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Abstract 

To use the all-tetrahedral mesh generation existing today, we have explored 
the creation of a computationally efficient eight-node tetrahedral finite el- 

ement (a four-node tetrahedral finite element enriched with four mid-face 
nodal points). The derivation of the element’s gradient operator, studies in 
obtaining a suitable mass lumping, and the element’s performance in appli- 

cat ions are presented. In particular we examine the eight-node tetrahedra1 
finite element’s behavior in longitudinal plane wave propagation, in trans- 

verse cylindrical wave propagation, and in simulating Taylor bar impacts. 

The element samples only constant strain states and, therefore, has 12 hour- 
glass modes. In this regard it bears similarities to the eight-node, mean- 
qua.drature hexahedral finite element. Comparisons with the results obtained 
from the mea.n-quadra.ture eight-node hexa.hedral fi nite element and t he four- 

node tetrahedral finite element are included. Given automatic all-tet rahedra.1 
meshing, the eight-node, constant-strain tetrahedral finite element is a. suit- 
able replacement for the eight-node hexa.hedral finite element in those cases 
where mesh generation requires an inordinate amount of user intervention 

and direction to obtain acceptable mesh properties. 
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1 Introduction 

Computer software designed for predicting the transient dynamic, large de- 

formation, large strain, inelastic response of solids and structures based on 
the finite element method and explicit time integration requires fast, simple 
element formulations. That is, since it is expected in every calculation that 
the deformation will be finite and the material will be strained beyond the 

elastic range, the geometry and the associated gradient operators must be re- 

constructed, as well as complex stress-strain models evaluated at every step. 
As a result, finite elements derived for explicit transient dynamic software use 
the simplest and barest constructions possible for computational efilciency 
while retaining an essential representation of the physical behavior. 

To date it has been possible to derive constant stress, eight-node hexahe- 
dral finite elements that satisfy the above expectations - for example, Flana- 

gan and 13elytschko [1981] and Flanagan and Taylor [1989]. Unfortunately, 
a tetrahedral finite element comparable to the constant stress: eight-node 

hexahedron does not yet exist. On paper the linear displacement, four-node 
tetrahedron appears to have the simplest and barest constructions possible 

jor computational eficiency while retaining an essential representation oj the 

physical behavior. It is, however, an abysmal performer for solids. lJnf’ortu- 
nately, the linear displacement, four-node tetrahedral finite element continues 
to be used. (For extremely large deformations it is virtually impossible to 
turn the element inside out since it must pass through a. zero volume state. As 

a result, one always obtains numbers but rarely obtains meaningful answers. ) 

A recent Ph.D. thesis by Camac}lo, [1996] has a. very careful exposition 
of the issues facing a developer seeking to find an improved tetrahedral ele- 

ment with ca.pa.bilities that come close to what is available from a trilinea.r 
displacement, eight-node hexa.hedron. 

Here we want to address transient dynamic a.pplica.tions, such as acci- 

dent simulations of nuclear waste shipping containers and collateral damage 
estimation from accidental explosions as opposed to lower energy dynamic, 
quasi-static, or static simulations. 

The approach that has been atlaptcd here is to seek a. minimally en richwl 
linear displacement, four-node tetrahedral finite element as opposed, to sa.v, 
a minimally simplified quadratic displa.cernent, 10-node tetrahedral finite el- 
ement, cf., Ca.macho [1996]. 



2 Governing Equations 

2.1 Motion 

The objective in a transient dynamic finite element program is to compute 

the motion of the bod)~ expressed in terms of displacement, velocity, and 

acceleration of every nodal point as a function of time for the entire simula- 

tion period. The theoretical development begins by formally introducing the 

concept of motion as a function that describes the position or configuration 

of the body at every instant in time. 

A body 1’ is given that occupies a finite region of Euclidean space. Sub- 
jected to prescribed body forces and surface tractions, the body \ - undergoes 
the motion xi = xi(.Yo, t). ‘The particles of the body are identified by the 

coordinates .Ya. The~ are referred to as materiai coordinates, and the re- 
lation of the particles to the coordinates .Y” does not change in time. The 

places in space that the particles occup!I during the motion are identified by 

the coordinates z*, termed the spatial coordinates. The function xi describes 
the motion of the particles .Ya through space as a function of time t. It is 

the motion xi that is sought. 

The place occupied by the bed!” at t = O is taken as the reference crmjig- 

uration. In this configuration the body is assumed to be strain freey though 

not necessarily stress free. Only material coordinates .Ya that coincide with 
the spalial coordinates xi in the reference configuration are considered. Thus, 
in the reference configuration xi(.Ya, O) s -Y~. 

\\’bile the material that follows can be considered to be expressed in 
terms of an arbitrary curvilinear coordinate system, it is sufficient to view 

the presentation as expressed in terms of a rectangular Cartesian coordinate 
system. Repeated upper and lower index pairs indicate a sum; lower case 
Lat. in and Greek indices have the range one to three, and upper case Latin 
indices (to appear later) range o~’er the number of nodes in the element. 

2.2 Equations of Motion 

The Principle oj 1 ‘iriual H ‘ork provides the formal structure for developing 
the essential details of a finite element spatial discretiza.tion. In the termi- 

nology of functional analysis, the Principle of I’irtual \\’ork is a statement 

of the problem in the “weak” form. The terminology simply means that 

the Principle of Virtual \Vork admits solutions to the problem that are less 
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smooth than are required by the differential equations ( ‘strongn form). In 
particular the discontinuities in derivatives occurring at element boundaries 
are admissible in the Principle of Virtual \\ ’ork. 

