Quality Report SQAS94-001

Status of Licensing and Certification of Software Professionals

November 1994

Software Quality Assurance Subcommittee
of the
Nuclear Weapons Complex Quality Managers

United States Department of Energy
Albuquerque Operations Office

Abstract

This report presents information on existing and proposed software engineering certification programs, licensing of software engineers, reasons to become certified, certification as a condition of employment, the body of knowledge and examination structures for the certification programs, and an overview of the Institute of Electronic and Electrical Engineers recommendations for software engineering as a profession.
ACKNOWLEDGEMENT

The Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality Managers initiated Work Item #12 to research software-related certification and licensing efforts and to provide periodic status reports to the Quality Managers. This document is a significant result of that work item and establishes the baseline for periodic status reports. The working group and other major contributors to this document are listed below.

Mike Blackledge, SA, Chair
Jim Bosworth, RF
Faye Brown, OR
Russ Busbee, SR
Barbara Campbell, LL
Brad Clark, LA
Bob Corey, LL
Anna Dixon, SR
Phil Edwards, HA
Jean Evans, PP
Tina Heath, OR
Cathy Kuhn, KC
Steve Lloyd, LA
Travis Moyer, SR
Carolyn Owens, LL
Dave Peercy, SA
Larry Rodin, PX, Author of Paper
Nancy Smith, SR
Ann Stewart ORNL
Patty Trellue, SA, Editor
Royce Tyler, LA
TABLE OF CONTENTS

Acknowledgement
Executive Summary
1. Introduction
2. Software Quality and Software Engineering Certifications
3. Licensing of Software Engineers
4. Why Become Certified?
5. Certification as a Condition of Employment
6. Overview of the ICCP Requirements for Associate Computing Professional
7. Overview of the ICCP Requirements for Certified Computing Professional
8. Overview of the Proposed ASQC Requirements for Software Quality Engineer
9. Overview of the Proposed Software Quality Systems Registration (SQSR) Registrar Accreditation Board (RAB) Requirements for ISO 9000 Software Auditor
10. ICCP Associate Computing Professional & Certified Computing Professional Examination Structure
11. ASQC Software Quality Engineer Proposed Body of Knowledge
12. Institute of Electrical and Electronic Engineers (IEEE) Overview

Appendix:
A. References
EXECUTIVE SUMMARY

Certification is a voluntary process administered by a professional society. Licensing is a mandatory process administered by government. Three professional organization have been identified as having or developing certification programs, and one state has developed legislation for a licensing program:

- The Institute for Certification of Computer Professionals (ICCP) has two levels of certification: Associate Computing Professional, and the Certified Computing Professional;

- The American Society for Quality Control has completed Draft 5.8 of its certification program for Software Quality Engineer;

- The Software Quality Systems Registration Committee of the U. S. Registrar Accreditation Board (RAB) is considering a program for ISO 9000 Accreditation for Software Auditor;

- New Jersey is the only state identified as actually enacting software development legislation, their licensing program covers "software designers".

Members of the SQAS Work Item 12 Group tried to determine Software Engineering or Development licensing efforts in their respective NWC states; however, no evidence was found to document licensing efforts in these states.

The certification programs are presented as confidence-building proof that an individual has met specific requirements and possess high levels of knowledge and skills. It is noteworthy and appropriate that in the "bodies of knowledge" presented in the certification programs, only the ICCP Associate Computing Professional had examination requirements for specific programming languages. That is, the emphasis is on the rigors of software engineering and software management processes.

It is recommend that certification not be used as a condition of employment. Equal Employment Opportunity (EEO) laws are detailed regulations published by the federal government which control the employer's use of selection procedures and if procedures (such as written tests) affect designated population subgroups, then the employer must have substantial evidence that the procedure meets a business necessity.

The Institute of Electrical and Electronic Engineers' Steering Committee Report, "Establishment of Software Engineering as a Profession", contained four recommendations:

- Adopt Standard Set of Definitions;
- Define Required Body of Knowledge Recommended Practices;
- Define Ethical Standards;
- and Define Educational Curricula.
1. INTRODUCTION

Licensing is a mandatory process administered by government and certification is a voluntary process administered by a professional society; that is:

Certification: Formal recognition granted by a profession that an individual has demonstrated a proficiency within, and a comprehension of, a specific Body of Knowledge at a point in time.

License: Permission granted by a government authority to an individual to engage in a business or occupation or in an activity otherwise unlawful.

