
SANDIA REPORT
SAND98-0359 ● UC-900

Unlimited Release
Printed March 1998

Software Attribute Visualization for High
Integrity Software

Guylaine M. Pollock

Prepared by
Sandia National Laboratories

. . . ,
. . .

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National laboratories

Issued by Sandia ~National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. N-either the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their empIoyees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of herica. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. BOX 62
Oak Ridge, TN 3’7831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

SAND98-0359
Unlimited Release
Printed March 1998

Distribution
Category UC-900

Software Attribute Visualization for High
Integrity Software

Guylaine M. Pollock
Computer Sciences Department
Sandia National Laboratories

P.O. BOX 5800
Albuquerque, NM 87185-1109

Abstract

This report documents a prototype tool developed to investigate the use of visualization and vir-
tual reality technologies for improving software surety confidence. The tool is utilized within the
execution phase of the software life cycle. It provides a capability to monitor an executing pro-
gram against prespecified requirements constraints provided in a program written in the require-
ments specification language SAGE. The resulting Software Attribute Visual Analysis Tool
(SAVAnT) also provides a technique to assess the completeness of a software specification.

3

Intentionally Left Blank

TABLE OF CONTENTS

Executive Summary .

Acronyms and Abbreviations .

Definitions

1. Introduction ...0...

HIS Initiative .
Traditional Research Approaches .
Visualization Techniques .

2, Background .

HIS Program Goals .
State of the Industry .
Information Warfare .
Industrial Concerns .
Sponsors .

3. Project Goals .

Visual Models .
Surety Assessment .
Program Comprehension .
Ease of Use .
Portability .

4. Brief Literature Review .

Balsa .
Zeus .
TANGO .
ANIM .
Genie .
UWPI .
SEE .
TPM .
Pavane .
LogoMedia .
ObjectCenter .

11

12

12

13

13
13
14

17

17
17
17
18
18

19

19
19
19
20
20

21

21
21
29
29
29
29
29
29
32
32
32

5

TABLE OF CONTENTS (cent)

5. Project/Tool Overview . 33

Functionality . 33
Differentiating Aspects . 41

Computing Environment ...0... 41

Components . 41

6. SAVAnT Description (Software Attribute Visual Analysis Tool) 43

Preprocessor . 43

Executing Program . 44
Visualization Routines . 44
Constraint Monitor . 45

Controlling Routine . 45

Advantages . 45

Disadvantages . 45

Future Extensions . 46

7. Requirements Constraint Language Description . 47

Constraints . 47

Constraint Systems . 47
Sojhvare Attribute Generic Evaluation (SAGE) . 48
Advantages . 49

Disadvantages . 49

Implementation . 50
Operations . 51
Syntax Issues . 51
Examples . 52

8. Examples of Use . 55

9. User Directives . 59

Tool Location . 59
Required Sofware Environment . 59
User Requirements . 59
Compiler Directives ...0. 59

10. Developer Directives ...0.
61

*

Functionality Extension . 61

6

TABLE OF CONTENTS (cent)

10.

11.

Developer Directives (con~) .

Internal Structures .

Conclusions .

Advancements .
Disadvantages ...0.. ..0......
Significance .
Expected Payo# .
Future Work .

References .

Appendixes .

61

61

63

A. Language Grammar .

B. Data Structures .

C. Visualization State of the Art Survey ...0.....

. ...0...0...
1

.63
63
63
63
63

65

67

67

81

91

13

7

List of Figures

Figure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20(a)

20(b)

Page

Visualization State of the Art . 22

Zeus Sorting Example . 23

Zeus Sorting: View Down the Z Axis . 24

Zeus Sorting: View Down the X Axis . 25

Zeus Sorting: View After Partial Completion . 26

Zeus Algorithm Anomalies . 27

Zeus Algorithm Comparison . 28

Zeus Algorithm Feature Analysis . 30

Zeus Execution Analysis . 31

Process Control for SAVAnT and SAGE . 34

Sample Initial View of Generated Program Visual Mode . 35

Subroutine Model After Time Lapse . 36

Original Model Rotated for Different View . 37

Overhead View of Visual Model . 38

Visual Representation with Orientation Depicted . 39

Orientation with Altered Perspective ., 40

SAGE Sequence Operations Syntax . 52

SAGE Constraints for Count of Subjection Mappings . 52

C Functions Counting Subjection Mappings . 54

Sample Program Execution Data Structures . 56

Sample Program Execution Simple Model . 56

8

List of Figures(Cont)

Figure Page

20(C) Sample Error Detection, Visual Model 1 . 56

20(d) Sample Error Detection, Visual Model 2 . 56

*

.

Intentionally Left Blank

Executive Summary

This report documents a prototype tool developed to investigate the use of visualization and
virtual reality technologies for improving software surety confidence. The tool is utilized within
the execution phase of the software life cycle. It provides a capability to monitor an executing pro-
gram against prespecified requirements constraints provided in a program written in the require-
ments specification language SAGE. The resulting Software Attribute Visual Analysis Tool
(SAVAnT) also provides a technique to assess the completeness of a software specification.

The prototype tool is described along with the requirements constraint language after a brief
literature review is presented. Examples of how the tool can be used are also presented, before
specific information is given on how to access the tool and provide extensions for future develop-
ment. In conclusion, the most significant advantage of this tool is to provide a first step in evalu-
ating specification completeness, and provides a more productive method for program
comprehension and debugging. The expected payoff is increased software surety confidence,
increased program comprehension, reduced development and debugging time.

11

Acronyms and Abbreviations

Eigen/VR A software platform developed at Sandia National Laboratories to utilize virtual

reality technologies. Initiated as MUSE.

HIS High Integrity Software; Software that is ultra-reliable (a failure probability on the

order of less than 10 to the 6 power).

MUSE Multi-User Synthetic Environment: a software platform developed at Sandia

National Laboratories and transferred to the public sector as a product

RCL Requirements Constraint Language: a specification language used to specify soft-

ware requirement constraints for use with the SAVAnT system

SAGE Software Attributes Generic Evaluation; a requirements constraint language for

specifying software attribute constraints

SAVAnT Software Attribute Visual Analysis Tool

Definitions:

High Consequence Applications Applications where process failures are likely to result in

human injury/death, damage to the environment and/or damage to valuable

resources or equipment

- Confidence that a system will satisfy its reliability, safety, and security expecta-

tions in its intended environment without initiating undesirable actions

Software Suretv Those processes and technology methods/techniques that provide assurance

that a system’s software component will not cause catastrophic failures that keep a

system from achieving its required level of surety

12

1. Introduction

The development of software for use in high-consequence systems mandates rigorous (for-
mal) processes, methods, and techniques to improve the safety characteristics of those systems.
To address this need, research efforts must progress in several areas over the next few decades to
allow us to reach, with greater certainty, the higher levels of reliability required by software used
in high-consequence systems [7, 15]. This paper describes a strategic surety program developed
for high-consequence software under a new initiative at Sandia National Laboratories (SNL)--to
identify how we will develop ultra-reliable software in the 2010 time frame.

HIS Initiative

This initiative, the High Integrity Software Program (HIS), is tasked with guiding strategic
investments in the development of new capabilities and technologies in the domain of high conse-
quence software at SNL. The program sponsors research within the strategic surety backbone of
the defense sector to establish predictive confidence that a system is safe, secure, and under con-
trol through the exploration, extension and application of the science of software systems [16].
The program emphasizes high-risk, high payoff research through a correctness research track
focussed on a “correctness by design;’ and more immediate lower-risk, medium payoff applica-
tions research through a systems immunologyTM track. This track, visualization of abstract
objects, produces methods and techniques to render today’s systems safer, more secure and more
reliable. (Other tracks have been defined but are not currently staffed.)

Once a software system has been developed, a problem still remains of assessing software
surety status--rigorous processes and methods applied to early phases of the software life cycle
alone cannot assure software integrity, safety, security, and reliability in the final end product. The
implementation itself must be verified, with particular focus on surety aspects for high-conse-
quence systems. In that regard, several key issues include whether or not the executing software
properly incorporates specified constraints, and whether or not all necessary constraints and their
interactions have been considered, understood, and correctly implemented to avoid loss of life or
other undesirable effects. How do we verify the surety attributes of a system implementation?

Traditional Research Approaches

Traditionally, there have been three areas of research for verification of system implementa-
tions: logical verification, mathematical verification, and statistical verification. However, Berztiss
[3] has advocated that every possible technique and method should be utilized to address safety
concerns, as current methods to address this problem are inadequate. While testing the actual sys-
tem code does provide substantial information regarding the correctness of the system, generally
this is an incomplete method for assessing surety aspects as economic and scheduling restraints
prohibit the level of testing required to achieve the necessary confidence in the surety of real-
world systems. Further, tested programs may correctly execute their specifications, but with cur-

13

rent textual and limited graphical documentation, it is difficult to ascertain whether a code does
what is needed.

Mathematical models can be considered for this task. However although rigorous, they can
only prove that the implementation meets the specific requirements. They do not allow support for
identifying any cases that have not been considered within the requirements and specifications--a
drawback of mathematical techniques, they only work if the right cases are proven. Reliability
models are also useful, but again, they can only provide statistical confidence at levels that are
clearly beneath those required for these high-consequence systems, and they, generally, are mak-
ing predictions about future failures of the systems without addressing the types of errors or their
significance. Finally, none of these existing methods of research address the difficulty of assessing
whether all necessary constraints have been specified. This is an area visualization can address.

Therefore, it is time to consider a fourth category, the use of visualization, in addressing the
issue of verification. Accordingly, several such efforts are underway in various laboratories and
universities [2, 18, 13], including an investigation of software attributes visualization within the
High Integrity Software program at Sandia National Laboratories.

Visualization Techniques

Visualization techniques have been used quite successfully within the scientific community
for some time; and not surprisingly, many researchers feel the utility of visualization as a means
of illustrating the properties of multiple objects, or as a means of demonstrating properties of
supersets of discrete items, may be considered a given [4]. Fortunately, this benefit of improved
comprehension through visualization can be achieved in other application areas as long as the
appropriate visual model is selected. Correspondingly, although system verification is a new con-
text, visualization provides the capability of increased system comprehension, thereby facilitating
discoveries that are not otherwise possible. This is a major benefit of using visualization in a for-
mal method to investigate surety aspects of a system implementation. However, little work cur-
rently has been undertaken to apply multi-dimensional visualization techniques to software
anal ysis [5], while a number of projects have focussed on algorithm animation, at least in two
dimensional formats [23]. (It is on] y fairly recently that hardware support has been sufficient to
allow work on information visualization for analysis of software.)

Projects are just beginning to investigate the use of this methodology for enhancing under-
standing of system software. Initial successes have resulted in recommendations of investigating
the use of virtual reality technology to map multiple-layer software systems onto expansive 3-
dimensional terrains and providing more direct means for traversal as a more effective facility for
software visualization [13]. We are investigating such a use of visualization and virtual reality
techniques, with our efforts going further in utilizing these technologies in assessing surety fac-
tors for high-consequence software through the verification of system software [16], as current
visualization models do not evaluate or portray surety issues. A multi-dimensional abstract model
is used to reduce system complexities associated with the conceptual mapping of a problem
domain into a software solution space.

14

The goal of this track is to improve cognition of software systems behaviour and improve soft-
ware surety confidence by providing an environment that allows visualization of abstract objects
and animation of program behavior incorporating requirement constraints. The project focuses on
a multi-dimensional visualization of software abstractions that incorporates a technique for
assessing the correct implementation of select requirement constraints during the execution phase
of the life-cycle process.

The prototype software attribute visualization tool is developed on EigerdVR, a multi-dimen-
sional user-oriented synthetic environment developed at Sandia National Laboratories. The tool
incorporates the use of requirement constraints, expressed in a requirements constraint language,
in the visualization of an executing program. As the program executes, selected requirement con-
straints are monitored and if violated, the abstract visual model indicates those errors have
occurred.

15

●

✎

Intentionally Left Blank

2. Background

HIS Program Goals

The High Integrity Software Program (HIS) at Sandia National Laboratories was established
to provide a crucial role in guiding internal research efforts to improve technologies that enhance
surety aspects of high-consequence systems. This program strives to develop better technologies
within the software industry enabling us to increase our confidence in the correctness of high-con-
sequence systems, many of which may become life-threatening if flawed.

State of the Industry

Examining this industry in general, we see software becoming more complex and being relied
upon more often for an ever-widening variety of applications. In fact, our dependence on software
is exploding quietly—” The amount of code in most consumer products is doubling every two
years... televisions may contain up to 500 kilobytes of software; an electric shaver, two kilobytes;
while the power trains in new General Motors cars run 30,000 lines of computer code.” [11] —
and yet software is not reliable in most systems. As a result, software irregularities, in some
instances, have taken or degraded people’s lives in various system accidents.

Notwithstanding, new types of applications continue to appear on the technological horizon,
generating continued cause for concern regarding current abilities to evaluate software surety. For
example, Andy White, Director of Los Alamos National Laboratories Advanced Computing Lab-
oratory, has stated that an important goal for new software applications is to solve large problems
(such as helping the Forest Service fight fires, helping doctors determine which flu vaccines to
use, and making sure that U.S. nuclear bombs do not go off accidentally) that, in short, require us
to trust computers to predict the future [1].