Since the finite element method is, in fact, a means of constructing an 
approximate solution to the problem> it is instructive to clearly identify the 
differential equations represented by the Principle of \’irtual J\-ork. ‘I’he 

l~irtual JVork expression is given by 

C$ii = 
I 

pxkbukdu + 
/ 

tkmckk,mdv – 
t. 1’ I 

\ pjkhkdv – 
f 

skc$ukda: (1) 
s] 

and is required to vanish at all points along Lhe path of motion for all vari- 

ations hk satisfying the displacement boundary conditions on S2. The in- 
tegration is performed over the current configuration of the body 1“, where 
p is the mass density in that configuration, Xk is the acceleration, th is the 

Cauchy stress — the stress in the current configuration, jk is the body force 
densit>’ in the current configuration; and Sk is the surface traction that is 

acting on S*. The comma denotes differentiation: ui,j = dui/8~~. 
l’he divergence theorem is employed to reveal the difl’erential equations 

of motion. In anticipation of using finite element approximations and the 

Ga.lerkin method to generate approximate solutions, the case where ~uk,~ is 
only piecewise continuous is considered [Jones, 1964; Prager, 1967; and I{ey, 

1971]. Interior surfaces, where the discontinuity ies of duk,~ occur, are denoted 
by S“. Only surfaces S0 that are stationary with respect to the material are 

considered. The situation is pictured in Figure 1 where nk is the normal to 

S0 and the symbols + and – denote the respecti~~e sides of the surface. The 
result is 

/( /( ,,, pxk – t: – pfk) 6ukdv+ ~ t~ – z’~) nmdukda 

!( ) 

(2) 

+ s, tkmnm – Sk c$ukda = O. 

The differential form will vanish if and only if the integrand in each integral 
vanishes. The resulting expressions are the equations of motion, 

the jump condition at a. 

(3) tkm + pfk = piik in 1“; ,m 

contact discontinuity, 

( 
km t+ – ‘m t_)nm=O OnSO 3 (4) 

4 



/u XL 

ix’ 

Figure 1: The body 1’ with surface traction Sk on the boundary S1 and a 

prescribed motion on the boundary S 2. An interior boundary S0 with a unit 

l~ormal vector nk is pictured. 

and the traction boundary conditions, 

tkmn~ = Sk(t) on S*. (5) 

Solutions obtained by using finite element approximations result in Equatious 

3, 4, and 5 being satisfied in an average sense - that is, within individual ele- 
ments and along individual element boundaries these equations are satisfied 
in a mean or integral sense. 

To Equations 3, 4, and 5 must be a.dded the displacement boundary 

conditions on the surface S2. These are called kinematic constraints and 

must be satisfied explicitly at each nodal point occurring on the surface S2 
by controlling the motion of the nodal points explicitly. The displacement 

boundary conditions are 

Xi(.Ta, t) = ~i(t) on S2, (6) 

where ~i prescribes the configuration of the boundary as a function of time. 

Only initial conditions that are homogeneous in position at time equal to 
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zero are considered. Thus, the initial 

xi (.Y@, o) = 

xi (-r, o) = 

conditions are given by 

.Ta in ~,’, 

(7) 
vi (.Ya ) in 1“, 

where vi prescribes the initial velocities at time equal to zero. 

It is important to realize that these remarks are completely general with 

regard to the scale of deformation being considered. By using the current 

geometry – that is, the geometry as the body deforms - the Principle of 
J?irtual }Vork assumes this very clean form. (This form of the Principle 
of Virtual iVork may be contrasted with the form needed for static and 
quasi-static implementations where a configuration other than the current 

configuration must be used. The result is a. series of transformations between 

the current configuration of the bod!~ and the geometry of the configuration 
used to develop the equations of motion. The attendant statement of the 
Principle of Virtual J\’ork while exactl~~ the same condition mathematically 
as used here, is much more complicated on paper and in code due to the 

explicit presence of the transformations.) 

Again when the finite element Galerkin me~hod is used to generate ap- 
proximate solutions to Equation 1, it is Equations 3, 4, and 5 to which app- 

roximate solutions will be generated. Equation 6, the boundar~~ condition 
on displacements, must be satisfied explicitly by the finite element Galerkin 

functions. 

3 Tetrahedral Finite Elements 

3.1 Gradient /Divergence Operator 

This section provides the foundation for the subsequent del~elopment of the 

gradient/divergence operator for the proposed eight-node tetrahedron. The 
a.pproa.ch adapted for developing a. mean strain rate quad rat ure for the eight- 
node tetrahedron is that given by Flanagan [1981] and Flanagan and Be- 
Iytschko [1981]. While an initial reaction might be that the approach and 

notation of I?la.nagan are cumbersome, they provide the structure needed to 
achieve a closed-form solution for the integration of an arbitrary hexahedron 
in pa.rticula.r and, equally important, an explicit and unambiguous identifi- 

cation of the orthogonal hourglass modes that span the improper null space 

of the mean strain rate quadrature. 
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Theapproach of Flanagan possesses ahighdegree ofgenerality that be- 

comes evident when additional finite elements are considered whether based 
on a constant stress state or higher-order variation in stress, cj., Key and Hoff 

[1995]. Elements generated bv this approach result in a de Jacto satisfaction . 
of the first-order Irons patch test, provided a linearly varying motion can 
be represented exact]!. by the displacement assumptions within the element 

domain. \Vith only minor modifications the material in this section is based 
on the work of Flanagan [1981]. 

Kinematics. Solid finite elements relate the spatial coordinates xi to the 
nodal coordinates Z} through isoparametric shape functions ;V1 as follows: 

xi = +’V’(ffi) . (8) 

In accordance with index notation convention, repeated subscript-superscript 
pairs imply summation over the range of that pair. The lower case subscripts 
and superscripts ha.~re a range of three? representing the spatial coordinate 

directions. Upper case subscripts and superscripts have a range that corre- 
sponds to the number of element nodal points. 

The same shape functions are used to define the element displacement 

field in terms of the nodal displacements ~iIl 

Ui = t!i]fv~(fi) . (9) 

Since these shape functions apply to both spatial coordinates and displace- 
ments, their material derivative (represented by a. superposed dot) must van- 
ish. hence, the velocitj’ field is given by 

Vi = ?)i~.fv](fi) . 

The velocity gradient viJ is defined as follow: 

V;,j = Vil 1~,~ . 

(lo) 

(11) 

13Jf convention a comma precmiing a lmwr case slll)srript dmotes clifTmwti- 
at ion with respect to the spatial coordinates, hence, vi,j denotes d~i/d~J. 

