
SANDIA REPORT
SAND98-0701 • UC-405

Unlimited Release
Printed April 1998

A User’s Guide for BREAKUP:
A Computer Code for Parallelizing the
Overset Grid Approach

Daniel W. Barnette

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited,

Sandia National laboratories

Issued by Sandia National Laboratories, operate d for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vat ely owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A04
Microfiche copy: AO1

3

SAND98-0701
Unlimited Release
Printed April 1998

A User’s Guide
for

BREAKUP: A Computer Code
 for Parallelizing the Overset Grid Approach

Daniel W. Barnette
Parallel Computational Sciences department

Sandia National Laboratories
Albuquerque, New Mexico 87185-1111

Email: dwbarne@cs.sandia.gov

Abstract

In this user’s guide, details for running BREAKUP are discussed. BREAKUP allows
the widely used overset grid method to be run in a parallel computer environment to
achieve faster run times for computational field simulations over complex geometries.
The overset grid method permits complex geometries to be divided into separate
components. Each component is then gridded independently. The grids are
computationally rejoined in a solver via interpolation coefficients used for grid-to-grid
communications of boundary data. Overset grids have been in widespread use for many
years on serial computers, and several well-known Navier-Stokes flow solvers have
been extensively developed and validated to support their use. One drawback of serial
overset grid methods has been the extensive compute time required to update flow
solutions one grid at a time. Parallelizing the overset grid method overcomes this
limitation by updating each grid or subgrid simultaneously. BREAKUP prepares
overset grids for parallel processing by subdividing each overset grid into statically
load-balanced subgrids. Two-dimensional examples with sample solutions, and three-
dimensional examples, are presented.

Distribution
Category UC-405

4

Acknowledgements

The author wishes to acknowledge Dr. Curtis C. Ober of Sandia’s Parallel Computational
Science Department for his help in modifying a two-dimensional incompressible Navier-
Stokes code to run on the Intel Paragon with output from BREAKUP.

5

Contents

Introduction 6

The Parallel Overset Grid Approach
a) Overview 7
b) Overset Grid-to-Grid Communications 7
c) Parallel Overset Grid Construction 7

How BREAKUP Prepares Grids for Parallel Processing
a) Load balance 8
b) Speed-up 9
c) Sample BREAKUP Output 9
d) Construction of Connectivity Tables 13

Running BREAKUP 14

User Options
a) Option 1 – PEGSUS-formatted Generic Overset Grids 14
b) Option 2 – PLOT3D-formatted Multiple Grids, No Interpolation

Coefficients, Subgrid Overlap Required 15
c) Option 3 – PLOT3D-formatted Multiple Grids, No Interpolation

Coefficients, No Subgrid Overlap Required; or Internally Generated Grid 15

Input Files 16

Output Files 17

Examples 17

Future Work and Directions 18

Summary 19

References 20

Appendices
A: BREAKUP Subroutines and Their Description 38
B: List of Variables used in BREAKUP 51
C: Sample Output from BREAKUP (file BREAKUP.OUT) 53

Figures
1. Overview flow chart for the parallel overset grid method 21
2. Overview flow chart for BREAKUP when overset grid output … 22
3. Illustration of increase in grid-to-grid and intra-grid communications… 23
4. BREAKUP’s subroutines listed in alphabetical order 24
5. BREAKUP calling tree 25
6. Cube illustrating how BREAKUP generates 74 subgrids 26
7. BREAKUP-generated subgrids for a multi-element airfoil grid… 27
8. BREAKUP subgrids for an F16’s forward fuselage and intake duct 29
9. Original six overset grids for the Gulf of Mexico, with serial solution 30
10. Sixteen BREAKUP-generated overset grids for the Gulf of Mexico 34
11. One hundred BREAKUP-generated overset subgrids for the Gulf of Mexico 36

6

A User’s Guide
for

BREAKUP: A Computer Code
 for Parallelizing the Overset Grid Approach

Introduction

The overset grid approach for computing field simulations around geometrically complex
configurations has become widely used since its inception in the early 1970’s[1]. The
attractiveness of the approach lies in the fact that a complex geometry can be divided into
its inherently simpler parts while maintaining geometric complexity. Each part is then
gridded separately. This is presumed to be much less complicated a process than suitably
gridding the entire geometry alone. The grids are computationally re-combined in a
solver in such a manner as to give a smooth solution within and across each grid domain.
The approach has continued to mature in the serial computing environment. The wide
acceptance of the method is reflected in the fact that overset grids have been implemented
in well-known compressible as well as incompressible Navier-Stokes flow solvers.

Until the paradigm of parallel computing was developed, one of the major drawbacks to
the overset grid approach was the necessity of updating the solutions on each grid
separately. This involves sequentially reading each grid into core, updating the flow field
one time step, and re-writing the updated solution back to disk storage. The next grid is
then read into core and the process repeated. Each grid receives its updated boundary
conditions from other grids via interpolation coefficients. The coefficients are computed
using other codes after the overset grids are generated but before the grids are submitted
to a flow solver. Since iterative solvers typically require on the order of thousands of time
steps for convergence, wall-clock time can be excessive when grids are swapping in and
out of core. Additionally, time spent in queues during run time can result in significant
delays for solutions that would require orders of magnitude less wall clock time had the
user sole use of the computer.

The drawbacks noted above may be overcome by a parallel approach to the overset grid
method. The ‘parallelized overset grid approach’ discussed herein involves dividing each
of the several main grids into an arbitrary number of load-balanced subgrids, with each
subgrid assigned to a processor in a distributed or massively parallel computing
environment. The previously generated interpolation coefficients for grid-to-grid
communications are analyzed and reassigned (not regenerated!) to their corresponding
subgrid processor so that each knows which processor will need its updated dependent
variables and which processors will be sending updated dependent variables to it. The
solvers must be modified to run on parallel computers so that each subgrid can now be
updated simultaneously rather than sequentially. This approach leads to significantly
faster run times for more complex problems than could have been modeled in the past.

7

This user’s guide discusses the computer code BREAKUP. The BREAKUP code was
developed to subdivide overset grids in a manner that load balances the application on
parallel computers. The code provides the capability to generate parallel solutions using
overset grids in solvers modified for parallel computers. The code has been written so
that a minimum of changes will be needed to modify a solver for parallel applications.

The Parallel Overset Grid Approach

a) Overview

An overview flow chart for the parallel overset grid method is presented in Fig. 1. The
flow chart illustrates the point that the method was designed to minimally impact the
serial overset grid approach. The serial-to-parallel modifications needed to implement the
approach involve the requirement that the grids need additional preparation for the
parallel solver, and that the solver must be modified via message passing calls for use on
a parallel computer. The method currently implemented is such that all codes, i.e.
BREAKUP, visualization codes, and pre- and post-processing codes, run on a
workstation. The solver, of course, is run on a parallel computer.

b) Overset Grid-to-Grid Communications

Overset grids require the capability to communicate with overlapped or embedded grids.
Currently, PEGSUS 4.0[2] is used to generate interpolation coefficients for grid-to-grid
communications where separate grids overlap. Solvers that are PEGSUS-based use the
interpolation coefficients and data from other influencing grids to update boundary
conditions in overlapped regions on each grid as the governing equations are solved.
Users should consult Ref. 2 for more detailed information.

Other codes exist to generate the interpolation coefficients. However, as currently
written, BREAKUP is configured to read the output of PEGSUS only.

c) Parallel Overset Grid Construction

BREAKUP may be considered as a preprocessor to PEGSUS-based parallel solvers and,
as such, represents the cornerstone to the parallel overset grid approach. An overview
flow chart of BREAKUP is presented in Fig. 2. The primary purpose of BREAKUP is to
prepare the output of PEGSUS for parallel computing. PEGSUS output includes the
overset (known as ‘composite’ in PEGSUS jargon) grids, the ‘iblank’ array that flags grid
points for special handling in the solver, and an interpolation coefficient file used for
grid-to-grid communication. BREAKUP divides each overset grid into subgrids
corresponding to the user-specified number of processors on a parallel computer or in a
distributed computing environment. The code computes the total number of grid points,
computes the average number of grid points per processor, and divides each grid into
subgrids such that a near-uniform distribution of grid points exists on each processor.
Separate overset grids are divided such that the grid’s perimeter-to-area ratio in 2-D, or
surface-to-volume ratio in 3-D, is minimized. The subgrids are assigned to individual

8

processors in a sequential manner with no regard to optimal communication paths
between adjacent processors. This means that there is no guarantee that two subgrids
from different overset grids requiring high communications costs will lie adjacent or even
close to each other to minimize latency. This is an area for further algorithmic
development.

Dividing the overset grids into subgrids results in a significant amount of message
passing between processors, as illustrated in Fig. 3. This is due to the necessity for grid-
to-grid communications as well as intra-grid communication. Intra-grid communication is
defined as message passing between subgrids of a unique overset grid. Grid-to-grid
communication is defined as message passing between subgrids of separate overset grids.
For grid-to-grid communications, the additional boundaries resulting from forming
subgrids requires appropriate interpolation coefficients corresponding to each new
subgrid. The interpolation coefficients are the same as those computed by the PEGSUS
code. No new data are generated in BREAKUP. BREAKUP searches these coefficients
and correlates them to the appropriate subgrids.

As mentioned above, intra-grid communication results from overlapping subgrids of an
individual, unique overset grid. Adjacent subgrids align point-to-point by definition and,
therefore, require no interpolation coefficients per se. However, the solver must know
where to send and receive boundary information for intra-grid, as well as grid-to-grid,
communications. BREAKUP constructs connectivity tables for both grid-to-grid and
intra-grid communications such that each processor has the correct data to update its
subgrid. The table for grid-to-grid communications contains the processor location of
each pair of interpolation coefficients and those points on other processors (i.e., subgrids)
which require the coefficients. The solver must be modified to use the tables to update
grid boundary data. More detail regarding connectivity tables is given below.

How BREAKUP Prepares Grids for Parallel Processing

Two primary issues in parallel processing are load balance and speed-up. These issues,
and how they are dealt with in BREAKUP, will now be considered. Also discussed is the
construction of connectivity tables used in the user-modified solver to define processor-
to-processor communications.

a) Load balance

Load balancing on parallel processors means that each processor should have the same,
or nearly the same, work. In practice, this can be difficult to precisely achieve. The
inherent power of the overset grid method lies in the fact that the size of individual
overset grids can significantly vary in any given problem.

The approach to load-balancing subgrids in BREAKUP is as follows. First, BREAKUP
determines the total number of grid points in all grids and divides by the number of user-
specified subgrids (or processors) required. This gives the average number of grid points

9

per processor. Next, the number of grid points in each individual overset grid is divided
by this number to give the total number of processors that will be dedicated to that grid.
Of course, this number seldom, if ever, is a whole number. BREAKUP is programmed to
sequentially enlarge subgrid boundaries within the said grid to encompass more grid
points that remain after calculating the number of processors per grid. This process
ensures that the subgrid boundaries remain flexible enough to encompass all grid points.
Also, it keeps the impact on load balancing to a minimum while keeping fixed the
number of processors assigned to that grid.

If it happens that many grid points are left over, it becomes possible to better load
balance the original grids with a larger number of processors. In this case, the code
outputs a message to the effect that the grids cannot be optimally subdivided on the
specified number of processors. BREAKUP then calculates the nearest number of
processors over which the grids would be better load balanced. The user is then queried
to either accept the new number and continue or input a new value for the number of
processors required.