While some have encouraged expansion of these types of applications, many others have cited
this proliferation as a potential powder-keg for our society: “These days we adopt innovations in
large numbers, and put them to extensive use, faster than we can ever hope to know their conse-
quences ,.. which tragically removes our ability to control the course of events” [14].

Information Warfare

Even more alarming, this increase in numbers and types of software applications has
increased our vulnerability as a nation to information warfare. (This is a problem for other nations
as well.) In fact, last year the Joint Security Commission stated that “The U.S. vulnerability to
infowar may be the major security challenge of this decade and possibly the next century” [8].
Not surprisingly, Pentagon officials have reported an attempt at such warfare was actually sug-
gested to U.S. adversaries during the Gulf war when a group of Dutch hackers offered to disrupt
the U.S. military’s deployment to the Middle East for $1 Million. If current trends continue, this

type of vulnerability will only increase unless we work to ameliorate our skills in assessing soft-
ware surety.

Industrial Concerns

Clearly software integrity and surety (safety, security, reliability) issues are a major concern
for U.S. industries; as such, they are also a concern for Sandia National Laboratories. Current
surety technologies just are not good enough for industries’ increasing needs.

Sponsors

Consequently, the HIS program initiative was formulated to address high integrity and surety
software issues. Sponsors of the program include the Strategic Surety Backbone of the Defense
Programs Sector and the Vice President of Defense Programs. The HIS objective is to establish
predictive confidence that a system is safe, secure, and under control.

18

3. Project Goals

The development of software for use in high-consequence systems mandates rigorous (for-
mal) processes, methods, and techniques to improve the safety characteristics of those systems.
Once developed however, the problem still remains of assessing software surety status--rigorous
processes and methods alone cannot assure software integrity, safety, security, and reliability. The
key issues are whether or not the executing software properly incorporates specified constraints,
and whether or not all necessary constraints and their interactions have been considered, under-
stood, and correctly implemented.

Current methods to address this problem are inadequate. While testing the actual code does
provide substantial information regarding the correctness of the code, generally this is an incom-
plete method as economic and scheduling restraints prohibit the level of testing required to
achieve the necessary confidence in the surety of real-world systems. Reliability models are use-
ful, but again, they can only provide statistical confidence at levels that are clearly beneath those
required for these high-consequence systems. Further, existing methods do not address the diffi-
culty of assessing whether all necessary constraints have been specified.

Visual Models

Visualization techniques have been used quite successfully within the scientific community
for some time. It is only recently that hardware support has been sufficient to allow current work
on information visualization for analysis of software. Traditional work in this area, however, has
focused on two-dimensional flow-chart like structures. This project investigates the use of visual-
ization in this area.

Surety Assessment

This project examines a technique for assessing the correct implementation of select require-
ment constraints. Further, the project assesses software during the execution phase of the life-
cycle process.

Program Comprehension

The primary goal of this project is to improve cognition of software systems behavior and
improve software surety confidence by providing an environment that allows visualization of
abstract objects and animation of program behavior incorporating requirement constraints. To
achieve this goal, a prototype tool, SAVAnT (Software Attribute Visual Analysis’Tool), was devel-
oped to aid in the visualization of an executing program. The tool is designed to allow the ability
to monitor the execution and compare it to prespecified requirements constraints expressed in

19

what we have termed a requirements constraint language.

Ease of Use
s

In addition, a goal is to provide a tool that is easy to use. Therefore a preprocessor is provided
to generate the required version of the executable program. *

Portability

Finally, portability is important. So standard programming languages were utilized.

4. Brief Literature Review

e Briefly reviewing related literature, it is clear that work in this area has yet to capitalize on the
use of multi-dimensional virtual reality and visualization techniques as applied to the software
development process. Figure 1 documents the state of the art for uses of Visualization. It is clear
that the use of visualization for the application of software development lags behind the use of
visualization for scientific applications. Appendix C contains a more thorough report reviewing
the use of visualization.

In reviewing the state of the art in requirements verification approaches, Yau’s work is typical.
[22] This work checks the completeness between the natural language requirements statements
and the object-oriented requirements specification for a given application. However it does not
address the completeness of the natural language requirement statements, which the technique
described herein can address.

In reviewing the use of visual techniques for software development, a number of systems are
described briefly. More detailed information can be found in [17].

Balsa

The Balsa system animated algorithms in Pascal programs for educational purposes. The
models were two dimensional in black and white.

Zeus

An upgrade of Balsa, Zeus supports multiple synchronized views of algorithms. It has not
been used outside the laboratory and no empirical evaluations have been performed on the tool.
Figures 2-9 illustrate the Zeus prototype tool and how it can be used. The first four figures depict
a sorting algorithm, and the other four depict additional usage.

Figure 2 shows the beginning of a sorting algorithm. The colored bars represent different data
values. The relative values are depicted through color and length with the red bars being the high-
est values and the blue bars the smallest. The tree structure used to initiate the sort is depicted as
well. Figure 3 is a view of the data looking down the Z axis. Figure 4 shows the view down the X
axis. Figure 5 shows the sort partially completed. Notice the ordering of the bars.

Figure 6 illustrates a comparison of an implemented algorithm against a correct implementa-
tion of the same structure. This comparison clearly identifies a problem with the new implementa-
tion as the depth of the generated tree should be balanced and it is not. Figure 7 illustrates a use of

1. IIuff, C. C., Klein, M. and Stevens, S., “TIN State of the Art in Scientific Visualization;’ appendix C, p.
98.

Zeus in comparing implementations of various algorithms and the impact on the trees that develop
within the supporting data structures. Figure 8 demonstrates how to use the tool for algorithm fea-
ture analysis, and Figure 9 shows how it could be used for execution flow analysis.

TANGO

Allows the animation of four abstract data types: trajectory, size, color, or visibility. It pro-
duces silent two-dimensional, black and white animations. The user annotated their code with
algorithm operation calls which drove animation scenes invoked through C functions.

ANIM

Provides four operations: view, click, erase, and clear; and four drawing commands: line, text,
box, and circle. Does not work on executable code. Allows static snapshots to be made of the ani-
mation for inclusion in documents.

Genie

Automatically creates displays of Pascal program data structures. Empirical evaluations sug-
gest that the approach of using visualization is more effective than conventional program editing.

UWPI

The University of Washington Program Illustrator automatically provides visualizations for
high-level abstract data structures designed by the programmer. It can animate abstract data struc-
tures in programs written in a subset of PascaI. However, it only gathers shallow information.

SEE

Provides a pretty printed version of the software code. It is a static representation.

TPM

Utilizes an annotated tree to depict program execution for the declarative language Prolog.

29

. .

!; ,.,.j_ .;.,;<, .,; . --- , . .~

s

I

- rn

Figme 8: Zeus Algorithm Feature Analysis.

. .

Pavane

Provides declarative three-dimensional visualizations of concurrent programs written in
Swarm. It is currently a research prototype.

LogoMedia

A prototype Logo programming environment to allow programmers to associate non-speech
audio with program events.

ObjectCenter

Extends Unix’s dbx to utilize simple graphics for static compile-time information about the
source code. It is a commercial tool unlike the others described herein which are research tools.

32

5. Project/Tool Overview

Figure 10 illustrates the semantic view of the system. The selected program is executed within
the SAVAnT environment. The program has been altered through a preprocessor to feed needed
information to the controller for representation of the visual model. This information also is ana-
lyzed by the constraint system as specified by the requirements constraint language. The RQL
program must be developed by the user for this feature of the environment to be utilized. The con-
straint monitor projection utilizes input from the executing program and the constraint system to
determine the visual representation to depict. A controlling monitor alters execution control
between the modules which are essentially functioning as coroutines. The entire system is embed-
ded within Eigen/VR, a spin-off of the Muse system originally developed internally at Sandia
National Laboratories. The Eigen/VR system provides a consistent interface to utilize virtual real-
ity technologies. It is utilized by developing an OpenGL visual model which is then “plugged in”
to Eigen/VR. Thus, the visual model generated by the SAVAnT system is an OpenGL model.

Functionality

Figure 11 shows what an initial program visualization looks like. This view depicts a pro-
gram with one subroutine and a number of data structures, all of which are arrays. This model is
generated automatically by scanning the original program to be visualized. A preprocessor was
developed to automate the scan. The large circular object is the main program, and the smaller cir-
cular object is a subroutine. When the subroutine executes, the smaller object rotates and “orbits”
the main program. Additional actions could be specified as desired by the user. The visual model
may be altered by the development of additional routines. The placement and definition of the
data structures are also automated. While the ability to select which data structures are to be rep-
resented is not yet implemented, the basic structure is in place to allow that functionality.
Advanced development will allow the user to switch among models during the execution.

Figure 12 illustrates the same program at a later time. Note that the subroutine has altered
position. Eigen/VR allows the user to “fly” around and into the various structures appearing in
the visualization. Figure 13 shows a rotated view that the user sees while reorienting themselves
through the “flight” capabilities, while Figure 14 shows an overhead view.

In moving about the system, it is easy to become disoriented. This is especially true in devel-
opment of the visual model. As the system is developed to automatically place certain structures,
the user may have difficulty determining the current orientation of the system in order to add addi-
tional features. Therefore, a feature is available to show the orientation of each object in relation
to X, z and Z coordinates. This is achieved by embedding an axis within each object. Figure 15
shows the orientation when this feature is activated. The red axis is the Z axis, blue depicts the X
axis, and the Y axis is denoted by the white arrows. Figure 16 is a different view of the orientation.

33

Differentiating Aspects

This system allows multiple tools to be utilized in the world view. To achieve this, the model
must project rectangular vertical planes. Then texture mapping can be utilized to place the execu-
tion of other tools on those planes. This would be similar to viewing various monitors within the
virtual environment. This allows the coordination of multiple tools and view. The differentiating
aspects of this tool allows viewing of all aspects of the executing program, not just partial algo-
rithm animation. Furthermore, this allows the visualization of various selected attributes within
the model. In addition, the model provides the capability to assess the execution against specified
requirements constraints. The user does not need to alter his code, as a preprocessor is provided to
automatically insert the correct statements for implementation of the program as a coroutine pro-
cess and feed the necessary information to the controller for generation of the visual model.

In addition, the following aspects are also evidenti
Provides a multi-dimensional environment
Allows user to define own visual model;
Allows user to extend existing visual model;
Allows user to specify actions for constraint violations;
Links the program to the requirements specifications;
Can be used to identify constraint violations before they occur (Future Work);
Can identify situations not outlined in the requirements specifications, thereby identifying

incomplete specifications in certain cases;
Does not require the user to alter his code;
Can be used to identify unexpected algorithm actions;
Can be used to monitor link structures;
Provides greater flexibility in types of analysis possible; and,
User can construct a visual model corresponding to his mental model of program state

space.

Computing Environment

This system was developed on a Sun Ultra 2 with Creator3D Graphics and a Freedom Series
3300 Graphics Accelerator. The visual model was developed in OpenGL to process programs
written in the C programming language. The OpenGL model was developed for subsequent usage
within the Eigen/VR system.

Components

The basic components of the system are the preprocessor which consists of a lexical analyzer
and parser developed with LEX and YACC. And the visual controlling program. The constraint
system has not been implemented as yet.

Intentionally Lejl Blank

6. SAVAnT Description (Software Attribute
Visual Analysis Tool)

SAVAnT is a visual tool that generates a visual model of an executing C program. This model
currently depicts the basic structures of the program, including functions and data structures.
Additional attributes can be visualized if the desired visual models are prepared. The visual model
allows the user an easy way to conceptualize the program in their own mental model. Traditional
methods require the user to map the program solution space to a two dimensional model whereas
SAVAnT allows a multiple dimensional mapping. In addition, the tool is structured to allow ease
of customization. Thus, a user may alter the visual model to represent the action in whatever man-
ner the user conceptualizes the program space. This allows a concrete representation to view and
alter in understanding the program execution. Program comprehension is achieved faster with the
additional visual information.

The system currently visualizes C programs that can be represented within a single file. While
real applications typically consist of several files, due to time limitations, the prototype only pro-
cesses a single file. An extension to process multiple file programs can easily be done by includ-
ing the processing of an “include” statement. In addition, the preprocessor will
compiler directives. A brief review of the major componentdaspects follows.

Preprocessor

not handle

The preprocessor consists of a lexical analyzer and parser that are used as input to LEX and
YACC to generate the complete preprocessor. As the code is parsed, a symbol table is generated to
be used between the executing program, the visual model routines, and the constraint system.
information about structural aspects of the program and selected attributes is also collected to
establish the initial visual model of the executing program. In addition, the preprocessor generates
a new version of the executable program. This new version has appropriate statements inserted to
feed execution data to the visual model and constraint system. However, the visual model does not
depict the inserted statements.

Any necessary data is queried from the user in driving the preprocessor. This feature can be
extended to allow the user to specify which data is to be visualized. However, it would be best to
allow all of the data to be collected, and then to selectively invoke and eliminate desired aspects of
the model as the execution progresses. This can be achieved through voice commands to the
Eigen/VR system.

Additional information can be collected by expanding the parser and lexical analyzer routines.
The entire language is implemented for the parser. This allows for complete functionality in future
extensions by providing the appropriate “hooks” for expansion. Although the code recognizes all
language features, the prototype does not process all features at present. The key consideration is
the recursive nature of the algorithm which can create surprises in the parsing process if proper
analysis is not done prior to implementation.