.4s will be seen below, we do not need to make the form of the shape 

functions N~(~) explicit; we only need them conceptually to obtain a fun- 

damental result relating the computation of a gradient/di\~ergence operator 
to taking a. derivative of the finite element’s voiume. 
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Mean Strain Rate Quadrature. The Principle of\~irtual \Vork gives 
the following relationship for the element nodal forces Ji’ due to the diver- 

gence of the stress field, 

~i,~”l = 
J 

t ‘jdijdv . (12) 
t’ 

Since the Cauchystress tensortiJ (force perunit area. inthecurrent configu- 

ration) is symmetric. the velocity gradient may replace the stretching tensor, 

dij = V(i,j), above. To obtain an explicit representation of the nodal forces 

fi[, one must introduce a finite element. The objective of the material to 

follow is a rigorous development of the explicit expressions for computing ji] 

from the motion. 

The integral in Equation 12 is evaluated using a constant stress, thereby 
considering only a mean strain rate within the element. The preceding ex- 
pression is approximated by 

Uiljil = 1 “P”JCi,j . (13) 

The assumed constant stress field is represented by ~J, which will be referred 
to as the mean stress tensor. It is assumed that the mean stress depends only 

on the mean strain. hIean kinematic quantities are defined by integrating 
over the element as follows: 

I 
tii,j = (1/1”) vi,jdv . (14) 

1’ 

The gradient operator B/ is defined by 

The mean 

The nodal 

\’elocity gradient, applying Equation 15, is then given by 

forces are then given by the divergence operation, 

(15) 

(16) 

jiI = @qJ . (17) 

Computing nodal forces by this integration scheme requires evaluation 
of the gradient operator B: and volume. These two tasks can be linked by 

using x~j = d;, which when used in Equation 15 yields 

/ 
x;B: = ,, (z~~]),jdv = 1“~~ . (18) 

8 
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Consequently, the gradient operator B/ may 

81’ Br=— t 
ax; “ 

a lterna.t i vely be expressed by 

(19) 

Thus, obtaining a mean gradient/divergence operator B: has been reduced 

to finding the volume of an element 1 ‘(z}) in closed form. 
Remark: There is a consistency requirement that the shape functions N1 

must satisfy for the above derivation to hold – namely, blN1 must be able to 
reproduce ezactfy a linear function where the bl are constants. 

3.2. Four-Node Tetrahedral Element 

For a four-node linear tetrahedron, the element volume in closed form is 
easily constructed from vector operations with its edges, 

/ 
1“ = , O!V = ~ijk(~~ – Z~)(Z~ – z;)(z$ –– zf)/6 . (20) 

As a result, the gradient operator [or the four-node tetrahedron is given by 

B; = : (!/34224 – V24%) 

B: = ; (7J~3z~4 – y~4z~3) 

B: = ; (?J,Jz,~ – y~zzl~) 

B; = ; (y~2z~3 – y,3z~~) 

where {x;} = {xi, yl, ZI} and zlJ = ZI — zJ et cetera. To obtain the comp~ 

nents B; and B! the coordinate permutations contained in ‘ra.ble 1 are used. 

As is well known the four-nmie linear tetrahedral element provides ex- 
ceptionally poor computational results for solids. In the next seclion our 
purpose is to enrich the four-node tetrahedral element with the expects.tiw 

of providing results comparable in quality and numerical efficiency to that 
obtained with the eight-node hexa.hedral elements extant today. 

(21) 



Table 1: 
Permutation of Coordinates for Use with Equation 21 

r 

B: Coordinates B: Coordinates B: Coordinates 

B: yz B; 2X B: XY 

3.3 Eight-Node Tetrahedral Finite Element 

The minimum number of additional degrees of freedom is obtained by adding 
a nodal point to each of the faces of a four-node tetrahedron. Considering a 
displacement of a face node, it can be observed that a. displacement normal 

to the face Will have a greater eflect on the volume change of the element 
than on changes in shear distortion. Conversely, a displacement tangen~iai 

to the face will have a greater effect on the shear distortion of the element 
than on a volume change. lYe defer until later the question of whether to 

use only the normal displacement at each face node, onl!’ the two tangential 
displacements at each face node, or all three degrees of freedom. 

Ordinarily the addition of nodal points to a linear element engenders the 
introduction of quadratic terms in the shape functions. IIowever$ since our 
objective here is to use only the mean strain produced by movement of the 

element’s nodal points-~ we have some liberty in how we relate deformation 
within the element interior to the movement of each nodal point. 

Here we choose to use a linear “sub-tetra.h.edron” based on t he three 

vertex nodal points of the face and the newly introduced mid-face nodal 

point, Figure 2. Thus, the volume of the eight-node enriched tetrahedron is 
given by the volume of the original or parent four-node tetrahedron 
the volume changes introduced by movement of the mid-face nodes, 

l“ = Vb(z;,zj, z$, zj) 

+ I“;(zj, zj,zj, zj) 

+ I’i(zj, z:, z;, Zi) 

The mean gradient/divergence operator 

+ I.;(Z;, Zj, z;, z;) 

+ Vi(zj,zj, zj, zj) 

B: is given by 

10 and 

(22) 

(23) 
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4 

Figure 2: A linear four-node tetrahedron (i:j, k, 1 = 1,2,3,4) to which has 
been added four mid-face nodal points (Tn, n, o,p = 5,6,7,8). A linear “sub- 
tetrahedron” is associated with each mid-face nodal point so that – for ex- 

ample, (j, k,l, m = 2,3,4,5). 

Since it is desirable to keep the element implementation and subsequent 

interpretation of results as straightforward as possible, we are going to retain 
all three degrees of freedom at each mid-fidce nodal point. Retention of all 
t}lree degrees of freedom at the mid-face nodal points will allow the vertex 

nodes and the newly introduced mid-face nodal points to share; with maxi- 
mum flexibility, the task of representing the shear or deviatoric part of the 

solution and the bulk part of the solution. 
The mean gradient/divergence operator only describes six uniform strain 

states. Strain states with higher-order variation are ignored – that is, the 

eight-node tetrahedron is “under integrated. a Because the element is under 
integrated, we are left with a number of hourglass modes – twel~~e to be 

precise. 

.4t this point it is worthwhile to examine the stiffness properties of the 

eight-node mea.n-quadra.ture tetrahedral element. For comparison purposes 
the stiffness properties for three separate, isolated tetrahedral – that is. three 
separate single finite elements Will be examined. The equilateral tetrahedron 

shown in Figure 2 is used in turn to represent three different tetrahedral 

elements: (1) a fully integrated four-node linear tetrahedral element, (2) an 

eight-node mean-quadrature tetrahedral element, and (3) as it happens to 
work out, an assembly of 11 non-overlapping four-node linear sub-tetrahedra.. 

