solder
interconnect. Asaresult of the integrated circuit manufacturing process residual stresses between
the interconnect and the passivation layer will remain. These resdua stresses will then induce
voidsin the grain interfaces. These voids grow and eventually lead to aloss of transmission
capability in the interconnect line. For a specific length of time in storage, line geometry, material
properties, the crack size, A, asafunction of initial stress, v, and grain size, L, is approximated
by:
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_ ) 0 0.4158(]
=v, %).01694 001353exp = 1]

Failure of the interconnect then occurs when the crack size exceeds some critical level A:
=Pr{A <A} or equivalently:

=Pr{A -A<0} = Pr[A v0§)01694 0.01353ex pg @%< 0o=Pr{gx) <0} (2]

(to be consistent with the reliability engineering literature). Notethat here x ={x,,X,} = { Vo» L} .
Theintegral of interest is therefore:

P = ff f(00x

G(X)<0
where f, (x) isthejoint probability density function of v, and L.

The following discussion is organized into the two broad categories of probabilistic analysis
techniques discussed earlier. The analytical methods will be discussed first; following roughly in
chronological order of development. As such, each method will devel op successively on the
weaknesses and strengths of its predecessors.

Mean Value Method

This method is commonly referred to as the mean value first-order second moment (MVFOSM or
simply MV) method sinceit typically involves afirst order expansion about the mean to estimate
the first and second moments. It isalso closaly related to differential analysis techniques (both
direct and adjoint). Thisdiscussion isbased on the material in [Morgan, et a: pp183-192] and
[Kapur and Lamberson pp95-121]; there are numerous other sources. In summary the mean value
method involves developing the Taylor series expansion of G(x) about the nominal or mean values
of theindividual random variables. The moments of the resulting approximating function are then
easlly found. Based on these moments approximate statements can be made regarding the
probability of failure. (Note that second order terms are included for completeness.)

Development
G(x) = G(xl,...,xn)

(% - lli)(xj - /Ji) +HOT. -

(X)
x 1) 2,22 -~

where: [ = { TR [Jn} . Taklng the expectation of this expr on (and neglecting higher order
terms):

= G(X)|x [,1

EIG001 = G0y + 3 75"

=1

=60t 5 3 5 %
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A similar expression for the variance can be found:
VIG(x)] = E[(G() - EIG()])’]

L )| Bheeg| E
~J=1;COVI:X“XJ-'D dxix =ﬂ% 01xe x:u% o

. O f Oag
:ZVM]D@ O +2 Cov[x, x] 9G(x) 2G(x)

=1 [l @(1 x= HD I 1| ]+1 %

If the random variables are independent, these expressions can be wbstantl a Iy S| mplifi ed

N
E[G(x)] = G(X),-,

"0 f [6]
VIG(x)] = zvmﬁi) 0

x=q
Application

Formulation 1

For the discussion here it will suffice to assume that the random variables, v, and L are
independent with known first and second moments, but the exact form of the probability density
functions are unknown. The mean and coefficient of variation (o/p) for each of the random
variablesare- v, :U(300,0.2), L:(1.25,0.1). Thelinewidth isassumed to be 3 microns and the
critical crack length is assumed to occur when it extends across 90% of the interconnect: A, =2.7.

GV, L) = A - v0§)01694 0.01353exp T %% [7]
E[G Vo, L) ] = [lg = G(X)|,_,
0 0
=27-p, m) 01694 ~0.01353exp -~ 04158
(8]
0 0.4158(T]
= 2.7-300:0.01694 - 0.01353exp- —>°
é) PO 125 H
= 0528417780
T O
VIG)]=0g =S VIXIg—— 0=
© Z 3 -
0 0 0
=0, 0.1694+0. 01353exp§— 0 4158% o; i, 0. 005625774exp§— 0'4158§/uf o [9
O L O

= 0.1980033634
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Define the safety index: 3 = &. Given the above moments and assuming that the system
UG

response, G(x), can be modeled as anormally distributed random variable, approximate

statements can then be made regarding the probability of failure:

= Pr{G(x) < 0} = PrEct) Mo O~ Ho -
O Og Oc [
0o [10]
:CDE—Z_(; :CD(—ﬁ)

where ®(0)listhe standard normal cumulative density function. In the example above, the
probability of failureis then approximately: @(-1.1875) = 0.11751. It should be noted that the

assumption of normality of the system response, coupled with the use of the Taylor series
expansion as an approximation of the system response function, are the major sources of error
associated with the use the MV technique.

Formulation 2

A necessary condition for any uncertainty analysis technique isthat it should be independent of the
mathematical formulation of the problem aslong as the origina definition of failure is maintained.

That is, the results of analysisof p, =Pr{R< S should be equivalentto p, = Pr{R-S<0} or

- Prﬁg < 1@- For example, an equivalent formulation of the problem is given by:

0
p =P{A -A<O} =P §>01694 0.01353ex pm—@%< og  [11]
Vo

Based on this equiva ent formulation, the mean and variance can once again be found:
E[G(vos L)) = o = G(x)|x=f

D 0.4158 [12]
.Uvo D
=0.00176139
VIGWl =2 = 3 Vix I 22 5:
1=1 |:| de |:|
0 0.41580 H
= 2 13
-l e et o -

=0.00258166
The safety index inthiscaseis. = Hs - 0.9631944. Given the above moments, approximate

G

statements can then again be made regarding the probability of failure: ®(-B) = 0.167725.