It is possible that BREAKUP will be given a small enough grid that cannot be
subdivided. In this case, BREAKUP will leave the small grid intact. The premise is that,
if there are only a few, these relatively small grids will not have a significant impact on
the load balancing of the entire set of overset grids. That is, only a few processors with
very small grids will have to wait on the many other processors to finish a solution time
step.

b) Speed-up

Speed-up occurs by minimizing communications between subgrids and maximizing the
computational work performed on each processor. Communication occurs at the grid
boundaries and hence is proportional to the grid’s surface area. Computational work is
performed at each grid point and is therefore proportional to the grid volume. Hence, it is
advantageous when subdividing the grid to minimize its surface area and maximize its
volume. Once the number of processors assigned to each overset grid is known,
BREAKUP determines all the 3-factors of that number and finds the minimum value of
the ratio of subgrid surface area to volume.

c) Sample BREAKUP output

An example of how BREAKUP handles load-balancing and speed-up will illustrate the
process.

Assume a user has the following six grids, with the grid size indicated by j, k, and l. Each
grid has the total number of points listed.

10

Grid# j k l Total Points
----- ----- ----- ----- ------------

1 3 77 53 12243
2 3 249 20 14940
3 3 240 20 14400
4 3 135 20 8100
5 3 234 20 14040
6 3 133 20 7980

The total number of grid points is 71,703. If the user chooses to subdivide these grids into
16 subgrids, the average number of points per processor (rounded to the nearest integer)
is 4,481. Dividing the number of grid points for each grid by the average number of
gridpoints desired on each processor yields the following information:

Grid #

Total points in
grid

Avg. no of grid
points per
processor

No. of
processors

for each grid

 1 12243 4481 3
 2 14940 4481 3
 3 14400 4481 3
 4 8100 4481 2
 5 14040 4481 3
 6 7980 4481 2

BREAKUP calculates that three processors will be assigned to Grid #1, three to Grid #2,
and so on. This implies, of course, that Grid #1 will be divided into three subgrids, Grid
#2 into three subgrids, etc. Although this simple calculation informs the user how many
subgrids will be formed from each original overset grid, it does not indicate how the
subgrids will be formed. To do this, BREAKUP examines all of the three-factors that can
be determined from the number of processors assigned for each grid. For Grid #1,
BREAKUP determines that the original grid can be subdivided in the following ways.

 ITAG J K L
---- --- --- ---

1 1 1 3
2 1 3 1
3 3 1 1

The ITAG parameter is for reference only. The row-wise product of the three-factors
listed under the J, K, and L columns is always equal to the number of processors assigned
to Grid #1. Here, J, K, and L are assumed to be oriented in the grid’s j, k, and l direction,
respectively, and represent the maximum indices that will be assigned to the subgrids.
For example, Grid #1 can be subdivided into 1 subgrid in the grid’s own j direction, 1
subgrid in its k direction, and 3 subgrids in its l direction. Any permutation of this can
also be made. However, the permutation desired is the one that will yield a minimum
surface area for each subgrid and a maximum grid volume. Therefore, each combination

11

of three-factors, associated with increasing values of ITAG, must be examined to give the
minimum ratio of subgrid area over subgrid volume.

The surface area of any one subgrid for Grid #1 may be written as

where jmax, kmax, and lmax are the dimensions of the original overset grid, and J, K, and
L are the number of subgrids into which the grid will be subdivided in their respective
directions. Hence, the quantity jmax/J will denote the dimension, or number of grid
points, of one subgrid in the j direction. Note that J, K, and L can take on any permutation
of the three-factors listed above. The volume of any of the subgrids is given by

The area-to-volume ratio is given by

This ratio is to be minimized to achieve the most efficient configuration for subdividing
the original grid. Minimization occurs by substituting the various three-factors for J, K,
and L associated with the variable ITAG. The ratio is calculated for each permutation.
The combination that gives the minimum ratio is selected as the way to subdivide the
grid. For Grid #1, BREAKUP calculates the following ratios for each ITAG three-factors.

Finding min(surf/vol) for:
Jmax = 3
Kmax = 77
Lmax = 53

itag surf/vol min(surf/vol)
1 0.805848 0.805848
2 0.782325 0.782325
3 2.063710 0.782325

Final values for min(surf/vol) for this zone are:
itag = 2

min(surf/vol) = 0.782325

Once the particular three-factor is determined that yields the minimum surface-to-volume
ratio, then the grid points in the directions corresponding to the appropriate ITAG value
chosen above are divided by the appropriate J, K, or L value to give the approximate














 ×+





 ×+





 ×=

L

l

J

j

L

l

K

k

K

k

J

j
surf

maxmaxmaxmaxmaxmax
2 (1)

.
maxmaxmax

L

l

K

k

J

j
vol ××= (2)

.
maxmaxmax

2 





++=

l

L

k

K

j

J

vol

surf (3)

12

number of points per subgrid in each direction after selecting the ITAG=2 permutation.
BREAKUP’s output for this is as follows.

N/Jmax = 1 / 3 ==> approx. 3 pts/subgrid in J direction
M/Kmax = 3 / 77 ==> approx. 26 pts/subgrid in K direction
P/Lmax = 1 / 53 ==> approx. 53 pts/subgrid in L direction

where N, M, and P are used to denote the permuted J, K, and L values for ITAG=2. Note
that 26 points per subgrid in the K direction for three subgrids will leave one point too
many in that direction. BREAKUP handles this as indicated by the following output.

Warning: Kmaxx/M not evenly divisible!
K-remainder = 1

BREAKUP will make adjustments in the size of the
subgrids to compensate for the above remainders.

Adjustments will start at the boundaries and
progress inward. Hence, when remainders appear,

outer subgrids will have their dimensions
increased in the corresponding direction.

Final subgrid dimensions are:

Grid # Jcube Kcube Lcube Jmax Kmax Lmax Total
------- ----- ----- ----- ---- ---- ---- -------

1 1 1 1 3 27 53 4293
2 1 2 1 3 26 53 4134
3 1 3 1 3 26 53 4134

The values for Jcube, Kcube, and Lcube denote the indices given to each subgrid. The
values listed for Jmax, Kmax, and Lmax denote the number of points in the corresponding
subgrid along each of its sides. Finally, the total number of grid points for each subgrid in
Grid #1 is listed in the Total column. The totals include grid points on common and
overlapped faces between subgrids. It can be seen the values are within approximately
8% of the ‘average no. of grid points per processor’ value of 4,481 listed above.

To ensure accuracy, BREAKUP calculates the total number of grid points in all of the
subgrids, subtracts the grid points in the common or overlapped regions that were formed
as indicated above, and compares the final number with the total number of grid points
originally computed for the overset grid. The user is notified if any discrepancies exist. In
the present example, the number computed from subgrids and the original number match,
as they should, and as indicated in the following output.

Compare total number of grid points with original
in this zone:

Subtracted common faces in K-direction.

Original no. of points in this zone = 12243
Calculated no. of points in this zone = 12243

13

The above process is repeated for each overset grid. If the user has input PEGSUS-
generated interpolation coefficients, BREAKUP will correlate the original coefficients
with the new subgrids for constructing the connectivity tables, discussed below.

Note that the best speed-up in the above sense would be to have the maximum number of
grid points in the maximum amount of memory allowed on processors having identical
amounts of memory. This may be a realistic expectation for homogeneous compute
clusters or massively parallel machines. It is not realistic for heterogeneous compute
clusters. Due to possibly widely varying cpu’s, cache, memory, bandwidth, etc.,
heterogeneous clusters present a significant challenge to any code attempting to achieve a
high degree of parallelism. BREAKUP currently does not account for variance of any
hardware limitations when subdividing grids.

d) Construction of Connectivity Tables

Connectivity tables are needed by the solver to determine which processors need to send
information to which receiving processors and vice versa. These tables contain
information to be used for passing information from processor to processor. Shown
below are partial sample outputs for connectivity tables as generated by BREAKUP. Two
tables are constructed. One is generated for intra-grid communications; the other, for
grid-to-grid communications. The table for intra-grid communications will be discussed
first.

A sample connectivity table for intra-grid communications is listed below. The first
column indicates the appropriate subgrid under attention. The remaining part of the row
lists the subgrid range of indices from which messages will be sent. The next row
indicates the subgrid and subgrid indices that will receive information from the processor
indicated in the line immediately above it. Hence, each pair of rows indicate a subgrid
and its boundaries from which data will be sent, and which subgrid and boundary will
receive the data. For example, subgrid 1 will communicate with subgrid 2, as indicated in
the first two rows of numbers. The next two rows indicate subgrid 2 will communicate
with subgrid 3. Next, it is indicated that subgrid 2 will also communicate with subgrid 1,
3 with 2, 4 with 5, and so on.

c Zone# J_beg J_end J_inc K_beg K_end K_inc L_beg L_end L_inc
 1 1 3 1 27 27 1 1 53 1
 2 1 3 1 2 2 1 1 53 1
 2 1 3 1 28 28 1 1 53 1
 3 1 3 1 2 2 1 1 53 1
 2 1 3 1 1 1 1 1 53 1
 1 1 3 1 26 26 1 1 53 1
 3 1 3 1 1 1 1 1 53 1
 2 1 3 1 27 27 1 1 53 1
 4 1 3 1 85 85 1 1 20 1
 5 1 3 1 2 2 1 1 20 1

A sample connectivity table for grid-to-grid communications is presented below. The first
line indicates the number of points (477) in subgrid #1 whose data need to be sent to

14

other subgrids. The subsequent columns list the three indices (1,22,43) of the grid point
in the donor subgrid #1, the three interpolation coefficients needed to compute the data
needed, the processor number (#4) to which data will be sent, and the three indices
(1,76,20) of the point in the recipient subgrid at which the dependent variables will be
interpolated. The first few lines for donor subgrid #2 are shown for continuity. The solver
uses these tables to send and receive messages for updating grid boundaries.

477 Base subzone # 1
 1 22 43 0.0000000E+00 6.2530622E-02 3.8906133E-01 4 1 76 20
 1 22 43 0.0000000E+00 2.5979275E-01 4.2713684E-01 4 1 73 20
 1 21 43 1.0000000E+00 8.2356793E-01 2.7348068E-01 4 2 79 20
 2 21 43 1.0000000E+00 9.1715431E-01 3.2546192E-01 4 3 78 20

.

.

.
1035 Base subzone # 2
 1 15 46 0.0000000E+00 2.9964754E-01 9.7948408E-01 4 1 12 20
 1 6 35 1.0000000E+00 2.9722536E-01 6.7863387E-01 4 2 28 20
 1 15 48 0.0000000E+00 5.0462323E-01 9.6113777E-01 4 1 5 20
 2 16 49 1.0000000E+00 5.2282799E-02 3.2107067E-01 4 3 2 20

Running BREAKUP

BREAKUP has been modularly constructed to perform the task of preparing multiple
overset grids for parallel processing. This allows the user to more easily run and, if
necessary, modify the code. BREAKUP’s subroutines are listed in alphabetical order in
Fig. 4. A calling tree is presented in Fig. 5 for the reader’s reference.

A brief description of each subroutine is listed in Appendix A. The purpose of each
subroutine is listed, as well as the calling and called subroutines.

A variable list is presented in Appendix B. A brief description of the more significant
variables is given.

A complete BREAKUP output listing for a sample run in presented in Appendix C. Part
of the sample output listings noted above were taken from this appendix. The grids used
in the appendix correlate to Fig. 10, to be discussed.

When run, BREAKUP presents the user with three options for producing subgrids. The
listings shown below duplicate the output from the code upon startup. The options should
be self-explanatory. Note that the only significant input required from the user is the
number of processors over which the original multiple overset grids must be subdivided.