This report presents information on licensing and certification of software engineers and developers, and "software engineering as a profession":

- Existing and proposed software engineering certification programs;
- Licensing of software engineers;
- Reasons to become certified;
- Certification as a condition of employment;
- Body of knowledge and examination structures for the certification programs;
- An overview of the Institute of Electronic and Electrical Engineers recommendations for software engineering as a profession.

Included in this paper are considerations and implications for licensing and certification. What incentive is there to become certified? What evidence is required to prove that there is no discrimination with regard to equal employment opportunity laws and with respect to certification as a condition of employment?

2. SOFTWARE QUALITY AND SOFTWARE ENGINEERING CERTIFICATIONS

Established Program

Institute for Certification of Computer Professionals (ICCP)

Associate Computing Professional (ACP)
Certified Computing Professional (CCP), effective 1/1/94

Before 1/1/94, the following designations were offered:
Certified Computer Programmer (CCP)
Certified Data Processor (CDP)
Certified Systems Professional (CSP)
Associate Computer Professional (ACP)

Programs Being Proposed or Developed

American Society for Quality Control (ASQC) Draft 5.8
Software Quality Engineer

Software Quality Systems Registration (SQSR) Committee of the U. S. Registrar Accreditation Board (RAB). U. S. Accreditation Requirements for ISO 9000 Software Auditors using United Kingdom "TickIT" program as the model.

ISO 9000 Accreditation for Software Auditor
3. LICENSING OF SOFTWARE ENGINEERS

Gary Ford, SEI Technical Staff, presented a paper at the 1993 SEI Software Engineering Symposium entitled, "The Current State of Certification & Licensing of Software Engineers". This paper contained excerpts on professional licensing from three states: Pennsylvania, West Virginia, and New Jersey. New Jersey was the only state identified as actually enacting software development legislation (State of New Jersey, Assembly Bill 4414, New Jersey Software Designers' Licensing Bill).

MOTIVATION FOR LICENSING ENGINEERS

- Pennsylvania Statute, "...to safeguard life, health or property and to promote the general welfare..."

- West Virginia Statute, "...to safeguard life, health or property and to promote the public welfare..."

- New Jersey Statute, "...the public interest requires the regulation of the practice of software designing and the establishment of clear standards for software designers, and the welfare of the citizens of this State will be protected by identifying to the public those individuals who are qualified and legally authorized to practice software designing."

LICENSING ENGINEERS IN OTHER STATES

Members of the SQAS Work Item 12 Group tried to determine Software Engineering/Development licensing efforts in their respective NWC states: California, Colorado, Florida, Missouri, New Mexico, Ohio, South Carolina, Tennessee, and Texas. However, no evidence was found to document licensing efforts in any of these states.
4. WHY BECOME CERTIFIED?

ASQC:

In today's world where quality competition is a reality, and the need for high-quality software a central concern of many organizations, certification serves as a mark of excellence by demonstrating that the certified individual has the knowledge needed to improve the quality of software. Over 125 organizations have formally recognized ASQC Certification as verification of an individual's possession of this knowledge. Certification is an investment in your career and in the future of your employer.

ICCP:

There is no doubt: Certification is the way to the top of the computing profession. And the prestigious CCP designation...Certified Computing Professional...from ICCP is recognized worldwide by employers and peers as validation of its holders' computing knowledge and experience.

The CCP is the standard which others covet. That is because ICCP, the Institute for Certification of Computing Professionals is acknowledged throughout the information and technology sectors as the most important source of professional certification. Our CCP examination demands a high degree of professional competence from those who pass; consequently, the designation is powerful evidence of the high level of attainment of a true Certified Computing Professional.

It should be no surprise, therefore, that the ICCP is the standard in professional certification for 22 national and international professional computing societies - and for numerous individual employers.

Certification is the confidence-building proof that you have met specific requirements and possess high levels of knowledge and skills. And it is easier than ever to become certified, with the introduction of our innovative computer-based testing concept.

In tough economic times, certification adds to your professional credibility and gives you an advantage in the competitive job market. The recognition that comes with the CCP designation makes ICCP the industry's leading professional certification organization.
5. CERTIFICATION AS A CONDITION OF EMPLOYMENT

Equal Employment Opportunity (EEO) laws are detailed regulations published by the federal government which control the employer's use of selection procedures:

If procedures (such as written tests) affect designated population subgroups, then the employer must have substantial evidence that the procedure meets a business necessity. With paper and pencil tests, adverse effect will normally be assumed unless the employer has evidence to the contrary since the results of most tests do differ among population subgroups. Most tests used in education and employment show differences among population subgroups.

An employer has one of two ways to show the procedure or test measures skills about the job in question:

1. Offer statistical evidence, usually correlations between test scores and measures of actual job performance which show that higher scores are linked to higher levels of performance.