43

Executing Program

The executing program must be supplied by the user. It must be developed in C. The program
must not utilize include files or compiler directives. The preprocessor will generate error mes-
sages if the program exceeds any limitations due to size. The problem can then be addressed by
increasing the associated data structure within the parser or lexical analyzer and recompiling the
routines to regenerate the preprocessor.

A new version of the program will be generated. This new version is the one that will actually
be executed. Appropriate statements are inserted into the original program to drive the visual
model. This provides an advantage of automating the process for the user. A disadvantage of this
approach is that some errors might be masked by the process of altering the size of the code. This
is a typical problem shared by all debuggers.

Visualization Routines

The visualization routines require structural input regarding the program to be visualized. This
information is provided by the preprocessor. Figures 11-16 show the visualization of an actual
program. The placement of the figures, their size, color and orientation are all achieved automati-
cally y based on the information provided by the preprocessor. An advantage of this approach is that
it allows for the user to develop different visual models to be generated by the specified data. This
allows the user to define their preferred model to coincide with their unique mental model of the
executing code. This is important, because a single model may not provide sufficient information
to address individual needs and understandings.

In addition, this approach eliminates the need for the user to alter their original code them-
selves. Further, the Eigen/VR environment allows for multiple tools to be utilized at once. With
future expansion, this can significantly improve software surety capabilities as well as debugging
productivity, and program comprehension. In addition, when the constraint monitor is fully imple-
mented, this system will provide a unique capability to monitor correct execution as specified by
requirement constraints. This will not identify all errors, but selected conditions can be monitored.
If a violation occurs, the visual model will dramatically increase the user’s ability for detection.

The model can also identify situations that have not been addressed by the requirements con-
straint language. This has an important impact. This is the first documentable technique to allow
assessment of completeness for the software requirements specification. Current methods focus
on proving that an implementation correctly implements a specification, but do not address the
issue of whether the specification is correct or complete. While this technique will not fully
resolve the completeness problem, it is a first step in identifying errors in completeness occurring
during execution.

A disadvantage of this approach is that it focuses on the execution phase, thus the error has
already occurred by the time it is visualized. However, this is a limitation only within the current
prototype, and can be turned into a definite advantage. The advantage can be achieved by keying
the routines to “look ahead” or “tentatively compute” ahead of any changes to be made in the pro-

44

gram or visual environment. This would allow earlier processing of the constraint monitor and
allow the program to be halted or terminated safe] y. Essentially, this is the same concept utilized
in processing software faults, just allowing the faults to be captured at a higher phase before a crit-
ical error can be initiated. While undoubtedly there will be code to address this issue within the
program, the expanded functionality of the constraint system may allow for more extensive
checking at any particular junction.

Constraint Monitor

The constraint monitor is described in greater detail within the next section. Basically, it func-
tions similar to a data flow machine in determining which constraints apply at any given time. It
utilizes the common symbol table routines, and basically has no action other than to monitor the
execution of the code. So it compares applicable constraints to the changing execution values and
program flow. If a violation occurs, the appropriate visual routines are invoked.

Controlling Routine

The controlling routine is very primitive in the current definition of the prototype. It basically
directs the coroutines for switching of execution between the executing program, the visual rou-
tines, and the constraint monitor. Future extension to this routine will allow the user to selectively
alter the visual models during execution, as well as collapse or expand world views.

Advantages

In summary, a major advantage of this work is that it will allow to monitor completeness of
the specifications. In addition, this work has the potential to significantly increase software surety
confidence, by providing an independent analysis of correct behavior. Further, this approach can
significantly aid in the assessment of program behavior for systems using advanced control tech-
niques such as neural net and fuzzy logic based controls. Additional advantages have been men-
tioned in previous sections.

Disadvantages

The main disadvantage of this work, is that the user must develop a requirements constraint
program in order for the constraint monitoring system to function. This requires the user to be
familiar with a new language, SAGE. However, this is not an a particularly onerous requirement.
In addition, the user must have a similar platform available. In addition, until the extensions are
added to process include statements and compiler directives, the tool cannot be used for real
world applications. This disadvantage will be resolved once additional development is completed.
In addition, the user must utilize current visual models until they develop their own models.

45

Future Extensions

Future work should focus on incorporating multiple world views, providing more control over
the model by the user, and expanding available visual models. Later work should expand the envi-
ronment to visual the specification phase of the software.

46

7. REQUIREMENTS CONSTRAINT LANGUAGE DESCRIPTION

What is meant by a constraint language? While a lot of research has been done in the area of
constraint programming, the idea of a constraint language is unique to this application, expanding
current techniques in software surety. To understand the type and purpose of this type of language,
one must first understand the concept of a constraint.

Constraints

A constraint embodies the idea of enforced or defined limitations. This idea is inherent
throughout most aspects of human endeavors, and thus is evident in many different types of appli-
cations. For example mathematically, constraints are precisely specifiable relations among several
unknowns, each taking a value in a given domain. Consequently, many mathematical and geo-

metrical definitions could be considered constraints. (The definition of a right triangle illustrates
this point: a right triangle is a three sided polygon with one of the internal angles consisting of 90
degrees.) In the research area of computer programming, constraints are used to limit the values
specific variables can be assigned. More specifically, upper and lower limits of an array subscript
value are one type of constraint, restricting the subscript value to be within the range of the upper
and lower limits. Altogether, the constraint concept is extreme] y powerful and has been used to
address a large variety of application areas through the development of various basic constraint
systems.

Constraint Systems

Basic constraint systems are systems of inference on partial information that provide the abil-
ity to perform such functions as constraint propagation, entailment, satisfaction, normalization,
and optimization. Classic illustrations of constraint systems appear throughout many fields. ~pi-
call y, the area of operations research investigates many issues specifically related to constraint
analysis. For example in operations research, often a set of equations must be solved with speci-
fied constraints to either optimize or minimize a particular value or values. However within the
last decade, researchers have realized that unifying efforts to exploit ideas for constraint analysis
via programming under a common conceptual and practical framework provides a more powerful
approach to programming, modeling, and problem solving rather than developing disjunct basic
constraint systems.

Consequently, constraint programming ties together the use of basic constraint systems with
programming languages; thereby allowing more precise specification of how constraints are gen-
erated, combined, and processed. Expanding the utility of these systems by incorporating them
with programming languages provides a more expressive unified framework; allowing the user to
easily generate, manipulate, and test constraints--clearly, a more powerful computational frame-
work. Examples of such frameworks include constraint logic programming and concurrent con-
straint programming systems. Examples of specific systems include cc(fd) [20], clp(fd) [6],

ECLiPSe [10], CIAO [12], and Oz [19]. These systems general] y consist of two levels, the under-

47

lying constraint system, and the programming language level.

Current research with constraint programming shows that constraints can be used in a number
of different ways, A few typical applications are to represent knowledge, guide searches, prune
useless branches, filter queries, describe process communication, and describe synchronization.
The goal of constraint programming is to determine whether a solution exists that satisfies all con-
straints, to identify one or all solutions, to determine whether a partial instantiation can be
extended to a full solution, or to find an optimal solution relative to a given cost function.

Accordingly, this type of programming has been used in many different application areas
including artificial intelligence, databases, operations research, user interfaces, concurrency,
robotics and control theory. A new area for application investigated by the work described by this
report is the area of software engineering. The work described within this paper applies and
expands the concept of constraint programming to address software surety issues within the area
of software engineering research by defining a requirements constraint language (RQL SAGE).

Software Attribute Generic Evaluation

The requirements constraint language SAGE allows the development of programs to perform
constraint analysis on executing programs as a monitoring process. A program written in this lan-
guage is used to provide an independent audit of an executing program to verify that it is execut-
ing as planned and expected. This allows unexpected program states to be identified and
adilressed before critical action occurs that could cause loss of life or some other unexpected dev-
astating, costly, undesired action. This is most helpful in embedded systems.

The idea of a requirements constraint language expands the basic constraint programming
paradigm to a higher level. A requirements constraint language is expressed in a very high level
language utilizing functions and operations to address higher level ideas and conceptualizations
related to a system requirements specification, in addition to more common lower level functions
dealing with variables, registers, various arithmetic, character and logical operations, and memory
management. The language primarily expresses what should be done, rather than how it is done
(although some aspects of how it is done can be specified as a constraint); and provides mapping
capabilities to an underlying program representation that implements the required functionality. A
requirements constraint program monitors the execution of the lower level program to ascertain
that constraints are not violated. It does this through a very high level pattern assessment linked to
the executing program.

Thus, a program written in a requirements constraint language functions as a bridge between
the requirements and the actual implementation. It also provides a second, independent assess-
ment of the correct functioning of the targeted implementation; and while it does not provide a
second calculation for comparison, it does function as an independent monitor similar to estab-
lished fault tolerant techniques. This provides a new technique for assessing software surety. As
future advancements provide improved performance for this approach, it can be incorporated
appropriately during run-time to prohibit select, critical errors.

48

Advantages

The use of the requirements constraint language is important to this application for several
reasons. Usage of this language provides a technique to address actual software surety issues dur-
ing the execution phase of the software life cycle. As performance issues are addressed, this
approach can be used to monitor and approve program execution before critical sections of the
code can be executed for high assurance systems. Preliminary work focuses on monitoring the
correct execution of critical code after it has executed, but with recent advancements in perfor-
mance issues and in the magnitude of constraints being evaluated, it is reasonable to predict that
the code can be structured to allow the monitoring assessment to be conducted just prior to execu-
tion, thereby providing a independent auditing function as a software surety technique to ensure
that the executing code only executes in acceptable, expected ways.

In addition to providing monitoring capabilities for the correct execution of critical code, the
RQL SAGE provides input back to the SAVAnT system to generate visual and other stimulus for
identifying unexpected occurrences within the executing code. In addition, SAGE provides a sec-
ond opinion through the auspices of an independent auditor on the correctness of the code execu-
tion--an established fault tolerant technique. Other advantages of this techniques include the
ability to assess trade-offs between requirements constraints where conflicts occur, and most
importantly, the ability to identify specification errors or omissions. Particularly significant, the
ability to identify specification errors addresses an unsolved problem under review for many years
by the software engineering community; the problem of incorrect specifications. Formal methods
have made great advances in mathematically proving that a particular program precisely imple-
ments a given specification; however, those methods do not provide any information as to the cor-
rectness of the specification. SAGE in conjunction with SAVAnT provides a mechanism to
identify errors and discrepancies within the specification itself. As many people have been work-
ing on this problem with no solutions to date, our approach is a major advancement in this
research area.

Disadvantages

However, as with any technique, several drawbacks exist with using this approach. The most
significant is that the user must learn the requirements constraint language SAGE, and in addition,
the user must be familiar with the requirement specifications for the target program in order to
encode the appropriate constraints depicting the specified requirements. Yet, as similar require-
ments are often required for implementation of current technologies; having to learn SAGE and
familiarize oneself wjth the application’s requirements specifications should not be considered
particular y onerous requirements. Other technical knowledge or skills needed to apply this tech-
nique include knowledge of the SAVAnT system and of the target program to be monitored. The
user must be familiar with the SAVAnT system in order to specify the appropriate/desired visual
effect to occur for each situation of hteresc while the user must be familiar with the target pro-
gram in order to establish the appropriate links between the executing program and the monitor-
ing SAGE code. Appropriate visual tool sets will be developed within SAVAnT to facilitate these
efforts and depending upon how the requirements were initially specified for the system, the pro-
gram links may be easily determhed.

49

Two restrictions limit application of this technique. First, the constraint monitoring cannot be

applied to all of the code until performance improvements have been achieved. This is not as great

a problem as it might seem, because the most critical portions of the code can be targeted for mon-
itoring initially; and performance advancements in constraint analysis are nearly adequate to han-
dle monitoring of the entire code--so this problem will be resolved in time. Finally, this approach
does not allow monitoring of timing constraints as currently planned for implementation. Later
developments can address this shortcoming.

Implementation

SAGE utilizes C as the underlying language base. Language extensions are used to expand the
ability to define concepts, objects, and semantic patterns of interest for monitoring purposes.
Mapping capabilities are also provided to allow mappings between the targeted executable pro-
gram and the RQL state space. The mappings identify what state space information will be
needed, and potentially can be used to drive the preprocessor in preparing the executable code, by
identifying which state spaces are of interest for observation--a possible future extension. Map-
pings are limited to measuring program state spaces. In analyzing semantic issues, the concepts
must be translatable into specific program states. The mapping capability allows extensive reus-
ability of function constraints; such reusable definitions will greatly reduce development time as
experience with the system occurs and suitable libraries are developed.

Execution patterns can be mapped to program slices through regular expressions. This allows
the execution sequence of the target program to be assessed. A common approach for checking
prior to execution of critical code is to check the values of flag variables, however, the SAGE RQL
allows monitoring of the sequence invoked in setting the variables. This allows identification of an
improper execution sequence, a potential error.

The SAGE RQL program runs in conjunction with a constraint analysis system incorporating
artificial intelligence technology, data-flow technology, and (with future development) neural net-
work technology to expand pattern analysis for higher semantic reasoning. The constraints are
specified along with the state variables monitored by the constraints. When state information is
received, it is mapped to corresponding constraints. When the required data is available the appro-
priate rules for evaluation are fired. The constraints and their relevant variable mappings are main-
tained in a sparse matrix indexed by standard scoping rules.