June 1998 7
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Clearly, when the MV method is applied on two problems that should give identical results,
difficultiesin estimating the probability of failure can be encountered. The above reformulation is
particularly common when engineers are attempting to deal with dimensionless units. The issue of
solution sengitivity to problem formulation becomes even more problematic when dealing with
very large, complex representations of system behavior.

Response Surface Methods

The response surface (RS) method is very similar to the MV method described above and can be
thought of as a subset of these methods. While the MV methods deal directly with the performance
function, the RS approach involves approximating the original, complicated system performance
function with a ssmpler, more computationally tractable system model. This approximation
typically takes the form of afirst or second order polynomial:

G(X) = G(Xy,-- . X,) = 8 tax +--+aX, +

2 2
an+1X1 +"'+32an +aZn+1X1X2 tee

Determination of the constants is accomplished through a linear regression about some nominal
value, typically the mean. Given this new performance function, the analysis then proceedsin
exactly the same manner as the mean value method. It should be noted that not all response
methods require a polynomial function as an approximation and the response function is not
required to be linear in the parameters. The reader should be cautioned that there are additional
analytical methods used in uncertainty analysisthat are also referred to as ‘ response surface
methods'. These newer methods will be discussed in the First-Order Reliability Methods section
presented later in the document.

[14]

Application
Aswith the MV approach it will suffice to assume that the random variables, v, and L are

independent with known first and second moments, but the exact form of the probability density
functions are unknown. The application as well as the underlying statistics of the random variables
remain as described earlier; the response function is repeated here for convenience:

G(Vy, L) = A -V, %).01694 - 0.01353expg—&|_158% [15]

By perturbing the two input variables about their respective means, the following input data matrix
can be constructed:

(800 1250
%,60 1.25%

X' =[240 1.250] [16]
1300 13757
FB00 1.1250]

where the number of rows n corresponds to the number of observations, or in this case the number
of times the performance functionisexercised. (NOTE: The particular form for the input matrix
has been used by structural reliability engineers since the early 1980's. However, Morris (1991)
independently formalized the methodology and a discussion of the formal logic behind the
construction of the X' matrix is presented at the end of this section.) Using these values as inputs,
the response of the system can be determined:
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z=[0.5284 0.0941 0.9627 0.6178 0.4228]' [17]

If we had been interested in estimating a second order polynomial the matrix would have been
defined:

a X X X11 X12 X1%5 O
X = Er X1 Xy X222 X1 Xo0 ] [ 18]
o : : f -0
a N
X Xz o X Xn2 O

where n isthe number of sample observations. The minimum number of observationsto fit a
second order polynomial issix. However, for this example, only the linear effects will be included

in the model and only thefirst two columns are needed. Ingenera: X = [1: X’]
From classical linear regression, the normal equations can be solved for the coefficients:

= (X"X)"X"z=[1.7219 -0.0072 0.7798]' [19]
The approximate system performance function is therefore:
G(x) = G'(x) =1.7219-0.0072v, + 0.7798L [20]

For information purposes, it isinteresting to contrast the predicted system performance based on
the RSM approximation and the actua system performance:

Predicted Response =[0.5251 0.0909 0.9595 0.6224 0.4277]'

Actual Response=[0.5284 0.0941 0.9627 0.6178 0.4228]"

It appearsthat afair approximation of the original function has been found in the neighborhood of
the mean using simply the linear components of the
regression equation. However, thisis not alwaysthe
case given the complex nature of problems encountered

[21]

ya in engineering. Thelevel of accuracy is greatly
dependent on the magnitude of the perturbation used to
ya construct the input data. The analyst must be aware of
e the limitations of this approximation and, if possible, a
o smple validation check is always recommended (e.g. an

additional run with anew perturbation or small Monte
Carlo sample if economically feasible).

Given an approximation to the origina performance
function, anumber of analysis avenues can be explored.
Traditionally, subsequent to finding the regression

// function, the function can be exercised using Monte
E— R Carlo techniques or ssimply using the MV method
‘‘‘‘‘‘‘‘‘ previoudly discussed. The implication of using avector

of mean values as the expansion point is that the system
will fail in the neighborhood of the mean. This problem

Figure 2. RS Approximation Vs. jgjdentica to that experienced when using the MV
Original Performance Function  ~hod.

June 1998 9
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There are further directions that can be taken and thiswill be discussed in detail in alater section.
Using the MV technique, the associated moments are easily found (again assuming independence
among the random variables):

E[G'(vo, L)] = e = G' (X)),

=1.7219 - 0.0072(300) + 0.7798(1.25) [22]
=0.5252
R 7
VIG'(X)] =0z =) V[X =
[G'(X)] ; [X]WFHE
= (60)?(0.0072)? + (0.125)*(0.7798)* [23]
=0.1981

The major benefit of RS type approaches over the MV method isthat it is not necessary to have an
analytical expression for the performance function to estimate the moments of the system
performance function. However, approaches based on thisinitial regression result will also suffer
from the same deficiencies asthe MV methods: they are sensitive to the mathematical form used for
the performance function. If, for example, the regression equation was based on the second
formulation presented in the MV section, the resulting approximation would be quite different.

The estimates for the mean and variance would naturally be different also.