2. Show that the content of the exam covers specific job skills which are essential to the job in question.

6. OVERVIEW OF THE ICCP REQUIREMENTS FOR ASSOCIATE COMPUTING PROFESSIONAL

Experience: Any person who has obtained basic knowledge of Information Processing and one of the recognized programming languages may apply for the exam.

Examination: Pass a two-part examination,

1) Core Examination

2) Option of one of eight programming languages: Ada, BASIC, C, COBOL, Fortran, Pascal, RPG II, and RPG/400.

ICCP Codes: Candidates must subscribe to Code of Ethics, Conduct and Good Practice.
7. **OVERVIEW OF THE ICCP REQUIREMENTS FOR CERTIFIED COMPUTING PROFESSIONAL**

Experience: 48 months of full-time (or part-time equivalent) professional experience. A bachelor's or graduate degree in IS or CS or an ACP Certification may be counted as 24 months experience. A bachelor's or graduate degree in a related field may be counted as 18 months experience. A bachelor's or graduate degree in an unrelated field may be counted as 12 months experience.

Proof of professionalism: Statements from professional colleagues attesting to experience and qualifications.

Examination: Pass a three-part examination,

1) Core Examination

8. **OVERVIEW OF THE PROPOSED ASQC REQUIREMENTS FOR SOFTWARE QUALITY ENGINEER**

Experience: 8 years of professional experience. A graduate degree may be counted as 5 years experience. A bachelor's degree may be counted as 4 years experience. An associate degree may be counted as 2 years experience. A technical school certificate may be counted as 1 years experience.

Proof of professionalism:

- Membership in appropriate society or,
- Registration as a Professional Software Engineer or,
- Statements from two professional colleagues verifying that you are a qualified practitioner of software quality engineering.

Examination: Pass a two-part examination,

1) Software Quality Engineering Principles
2) Software Quality Engineering Applications

ASQC Code: Successful candidates agree to abide by the ASQC Code of Ethics.
9. OVERVIEW OF THE PROPOSED SOFTWARE QUALITY SYSTEMS REGISTRATION (SQSR) REGISTRAR ACCREDITATION BOARD (RAB) REQUIREMENTS FOR ISO 9000 SOFTWARE AUDITOR

Experience: To be determined

Possess a minimum number of years experience in software development.

Possess a minimum number of years experience in software quality management systems.

Proof of professionalism: Pass a RAB conducted technical interview process.

Examination: Pass a RAB-accredited lead auditor course.

ICCP Codes: Candidates must subscribe to Code of Ethics, Conduct and Good Practice.

10. ICCP ASSOCIATE COMPUTING PROFESSIONAL & CERTIFIED COMPUTING PROFESSIONAL EXAMINATION STRUCTURE

CORE EXAMINATION
(Mandatory for Both Exams)
Human and Organization Framework
Systems Concepts Technology
Data and Information

Examination Information

The examination consists of 66 questions and lasts 1 1/2 hours. Associate Computing Professional Candidates must pass the examination with a minimum score of 50%. Certified Computing Professional Candidate must pass the examination with a minimum score of 70%.
10.1 ICCP ASSOCIATE COMPUTING PROFESSIONAL LANGUAGE EXAMINATION STRUCTURE

(choose one language examination for ACP designation)

<table>
<thead>
<tr>
<th>Ada</th>
<th>C</th>
<th>Elementary Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical Elements</td>
<td>Data Types</td>
<td>Procedures and Functions</td>
</tr>
<tr>
<td>Declarations and Types</td>
<td>Operators and Expressions</td>
<td>Control Structures</td>
</tr>
<tr>
<td>Names and Expressions</td>
<td>Control Flow</td>
<td>Defined Data Types</td>
</tr>
<tr>
<td>Statements</td>
<td>Functions</td>
<td>Arrays</td>
</tr>
<tr>
<td>Subprograms</td>
<td>Pointers and Arrays</td>
<td>Recursion</td>
</tr>
<tr>
<td>Packages</td>
<td>Structures and Unions</td>
<td>Text Files</td>
</tr>
<tr>
<td>Tasks</td>
<td>Standard I/O Library</td>
<td>General Files</td>
</tr>
<tr>
<td>Input and Output</td>
<td>Library Functions and Environment</td>
<td>Records</td>
</tr>
<tr>
<td>Other Topics</td>
<td>The Preprocessor</td>
<td>Pointers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COBOL</th>
<th>BASIC</th>
<th>RPG/400</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Characteristics of a BASIC Program</td>
<td>General Topics</td>
</tr>
<tr>
<td>Compiler Commands</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>Divisions and Sections</td>
<td>Expressions and Assignments</td>
<td>File Processing</td>
</tr>
<tr>
<td>Debugging</td>
<td>Input and Output</td>
<td>Calculation Operations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RPG II</th>
<th>Fortran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification Types</td>
<td>Fortran Terms and Concepts</td>
</tr>
<tr>
<td>Editing</td>
<td>Implementing Control Structures</td>
</tr>
<tr>
<td>Calculations</td>
<td>in Fortran</td>
</tr>
<tr>
<td>File Concepts</td>
<td>Implementing Data Structures</td>
</tr>
<tr>
<td>Control Levels</td>
<td>in Fortran</td>
</tr>
<tr>
<td>Logic Control</td>
<td>Manipulating Data</td>
</tr>
<tr>
<td>Matched Records</td>
<td>Input and Output</td>
</tr>
<tr>
<td>File Organizations</td>
<td>Tables</td>
</tr>
<tr>
<td>Tables</td>
<td>Arrays</td>
</tr>
<tr>
<td>Arrays</td>
<td>Logic Cycle</td>
</tr>
<tr>
<td>Logic Cycle</td>
<td>Debugging</td>
</tr>
</tbody>
</table>