As the target program executes, state space information is generated to drive the visual repre-
sentation and the SAGE RQL monitor. Thus the system is basically event driven, The variables, or
rather their specified mappings, are indexed into the constraint matrix to identify related con-
straints. If adequate information is available to evaluate a constraint, it is selected for analysis;
otherwise, the information is either saved for later analysis, or a partial analysis is conducted if
possible. The constraint anal ysis system identifies conflicting constraints and identifies what hap-
pens if constraints are violated. This allows the user to verify that appropriate priorities have been
established between conflict ing requirements.

50

Operations

The basic functions, capabilities, and operators defined within SAGE as extensions to the C
language include support for first order logic: logical quantifiers, implication operators, partially
defined expressions, as well as access type collections, type constructors, bounded quantifiers,
mapping constructors, and pattern notation. Examples of most of these can be seen in languages
such as Anna and Refine.

Additional operations include: hence, precedes, follows, subsumes, distinct, disallow, occurs,
and sequenced. Hence used in conjunction with a logical expression (e.g. if a hence b), indicates
that the condition following b must not have been true prior to the occurrence of condition a, and
after a has occurred, b must hold true. Precedes identifies states (or execution patterns) that must
occur prior to other states or patterns. Follows is similar except that it identifies states that occur
after a known state. It does not address the immediacy of the occurrence, just that the specified
state occurs sometime after the state initiating the constraint. These two operators allow greater
flexibility in defining and specifying constraint conditions. (Generally, order of appearance can be
used to indicate dependencies among variable states in programming languages. However in this
constraint system, that approach is insufficient to identify required relationships and does not sup-
port constraint orthogonality.)

Subsumes indicates that constraints related to a particular state i are applied to another statej
as a partial definition of the constraint requirements for the new state j. This allows reusability of
definitions. Distincr specifies that a state or event, normally occurring as part of a sequence or
grouping, appears temporarily disjunct from that association. Disallow designates a guard against
the occurrence of a noted state, condition, event, or pattern. Occurs defines a grouping or selection
of states that must occur in relation to one another without establishing a definitive order.
Sequenced determines an ordering of event or state occurrences.

The new operations are important in establishing appropriate relationships between the order-
ing of the specified requirement constraints, The normal ordering of control evident in general
purpose languages does not apply to the constraint definitions, requiring additional syntactic sup-
port in specifying ordering relations. When a constraint is defined, it does not apply until specified
by the defined operations. This allows greater freedom in the application and release of con-
straints onto the program state space. Thus a particular constraint may only be applicable under
particular conditions. Normal sequence of execution flow does apply within the definitions. This
approach avoids forcing the constraint program into a two dimensional flow mapping.

Syntax Issues

The syntax for these operations is depicted in Figure 17. A constraint specifies one or more math-
ematical expressions and or conditions that apply to the executing program being monitored. A
condition represents mathematical or logical expressions related to the requirements constraint
language monitoring program; while a state is characterized by a collection and/or sequence of
constraints and conditions. A bag provides a convenient way to reference a collection of orthogo-
nal or heterogeneous qualifiers such as execution patterns, states, and conditions. Commas should

51

[constraint(s) lstatelcondition(s)]: Hence {constraint(s)}
[l~aglcon,~traint(,~)]: Precedes {baglconstrain~(s)}
[bag]: FOI1OWS {bag}
[statelcondition(s)]: Subsumes {bag}
Distinct {constrain)
Disallow {sfatelcondi~ion(s)}
Occurs {eventlbaglconstraints(s)}
Sequenced {s?atelcondifion, sfatelcomiition, . . . }

Figure 17: SAGE Sequence Operations Syntax.

separate multiple constraints, states, conditions, or bags.

A simple label naming convention allows constraints to be referenced by name. The con-
straints’ names can be specified when using the operations described above. In addition, a name
can be applied to a group of constraints. Alternatively, a constraint may be specified instead of
using a named reference. However, a constraint may only be defined once. Definitions of con-
straints may appear wherever variable definitions are allowed.

Examples

A subjection function is a mathematical function that is an onto mapping. That is, a function
from A to B is an onto function if every object of set A maps onto an object in set B, and every
object in set B is mapped onto by one or more elements of set A. Thus the function “generates” a
mapping to every element in set B by applying the function to set A. Figure 18 illustrates the con-
straints that might be coded to represent this type of function.

Vxin A--x= yof B;

‘V’yin B --~xin Aoccurs{x-yof B};

Surjection_Count -=-~ V A = B;

Figure 18: SAGE Constraints For Count of Subjection Mappings

52

We read these constraints as: For every x that is an element in set A, x maps to an element y of
set B. For every y that is an element of B, there exists an element x in set A such that x maps to
that element y of set B, The value of Surjection_Count is the sum of all possible mappings of A
onto B. The representation of these constraints provide a greater detail of semantic knowledge
than is generally inherent in simple programming code. This can be seen by looking at the follow-
ing sample code. This code implements the Surjection_Count function defined by the above con-
straints, that determines the number of possible onto mappings that can be achieved between two
groups of objects--the number of ways of mapping set A onto set B. Compare this to one possible
implementation of the function as depicted in Figure 19.

In this particular example, the constraints cannot verify the logical correctness of the algo-
rithm. However, by assessing the data values and structures that are generated by an algorithm,
some errors can be identified.

53

int power(a, b)
int a, b;

{
if(b == 1)retum(a);
retum(a * power(a, b -1));

} J* calculate ~ raised to b */

int~act(a)

{
if(a == 1)retum(1);
retum(a *fact(a -1));

} /* c~]~u]~t~ ~] */

int cwnb(a, i)
int a, i;

{
int result
result - fact(a) / (fact(
return(result);

) *fact(a -1));

} /* Calculate the combinatorial of a objects taken i at a time */

int Surjection_Count(a, b)
int a, b;

{
int i, sum;
if(a c b)return(O);
sum - power(b, a);
for(i== l;ie=b-l; i++){

sum=sum +(power(-l, i)*comb(b, i) *(power((b-i), a)));

}
retum(sum);

}/’ Calculate the number of mappings of a onto b */

Figure 19: C Functions Counting Subjection Mappings

54

8. Examples of Use (identification of errors)

Figures 20 (a-d) illustrate example usage of the prototype tool. Figures a and b show various
programs, and how they would appear initially. Of course, the actual visualization would appear
similar to Figures 1 I-16. These examples are illustrated to minimize space. Figures c and d illus-
trate error conditions that could occur as desired by the user. Additional examples may include the
following:

Example 1: Flag condition is set and a key variable is changed when it should be
constant under specified conditions. (perhaps side effect)

Example 2: Specific conditions are met; and statements are executed when they
should be barred from execution (e.g. action taking place in an unsafe
condition)

Example 3:

Example 4:

Example 5:

Example 6:

Timing constraints are not met (will not be able to handle this in present
version)

Variable is not processed within an array when all other values are altered,
(end of list processing error)

Wrong array is accessed to retrieve or alter a value (invalid pointer)

Process values beyond the storage range of an array or other data structure
(algorithm processes two structures or alters values outside array dimensions)

Example 7: Statement alters data structures when it is not expected (side effects)

Example 8: In applying semantic overlays to identify pointers and links, identification
of a variable pointing to a different item (variation in consistent pattern as
in linked lists or other structures)

Example 9: Program violates stated semantic patterns for execution sequences

Example 10: Program reaches a semantic state not previousl y specified in requirement
constraints relating to specific variables and conditions, thereby entering
an unknown condition

Example 11: Conditions not set in proper order (similar to example 9, but concerning
variable states)

Example 12: More statements executed than expected

Example 13: Changes in execution pattern

55

R
 p j:,

/,;;,
,,/

R

0 0

0

5
6

Example 14 Execution of rarely executed code

Example 15: Formation of discrepancies in link patterns

Example 16: Unusual formations of data structures

57

U

0
0

o
f

-.

9. User Directives

Tool Location

The tool has been provide on a DAT tape created by a tar command with no compression. TWO
directories are on the tape within a directory named VisAttProject. The first directory is Graphics-
Routines. It contains the code to generate the visual OpenGL models. The second directory is
VlsualPreprocessorFiles. It contains the lexical analyzer and the parser routines as well as
required header files.

Required Software Environment

To run the system, one must have access to a C compiler, and an OpenGL compiler. The
model can be run stand-alone. However, to incorporate the full functionality of the multi-dimen-
sional capabilities, Eigen/VR should be used. The OpenGL model is the input to Eigen/VR.

User Requirements

The user must specify the name of the new executable program as well as providing the origi-
nal code with the previously specified requirements of providing a single file with no include
statements or compiler directives. In addition, the tool will not handle continuation lines.

Compiler Directives

Sample makefiles are provided with the source code. Basically, the user must run the prepro-

cessor with the executable program as input, then invoke the visual routines by providing the gen-

erated output to the visual routines. The system cannot process compiler directives within the
program to be visualized.

59

Intentionally Left Blank

60

10. Developer Directives

Functionality Extension

Appendix A contains a description of the language definition that was used to develop the pre-
processor. The tool processes the complete language, although the prototype does not use all of
the information at present. In addition, many of the language features are simply identified with
no further action taken. This provides excellent functionality expansion. As new attributes or lan-
guage features need to be visualized, the appropriate statements can be inserted at the specified
locations.

Internal Structures

Appendix B contains a description of the data structures utilized within the parser. The lexical
anal yzer builds the appropriate data structure to generate the new executable, and the parser
inserts appropriate statements depending on the analysis. In addition, a symbol table routine is
generated to run the visual model.

61

Intentionally Left Blank

110 Conclusions

Advancements

The major advancement of this work is to develop multidimensional visual models of abstract
and concrete program features that cooperate with a constraint monitor thereby allowing an
approach to identifying completeness errors with the software specifications.

Disadvantages

The major disadvantage of the work is that select requirement constraints must be specified
within a Requirements Constraint Language.

Significance

The significance of this work is that it provides a first step in evaluating specification com-
pleteness, and provides a more productive method for program comprehension and debugging.

Expected Payoff

The expected payoff is increased software surety confidence. In addition, increased program
comprehension and reduced development and debugging time.

Future Work

Future work will focus on expanding the visual models, completing the constraint monitor,
and expanding the work to the specification phase of the software life cycle model.

63

r

Intentionally Left Blank

References

1, Albuquerque Journal, Sunday, November 12, 1995.

2. Ball, T., and S.G. Eick, “Software Vkualization in the Large:’ Computer, April 1996, pp. 33-
43.

3. Berztiss, A.T., ``Safety -Critical So ftware: AResearch Agenda~' Intermtional JourtlalofSofi-
ware Engineering and Knowledge En? ineering , Vol. 4 No. 2, 1994, Pp. 165-181.

4. Braham, R., “Math & Visualization: New Tools, New Frontiers,” IEEE S~ectrum, November
1995, pp. 19-37.

5. Huff, C. C., M. Klein, and S. Stevens, “The State of the Art in Scientific Vlsualization~’ Tech-
nical Report, CMU/SEI-95-SR-Visual ization, Software Engineering Institute Carnegie Mel-
lon University, September 1995.

6. Codognet, P. and D. Diaz, “Compiling Constraints in clp(fd)~’ Journal qf Logic Programming
27,3, 1996.

7. Collins, E., L. Dalton, D. Peercy, G. Pollock, and C. Sicking, “A Review of Research and
Methods for Producing High-Consequence Software:’ J995 IEEE Aerospace App lications

Ql@21=G Vol 1 J January 1995* PP. 19’7-245”

8. “Cyberware~’ w, August 21, 1995.

9. Embley, D., B. Kurtz, and S. Woodfield, Object-Oriented Svste ms Analysis (A Model-Driven

~? Yourdon Press> 1992”

10. European Computer Research Center, Eclivse User’s Guide,1993.

11. Gibbs, W., “Software’s Chronic Crisis;’ Scientific American, September 1994.

12. Hermenegildo, M. and the CLIP Group, “Some Methodological Issues in the Design of CIA-
-A Generic, Parallel Concurrent Constraint System;’ In Principles and Practice of Con-
~traint Prom-amming, LNCS 874, May, Springer-Verlag, New York, 123-133, 1994,

13. Kimelman, D., B. Rosenburg, and T. Roth, “Strata-Various: Multi-Layer Visualization of
Dynamics in Software System Behavior;’ IBM Thomas J. Watson Research Center, June

1994.

14. Lagedec, P., “Major Technological Risk”, Quoted in Sufeware. $vstem Sczfetv and C omvuters,
Nancy Leveson, University of Washington, Addison-Wesley, 1995.

65

15. Muss, J. D., A. lannino, and K. Okumoto, Software Reliability: Measurement. Prediction,
Apr,)lication, McGraw-Hill, Inc., 1987

16. Pollock, G. M., and L, J. Dalton, “A Strategic Surety Roadmap for High Consequence Soft-
ware,” 1996 Acrosuace Abdications Conference, Snowmass CO, Vol. 4, February 1996, pp. 6

351-370.

.
17. Price, B. A., Baecker, and I. A. Small, “A Principled Taxonomy of Software VLsualization~’ “

Journal of Visual Lunguages and Computing 4(3):211-266.

18. Reiss, S. P., “An Engine for the 3D Visualization of Program Information;’ Dept. of Com-
puter Science, Brown University, May 1995.

19. Smolka, G., “The Oz Programming Model,” In Computer Science Today, Jan van Leeuwen,
Ed., LNCS, No. 1000, Springer-Verlag, Berlin, 324-343, 1995.

20. Van Hentenryck, P., V. A. Saraswat, and Y. Deville, “Constraint Processing in cc(fd)~’ In W

straint ProwamminP: Basics and Trends, A. Podelski, Ed., LNCS 910, Springer-Verlag,
1995.

