

Boundary Element Method
Applied to a Gas-Fired

Pin-Fin-Enhanced Heat Pipe
Charles E. Andraka

Gerald A. Knorovsky

Celeste A. Drewien

SAND98-0306 Distribution
Unlimited Release Category UC-1302

Printed February 1998

Boundary Element Method Applied to a
Gas-Fired Pin-Fin-Enhanced Heat Pipe

Charles E. Andraka
Solar Thermal Technology

Gerald A. Knorovsky
Materials Joining Department

Celeste A. Drewien
Microstructural Analysis

Sandia National Laboratories
P.O. Box 5800

Albuquerque NM 87185-0703

ABSTRACT

The thermal conduction of a portion of an enhanced-surface heat exchanger for a gas-fired
heat pipe solar receiver was modeled using the boundary element and finite element methods
(BEM and FEM) to determine the effect of weld fillet size on performance of a stud-welded pin
fin. A process that could be utilized by others for designing the surface mesh on an object of
interest, performing a conversion from the mesh into the input format utilized by the BEM code,
obtaining output on the surface of the object, and displaying visual results was developed. It was
determined that the weld fillet on the pin fin significantly enhanced the heat performance,
improving the operating margin of the heat exchanger.

The performance of the BEM program on the pin fin was measured (as computational time)
and used as a performance comparison with the FEM model. Given similar surface element
densities, the BEM method took longer to get a solution than the FEM method. The FEM method
creates a sparse matrix that scales in storage and computation as the number of nodes (N),
whereas the BEM method scales as N² in storage and N³ in computation.

i

TABLE OF CONTENTS

INTRODUCTION... 1

BACKGROUND ... 1

THE HEAT EXCHANGER AND PIN FIN... 1
THE BOUNDARY ELEMENT METHOD ... 5

PURPOSE ... 7

APPROACH.. 7

PROJECT PLAN ... 7
BEM 3D STEADY STATE CODE .. 8
CODE MODIFICATIONS ... 10
TIMING TESTS .. 10
MESH DESCRIPTION.. 11
CUBE TRIAL RUNS ... 11
MESH GENERATION.. 12
MESH CONVERSION.. 13
DATA VISUALIZATION .. 15
PIN FIN ANALYSIS .. 15
FINITE ELEMENT METHOD APPLIED TO PIN FIN .. 16

RESULTS.. 17

CUBE RESULTS... 17
PIN FIN BEM RESULTS... 19
PIN FIN FEM RESULTS ... 23
TIMING RESULTS.. 28

SUMMARY/CONCLUSIONS .. 31

ACKNOWLEDGMENTS... 32

REFERENCES.. 33

APPENDIX A. NPOT3D BEM CODE.. 34

APPENDIX B. FEM SESSION FILES.. 61

APPENDIX C. CONVERSION CODE ... 65

DISTRIBUTION ... 74

ii

List of Figures

Figure 1--The Advanco system holds the gross system conversion efficiency record of 30.6%. About 75kWt sunlight
is concentrated by the 11-m diameter dish onto the receiver. A Stirling engine converts the heat flux into
grid-ready electricity. The Advanco system, tested in the early 80’s, does not incorporate a heat pipe..... 2

Figure 2--This diagram shows a typical solar-only heat-pipe receiver and Stirling engine. Concentrated sunlight
impinges on the spherical absorber, which is cooled by evaporating sodium. The sodium condenses on the
engine heater tubes, releasing latent heat. The gas-fired portion will be added as a cylinder separating
the absorber dome from the rear support dome. ... 3

Figure 3--The schematic shows the evaporator end of the sub-scale gas-fired heat-pipe receiver. Preheated air-
fuel enters the system through the left plenum, and burns at the matrix burner. The hot gases are then
directed through the pin-fin array by high-temperature insulation. The exhaust gases are collected by
another plenum and routed to the recuperator. Liquid sodium evaporates from the capillary wick, cooling
the heated wall... 3

Figure 4--This photo shows about 1600 pins welded to a 76.2mm (3”)-diameter heat pipe. This sub-scale device
will be used to validate the various models and design codes before a full-scale device is fabricated....... 4

Figure 5--This sample weld cross-section clearly shows the conical fillet formed by the stud-welding process. We
assumed that the material thermal properties are unchanged in the melt region of the weld. The weld is
autogenous, i.e. no filler metal was added.. 5

Figure 6--Local node numbering for a nine node continuous quadrilateral element... 11

Figure 7a and b—Flux out bottom surface of cube (expressed as temperature gradient, °C/mm) and temperature
distribution across cube (°C) for cube meshed with 64 elements per side. .. 18

Figure 8--Output of results from collocation points in the center of a cube and moving towards the top surface of
the cube, which was meshed with one element per side. ... 19

Figure 9a. --BEM meshes of the 2X filleted pin fin model. .. 20

Figure 10 a and b—Temperature and gradient distribution for the straight pin fin (1X)...................................... 22

Figure 11--a.) Temperature distribution for the 2X filleted pin fin (°C). b.) Gradient distribution for the 2X
filleted pin fin (°C/mm). ... 22

Figure 12--Variation in BEM-calculated heat flux distribution for filleted and straight pin fins with respect to
mesh density... 24

Figure 13--a.) 1X FEM and 1/2X FEM mesh (20 nodes/element & 8 nodes/element, respectively) and b.) 1/4X
FEM mesh.. 25

Figure 14--Heat flux in z direction (W/mm2) and Temperature(°C) distributions calculated by FEM for a.) 1X, b.)
1/2X, and c.) 1/4X meshes. ... 27

Figure 15--Heat flux in z direction (W/mm2) along bottom diagonal of pin fin, calculated by FEM for 1X, 1/2X,
and 1/4X meshes. ... 28

Figure 16—BEM Timing results for total time and portions of the code. Time is in seconds................................. 30

Figure 17--Total FEM calculation time vs number of nodes in model. ... 31

iii

List of Tables

Table 1--Boundary Conditions for Pin Fin... 17

Table 2--Peak temperature and flux with mesh density. The results are for the BEM model except as noted. 24

Table 3--Comparison of BEM and TEM bottom surface nodal density (number of bottom surface nodes in models)28

Table 4--Comparison of BEM run times with differing levels of code optimization on the RS6000 computer....... 29

Table 5--Output from timing tests for differing number of nodes. Results were obtained using an IBM RS6000 with
an optimizer level of 2 and requesting uninterrupted use of one processor. .. 29

1

Introduction

In this project, we model the thermal conduction of a portion of an enhanced-surface heat
exchanger for a gas-fired heat pipe solar receiver. The surface enhancement is accomplished by
an array of pin fins on the gas-fired side of the heat exchanger. In prior work, the heat exchanger
assembly was modeled in Fluent UNS, a commercial computational fluid dynamics code[1], to
determine the hot gas flow field over the pin fin array. The Fluent modeling indicated high local
thermal flux at several pin rows. The results of the Fluent modeling (gas temperature and
convection coefficient) were used in a finite element program (COSMOS/M, v1.75)[2] to
determine the stresses and heat transfer at the critical pin fin in much greater detail. The calculated
thermal flux and peak pin-tip temperatures were sufficiently high to cause concern for the unit’s
service life.

Since then, weld procedures have been developed and refined in order to get consistent
automated welds of the pin fins to the wall material. The resulting weld has a conical fillet around
the base of the pin, which was not included in the original modeling. The purpose of the current
work is to determine the relative effect of this fillet on the heat transfer characteristics of the pin.
In particular, we are interested in the effect on the peak pin temperature (materials limitations)
and on the local flux distribution into the heat pipe wick (wick limitation).

Since all of the areas of interest lie on the outer surfaces, or boundaries, of the pin structure,
we do not need a full-field solution such as given by finite element methods (FEM). Therefore,
this problem would seem to be natural match for the boundary element method (BEM).

In solving this heat transfer problem, we develop a process that could be utilized by others for
designing the surface mesh on an object of interest, performing a conversion from the mesh into
the input format utilized by the BEM code [3], obtaining output on the surface of the object, and
displaying visual results. The process was first tried on a simple cube with known analytic
solution. Once the process was established, it was applied to the pin fins. The performance of the
BEM program on the pin fin was measured (as computational time) and used as a performance
comparison with the FEM model. The approach and process are presented here, and can be used
for application to similar problems.

Background

The Heat Exchanger and Pin Fin

The heat pipe receiver is a component of a solar thermal heat receiver for a dish-Stirling
electric generation system. In solar-only operation, a heat pipe acts as a “heat transformer,”
accepting the non-uniform concentrated sunlight from a parabolic dish and transferring the heat
uniformly and isothermally to a Stirling engine (Figure 1)[4]. The inside surface of the heat pipe
absorber is covered with a porous structure saturated with liquid sodium. The heat pipe enclosure
is evacuated. The concentrated solar flux is absorbed through the absorber surface, evaporating
the sodium, which limits the absorber surface temperature. The vapor generated flows to the

2

heater heads, where it condenses and its latent heat is transferred isothermally to the Stirling
engine (Figure 2). The condensed liquid is returned to the wick structure with the aid of gravity.
The porous structure re-distributes the condensed sodium by capillary pumping. The entire
process is similar to a double boiler used for cooking.

There is a need by some potential customers to operate without regard to local weather
conditions. Therefore, a “hybrid” system that can operate in solar and/or natural-gas-fired modes is
being developed. In this configuration, a spherical absorber is used for absorbing concentrated
solar energy, and a cylindrical sidewall is used to absorb heat from burning natural gas. Figure 3
schematically shows a gas-fired (only) prototype heat pipe.

Figure 1--The Advanco system holds the gross system conversion efficiency record of 30.6%.
The 11-m diameter dish concentrates about 75kWt sunlight is onto the receiver. A Stirling engine
converts the heat flux into grid-ready electricity. The Advanco system, tested in the early 80’s,
does not incorporate a heat pipe.

Heat transfer from the gas burner to the heat pipe requires a large area. However, the size of
the heat exchanger must be minimized because the materials (Haynes alloy 230) are expensive and
the wicking limitations of the heat pipe capillary structure dictate maximum sodium pumping
distances (When pressure drops caused by gravity or flow through the wick exceed the capillary
pressure of the wick structure, distribution of the sodium ceases and the heat pipe fails).

In order to efficiently collect the heat from the gas in a small area, the heat transfer surface
had to be enhanced. Cost and stress issues led us to a stud-welded pin-fin arrangement. The pins
are 6.35 mm tall by 3.18 mm diameter. The wall thickness is 0.889 mm. The aspect ratio was
determined to some extent by the automated stud welder limitations. The envisioned full-scale
device will have pins over a 305 mm length by 457 mm diameter pipe, which results in about

3

Figure 2--This diagram shows a typical solar-only heat-pipe receiver and Stirling engine.
Concentrated sunlight impinges on the spherical absorber, which is cooled by evaporating
sodium. The sodium condenses on the engine heater tubes, releasing latent heat. The gas-fired
portion will be added as a cylinder separating the absorber dome from the rear support dome.