User Options

a) Option 1 – PEGSUS-formatted Generic Overset Grids

This is the most powerful option. Output from the PEGSUS code, which includes the
grids, interpolation coefficients, and other necessary data, is read in. The grids are then

15

subdivided, connectivity tables constructed, and the data output for parallel processing. It
also allows leaving the original grids intact but constructing connectivity tables for
parallel processing. This implies that each overset grid would reside on one processor
with no intra-grid message passing needed.

1) BREAKUP OVERSET GRIDS WITH INTERPOLATION COEFFICIENTS FROM PEGSUS
OUTPUT
 You have grids for which global PEGSUS output
 is available for grid-to-grid communication.
 If selected, this option has two sub-options:
 a) BREAKUP will subdivide the original grids
 into subgrids which will communicate using
 subsets of the original global interpolation
 coefficients. You will specify the total
 number of processors over which you want to
 breakup the grids. This option is typically
 intended for solving the flow field on the
 subgrids using a parallel computer.
 b) BREAKUP will leave original grids intact and
 will not generate subgrids; each grid is
 written to a separate file for the purposes
 of each residing on one processor of a
 parallel computer.

b) Option 2 – PLOT3D-formatted Multiple Grids, No Interpolation Coefficients,
Subgrid Overlap Enforced

This is a versatile option. It was envisioned that an option was needed so that the user
could prepare grids for parallel processing without necessarily having PEGSUS output.
Hence, the user could examine the output of BREAKUP, for example, to aid in
determining how the code subdivides the grids for a given number of processors.

The original overset grids are read in PLOT3D[3] format instead of the PEGSUS format
of Option 1. The subgrids of each separate grid are overlapped one grid cell by default.
The overlap extent can be changed in the code internally.

2) BREAKUP PLOT3D MULTI-BLOCK GRIDS; OVERLAP SUBGRIDS
 You have one or more grids in a multiblock PLOT3D
 file that need to be subdivided; no PEGSUS
 interpolation coefficients are available or
 needed. BREAKUP will subdivide the original
 grids into subgrids. The subgrids will be
 modified to overlap for point-to-point
 communications.

c) Option 3 – PLOT3D-formatted Multiple Grids, No Interpolation Coefficients,
No Subgrid Overlap Enforced; or Internally Generated Grid

This option includes Option 2 but without the overlap. It also allows the user to run
BREAKUP as a stand-alone code without the need for externally generated grids. Sub-
option a) internally generates a cubed grid. The user can then input any number of

16

processors to divide the cube into the specified number of subgrids. This conveniently
allows experimentation with the code ‘right out of the box.’ Suboption b) requires an
externally generated PLOT3D-formatted file.

3) BREAKUP INTERNALLY-GENERATED GRID OR PLOT3D MULTI-BLOCK GRIDS;
SUBGRIDS ARE NOT OVERLAPPED
 You want to see how BREAKUP will create subgrids.
 BREAKUP will generate a cube grid for you, or
 you have PLOT3D-format grids to be read in. In
 either case, you specify how many subgrids you
 want. Grids read in will not be made to overlap
 and PEGSUS data (even if available) will not be
 needed or used.
 If selected, this option has two sub-options:
 a) BREAKUP will generate a cube grid (current
 dimensions 51x51x51); the user can then
 specify how many subgrids to generate from
 the original cube grid.
 b) BREAKUP will read a multi-block PLOT3D file;
 the user specifies how many subgrids in
 which to subdivide the original grids.
 These options provide the ability to observe how
 BREAKUP will work on grid(s) without details
 associated with Options 1 and 2. These are also
 useful options for making Vugraphs.

Input Files

The options discussed above require either PEGSUS files or PLOT3D grid files for input
to BREAKUP. Particulars of these formats are listed below.

PEGSUS output (see User Option 1, above) used as input to BREAKUP consists of the
following files.

1. INTOUT -interpolation coefficient file
2. COMPOUT -composite (overset) grid file
3. IBPLOT -iblank file

PLOT3D formatted files (see User Options 2 and 3b, above) must be named as follows
for BREAKUP to read the files. The local directory is searched for the files in the order
given. Hence, if the user has one grid file named XY.FMT (file-read sequence #3, below)
and another named G.FMT (file-read sequence #9, below), BREAKUP will read only the
former. BREAKUP is programmed to determine the file format (e.g., formatted, binary,
multiple grids, etc.) automatically.

1. X.FMT
2. X.DAT
3. XY.FMT
4. XY.DAT
5. XYZ.FMT
6. XYZ.DAT

17

7. GRID.FMT
8. GRID.DAT
9. G.FMT
10. G.DAT

Output Files

Output files from BREAKUP are listed below with brief explanations. Not all may be
output during a run session since the particular options to do so may not be chosen by the
user.

1. UNRAVELED main output file to show user what BREAKUP did
2. BREAKUP.OUT condensed version of screen output
3. POINTS_OUT PLOT3D file for interpolation and boundary points
4. MESH_OUT PLOT3D file for the ‘iblank’ed mesh
5. 3D_OVERSET_TABLE file containing base (points used for interpolation)

 and target zones (points to be interpolated), indices,
 interpolation coefficients

6. 2D_OVERSET_TABLE decimated version of file 3D_OVERSET_TABLE
 for two-dimensional problems

7. GRIDS2D PLOT3D file for all 2-D grids or subgrids
8. GRIDS3D PLOT3D file for all 3-D grids or subgrids
9. 3D_PATCH_TABLE table of 3-D grid overlap links between subgrids of

an overset grid
10. 2D_PATCH_TABLE table of 2-D grid overlap links between subgrids of

an overset grid
11. GRID_ORIGINAL.G Original grid file in subroutine
12. GRID_DIVIDED.G PLOT3D file of subgrids generated by BREAKUP
13. 2Dxxxx.FMT 2D subgrid files where each subgrid is written to a

 separate file; xxxx = 0000 to 9999
14. 3Dxxxx.FMT 3D subgrid files where each subgrid is written to a

separate file; xxxx=0000 to 9999

Examples

The first example showing the utility of BREAKUP is presented in Fig. 6. A cube was
internally generated and arbitrarily subdivided into 74 subgrids. The plot corresponds to
the output of User Option 3a, discussed above.

Another example demonstrating the power of BREAKUP is illustrated in Fig. 7. The five
grids generated around a multi-element airfoil are subdivided by BREAKUP into 16 grids
for use on the corresponding number of processors. The original grids are presented in
Fig. 7a and the divided grids in Fig. 7b. Presented in Fig. 7c is a close-up view of the
solution. Smooth streamlines, even in recirculating regions, indicate that message passing
between subgrids is behaving as expected. Note from this figure that BREAKUP did not

18

subdivide the original grid around the slat. BREAKUP determined that the number of
grid points for this grid were too few to subdivide further, given the number of user-
specified processors. Parallel solutions for the airfoil were generated using a modified
version of INS2D[4-6]. Plots were generated using TECPLOT[7].

The next example, shown in Fig. 8, is the for an F-16 forward fuselage and intake duct as
obtained from Lockheed-Martin. Presented in Fig. 8a are the original 19 grids. Illustrated
in Fig. 8b are the results of subdividing the original 19 grids into 32 subgrids.

The last example, Figs. 9-11, involves two-dimensional ocean current solutions on
coastal grids for the Gulf of Mexico and Greater Antilles islands. None of the solutions
were run to convergence since this representation is non-physical. The main objective
was to determine whether BREAKUP was properly assigning subgrid interpolation
coefficients to the processors. The original grids are presented in Fig. 9a. The solution on
the original grids is presented in Fig. 9b-d showing velocity vectors, a close-up of the
velocity vectors around Cuba, and streamlines, respectively. The original grids were then
subdivided into a total of 16 subgrids as presented in Fig. 10a. As expected, BREAKUP
subdivided the grids so that approximately the same number of grid points would reside
on each processor. A close-up solution for the velocity vectors around Cuba is shown in
Fig. 10b. Finally, the original grids were divided into 100 subgrids as shown in Fig. 11a.
A close-up velocity vector plot is presented in Fig. 11b. All indications are that,
regardless of the number of processors, BREAKUP is generating correct connectivity
tables for use in parallel computers. The sample BREAKUP output listed in Appendix C
was generated for one of the Gulf simulations noted above.

Future Work and Directions

Any future work on BREAKUP should include coding to aid the user in specifying solver
boundary conditions on the subgrids. Specifying boundary conditions by “cut-and paste”
editing methods can be a daunting task when preparing overset grids for a multi-thousand
processor computer.

Another area of research should be developing the capability within BREAKUP to
determine which processors require the highest amount of true interpolated data and to
locate these processors near or adjacent to each other.

Modifications should be made to BREAKUP to help implement solvers on
heterogeneous, clustered, parallel processors and shared-memory multi-processor
workstations. There is a significant amount of work to be done in this area.

An interesting concept would be for BREAKUP to optimize its output based on each
processor’s configuration. BREAKUP would need to know or to determine a parallel
configuration’s processors, memories, bandwidths, latencies, cache capabilities, etc.
Obviously, for this process to be automated, BREAKUP would need to run on a machine
able to access all processors to be used in the computations. This would not always be
possible.

19

Commensurate with further BREAKUP development should be the task of modifying
other overset-grid-based solvers to run on parallel computers and establishing
visualization needs for parallel overset-grid solutions.

Summary

The proof of concept in generating high-performance, high-resolution solutions using
overset grids in parallel solvers has been demonstrated. Use of overset grids on massively
parallel computers will increase users’ capabilities to solve challenging problems.

Overset grid technology appears to be well suited for a parallel environment. However,
research needs to be conducted for more efficient implementation. This is particularly
true due to the ever-changing paradigms and implementations of parallel computing. It is
expected that this effort would benefit a wide range of applications important to US
industry as well as government laboratories and academia.

20

References

1. J. L. Steger, F. C. Dougherty, and J. A. Benek, “A Chimera Grid Scheme,” Advances
in Grid Generation, K. N. Ghia and U. Ghia, eds., ASME FED-Vol. 5, June 1983.

2. N. E. Suhs and R. W. Tramel, “PEGSUS 4.0 User’s Manual,” AEDC-TR-91-8,
Calspan Corporation / AEDC Operations, Arnold AFB, Tennessee, USA.

3. P. Walatka, P. G. Buning, L. Pierce, and P. A. Elson, “PLOT3D User’s Manual,”
NASA Technical Memorandum 101067, March 1990.

4. S. E. Rogers and D. Kwak, “An Upwind Differencing Scheme for the Steady-State
Incompressible Navier-Stokes Equations,” NASA TM 101051, November 1988.
Published in Journal of Applied Numerical Mathematics, Vol. 8, 1991, pp. 43-64.

5. S. E. Rogers and D. Kwak, “An Upwind Differencing Scheme for the Time Accurate
Incompressible Navier-Stokes Equations,” AIAA Journal, Vol. 28, No. 2, February,
1990, pp. 253-262.

6. S. E. Rogers, D. Kwak, and C. Kiris, “Numerical Solution of the Incompressible
Navier-Stokes Equations for Steady-State and Time-Dependent Problems, AIAA
Journal, Vol. 29, No. 4, April 1991, pp. 603-610.

7. “TECPLOT – Interactive Data Visualization for Scientists and Engineers, Version 6.0
User’s Manual,” Amtec Engineering, Inc., P.O. Box 3633, Bellevue, WA.

21

Generate
overset
grids

Generate
interpolation

coefficients for
holes and
overlaps

Visualize grids
using

softwarewith
‘iblank’

capability

Parallel or serial
solutions?