21. Walden, K., and J. Nerson, Seamless Object-Oriented So ftware Archltectu re, Prentice Hall,
1995.

22. Yau, S. S., D. Bai, and K. Yeom, “An Approach to Object-Oriented Requirements Verification
in Software Development for Distributed Computing Systems,” Proceeding o f the Eigh-
teenth Annual International Comvuter Software & Apulications Conference, 1994, pp. 96-
102.

23. Zeus, DEC Systems Research Center, http: //www.research. digital.com/SRC/zeus, all Zeus

images copyrighted 1997 DIGITAL Equipment Corporation, All rights reserved. Provided
couresy DIGITAL Systems Research Center, Palo Alto, California.

66

Appendixes

A. Language Grammar:

This appendix contains the language definition utilized by

the parser for creation of the preprocessor. Future extensions

will need to be incorporated within this structure.

%]

%token

%token

%token

%token

%token

%token
%token
%token

%token

%token
%token

%token

%token

%token

%token

%token
%token
%token

%token
%token

%token

%token

%token

%token
%token

%left

AMPEQ ARROW

BAREQ BREAKTK

CAROTEQ CASETK

CONSTTK CONTINUETK

DBAMP DBBAR

DBGRTR DBLESS

DBPLUS DEFAULTTK

DOUBLETK

ELSETK ENUMCONSTTK

EXTERNTK
FIX_INDEX_EXPR FLOATTK

GOTOTK GRTEQ

IDENTIFIERTK IFTK

LESSEQ LONGTK

MINUSEQ MYINTCONTK

PERCTEQ PLUSEQ

QUESTION
REGISTERTK RETURNTK

SHORTTK SIGNEDTK

STAREQ STATICTK

STRUCTTK SWITCHTK

TYPEDEFNAMETK TYPEDEFTK

UNIONTK UNSIGNEDTK

VOIDTK VOLATILETK

WHILETK

11 !1
I

AUTOTK

CHARCONSTTK CHARTK

DBEQ DBGRTEQ

DBLESSEQ DBMINUS

DOTK DOTSTK

ENUMTK EXCLAEQ

FLTCONSTTK FORTK

INTTK

LOWER_THAN_ELSE

SIZEOFTK SLASHEQ
STRINGTK STRINGTKIO

%right “=” PLUSEQ MINUSEQ STAREQ SLASHEQ PERCTEQ AMPEQ CAROTEQ

BAREQ DBLESSEQ DBGRTEQ
%right SIZEOFTK
%right QUESTION “:”

%left DBBAR

67

%left DBAMP

%left !, , II

%left II A II

%left “ & “
%left DBEQ EXCLAEQ
%left “ < “ LESSEQ “>”
%left DBLESS DBGRTR
%left ?1+11 If _,!

%left II * !1
“/“

,, %,,

%right “!” “-” DBPLUS

GRTEQ

DBMINUS
%nonassoc FIX_INDEX_EXPR
%left “(” “)fl “[1’ !!]!! ARROW ~1.rl

%nonassoc LOWER_THAN_ELSE
%nonassoc ELSETK

%%

translation_unit :

external_declaration

I translation_unit external_declaration

external_declaration:

function_definition

I declaration

I

function_definition:

declaratory compound_statement

I declaratory declaration_list compound_statement
I declaration_specifiers
I declaration_specifiers

compound_statement

declaration :
declaration_specifiers

I declaration_specifiers

declaratory
declaratory

compound_statement

declaration_list

11 11
;

init_declarator_list “; “
;

68

declaration_list:

declaration

I declaration_list declaration

;

declaration_specifiers:

storage_class_specifier
1 storage_class_specifier declaration_specifiers
I type_specifier

I type_specifier declaration_specifiers

I type_qualifier
1 type_qualifier declaration_sPecifiers

;

storage_class_specifier:
AUTOTK

I REGISTERTK
I STATICTK

I EXTERNTK
I TYPEDEFTK

i

type_specifier:
VOIDTK

I CHARTK
I SHORTTK
I INTTK

1 LONGTK
I FLOATTK

I DOUBLETK

I SIGNEDTK

I UNSIGNEDTK

I struct_or_union_specifier

I enum_specifier
I typedef_name

;

type_qualifier:
CONSTTK

I VOLATILETK

I

69

struct_or_union_specifier:

struct_or_union identifier “ (“ struct_declaration_list “)”
I StrUCt–Or–UniOn “{” StrUCt_deClaration_liSt 11}11

I struct_or_union identifier
;

struct_or_union:

STRUCTTK

I UNIONTK
t

struct_declaration_list:

struct_declaration

I struct_declaration_list struct_declaration

t

init_declarator_list:

init_declarator

I init_declarator_list “,” init_declarator

t

init_declarator:

declaratory
I declaratory “=” initializer

,

struct_declaration :

specifier_qualifier_list struct_declarator_list “;”

I

specifier_qualifier_list:

type_specifier
I type_specifier specifier_qualifier_list

I tYpe_qualifier
I type_qualifier specifier_qualifier_list
;

70

struct_declarator_list:
struct_declarator

1 struct_declarator_list “,” struct_declarator

;

struct_declarator:
declaratory

I declaratory “:” constant_express ion

I II . 11 constant_expression
;

enum_specifier:
ENUMTK identifier ‘(” enumerator_list “}”

I ENUMTK “{” enumerator_list “]”

I ENUMTK identifier

;

enumerator_list:

enumerator
I enumerator_list “,” enumerator

;

enumerator:
identifier

I identifier “=” constant_expression

;

declaratory:

direct_declarator

I pointer direct_declarator

i

direct_declarator:
identifier

I “(” declaratory “)”
I direct_declarator “[” “]”
I direct_declarator “[” constant_expression “]”

[direct_declarator “(” “)”
I direct_declarator “(” parameter_type_list “)”

I direct_declarator “(” identifier–list “)”

I

71

pointer:
f! * II

I “*” type_qualifier_list

I “*” type_qualifier_list pointer

I “*” pointer

r

type_qualifier_list:

type_qualifier
I type_qualifier_list type_qualifier

t

parameter_type_list:
parameter_list

I parameter_list “,” DOTSTK

;

parameter_list:
parameter_declaration

I parameter_list “,” parameter_declaration

;

parameter_declaration:

declaration_specifiers declaratory
I declaration_specifiers

I declaration_specifiers abstract_declarator

r

identifier_list:
identifier

I identifier_list “,” identifier

;

initializer:

assignment_expression

I “{” initializer_list “]”

I “{” initializer_list “,” “]”

/

72

initializer_list:

initializer

I initializer_list “,” initializer

type_name:

specifier_qualifier_list

1 specifier_qualifier_list abstract_declarator

;

abstract_declarator:

pointer

1 pointer direct_abstract_declarator

I direct_abstract_declarator

;

direct_abstract_declarator:
“(” abstract_declarator “)”

1 direct_abstract_declarator “[” constant_expression “1”
I direct_abstract_declarator “[” “l”
I ‘[” constant_expression “]”

I direct_abstract_declarator “(” Parameter_tYPe–list “)”
[direct_abstract_declarator “(” “)”

I “(” parameter_type_list “)”

i

typedef_name:
TYPEDEFNAMETK

statement:
labeled_statement

I expression_statement

I compound_statement
I selection_statement
I iteration_statement

I jump_statement

,

73

labeled_statement:

identifier “ : “ statement

I CASETK constant_expression “:” statement

I DEFAULTTK “:” statement

;

expression_statement:

expression “; “

I ;“ II

:

compound_statement:

“{” declaration_list statement_list “}”
“(” statement list “

I ‘ ‘{,, declarat~n lis~’’,r],, —
,,{,, ,,],,

;

statement_list:

statement

I statement_list statement

/

selection_statement :

IFTK “(” expression “)” statement %prec LOWER_THAN_ELSE

I IFTK “(” expression “)” statement ELSETK statement
I SWITCHTK “(” expression “)” statement

,

iteration_statement:

I
I
I
I

;

WHILETK “(” expression “)” statement

DOTK statement WHILETK “(” expression “)” “; 1’
FORTK “(” “;” “; “ “)” statement
FORTK “(” expression “; “ “; “ “)” statement
FORTK “(” “; “ expression “.; “ “)” statement

FORTK “(” “;” “; “ expression “)” statement
FORTK “(” “;” expression “;” expression “)” statement
FORTK “(” expression “; “ expression “; “ “)” statement
FORTK “(” expression “;” “; “ expression “)” statement
FORTK “(” expression “; “ expression “; “ expression “)”

statement

74

jump_statement:
GOTOTK identifier “;”

I CONTINUETK “;”

I BREAKTK “;”

I RETURNTK expression “;”

I RETURNTK “;”

expression:

assignment_expression

I expression “,” assignment_expression

;

assignment_expression:

conditional_expression

I unary_expression assignment_operator assignment_expression

assignment_operator:

I
I
I

I
I
I
I
I
I
;

n=n

STAREQ

SLASHEQ
PERCTEQ

PLUSEQ

MINUSEQ
DBLESSEQ
DBGRTEQ

AMPEQ
CAROTEQ

BAREQ

conditional_expression:
logical_OR_expression

I logical_OR_expression QUESTION expression “:”
conditional_expression

f

constant_expression :

conditional_expression

;

75

logical_OR_expression:
logical_AND_expression

I logical_OR_expression DBBAR logical_AND_expression

logical_AND_expression:
inclusive_OR_expression

I logical_AND_expression DBAMP inclusive_OR_expression

inclusive_OR_expression:
exclusive_OR_express ion

I inclusive_OR_expression “1” exclusive_OR_expression

exclusive_OR_expression:
AND_expression

I exclusive_OR_expression ““” AND_expression

AND_expression:
equality_expression

I AND_expression “&” equality_expression

t

equality_expression:

relational_expression

I equality_expression DBEQ relational_expression

I equality_expression EXCLAEQ relational_expression

,

relational_expression :

shift_expression
I relational_expression “<” shift_expression

I relational_expression “>” shift_expression
I relational_expression LESSEQ shift_expression

I relational_expression GRTEQ shift_expression

76

shift_expression:
additive_expression

[shift_expression DBLESS additive_expression

I shift_expression DBGRTR additive–expression

;

additive_expression:

multiplicative_expression
I additive_expresSiOn “+” multiplicative_expression

[additive_expreSSiOn “-” multiplicative_expression

multiplicative_expression:

cast_expression
I multiplicative_expressiOn ‘*” cast_expression

I multiplicative_expression “/” cast_expression
I multiplicative_expression “%” cast_expression

;

cast_expression:
unary_expressiOn

I “(” type_name “)” Cast_expression

;

unary_expression:
postfix_expression

I DBPLUS unary_expression

I r)EwIIIwJs unary_expression
I unary_operator cast_expression

I SIZEOFTK unarY_exPression
I SIZEOFTK “(” type_name ‘)”
.

unary_operator:

“ & “
!1 * II
If + It
II _ n

I
n - n

1! I 1!
1.

;

77

postfix_expression:

primary_expression

I postfix_expression ‘[’ expression ‘]’

I postfix_expression “(” argument_expression_list “)”
I postfix_expression “(” “)”

I postfix_expression “.” identifier

I postfix_expression ARROW identifier
I postfix_expression DBPLUS

I postfix_expression DBMINUS

primary_expression:

identifier

[myconstant

I STRINGTK
I STRINGTKIO

I “(” expression “)”

;

argument_expression_list:

assignment_expression

I argument_expression_list “,” assignment_expression

;

identifier:

IDENTIFIERTK

;

myconstant:

intconst
I charconst

I fltconst

I enumconst

;

enumconst:
ENUMCONSTTK

;

78

fl ,t

;

cha

;

int

;

const:
FLTCONSTTK

,rconst:

CHARCONSTTK

.const:
MYINTCONTK

79

Intentionally Lefi Blank

B. Data Structures:

This appendix defines the major data variables and structures

used within the preprocessor (the lexical analyzer and parser)
for the common symbol table. Updates to the code may

incorporate additional changes. Therefore, the actual code

represents the final definitions.

/* Define the data type codes */

These codes are used to provide

semantic meaning when assigning and
testing data vars for their data type.

#define char_type 1

#define double_type 2

#define float_type 3

#define int_type 4

#define long_type 5

#define short_type 6

#define signed_type 7

#define struct_union_spec 8

#define type_typedefnarne 9

#define unsi-gned_type 10

#define void_type 11

81

/* Define the symbol table size limitations */

These codes are used to facilitate increasing

processing sizes when the tool is ready to be scaled

up . The TEST_ vars are used to make sure that the
appropriate arrays are initialized properly if their

allocation sizes change. They are initialized

statically, and thus, additional code must be added if

the size increases.