Regardless of the problems with formulation conflicts,
both the MV and the RS methods suffer from
senditivity to the expansion point. It isclear from
Figure 2 (and Figure 3) that the approximation
osculates with the original function in the area of the
mean but has significant error outside the region of the
expansion point. Any probabilistic analysis based on
expansion about the mean (asistypica in MV or RS
techniques) will grossly underestimate the likelihood of
failure, unless the underlying performance function is
linear and al random variables can be described using
the Gaussian density function.

In addition, if the random variables are statistically
dependent, the analysis becomes much more difficult.
The general approach isto transform the variablesinto
anew space where the variables are approximately
independent, perform the MV or RS analysis and then
iterate until conversion isreached. It isimportant to
note that the assumption of independence does not o
guarantee either an optimistic or a conservative estimate

of the final failure probability.

Figure 3. 3D view of RS model
Construction of the Experimental Matrix

As previously noted, the construction of X' has been fundamenta element in structura reliability
for anumber of years. However, similar efforts have been underway in the area of sensitivity
analysis. Morris (1991) suggested an approach for constructing such matrices based on the one-at-
atime family of experimental designs. One-at-a-time designs are known to be inefficient when
used in linear regression, however, the experiments discussed here involve no random error in the
model output so the inefficiencies are not an issue.

10
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Assume that the number of random variablesin the problemisk. Itisof interest to explorep
possible levels or different values of each random variablei across the interval [Li ,Ui] . Thevalue

of p can be different for each random variable, but for our purposesit will be assumed to be both
even and constant across al the variables. Define an experiment vector e composed of integer
valuesfrom the interva {O <g<(p- 1)} each indicating the particular level of x to apply in the
performance function. Define A to be aninteger intheinterval {1,2,...,(p—1)}. Thegoa of the
effort isthe construction of a (k +1) x k orientation matrix B*. Each of therowsin B*
represent a possible realization of the experimenta vector e supporting (k +1) function
evauations.

Definea (k +1) x k sampling matrix B asadtrictly lower triangular matrix of 1's:

o 0 0 00

0

%1 0 0 0-

g 10 00
= 0
51 1 1 0F

0 ...0

o101 1 1p

Let e* beaninitial starting value, which, for the problems considered hereistypically a vector
associated with the mean values. Further, define J,.,  tobea (k +1) x k matrix of 1'sand D *

to be ak-dimensiona diagona matrix with each element randomly chosen as either —1 or 1 with
equal probability. Finally, define P to bea k x k matrix obtained by random permuting the
columnsof a k x k identity matrix. The orientation matrix is then given by the expression:

B = (I +8/2)[(2B = I + Iy JP

Example

Consider a problem involving three random variables. Therefore k =3 andlet p=3 (g 0{0,1,2}

- low, mean, high) and A =1. The P and D matrices and the e vector are then generated
randomly:

0 1 0Q 1 0 o
_ 0 p- 0 o=
P=d 0 05 D=t -1 05 e=[1 1 1]

B 0 1F ® 0 13

The resulting orientation matrix istherefore:
2 1 1o

O
B*:% 2 1D.
2 1d

2 1 2

where each row of B* corresponds to a particular set of values used to exercise the performance
function. These values constitute the experimental matrix, X’.
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Differential Analysis

Differential analysisis not adistinct method for performing uncertainty analysis but is mentioned
here since it appears concurrently in agreat many uncertainty discussions. It hasbeen usedin
performing uncertainty analyses for anumber of years and, chronologically, became popular at
roughly the sametime asthe MV and RS approaches and is often compared to these methods. A
good discussion of the finer points of differential analysis can be found in Zimmerman, et a.
(1989), pp14-26. In addition, Iman and Helton (1985, 1988) discuss the combination of
differential analysis and Monte Carlo methods and compare this combined approach with Latin
hypercube sampling.

Differentia analysis begins with the application of a Taylor series about some nominal point to
approximate the performance function (identical to the MV method). The calculation of the
(potentially) numerous partial derivativesisthen accomplished using one of two differential
analysistechniques: direct or adjoint. Each of these techniques provides some benefits and costs.
generally the adjoint method is more computationally efficient. However, aswith all methods
based on expansion, the primary source of error arises from the choice of expansion point rather
than the estimation of the partial derivatives. For application, the reader isreferred to the above
MYV discussion and the SAND report by Zimmerman.

First-Order Reliability Methods

The following discussions center on a group of analytical techniques loosely referred to asfirst-
order reliability methods (FORM). These methods are characterized by the iterative, linear
approximation to the performance function (hence the term *first-order’). Fundamentally, these
methods can be considered as extensions to the MV methods previously discussed and were
developed to address some of the technical difficulties with these methods. The labels associated
with each technique are not universal in acceptance and represent what appears to the author to be
generally understood phrases used by engineers and analysts when referring to a particular
methodology. The methods are presented in roughly a chronological order since each method
builds on the previous mathematical developments.

Hasofer-Lind

One of the mgjor problems with all of the techniques discussed thus far has been the lack of
invariance of the solution relative to problem formulation. Simple agebraic changes in the problem
formulation can lead to significant changesin ng the propagation of uncertainty. Hasofer
and Lind (1974) presented a methodology which specifically addressed this issue by requiring
expansion about a unique point in the feasible solution space. 1t should be mentioned that
Fruedenthal (1956) also proposed a method suggesting similar restrictions on the expansion point.