11 



(This ability to describe the eight-node rnea.n-quadrature tetrahedron as an 
assembly of 11, four-node linear tetrahedral. is not only useful [or examining 
the benefit of retaining j ust the 6 unirorm strain states but allow-s a convenient 

representation of the shape functions. It is also possible to obtain the same 

eight-node mean-quadrature gradient/divergence operator of Equation 23 by 
using a ~~olume-weighted assembly of the operators belonging to the 11 four- 

node linear tetrahedral decomposition, although not as efficiently calculated.) 
“Table 2 shows the eigen~~aiues calculated for each of the three separate 

single-element stiffness matrices. Note that in the case of the eight-node 

mean-quadrature tetrahedron; the largest eigen~alue corresponds to a. vol- 
umetric deformation eigenvector; and the fi~’e smaller, repeated eigenvalues 
correspond to constant pure-shear eigenvectors. The remaining 18 zero eigen- 

values correspond either to the %uurglass;’ modes not supported by the mean 

quadrature or to the 6 rigid bed!- modes. 

One pure-bulk and five equal pure-shear eigen~alue-eigen~ ’ector pairs is 
the desired result. ‘The separation into pure-bulk and pure-shear modes was 
confirmed by computing a Ra!’leigh quotient with each eigenvector paired 
first with an element stiffness matrix based only on the bulk modulus and 

second \vith an element stiflness matrix based only on the shear modulus. 
\\-e do not have an interpretation for the differences in eigenva]ue magni- 

tudes between the fully integrated four-node linear tetrahedral element and 
the eight-node mean-quadrature tetrahedral element. 

3.4 Lumped Mass Representation 

The eight-node mean quadrature tetrahedral element does not immediately 
suggest how the mass should be apportioned between the vertex nodal points 

and the mid-face nodal points. For dynamic simulations it is important to 

obtain the correct distribution of mass between the vertex nodal points and 

the mid-~dce nodal points. Both for speed and for accuracy, a. lumped mass 

matrix is preferred over a consistent mass matrix when using an explicit 
central difference time integration scheme, Krieg and Key [1973]. 

Standard practice is to generate a consistent mass matrix first, and then 
perform a row sum to obtain the diagonal lumped mass matrix. For this task 

the shape functions represented by the 11 non-overla.pping four-node linear 

tetra.hedra.l decomposition are convenient. Since the shape functions are 
nonoverlapping across the individual subtetrahedra, each of the 11 individual 

mass matrices need only be calculated and assembled. Each individual mass 

12 



Table 2: 
Eigenvalues for Three Separate Tetrahedral Elements. 

}’oung’s modulus = 107, Poisson’s ratio = 0.25 

Single 
Four-Node 

Tetrahedron 

4.7138 X 106 

1.8855 X 106 

1.8855 x 106 

1.8855 x 106 

1.8855 X 106 

1.8855 x 106 

0 

0 

Single 
Eight-Node 
Tetrahedron 

6.8061 x 106 

2.7475 X 106 

2.7475 X 106 

2.7475 X 106 

2.7475 X 106 

2.7475 X 106 

0 

0 

.Assembly of 
Four-Node 
Tet rahedra 

13.087 X 106 

9.188 X 106 

9.188 X 106 

8.231 X 106 

8.231 X 106 

4.843x 106 

4.843 X 106 

0 

matrix is computed with the formula, Hughes [1987], 

m ,lj = 

/ 

pNiNj dv , 
1“ 

and has the form 

[! 

2111 

[772ij]=$ f f ~ ; 

1112 

(24) 

(25) 

The lumped mass matrix for the eight-node mean-quadrature tetrahedral 

element resulting from this approach places 11/ 108 of the total mass at each 
vertex nodal point and 16/108 of the total mass at each mid-face nodal point. 

Unfortunately, the dynamic performance of the eight-node mean-qua.dra.ture 
tetrahedral element with this mass lumping is not what it should be. \Ye 

have resorted to considering \arious combinations of vertex and mid-face 
nodal point mass distributions. Shown in Table 3 is a number of the mass- 
lumping variants examined together with the six eigen~alues, (k – Am)# = O, 
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Table 3: 

Eigenvalues ( x 108) for Various Mass Representations. 
Column headings: vertex Weighting & mid-face weighting 

Consistent 

8.4599 

3.8515 

3.8515 

2.9’i12 

2.9712 

2.3804 

11 16 
—&— 
108 108 

4.4402 

1.7765 

1.7766 

1.7762 

1.7756 

1.7756 

5.1774 

2.0715 

2.0713 

2.0711 

2.0705 

2.0705 

5.8572 

2.3434 

2.3432 

2.3431 

2.3423 

2.3423 

8.8730 

3.5500 

3.5497 

3.5496 

3.548-I 

3.5181 

+liode Tet 

1..598.5 

0.6396 

0.6395 

0.6394 

0.6392 

0.6392 

obtained from using them with the equilateral tetrahedron shown in Fig- 

ure 2. In addition: the separation into pure-bulk and pure-shear modes was 
confirmed b~’ computing a. Fta]’leigh quotient with each mode shape paired 

first with an element stiffness matrix based only on Lhe bulk modulus and 
second with a.n element stiffness matrix based only on the shear modulus. 
It is seen that with any of the mass lumping schemes, the desired property 

of having the response represented by one bulk deformation mode and five 
equal-energy shear deformation modes is independent of the mass lumping. 
The eigenvalues by themselves do not suggest an apportionment between the 
vertex nodal points and the mid-face nodal points either. 

The most rational criteria for mass lumping we have been able to generate 

is to examine the results from wave propagation simulations. In doing so two 

positive results occurred simultaneously: (1) the correct stress wave arriial 

time occurred in the vertex nodal points and mid-hce nodal points when 
the mass lumping was 1/6 and 1/12, respectively, and (2) excitation of the 

hourglass modes due to the passage of the stress wave was near zero for this 
mass lumping. 