#define

#define

#define

#define

#define
#define

#define

#define

#define

#define

#define

#define

#define
#define

#define

#define

#define
#define

#define

#define

#define
#define

#define

#define

NUM_OF_ARRAY_S IZES

TEST_ARRAY_S IZES

NUM_OF_CHAR_VALUE S

TEST_CHAR_VALUES

NUM_OF_DOUBLE_VALUES
TEST_DOUBLE_VALUES

NUM_OF_FLOAT_VALUES

TEST_FLOAT_VALUES

NUM_OF_FUNC_VAR_NAMES

TEST_FUNC_VAR_NAMES

NUM_OF_INT_VALUES

TEST_INT_VALUES

NUM_OF_VAR_NAME_VALUE S
TEST_VAR_NAME_VALUES

NUM_OF_VAR_PNTRS_VALUE S

TEST_VAR_PNTRS_VALUES

NUM_OF_LONG_I NT_VALUES

TEST_LONG_INT_VALUES

NUM_OF_SHORT_I NT_VALUES
TEST_SHORT_INT_VALUES

N~_OF_SIGNED_CHAR_VALUE S
TEST_SIGNED_CHAR_VALUES

NUM_OF_SIGNED_INT_VALUES

TEST_SIGNED_INT_VALUES

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

82

#define NUM_OF_SUBSCRIPT_VALUES 1000
#define TEST_SUBSCRIPT_VAL_SIZE 1000

#define NUM_OF_UNSIGNED_CHAR_VALUES 1000
#define TEST_UNSIGNED_CHAR_VALUES 1000

#define NUM_OF_UNSIGNED_INT_VALUES 1000
#define TEST_UNSIGNED_INT_VALUES 1000

#define SIZE_DS_SYM_TABLE 10000

#define SIZE_OF_DYNAMIC_INFO 10000

#define SIZE_OF_EXEC_MODULES 10000

#define SIZE_OF_FUNC_TABLE 50

83

/* Define the Variable Names Data Structures */

This structures contains the basic information about each

of the program variables identified within the program.

int Sym_table_Next_Empty = O;
struct Vis_Sym_Data_Structures{

char *Vis Sym_DS_Name; —
Points to a string of the var name;

int Vis_Sym_DS_Data_Type;

Equal to the code for the data type;

int Vis_Sym_DS_Num_Dimen;

States num of dimen, if O, not an array
and related DS var will be O;

int Vis_Sym_DS_Size_Lnk;
Points to a specific subscript position
within the Array_Sizes array. This is

the beginning of a short link that

consists of VIS_Sym_DS_Num_Dimen elements.
Each entry contains the size of one of

the dimensions of this array var. They are

listed in the order of the original definition.

int Vis_Sym_DS_Value_Lnk;

This is a similar link to a position in a

data array that contains the value(s) for
this variable. The Vis_Sym_DS_Data_Type var
identifies which array contains the data. For
array data, it is mapped linearly in row major

order.

int Vis_Sym_DS_Scope_Lvl;

This is a simple variable denoting the scope
level and range of the variable.

int Vis_Sym_DS_Li-ne_De fined;
This identifies the line on which the variable
was defined

int Vis_Sym_DS_Data_Structures;

This is used to link entries within the structure

as needed. Exact format currently undecided.

] Vis_Sym_Data_Stxuctures[SIZE_DS_SYM_TABLE] ;

84

/* Define the Data Type Value Storage Arrays */
Each of these arrays is used to store data

values of the associated types.

int Array_Sizes_Next_Empty = 1;
int Array_Sizes [NUM_OF_ARRAY_S IZES]

int Char_Values_Next_Empty = 1;

char *Char_Values [NUM_OF_CHAR_VALUES]

int Int_Values_Next_Empty = 1;

int Int_Values [NUM_OF_I NT_VALUES]

int Short_Int_Values_Next_Empty = 1;

short int Short_Int_Values [NUM_OF_SHORT_I NT_VALUES]

int Long_Int_Values_Next_Empty = 1;

long int Long_Int_Values [NUM_OF_LONG_I NT_VALUES]

int Float_Values_Next_Empty = 1;

float Float_Values [NUM_OF_FLOAT_VALUES]

int Double_Values_Next_Empty = 1;

double Double_Values [NUM_OF_DOUBLE_VALUES]

int Unsigned_Char_Values_Next_Empty = 1;

unsigned char *Unsi.gned_Char_Values [NUM_OF_UNS IGNED_CHAR_VALUES]

int Unsigned_Int_Values_Next_Empty = 1;

unsigned int Unsigned_Int_Values [NUM_OF_UNSIGNED_I NT_VALUES]

85

/* Define the F~n~ti~n Names Data str~~t~~e~ */

int Sym_Functions_Next_Empty = O;
struct Vis_Sym_Functions{

char *Func_Name ;

Identifies the name of a defined function.

int Func_Num_Params;

Identifies the number of parameters.

int Func_Var_Pntrs;
This is a pointer into the Func_Var_Names

array. It indicates the start of a short

consecutive string of integer pointers into

the Vis_Sym_Data_Structures array. Each
pointer points to the information for that
parameter value. They are listed in the order

they appear on the function declaration.

Func_Num_Loc;

This is the number of lines of code within
the function to calculate the size of the
function “ball” in the visualization,

int Func_Sym_Pntr;

Pointer used to provide order within this

array structure. Not yet defined.

] Vis_Sym_Functions [SIZE_OF_FUNC_TABLE] ;

int Func_Var_Names_next_empty = 1;

int Func_Var_Names [NUM_OF_FUNC_VAR_NAMES] = {

This contains short subscript pointers
into the Vis_Sym_Data_Structures array

int

/* Define the Dynamic Execution Information */

int

struct

int

int

Dynamic_Info_Next_Empty = 1;
Sym_Dynami-c_Info {

Line_Number;
This identifies the line number to which the

associated dynamic info is related.

Line_Scope;

86

This identifies the scoping level of the
associated line.

int Line_Num_Var_Re ferences;
Contains the number of variables referenced on

this line.

int Line_Var_Re f_Pntrs;

pointer into Line_Var_Name for beginning of

a short list containing Line_Num–Var_References

entries. Each entry is a pointer into the

Vis_Sym_Data Structures array for the definition

of this variable. This gives typing info and

num of expected subscripts.

int Line_Var_Subs Cript_PntrS;
Pointer into Line_var_Pntr for beginning of

a short list containing Line—NUm—Var_ReferenCeS

entries. Each entry is a pointer into the

Subscri-pt_Values array for each of the variable
references. If a variable does not have any

subscript references, then it has a value of

zero.

int Line_Info_Pntr;
Pointer to add structure to this array if

needed. Not yet defined.

I Sym_Dynamic_Info[S1zE_OF_DYNAMIC_lNFO] i

87

/* Define Supporting Structs for Dynamic Line Info */

int Subscript_Values_next_empty = 1;

int Subscript_Values [SIZE_OF_SUBSCRIPT_VALUES] = {

Lists of subscript values. Line_Var_Pntr
indicates the start of each “list” for each

variable reference.

int Line_Var_Pntr_next_empty = 1;

int Line_Var_Pntr[SIZE_OF_LINE_VAR_PNTR] = {
List of pointers, one for each var referenced
on a line, that points into the start of a list
in the Subscript_values array, giving the subscript
reference values at the time of reference on the

line.

int Line_Var_Name_next_empty = 1;

int Line_Var_Name[SIZE_OF_LINE_VAR_NAME] = {

List of pointers, one entry for each var referenced

on a line. The pointer points to the appropriate
name in the Vis_Sym_Data Structures array for

additional info on the var. The start of the list
is in Line_Var_Ref_Pntrs for each line.

88

/* Define required flags ‘/

int Array_Flag_Cntr = O;

Used to identify when array is being processed, and

to easily handle nesting of array references within

subscripts.

It is initialized when a “[” is found after an

identifier;

It i.s also compared to the “Array_Sub_Nest_Flag_Cntr”

and the Sub_Expr_Flag_Cntr to know when a multi-
dimensional array is being accessed within the array

subscript of another array.

int Type_Specifier_Flag = 0;
Used to indicate when variable definitions are being
made so appropriate data is entered into the symbol

table.

Var references are handled differently from var

definitions.

It is set when the type specifier is found, and

decremented when the end of statement is found.

int Array_Sub_Nest_Flag_Cntr = 0;

Useful/Needed if array references are allowed as
subscripts, then within the nesting of the array

references, need to have some way of connecting the

current specification with the correct previous
reference. so when “]” is encountered, it can be

matched to the proper “ [“ .

int Sub_Expr_Flag_Cntr = 0;

Flag/Cntr to indicate whether the current subscript
evaluation is an expression. This helps with nesting

levels, and references to asrrays within the subscript

definitions. When matching “]” is found, the counter

is decremented.

int Current_Scope = O;

89

/* Define a Structure to track Execution Modules */

struct Exec_Modules{

int Exec_Beginning = O;
int Exec_End . o;

] Exec_Modules [SIZE_OF_EXEC_MODULES] ;

/************ End of Symbol Table Definitions ********/

90

C. Visualization State of the Art Survey:

This appendix contains a report contracted with the Software Engineering Institute at Carn-

egie Melon University as a precursor to this work. lt is added here as an addendum to our litera-

ture review, rather than repeating the information in section 4.

The State of the Art in Scientific Visualization

Clifford C. Huff
Mark Klein

Scott Stevens

Technical Report

CMU/SEI-95 -SR-Visualization

ESC-SR-95-Visualization

September 1995

Software Engineering institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

91

CONTENTS

Introduction . 93

What is Scientific Visualization . 94

The State of Scientific Visualization . 95

Data component . 96

Model Component . 97
System Component . 98
Interface Component. 101

User Component . 102

Utility Component . 104

State of the Art Summary . 104

Conclusion . 106

Appendices Summary.. 107

Appendix A: Annotated Visualization Bibliography 107

Appendix B: Graphic & Visualization Organizations 108

Appendix C: Scientific Visualization Sampler 110

Appendix D: Visualization & Graphical Tools 110

Appendix E: Visualization Related Conferences 110

References . 111

92

The State

Scientific

of the Art in

Visualization

Abstract: Scientific Visualization is a rapidly developing
technology which has not been significantly exploited or pushed
by the needs of the software development community. The state
of the practice for scientific visualization i-s quite
advanced for many domains outside of software development. in
the realm of visualization of software and visualization as a
tool for software developers, the current state of this
visualization domain appears to be far behind. Principally this
is due to visualizations in these other scientific
disciplines being based much more on recognizable physical
attributes than the artificial immature abstract attributes
found in software development. We have found there is a
dearth of information and experience in visualization of
software system attributes. It is quite clear from this
survey of the state of the art of visualization, that the
visualization of software quality attributes is not the focus
of any current research. Visualization of program execution and
potentially visual programming are the only areas of on-going
research that is applicable to HIS. As a part of this work,
we have identified a large number of organizations,
professional activities, tools, publications and samples on the
subject of visualization. This information should aid in
characterizing the current state of scientific visualization
and to act as a seed repository of information on this subject.

1 Introduction

This work is aimed at providing a snapshot of the state of

scientific visualization to help focus potential research and

experimentation in software visualization.

To this end we have identified a large number of organizations,
professional activities, tools, publications and samples on the

subject of visualization. The results of this survey work can be

found in the following appendixes:

Annotated Visualization Bibliography
Summary of Organizations involved with Graphic & Visualization

Scientific Visualization Sampler
Visualization & Graphical Tools
Visualization Related Conferences

93

Readers of this report are highly encouraged to scan this
material. This material is being made available in paper and
electronic form to the sponsors of this report. Where possible,
we have attempted to provide a World Wide Web Uniform Resource

Locators (URL’S) to provide readers with easy access to

additional information on a particular citation, conference,

organization, tool or visualization sample. An overview of the
appendix material is presented at the end of this report.

2 what i-s Scientific visualization?

In general terms, Scientific Visualization can be thought of as
any method which presents scientific information in a manner to

facilitate the conceptualizations of scientific phenomenon or

statistical information [Hughes] . The term Scientific

Visualization was formalized in practice as the result of a
National Science Foundation panel which published in 1987 the
“Visualization in Scientific Computing” report. The original

goal of this panel was to provide a focus to unify the
disciplines of computer graphics, image processing, computer
vision, computer-aided design, signal processing and the study
of human computer interfaces [Rosenblum] .

Through scientific visualization, researchers across a range of

scientific disciplines have taken advantage of visualization

technology to display and clarify vast quantities of otherwise
incomprehensible data. Since the data is presented in a
pictorial form, researchers are able to use the brain’s ability
to make analogies and links between the visual image and

existing ideas --links that are not likely to be made when data
appears as columns of numbers or lines of text. A good

scientific visualization system allows the researcher to make
discoveries not otherwise possible and provides him with a
powerful new interface to his data [Price].

Put simply, scientific visualization is the use computerized

imagery to gain insight into complex phenomena or information

[Hughes].

1. Many excellent examples of visualization can be found Appendix C: Scientific Visualization Sampler.

94

3 The State of Scientific Visualization

There are many components to what comprises visualization as a
general field and should be considered in assessing the state of

visualizations today. One such model is outlined below

[Williams]. For the purposes of this report, we will use this

model as a roadmap to guide the discussion on the state of

Scientific Visualization. We will briefly describe each

component of the model and describe the state of the art for

that aspect of visualization. Then we will relate what we

believe the state is relative to what might be required for
advanced software visualization and visual manipulation as
envisioned by the HIS program.

Visualization Model

Data Model System Interface user

EEEl
EzEEl
EEil I

I

I Reference I
Representation

I Users I

1.

EEl
EEcl
EEil

PiEl
Ecl
EziiEl

Utility

EEl

EEl

Foramore detailed discussiononeach element inthis model ,werecommendreading the original paper

from which this model is taken. This paper also provides an excellent general overview of scientific visu-

al izat ion history and research.

95

3.1 Data Component

The data component is concerned with the raw material of

visualization. Data may be generated in a variety of ways and
from a number of sources. Data may be collected from nature,
generated from laboratory experiments, produced by simulation or

abstracted from objects and processes by humans or machines.