| Pascal |
10.2 ICCP CERTIFIED COMPUTING PROFESSIONAL EXAMINATION STRUCTURE

(Choose two from following section for CCP designation)

<table>
<thead>
<tr>
<th>Management</th>
<th>Data Resource Management</th>
<th>Systems Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Management and Organizational Concepts</td>
<td>Data Resource Management</td>
<td>System Analysis</td>
</tr>
<tr>
<td>Project Management</td>
<td>Functions</td>
<td>System Design and Implementation</td>
</tr>
<tr>
<td>Information Systems Management</td>
<td>Data Analysis</td>
<td>The Systems Analyst as a Professional</td>
</tr>
<tr>
<td>Project Management</td>
<td>Data Base Design</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software Engineering</th>
<th>Systems Programming</th>
<th>Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer System Engineering</td>
<td>Languages</td>
<td>Data Communications Theory</td>
</tr>
<tr>
<td>Software Project Planning</td>
<td>Operating Systems</td>
<td>Networking Theory</td>
</tr>
<tr>
<td>Software Requirements</td>
<td>Concurrent and Distributed Processing</td>
<td>The ISO OSI Reference Model</td>
</tr>
<tr>
<td>Software Design</td>
<td>Data Management Systems</td>
<td>Established Communications Systems</td>
</tr>
<tr>
<td>Programming Languages and Coding</td>
<td>Computer Architecture and Implementation</td>
<td>Hardware Usage and Design</td>
</tr>
<tr>
<td>Software Quality Assurance</td>
<td>Performance Evaluation</td>
<td></td>
</tr>
<tr>
<td>Software Testing Techniques</td>
<td>Software Tools</td>
<td></td>
</tr>
<tr>
<td>Software Maintenance and</td>
<td>Systems Management</td>
<td></td>
</tr>
<tr>
<td>Business Information Systems</td>
<td></td>
<td>Configuration Management</td>
</tr>
<tr>
<td>BIS Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The BIS Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIS Considerations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office Information Systems</th>
<th>Procedural Programming</th>
<th>Systems Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office Environment</td>
<td>Data and File Organization</td>
<td>Risk Assessment</td>
</tr>
<tr>
<td>Office Technologies</td>
<td>Program Design</td>
<td>Recovery from Information Service</td>
</tr>
<tr>
<td>End User Computing</td>
<td>Procedural Program Structure</td>
<td>Interruptions</td>
</tr>
<tr>
<td></td>
<td>Procedural Programming</td>
<td>Information and System Security</td>
</tr>
<tr>
<td></td>
<td>Considerations</td>
<td>Security in System Design</td>
</tr>
<tr>
<td></td>
<td>Integration with Hardware and Software</td>
<td>Security Management</td>
</tr>
</tbody>
</table>
11. ASQC SOFTWARE QUALITY ENGINEER PROPOSED
BODY OF KNOWLEDGE

Software Quality Management

A. Software Total Quality Management
B. Software Quality Planning
C. Participation
D. The Software Quality Function
E. Quality Information Systems
F. Quality Management Tools
G. Quality Education and Training
H. Professionalism

Issues

A. Controls
B. Data Integrity
C. Disaster Planning
D. Liability
E. Maintainability
F. Reliability
G. Risk Management
H. Safety
I. Security