Fundamental to the approach isthe concept of alimit state function. Assuming the existence of a
critical level of system performance, the limit state function partitions the system parameter domain
X = (X, X,,..., X, )INt0 two regions: aregion Q where combinations of system parameters lead to

an unacceptable or unsafe system response and a safe region Q where system response is
acceptable. The probability of system failure isthen defined by the expression:

12
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G(R,9)=0

Acceptable Region

R>S

>
R

Figure 4. Limit State Function
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Figure 5. New Limit State Function
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Pr = ff- 000K

Perhaps the simplest way of explaining this
approach is to examine the simplest case of
two independent random variables. Let R
represent arandom variable describing the
strength of asystem and let Srepresent a
random variable describing the stress or load
placed on the system. System failure occurs
when the stress on the system exceeds the
strength of the system: Q ={(r,s)|S>R.
Figure 4 depicts the concepts of alimit state
function and the associated failure/success
regions.

The probability of failureis given by:
p; =Pr{R<§
= Pr{R-S<0} [24]
=Pr{R/S<]

where each of the algebraic expressions
should give identical results. The limit
state function is defined as that locus of
points where:

G(RS:R-S=0 [25]

Hasofer and Lind suggested that the first
step in overcoming the problem of
invariance is to transform the random
variables to a set of independent random
variables through an orthogonal
transformation. One possible
transformation, the Rosenbl att
transformation, is discussed in alater
section. For now, assumethat it is
possible to transform the system variables
to aset of independent random variables.
These random variables are then
normalized into a set of reduced variables
through the transformation: u = % ,

where u, and o, are respectively the mean and standard deviation of the random variable, X.. A

new limit state function is then defined in terms of the reduced variables. 1n the above example,
the limit state function becomes the locus of points where:

G(Ug +U.0g, Hs +U05) = G(r,8) = (Ug = U.0%) = (Us —U05) =0 [26]

S

R- S- : o : : .
and: u, = B7He and u, =>"Hs. Sincethisisalinear transformation, no information has been
o

Os

R
lost. Graphically, the new limit state function appearsin Figure 5. In the new space of basic
variables, let the minimum distance from the origin to the limit state function be | 3| (see Figure 6.)
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The point on the limit state that lies closest to
the origin,u” = (u;,u,,...,u,), is often

referred to as the most probable point
(MPP).

u

54 Limit State Function Thereisadirect relationship between the
safety index and the probability of failure.
Asdepicted in Figure 6 (and Figure 7), as 3
increases the limit state moves away from the
MPP origin and the probability of failure
decreases. In generd, thisrelationship is
only approximate, but in the unique case of a
linear limit state function and Gaussian
distributed random variables, the relationship
> isexact: p, = ®(-B). Inany case, this
Situation provides a convenient foundation
for developing preliminary skillsin analytical
Acceptable Region uncertainty methods. In addition, many
preliminary analyses can be accomplished
using these assumptions.

Unacceptable Region

Figure 6. Safety Index
Returning to the simple example with two
independent random variables, it isasimple problem in analytical geometry to show that the
minimum distance from the origin to the limit state surface in reduced spaceis:

d:(’lR;'uS:&:B [27]

As previously mentioned, given alinear limit state and independent Gaussian distributed random
variables, the probability of failureis given by:

1 OwD
P _lﬁapB—?EdW [28]

=o(-p)
In general, the distance from the point u” to the limit
state G(x) = 0 isgiven by the expression: f(r,9

d=/S"u (29 :

The difficulty then liesin determining the minimum
distance for ageneral nonlinear function. Thisis (9
essentially anonlinear, constrained optimization

problem:
[}

.. . . _ ““‘ n * — *T  *\1/2
minimize: d—\;z u =(@Uu'u)

=1 [30] / N
subjectto: G(u) =0 (equivaently G(x) =0)
Shinozuka (1983) demonstrated that, in general, the

minimum distanceis given by: Figure 7. Depiction of joint
probability density function and
limit state function
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B: _D*Tu* _ _ZI =1

(2o J

u=u" [31]
n E@G
=

(UG 4G ae%

where the gradient isdefined: 07 = o
TR TRARPY

Ang and Tang (1984 p345) present an excellent first order interpretation of these results. Aswith
the MV method, take a Taylor Series expansion of the system performance function, but thistime
expand about the MPP:

G(X) = G(Xy,.., X,) = G(X)|,_ - +

ZT k(xi - xi*) +H.OT. [32]

but since X" is on the failure surface G(x)|,.,- =0. Putting the expression in terms of reduced
variables:

X =X :(aiui _.Ui)_(aiui* _.Ui) :Ji(ui _ui*) [33]
IG(x) _ oG(u) Cou O_ 1 LoG(u)U

x ~a BxH oHa B (34

Therefore:

)"G(u) b [35]

G(x) = z( *

Approximate expressions for the mean and variance of the system performance function can then
be found (for independent random variables):

He==3 U w%u)a
Ei U
In terms of the approximate mean and variance, the safety index is:
_i u EBG(U)%
g=_f Ha O, _u [37]

EUG(u) f e

by

It should be noted that for the unique situation where the random variables are independent and the
performance function islinear: G(x) = a, + zi”:lam the expressions for performance moments
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Us, O, areexact. If, in addition, the random variables can be transformed into independent
Gaussian random vari abl €s, then exact probabilistic statements can be made regarding the system

performance: p, = CDE— E_ ®(-B). Other than in these very limited situations, the

probabilistic characterlzatl on of the system performance is only an approximation.