GAS-FIRED HEAT PIPE - HOT END

Heat pipe wick

AIR/FUEL

Matrix burner

Hot gas

EXHAUST

Figure 3--The schematic shows the evaporator end of the sub-scale gas-fired heat-pipe
receiver. Preheated air-fuel enters the system through the left plenum, and burns at the matrix
burner. The hot gases are then directed through the pin-fin array by high-temperature
insulation. The exhaust gases are collected by another plenum and routed to the recuperator.
Liquid sodium evaporates from the capillary wick, cooling the heated wall.

4

Figure 4--This photo shows about 1600 pins welded to a 76.2mm ()-diameter heat pipe.
This sub-scale device will be used to validate the various models and design codes before a full-
scale device is fabricated.

10,000 pins to transfer 75kWt (see Figure 4). The gas enters the system at around 1700°C, and
the heat pipe operates at 750°C internal sodium vapor temperature. The addition of heat to such a
hot surface presents many challenges, including recuperation (to recover heat from the 800°C
exhaust gasses) preignition (potentially caused by the high pre-heat), low thermal driving potential
(hot gases heating an already-hot surface), high thermal stresses, and materials life issues.

The first several inches of the heat transfer region face the matrix burner, and the flow of the
burning gas is radially inward. The gas is then directed axially through the remainder of the pin-fin
array, and then is collected by the exhaust plenum and passed to the recuperator. Fluent UNS
modeling of the gas flow and gas-side heat transfer indicates that the first row of pins, after the
flow is diverted from radial to longitudinal, is the most “effective” row with the highest combined
convection coefficient and gas temperature, thereby resulting in the highest peak flux through the
heat pipe wall.

The resulting flux distribution into the wick, as calculated by Fluent UNS, was on too coarse
a mesh to evaluate the wick behavior. Using a finite element package (COSMOS/M), a single pin
was modeled to examine the local flux distribution, the pin tip temperature, and the stresses at the
pin root. The flux distribution was then used in a wick modeling routine to evaluate the wick
performance. The resulting liquid pressure drops in the wick limited the throughput power
capabilities of the heat pipe below acceptable levels. In addition, the estimated peak temperature
of the pin fin tips approached the maximum working temperature of the Haynes-230 alloy.

When preliminary manufacturing studies and tests on the stud welds were completed, the
preferred weld had a significant fillet at the pin/wall interface (Figure 5). This fillet (consisting of
approximately 1.5 mm of the total pin height with a base diameter of ~4.5 mm) has the potential
to significantly spread the flux presented to the wick. In this effort, the extent of this spreading
and the added benefit of possible reduced pin tip temperatures will be investigated. Reduced pin

5

temperatures may also improve the pin effectiveness, which can be seen in the total heat transfer
through a given pin.

Figure 5--This sample weld cross-section clearly shows the conical fillet formed by the stud-
welding process. We assumed that the material thermal properties are unchanged in the melt
region of the weld. The weld is autogenous, i.e. no filler metal was added.

The Boundary Element Method

This section provides a brief introduction to the modeling method used in this investigation.

The boundary element method for solving partial differential equations is applicable to a wide
class of linear elliptic boundary value problems, allowing reduction in the dimensionality of the
problem. Spatial discretization of the domain boundary is the only requirement for a steady state
problem, however the method can be extended to transient problems where temporal
discretization would be required also. Boundary spatial discretization could significantly reduce
the workload in solving a problem over that of a finite element method (FEM). The method has
been successfully applied to a variety of problems [5].

The BEM relies upon some mathematical legerdemain (the Green-Gauss theorem) to reduce a
three-dimensional (3D) volume domain partial differential equation problem to a two-dimensional
(2D) surface domain one. This offers some advantages as well as disadvantages. In general,
computational requirements scale with the size of the problem being investigated; if one can
reduce a problem from the number of nodes/elements required to fill volume, to the number
required to cover the surface area, there is a strong likelihood that the computation will run faster.

6

In particular, claimed advantages for the BEM method over more conventional volume domain
methods include:

i.) As already noted, the dimensionality of the problem is reduced by one, e.g. from a volume
to a surface; this simplifies the structure of vectors and matrices needed to represent the elements
being computed, and simplifies the programming and storage requirements in like fashion.
Without tricks, a 3-D array would require three nested do loops to be accessed or modified, while
a 2-D array would only require two. In reality, this oversimplifies the problem; however, even if
comparable depths of nested loops are employed, the number of elements may be considerably
smaller for the BEM than for the FEM. The resulting array is fully dense and solved with a direct
solver. However, the array is smaller than an FEM array with a similar surface-density of
elements.

ii.) The system of algebraic equations which are solved are generally well-conditioned,
showing diagonal dominance.

iii.) The method can handle regions that are infinite in extent.
iv.) The meshes (being representative of surfaces) are generally simpler to generate.
v.) Problems involving surfaces or surface discontinuities, interfaces and moving boundaries

may be handled. The prototypical example is in calculations of stress in regions of geometrical
discontinuity (notches and cracks).

vi.) Generation of a full field solution is not necessary; in other words, to study a small region
of a larger problem, the entire solution does not have to be generated. A surface solution is
generated, then additional collocation point solutions are generated in internal areas of interest..

This last ‘advantage’ may not be one if the full-field solution is of interest.

Some of the disadvantages of BEM are:

i.) The individual equations of the system of equations have many terms, and matrix
decomposition is more complex and slower than for FEM’s sparse arrays. The matrix is generally
full.

ii.) The method is best suited for problems where a fundamental solution (or an
approximation) to the adjoint operator is available for the governing differential equation, limiting
applicability to certain problems. The adjoint operator is the transpose of the cofactor matrix; its
product with the inverse of the determinant gives the inverse of the matrix.

The desired outputs of the pin-fin heat flow analysis are the maximum pin temperature at its
adiabatic top surface, and the heat flux distribution out the bottom surface of the shell to which it
is welded. While the thermal analysis by FEM methods is tractable for a single pin in isolation, if
multiple pins acting in concert were to be analyzed, it was thought that the problem might become
intractable very quickly. These points suggested that the BEM might be appropriate alternative
for the pin fin analysis.

Two implementations of the BEM method are typically employed. The direct method employs
unknowns that are actual physical variables (this is the method used herein). In the indirect
method, the unknowns are represented by a density function that is distributed over the boundary;

7

this does not lend itself to physical interpretation. However, once the density function has been
determined completely, physical variables can be deduced.

This latter method leads to the last disadvantage of the BEM approach; it can be difficult to
understand! Unlike the Finite Difference (FD) and FEM approaches, which are basically
straightforward, this method relies upon some abstract mathematical foundations. Thus,
qualitatively comparing the algorithms used to set up the matrix from which solutions are
calculated, the FD approach is easy, the FEM approach is moderately easy, and the BEM is
difficult. While using an already written code goes a long way to alleviate this problem, when
problems are encountered, as they inevitably will be, debugging becomes difficult. Thus, the
approach here was to start small and simple as described below.

Purpose

The goals of this investigation were to determine the following:

• What are the thermal flux and temperature distributions on the pin fin?
• How did the weld fillet influence the heat transfer in the pin fin (What is the effect of the weld

geometry vs. the idealized cylindrical pin)?
• Is there any thermal performance gain realized by the fillet on the actual welded pin fin?
• Are there significant computational speed advantages for the BEM over the FEM approach?
• How do the BEM results compare with the FEM results?
• What level of mesh size could be used to obtain reasonable results for BEM vs FEM?

What was the order of the calculation relative to the number of nodes in the mesh?

Approach

Project Plan

In order to apply the boundary element method to the pin fin problem, the following tasks had
to be accomplished:

 i.) Obtain BEM steady state code.
 ii.) Get code to run.
 iii.) Determine method to build mesh for pin fin. We knew that the original FEM mesh used

in the stress analysis for the pin fin had about 10,000 nodes, so this had to be an
automated method.

 iv.) Determine method to apply boundary conditions (BC’s) to the meshed object.
 v.) Determine method to produce appropriate input file for the BEM code. The BEM

program needed to have a particular data structure linking local and global
representations of the nodes. It also needed to have data in a particular format.

8

 vi.) Determine method to extract data from code output files. The normal method is to use
collocation nodes which are interior to the domain. Since we were looking on the surface,
the results were calculated directly, but were not transparent without some further code
modification.

 vii.) Determine method to plot data. Interpretation of large data structures is difficult without
a suitable visualization tool. In the case of the heat flow problem, direct visualization of
the temperatures and heat fluxes superimposed on the actual part is the most
straightforward way.

BEM 3D Steady State Code

The boundary element code, npot3d.f, was developed by Marc Ingber [3], University of New
Mexico. The code is written in Fortran77. For this investigation, it was run using an xlf compiler
on the IBM RS6000 computer in addition to the comparison testing with the FEM model which
was performed on a desktop computer. The code in its present form contains very little internal
documentation, but two reports for input file format [6] and boundary element formulation and
program description for the transient heat conduction problem[5] exist. A brief overview of the
program (listing provided in Appendix A) follows.

The main program initializes variables, constants, and the input file name. All arrays are
dimensioned. The input file and output files are opened. Then the subroutines QUADR, GEOM,
MATVEC, DECOMP, SOLVE, and CALPHI are called before final data is output and the
program ends.

Subroutine GEOM reads data from the input file:

Titles
whether the domain is interior or exterior
number of additional collocation points chosen outside of the domain
number of nodes
number of elements
node number
x, y, and z coordinates
boundary condition value and type
local node to global node
number of collocation points
x, y, and z coordinates of collocation points for obtaining an approximate solution.

Subroutine MATVEC collects and assembles vectors and matrix A. It sets up collocation
points based upon the interior or exterior of the domain and then calls Subroutine INT4 to
integrate the Green’s integrals. On return the A matrix and B vector are filled in based upon
whether temperature or flux or both were specified for the boundary condition. The A matrix is
filled utilizing Ah1 and Ah2 vectors. The B vector is filled using B, Phi, Ah1, and Ah2 vectors.

9

Subroutine INT4 identifies coordinates based upon element type--triangular or quadrilateral.
It calculates the distance of the surface collocation point to the surrounding local nodes, sets the
value of “inode” based upon that distance relative to small (1e-6) and then calls subroutine
RQINT for a quadrilateral element type. On return G1 and G1P values are available for
calculation of the Ah1 and Ah2 vectors.

Subroutine RQINT is book keeping in nature. If the element type is continuous quadrilateral
then subroutine RQINTC is called, otherwise RQINTD is called for the discontinuous
quadrilateral element.