Software Engineering

A. Basic Concepts
B. Software Engineering Techniques
C. Software Engineering Life Cycle

Analytical Methods

A. Metrics and Measurement
B. Probability and Statistics
C. Statistical Process Control

Project Management

A. Planning and Control
B. Managing People

Quality Systems

A. Software Corrective Action
B. Software Configuration Management
C. Software Standards and Procedures
D. Improvement and Innovation
E. Software Quality Function Deployment
F. Procurement

Appraisal

A. Software Inspections
B. Testing
C. Verification and Validation
D. Assessments, Audits, and Reviews

Examination Information

The Software Quality Engineering Principles exam and Software Quality Engineering Applications exam consist of multiple choice questions. Each exam lasts 3 hours. Candidates must pass both exams to be certified.
12. INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS (IEEE) OVERVIEW

Steering Committee Report, "Establishment of Software Engineering as a Profession"

- Recommendation 2: Define Required Body of Knowledge Recommended Practices
- Recommendation 3: Define Ethical Standards
- Recommendation 4: Define Educational Curricula

We recommend the adoption of a standard set of definitions. IEEE Standard 610.12 is good starting place (610.12-1990 IEEE Standard Glossary Software Engineering Terminology). Other standard glossaries might be appropriate but in any event, these definitions should be carefully examined for appropriateness and scope. This task could be entrusted to the Standards Activities Board of the Computer Society and the appropriate Standards Subcommittee(s).

12.2 IEEE RECOMMENDATION 2: Define Required Body of Knowledge Recommended Practice

We recommend the identification of a required body of knowledge and recommended practices (in electrical engineering, for example, electromagnetic theory is part of the body of knowledge while the National Electrical Safety Code is a recommended practice.) The required body of knowledge and recommended practices are not static because technology evolves and the professionals should keep up with the field. This activity should be entrusted to a task force of industry experts. Industry should lead the effort because employers know what their software engineers do well, poorly, or indifferently.
Adoption of new practices often requires cultural changes and these processes take years to accomplish. Thus, the initial set of recommended practices ought to be modest and easily achievable. The development and maintenance of the set of recommended practices should be structured like a technical standard: adopted by consensus and subject to periodic revision.

We should not confuse organizational practices with individual practices. Organizational maturity is already the subject of a healthy activity by Software Engineering Process Groups (SEPGs) and Software Process Improvement Networks (SPINs). Industry is adopting standards to assess and improve organizational maturity (ISO 9000, SEI CMM) and we should capitalize on these developments but not confuse the issues.

Engaging the process improvement groups might be unconventional but they provide leverage. The SEPGs are almost exclusively attended by industry practitioners concerned with organization software engineering practices and will have something to contribute to the definition of recommended individual practices.

12.3 IEEE RECOMMENDATION 3: Define Ethical Standards

We recommend to study and customize, if necessary, existing codes already adopted by IEEE, ACM, registration boards, and other relevant organizations. It is not clear that we need something terribly different or specific to software on the grounds that the code of ethics of professionals building antennas, processors, or databases should be different. However, due perhaps to the rapid expansion of the field, software developers sometimes do things that might be considered unethical in other fields (e.g., indiscriminate copying of software in violation of copyrights or licenses.) This task should be charged to the Committee on Public Policy (COPP) of the Computer Society.

12.4 IEEE RECOMMENDATION 4: Define Educational Curricula

We recommend the definition of curricula for (a) undergraduate, (b) graduate (MS), and (c) continuing education (for retraining and migration). This should be charged to an academic task force drawn from educational boards within the SEI, ACM and IEEE Computer Society, and relevant affiliate societies.

There is a debate as to whether Software Engineering is a part of Computer Science or vice versa. We should not be distracted by this debate from the goal of meeting the needs of industry. The education needed by competent software engineers could be acquired in different ways. For example, we might identify the need for a foundation on statistics; at a given school, the courses could be offered by Computer Science, Software Engineering, or other departments. The objective is to seek agreement on the curricula that should be taught and not necessarily on which departments teach it.
APPENDIX A

REFERENCES

1. CERTIFICATION

American Society for Quality Control
P.O. Box 3005
Milwaukee, WI 53201-3005
(1-800-248-1946)

Institute for Certification of Professionals (ICCP)
200 E. Devon Ave., Suite 268
Des Plaines, IL 60018-4503
(708-299-4227)

2. REGISTRATION

Institute of Electrical & Electronic Engineers, Inc.
345 East 47th Street
New York, NY 10017-2394

Software Quality Systems
Registration Committee
U.S. Registrar Accreditation Board
611 East Wisconsin Avenue
Milwaukee, WI 53202
(414-272-8575)

3. PUBLISHED MATERIAL