Data typically represents selected variables, relationships and

values of the target objects and processes of a visualization.
The variables, relationships and values used in a visualization
may be the result of a well established theory or may represent

a proposed theory or model which the visualization is meant to
help verify. In other cases visualization is intended to support

the discovery of new structures, relationships, hypotheses,

models or theories. Those responsible for the construction of a
visualization and those responsible for the use of a

visualization must understand the data used as well as its
visual representation. Since a visualization is a mapping of
domain data onto an array of visual clues where it is then
rendered and displayed, the management, preparation, structure

and mapping of the data are critical parts of a visualization

solution [Williams] .

The mapping of data to visualization parameters is the central

focus where cognitive science, domain knowledge, computational
science and computer graphics intersect. The dataflow paradigml
is currently the primary high level technique used to implement

the mapping. This approach allows the user to concentrate on the
visualization mapping, but forces trade-offs between power and

flexibility due to a fixed set of mappings which may not satisfy
all visualization applications [Williams] .

One area of the data component receiving significant research
attention is the area of management of large data sets. There

are researchers talking about managing terabyte size data sets
coming from new generations of Earth resource satellites. There
are also discussions about access to data sets via relational
database technologies. There are also discussions of using
object oriented database technologies for managing complex data

sets [Rosenblum] .

1. The dataflow paradigm isbased upon connecting asetofdata processing modules. Each module per-

forms aspecitlc action on the data. Theconnections between these modules represent thedatatlow

between them.

96

In general, we believe data gathering and management is not

viewed as a significant roadblock to the production of most

scientific visualizations. In the realm of software

visualization, the mapping of data to a visual representation is
an important area for research especially how this relates to

user issues of cognition and perception.

3.2 Model Component

The model component is concerned with the abstraction which

describes central elements of a domain and their behaviors,
interactions and interfaces. A number of different standard

models have been proposed like a reference model, data model,

user model, time model and device model.

A reference model can standardize terminology, identify core
elements, identify constraints and limitations and help to

compare systems. Data models have been proposed, but none

incorporate a generic data description which includes all data
types as well as the semantics of the data for a wide range of
visualization applications. Data typesl include geometric,

kinematics, dynamic, physical characteristics, etc. It is

important for developers and user to operate at a high level of
abstraction and yet preserve the integrity of the data

structures . Models of users can be based on their application

domains, the types of visualization tools needed, the methods of

operating their visualization tools and their level of computing
expertise. A time model is needed that can formally describe a

time variable and its relationship with all processes in which
it is involved. Device models are needed to describe the types

of data that devices can accept and the functionality of devices

in processing the data. A device model would incorporate video

audio, head mounted displays, 3-D positioning and orientation

and multidata inputs and outputs [Williams] .

One very important model not considered by the previous

discussion is a model for advanced visual programming based on

attribute visualization and component construction of the kind

envisioned by the HIS program. The seeds of this model may come

from the current and future generations of visual programming

languages.

1. This does not refer to programming sense of data types like integer, real, pointer, etc.

97

There are many visual programming researchers who concede that

the goal to make programming and program understanding simpler

by representing programming constructs, elements and concepts
visually is a far more complex and difficult task than anyone
would like [Freeman] .

Current visual programming models program at a relatively fine

grain level of detail roughly equivalent to one or a small
number of lines of code in a conventional textual programming

language. This creates a basic problem that must be addressed
and solved: when a large collection of constructs used in
textual programming is translated into a large collection of

visual constructs, textual complexity is merely replaced with
visual complexity. Compounding this problem is the additional
complexity that occurs when there is no clear relationship

between visual symbols and the concepts they represent

[Freeman]. The management of complexity is a key problem which
needs to be addressed by coupling research in enhanced semantics
for visual languages along with human cognition and perception
to graphical, auditory and haptic (feel) presentation techniques.

Also a burden on many visual languages is their visualization in
only 2 dimensions (2-D). Many of these visual languages have

been inspired by the pictures programmers draw when they are
sketching outlines of their programs, flowcharts, or data

dependencies. Current research in visual languages is now

focused on a 3-D presentation. By extending the visual space to

3-D, researchers believe they can reduce some of the complexity
that results from the limitations of 2-D space. Additionally,
researchers believe they can also take advantage of the extra

dimension in representing concepts and program structure
[Freeman].

We believe that without models in hand, like the ones described
above, progress in visualization systems including software
visualization systems will be difficult. Our research indicates

that slow but steady progress is being made in the general
modeling areas indicated above. However, there is significant
work required to improve and create visual programming models

which are essential to software visualization of the kind
proposed by HIS.

98

3.3 System Component

The system component is concerned

software and graphical techniques

with the hardware platforms,

used for visualization.

Hardware

In the hardware arena, we are most interested in computing

engine performance and input and output devices for human
interaction. The current pace of hardware computing performance

improvement is holding around 18 months for microprocessor
performance to double. At this rate, one computer in the 25

years will be as powerful as all the computer in Silicon valley
today. {Patterson] Current high end RISC-based microprocessors

such as DEC’S Alpha, IBM’s PowerPC and Sun’s Spare have SPECmark

performance ratings from 100 to 300. By the year 2000,
processors will easily have a SPECmark performance of 1000
[Weiss].

A fair amount of commercialization and research has been done to

create a wide array of input and feedback devices for human

computer interaction (HCI) . These HCI devices include
technologies for emmersive virtual reality environments which
include head mounted displays, stereoscopic systems, holography

displays, audio feedback, haptic displays, data gloves, hand and
eye tracking devices [Williams] . We are now beginning to see the

impact of this technology even in cost sensitive areas like the
consumer-oriented entertainment market. A good example of this

is Nintendo’s new Virtual Game Boy which incorporates a

monochromatic (red) 3-D head mounted display.

Software for 3-D Presentation

As seen in the attached Scientific Visualization Sampler

(Appendix C), 3-D representations and rendering techniques are
widely used. Due to the foundational significance of 3-D

representation and rendering as a key system component? we
believe it is important to note the current state of industry
based on 3-D standards.

Currently, there are two relatively new non-proprietary industry

developed standards garnering significant attention. These are

OpenGL from Silicon Graphics and QuickDraw 3-D from Apple. Both

99

OpenGL and QuickDraw 3-D are intended to be environments for

developing cross platform 3-D graphics applications. Silicon

Graphics OpenGL is an application programming interfaces (API’s)

intended to be vendor neutral and a cross platform industry

standard. OpenGL has already found a home with Microsoft’s

Windows NT and the recently released Windows 95.

Apple’s QuickDraw 3-D is also a cross-platform application

program interface (API) for creating and rendering real-time,

workstation-class 3-D graphics. It consists of human interface
guidelines and toolkit for a consistent user interface, a high-
level modeling tool kit, a shading and rendering architecture, a
cross-platform metafile format for storing 3-D objects 93DMF)
and a device and acceleration manager for plug and play hardware

acceleration. QuickDraw 3-D is available now for Power Macintosh

systems, the Windows version will ship later this year. Apple
has released the 3-D metafile specification for Macintosh,
Windows and UNIX platforms.

A significant derivative of OpenGL is VRML (Virtual Reality

Markup Language). VRML is an open, platform-independent, file

format for 3-D graphics on the Internet’s World Wide Web.
Similar in concept to the Web standard for text, Hypertext

Markup Language (HTML), VRML encodes computer-generated graphics
into a compact format for transportation over a network. As with

HTML, a user with an appropriate VRML-compatible viewer can view
the contents of an interactive 3-D graphics file as well as
navigate to other VRML “worlds” or HTML pages. A number of
research organizations now have VRML-based content to visualize
and explore chemistry related information such as biomolecules.

Beyond cross platform foundational 3-D standards like OpenGL and

QuickDraw 3-D, we note that Microsoft has begun a multipronged

strategy of making their presence known in both the consumer 3-D
graphics and high-end 3-D markets. In the consumer market,

Microsoft is reported to have plans to create a “new standard
for fast, cheap 3-D software and hardware along with easy-to-use
visualization-compatible packages incorporating sound, images
and animation [BusinessWeek] . It appears for high end CAD
modeling, Microsoft will continue to rely on the OpenGL 3-D

standard. but for the consumer oriented 3-D market, Microsoft is

developing two different application programming interfaces
(API) . Their low level 3-D API is reported to be called Direct 3-
D. Direct 3-D is intended as a low-level API for software
developers especially in the game market who require fast 3-D

performance. Their high level API is reportedly called

100

RealityLab 3-D which is intended for software developers writing
consumer, business, and virtual reality applications [Byte] .

Techniques

Beyond 3-D standards, our research noted a great deal of

interest in advanced research in improved volume visualization

techniques. This is particular true for those working on medical
imaging and visualization. Research topics in this area center
around improved volume graphic techniques and improved real-time

rendering, and enriching volumes with knowledge about that
volume - such as automated segmentation of the volume (e.g. ,

automated identification of different tissue types or organs
found in medical volume visualizations) [Rosenblum]. It is

unclear to use whether this line of research will be any direct
interest in software visualization.
Overall in terms of software and graphical techniques used for
visualization, there is already a rich set of techniques to work

with and can be readily used for software visualization research

in the near term. Long term it is quite likely that new graphics

techniques may evolve to meet the specialized needs of effective
software visualizations.

While there are some very complex and time consuming
visualizations being done today, we believe the system component

should not be viewed as a significant roadblock to the
production of most scientific visualizations. In the next few

years, it is unlikely that it will be necessary to push any

aspect of the system component technology beyond what is already

ongoing or will naturally occur to achieve progress in software
visualization. So in this area, we anticipate the need only to
monitor progressed in this system component area and plan for
the incorporation of new and relevant technologies as they
become available.

3.4 Interface Component

The interface component is concerned with the Human-Computer

Interface (HCI). HCI provides the presentation and interaction

capabilities, which in the best case, is matched to human

cognitive and perceptual capabilities. A well designed and

implemented HCI facilitates the creation! enhancement and
navigation necessary to support the user’s need for exploring a

101

visualization solution [Williams] .

Here there are a number of HCI active research issues of note.

There is the need for improved user interfaces that permit

steering through data sets. There is a need for improved virtual
reality (VR) interfaces to provide an emmersive 3-D environment

that takes full advantage of visual, auditory and tactile senses
for visualization and manipulation. As VR matures, interfaces

that support the immersion of the user in a 3-D space with the
presentation and navigation tools necessary for controlling and

manipulating the environment presents significant challenges in
terms of performance, rendering and data management. VR

visualization applications in the domains of fluid flows,
quantum mechanics and astronomical events have already shown

promise for the scientific and engineering communities
[Rosenblum] [Williams] .

There are other VR applications which employ the sense of feel.

These sorts of interfaces include force-feedback systems to help
“feel” the strength of a bond between atoms or molecules, or
feel the molecular surface of a tooth or permit simulated or

remote surgical operations [Hughes] .

In general, we believe the HCI interface component to be a

rapidly maturing technology base; which left alone on its
current path has and will yield suitable HCI for the purposes of

software visualization.

3.5 User Component

The user component is concerned with human elements of

perception and cognition as well as essential domain knowledge.
Visualization attempts to take advantage of the fact that vision

is the most highly developed human sense for the reception,
recognition and understanding of information in our environment.

Visual perception and cognition are leveraged as the main tool
in the analysis of pictorial data. Designing an effective
visualization requires knowledge of human visual perception and

the cognitive processing of visual information. Likewise, an
effective visualization requires domain knowledge which must be
incorporated into the visualization application [Williams] .

As can be seen by the visualization sampler (Appendix C), the

software domain does not have a rich set of visual metaphors for

102

representing software domain knowledge. Extensive research into

developing appropriate visual metaphors for software is
required. This includes research into visual metaphors for
visualizing quality attributes as envisioned by the HIS

initiative. These visual metaphors need to rely on perception

and cognitive knowledge and to embody software domain knowledge.

We need to identify what mix of visual elements like size,
shape, color, texture, movement, animation, dimensional
presentation (e.g., 3-D) can be used as an effective basis for

visual metaphors for software. Additionally, we need to

determine what software domain knowledge and what granularities

of this knowledge are best represented in these visual metaphors

for software.

We believe there is a sufficient base of existing perception and

cognition knowledge to begin an investigation to identify a set
or sets of visual metaphors appropriate for representing

software for the purposes of understanding and constructive
manipulation.

For those pursuing issues of perception and cognition and visual

metaphors, we highly recommend they examine the works of E.R.
Tufte [Tufte83][Tufte 90] and Peter & Mary Keller [Keller].

Tufte is often cited for providing valuable insights and
guidelines for effective as well as ineffective methods of
presenting data based on the interaction of human perception and

the display presented to the user [Williams] . The Kellers have a
very insightful book on “Visual Cues - Practical data

Visualization” .

We find there is a need for greater automated support for
visualization to reduce the reliance upon multidisciplinary

teams of people to create high quality visualizations. Today it
can take a small staff of people like a graphic programmer,

graphic design artist, researcher and cognitive physiologist. To

reduce this reliance on human availability of expertise~ it may

be useful to make visualization programs incorporate some form

of AI-based design assistant substituting for members of a
visualization team. With this type of assistance, it will

greatly improve the ability for a single researcher or engineer
to create high quality visualizations - enabling an age of
unassisted high quality desktop visualization.