Subroutine RQINTC finds the longest diagonal of the element (H), then finds the distance
from the surface collocation point to the center of the element (D). The severity is H/D. Thus, the
smaller the distance D, the larger the severity value. If the severity value is less than 0.358, then
the severity number is 1, otherwise subroutine DER9T is called. If DER9T is called, then a new
distance is calculated based upon use of a smaller sub-spacing during quadrature. Effectively, the
derivative times the coordinates are summed to find a new gauss point. The normal to the element
surface (q) is found and converted to a unit normal vector (u) in subroutine UNORMAL. On
return the dot product of u with the vector from the element center to the collocation point is
performed to find the angle between the two vectors. A new severity number is calculated and a
warning is sent if the severity number is greater than 9. DER9T is called again and gauss
weighting is used for the distance determination. The surface normal and its unit vector are
calculated and then subroutine FUNDS is called. On return from FUNDS, G1 and G1P vectors
are formed before returning to INT4.

Subroutine DER9T is the derivative of the shape function for the 9 local node quadrilateral
element.

Subroutine UNORMAL calculates the surface normal to the element (q) and its unit vector
(u).

Subroutine DER9TD returns the derivative of the shape function for the discontinuous
element.

Subroutine FUNDS calls the appropriate shape function routine based upon the element type.
For the continuous quadrilateral, SH9T is shape function for the 9 node continuous quadrilateral
element.

Subroutine DECOMP is a matrix decomposition routine using LU decomposition.

Subroutine SOLVE uses back substitution to solve the linear algebra equation. Here matrix A
and vector B are used to find the solution vector.

Subroutine CALPHI calculates the approximate solution at the collocation points of interest
to the program user. This routine was not utilized for this work because only answers on the

10

surface were of interest; the answers were either in the specified boundary condition vectors or
easily obtained from the solution vector.

Code Modifications

Some modifications to the npot3d.f code were performed to facilitate use on this project (see
Appendix A). These modifications are summarized as follows:

i.) Several “OPEN” statements were added in order to output particular data to separate files.
Output of the solution vector and the boundary conditions were combined to form an output file
called *.plt, which contains columns of "Node", "Temperature", and "Flux". Another output file
was created for the timing operations that were added to the program; this output file is *.tim and
contains readable lines of code with the time specified by the machine (here in seconds). The
output file *.out outputs "x", "y", and "z" coordinates along with "Temperature". This is the
standard output file that would result from input of collocation points. This file may be useful to
some users if collocation points are desired. Alternately, the slight difference in the *.plt and *.out
files is based upon the ability to plot in 3 dimensions. The plotting routine employed in this effort
was the COSMOS/M program that was used to generate the mesh; the surface was defined by the
node number and visual output was easily obtained from the *.plt file.

ii.) A “READ” statement for keyboard entry of the name of the input file was added. This
feature is optional and can easily be commented out: root, the filename without the extension is
simply assigned the 'filename'. Note the filename has to be 8 characters long. For batch-mode
timing tests with llsubmit (see next section), this name had to be entered prior to execution and
these two lines had to be commented out of the code.

iii.) Timing was added to the program in order to see the influence of mesh size on the time
required by the various subroutines--MATVEC, GEOM, DECOMP/SOLVE, and CALPHI. The
total time was also reported. Timing was performed using the mytime.f program[6].

iv.) The pointers to the first element in an array were specified as “array(1)” in the dimension
statements of the subroutines. The xlf compiler does not accept this notation and the "1" was
changed to an "*" in order to specify the pointer and not indicate an array size of 1.

v.) Array dimensions were initially set to 600 for the matrix, forcing vector, and solution
vector in addition to many other arrays that relied upon the number of elements. The array
dimensions were changed to 4000 to accommodate the size of the input meshes used in this work.

vi.) Comments were added to aid future users.

Timing Tests

Timing tests were run using npot3d.f with mytime.f [7] on an IBM RS6000 computer.
Originally, no optimizer level was specified and timing was performed without requesting
uninterrupted use of one node of the machine. Next, the timing tests were rerun using the same
files but requesting uninterrupted use of one node of an IBM SP1 computer (one node is identical
to the RS6000) through the llsubmit command. A command file (*.cmd) was formulated in which

11

the *.in and *.out were not designated because the npot3d.f code opens standard input (unit 5)
and output (unit 6) during the execution. Timing was performed for the total run time and the
subroutines GEOM, MATVEC, DECOMP/SOLVE, and CALPHI and writing to output files.
Note that the time around both the DECOMP and SOLVE subroutines was combined into one
interval. Some timing results were also supplied as standard output of the COSMOS/M FEM
code.

Mesh Description

The BEM code requires 6-node triangular or 9-node quadrilateral elements (quadratic
elements as shown in Figure 6). The nine node element, a continuous quadrilateral, was used in
this study. The nodes are read in, and the boundary conditions are then applied to the nodes. Each
element therefore consists of a list of 9 nodes in the order shown below.

Figure 6--Local node numbering for a nine node continuous quadrilateral element.

Cube Trial Runs

Because an analytical solution could be performed for a cube where one boundary condition
was prescribed temperature and the other boundary condition was prescribed temperature
gradient (flux if the conductivity is known), a cube was used to begin the meshing process and
initial code trials. The cube was specified as follows:

 i.) Domain 0 < x, y, z < 2
ii.) Boundary conditions

at x = 0, T = 100 °C
at x = 2, dT/dx = 5 °C/mm

A continuous quadrilateral element identified as IELTYPE=40 contains 9 local nodes
numbered counter-clockwise from the lower left corner as shown in Figure 6.

12

For the cube we started with a simple mesh which had 6 elements (one per cube face). This
was generated by hand. Mesh element area was then decreased by factors of 4. Eventually, cube
meshes were generated with 4, 16, 64 and 256 elements per face. Results were calculated for up
to 64 elements per face.

The overall process was defined during implementation of the cube. Briefly, the input file was
formed by employing COSMOS/M mesh generating software. The global node, x,y, and z
coordinates, and the local node number were derived from this software package. Next, a
conversion of this data into the input format for npot3d.f was performed using a conversion
program. This conversion program forms the file into the format described in Ingber[6]. Initial
trials of the input file resulted in erroneous output (vs. the known analytical solution). It was
determined that certain elements were indexed in a clockwise fashion and/or the combining of
elements to form the cube resulted in inside-out placement of an element. Therefore, the
conversion program was adapted to check for this error. If the surface normal for all elements
pointed into the cube such that the numbering of local nodes is in the counter-clockwise manner
specified, the elements combined together in the proper manner. Rerunning the code after the
conversion program implemented checking and correction for this error, the correct results were
obtained.

Mesh Generation

The tool used for mesh generation, GEOSTAR, is part of a commercial FEM package
COSMOS/M [2]. Like all such packages, it is comprised of a three dimensional solid modeler plus
facilities for associating a variety of elements with the solid geometric models. Fortunately, the
library of elements included a nine-node shell element that provided most of the characteristics
needed for the BEM code. Activities involving the GEOSTAR code were run on a Macintosh
PowerPC 8100/100. Files generated were then handed off via electronic mail to a Compaq
Pressario 1080, where a file conversion package written in C++ was used to convert them to a
format appropriate for the BEM code. The code was run on a variety of platforms including the
IBM RS6000, the same Compaq used to convert the GEOSTAR files, and on a Pentium based
desktop computer where the original FEM work was completed to give a better relative
computational time comparison. FEM runs of less complex meshes were also run on the
Macintosh PowerPC 8100/100.

The general procedure in developing the mesh involved:

i.) Generating a geometric model based upon key points, curves between the key points, and
finally surfaces defined by the curves.

ii.) Once these surfaces were defined, elements and their underlying nodes could be
generated. Normally, a material group and its associated physical properties are defined before
meshing a group of elements. This was not strictly necessary for this problem, since the full FEM
package was not going to be used, however, it was found convenient to do so in order to mark
elements with an identifier that would enable their easy selection based upon the differing types of
boundary conditions to be added later.

13

iii.) Because some of the surfaces were generated by parallel replication of already existing
surfaces, their surface normal was not always consistent relative to inside vs outside the pin fin.
An example would be the inside vs the outside surface of the shell, or opposite cut edges of the
shell. Hence the elements which were subsequently generated on generated areas were not
necessarily oriented correctly to give the counterclockwise nodal numbering scheme expected by
the BEM code. Two approaches were used to rectify this situation. The first was to use the file
conversion code, and the second was to determine the orientation of selected elements on a
surface (all the nodal numbering sequences on a given surface were consistently numbered) by
looking up the nodes associated with a given element and noting whether they were correctly
ordered. Needless to say this was somewhat laborious. An alternative was found as part of
activities associated with figuring out how to plot the data output by the BEM code. As part of
that activity, it was desirable to generate an output file for a pin fin model so we could replicate its
structure. A simple thermal model was built, and it was found that the 9-node shell element was
not compatible with a thermal heat flow analysis (though it would allow thermal loading to
determine expansion/contraction). Wishing to generate an output file and not having any other 9-
pt elements, the simplest alternative loading was tried, that of applying a hydrostatic pressure. It
was then noticed that the vector arrows used to indicate the pressure loading were pointing
outward on those elements which needed to be flipped, and pointing inward on those which were
correct. Once these elements were identified, COSMOS/M provides a simple command which
allows inverting their ‘direction’. Thereafter, this approach was applied before moving on to the
next operation.

iv.) After the individual groups were identified by nodal and elemental numbers, nodal
merging was accomplished. This basically merged collocated nodes on adjacent surfaces which
did not have differing boundary conditions. On those common boundaries where the boundary
conditions did change, this was not done. The operation of merging could be done exclusively
between nodes of a single material group, by issuing a command letting them merge only among
nodes of their own group. Once the merging operation was completed, a renumbering
(compression) operation was performed to renumber the nodes consecutively and fill in the spaces
left by those nodes, which had been subtracted by the nodal merge operation. A listing of a typical
COSMOS/M session file is included in Appendix B.

Mesh Conversion

As noted, COSMOS/M has automatic mesh-generation tools that proved simple to use for
mesh generation over the cube or pin fin surface, and provided quadratic 9-node shell elements, as
required by the BEM code (see Figure 6). However, the FEM model grouped the elements by
boundary condition, rather than nodes.

A conversion routine (see Appendix C) was formulated in C++ to convert the FEM model to
the BEM input file format. This C++ code, referred to herein as the mesh converter, reads all of
the nodes and elements from the COSMOS/M nodel/element list file into memory, cross
references the nodes and elements, and prints them in the proper BEM format. The code also
prompts the user for the boundary conditions, and performs limited data validation. The data
validation includes searching for backward elements and checking for conflicting boundary
conditions. Two elements can share the same node only if the elements have the same boundary

14

conditions. If differing boundary conditions are desired, the node must be duplicated rather than
shared. A warning is given, and the first boundary condition is applied. The mesh converter does
not fix warnings of this type; a return to COSMOS/M is necessary. Duplicate nodes should
always be used when the boundary conditions are not continuous (i.e., at an edge).