Solve flow field
using serial
overset grid

solver

Visualize grid
and flow field
using software
with ‘iblank’

capability

Solve flow field
using serial overset
grid solver modified

for parallel
computing

Prepare overset
grids for parallel

processing
[BREAKUP]

Figure 1. Overview flow chart for the parallel overset grid method.

Parallel

Serial

22

Read PEGSUS output for overset
grids: INTOUT, IBPLOT, COMPOUT

Extract base and target points from
each grid

Output original overset grids, target
points, and base points in PLOT3D

format

Calculate total grid points per node;
nodes/grid; points/node based on
minimum surface/volume ratio

Divide grids
for massively parallel

processing?

Output one
overset grid per node

for parallel processing?

Divide each overset grid into subgrids

Overlap subgrids of each grid for intra-
grid communications

Output subgrids in PLOT3D format:
2D or 3D, one file, or one file per

subgrid

Construct connectivity table for
parallel intra-grid communications: 2D
or 3D

Construct connectivity table for parallel
overset subgrid communications: 2D or
3D

Construct connectivity table for overset
grid communications: 2D or 3D

Stop

Output subgrids in PLOT3D format: 2D
or 3D, one file, or one file per subgrid

Figure 2. Overview flow chart for BREAKUP when overset grid output
from PEGSUS is used as input.

No No

Yes Yes

23

Figure 3. Illustration of increase in grid-to-grid and intra-grid
communications when applying BREAKUP to overset grids.

a) Subdivided Background Grid

b) Subdivided Grid Around
Geometry of Interest

Background grid interior boundary
(hole boundary) communicates with
interior of geometry grid

Geometry grid outer boundary
communicates with interior of

background grid

+

=

Sub-
grid
#1

#2 #3 #4 #5 #6

Subgrid
#1

#2

#4

#5
#6

#7

#8
#3

• Intra-grid communication occurs
across dashed boundaries within
each grid; no interpolation
coefficients required due to point-
to-point overlap

• Grid-to-grid communication
occurs across grid boundaries,
represented by heavy lines, via
interpolation coefficients c) Overset grids

24

c Subroutines (alphabetical order)
c
c 1. average
c 2. base_search
c 3. break
c 4. breakup_for_fun
c 5. breakup_grids
c 6. chooser
c 7. decimate
c 8. footer
c 9. get_global_index
c 10. get_zone
c 11. global_indices
c 12. grid_point_comparison
c 13. header
c 14. indexx
c 15. info
c 16. link_overlap
c 17. link_overset
c 18. min_surf_vol_ratio
c 19. nobreak
c 20. out1planetoplt3d_break
c 21. out1planetoplt3d_nobreak
c 22. out1planetoproc_break
c 23. out1planetoproc_nobreak
c 24. outallplanestoplt3d_break
c 25. outallplanestoplt3d_nobreak
c 26. outallplanestoproc_break
c 27. outallplanestoproc_nobreak
c 28. patch_2d
c 29. read_compout
c 30. read_grid_header
c 31. read_ibplot
c 32. read_intout
c 33. read_zone
c 34. read_zone_header
c 35. sort
c 36. subgrid_dimensions
c 37. target_search
c 38. write_base_target_points
c 39. write_grids
c 40. write_subgrids
c 41. write_unravel
c

Figure 4. BREAKUP’s subroutines listed in alphabetical order.

25

.MAIN
 BASE_SEARCH
 GET_ZONE
 BREAKUP_FOR_FUN
 AVERAGE
 BREAK
 GET_GLOBAL_INDEX
 GLOBAL_INDICES
 GRID_POINT_COMPARISON
 MIN_SURF_VOL_RATIO
 OUT1PLANETOPLT3D_BREAK
 GET_GLOBAL_INDEX
 READ_ZONE
 READ_ZONE_HEADER
 OUT1PLANETOPROC_BREAK
 GET_GLOBAL_INDEX
 READ_IBPLOT
 READ_INTOUT
 READ_ZONE
 READ_ZONE_HEADER
 OUTALLPLANESTOPLT3D_BREAK
 GET_GLOBAL_INDEX
 READ_ZONE
 READ_ZONE_HEADER
 OUTALLPLANESTOPROC_BREAK
 GET_GLOBAL_INDEX
 READ_IBPLOT
 READ_INTOUT
 READ_ZONE
 READ_ZONE_HEADER
 SUBGRID_DIMENSIONS
 WRITE_SUBGRIDS
 GET_GLOBAL_INDEX
 GLOBAL_INDICES
 GRID_POINT_COMPARISON
 MIN_SURF_VOL_RATIO
 READ_GRID_HEADER
 SUBGRID_DIMENSIONS
 WRITE_SUBGRIDS (see above)
 BREAKUP_GRIDS
 AVERAGE
 BREAK (see above)
 READ_GRID_HEADER

 CHOOSER
 AVERAGE
 BREAK (see above)
 LINK_OVERLAP
 PATCH_2D
 LINK_OVERSET
 DECIMATE
 GET_GLOBAL_INDEX
 GET_ZONE
 SORT
 INDEXX
 NOBREAK
 DECIMATE
 GET_ZONE
 OUT1PLANETOPLT3D_NOBREAK
 READ_ZONE
 READ_ZONE_HEADER
 OUT1PLANETOPROC_NOBREAK
 READ_IBPLOT
 READ_INTOUT
 READ_ZONE
 READ_ZONE_HEADER
 OUTALLPLANESTOPLT3D_NOBREAK
 READ_ZONE
 READ_ZONE_HEADER
 OUTALLPLANESTOPROC_NOBREAK
 READ_IBPLOT
 READ_INTOUT
 READ_ZONE
 READ_ZONE_HEADER
 READ_ZONE
 READ_ZONE_HEADER
 SORT (see above)
 FOOTER
 FDATE
 HEADER
 FDATE
 READ_COMPOUT
 READ_IBPLOT
 WRITE_GRIDS
 READ_INTOUT
 TARGET_SEARCH
 GET_ZONE
 WRITE_BASE_TARGET_POINTS
 WRITE_UNRAVEL

Figure 5. BREAKUP calling tree.

26

Figure 6. Cube illustrating how BREAKUP generates 74 subgrids.

27

a) Original grids

b) 16 subgrids from BREAKUP

Figure 7. BREAKUP-generated subgrids for a multi-element airfoil grid, with solution.

28

c) Streamlines for 16-node solution

Figure 7. Concluded.

26

Figure 6. Cube illustrating how BREAKUP generates 74 subgrids.

27

a) Original grids

b) 16 subgrids from BREAKUP

Figure 7. BREAKUP-generated subgrids for a multi-element airfoil grid, with solution.

28

c) Streamlines for 16-node solution

Figure 7. Concluded.

29

a) 19 original grids

b) 32 subgrids generated by the BREAKUP code

Figure 8. BREAKUP subgrids for an F16’s forward fuselage and intake duct .

30

-1 0 1 2
X

-1

-0 .5

0

0 .5

1

1 .5

2
Y

A tla nt ic

O c e a n

P u e r t o
R i c o

H a i t i / D . R .

C u b a

J a m a i c a

Y u c a n t a n
P e n i n s u l a

G ulf o f
M e xic o

b ac kg ro u n d g ridco as ta l g rid

is lan d g rid s

O ve rse t G rid s
fo r G u lf o f M e x ico

(6 g r id s ; 2 3 ,9 0 1 g rid p o in ts)

a) Grids

Figure 9. Original six overset grids for the Gulf of Mexico, with serial solution.

31

-1 0 1 2
X

-1

-0 .5

0

0 .5

1

1 .5

2

Y

V e locity V e ctors

(6 grids; 23,901 g rid po in ts)

b) Velocity vectors

Figure 9. Continued.

32

0 0 .5 1
X

-0 .3

-0 .2

-0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6
Y

V e lo c ity V e cto rs
C lo se -U p o f C u b a

(6 g rid s ; 2 3 ,9 0 1 g rid p o in ts)

c) Close-up of velocity vectors around Cuba

Figure 9. Continued.

33

-1 0 1 2
X

-1

-0 .5

0

0 .5

1

1 .5

2
Y

S tre a m lin e s

(6 g rid s ; 2 3 ,9 0 1 g rid p o in ts)

d) Streamlines

Figure 9. Concluded

34

-1 0 1 2
X

-1

-0 .5

0

0 .5

1

1 .5

2
Y

Atla ntic

O cea n

P u e r t o
R i c o

H a i t i / D . R .

C u b a

J a m a i c a

Y u c a n t a n
P e n i n s u l a

G ulf o f
M exico

background g ridcoastal g rid

is land grids

O verse t G rids
for G ulf o f M exico

(16 grids; 23 ,901 grid po in ts)

a) Grids

Figure 10. Sixteen BREAKUP-generated overset grids for the Gulf of Mexico.

35

0 0 .5 1
X

-0 .3

-0 .2

-0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6
Y

V e lo c ity V e c to rs
C lo s e -U p o f C u b a

(1 6 g r id s ; 2 3 ,9 0 1 g r id p o in ts)

b) Close-up of velocity vectors around Cuba

Figure 10. Concluded.

36

-1 0 1 2
X

-1

-0 .5

0

0 .5

1

1 .5

2
Y

Atla ntic

O c e a n

P u e r t o
R i c o

H a i t i / D . R .

C u b a

J a m a i c a

Y u c a n t a n
P e n i n s u l a

G ulf o f
M e xic o

b ack g ro u n d g ridco as ta l g rid

is lan d g r id s

O ve rse t G rid s
fo r G u lf o f M e xico

(1 0 0 g rid s ; 2 3 ,9 0 1 g rid p o in ts)

a) Grids

Figure 11. One hundred BREAKUP-generated overset subgrids for the Gulf of Mexico.

37

0 0 .5 1
X

-0 .3

-0 .2

-0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6
Y

V e lo c ity V e cto rs
C lo se -U p o f C u b a

(1 0 0 g rid s ; 2 3 ,9 0 1 g rid p o in ts)

b) Close-up of velocity vectors around Cuba

Figure 11. Concluded.

38

Appendix A

BREAKUP Subroutines and Their Description

Listed below in alphabetical order are the subroutines comprising BREAKUP. A brief
description is given of each, along with the list of calling routines and the routines that
are called.

1. average
Purpose:

This subroutine takes in all grids and computes average number
of grid points per grid.

Calling routines:
breakup_for_fun
breakup_grids
chooser

Called routines, in order of appearance:
NONE

2. base_search
Purpose:

This subroutine searches for base points for overset Chimera-
type grids

Calling routines:
main

Called routines, in order of appearance:
get_zone
get_zone

3. break
Purpose:

This subroutine breaks up grids into a user-specified number
of zones.

Calling routines:
breakup_for_fun
breakup_grids
chooser

Called routines, in order of appearance:
min_surf_vol_ratio
subgrid_dimensions
grid_point_comparison
global_indices
get_global_index
write_subgrids

39

get_global_index
write_subgrids
out1planetoproc_break
outallplanestoproc_break
out1planetoplt3d_break
outallplanestoplt3d_break

4. breakup_for_fun
Purpose:

Main calling code for breaking up grids without PEGSUS
interpolation coefficients and without enforcing overlapped
regions.

Calling routines:
MAIN

Called routines, in order of appearance:
min_surf_vol_ratio
subgrid_dimensions
grid_point_comparison
global_indices
write_subgrids
read_grid_header
average
break

5. breakup_grids
Purpose:

Main calling code for breaking up grids without PEGSUS
interpolation coefficients; overlapped regions are generated
between subgrids.

Calling routines:
MAIN

Called routines, in order of appearance:
read_grid_header
average
break

6. chooser
Purpose:

This subroutine gives the user the option to break up grids for
parallel processing.