The set of reduced variables corresponding to the MPP can be found in a number of ways. Itis
obvioudly a straightforward nonlinear optimization problem. However, a number of algorithms
have been suggested al generally following an approach involving the iterative solution of the
equations:

l—*'i =-y.B [38]
G(u)=0
where:
Dae(u)a
o
Vi = =y [39]
\Z Hay H|
A typica approach:

1. Formulate thelimit state in terms of the reduced variables.

2. Assumeaninitia valuefor u”. Typicaly the value for the first iteration is taken as the mean so
u =(0,0,...,0)

. R LoG(u
3. Evaluatethe partia derivatives: E%%
Evaluate each y,
Formulate each reduced variable in terms of the safety index: u' = -y,
Solvefor  given G(yB) =0

Using the result from step 6 form anew candidate for MPP: u' = -y, 3

© N o g &

Repeat steps 2-7 until convergence is reached

It should also be noted that the Hasofer-Lind approach is independent of the underlying
distributions of the random variables. The estimation of the safety index can be accomplished
independently of thisinformation and even crude estimates of the failure probability can be made.
However, if it isdesired to accurately characterize performance in probabilistic terms, it is required
that the distribution information be utilized to the greatest extent possible.
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Application
The application to be used is once again the stress voiding problem The original limit state
function is repeated here for completeness:

0 0.4158([]
- 40
0O L H [40]

Since the random variables are independent, the first step is to transform the random variables into
reduced space:

G(v,, L) = A -V, @.01694 ~0.01353exp

vV _IJVO _
u1: OO_ \/O_I~lv(,_i_l'llo-l/0
K [41]
L-p
U2:O_—LL - L=y +u0,

The new limit function, now in terms of the reduced variables, is then given by the expression:

0.4158

—ED
(b + UZUL)%

0 0
G(W,, +U0,,.Hy +1,0)=A ~(u, +uo, )0.01694- 0.01353expT- [42]
B

U; U; Y1 Y2 B

2.0 2.0 -0.9706 | 0.2407 | 1.1713
1.1277 | -0.3195 | -0.9619 [ 0.2/33 | 1.1/712
1.127/4 | -0.3204 | -0.9619 | 0.2/33 | 1.1/12

Table 1. H-L Application Results
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f
\
\
05 \ 1.2

Figure 8. New Limit State Function and Distance Function

The new limit state function (in reduced space) is depicted in Figure 8. For atwo dimensional
problem such as this the minimum distance to the failure surface and the associated MPP can be
found graphically. To demonstrate the algorithm afull set of iterations was performed. Table 1.
outlines the results from the intermediate steps.

Intermediate Summary of Results

The analytical techniques that follow begin to explicitly consider information regarding the
underlying density function. Until this point, only information regarding the first and second
moments of the density functions have been required. Before moving on to the next level
techniques, it might be informative to contrast the results available thusfar. Table 2 providesthis
summary. Note that for the RS method, only one formulation has been documented: the results
from the second formulation (asin the MV method) would have been equally disastrous.

Mean Vauel Mean Vauell Response Surface Hasofer-Lind
U - mean 0.5284 0.0018 0.5252 0.5370
O ;- standard deviation 0.4445 0.0508 0.4451 0.4514

Table 2. Intermediate Results

(Please note that the similarity of the results of the MV and the H-L methods is an artifact of the
unfortunate choice of the problem chosen as an example. Future editions of this summary will
contain additional examples.)

Sensitivity Analysis
Sengitivity analysis can provide information to support additional testing in an efficient manner. |If

the probabilistic characteristics of the response of a system are not significantly impacted by
statistical variation in certain parameters, those parameters can (and possibly should) be omitted

18
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from the probabilistic analysis. In addition, testing efforts required to more fully characterize the
density functions of important variables can be accomplished in a more concerted effort.

Sensitivity measures when used in the context of analytical methods are often referred to as

importance factors. The magnitudes of these factors characterize the impact of each of the random
variables on the safety index and thereby, their impact on the probability of failure.

The importance factors represent the direction cosines of the individual random variablesin
reduced space and are defined (see Figure 9):

LoG(u)
—u Hou H .
yi - = ‘ u=u [43]
'B n %(U)ﬁ

'\ZMW

Asacomputation check it is noted that: Z y>=1land -1<y, <1.
=1

These factors were implicitly discussed in the previous material and are calculated as a natural
element inthe analysis. In particular, refer to Table 1. The importance factors for the initial stress,
V,, and thegrain size, L, are: -0.9619 and 0.2733, respectively. Clearly, the uncertainty in the
initia stressisthe dominant contributor to the probability that the system will fail.

Rackwitz-Fiessler

As previously mentioned, the above techniques do not rely on the availability of detailed
probability density function information. As such these techniques are very commonly applied
early in the analysisto get afed for the importance of design variables. However, the next logical
step in acomplete probabilistic analysisis the incorporation of as much statistical information as
possible. Thiswas akey impetus for extending the Hasofer-Lind approach. Rackwitz and

Fiessler (1978) suggested one approach improving the accuracy of ®(—[3) asan approximation to

the true underlying probability density

Usa function of the system response.