As noted above, early in this program a significant problem encountered was the difficulty in
determining if all of the elements were numbered in the correct order (counter-clockwise as
shown in Figure 6 rather than clockwise), i.e. that all of the surface normals were outward.
Eventually, the method described in the previous section (using GEOSTAR and pressure
loading) was used to solve this problem. However, an alternative method was written into the
mesh conversion program (and which subsequently served as a check on the GEOSTAR
procedure).

The first step in this validation is to find the center of “mass” of the nodes, by simply averaging
their locations. Then, two vectors are formed on the surface of the element, one from the center
node (9) of the element to the first node (1), and one from the center to the second node (2). The
cross product of these vectors creates a normal vector. Then the dot product of this normal and a
vector from the center of mass to the center of the element is determined. If the dot product is
positive, the normal is pointing away form the center of mass. In the case of the pin fin assembly,
some correctly-pointing elements (top face of the flat plate) gave negative dot products because
the center of mass was too high in the pin. Therefore, the user can input an alternative center for
checking. A “hidden” and potentially dangerous feature is the capability to reverse these backward
elements. This feature is accessed by pressing a lower-case f (for “fix”) when prompted whether a
new center location is desired. Then, any elements found to be backward when compared to the
new center will be repaired. It is safer to use the conversion program’s feedback and actually
repair the model in COSMOS/M instead. There the graphical results can be examined for errors
before proceeding to the next step.

The conversion routine is also used to apply the boundary conditions to the nodes. The nodes
are associated with elements, and the elements are grouped by COSMOS/M for different
boundary conditions. The possible choices are specified temperature (nbdy=1), specified
temperature gradient (nbdy=2), and mixed, or convection, conditions (nbdy=3). If a flux is
specified, it must be divided by the material conductivity (k) to get a temperature gradient. For
convection boundary conditions, the BEM method uses the following equation:

φ(x) + β(x)φ′(x) = γ(x)
where:

φ is the process variable (Temperature in our case)
φ’ is dφ/dx

In a heat transfer problem, β is k/h where h is the convective coefficient and γ is the free-
stream temperature of the gas. The gradient (φ’) can be expressed as a flux by multiplying by the
thermal conductivity of the material modeled. The converter routine prompts for each parameter
for each element group, using free-form (white space-delimited) input.

15

As can be seen in the code in Appendix C, the conversion routine is implemented as three
classes. The first two are an element class and a node class. Arrays of these items are stored in the
third “model” class. Operations included allow cross-referencing, reading, and outputting the nodes
and elements. The model contains allocable arrays of nodes and elements, so the permissible size
of the nodal arrays is limited only by available memory.

Data Visualization
An initial attempt was made to display the results of the BEM calculation using MatLab[8];

while MatLab is a very powerful package for scientific and engineering calculations and their
display, it is also a package with a steep learning curve. The basic problem with it seemed to be
that while results could be plotted in 3D with pre-loaded function calls, they needed to be on a
uniform grid, and the nodal points (and results) were not on such a grid. Further, piecing together
(or displaying separately) the several parts of the pin fin was difficult, although easy for the cube.
Therefore, other methods were sought.

Several other packages (including Mathematica[9]) were considered before it was realized
that the best approach was to use the plotting routines inherent to the mesh generation package.
The COSMOS/M user-provided data plotting facility offered two options. One could either enter
node-defined inputs or element-defined inputs. The nodal approach actually is still plotted on
elements (more about this later), but when a nodal approach is chosen, the values plotted across
the elements are interpolated between the nodal values. In contrast, when the elemental approach
is used, the elements show only a single value. Thus the result has a mosaic like pattern. The
nodal viewpoint is better for some approaches and was desirable because nodal temperatures (the
output of the BEM code) were of interest. The elemental approach also has its benefits, primarily
in displaying boundary conditions that are element related. In the data file structure a flag was to
be set which would tell the plotting routine which was desired. The documentation had this flag
reversed.

As noted above, the nodal results are plotted in an elemental manner using internodal
interpolation. One additional observation is that the elements are plotted as planes, even if the
elements are not planar. This only occurs when higher order elements (such as the 9-node
element) are used. It is probable that the plotting routine was developed for square or triangular 4
and 3 node elements. The net effect is that while the non-corner nodes for the cylindrical portions
of the pin fin are actually on a cylindrical surface, they are represented as being polygonal. This
only becomes evident on relatively coarse meshes, such as the 1/2 and 1/4 mesh models.

Pin Fin Analysis

A nominal mesh size was selected for the first BEM pin fin model, with about 970 surface
nodes. Additional meshes of greater and lesser nodal densities were used, with a total span of 16:1
in mesh density. The nominal model is referred to as the 1X model. The additional models were
labeled 1/4X and 1/2X for the sparser models and 2X and 4X for the denser meshes. Work with
the 4X mesh was limited because of the long computational times. Figure 9 shows the various
meshes used.

16

In using the COSMOS/M mesh generation tool, five different element groups were identified.
The different element groups facilitate the application of boundary conditions in the BEM model.
The element groups used are:

i.) The inside surface of the heat exchanger shell (i.e. the bottom surface of the pin fin). This was
modeled as a surface without curvature. Given that the diameter of the heat exchanger is 3” for
the prototype and 18” for the full scale, and the area of interest is ¼” wide, the amount of actual
curvature was inconsequential. This surface coincides with the wall-wick interface in the heat
pipe. It is maintained isothermal by evaporating sodium supplied by the capillary wick. The
heat flux distribution along this surface was however of great interest in determining the
performance of the heat pipe wick.

ii.) The ‘cut’ surfaces of the square HX plate. Since these are symmetry boundaries with the
adjoining pins that comprise a square array, they are treated as adiabatic barriers.

iii.) The outside of the heat exchanger shell (i.e., flat surface). This is exposed to the hot gas, and
is treated as a convective boundary condition with a constant convective coefficient and
constant bulk fluid temperature.

iv.) The cylinder or the cylinder plus conical fillet representing the weld. This is also exposed to
the hot gas, and is likewise treated as a convective boundary condition. However, the
coefficient was not necessarily going to be the same as the outside of the shell (group iii
above), hence a different element group was used. In the session file generating the mesh, the
diameter of the circle linking the pin to the shell was easily changed, leading to either a
straight cylinder or the filleted cylinder used to approximate the weld.

v.) The top of the pin. This is again an adiabatic surface, though it is adiabatic by reason of being
insulated, not because of symmetry conditions.

The boundary conditions in Table 1 were therefore specified on the pin fin groups.

Finite Element Method applied to Pin Fin

In addition to the original COSMOS/M FEM calculations for the non-filleted pin fin case, a
few varying mesh density steady state thermal FEM calculations were also made. The intent was
to see how much simpler the FEM mesh could be made and still retain the essential features of the
solution. These calculations were run on a Macintosh PowerPC 8100/100, and also employed
COSMOS/M (V1.70A). The meshes used were similar but not identical to those used for the
BEM calculations. We attempted to match the surface density of nodes and elements to the BEM
approach for comparison. The same (constant) values for thermal properties and boundary
conditions were used (see Table 1) as for the BEM approach.

The FEM method requires basically the same steps as the BEM; 1) define the geometry (solid,
rather than surface only, however), 2) define the element and its physical properties, 3) mesh the
geometry, 4) set the boundary conditions, 5) set the solution parameters (no. of iterations,
tolerances, etc.; COSMOS/M’s default values were used), 6) run the solution, and 7) evaluate the
output.

18

direction). Please note that Figures 7a and 7b are flipped with respect to the z axis in order to
show the calculated value (rather than the specified boundary condition value) as the ‘front’
surface of the cube. The results of the cube problem did not vary with mesh size.

Some sources of error in the analysis became apparent from output data of the cube. The
boundary integral equation developed satisfies the Laplace equation identically within the interior
of the domain, and boundary conditions are equally well satisfied at the collocation nodes of the
boundary. Between the collocation nodes, shape functions are used to approximate the function in
the integral, and these approximations can introduce error. This approximation error can then in
turn cause quadrature error, when the equations are integrated. Also, there are additional sources
of error in the geometrical errors inherent in locating nodes and elements in space, and in the
floating point mathematical operations needed to carry out such a calculation.

As an example, large quadrature errors resulted from a coarse mesh of one element per side.
The quadrature error warning results from high errors calculated during the numerical quadrature
routine for post processing at collocation points. The solution at a point towards the center of the
cube was easily approximated using the quadrature routine, but as the point moved closer towards
the surface the approximated solution decreased in accuracy and warnings due to large severity
numbers were obtained in the program output. In Figure 8, note that the severity number
increased with increase in Z towards the upper boundary at 2. The large severity number is a
program check to provide the user with an understanding of the poor ability to approximate a
solution at a given collocation point because the distances between the collocation point and the
nodes is small. Thus, subdivision of the distance in the quadrature routine is attempted in effort to
approximate the integral. For smaller subdivisions the severity number is increased. A finer mesh
size reduced and/or eliminated this problem.

Figure 7a and b—Flux out bottom surface of cube (expressed as temperature gradient,
°C/mm) and temperature distribution across cube (°C) for cube meshed with 64 elements per
side.

19

 BEM for cube
 Authors: C. A. Drewien, C. Andraka, G. Knovorsky
 Date: April 19, 1997

 MATRIX CONDITION NUMBER = .1058E+03
 SOLUTION VALUES AT SELECTED POINTS

 X= 1.0000 Y= 1.0000 Z= 1.0000 PHI= .105000E+03 X= .300000E+01

 WARNING, SEVERITY NUMBER = 16
X= 1.0000 Y= 1.0000 Z= 1.5000 PHI= .107498E+03 X= .350000E+01

 WARNING, SEVERITY NUMBER =32
X= 1.0000 Y= 1.0000 Z= 1.7500 PHI= .108332E+03 X= .375000E+01

 WARNING, SEVERITY NUMBER =**
X= 1.0000 Y= 1.0000 Z= 1.9500 PHI= .811817E+02 X= .395000E+01

Figure 8--Output of results from collocation points in the center of a cube and moving
towards the top surface of the cube, which was meshed with one element per side.

Pin Fin BEM Results

The pin fin with and without a fillet were geometrically modeled and meshed using
COSMOS/M software. The meshes used (with the fillet) are shown in Figure 9. The finest mesh
size is referred to as 2X, followed by consistently coarser mesh sizes referred to herein as 1X,
1/2X, and 1/4X. The boundary element method was applied to the input data for the 1/4X, 1/2X,
1X, and 2X pin fins with and without the fillet.