Using a constant pressure instantaneously applied on one end of a bar 
that is constrained to have no lateral motion produces a planar longitudinal 
wave propagating down the bar. By selecting a cross section and examining 

the arrival time, the quality of the mass lumping at the nodal points can be 

. 
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evaluated. Figure 3 shows the axial velocity history of an elastic wave as it 
arrives at the middle of the bar. ‘The arrival time is correct based on when 
the “mid-height” of the wave front reaches the nodal points on the cross 

section. The planarity of the wave is shown by how closely the individual 
nodal point responses match. (No artificial bulk \’iscosity was used with the 

explicit central difference time integration algorithm in order to enhance any 

differences in behavior between the vertex and mid-face nodal points.) 

Figure -1 shows the bulk, de~~iatoric, and hourglass strain energy (cor- 

rected for arrival time) in each of six elements constituting a unit cell at the 

middle of the bar. (The hourglass strain energy is multiplied by 100 and 
is the strain ener~v that would occur if the hourglass deformation were to 

be applied to an eight-node tetrahedron obtained by assembling 11, four- 
node linear tetrahedral elements, a ‘fully integrated eight-node tetrahedral 
element. ) 

‘Ii) assess in what way the mid-face nodal points ser~’e to increase the el- 

ements capacity to represent the deformation? a Raylcigh quotient was corrl- 
puted using the ‘incremental: deformation provided by the mid-face nodal 
points paired first with an element stiffness matrix based onll’ on the bulk 

modulus and second with an element stiflness matrix based only on the shear 

modulus. The result is a. nearly equal contribu~ion to the bulk strain energy 

and to the deviatoric strain energy. (By ciincrernent al” deforms tion we mean 
the additional deformation provided by a mid-face nodal point beyond that 

mo~’ernent implied by the bounding vertices – for example, with reference to 
Figure 2, Au: = u; - (u; + ?4: + l@/3.) 

3.5 Surface Traction 

A sa.tisfa.ctory representation of surface traction as equivalent nodal loads 
is a prescription needed to complete the element’s implementation. Since 

the underlying shape functions are piecewise linear, the traction on each 

t riangula.r surface facet is converted to a total force and distributed one- 
third to each nodal point. (For triangular facets consistent lumping results 
in one-third of the integrated surface pressure applied to each of the three 
vertex nodal points. ) 
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Figure 3: The axial velocity at a vertex (dashed curve) and mid-face (solid 
cur~’e) nodal point in the middle of a bar 50 units long subjected to a step 
in pressure on one end and free on the other end. Young’s modulus = 107, 
Poisson’s ratio = 0.25, densit~ r = 2.61 x 10-4. The mesh consists of 50 unit 

cells; each unit cell is composed of 6, eight-node mean-quadrature tetrahedral 

elements. Lateral boundary conditions on the bar result in a. planar, uniaxial 

strain wave. The simulation is based on a mass lumping of one-sixth of the 
total mass at each vertex nodal point and one-twelth of the total mass at 

each mid-face nodal point. 

3.6 Orthogonal Hourglass Control 

The mean stress-mean strain rate formulation considers only the linear part 

of the velocity field. The remaining portion of the nodal velocity field is 
the s~ca.lled hourglass field. Excitation of’ these modes may lead to severe, 

unresisted mesh distortion. A method for isolating the hourglass modes so 
that they may be treated independently of the rigid body and uniform strain 
modes is required. This is accomplished by developing an hourglass ‘gradi- 

ent operator.” \Vith an hourglass gradient operator, hourglass strains can 

be computed from the element’s velocity field. By introducing a ‘modulus,n 

. 
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Figure 4: Bulk, shear and hourglass strain energy histories in a unit cell of 6, 

eight-node mean-quadrature tetrahedral. at the middle of a. bar 50 units long. 

The simulation is based on a mass lumping of one-sixth of the total mass at 
each vertex nodal point and one-t~velth of the total mass at each mid-face 
nodal point. 

hourglass restoring forces can be generated and, thereby, prevent uncon- 

trolled growth of the hourglass modes. 
The /inear velocity field on which the mean strain rates are based is given 

by 
VLIN = v@J + (1/V”)(zj – @J)B;) . 1 (26) 

The hourglass velocity field v~G may be defined by removing the linear por- 

tion of the velocjty field. Thus, 

(27) 

or in terms of the nodal velocities, 
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The hourglass velocity field, Equation 28, is in the improper null space of the 

gradient operator Bj. l’he linear velocity field, Equation 26, spans 12 degrees 
of freedom: 3 rates of rigid body translation, 3 rates of rigid body rotation, 

and 6 uniform strain rates, which means that the hourglass subspace is the 

remaining 12 degrees of freedom. 

Since we do not yet have an easy decomposition of the hourglass subspa.ce 
into nonconsta.nt bulk and shear modest a rather direct approach is used. 

Thus, an hourglass strain rate ~ir is de~~eloped by operating on the hourglass 
HG velocities vi~ , . . 

(29) 

where 

Using 

strain 

J is a generalized element dimension [Flanagan and Belytschko, 1984]. 

the hourglass projection operator HIJ implicit in Equation 28, the 
rat,e becomes 

(30) 

To control the hourglass modes, generalized forces QiI are defined that 

are conjugate to (jilt so that the work rate is given by 

(31) 

‘, the contribution to the nodal forces Utilizing the projection operator H, 

due to hourglass resistance is given by 

f:G = ~ ‘QiJH:/6 . 

The hourglass restoring forces are calculated 

~’1 = f2/.L~an~J($*JqjJ 

(32) 

from 

(33) 

where 2pta~ is the tangent shear stiffness obtained from the deviatoric con- 

stitutive behavior of the mean stress and mean strain state in the element, 
and c is a. scaling. The scaling ~ assures the le~’el of the hourglass restoring 

forces remains below that of the mean stress state. 
Ideally the nonconstant hourglass shear strain rates Ivould be assigned a, 

stiffness derived from the tangent shear behavior and the nonconstant hour- 
glass bulk strain rates would be assigned a. stiffness derived from the tangent 
bulk behavior. Here the nonconstant bulk and shear modes are mixed, and 

the tangent shear modulus is used for all of the hourglass modes. The choice 
is arbitrary. The tangent modulus assures that the evolution of the hourglass 

restoring forces “parallels” that of the mean devia.toric stress state. 