Calling routines:
MAIN

Called routines, in order of appearance:

40

average
break
link_overlap
link_overset
nobreak

7. decimate
Purpose:

This subroutine reads data from file >3D_OVERSET_TABLE< (unit 15)
and constructs file >2D_OVERSET_TABLE< by searching on the target
jkl's from file >3D_OVERSET_TABLE< and extracting only those with
a to-be-calculated target index.

Calling routines:
link_overset
nobreak

Called routines, in order of appearance:
NONE

8. footer
Purpose:

This subroutine signs off.
Calling routines:

MAIN
Called routines, in order of appearance:

fdate

9. get_global_index
Purpose:
 This subroutine is called to give the index range for subgrids
 using global indices. It is called from various locations
 throughout the code.
Calling routines:

break
link_overset
out1planetoplt3d_break
out1planetoproc_break
outallplanestoplt3d_break
outallplanestoproc_break
write_subgrids

Called routines, in order of appearance:
NONE

41

10. get_zone
Purpose:
 This subroutine reads in the proper zone 'nz' from

the grid file in any order
Calling routines:

base_search
link_overset
nobreak
target_search

Called routines, in order of appearance:
NONE

11. global_indices
Purpose:
 This subroutine sets up the global indices needed to break up

the zone. Call this routine after calling subroutine
subgrid_dimensions.

Calling routines:
break
breakup_for_fun

Called routines, in order of appearance:
NONE

12. grid_point_comparison
Purpose:
 This subroutine calculates the total number of points for the

original grid, and the total number of grid points for the
subgrids of the original grid, and compares the two. The program
stops if there is a difference. This is to provide some error
checking.

Calling routines:
break
breakup_for_fun

Called routines, in order of appearance:
NONE

13. header
Purpose:
 This subroutine prints out the header for output.
Calling routines:

MAIN
Called routines, in order of appearance:

fdate

42

14. indexx
Purpose:
 Subroutine INDEXX indexes an array iarr(1:n), i.e., outputs the

array indx(1:n) such that iarr(indx(j)) is in ascending order
for j=1,2,...,N. The input quantities n and iarr are not
changed.

Calling routines:
sort

Called routines, in order of appearance:
NONE

15. info
Purpose:
 This subroutine lists variables of interest, filenames, etc.,

to aid the user in understanding the program.
Calling routines:

NONE
Called routines, in order of appearance:

NONE

16. link_overlap
Purpose:
 This subroutine links overlapped (patched) subgrids in a zone.
 This subroutine is not called for overlapped regions for which
 interpolation coefficients have been generated. The subgrids
 are assumed to align point-to-point.
Calling routines:

chooser
Called routines, in order of appearance:

write_unravel
patch_2d

17. link_overset
Purpose:
 This subroutine links grid subgrids for overlapped embedded

grids.
Calling routines:

chooser
Called routines, in order of appearance:

get_zone
get_global_index

43

get_global_index
get_zone
sort
decimate

18. min_surf_vol_ratio
Purpose:
 This subroutine calculates the 3-factors for a given number of
 subgrids, then calculates the surface to volume ratio for each

set of 3-factors given the maximum j,k,l dimensions of each grid.
Calling routines:

break
breakup_for_fun

Called routines, in order of appearance:
NONE

19. nobreak
Purpose:
 This subroutine keeps all grids as was output by the PEGSUS
 code. File 3D_OVERSET_TABLE is generated listing all base and

target grid points. Grids are output as one file or as multiple
files, user choice. Essentially, output is for running a flow
solver on a serial machine or for distributed computing, not
for massively parallel applications on concurrent processors.

Calling routines:
chooser

Called routines, in order of appearance:
read_zone_header
read_zone
out1planetoproc_nobreak
outallplanestoproc_nobreak
out1planetoplt3d_nobreak
outallplanestoplt3d_nobreak
get_zone
get_zone
sort
decimate

20. out1planetoplt3d_break
Purpose:
 The purpose of this subroutine is to write one plane of each

subgrid to file GRIDS (UNIT 20) in PLOT3D format for graphics.
Calling routines:

Break

44

Called routines, in order of appearance:
read_zone_header
read_zone
get_global_index
get_global_index
get_global_index

21. out1planetoplt3d_nobreak
Purpose:
 The purpose of this subroutine is to write one plane of each

of the original grids to file GRIDS2D (UNIT 20) in PLOT3D format
 for graphics.
Calling routines:

nobreak
Called routines, in order of appearance:

read_zone_header
read_zone

22. out1planetoproc_break
Purpose:
 The purpose of this subroutine is to output one plane of data

for each processor on a massively parallel computer. Output is
to file 2D____.FMT, where ____ is 0000, 0001, 0002, etc.

Calling routines:
break

Called routines, in order of appearance:
read_zone_header
read_zone
read_intout

 read_ibplot
get_global_index
get_global_index
get_global_index

23. out1planetoproc_nobreak
Purpose:
 The purpose of this subroutine is to output one plane of data

for each processor on a massively parallel computer. Output is
to file 2D___.FMT, where ___ is 000, 001, 002, etc.

Calling routines:
nobreak

Called routines, in order of appearance:
read_zone_header

45

read_zone
 read_intout
 read_ibplot

24. outallplanestoplt3d_break
Purpose:
 The purpose of this subroutine is to write all planes of each

subgrid to file GRIDS3D (UNIT 20) in PLOT3D format for graphics.
Calling routines:

break
Called routines, in order of appearance:

read_zone_header
read_zone
get_global_index

25. outallplanestoplt3d_nobreak
Purpose:
 The purpose of this subroutine is to write all planes of each

subgrid to file GRIDS3D (UNIT 20) in PLOT3D format for graphics.
 Calling routines:

nobreak
Called routines, in order of appearance:

read_zone_header
read_zone

26. outallplanestoproc_break
Purpose:
 The purpose of this subroutine is to output all planes of data

for each processor on a massively parallel computer. Output is
to file 3D___.FMT, where ___ is 0000, 0001, 0002, etc.

Calling routines:
break

Called routines, in order of appearance:
read_zone_header
read_zone

 read_intout
 read_ibplot

get_global_index

27. outallplanestoproc_nobreak
Purpose:
 The purpose of this subroutine is to output all planes of data

46

 for each processor on a massively parallel computer. Output is
to file XY___.FMT, where ___ is 0000, 0001, 0002, etc.

Calling routines:
nobreak

Called routines, in order of appearance:
read_zone_header
read_zone

 read_intout
 read_ibplot

28. patch_2d
Purpose:

Reduces the table of 3D patched, i.e. point-to-point overlapped
grids, to a 2D table for 2D flow solvers.

Calling routines:
link_overlap

Called routines, in order of appearance:
NONE

29. read_compout
Purpose:
 This subroutine reads data from file COMPOUT, as generated by

PEGSUS code.
Calling routines:

MAIN
Called routines, in order of appearance:
 read_ibplot

write_grids

30. read_grid_header
Purpose:
 This routine attempts to find the grid file, a plot3d 3D type

file, and determines whether it is formatted or unformatted,
single or multiple zone, and with or without an iblank array.
It reads in the dimensions of the grid and performs parameter
checks, and leaves the grid file opened with the pointer after
the records containing the dimensions.

 Much of this subroutine taken from code written by Phil Stuart of NASA JSC.
Calling routines:

breakup_for_fun
breakup_grids

Called routines, in order of appearance:
NONE

47

31. read_ibplot
Purpose:
 This subroutine reads the IBPLOT array, as generated by

PEGSUS code, one zone at a time
Calling routines:

MAIN
out1planetoproc_break

 out1planetoproc_nobreak
 outallplanestoproc_break

outallplanestoproc_nobreak
read_compout

Called routines, in order of appearance:
NONE

32. read_intout
Purpose:
 This subroutine reads the INTOUT file, as generated by

the PEGSUS code, one zone at a time. It includes the
 IBLANK PEGSUS code array.
Calling routines:

MAIN
out1planetoproc_nobreak
outallplanestoproc_break
outallplanestoproc_nobreak

Called routines, in order of appearance:
exit
exit

33. read_zone
Purpose:

This subroutine sequentially reads the grid file one zone
at a time. The grid file read in by this subroutine is assumed

 to be a 3-d PLOT3D formatted multi-zone file. The read pointer
has been positioned past the header data by previously calling

 subroutine read_zone_header.
Calling routines:

nobreak
out1planetoplt3d_break
out1planetoplt3d_nobreak
out1planetoproc_break
out1planetoproc_nobreak
outallplanestoplt3d_break

48

outallplanestoplt3d_nobreak
outallplanestoproc_break
outallplanestoproc_nobreak

Called routines, in order of appearance:
NONE

34. read_zone_header
Purpose:

This subroutine reads the grid file header and leaves the
 read pointer at the start of the grid points for the first
 zone. The grid file read in by this subroutine is assumed
 to be a 3-d PLOT3D formatted multi-zone file.
Calling routines:

nobreak
out1planetoplt3d_break
out1planetoplt3d_nobreak
out1planetoproc_break
out1planetoproc_nobreak
outallplanestoplt3d_break
outallplanestoplt3d_nobreak
outallplanestoproc_break
outallplanestoproc_nobreak

Called routines, in order of appearance:
NONE

35. sort
Purpose:
 This subroutine reads data from scratch file SCRATCH25, sorts
 on the base processor, then sorts the target processor for each
 base processor, so a double sort is needed. Scratch file
 SCRATCH30 is used as a temporary scratch file between sorts.
Calling routines:

link_overset
nobreak

Called routines, in order of appearance:
indexx
indexx

36. subgrid_dimensions
Purpose:
 This subroutine calculates the dimensions of the subgrids.
Calling routines:

break

49

breakup_for_fun
Called routines, in order of appearance:

NONE

37. target_search
Purpose:
 This subroutine searches for target points for overset Chimera-
 type grids
Calling routines:

MAIN
Called routines, in order of appearance:

get_zone
get_zone

38. write_base_target_points
Purpose:
 This subroutine writes base (stencil) and target (boundary)

points for each zone in PLOT3D format.
Calling routines:

MAIN
Called routines, in order of appearance:

NONE

39. write_grids
Purpose:
 This subroutine writes grids, read from PEGUS output, in
 PLOT3D format. The data in this format is read in later
 and subdivided into the user-specified number of subgrids.
Calling routines:

read_compout
Called routines, in order of appearance:

NONE

40. write_subgrids
Purpose:
 This subroutine writes out the subgrids formed in subroutine
 SUBGRID_DIMENSIONS and subroutine GLOBAL_INDICES.
Calling routines:

break
breakup_for_fun

Called routines, in order of appearance:
get_global_index

50

41. write_unravel
Purpose:
 This subroutine outputs to file UNRAVEL. Output depends on

iflag.
Calling routines:

MAIN
link_overlap

Called routines, in order of appearance:
NONE

51

Appendix B

List of Variables used in BREAKUP

Listed below are the more significant variables used in BREAKUP. A brief description is
given of each. If not listed below, the variable’s meaning is probably obvious from the
context of the coding.