From the results of the BEM calculations, the maximum temperature and gradient for each
run were monitored. For the pin fin without a fillet, the maximum temperature, obtained on the
top of the pin towards its outer edges (see Figure 10a which illustrates the 1X pin fin), was about
1038.5 °C for each mesh size. The results varied by 0.3 °C at most between the various mesh
sizes, except for the 1/4X mesh (coarsest or lowest density mesh), which differed by 0.8 °C.
Values of about 41.7 °C/mm were obtained for the maximum gradient out of the plate surface.
Because the material of interest is a nickel-based alloy whose thermal conductivity is 0.0134
W/mm °C, the true thermal flux is obtained by multiplying these two values, i.e. 55.9 W/cm2 (note
change in units). A difference in flux of about 25% was observed between the maximum flux
value from the finest mesh and that of the coarsest mesh, though all but the coarsest mesh results
were in good agreement. Maximum temperatures and fluxes are summarized in Table 2.

20

Figure 9a. --BEM meshes of the 2X filleted pin fin model.

Figure 9b.--BEM meshes of the 1X filleted pin fin model.

21

Figure 9c.--BEM meshes of the 1/2X filleted pin fin model

Figure 9d.--BEM meshes of the 1/4X filleted pin fin model

22

Figure 10 a and b—Temperature and gradient distribution for the straight pin fin (1X).

a.) b.)

Figure 11--a.) Temperature distribution for the 2X filleted pin fin (°C). b.) Gradient
distribution for the 2X filleted pin fin (°C/mm).

The pin fin with a fillet yielded lower values of peak temperature and maximum flux than the
straight cylindrical pin model. For the finest mesh size, the peak temperature and gradient were
1008.1 °C and 41.7 °C/mm (or 55.9 W/cm²), respectively (see Figures 11 a and b). At the
coarsest mesh size, the peak temperature and gradient were 1008 °C and 42.52 °C/mm. A 2%
difference in gradient was found although little variation in temperature was detected, see Table 2.

23

In Figure 11 b, note the non-circular shape of the gradient distribution on the bottom surface
mainly at the periphery. While a non-circular pattern over the entire plate surface is more
apparent in the straight pin image of Figure 10, the latter was based on a coarser mesh.
Interpolation of values between nodes is being performed by the visualization package and leads
to the apparently non-circular pattern at the central region. With more nodes, the linearity would
change over towards a more circular appearance. Thus, the output from visualization should
always be interpreted with due respect given to the characteristic geometry of the mesh used.

Figure 12 shows the flux profile along the diagonal of the bottom surface. As can be seen,
the filleted pin has very similar values for the peak flux regardless of mesh size, while the low
density mesh of the straight pin has a peak flux value much different than those at the higher mesh
sizes. The low-density meshes for the filleted and straight pins have only four nodal points along
this diagonal. It appears to be fortuitous that the peak flux value from the low-density mesh of the
filleted pin matches that of the higher density meshes. The solution is similar because the
triangular shape of the low-density curve had offsetting negative and positive errors and better
simulated the well-balanced bell shape of the higher density mesh cases. Thus, the lowest density
or coarsest mesh (1/4X) appears too coarse for reliable results. Even though the exact solution is
unknown it appears that with mesh refinement, the numerical solution is convergent to a
consistent value.

The reduction in peak temperature and flux with the filleted pin fin design is the desired
outcome of the pin fin models. The application of interest requires peak temperatures and fluxes
to be as low as possible. The filleted pin fin better provides this combination of properties as
compared to the straight pin fin. Material degradation at high temperatures results in decreased
lifetime of the unit due to pin erosion by the aggressive flue gas, and higher fluxes lead to greater
evaporation rates than the capillary pumping capability of the wick (which provides the sodium
replacement). Lower flux reduces the rate of evaporation of sodium off of the bottom surface.
Also, sodium evaporation is providing the constant temperature boundary condition at 750 °C.
The filleted pin fin model is a better representation of the actual pin fin geometry. The model
results show that the fillet does indeed significantly improve pin performance over the idealized
pin originally modeled.

The addition of the fillet to the model decreased the peak temperature by about 3% and
the peak flux by about 25%. The power throughput of the pin increased about 12%. This is
primarily the result of a larger cross-sectional heat transfer area. In addition, the lower pin
temperature results in a higher thermal driving potential from the free stream, again resulting in
increased throughput.

Pin Fin FEM Results

A series of varying mesh density FEM calculations were made for the filleted pin fin. These
were run on a Macintosh PowerPC. The surface-appearance of the meshes used were similar but
not identical to those used for the BEM calculations. Figure 13 shows the meshes used. In the
first two cases, 8 node solid elements were used (a node at each corner), while for the last case
the same mesh was used but 20 node solid elements were used instead (nodes at corners and edge

24

midpoints), giving an approximately 2 fold increase in surface nodal density. The 20 node element
gave a better approximation to the surface nodal spacing used by the 9-node surface element
BEM case (only the face center node was missing). 330, 2211 and 8325 nodes were used in the
1/4X FEM, 1/2X FEM and 1X FEM models, respectively.

Table 2--Peak temperature and flux with mesh density. The results are for the BEM model
except as noted.

Model Peak T (°C) Peak Flux
(W/cm2)

FEM 1X w/ fillet 1009 55
2X w/ fillet 1008 55.9
1X w/ fillet 1008 55.9
1/2X w/ fillet 1008 54.6
1/4X w/ fillet 1008 57.0

1X straight pin 1038 76.1
1/2X straight pin 1038 76.0
1/4X straight pin 1039 89.6

-6 -4 -2 0 2 4 6
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Integrated Power
Through Pin:

Straight Pin: 12.7 W
Fillet Pin: 14.2 W

Straight Pin:
 1/4 x Mesh
 1/2 x Mesh
 1 x Mesh

Filleted Pin
 1/4 x Mesh
 1 x Mesh

F
lu

x
(W

/c
m

2)

Position (mm)

Figure 12--Variation in BEM-calculated heat flux distribution for filleted and straight pin
fins with respect to mesh density.

25

a.)

Figure 13--a.) 1X FEM and 1/2X FEM mesh (20 nodes/element & 8 nodes/element,
respectively) and b.) 1/4X FEM mesh.

Heat flux (in the z-direction, parallel to the pin axis) and temperature distributions calculated
by FEM are shown for the three mesh density models in Figure 14. Note that the heat flux (and
not the temperature gradient) is displayed, and that it is in the z-direction, not normal to the
surface. On the bottom surface this latter distinction vanishes. Compared with the BEM
calculations, all three gave about the same peak temperature and location (1009.1, 1008.8 and
1009.9°C, for the 1X, 1/2X and 1/4X models, respectively).

26

a.)

b.)

27

c.)

Figure 14--Heat flux in z direction (W/mm2) and Temperature(°C) distributions calculated by
FEM for a.) 1X, b.) 1/2X, and c.) 1/4X meshes.

Along the bottom surface diagonal, the heat flux distributions are illustrated in Figure 15:

The distance scale is normalized but correlates to the scale in Figure 12 if 0.5 is used as the
zero point in Figure 12. Note that the peak value of heat flux for all three cases is quite
consistent, though the minimum value (at the corners) shows a considerable variation for the least
dense mesh model. Also note that the values are plotted as W/mm2, rather than W/cm2, as in the
BEM results in Figure 12. Compared with the BEM mesh, the FEM mesh along the bottom
surface is denser for the equivalent model nomenclature (set by the mesh density along the “cut”
edge of the plate). This is because the surface elements of the BEM mesh on the bottom surface
are completely unrelated to the elements on the other surface of the plate where the pin is located.
The FEM case (which uses volume elements) cannot achieve this independence across such a thin
region.

An approximate comparison of the two methods’ nodal densities on the bottom surface (by
number of nodes on bottom surface) is given in Table 3.

It is apparent that the FEM density on the bottom surface is approximately equivalent to the
next level BEM mesh. Judging by the results, both BEM and FEM have significant inaccuracies
at the most coarse mesh condition. For the BEM the gradient is aberrant at the center, while for
the FEM the problem occurs at the “corners”.

28

Figure 15--Heat flux in z direction (W/mm2) along bottom diagonal of pin fin, calculated by
FEM for 1X, 1/2X, and 1/4X meshes.

Table 3--Comparison of BEM and TEM bottom surface nodal density (number of bottom
surface nodes in models)

BEM FEM
2X 577 -
1X 177 665
1/2X 57 241
1/4X 25 57

Timing Results

Without an optimization level for the compiler specified, BEM calculation times as long as
272 seconds were obtained for the pin fin with fillet, (1x mesh) on the RS6000 computer. To
further improve the times, optimizer levels of 2 and 3 (xlF compiler) were used for compiling the
executable program. It was seen that an order of magnitude decrease in timing could be obtained
with a good optimizer on the BEM code. The results are summarized in Table 4.

Figure 16 a-c contains the timing results from three cube files, 3 pin fin without fillet files, and
4 pin fin with fillet files. The number of nodes vs the time (in seconds) is shown in Table 5 for all
of the files. The linear curve fit of the log MATVEC time vs log nodes yielded a slope of 1.65; log
DECOMP/SOLVE vs log nodes yielded a slope of 2.92; and, log total time vs log nodes yielded a
slope of 2.03.

29

Table 4--Comparison of BEM run times with differing levels of code optimization on the
RS6000 computer.

Optimizer
level

GEOM
time
(seconds)

MATVEC
time
(seconds)

LU/SOLVE
time
(seconds)

Output
time
(seconds)

Total time
(seconds)

not specified 0.18 114 160 0.06 272
02 0.2 36 21 0.05 58
03 0.2 33 21 0.06 54

The MATVEC subroutine uses a do loop on nodes with a call to subroutine INT4, which uses
a do loop around the number of local nodes, and then performs another do loop on nodes in the
main subroutine followed by another do loop on nodes. Thus, subroutine MATVEC should be
order 2 (O2). The time to collect and assemble the matrices—A, B, phi, phip, etc.—is dominating the
processes for the matrix sizes used in this experiment, since the overall order is about 2. With
larger matrices, the LU Decomposition subroutine should eventually dominate the program and
yield order three, as seen by the value of 2.92 for the slope of the log DECOMP/SOLVE vs log
nodes plot. This reflects the relatively short triple do loop around the number of nodes in the LU
DECOMP subroutine. Note that the SOLVE subroutine has two do loops on the number of
nodes, therefore the LU Decomposition subroutine dominates the process. The memory storage
process is order 2. It appears that the constant multiplier for the order 2 processes in the code
dominate the smaller multiplier for time contribution from DECOMP/SOLVE, which is order 3.
With larger arrays/matrix, it is expected that the overall performance should scale as order 3.