. 
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The invariant time derivative of the generalized forces Qi’ accounts for 
the finite rotations expected in the application of the eight-node tetrahedral 
element in analyzing transient dynamic phenomena. The deri~-ative is given 

(34) 

= (Z’i,j - Vj,i)/2. where Wij is the spin> Wij — 

The hourglass restoring forces ~~{~ are added to those obtained from the 
divergence of the mean stress state so that the complete result is 

4 Results 

(35) 

4.1 Irons Patch Test 

The first-order Irons patch test [Zienkiewicz and Ta}”lor, 1989] provides a 

necessary condition an element must satisfy to insure convergence. In this 
test an irregular spatial discretization is required to determine if constant 

strain/stress states are reproduced. (Satisfying the first-order Irons patch 
test does not insure an “eficient” element. In particular it says nothing 
about the ability of a. collection of elements to reproduce a linearly varying 

strain/stress result. ) 

Since a. four-node, linear displacement tetrahedral mesh passes the first- 

order Irons patch test, the purpose of revisiting the test for the current 

enriched eight-node tetrahedron is to insure that nothing has been lost in the 
proposed enrichment. The result of the first-order Irons patch test applied to 

an irregular mesh of enriched eight-node tetrahedral is a perfect reproduction 

of the constant strain/stress result in the interior of a cube subjected to 
an imposed linear displacement on the exterior, A1a.cNeal and IIarder [1985]. 

Implicit in this computation is the use of a linear elastic stress-strain material 
model. 

For this element the imposition of a sccxmd-ordm Irons patch test is more 

significant since the element is a. constant-strain (mean quadrature) element 

with hourglass control that was obtained by enriching a. four-node linear 

displacement tetrahedron. Subjecting a collection of elements to a linear 

strain field will reveal the extent to which the well known locking of the 

four-node linear displacement tetrahedron has been ameliorated. 
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Figure 5: T)isplacement contours on a 10x I OX 10 cube subjected to quadratic 
su~face displacements in order to produce a body-force-free linear strain field 
for a second-order Irons patch test. 

To produce a second-order Irons patch test, the cube of elements pictured 

in I:igure 5 is subjected on the surface to lhe following prescribed quadratic 
displacement field, 

u = 4 x 10-6 (fJz + 22 – 2X*+ 2Z?J + 2X2 + 5?JZ) 

v = 4 x 10-6 (Z2 +22 – 2?7 + 2Z?J + 5ZZ + 2tJz) (.36) 

w = 4 x 10-6 (X2 + y2 – 222 + 5xy + 2X2 + 2yz) 

for a range of Poisson’s ratio (O, 0.1, 0.2, 0.3, 0.4, 0.499). This particular 
quadratic displacement field requires no auxiliary body forces to maintain 
the linearly varying strain/stress field and does not generate any volume 
change. Of particular interest is the amount of de~’iatoric strain energy and 
volumetric strain energy generated as a. function of Poisson’s ratio. (Linear 

elastic models for ductile metals typically have values for Poisson’s ratio 
between 0.25 and 0.33; nearly incompressible materials are modeled with 
values of Poisson’s ratio approaching 0.5. ) 

The results for both the four-node and the mean quadrature eight-node 
tetrahedral elements are displayed in Table 5, along with the results for 

the eight-node hexahedra.1 element. As can be seen in Table 5, the eight- 
node hexahedral elements exhibit no volumetric strain erler~~” until values 
of Poisson’s ratio approaching 0.5 are used, and then only small amounts 
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Table 5: 
Deviatoric and Volumetric Strain Energy Totals 

Obtained from a Second-Order Irons Patch Test. 

Poisson’s 
Ratio 

0.000 

0.100 

0.200 

0.300 
0.400 
0.499 

Eight-Node 
Hexa.hedron 

1146.8 r’d-off 

1042.5 r’d-off 

955.63 r’d-off 

882.12 r’cl-off 

819.10 r’d-off 

765.00 0.100 

Four-Node 
Tet ra.hedron 

1152.8 0.627 

1048.0 0.767 

9fjo.69 0.99.4 

886.84 1.429 

823.6-1 2.653 

770.36 233.5 

Eight-Node 
Tetrahedron 

113-1.6 0.456 

1031.7 0.379 

945.95 0.300 

873.43 0.222 

811.33 0.13.5 

7.58.11 0.020 

or parasitic volumetric strain energy are present. The standard four-node 
tetrahedral element exhibits small amounts of parasitic ~rolumetric strain 

ener~v until values of Poisson’s ratio of 0.5 are approached at which tinle 

unacceptably large values of parasitic volumetric strain energy are generaied. 

The eight-node tetrahedral element proposed here exhibits small values of 

parasitic \’olumetric strain energy until values of Poisson’s ratio of 0.5 are 
approached at which time the parasitic volumetric strain energy begins to 
vanish. This surprising result can only bode \veil for elastic-plastic analyses 
where the de~~ia.toric strain field is significantly larger than the volumetric 

strain field. 

4.2 Uniaxial-Strain Compression 

Of considerable practical importance is knowing the correct method of ob- 

taining consistent nodal forces from an applied surface traction. Using the 

previously discussed procedure of putting nodal forces normal to each trian- 
gular facet subjected to pressure in the eight-node tetrahedron, the magni- 
t udes of which are ~p.4fdC.t, produces the displacement contours S11OWW iu 

Figure 6. 

\Yith this method of computing equivalent nodal forces, the axial dis- 

placement varies linearly from the restrained face to the loaded face and is 

constant over the cross section. The stress within the interior of the cube is 

21 



Figure6: .4xial displacement contourson a 10 x 10x 10cube subjected to 
constant pressure onone facewith thelateral surfaces constrained topmduce 
a uniaxial-strain result. 

constant. These results taken together confirm that consistent nodal forces 

have been obtained. 

4.3 CylindricaI Shear Wave 

Since the elements here pass a. first-order Irons patch test, constant or nearly 

constant strain domains are not a. severe test. However? wave fronts where 
the strain is changing rapidly from element to element Will test the element’s 
ability to avoid Volumetric locking. A test for volumetric locking of a finite el- 
ement mesh can be generated by subjecting a plane strain disk to an imposed 

torsional deformation on its inner radius while holding the outer radius fixed. 