Name Description
---------------------- --
j_subgrid(index,nz) jmax,kmax,lmax of each subgrid, where
k_subgrid(index,nz) index=(j-1)*idimk(nz)*idiml(nz)+
l_subgrid(index,nz) (k-1)*idiml(nz)+l

idimj(nz) number of subgrids for each overset grid
idimk(nz)
idiml(nz)

jindex_global(index,nz) indices for each subgrid based on total
kindex_global(index,nz) dimension of the grid in which the
lindex_global(index,nz) subgrid resides;

index=(j-1)*idimk(nz)*idiml(nz)+
 (k-1)*idiml(nz)+l

x(index) x, y, and z for each zone nz. Note that
y(index) if the zone is dimensioned jmax,kmax,lmax,
z(index) then index=(j-1)*kmax*lmax+(k-1)*lmax+l,

where j = 1 to jmax, k = 1 to kmax, l = 1
 to lmax.

xb(i,nz) locations for base points used in
yb(i,nz) interpolation stencil
zb(i,nz)

jmax_compout(nz) indices from PEGSUS; dimensions for each
kmax_compout(nz) zone, where (zone=1,nz)
lmax_compout(nz)

jmax_intout(nz) indices from PEGSUS code for interpolation
kmax_intout(nz) coefficients for each mesh
lmax_intout(nz)

ibpnts(nz) number of interpolation boundary points per
mesh

iipnts(nz) number of interpolation stencils/mesh

iieptr(nz) end pointer for interpolation stencil list per
mesh

iisptr(nz) starting pointer for interpolation stencil
list per mesh

ji(i) indices for target points from PEGSUS
ki(i)
li(i)

52

Name Description
---------------------- --
jb(i) indices for base points from PEGSUS
kb(i)
lb(i)

ibc interpolation boundary point pointer

ibplot(index) array rea in from PEGSUS file IBPLOT and
is the IBLANK array typically used in
plotting PLOT3D files

iblank(index) array read in from PEGSUS file INTOUT;
used as a flag to the flow solver to
tell it that particular boundary points
are updated by PEGSUS interpolation and
not by the solver

dx(i) interpolation coefficients from PEGSUS
dy(i)
dz(i)

53

Appendix C

Sample Output from BREAKUP
(file BREAKUP.OUT)

Note: line numbers have been added for reference

1. ***

2. ### Program BREAKUP ###

3. The PARAMETER statement for the current run is set as follows:
4. nzne = 30
5. jmax = 143
6. kmax = 31
7. lmax = 30
8. max_subs = 85

9. You have chosen the following option:
10. ---
11. 2) BREAKUP PLOT3D MULTI-BLOCK GRIDS; OVERLAP
12. SUBGRIDS
13. ---
14. You have one or more grids in a multiblock PLOT3D
15. file that need to be subdivided; no PEGSUS
16. interpolation coefficients are available or
17. needed. BREAKUP will subdivide the original
18. grids into subgrids. The subgrids will be
19. modified to overlap for point-to-point
20. communications.

21. Read in grid. Grid is assumed to be in PLOT3D
22. format. BREAKUP can discern if file is
23. formatted or binary, and if grids have the
24. iblank array. Subgrids will be output to file
25. GRID_DIVIDED.G in formatted PLOT3D format.
26. input grid file must have one of the
27. following names:
28. X.FMT
29. X.DAT
30. XY.FMT
31. XY.DAT
32. XYZ.FMT
33. XYZ.DAT
34. GRID.FMT
35. GRID.DAT
36. G.FMT
37. G.DAT

38. Attempting to open file named: XY.FMT
39. File opened successfully.

40. # j k l Total Points
41. ----- ----- ----- ----- ------------
42. 1 3 77 53 12243
43. 2 3 249 20 14940
44. 3 3 240 20 14400
45. 4 3 135 20 8100
46. 5 3 234 20 14040
47. 6 3 133 20 7980

48. Zone 2 has the largest number of grid points:
49. jmax = 3
50. kmax = 249
51. lmax = 20
52. Total number of grid points for this zone: 14940

53. End of grid-file scan.

54. This is a formatted, multiple zone grid file with an iblank array.

54

55. nz = 1 jmax = 3 kmax = 77 lmax = 53
56. nz = 2 jmax = 3 kmax = 249 lmax = 20
57. nz = 3 jmax = 3 kmax = 240 lmax = 20
58. nz = 4 jmax = 3 kmax = 135 lmax = 20
59. nz = 5 jmax = 3 kmax = 234 lmax = 20
60. nz = 6 jmax = 3 kmax = 133 lmax = 20

61. Total number of grid points = 71703

62. --

63. Grid Jmax Kmax Lmax Total
64. GRID0001.G 3 77 53 12243
65. GRID0002.G 3 249 20 14940
66. GRID0003.G 3 240 20 14400
67. GRID0004.G 3 135 20 8100
68. GRID0005.G 3 234 20 14040
69. GRID0006.G 3 133 20 7980

70. Total number of grid points = 71703

71. Total number of original zones = 6

72. Average number of grid points/grid = 11950.50

73. Parallel processing parameters:

74. Number of nodes to be used: 16

75. Number of grid points in zone 1: 12243
76. Number of grid points in zone 2: 14940
77. Number of grid points in zone 3: 14400
78. Number of grid points in zone 4: 8100
79. Number of grid points in zone 5: 14040
80. Number of grid points in zone 6: 7980

81. Total number of grid points over all grids: 71703
82. Average number of grid points per grid: 11950.5
83. Average number of grid points per processor: 4481.0

84. For zone 1 use 3 processors.
85. For zone 2 use 3 processors.
86. For zone 3 use 3 processors.
87. For zone 4 use 2 processors.
88. For zone 5 use 3 processors.
89. For zone 6 use 2 processors.

90. User-specified nodes to be used = 16
91. Nodes calculated to be used = 16

92. Calculate j*k*l values for subgrids for minimum
93. area-to-volume ratio.

94. ===
95. For mesh GRID0001.G:

96. List all possible factors for number of subgrids
97. for this zone.

98. ITAG J K L
99. ---- --- --- ---
100. 1 1 1 3
101. 2 1 3 1
102. 3 3 1 1

103. Finding min(surf/vol) for:
104. Jmax = 3
105. Kmax = 77
106. Lmax = 53

107. itag surf/vol min(surf/vol)
108. 1 0.805848 0.805848

55

109. 2 0.782325 0.782325
110. 3 2.063710 0.782325

111. Final values for min(surf/vol) for this zone are:
112. itag = 2
113. min(surf/vol) = 0.782325
114. N/Jmax = 1 / 3 ==> approx. 3 pts/subgrid in J direction
115. M/Kmax = 3 / 77 ==> approx. 26 pts/subgrid in K direction
116. P/Lmax = 1 / 53 ==> approx. 53 pts/subgrid in L direction

117. Warning: Kmaxx/M not evenly divisible!
118. K-remainder = 1

119. BREAKUP will make adjustments in the size of the
120. subgrids to compensate for the above remainders.
121. Adjustments will start at the boundaries and
122. progress inward. Hence, when remainders appear,
123. outer subgrids will have their dimensions
124. increased in the corresponding direction.

125. Final subgrid dimensions are:

126. Grid # Jcube Kcube Lcube Jmax Kmax Lmax Total
127. ------- ----- ----- ----- ---- ---- ---- -------
128. 1 1 1 1 3 27 53 4293
129. 2 1 2 1 3 26 53 4134
130. 3 1 3 1 3 26 53 4134

131. Compare total number of grid points with original
132. in this zone:
133. Subtracted common faces in K-direction.

134. Original no. of points in this zone = 12243
135. Calculated no. of points in this zone = 12243

136. ===
137. For mesh GRID0002.G:

138. List all possible factors for number of subgrids
139. for this zone.

140. ITAG J K L
141. ---- --- --- ---
142. 1 1 1 3
143. 2 1 3 1
144. 3 3 1 1

145. Finding min(surf/vol) for:
146. Jmax = 3
147. Kmax = 249
148. Lmax = 20

149. itag surf/vol min(surf/vol)
150. 1 0.974699 0.974699
151. 2 0.790763 0.790763
152. 3 2.108032 0.790763

153. Final values for min(surf/vol) for this zone are:
154. itag = 2
155. min(surf/vol) = 0.790763
156. N/Jmax = 1 / 3 ==> approx. 3 pts/subgrid in J direction
157. M/Kmax = 3 / 249 ==> approx. 83 pts/subgrid in K direction
158. P/Lmax = 1 / 20 ==> approx. 20 pts/subgrid in L direction

159. Warning: Kmaxx/M not evenly divisible!
160. K-remainder = 2

161. BREAKUP will make adjustments in the size of the
162. subgrids to compensate for the above remainders.
163. Adjustments will start at the boundaries and
164. progress inward. Hence, when remainders appear,
165. outer subgrids will have their dimensions
166. increased in the corresponding direction.

167. Final subgrid dimensions are:

168. Grid # Jcube Kcube Lcube Jmax Kmax Lmax Total
169. ------- ----- ----- ----- ---- ---- ---- -------
170. 1 1 1 1 3 84 20 5040

56

171. 2 1 2 1 3 83 20 4980
172. 3 1 3 1 3 84 20 5040

173. Compare total number of grid points with original
174. in this zone:
175. Subtracted common faces in K-direction.

176. Original no. of points in this zone = 14940
177. Calculated no. of points in this zone = 14940

178. ===
179. For mesh GRID0003.G:

180. List all possible factors for number of subgrids
181. for this zone.

182. ITAG J K L
183. ---- --- --- ---
184. 1 1 1 3
185. 2 1 3 1
186. 3 3 1 1

187. Finding min(surf/vol) for:
188. Jmax = 3
189. Kmax = 240
190. Lmax = 20

191. itag surf/vol min(surf/vol)
192. 1 0.975000 0.975000
193. 2 0.791667 0.791667
194. 3 2.108333 0.791667

195. Final values for min(surf/vol) for this zone are:
196. itag = 2
197. min(surf/vol) = 0.791667
198. N/Jmax = 1 / 3 ==> approx. 3 pts/subgrid in J direction
199. M/Kmax = 3 / 240 ==> approx. 80 pts/subgrid in K direction
200. P/Lmax = 1 / 20 ==> approx. 20 pts/subgrid in L direction

201. Warning: Kmaxx/M not evenly divisible!
202. K-remainder = 2

203. BREAKUP will make adjustments in the size of the
204. subgrids to compensate for the above remainders.
205. Adjustments will start at the boundaries and
206. progress inward. Hence, when remainders appear,
207. outer subgrids will have their dimensions
208. increased in the corresponding direction.