Table 5--Output from timing tests for differing number of nodes. Results were obtained using
an IBM RS6000 with an optimizer level of 2 and requesting uninterrupted use of one processor.

Model Nodes GEOM
time
(seconds)

MATVEC
time
(seconds)

DECOMP/
SOLVE
time
(seconds)

Output
time
(seconds)

Total time
(seconds)

4 el/side Cube 150 0.03 1.43 0.1 0.01 1.57
1/4X Straight 322 0.08 6.87 0.89 0.02 7.86

1/4X Fillet 322 0.07 6.69 0.89 0.01 7.66
1/2X Straight 354 0.08 8.41 1.1 0.01 9.6

1/2X Fillet 354 0.07 8.33 1.1 0.02 9.52
16 el/side Cube 486 0.07 9.82 2.91 0.02 12.82

1X Fillet 962 0.19 36.32 21.04 0.05 57.6
1X Straight 971 0.18 37.28 21.59 0.05 59.1

64 el/side Cube 1734 0.3 89.2 125.8 0.09 215.3
2X Fillet 2562 0.53 206 394.5 0.13 601.9

30

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0

1

2

3

4

5

6

7

LU Decomp/Solve
slope = 2.92

Total Time
slope = 2.03

MatVec
slope = 1.65

lo
g

to
ta

l t
im

e

log nodes

Figure 16—BEM Timing results for total time and portions of the code. Time is in seconds.

The finite element code, COSMOS/M, was used on the filleted pin fin as a comparison of
results from the BEM code. The resulting times were 51 seconds total time for the FEM code
using a highly optimized COSMOS/M proprietary code and an 8871-node model, 306 seconds
total time for an older, non-proprietary COSMOS/M code, and 1420 seconds for the 2X pin fin
(2562 nodes) BEM model on the PC. The FEM model in this case had a greater surface density of
elements than the BEM model. However, the FEM model uses highly optimized code, while the
FORTRAN compiler (Microsoft Powerstation FORTRAN) has limited optimization. Note that
the BEM times are much slower on the PC than on the RS6000, while the computational speed of
the machines are similar. These timings were performed on a Pentium 90 with 80 M of RAM.
COSMOS/M is not available on the RS6000.

Further timing measurements for the less complex FEM models run on the Macintosh Power
PC (with 40 M of RAM and a 100 Mhz processor) gave values of 1231 seconds total time for the
1X FEM model (8325 nodes), 138 seconds for the 1/2X model (2211 nodes) and 19 seconds for
the 1/4X model (330 nodes). These times are considerably slower than the times on the PC. Most
of the total time was spent assembling and decomposing the matrices; actual solution time took
only about 5-7% of the total time. Plotting total time values on a log-log plot (Figure 17), the
slope is found to be 1.27, which is of considerably lower order than the BEM code.

The computation time increase caused by model complexity is of order 1.27 for the FEM and
2 for the BEM. However, as the mesh density increases, the number of nodes in the FEM model
increases as N³ where N is the number of nodes in a given linear direction, while the nodes on a

31

BEM model increase as N². Thus, the actual order of time increase with linear node density is 3.8
for FEM and 4.1 for the BEM method. Given all the variables involved, these orders are very
similar. A more exhaustive study using good optimization on the same machine would be
appropriate. In addition, the accuracy of the solution would be a better comparison than surface
nodal density.

1

1.5

2

2.5

3

3.5

2.5 3 3.5 4

L
o

g
 t

o
ta

l c
al

c
ti

m
e

Log nodes

curve fit

slope = 1.27

Figure 17--Total FEM calculation time vs number of nodes in model.

Summary/Conclusions

It was determined that the weld fillet on the pin fin significantly enhanced the heat transfer to
the sodium working fluid, improving the operating margin of the heat pipe. The peak flux was
reduced by 25% under the worst-case scenario, while the peak pin temperature was slightly
reduced, when compared to the previously modeled idealized pin fin. The reduced pin
temperature and fixed gas temperature resulted in 12% more total power that could be transferred
by the pin. These significant changes in pin performance should be incorporated into the overall
heat-pipe performance models, including the Fluent CFD model and the heat pipe wick model.

32

In the models investigated, there is not a clear advantage in computational time for either the
BEM or FEM methods, though the proprietary optimized COSMOS/M FEM code on a Pentium
PC appears to be the fastest method investigated. Processor speeds and code optimization
capabilities differed between the machines used. A more careful study should be performed with
geometries that have analytical solutions and with good optimizing compilers.

In the range of model sizes investigated, the BEM and FEM codes have similar scalability
based on linear grid spacing. However, the BEM code has a higher order (O(3) based on number
of nodes) routine (LU Solve) that will dominate on very large models, and thus may be less
scaleable than the FEM method.

A process for performing 3-dimensional BEM analysis was developed, tested, and applied to
the problem at hand. The process is as follows:

i.) Model the part and perform mesh generation over the surface. (Use of the COSMOS/M
program was helpful for this task, however other packages that would provide the same results
are available. It is necessary to assure that surface normals are oriented properly.

ii.) Supply information from mesh generation to the mesh converter program in order to form
an input file with the necessary format for the BEM program.

iii.) Run Marc Ingber’s BEM program (NPOT3D) with the input file and obtain an output file
of node number and temperature and flux for every node.

iv.) Graph the output file. In our work this was supplied to COSMOS/M as a user defined
plotfile to obtain 3-dimensional graphing of the temperature or flux over the object surface.
Limitations of the graphics output must be considered in the interpretation of data (i.e. polygonal
plotting of cylindrical elements, linear interpolation of data between nodes).

v.) Additionally, information such as peak temperatures and flux can be obtained directly from
simple sorting or statistical analysis of the data in the output file.

vi.) The BEM solutions at points inside the object can be obtained by supplying the
coordinates of interest into the input file. The severity number indicates accuracy of the result. If
no severity number is reported, the accuracy is good.

In summary, an existing FEM mesh-generation tool was used to develop complex meshes for
the BEM technique in conjunction with an automated conversion routine that incorporated
boundary conditions and some error checking.

Acknowledgments

The authors thank Marc Ingber, Scott Rawlinson, Brian Smith, and Richard Allen for their
help and encouragement with this work. This work was performed at the University of New
Mexico, Albuquerque Resource Center, and Sandia National Laboratories, which is operated for
the U.S. Department of Energy under contract number DE-AC04-94AL85000.

33

References

1 Fluent UNS, West Lebanon, NH.
2 COSMOS/M, Structural Research and Analysis Corporation, Los Angeles, CA.
3 Marc S. Ingber, npot3d.f BEM code.
4 Diver, R.B., et al, “Trends in Dish Stirling Solar Receiver Design,” paper no. 905303,

Proceedings of the 25th IECEC, Reno NV, August, 1990.
5 Marc S. Ingber, SAND93-7072, Sandia National Laboratories report, Albuquerque, NM

(1993).
6 Marc S. Ingber memo to D. W. Larson, Sandia National Laboratories, Albuquerque, NM

(August 10, 1987).
7 High Performance Computing, Schauble et al. (1990).
8 Matlab, The MathWorks Inc., Natick, MA.
9 Mathematica, Wolfram Research Inc., Champaign, IL.

34

Appendix A. NPOT3D BEM Code

C===
C NPOT3d.f
C
C This program solves Laplace's equation in a three-dimension
C interior or exterior domain using the Direct Boundary Element Method.
C
C Data for the program is supplied from the data file FLOW3D.DAT.
C Output is written to the file FLOW3D.OUT. For the proper format for
C the input file, see
C
C
C Dimensioning Notes: The program is currently dimensioned for a
C maximum of 4001 nodes and 1001 elements.
C These limits can only be increased by
C changing the appropriate DIMENSION statements
C in the program.
C
C Written by: M. S. Ingber
C University of New Mexico
C Department of Mechanical Engineering
C Albuquerque, New Mexico 87185*
C
C
C==
 COMMON /VARS/ PI,INTFL
 COMMON /QUAD/ SQPT,TQPT,WGT,GPT,SWGT
 COMMON /NQUAD/ GP(12,8),GW(12,8),NSEV(8)
 COMMON /TQUAD/ SGP(112,8),TGP(112,8),NSEV2(8),GWT(112,8)
 DIMENSION X(4001),Y(4001),Z(4001),IJK(9,1001),IPVT(4001)
 DIMENSION WK(4001),A(4001,4001),B(4001),IELTYPE(1001)
 DIMENSION SQPT(7),TQPT(7),WGT(7),GPT(4),SWGT(4),PHIP(4001)
 DIMENSION PHI(4001),BET(4001),GAM(4001),NBDY(4001),ICFL(4001)
 DIMENSION XACP(200),YACP(200),ZACP(200)
 character *8 root

 real t1,t2,t3,t4,t5,t6

 print *,'Enter file root name: '
read *,root

 OPEN(UNIT=5,FILE=root//'.dek',STATUS='old')
 OPEN(UNIT=6,FILE=root//'.out',STATUS='unknown')
 OPEN(UNIT=3,FILE=root//'.plt',STATUS='unknown')
 OPEN(UNIT=2,FILE=root//'.flx',STATUS='unknown')
 PI=4.*ATAN(1.)

 CALL QUADR
 call mytime(t1)

 CALL GEOM(X,Y,Z,IJK,NODES,NE,PHI,PHIP,BET,GAM,IELTYPE,
 A NBDY,ICFL,XACP,YACP,ZACP)

 call mytime(t2)
 CALL MATVEC(X,Y,Z,IJK,NODES,NE,A,B,PHI,PHIP,BET,GAM,IELTYPE,
 A NBDY,ICFL,XACP,YACP,ZACP)

 call mytime(t3)
 CALL DECOMP(NODES,COND,IPVT,WK,A)
 CALL SOLVE(NODES,B,IPVT,A)

 call mytime(t4)
C Write the solution vector to a plot file

do i=1,nodes

35

 if (nbdy(i).eq.1)then
C Specified T: temperature is given
 write(3,*)i,phi(i), b(i)
C write(2,*)x(i),y(i),z(i),b(i)

elseif(nbdy(i).eq.2) then
C Specified flux: Temperature is solution vector

 write(3,*)i,b(i), phi(i)
else

C Convection: solution is phi prime
 write(3,*)i,gam(i)-bet(i)*b(i)
end if
end do

 WRITE(6,300) COND
 300 FORMAT(/' MATRIX CONDITION NUMBER = ',E14.4/)

 call mytime(t5)
 CALL CALPHI(X,Y,Z,IJK,NODES,NE,B,PHI,PHIP,BET,GAM,
 A IELTYPE,NBDY)

 call mytime(t6)

 write(2,400) t2-t1
 400 format(/'geom time = ',E10.4/)
 write(2,401) t3-t2
 401 format(/'matvec time = ',E10.4/)
 write(2,402) t4-t3
 402 format(/'LU and solve time = ',E10.4/)
 write(2,403) t5-t4
 403 format(/'output time = ',E10.4/)
 write(2,404) t6-t5
 404 format(/'collocation time = ',E10.4/)