A cylindrically divergent, pure transverse shear Wave is generated. Any pres- 

sure in the solution domain is solel)r due to inherent numerical shortcomings 

in the finite element approximations for the gradient/divergence operator. 
Three meshes are examined: (1) a. hexa.hedral mesh in which each element 

block is a copy of the seven-element hIacNeaI and Harder [1985] first-order 
Irons patch test, (2) a classical four-node Iinea.r displacement tetrahedral 
mesh, and (3) a mean quadrature eight-node tetrahedral mesh. Figure 7. 

This form of an irregular hexahedral mesh is used for two reasons: (1) 

a. mesh that is nonaligned with the solution is obtained and is, therefore, 

comparable to the tetrahedral meshes which by nature are rarely aligned 
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with the solution, and (2) comparable element totals are obtained for all 

three meshes. 
In the elastic solution stress levels are on the order of 300,000 psi. To 

evaluate the amount of pressure generated relative to the effectii.e stress 

(magnitude of the deviatoric stress), a Figure oj J[etit ~(i) is computed at 
each time step by taking the ratio of the total bulk internal ener~~~ to the 
total shear internal energy, 

The ideal ~alue for the Figure of llerit 3 in the elastic case is zero. f(t) s O. 

Figure 8 shows the Figure of \Ierit % for all three meshes during the time 

that the elastic shear wa~~e propagates from the inner boundary to the outer 
boundary of the disk and returns to the inner boundary. l\’bile the Figure of 
hlerit 3 for all three meshes is 1ou-, they stand approximately in the ratios 
of 20:10:1. The eight-node hexahedral mesh provides the best result being 

closest to zero, the four-node tetrahedral mesh remains the poorest performer 
having the largest Figure of hIerit values, an d the eight-node tetrahedral 

mesh lies between the other two Figure of hIerit results. 
Following the indications of the second-order Irons Patch Test results 

where the mean quadrature eight-node tetrahedron showed unexpected ca- 

pabilities in the face of a nearly-incompressible elastic calculation, the cylin- 

drical shear wave calculation was repeated With an isotropic, linear ha.r(lening 

elastic-plastic material representation (yield stress = 2.0 x 104 psi and hard- 
ening modulus = 1.0 x 106 psi). 

The ideal value for the Figure of Merit .F in the elastic-plastic case is 

also zero, %(t) z O. Figure 9 shows the Figure of hlerit .F for all three 

meshes during the time that the elastic-plastic shear nave propagates from 

the inner boundary to the outer boundary of the disk and returns to the 
inner boundary. \\’bile the Figure of hlerit F for all three meshes is low, 
they stand approximately in the ratios of 70:1:1. For the elastic-plastic case 
the eight-node hexahedral and eight-node tetrahedral meshes both provide 

the best result being closest to zero; the four-node tetrahedral mesh remains 
the poorest performer having the largest Figure of hlerit values. 
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Table 6: 

Taylor Bar Impact Results for OFHC Copper. 

Initial Length LO = 25.4 mm: Initial Diameter D = 7.62 mm 

Final Experimental Johnson Eight-Node Eight-Node 

Dimension hleasurement [1988] Hexahedron Tetrahedron 

Length 16.2 mm 17.2 mm 17.2 mm 17.2 mm 

Diameter at 0.2L0 II 10.1 mm I - I 9.6 mm I 9.6 mm I 

Base Diameter 13.5 mm 14.6 mm 14.4 mm 14.1 mm 

4.4 Taylor Impact Tests 

Experimental results from Taylor impact tests provide data with Which to 
make comparisons. The large plastic flows that occur to the c!lirrdrical metal 
specimens used in the Taylor impact test provide exceptional mesh distortions 

thereby testing a. range of geometric shapes for Which the element geometry 
must provide reliable gradient and di~”ergence calculations. Others ha~’e used 
Taylor impact experiments to test constitutive models as well. cj., Johnson 

and llolrnquist [1988]. Figure 10 shows the final calculated shape of what 
was originally a. right circular cylinder of OF HC copper traveling 190 meters 

per second and impacting a. flat, hardened steel target. l-o conduct the 
simulation, an implementation of the Johnson-Cook constitutive model was 

used, along with the following properties for OFHC copper: l“oung’s modulus 

E = 124 GPa, Poisson’s Ratio v = 0.34, density p = 8960 kg/m3, specific 
heat CP = 383 J/kgK, melt temperature T~ = 1356 K, room temperature 

T, = 295 K, the constant .4 = 90 hIPa, the constant B = 292 Alps, the 
exponent n = 0.31, the constant C = 0.025, and the exponent m = 1.09, 
Johnson and Cook [1983]. 

Table 6 tabulates the experimental results, calculated results from John- 

son [1988], calculated results based on a.n eight-node hexahedral frni te ele- 

ment, and calculated results based on the mean-quadrature eight-node tet ra.- 

hedral finite element. All of the calculated results are close to each other and 
stand in the same relationship to the experimental results. “This outcome 

is typical for a. simulation based on the Johnson-Cook constitutive model, 

Johnson and Cook [1983]. (An improved correlation with the experimentally 
observed results can be obtained with a Zerilli-Armstrong const.itutive model, 
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Johnson [1988].) For the purposes here it is clear that the mean-quadrature 
eight-node tetrahedron performs well in this simulation. 

5 Conclusions 

One is led to the conclusion that of the three finite elements examined, the 
mean-quadrature implementation of the eight-node hexahedron due to Flana- 

gan and Belytschko [1981] remains numerically the more effecti~e element. 

IIowever, for simulations where the deviatoric strain field is significantly 
larger than the volumetric strain field (e.g., simulations based on nearly- 

incornpressible elastic or elastic-plastic material behavior), the eight-node 

tetrahedron is a.n equally viable choice. To the extent that mesh generators 
can automaticall~’ fill arbitrary ~’olumes smoot. hl~r and efficiently with t.etra- 

hedra, the eight-node tetrahedron proposed here is a satisfactor!~ alternati~’e 
to an eight-node hexahedral finite element and meshes requiring an inordi- 

nate amount of user intervention and direction to generate. Tile four-node 

linear displacement tetrahedron does not provide useful results in an}” case. 
The use of mid-face nodes while leading to a large number of degrees of 

freedom does admit a compatible fanlily of Io\v-order mean-quadrature finite 
elements: an eight-node hexahedron, an eight-node pentahedron (a wedge 
with a mid-face node on each triangular end face), a 9-node Egyptian pyramid 

(mid-face nodes on each triangular face), and the eight-node tetrahedron 
presented here. 