Limit State Function When usi ng CD(—B) asan
approximation, it isinherently
assumed that the system response can
be accurately represented (at least

Sensitivity Coefficient locally) by alinear combination of
Yo=Y cosy Gaussian distributed random variables.
B When the true underlying distributions

are significantly non-Gaussian, the

> approximation can have significant

U;  error, particularly when investigating
regionsin thetails of the distributions.

Unacceptable Region The Rackwitz-Fiesser (R-F) method,
also referred to as the * equivaent
Acceptable Region normal’ (EN) method, is based on
developing a better Gaussian
Figure 9. Depiction of Sensitivity approximation to the true probability
Coefficients density functionsin the area of interest

within the design space (i.e. x-space).
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f(x) H(u) It isstill assumed that the limit state
function is approximately linear.

As mentioned, previous techniques
have assumed that the true underlying
probability density function associated
with a design parameter can be
approximated with a Gaussian
distribution having the same first and
second moments. Figure 10 depicts the
approximation of Weibull probability
density function with a Gaussian padf.
The Weibull density function has
positive support while the Gaussian
density function is defined over the
entirereal line. The accuracy is
obvioudly very limited in the tail
X regions, and there is also no guarantee
u that the approximation is adequate even
in the central regions of the probability
density functions. The R-F technique
forces the two density functionsto have
similar statistical propertiesin the area of primary interest in the probabilistic analysis; specifically
in the region of the MPP.

Given acumulative density function F(x) and the associated density function f(x). Itisdesired
to find the mean ' and standard deviation ¢’ of an ‘equivaent’ Gaussian density function such

that the cumulative density functions and the probability density functions at the MPP are both
equivaent. Thatis:

f(u) Standard Normal

f(x)  Weibull

Figure 10. Gaussian Approximation

Ox —p'0

F(X*)ZCDE?E
1 X -u0O
00 o

where ®(0)] ¢([)) are the standard normal cdf and pdf respectively. Solving these two equations
with two unknowns:

g =x - a'd)‘l[F(x* )]

[44]

A [FOO) o
Equivalent 0'=——-— "
Gaussian f(X )
_—Weibul These two moments are then substituted into the
moments used during the H-L iterations. Note that
% § since the equivalent normal parameters are
* Area of

functions of x", the equivalent moments must be

updated at the beginning of each H-L iteration.

Figure 11. Equivalent Normal Figure 11 isagraphical depiction of the
Approximation approximation.

Approximation
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Application
Assume that the random variables, o, and L are independent with known first and second

moments, but now the exact form of the probability density functions are known. To permit
comparisons, the moments of the distributions will remain the same. Let theinitia stress on the
interconnect be characterized by a Weibull distributed random variable o, ~ W(300,0.2) with

probability functions:

a-1 ]
f(x)_o’t expF Dtgu t>0
B B
[46]
nangh
F(x)=1- exp[-t-%% O
Maintaining the previoudly defined moments the parameters are therefore: a = 5.687 and
n =324.34. Thegrain size parameter will be assumed to be alognormally distributed random
variable L ~ Ln(1.25,0.1):
2
£(x) = In(x) : A
X,/ 27E 2§
[47]

In(s) - A]?

1 O O
F(X):J—s\ﬁﬁe)(pa_ 28 éds

The parameters of the distribution are therefore: A =0.2182, and & = 0.09975. Once again, the
line width is assumed to be 3 microns and the critical crack length is assume to occur when it
extends across 90% of the interconnect: A, = 2.7.

Since the random variables are independent, the first step is to transform the random variables into
reduced space, now using the moments of the equivaent normal distribution:

O- lJUo ] ]
==t = G0 Hy Tudy,
. [48]
L-u
u=-—-——- o L=u +uo
2 ol Hy XL

Using initia estimates of the equivaent normal moments, afull series of H-L iterationsis
performed until the safety index converges. Using the new estimate of the MPP that results from
the H-L algorithm, a new set of moments for the equivalent normal distributions, a second
application of H-L isperformed. This continues until once again the safety index converges.
Table 3 outlines the results from the intermediate steps.

It should be noted that the quick convergence of both the H-L and R-F methods is common for
performance functions without major discontinuities.

A mgjor disadvantage of al the methods discussed thus far is the difficulty in addressing statistical
dependency between the random variables. The last mgor development in analytical methods has
been to improve the capability of analytical methods to explicitly include these dependencies. One
approach to this problem is employed by the advanced first order reliability method.
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M o K o, U, U, B ®(-p)
300 60 1.25 0.125 2.0 2.0 1.1713 0.1208
11277 | -0.3195 | 1.1712 0.1208
309.58 | 51.57 1.316 0.384 | 1.127/4 | -0.3204 | 0.9777 0.1641
0.6499 | -0.7303 | 0.9777 0.1641

305.59 [ 56.13 1.379 0.309 | 0.6472 | -0.7328

Table 3. Results of Rackwitz-Fiessler Method

Advanced First Order Reliability Method

The advanced, first-order reliability method (AFORM) is one of the last major stepsin addressing
the difficulties with the previous techniques. This approach was proposed by Hohenbichler and
Rackwitz in 1981 and will be referred to in this document either as AFORM or the H-R method. It
includes the normalization procedure of the H-L technique. In addition, it includes the probability
density function approximation approach from the R-F method, and also addresses the issue of
dependency among the random variables. Embedded within the iterative AFORM is atechnique
for transforming the original, non-Gaussian, dependent random variables into a set of independent,
standardized Gaussian random variables. This latter feature is based on the general transformation
method developed by Rosenblatt (1952). In the interests of completeness, the following
discussion outlines the fundamental approach of the transformation method.