 STOP
 END
C
C
C
 SUBROUTINE MATVEC(X,Y,Z,IJK,NODES,NE,A,B,PHI,PHIP,
 A BET,GAM,IELTYPE,NBDY,ICFL,XACP,YACP,ZACP)
 COMMON /VARS/ PI,INTFL
 COMMON /QUAD/ SQPT,TQPT,WGT,GPT,SWGT
 DIMENSION X(*),Y(*),Z(*),IJK(9,1),A(4001,4001),B(*)
 DIMENSION AH1(4001),AH2(4001),SQPT(7),TQPT(7),WGT(7)
 DIMENSION GPT(4),SWGT(4),CCPT(3),PHIP(*),IELTYPE(*)
 DIMENSION PHI(*),BET(*),GAM(*),NBDY(*),ICFL(*)
 DIMENSION ZACP(*),XACP(*),YACP(*)
 A1=0.05971587
 A2=0.10128651
 A3=0.47014206
 A4=0.79742699
 W1=0.06296959
 W2=0.06619708
 W3=0.1125
 SQPT(1)=A2
 SQPT(2)=A3
 SQPT(3)=A4
 SQPT(4)=A3
 SQPT(5)=A2
 SQPT(6)=A1
 SQPT(7)=1./3.
 TQPT(1)=A2
 TQPT(2)=A1
 TQPT(3)=A2
 TQPT(4)=A3
 TQPT(5)=A4
 TQPT(6)=A3

36

 TQPT(7)=1./3.
 WGT(1)=W1
 WGT(2)=W2
 WGT(3)=W1
 WGT(4)=W2
 WGT(5)=W1
 WGT(6)=W2
 WGT(7)=W3
 GPT(1)=-0.86113631
 GPT(2)=-0.33998104
 GPT(3)=0.33998104
 GPT(4)=0.86113631
 SWGT(1)=0.347854845
 SWGT(2)=0.65214515
 SWGT(3)=0.65214515
 SWGT(4)=0.347854845
 ICT=0
 DO 10 I=1,NODES
 IF (ICFL(I).EQ.0) THEN
 CCPT(1)=X(I)
 CCPT(2)=Y(I)
 CCPT(3)=Z(I)
 ELSE

 ICT=ICT+1
 CCPT(1)=XACP(ICT)
 CCPT(2)=YACP(ICT)
 CCPT(3)=ZACP(ICT)

 ENDIF
 CALL INT4(I,CCPT,AH1,AH2,NODES,NE,IJK,X,Y,Z,IELTYPE)
 AH1(I)=0.0
 DO 20 J=1,NODES
 IF (J.EQ.I) GO TO 20
 AH1(I)=AH1(I)-AH1(J)
 20 CONTINUE
 IF (INTFL.EQ.1) AH1(I)=4.*PI+AH1(I)
 B(I)=0.
 DO 30 J=1,NODES

 GO TO (41,51,61) NBDY(J)
C
C NBDY(J) = 1 => PHI SPECIFIED
C NBDY(J) = 2 => PHIP SPECIFIED
C NBDY(J) = 3 => ROBIN BOUNDARY CONDITION
C
 41 CONTINUE

 A(I,J)=AH2(J)
 B(I)=B(I)+PHI(J)*AH1(J)
 GO TO 30

 51 CONTINUE
 A(I,J)=-AH1(J)
 B(I)=B(I)-PHIP(J)*AH2(J)

 GO TO 30
 61 CONTINUE

 A(I,J)=AH2(J)+AH1(J)*BET(J)
 B(I)=B(I)+GAM(J)*AH1(J)

 30 CONTINUE
 10 CONTINUE
 RETURN
 END
C
C
C
 SUBROUTINE INT4(INO,CCPT,AH1,AH2,NODES,NE,IJK,X,Y,Z,IELTYPE)
 COMMON /VARS/ PI,INTFL
 COMMON /QUAD/ SQPT,TQPT,WGT,GPT,SWGT
 DIMENSION AH1(*),IJK(9,1),CCPT(*),G1(9),G1P(9),AH2(*)
 DIMENSION SQPT(7),TQPT(7),WGT(7),GPT(4),SWGT(4)
 DIMENSION COORD(3,9),COORDT(9,3),DSQ(9),X(*),Y(*),Z(*)

37

 DIMENSION IELTYPE(*)
 SMALL=1.E-6
 DO 5 I=1,NODES
 AH1(I)=0.0
 AH2(I)=0.0
 5 CONTINUE
 DO 10 I=1,NE
 IF (IELTYPE(I).LT.40) THEN

 NS=6
 COORD(1,1)=X(IJK(1,I))
 COORD(2,1)=Y(IJK(1,I))
 COORD(3,1)=Z(IJK(1,I))
 COORD(1,2)=X(IJK(2,I))
 COORD(2,2)=Y(IJK(2,I))
 COORD(3,2)=Z(IJK(2,I))
 COORD(1,3)=X(IJK(3,I))
 COORD(2,3)=Y(IJK(3,I))
 COORD(3,3)=Z(IJK(3,I))
 COORD(1,4)=X(IJK(4,I))
 COORD(2,4)=Y(IJK(4,I))
 COORD(3,4)=Z(IJK(4,I))
 COORD(1,5)=X(IJK(5,I))
 COORD(2,5)=Y(IJK(5,I))
 COORD(3,5)=Z(IJK(5,I))
 COORD(1,6)=X(IJK(6,I))
 COORD(2,6)=Y(IJK(6,I))
 COORD(3,6)=Z(IJK(6,I))
 DO 15 IC=1,3
 DO 15 JC=1,6
 COORDT(JC,IC)=COORD(IC,JC)
 15 CONTINUE
 DO 25 IC=1,6
 DSQ(IC)=(COORD(1,IC)-CCPT(1))**2+(COORD(2,IC)-
 A CCPT(2))**2+(COORD(3,IC)-CCPT(3))**2
 DSQ(IC)=SQRT(DSQ(IC))
 25 CONTINUE
 INODE=0
 IF (DSQ(1).LE.SMALL) INODE=1
 IF (DSQ(2).LE.SMALL) INODE=2
 IF (DSQ(3).LE.SMALL) INODE=3
 IF (DSQ(4).LE.SMALL) INODE=4
 IF (DSQ(5).LE.SMALL) INODE=5
 IF (DSQ(6).LE.SMALL) INODE=6
 IF (INODE.EQ.0) THEN
 CALL RTINT(CCPT,G1,G1P,COORD,COORDT)
 ELSE
 CALL STINT(CCPT,G1,G1P,COORD,COORDT,INODE)
 END IF
 ELSE

 NS=9
 COORD(1,1)=X(IJK(1,I))
 COORD(2,1)=Y(IJK(1,I))
 COORD(3,1)=Z(IJK(1,I))
 COORD(1,2)=X(IJK(2,I))
 COORD(2,2)=Y(IJK(2,I))
 COORD(3,2)=Z(IJK(2,I))
 COORD(1,3)=X(IJK(3,I))
 COORD(2,3)=Y(IJK(3,I))
 COORD(3,3)=Z(IJK(3,I))
 COORD(1,4)=X(IJK(4,I))
 COORD(2,4)=Y(IJK(4,I))
 COORD(3,4)=Z(IJK(4,I))
 COORD(1,5)=X(IJK(5,I))
 COORD(2,5)=Y(IJK(5,I))
 COORD(3,5)=Z(IJK(5,I))
 COORD(1,6)=X(IJK(6,I))
 COORD(2,6)=Y(IJK(6,I))

38

 COORD(3,6)=Z(IJK(6,I))
 COORD(1,7)=X(IJK(7,I))
 COORD(2,7)=Y(IJK(7,I))

 COORD(3,7)=Z(IJK(7,I))
 COORD(1,8)=X(IJK(8,I))

 COORD(2,8)=Y(IJK(8,I))
 COORD(3,8)=Z(IJK(8,I))

 COORD(1,9)=X(IJK(9,I))
 COORD(2,9)=Y(IJK(9,I))
 COORD(3,9)=Z(IJK(9,I))

 DO 16 IC=1,3
 DO 16 JC=1,9
 COORDT(JC,IC)=COORD(IC,JC)
 16 CONTINUE
 DO 26 IC=1,9
 DSQ(IC)=(COORD(1,IC)-CCPT(1))**2+(COORD(2,IC)-
 A CCPT(2))**2+(COORD(3,IC)-CCPT(3))**2
 DSQ(IC)=SQRT(DSQ(IC))
 26 CONTINUE
 INODE=0
 IF (DSQ(1).LE.SMALL) INODE=1
 IF (DSQ(2).LE.SMALL) INODE=2
 IF (DSQ(3).LE.SMALL) INODE=3
 IF (DSQ(4).LE.SMALL) INODE=4
 IF (DSQ(5).LE.SMALL) INODE=5
 IF (DSQ(6).LE.SMALL) INODE=6
 IF (DSQ(7).LE.SMALL) INODE=7
 IF (DSQ(8).LE.SMALL) INODE=8

 IF (DSQ(9).LE.SMALL) INODE=9
 IF (INODE.EQ.0) THEN
 CALL RQINT(CCPT,G1,G1P,COORD,COORDT,IELTYPE(I))
 ELSE
 CALL SQINT(CCPT,G1,G1P,COORD,COORDT,INODE,IELTYPE(I))
 END IF
 END IF
 DO 20 J=1,NS
 AH1(IJK(J,I))=AH1(IJK(J,I))+G1P(J)
 AH2(IJK(J,I))=AH2(IJK(J,I))+G1(J)
 20 CONTINUE
 10 CONTINUE
 RETURN
 END
C
C
C
 SUBROUTINE RTINT(CCPT,G1,G1P,COORD,COORDT)
 COMMON /VARS/ PI,INTFL
 COMMON /QUAD/ SQPT,TQPT,WGT,GPT,SWGT
 COMMON /TQUAD/ SGP(112,8),TGP(112,8),NSEV2(8),GWT(112,8)
 DIMENSION CCPT(*),G1(*),G1P(*),COORD(3,9),COORDT(9,3)
 DIMENSION SQPT(7),TQPT(7),WGT(7),GPT(4),SWGT(4)
 DIMENSION DLH(2,6),DGH(2,3),RJ(2,2),QNORM(3)
 DIMENSION UNORM(3),F(9),FP(9),CEN(3),DVEC(3)
 DO 5 I=1,6
 G1(I)=0.
 G1P(I)=0.
 5 CONTINUE
C
C DETERMINE SEVERITY
C
C FIND LONGEST SIDE OF TRIANGLE
C
 S1=SQRT((COORD(1,2)-COORD(1,1))**2+(COORD(2,2)-
 A COORD(2,1))**2+(COORD(3,2)-COORD(3,1))**2)
 H=S1
 S2=SQRT((COORD(1,3)-COORD(1,2))**2+(COORD(2,3)-
 A COORD(2,2))**2+(COORD(3,3)-COORD(3,2))**2)