There is also a need for standardizing aspects of visualization

so that communications among researchers, users and developers

is less ambiguous and more precise. For example, the current

103

state-of-the-art visualization terminology is ambiguous,

conflicting and imprecise, Likewise, file formats have not been
standardized to permit easy interchange between different

visualization applications. There are however a number of
formats competing to become a standard [Williams].

In the are of standardizing software visualization terminology,

we found Blaine A. Price, et.al, work on “A Taxonomy of Software

Visualization” to be exceptionally noteworthy. This work
proposes a novel and systematic taxonomy of six areas making up

thirty characteristic features of software visualization
technology. Their taxonomy is presented and illustrated in terms

of its application to seven systems of historic importance and

technical interest [Price].

3.6 Utility Component

The utility component is concerned with the applicability,

accuracy and relative utility of using visualization solutions.

Like all tools and techniques, visualization is not value
neutral. Visualization solutions require validation and

verification of their results. Since decisions made in

constructing visualization solutions are not value free, there
are ethical issues involved. The old saw about telling lies with

statistics also applies to visualization [Williams] .

In general, we believe validation and verification to be

important for any visualization endeavor and it is highly
important to the HIS goal. Our research found one reference that
would tend to indicate that the state-of-the-art in this area is

not well developed and requires ongoing attention for the
foreseeable future[Uselton].

4. State of the Art Summary

In general, we find that the General State of the Art of

Scientific Visualization is relatively advanced in all areas of

the roadmap visualization Model. With the areas of Users,
Utility and Modeling lagging behind the other areas. For the

State of the Art of Software Visualization, we find that the
User, Utility and MOdeling area are even more primitive and
require significant attention.

104

The chart below is a Kiviat chart which depicts our assessment

of the General State of the Art of Scientific Visualization
versus the State of the Art of Software Visualization. This

assessment is based upon the previous narrative and is purely
subjective.

Each of the six areas of our Visualization model are represented
on the six axis of the Kiviat chart. Each axis has a scale from
primitive to advanced. The mapping of advancement in each area

onto the chart creates a “footprint” by which to access the

general state-of-the-art of visualization versus the specific
state-of-the-art of software visualization.

Jtility

Users

Software Visualization INTERFACE

105

5 Conclusion

Scientific Visualization is a rapidly developing technology

which has not been significantly exploited or pursued by the

needs of the software development community. The state of the

practice for scientific visualization is quite advanced for many

domains outside of software development. In the realm Of

visualization of software and visualization as a tool for

software developers, the current state of this visualization
domain appears to be far behind. Principally this is due to
visualizations in other scientific disciplines being based much
more on recognizable physical attributes than on the artificial
immature abstract attributes as found in software development.

We have found there is a dearth of information or experience in
visualization of soft3ware system attributes. It is quite clear

from this survey of the state of the art of visualization, that

the visualization of software quality attributes is not the
focus of any current research. Visualization of program
execution and potentially visual programming are the only areas

of on-going research that are applicable to HIS.
Substantial research is required to improve the science of
visualization for software development. We need to identify what
we want to see, how we want to see it and how we want to

interact with it. We need better models of software in general
and visual programming. Visualization of quality attributes as
envisioned in the HIS initiative will require research and
experimentation to identify the right set of visual metaphors to

represent attributes and their interaction. A practical and rich
visual environment for software development is years into the
future.

Nevertheless, we believed a rich software visualization
environment is an important technology necessary to achieve HIS

goals . One of these goals being a modeling-simulation

environment in which developers manipulate representations of a
system (e.g. , architecture descriptions, specifications,
requirements), to carry out various analysis and “correct by
construction” synthesis tasks.

We have one final closing note of caution to balance out this
survey on the state-of-the-art of visualization and its relation
to visual programming. There are some very respected individuals
who believe that efforts in the direction purely visual

programming are doomed to fail. One individual is Fred Brooks

106

who in 19878 remarked:

“A favorite subject for Ph.D. dissertations
in software engineering is graphical, or
visual programming - the application of
computer graphics to software design. . .
Nothing even convincing, much less exciting,
has yet emerged from such efforts. I am
persuaded that nothing will.” [Brooks]

More recently in 1993, L. O’Brien has written:

t!
. . . Beware the claims of visual programming.

Drawing lines between objects becomes
bafflingly web-like. Purely visual
programming is not yet and may never be
viable. “ [OBrien]

Hopefully, there will be found techniques and technologies which

overcome these objections and speculations.

6 Appendix Summary

This summary highlights the contents of 5 appendixes to this
report. Included in this section is notable information about

the State-of-the-Art in Scientific visualization that did not
fit into the Visualization Model directly, but have an important
bering to this subject.

The material in Appendixes A-D are organized into different

categories due to the large number of items in these appendixes

(e.g. ,all the organizations associated with a US university or
all the visualization samples for program vi.suali-zation) . There

are category overview pages included before the material in the

appendix to aid i.n understanding the appendix organization and
for later location of individual i-terns.

6.1 Appendix A: Annotated Visualization

Bibliography

The visualization bibliography contains 174 citations arranged

i-n 24 different categories. Of the 174 citations, 70% of them

107

have been annotated with summary abstracts. In most cases, the
abstracts are taken directly from source material as written by

the original authors. Of the 174 citations, all are available in

paper format unless the citation is for a book. 30% of the
citations are available in electronic format - either Portable (

Document Format or Postscript. Carnegie Mellon University’s

Library Information System (LIS), the Library of Congress Marvel i

access system, and search engines-libraries on the World Wide

Web (e.g., CMU’S LYCOS1, AOL’S Webcrawler2, Colorado

University’s Harvest Computer Science bibliography, and
InfoSeek4) were particularly rich sources of material gathered

in the bibliography.

6.2 Appendix B: Graphic & Visualization

Organizations

The list of organizations5 which have visualization interests

consists of 121 different organizations organized into 10

categories . Many of these organizations exist as a visualization

center or laboratory. The sheer number of groups dedicated to

visualization is a good indication of the wide spread interest
in scientific visualization in general.

Among all the research organizations identified, we were most

impressed with the Graphics, Visualization, and Usability Center

at Georgia Institute of Technology. This organization has done

extensive work in scientific visualization coupled with related
fields such as animation, virtual environments, medical
informatics, software visualization, user interface software,

multimedia, educational technology and human factors.

We were also impressed by the work done at Brown University in
the are of 3-D user interfaces for desktop and emmersive
environments, and interactive 3-D toolkits for visual

programming to provide insight into software programs, their
structure and their execution. It is notable that Brown
University is part of the five-university Science and Technology

Center for Computer Graphics and Scientific Visualization

1.

2.
3 . .
4.
5.

http:lllycos.cs. cmu.edu

http: //webcrawler.com

http: //harvest. cs.colorado.edu
htlp://www.infoseek. com
NASA’s Numerical Aerodynamic Simulation annotated scientific visualizationweb sites bibliography

was a key source of material gathered in this bibliography [NASA].

I 08

consortium dedicated towards improving the fundamental and

intellectual basis for computer graphics. The Center was founded

in 1991 with support from the National Science Foundation and

the Advanced Research Projects Agency. The other universities in
the consortium are California Institute of Technology, Cornell
University, University of North Carolina at Chapel Hill and

University of Utah.

Also of note is Sandia National Laboratories Synthetic

Environment Laboratory’s Multidimensional, User-oriented

Synthetic Environment (MUSE) project organization located at

Albuquerque, New Mexico. This organization has done work in a

wide range of different visualization categories. The focus of
the MUSE project is to develop an open, multi-purpose software
interface between general classes of scientific information and
a highly interactive, multi-dimensional visualization system -

including the incorporation of emmersive systems often referred

to as virtual reality systems.

Finally, a couple of notes and observations about Microsoft. As
noted earlier, Microsoft is putting their stake in the ground in

the 3-D applications market. This is having an effect on the

traditional 3-D market leader Silicon Graphics. For example,
Microsoft has acquired SoftImage for porting of SoftImage to 32-

bit Windows-based platforms. Previously, SoftImage was a high-

end 3-D graphics package which ran only on Silicon Graphics

platforms. In an effort to stem migration of market leading

graphics packages like SoftImage of Silicon Graphics platforms
to less expensive platforms, Silicon Graphics has acquired Alias

Research and Wavefront Technologies. Products from both of these
newly acquired companies have established themselves as market

leading 3-D graphics products operating exclusively on Silicon
Graphics platforms.

Our last observation about Microsoft comes from Richard F

Riesenfeld, University of Utah computer scientist, who notes

that Microsoft has quietly assembled “the largest collection of

graphics talent under one roof in the world.” Among this talent

is Alvy Ray Smith, co-founder of Pixar Corporation and James

Kajiya from the California Institute of Technology

[BusinessWeek] .

109

6.3 Appendix C: Scientific Visualization

Sampler

The visualization sampler consists of 186 different examples of

scientific visualization organized into 37 categories, These

examples span from the physical to the abstract. From simple 2-D
graph visualization to highly detailed interactive

photorealistic animated visualizations. Included in this sampler
were visualizations of atoms molecules, human oraans, aircraft.,

7 References

[Brooks] F.P. Books, Jr., No Silver Bullet, IEEE Com~uter,

April 1987, pages 10-19.

[Byte] Coming: A Better Multimedia Platform, Byte, Ott
1995, p.27.

[BusinessWeek] 3-D Computing, Business Week, September 4, 1995,
pages 70-77<

[Csinger] Andrew Csinger, The Psychology of Visualization,
Department of Computer Science University of

British Columbia, November 1992.

[Freeman] Elisabeth Freeman, et.al., In Search of a Simple
Visual Vocabulary, IEEE Symposium on Visual

Languages, September 5-9, 1995.

[Hughes]

[Keller]

[NASA]

[OBrien]

[Patterson]

[Price]

[Rosenblum]

Matt Hughes, What is Visualization, University of
Minnesota, URL http://www.msi.umn.edu/SciVis/
whatisviz. html

Peter Keller, Mary Keller, Visual Cues -
Practical Data Visualization,’ IEEE Computer

Society Press, 1993.

Annotated Scientific Visualization Web Site
Bibliography, NASA’s Numerical Aerodynamic

Simulation Group, URL http://www.nas.nasa.gov/RNR/

Visualization/annotated URLs.html

L. O’Brien, Issues of Programming, COm~ut er
Lanauaa~, January 1993, pages 45-52.

David A Patterson, Microprocessors in 2020,

SC ent i ific Amer ican, September 1995.

Blaine A. Price, Ian S. Small, and Ronald M.
Baecker, A Taxonomy of Software Visualization,
Journal of Visual T,anffuages and c om~utinq 4(3),

1993.

L. Rosenblum, et.al., Sc ientific Visualization:
Advances and Challenges , Academic Press Ltd.,

111

1994.
[Tufte 83] Tufte, E. R., The Visual Displav of Quantitative

Information, Graphics Press, 1983.

[Tufte 90] Tufte, E. R., Envisioning Information, Graphics
Press, 1990.

[Uselton] Sam Uselton, chair, Validation, Verification and
Evaluation, Proceedings of Visualization ’94,
IEEE Computer Society, 1994.

[Weiss] Ray Weiss, SPARC Returns, Drives Health VMEbus
Base, Com~uter Desiqn, August 1995.

[Williams] James Williams, Visualization, in Annual Review
of Information Science and Technoloqv , Vol 30,
Learned Information Inc. , 1995.

112

DISTRIBUTION:

2 MS 0535
2 0535
2 1109
2 1109

1 9018
2 0899
2 0619

1 0161

L. J. Dalton, 2615
L. C. Kidd, 2615
A. L. Hale, 9224
G, M. Pollock, 9224

Central Technical Files, 8940-2
Technical Library, 4916
Review & Approval Desk, 12690
For DOE/OSTI
Patent and Licensing Office, 11500

113

	Abstract
	TABLE OF CONTENTS
	List of Figures
	Executive Summary
	Acronyms and Abbreviations
	1. Introduction
	HIS Initiative
	Traditional Research Approaches
	Visualization Techniques

	2. Background
	HIS Program Goals
	State of the Industry
	Information Warfare
	Industrial Concerns
	Sponsors

	3. Project Goals
	Visual Models
	Surety Assessment
	Program Comprehension
	Ease of Use
	Portability

	4. Brief Literature Review
	Balsa
	Zeus
	TANGO
	ANIM
	Genie
	UWPI
	SEE
	TPM
	Pavane
	LogoMedia
	ObjectCenter

	5. Project/Tool Overview
	Functionality
	Differentiating Aspects
	Computing Environment
	Components

	6. SAVAnT Description (Software Attribute Visual Analysis Tool
	Preprocessor
	Executing Program
	Visualization Routines
	Constraint Monitor
	Controlling Routine
	Advantages
	Disadvantages
	Future Extensions

	7. REQUIREMENTS CONSTRAINT LANGUAGE DESCRIPTION
	Constraints
	Constraint Systems
	Software Attribute Generic Evaluation
	Advantages
	Disadvantages
	Implementation
	Operations
	Syntax Issues
	Examples

	8. Examples of Use (identification of errors)
	9. User Directives
	Tool Location
	Required Software Environment
	User Requirements
	Compiler Directives

	10. Developer Directives
	Functionality Extension
	Internal Structures

	11. Conclusions
	Advancements
	Disadvantages
	Significance
	Expected Payoff
	Future Work

	References
	Appendixes
	A. Language Grammar
	B. Data Structures
	C. Visualization State of the Art Survey