Rosenblatt Transformation

Notationally, x will refer to avector of independent random variables, whiley will be a vector of
statistically dependent random variables. Let the joint probability and cumulative density functions
of y=(Yy,,¥,,...,¥,)bedefined as: f(y) and F,(y) respectively. Definethe marginal density
functions and cumulative marginal distribution functions:

f O Yor oY) = [ (Vs Yore Yo St §) Sy - G,
o [49]

1 Yi
Hi (Y [ Y Yare s ¥ica) = Kjlfi(yllyzv"iyi—l’S)dS

where: K, = J’fi(yl,yz,...,y_l,s)ds and H,(y;) = F(y,). The new set of independent,
standardized C_Eoéussian random variables are then given by:

U= (U, oty) ={ 7 H O] @7 [Hy (W 1Y) @7 [ Ha (Yo 10 Yoo Yo )]} [50)

Typically, the necessary conditiona joint density functions are difficult to obtain except in rare
stuations. The aternativeisto obtain the conditional density function through numerical means.
It should be noted the Rosenblatt transformation reduces to the traditiona rotation and trandation
transformation for dependent Gaussian distributed random variables.

A factor that certainly lends suspicion to the use of any transformation method is the very limited
availability of datato support confident characterization of the joint density functions; it iscommon
to resort to characterizing random variablesin such a manner that analytical transformation
techniques can be used. Thisdifficulty exists regardless of whether the analysts are using
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analytical or Monte Carlo-based techniques. The point hereis that gross assumptions about
statistical dependency are often made with insufficient justification regardless of the uncertainty
analysis method being used.

Rosenblatt Transformation Examples

Thisfirst example is due to Hohenbichler and Rackwitz (1981).L et the joint cumulative distribution
function for two random variables Y,, Y, be defined (for y,,y, = O):

F(Y1Y,) =1—exp(=Y,) — exp(=Y,) + exp(=Y; = ¥, = OV1Ys) [51]
Therefore:
D(u,) = Hy(y,) 0y = 0™ [H,(y)] 52
D(U,) =H, (Y, [y)) 0O u,= q)_l[Hz(yz |y1)]
where;
H, (Y1) =1-exp(-y,)
Moy, [y,) = [, f0us)ds _ exp(-y,) - @+ 6y,) exp(-y, ~ Byiy,) [53]
f(yl) eXp(_yl)
and finaly:
={@1-exp(-y,)], ®7[1-(1+6y,)exp(-y, ~Oyy,)]} [54]

Notationally, we will denote this vector of standardized, independent random variables as.
u'= {ul* ey u;} = u‘ ., Where the subscript indicates evaluation of the transformation at a particular
y

point, y .

This second example is from Ang and Tang (1984). Let Y, be a Gaussian distributed random
variable with mean p,and standard deviation o, . Let Y,bealognormally distributed random
variable with probability density function:

fY)=—7= |oD : %'M%

EF ¢ M

Assumethat Y,,Y, arecorrelated such that p,, = 0.6. Applying the Rosenblatt Transformation:
D(w) = Hi(y,)

[55]

() = Hy(y, |y, 159
where:
0
H,(y, [y,) = ornWe) A =1 a)(y, ~ 1) 5 (57]
g EJ1-n? g
and:
_plo,0
EEITZE [58]
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The new vector of reduced space random variablesis therefore composed of
N H
U = o,
_In(y,) —A-n(¢/0)(y, — )
2
E1-?
Note that since the lognormal distribution function can be transformed into a Gaussian distribution

function, the reduced space random variables could have been characterized without resorting to
the Rosenblatt Transformation (and the results are identical).

[59]

AFORM Algorithm

The Advanced First Order Reliability Method can be summarized in arather straightforward series
of operations. Aswith the previously discussed methods, a point in design space is chosen to
initiate the algorithm. While not necessarily the best place to start, the most common point isthe

vector of nominal or meanvalues y’ ={u,, Uy,..., [} .

1. Using the Rosenblatt transformation, find the vector of standardized, independent random
variables evaluated at the current design point: u” = u |y* .

2. Cadculate the Jacobian transformation matrix evaluated at the current design point:

o
o d, o
o, A, o

J=0y, oy, [l
a
gy u,
Y, ¥, b

For convenience note that:
oy _007[H(y Iv)] - 1 aH(y Iy)
o, o, ou) o,
3. Evauate the performance function and the associated gradient at the current design point:
9y') =g(u’)
* _1\T
U= Dg(u*) = (J l) Dg(y*)

where the gradient is defined:
5 -Unx K
gu’) EPUi ou,’ T au,
4. Moveto anew design point and calculate a new safety index:

o = 5 )TD [( YU -gu )]D (reduced space)

=y +J%U -u) (design space - approximate)
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and the safety index isthen:
|ﬁ| — (U*Tu*)% or
0o d .,
B=0G=0u
4718
5. Using the results from Step 4 as the new expansion point, repeat steps 1-4 until convergenceis
reached for the safety index

Application

Assume that the initial stress o, is a Gaussian distributed random variable with mean 1, =300 and
coefficient of variation: k, =0.2. Letthegrainsize L bealognormally distributed random variable
with median and coefficient of variation: y, =1.25, k, =0.1. Theinitial stressand grain size will
be assumed to be negatively correlated with correlation coefficient: p = -0.5. Asbefore, theline
width is 3 microns and the critical crack length is 90% of the interconnect width: A, = 2.7.