209. Final subgrid dimensions are:

210. Grid # Jcube Kcube Lcube Jmax Kmax Lmax Total
211. ------- ----- ----- ----- ---- ---- ---- -------
212. 1 1 1 1 3 81 20 4860
213. 2 1 2 1 3 80 20 4800
214. 3 1 3 1 3 81 20 4860

215. Compare total number of grid points with original
216. in this zone:
217. Subtracted common faces in K-direction.

218. Original no. of points in this zone = 14400
219. Calculated no. of points in this zone = 14400

220. ===
221. For mesh GRID0004.G:

222. List all possible factors for number of subgrids
223. for this zone.

224. ITAG J K L
225. ---- --- --- ---
226. 1 1 1 2
227. 2 1 2 1
228. 3 2 1 1

229. Finding min(surf/vol) for:

57

230. Jmax = 3
231. Kmax = 135
232. Lmax = 20

233. itag surf/vol min(surf/vol)
234. 1 0.881481 0.881481
235. 2 0.796296 0.796296
236. 3 1.448148 0.796296

237. Final values for min(surf/vol) for this zone are:
238. itag = 2
239. min(surf/vol) = 0.796296
240. N/Jmax = 1 / 3 ==> approx. 3 pts/subgrid in J direction
241. M/Kmax = 2 / 135 ==> approx. 68 pts/subgrid in K direction
242. P/Lmax = 1 / 20 ==> approx. 20 pts/subgrid in L direction

243. Final subgrid dimensions are:

244. Grid # Jcube Kcube Lcube Jmax Kmax Lmax Total
245. ------- ----- ----- ----- ---- ---- ---- -------
246. 1 1 1 1 3 68 20 4080
247. 2 1 2 1 3 68 20 4080

248. Compare total number of grid points with original
249. in this zone:
250. Subtracted common faces in K-direction.

251. Original no. of points in this zone = 8100
252. Calculated no. of points in this zone = 8100

253. ===
254. For mesh GRID0005.G:

255. List all possible factors for number of subgrids
256. for this zone.

257. ITAG J K L
258. ---- --- --- ---
259. 1 1 1 3
260. 2 1 3 1
261. 3 3 1 1

262. Finding min(surf/vol) for:
263. Jmax = 3
264. Kmax = 234
265. Lmax = 20

266. itag surf/vol min(surf/vol)
267. 1 0.975214 0.975214
268. 2 0.792308 0.792308
269. 3 2.108547 0.792308

270. Final values for min(surf/vol) for this zone are:
271. itag = 2
272. min(surf/vol) = 0.792308
273. N/Jmax = 1 / 3 ==> approx. 3 pts/subgrid in J direction
274. M/Kmax = 3 / 234 ==> approx. 78 pts/subgrid in K direction
275. P/Lmax = 1 / 20 ==> approx. 20 pts/subgrid in L direction

276. Warning: Kmaxx/M not evenly divisible!
277. K-remainder = 2

278. BREAKUP will make adjustments in the size of the
279. subgrids to compensate for the above remainders.
280. Adjustments will start at the boundaries and
281. progress inward. Hence, when remainders appear,
282. outer subgrids will have their dimensions
283. increased in the corresponding direction.

284. Final subgrid dimensions are:

285. Grid # Jcube Kcube Lcube Jmax Kmax Lmax Total
286. ------- ----- ----- ----- ---- ---- ---- -------
287. 1 1 1 1 3 79 20 4740
288. 2 1 2 1 3 78 20 4680
289. 3 1 3 1 3 79 20 4740

290. Compare total number of grid points with original

58

291. in this zone:
292. Subtracted common faces in K-direction.

293. Original no. of points in this zone = 14040
294. Calculated no. of points in this zone = 14040

295. ===
296. For mesh GRID0006.G:

297. List all possible factors for number of subgrids
298. for this zone.

299. ITAG J K L
300. ---- --- --- ---
301. 1 1 1 2
302. 2 1 2 1
303. 3 2 1 1

304. Finding min(surf/vol) for:
305. Jmax = 3
306. Kmax = 133
307. Lmax = 20

308. itag surf/vol min(surf/vol)
309. 1 0.881704 0.881704
310. 2 0.796742 0.796742
311. 3 1.448371 0.796742

312. Final values for min(surf/vol) for this zone are:
313. itag = 2
314. min(surf/vol) = 0.796742
315. N/Jmax = 1 / 3 ==> approx. 3 pts/subgrid in J direction
316. M/Kmax = 2 / 133 ==> approx. 67 pts/subgrid in K direction
317. P/Lmax = 1 / 20 ==> approx. 20 pts/subgrid in L direction

318. Final subgrid dimensions are:

319. Grid # Jcube Kcube Lcube Jmax Kmax Lmax Total
320. ------- ----- ----- ----- ---- ---- ---- -------
321. 1 1 1 1 3 67 20 4020
322. 2 1 2 1 3 67 20 4020

323. Compare total number of grid points with original
324. in this zone:
325. Subtracted common faces in K-direction.

326. Original no. of points in this zone = 7980
327. Calculated no. of points in this zone = 7980

328. ---
329. Local and Global Indices for Each Subgrid
330. ---

331. Zone = 1, Meshname = GRID0001.G
332. Grd# Jcube Kcube Lcube Jmax Kmax Lmax Jming Jmaxg Kming Kmaxg Lming Lmaxg
333. ---- ----- ----- ----- ---- ---- ---- ----- ----- ----- ----- ----- -----
334. 1 1 1 1 3 27 53 1 3 1 27 1 53
335. 2 1 2 1 3 26 53 1 3 27 52 1 53
336. 3 1 3 1 3 26 53 1 3 52 77 1 53

337. Zone = 2, Meshname = GRID0002.G
338. Grd# Jcube Kcube Lcube Jmax Kmax Lmax Jming Jmaxg Kming Kmaxg Lming Lmaxg
339. ---- ----- ----- ----- ---- ---- ---- ----- ----- ----- ----- ----- -----
340. 1 1 1 1 3 84 20 1 3 1 84 1 20
341. 2 1 2 1 3 83 20 1 3 84 166 1 20
342. 3 1 3 1 3 84 20 1 3 166 249 1 20

343. Zone = 3, Meshname = GRID0003.G
344. Grd# Jcube Kcube Lcube Jmax Kmax Lmax Jming Jmaxg Kming Kmaxg Lming Lmaxg
345. ---- ----- ----- ----- ---- ---- ---- ----- ----- ----- ----- ----- -----
346. 1 1 1 1 3 81 20 1 3 1 81 1 20
347. 2 1 2 1 3 80 20 1 3 81 160 1 20
348. 3 1 3 1 3 81 20 1 3 160 240 1 20

59

349. Zone = 4, Meshname = GRID0004.G
350. Grd# Jcube Kcube Lcube Jmax Kmax Lmax Jming Jmaxg Kming Kmaxg Lming Lmaxg
351. ---- ----- ----- ----- ---- ---- ---- ----- ----- ----- ----- ----- -----
352. 1 1 1 1 3 68 20 1 3 1 68 1 20
353. 2 1 2 1 3 68 20 1 3 68 135 1 20

354. Zone = 5, Meshname = GRID0005.G
355. Grd# Jcube Kcube Lcube Jmax Kmax Lmax Jming Jmaxg Kming Kmaxg Lming Lmaxg
356. ---- ----- ----- ----- ---- ---- ---- ----- ----- ----- ----- ----- -----
357. 1 1 1 1 3 79 20 1 3 1 79 1 20
358. 2 1 2 1 3 78 20 1 3 79 156 1 20
359. 3 1 3 1 3 79 20 1 3 156 234 1 20

360. Zone = 6, Meshname = GRID0006.G
361. Grd# Jcube Kcube Lcube Jmax Kmax Lmax Jming Jmaxg Kming Kmaxg Lming Lmaxg
362. ---- ----- ----- ----- ---- ---- ---- ----- ----- ----- ----- ----- -----
363. 1 1 1 1 3 67 20 1 3 1 67 1 20
364. 2 1 2 1 3 67 20 1 3 67 133 1 20

365. Breaking up grids into subgrids WITH NO overlap:

366. Zone Subzone Prc# Jmax Kmax Lmax Points J-rel range K-rel range L-rel range
367. 1 1 1 3 27 53 4293 1 to 3 1 to 27 1 to 53
368. 1 2 2 3 26 53 4134 1 to 3 27 to 52 1 to 53
369. 1 3 3 3 26 53 4134 1 to 3 52 to 77 1 to 53
370. --
371. 2 1 4 3 84 20 5040 1 to 3 1 to 84 1 to 20
372. 2 2 5 3 83 20 4980 1 to 3 84 to 166 1 to 20
373. 2 3 6 3 84 20 5040 1 to 3 166 to 249 1 to 20
374. --
375. 3 1 7 3 81 20 4860 1 to 3 1 to 81 1 to 20
376. 3 2 8 3 80 20 4800 1 to 3 81 to 160 1 to 20
377. 3 3 9 3 81 20 4860 1 to 3 160 to 240 1 to 20
378. --
379. 4 1 10 3 68 20 4080 1 to 3 1 to 68 1 to 20
380. 4 2 11 3 68 20 4080 1 to 3 68 to 135 1 to 20
381. --
382. 5 1 12 3 79 20 4740 1 to 3 1 to 79 1 to 20
383. 5 2 13 3 78 20 4680 1 to 3 79 to 156 1 to 20
384. 5 3 14 3 79 20 4740 1 to 3 156 to 234 1 to 20
385. --
386. 6 1 15 3 67 20 4020 1 to 3 1 to 67 1 to 20
387. 6 2 16 3 67 20 4020 1 to 3 67 to 133 1 to 20

388. Breaking up grids into subgrids WITH overlap:

389. Zone Subzone Prc# Jmax Kmax Lmax Points J-rel range K-rel range L-rel range
390. 1 1 1 3 28 53 4452 1 to 3 1 to 28 1 to 53
391. 1 2 2 3 27 53 4293 1 to 3 27 to 53 1 to 53
392. 1 3 3 3 26 53 4134 1 to 3 52 to 77 1 to 53
393. ---
394. 2 1 4 3 85 20 5100 1 to 3 1 to 85 1 to 20
395. 2 2 5 3 84 20 5040 1 to 3 84 to 167 1 to 20
396. 2 3 6 3 84 20 5040 1 to 3 166 to 249 1 to 20
397. ---
398. 3 1 7 3 82 20 4920 1 to 3 1 to 82 1 to 20
399. 3 2 8 3 81 20 4860 1 to 3 81 to 161 1 to 20
400. 3 3 9 3 81 20 4860 1 to 3 160 to 240 1 to 20
401. ---
402. 4 1 10 3 69 20 4140 1 to 3 1 to 69 1 to 20
403. 4 2 11 3 68 20 4080 1 to 3 68 to 135 1 to 20
404. ---
405. 5 1 12 3 80 20 4800 1 to 3 1 to 80 1 to 20
406. 5 2 13 3 79 20 4740 1 to 3 79 to 157 1 to 20
407. 5 3 14 3 79 20 4740 1 to 3 156 to 234 1 to 20
408. ---
409. 6 1 15 3 68 20 4080 1 to 3 1 to 68 1 to 20
410. 6 2 16 3 67 20 4020 1 to 3 67 to 133 1 to 20

411. Writing subgrids to file.

412. Choose PLOT3D-output-format of file for subgrids:

60

413. formatted
414. unformatted

415. Option number 1 chosen.

416. Choose whether you want the IBLANK array attached:
417. attach iblank array to subgrids
418. do NOT attach iblank array to subgrids

419. Option number 1 chosen.

420. Output file GRID_DIVIDED.G opened as formatted.

421. Constructing subgrids.

422. ---
423. Reading original grid file, zone # 1
424. This grid contains IBLANK data which will be read.
425. ---

426. Constructing subgrid # 1 of 3 subgrids in zone 1
427. Total count: subgrid # 1 of 16 subgrids
428. Grid cells overlap 1 cell widths on grid boundaries.
429. IBLANK data available and will be written to
430. this subgrid file.
431. nz = 1 jcube = 1 kcube = 1 lcube = 1
432. jp3d_min = 1 jp3d_max = 3
433. kp3d_min = 1 kp3d_max = 28
434. lp3d_min = 1 lp3d_max = 53

435. Constructing subgrid # 2 of 3 subgrids in zone 1
436. Total count: subgrid # 2 of 16 subgrids
437. Grid cells overlap 1 cell widths on grid boundaries.
438. IBLANK data available and will be written to
439. this subgrid file.
440. nz = 1 jcube = 1 kcube = 2 lcube = 1
441. jp3d_min = 1 jp3d_max = 3
442. kp3d_min = 27 kp3d_max = 53
443. lp3d_min = 1 lp3d_max = 53

444. Constructing subgrid # 3 of 3 subgrids in zone 1
445. Total count: subgrid # 3 of 16 subgrids
446. Grid cells overlap 1 cell widths on grid boundaries.
447. IBLANK data available and will be written to
448. this subgrid file.
449. nz = 1 jcube = 1 kcube = 3 lcube = 1
450. jp3d_min = 1 jp3d_max = 3
451. kp3d_min = 52 kp3d_max = 77
452. lp3d_min = 1 lp3d_max = 53