25 



References 

Camacho, G. T., Jr., 1996. Computational ,Ilodcling oj Impact 

Damage and Penetration of Brdtfe and Ductile Solids, Ph.D. Disserta- 
tion, Brown Uni~~ersit}~, Prmridence, RI. 

Flanagan, D. P., 1981. Numerical Techniques with One- 1’oinl In- 

tegrated Hezahedron and Quadrz”/ateral Elements, l)ll. D. Dissertation, 
Northwestern University, E~anston, IL. 

Flanagan, D. P., and T. Belytschko, 1981. ‘A Uniform Strain 
IIexahedron and Quadrilateral with Orthogoua] IIourglass Control,” 

lntemational Journal for lVumerical Methods in Engineering, \-ol. 17, 

pp. 679-706. 

Flanagan, D. P. and T. Belytschko, 1984. “EigenI-alues and Sta- 

ble Time Steps for the Urliform Strain llexahedron aud Quadrilateral,” 

Journal of .-lpplied i\lechanics, \-ol. 51, pp. 35-40. 

Flanagan, D. P., and L. M. Taylor, 1989. PRO:YTO-3D, .4 Three- 

Dimcnsional Transient Solid Dynamic Program, Report So. S.4 ND87- 
1912, Sandia National Laboratories, Albuquerque, NAI. 

Johnson, G. R., and W. H. Cook, 1983. ‘A Constitutive Llwlel 
aud Data. for Nletals Subjecled to Large Straius, Iligh Strain Rates, and 

High Temperatures,” Proceedings O{ the Seventh International Synzpo- 

siu711 on Ballistics, The Hague, The Netherla.uds, pp. 5-I 1-548 (.April). 

Johnson, G. R., and T. J. Holmquist, 1988. ‘E~zduation of 

Cylinder Impact Test Data for Constitutive hlodel Constants,3 Journal 

of .-lpplied Physics, I’”ol. 64, No. 8, pp. 3901-3910 (October). 

Johnson, G. R., 1988. “Implementation of Simplified Constitutive 

hlodels in Large Computer Codes, “ in Dynamic Consiitutiue/Failure 

Alodel.s, A. hf. Rajendran and T. Nicholas, Ms.. Report No. .4 Fl\’,\L- 

TR-88-.4229, Air Force Systems Cornma.nd, \Vright-Patterson Air Force 
Base, Ohio 45433-6533. 

Jones, R. E., 1964. “A Generalization of the Direct-Stifbss hIethod 

of Structural Analysis,)’ .41.4.4 Journal, J:ol. 2, No. 5. 

26 



Key, S. W., 1971. “A Specialization of Jones’ Generalization of t}le 

Direct-Stiffness hIethod of Structural Analysis,= .41.4.4 Journal, I-ol. 9, 
NO. ~, pp. 984-985. 

Key, S. W. and C. C. Hoff, 1995. “,~n Impro~ed Constant \Iem- 

brane and Bending Stress Shell Element for Explicit Transient Dynam- 

ics,: Computer Jleihods in .4pplied Jlechanics and Engineering, \“ol. 

124, pp. 33-47. 

Krieg, R. D. and S. W. Key, 1973. ‘Transient Shell Response 
by Yumerical Time Integration,” International Journal oj .Yumerical 

.I[ethods in Engineering, l-o]. 7, No. 3, pp. 273-286. 

MacNeal, R. H., and R. L. Harder, 1985. “.3 Proposed Set 

Of Problems To Test Finite Element .Accuracy,- Finite Elements fn 

Design, \’oI. 1, pp. 3-20, North-IIolland Publishing. 

Prager, W., 1967. “l-ariational Principles for [.inear Elastostatics for 

13iscontinumls Displacement, Strains and Stresses,s Recent Progress in 
.4pplied Afechunics: The F. Odqvist \ olume, pp. 463-474, John \\ile~, 

& Sons, New l-ork, N]-. 

Schmidt, E., 1907. ‘:Zur Theorie der lines.ren und nichtlinearen In- 

tegralgieichungen. 1. Teil: Entwicklung willkiirlicher Funktionen nach 

Systemen vorgeschriebener,” Mathernatische Annalen, 1-01.63. pp. 433– 

476; pp. 442-444. 

Zienkiewicz, CBE, FRS, O. C., and R. L. Taylor, 1989. The Fi- 
nite Element Jlethod, Fourth Edition, Vol. 1, hIc Graw-I1ill Book Com- 
pan)’ Europe, Berkshire, UK. 

27 



Figure 7: Hexahedral and tetrahedral “flat washern meshes (inner radius = 
1: outer radius = 5; thickness = 1) used to model a cylindrically divergent, 
elastic, trans~.erse shear wave (J”oung’s modulus = 1.0 x 107 psi: Poisson’s 

ratio = of 0.25; density = 2.61 x 10–4 lbf-sec2/in4). The inner radius has an 

imposed twist; the outer radius is fixed. 
. 

. 
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Figure 8: Values of >(t), Figure of hlerit, for the time it takes the elastic 
transverse shear wave to travel from the inner radius to the outer radius and 

back for all three meshes. (X(t) for the eight-node tetrahedral mesh is the 

solid line. .F(t) for the eight-node “hexahedral mesh is the uniformly dashed 
line. ~(i) for the four-node tetrahedral mesh is the short-long dashed line.) 
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Figure 9: Values of Y(t), Figure of Llerit, for the time it takes the ehzslic-- 
plastic transverse shear wave to travel from the inner radius to the outer 

radius and back for all three meshes. (.F( t) for the eight-node tetrahedral 
mesh is the solid line. F(t) for the eight-node hexa.hedra] mesh is the uni- 
formly dashed line. %(t) for the four-node tetrahedral mesh is the short-long 

dashed line.) 
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Figure 10: The final deformed shape of an Ol?I~C copper rodimpacteda.t 

190 m/s based on as imulationu singa Johnson-Cook constitutive model. 
The left ha.lf of the figure is the result obtained using a. mean-quadrature 

eight-node tetrahedral finite element mesh. The right half of the figureis 

the result obtained using a mean-quadrature eight-node hexahmlral finite 

element mesh. (The mid-face nodal points in the tetrahedral mesh are not 
displayed.) 
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