Applying the Rosenblatt Transformation:

u, = o [H(y)] = A

1

60
L InGy) = A= nEl o) ) e
2 I
&1-n°
Using some useful relationships for the lognormal probability density function:
A =1In(y,) =In(,) —%In(1+K§) =1In(1.25) = 0.2231
U, :)72\/1+K§ =1.2563 [61]
&=1/In(1+k3) =0.09975
0, =K,uU, =0.12563
and:
_po,0_ -05 _
== = 0.1) =-0.50125 62
1= Hu B 000975 Y [62]
Therefore:
u, = Yo~ M _ ¥, —300
o, 60
_In(y,) =A-n(¢/o,)(y, — )
u, = .
£J1-n [63]

_ In(y,) - 0.2231 + 0.50125(0.09975/ 60)(y; — 300)
0.09975,/1 - (-0.50125)°
= y,4.61+11.59In(y,) -1385.8
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The Jacobian can then be determined and evaluated at the current design point,
y' ={u, 11,} ={300,1.2563

o 1 o U
J_S o, 0 001667 0 [
= 1 g H.oo9ss 9.222H

Ewl "’ yE1-n* B

Given the original performance function:

D 0.4158[
g(y17y2) 2 7 yl
0(300,1.2563) = 0.5333
The gradients can a so be calculated and evaluated:
0 Ddg a D
o) - [Wl ﬂyz D
0 0 0.415890 0 0.4158901
= 10.01694 - 0.01353exp[T — 50.00562y—; expT— il
N O Y. O Y, UJ Y. [ v

={-0.00722,0.7680} T
* -1 T
0= (‘] ) Dg(y*)
60 —0.0628ﬂ +0.00722[]

“Ho o0.1084HH 07680 [

={-0.4816, 0.0833"

The new design point (in reduced space) and the associated safety index are therefore:

i = (D) —[(@)u - 9]

_[{-0.4816, 0.0833{0,0" - 0.5333]({-0.4816, 0.0833"
- {-0.4816, 0.0833{-0.4816, 0.0833"
={-1.0752,0.1859"

B= (u*Tu*)% =1.001
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and in the original design space:

=y +I-T)
] 60 0 [m0g +1.0752(11
= {300,1.2563 " + - 70
t ¥ *Hooszs 01084 HhE Hoasso FF L70]

={364.5,1.168 "

These results are then used asinput to the next iteration. Table 4 summarizes the input and results
from five iterations of the algorithm.

Input Result
s
Iteration y X" 9(x) n o, B o(-B)
1 {300,1.2563} {0,G4 05333 [ 0533 | 04887 | 10911 | 0.1376
3
2 {364.51.1686} | {1.075-0.698} |-0.0195 | 0.602 | 0.5201 1.1574 | 0.1235
3 {367.981.212} [ {1.133-0.354} |-0.0009 | 0.603 | 0.5118 1.1797 | 0.1190
8
4 {369.31.222} [ {1.155,-0.2412} | -0.00004 | 0.604 | 0.5100 1.186 0.1179
6
5 {369.6,1.225; | {1.161,-0.2427} | -0.2e-5 0.604 | 0.5095 1.187 0.1176
8

Table 4. Summary of Hohebichler-Rackwitz Iterations

Summary

The purpose of this report was to document and, when appropriate, identify strengths and
weaknesses of aninitia family of anaytical techniques. Asnoted earlier, discussion was directed
at the engineer or analyst whose background may involve an undergraduate probability course.
The report may therefore appear to be simplistic to those with a much stronger probability and
statistics background. It isimportant to note that the overall goal of thisreport isto assist the
design engineer in moving away from the use of safety factors as the sole criteriafor component
design. Asmaterial and manufacturing costs escalate, alternative design methodol ogies must be
explored. In addition, as design criteria move away from the component to system level
specifications, the use of safety factors or margins of safety becomes difficult and generally overly
conservative. With proper application, probabilistic methods have been shown to result in designs
with 10-35% reduction in materialsin conjunction with areduced likelihood of failure, when
compared to similar safety factor based designs.

However, while the goal is to encourage the use of these analytical methods by design engineers,
thereis aplace for these methodsin the field of risk analysis as well as the much broader area of
uncertainty analysis. The methods outlined in this report, some almost 50 years old, are generally
unknown in the field of uncertainty analysis. And, while uncertainty analysis has flourished
without these techniques, thereis room for new ideas and concepts. Hopefully this report will
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provide an introduction to the growing area of probabilistic methods for those statisticians and
analysts involved with risk, reliability or uncertainty analysis.

The second part of this report entitled: A Survey of Probabilistic Methods Used in Reliability
and Uncertainty Analysis. Analytical Methods 11, will build on the analysis techniques
discussed in thisfirst segment. While the mgority of the techniques devel oped since 1985 have
been variations of the methods outlined here, new and exciting approaches have been developed
that will aso be discussed.
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