453. ---
454. Reading original grid file, zone # 2
455. This grid contains IBLANK data which will be read.
456. ---

457. Constructing subgrid # 1 of 3 subgrids in zone 2
458. Total count: subgrid # 4 of 16 subgrids
459. Grid cells overlap 1 cell widths on grid boundaries.
460. IBLANK data available and will be written to
461. this subgrid file.
462. nz = 2 jcube = 1 kcube = 1 lcube = 1
463. jp3d_min = 1 jp3d_max = 3
464. kp3d_min = 1 kp3d_max = 85
465. lp3d_min = 1 lp3d_max = 20

466. Constructing subgrid # 2 of 3 subgrids in zone 2
467. Total count: subgrid # 5 of 16 subgrids
468. Grid cells overlap 1 cell widths on grid boundaries.
469. IBLANK data available and will be written to
470. this subgrid file.
471. nz = 2 jcube = 1 kcube = 2 lcube = 1
472. jp3d_min = 1 jp3d_max = 3
473. kp3d_min = 84 kp3d_max = 167
474. lp3d_min = 1 lp3d_max = 20

61

475. Constructing subgrid # 3 of 3 subgrids in zone 2
476. Total count: subgrid # 6 of 16 subgrids
477. Grid cells overlap 1 cell widths on grid boundaries.
478. IBLANK data available and will be written to
479. this subgrid file.
480. nz = 2 jcube = 1 kcube = 3 lcube = 1
481. jp3d_min = 1 jp3d_max = 3
482. kp3d_min = 166 kp3d_max = 249
483. lp3d_min = 1 lp3d_max = 20

484. ---
485. Reading original grid file, zone # 3
486. This grid contains IBLANK data which will be read.
487. ---

488. Constructing subgrid # 1 of 3 subgrids in zone 3
489. Total count: subgrid # 7 of 16 subgrids
490. Grid cells overlap 1 cell widths on grid boundaries.
491. IBLANK data available and will be written to
492. this subgrid file.
493. nz = 3 jcube = 1 kcube = 1 lcube = 1
494. jp3d_min = 1 jp3d_max = 3
495. kp3d_min = 1 kp3d_max = 82
496. lp3d_min = 1 lp3d_max = 20

497. Constructing subgrid # 2 of 3 subgrids in zone 3
498. Total count: subgrid # 8 of 16 subgrids
499. Grid cells overlap 1 cell widths on grid boundaries.
500. IBLANK data available and will be written to
501. this subgrid file.
502. nz = 3 jcube = 1 kcube = 2 lcube = 1
503. jp3d_min = 1 jp3d_max = 3
504. kp3d_min = 81 kp3d_max = 161
505. lp3d_min = 1 lp3d_max = 20

506. Constructing subgrid # 3 of 3 subgrids in zone 3
507. Total count: subgrid # 9 of 16 subgrids
508. Grid cells overlap 1 cell widths on grid boundaries.
509. IBLANK data available and will be written to
510. this subgrid file.
511. nz = 3 jcube = 1 kcube = 3 lcube = 1
512. jp3d_min = 1 jp3d_max = 3
513. kp3d_min = 160 kp3d_max = 240
514. lp3d_min = 1 lp3d_max = 20

515. ---
516. Reading original grid file, zone # 4
517. This grid contains IBLANK data which will be read.
518. ---

519. Constructing subgrid # 1 of 2 subgrids in zone 4
520. Total count: subgrid # 10 of 16 subgrids
521. Grid cells overlap 1 cell widths on grid boundaries.
522. IBLANK data available and will be written to
523. this subgrid file.
524. nz = 4 jcube = 1 kcube = 1 lcube = 1
525. jp3d_min = 1 jp3d_max = 3
526. kp3d_min = 1 kp3d_max = 69
527. lp3d_min = 1 lp3d_max = 20

528. Constructing subgrid # 2 of 2 subgrids in zone 4
529. Total count: subgrid # 11 of 16 subgrids
530. Grid cells overlap 1 cell widths on grid boundaries.
531. IBLANK data available and will be written to
532. this subgrid file.
533. nz = 4 jcube = 1 kcube = 2 lcube = 1
534. jp3d_min = 1 jp3d_max = 3
535. kp3d_min = 68 kp3d_max = 135
536. lp3d_min = 1 lp3d_max = 20

537. ---
538. Reading original grid file, zone # 5
539. This grid contains IBLANK data which will be read.
540. ---

62

541. Constructing subgrid # 1 of 3 subgrids in zone 5
542. Total count: subgrid # 12 of 16 subgrids
543. Grid cells overlap 1 cell widths on grid boundaries.
544. IBLANK data available and will be written to
545. this subgrid file.
546. nz = 5 jcube = 1 kcube = 1 lcube = 1
547. jp3d_min = 1 jp3d_max = 3
548. kp3d_min = 1 kp3d_max = 80
549. lp3d_min = 1 lp3d_max = 20

550. Constructing subgrid # 2 of 3 subgrids in zone 5
551. Total count: subgrid # 13 of 16 subgrids
552. Grid cells overlap 1 cell widths on grid boundaries.
553. IBLANK data available and will be written to
554. this subgrid file.
555. nz = 5 jcube = 1 kcube = 2 lcube = 1
556. jp3d_min = 1 jp3d_max = 3
557. kp3d_min = 79 kp3d_max = 157
558. lp3d_min = 1 lp3d_max = 20

559. Constructing subgrid # 3 of 3 subgrids in zone 5
560. Total count: subgrid # 14 of 16 subgrids
561. Grid cells overlap 1 cell widths on grid boundaries.
562. IBLANK data available and will be written to
563. this subgrid file.
564. nz = 5 jcube = 1 kcube = 3 lcube = 1
565. jp3d_min = 1 jp3d_max = 3
566. kp3d_min = 156 kp3d_max = 234
567. lp3d_min = 1 lp3d_max = 20

568. ---
569. Reading original grid file, zone # 6
570. This grid contains IBLANK data which will be read.
571. ---

572. Constructing subgrid # 1 of 2 subgrids in zone 6
573. Total count: subgrid # 15 of 16 subgrids
574. Grid cells overlap 1 cell widths on grid boundaries.
575. IBLANK data available and will be written to
576. this subgrid file.
577. nz = 6 jcube = 1 kcube = 1 lcube = 1
578. jp3d_min = 1 jp3d_max = 3
579. kp3d_min = 1 kp3d_max = 68
580. lp3d_min = 1 lp3d_max = 20

581. Constructing subgrid # 2 of 2 subgrids in zone 6
582. Total count: subgrid # 16 of 16 subgrids
583. Grid cells overlap 1 cell widths on grid boundaries.
584. IBLANK data available and will be written to
585. this subgrid file.
586. nz = 6 jcube = 1 kcube = 2 lcube = 1
587. jp3d_min = 1 jp3d_max = 3
588. kp3d_min = 67 kp3d_max = 133
589. lp3d_min = 1 lp3d_max = 20

590. --
591. Screen output directed to file: BREAKUP.OUT
592. Subgrids output to file: GRID_DIVIDED.G
593. in PLOT3D format.
594. --

595. >> Finished <<

596. Program BREAKUP finished.

63

5 Micro Craft
Attn: J. A. Benek (1)
 N. Suhs (4)
207 Big Springs Avenue
P.O. Box 370
Tullahoma, TN 37388-0370

1 Dr. C. Wayne Mastin
Nichols Research
2524 South I-20 Frontage Rd. Suite A
P.O. Box 820186
Vicksburg, MS 39182

1 M. Remotigue
NSF/ERC at MSU
MS 962
 ERC 203
P.O. Box 9627
Mississippi State, MS 39762

1 Dr. Ray Gomez
Advanced Programs Office
Mail Code EG3
NASA Johnson Space Center
Houston, TX 77058

1 Prof. David Whitfield
Engineering Research Center
Mississippi State University
P.O. Box 9627
Mississippi State, MS 39762

3 Dr. Bob Meakin
NASA Ames Research Center
MS 258-1
Moffett Field, CA 94035-1000

5 Lockheed Martin Skunkworks
 Attn: G. Shrewsbury (4)
 J. Vadyak (1)
Computational Aerodynamics
1011 Lockheed Way
Palmdale, CA 93599-2523

1 Mr. D. Howlett
Engineering Chief
Aerodynamics & Computational Fluid
 Dynamics
Lockheed Martin Tactical Aircraft
 Systems
PO Box 748
Mail Zone 9333
Ft. Worth, TX 76101

1 Dr. Dave Bader
Battelle Washington Operations
901 D Street SW, Suite 900
Washington, DC 20024-2115

1 Dr. Pieter Buning
Configuration Aerodynamics Branch
MS 499
NASA Langley Research Center
Hampton, VA 23681-0001

1 Dr. F. C. Dougherty
Supercomputer Computations Research
 Institute
Florida State University
Tallahassee, FL 32306-4052

1 Dr. Stuart Rogers
Mail Stop 227-2
NASA Ames Research Center
Moffett Field, CA 94035-1000

3 Charlie Nietubicz, Director
Major Shared Resource Center
US Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

1 Dennis Jespersen
MS T27B-1
NASA Ames Research Center
Moffett Field, CA 94035-1000

2 CFD Research Corporation
Attn: Sami D. Habchi
215 Wynn Drive
Huntsville, AL 35805

2 Dr. Michelle Hribar
Dr. Jerry C. Yan
MS T27A-2
NASA Ames Research Center
Moffett Field, CA 94035-1000

EXTERNAL DISTRIBUTION:

64

1 MS 0318 G. S. Davison, 9215
1 0321 W. J. Camp, 9200
1 0439 D. R. Martinez, 9234
1 0441 P. Knupp, 9226
1 0441 R. W. Leland, 9226
1 0819 J. Peery, 9231
1 0820 P. Yarrington, 9232
1 0825 B. Hassan, 9115
1 0825 J. Payne, 9115
1 0825 F. Blottner, 9115
1 0825 W. Rutledge, 9115
1 1109 A. L. Hale, 9224
1 1110 D. Greenburg, 9223
1 1110 D. E. Womble, 9222
1 1111 S. S. Dosanjh, 9221
5 1111 D. W. Barnette, 9221
1 1111 G. Heffelfinger, 9225
1 1166 J. D. Kotulski, 9352
1 1166 D. J. Riley, 9352
1 1166 D. C. Turner, 9352

1 0161 Patent & Licensing Office, 11500
1 9018 Central Technical Files, 8940-2
2 0899 Technical Library, 4619
2 0619 Review & Approval Desk, 12690

For DOE/OSTI

INTERNAL DISTRIBUTION:

	Abstract
	Acknowledgements
	Contents
	Introduction
	The Parallel Overset Grid Approach
	Overview
	Overset Grid-to-Grid Communications
	Parallel Overset Grid Construction

	How BREAKUP Prepares Grids for Parallel Processing
	Load balance
	Speed-up
	Sample BREAKUP output
	Construction of Connectivity Tables

	Running BREAKUP
	User Options
	Option 1 – PEGSUS-formatted Generic Overset Grids
	Option 2 – PLOT3D-formatted Multiple Grids, No Interpolation Coefficients, Subgrid Overlap Enforced
	Option 3 – PLOT3D-formatted Multiple Grids, No Interpolation Coefficients, No Subgrid Overlap Enforced; or Internally Generated

	Input Files
	Output Files
	Examples
	Future Work and Directions
	Summary
	References
	Appendix A
	Appendix B
	Appendix C
	DISTRIBUTION