39

 IF (S2.GT.H) H=S2
 S3=SQRT((COORD(1,1)-COORD(1,3))**2+(COORD(2,1)-
 A COORD(2,3))**2+(COORD(3,1)-COORD(3,3))**2)
 IF (S3.GT.H) H=S3
 DO 59 I=1,3

 A1=COORD(I,1)+COORD(I,2)+COORD(I,3)
 A2=COORD(I,4)+COORD(I,5)+COORD(I,6)

 CEN(I)=4.*A2/9.-A1/9.
 59 CONTINUE
 DVEC(1)=CCPT(1)-CEN(1)
 DVEC(2)=CCPT(2)-CEN(2)
 DVEC(3)=CCPT(3)-CEN(3)
 D=SQRT(DVEC(1)**2+DVEC(2)**2+DVEC(3)**2)
 HDD=H/D
 IF (HDD.LT.0.358) THEN

 ISEV=1
 ELSE

 CALL DER6T(1./3.,1./3.,DLH)
 DO 16 IC=1,2
 DO 16 JC=1,3
 SUM=0.0

 DO 36 KC=1,6
 SUM=SUM+DLH(IC,KC)*COORDT(KC,JC)

 36 CONTINUE
 DGH(IC,JC)=SUM

 16 CONTINUE
 QNORM(1)=DGH(1,2)*DGH(2,3)-DGH(1,3)*DGH(2,2)
 QNORM(2)=DGH(1,3)*DGH(2,1)-DGH(1,1)*DGH(2,3)

 QNORM(3)=DGH(1,1)*DGH(2,2)-DGH(1,2)*DGH(2,1)
 CALL UNORMAL(QNORM,UNORM)
 UDOTD=0.0
 DO 41 I=1,3
 UDOTD=UDOTD+UNORM(I)*DVEC(I)

 41 CONTINUE
 COSTH=ABS(UDOTD/D)
 ISEV=(2.37+0.424*COSTH)*HDD+1
 IF (ISEV.GE.9) THEN
 WRITE(6,100) ISEV,(CCPT(I),I=1,3)
 ISEV=8
 ENDIF

 ENDIF
 100 FORMAT(/' WARNING, SEVERITY NUMBER=',I2,' AT CCPT= (',
 A E10.4,',',E10.4,',',E10.4,')'/' LARGE QUADRATURE
 B ERRORS ARE POSSIBLE'/)
 NQ=NSEV2(ISEV)
 DO 60 I=1,NQ
 CALL DER6T(SGP(I,ISEV),TGP(I,ISEV),DLH)
 DO 15 IC=1,2
 DO 25 JC=1,3
 SUM=0.
 DO 35 KC=1,6
 SUM=SUM+DLH(IC,KC)*COORDT(KC,JC)
 35 CONTINUE
 DGH(IC,JC)=SUM
 25 CONTINUE
 15 CONTINUE
 DO 50 IC=1,2
 DO 40 JC=1,2
 SUM=0.
 DO 30 KC=1,3
 SUM=SUM+DGH(IC,KC)*DGH(JC,KC)
 30 CONTINUE
 RJ(IC,JC)=SUM
 40 CONTINUE
 50 CONTINUE
 DET2=RJ(1,1)*RJ(2,2)-RJ(1,2)*RJ(2,1)
 DETWT=SQRT(DET2)*GWT(I,ISEV)

40

 QNORM(1)=DGH(1,2)*DGH(2,3)-DGH(1,3)*DGH(2,2)
 QNORM(2)=DGH(1,3)*DGH(2,1)-DGH(1,1)*DGH(2,3)
 QNORM(3)=DGH(1,1)*DGH(2,2)-DGH(1,2)*DGH(2,1)
 CALL UNORMAL(QNORM,UNORM)
 CALL FUNDS(SGP(I,ISEV),TGP(I,ISEV),COORD,CCPT,UNORM,F,FP,30)
 DO 10 J=1,6
 G1(J)=G1(J)+F(J)*DETWT
 G1P(J)=G1P(J)+FP(J)*DETWT
 10 CONTINUE
 60 CONTINUE
 RETURN
 END
C
C
C
 SUBROUTINE FUNDS(S,T,COORD,CCPT,UNORM,F,FP,IET)
 DIMENSION COORD(3,9),CCPT(*),UNORM(*),H(9),F(9),FP(9)
 DIMENSION QPT(3)
 IF (IET.LT.40) THEN
 NS=6
C IF (IET.EQ.30) THEN
 CALL SHP6T(S,T,H)
C ELSE
C CALL SHP6TD(S,T,H)
C ENDIF
 ELSE

 NS=9
 IF (IET.EQ.40) THEN

 CALL SHP9T(S,T,H)
 ELSE

 CALL SHP9TD(S,T,H)
 ENDIF

 ENDIF
 DO 10 I=1,3
 QPT(I)=0.
 DO 10 J=1,NS
 QPT(I)=COORD(I,J)*H(J)+QPT(I)
 10 CONTINUE
 R=SQRT((CCPT(1)-QPT(1))**2+(CCPT(2)-QPT(2))**2+(CCPT(3)-
 A QPT(3))**2)
 F1=(CCPT(1)-QPT(1))*UNORM(1)/R**3
 F2=(CCPT(2)-QPT(2))*UNORM(2)/R**3
 F3=(CCPT(3)-QPT(3))*UNORM(3)/R**3
 DO 20 I=1,NS
 FP(I)=(F1+F2+F3)*H(I)
 F(I)=H(I)/R
 20 CONTINUE
 RETURN
 END
C
C
C
 SUBROUTINE DER6T(S,T,DLH)
 DIMENSION DLH(2,6)
 DLH(1,1)=2.*(S+T-0.5)+2.*(S+T-1.)
 DLH(1,2)=2.*(S-0.5)+2.*S
 DLH(1,3)=0.
 DLH(1,4)=-4.*(S+T-1.)-4.*S
 DLH(1,5)=4.*T
 DLH(1,6)=-4.*T
 DLH(2,1)=DLH(1,1)
 DLH(2,2)=0.
 DLH(2,3)=2.*(T-0.5)+2.*T
 DLH(2,4)=-4.*S
 DLH(2,5)=4.*S
 DLH(2,6)=-4.*(S+T-1.)-4.*T
 RETURN

41

 END
C
C
C
 SUBROUTINE UNORMAL(Q,U)
 COMMON /VARS/ PI,INTFL
 DIMENSION Q(*),U(*)
 F=1.
 IF (INTFL.EQ.1) F=-1.
 R=SQRT(Q(1)**2+Q(2)**2+Q(3)**2)
 U(1)=F*Q(1)/R
 U(2)=F*Q(2)/R
 U(3)=F*Q(3)/R
 RETURN
 END
C
C
C
 SUBROUTINE SHP6T(S,T,H)
 DIMENSION H(9)
 H(1)=2.*(S+T-0.5)*(S+T-1.)
 H(2)=2.*S*(S-0.5)
 H(3)=2.*T*(T-0.5)
 H(4)=-4.*S*(S+T-1.)
 H(5)=4.*S*T
 H(6)=-4.*T*(S+T-1.)
 RETURN
 END
C
C
C
 SUBROUTINE STINT(CCPT,G1,G1P,COORD,COORDT,INODE)
 COMMON /VARS/ PI,INTFL
 COMMON /QUAD/ SQPT,TQPT,WGT,GPT,SWGT
 DIMENSION CCPT(*),G1(*),G1P(*),COORD(3,9),COORDT(9,3)
 DIMENSION SQPT(7),TQPT(7),WGT(7),GPT(4),SWGT(4)
 DIMENSION NODE(6),DLH(2,6),DGH(2,3),RJ(2,2)
 DIMENSION NORDER(6,6),UNORM(3),QNORM(3),QPT(3)
 DIMENSION F(9),FP(9),G1H(9),G1PH(9)
 DATA NORDER/1,2,3,3,1,2,2,3,1,1,2,3,3,1,2,2,3,1,4,5,6
 A ,6,4,5,5,6,4,4,5,6,6,4,5,5,6,4/
 DO 10 I=1,6
 NODE(I)=NORDER(INODE,I)
 10 CONTINUE
 DO 20 J=1,6
 NOD=NODE(J)
 DO 30 I=1,3
 COORDT(J,I)=COORD(I,NOD)
 30 CONTINUE
 20 CONTINUE
 DO 40 I=1,3
 DO 40 J=1,6
 COORD(I,J)=COORDT(J,I)
 40 CONTINUE
 IF (INODE.LE.3) THEN
 INDX=1
 FACT=1.0
 A=0.0
 B=0.0
 C=1.0
 ELSE
 INDX=2
 FACT=1.0/SQRT(2.)
 A=0.5
 B=-FACT
 C=-FACT
 ENDIF

42

 DO 50 I=1,6
 G1H(I)=0.
 G1PH(I)=0.
 50 CONTINUE
 DO 60 K=1,INDX
 TWOK=2*K
 SGN=3-TWOK
 DO 70 I=1,4
 PHI=(PI/4.)*(GPT(I)+TWOK-1.)
 SINPHI=SIN(PHI)
 COSPHI=COS(PHI)
 RHOUL=FACT/(SINPHI+SGN*COSPHI)
 WTI=RHOUL*SWGT(I)/2.
 DO 80 J=1,4
 RHO=(RHOUL/2.)*(GPT(J)+1.)
 S=A+RHO*(B*SINPHI+C*COSPHI)
 T=A+RHO*(C*SINPHI-B*COSPHI)
 CALL DER6T(S,T,DLH)
 DO 15 IC=1,2
 DO 25 JC=1,3
 SUM=0.
 DO 35 KC=1,6
 SUM=SUM+DLH(IC,KC)*COORDT(KC,JC)
 35 CONTINUE
 DGH(IC,JC)=SUM
 25 CONTINUE
 15 CONTINUE
 DO 45 IC=1,2
 DO 55 JC=1,2
 SUM=0.
 DO 65 KC=1,3
 SUM=SUM+DGH(IC,KC)*DGH(JC,KC)
 65 CONTINUE
 RJ(IC,JC)=SUM
 55 CONTINUE
 45 CONTINUE
 DET2=RJ(1,1)*RJ(2,2)-RJ(1,2)*RJ(2,1)
 WTJ=SQRT(DET2)*SWGT(J)*PI/4.
 QNORM(1)=DGH(1,2)*DGH(2,3)-DGH(1,3)*DGH(2,2)
 QNORM(2)=DGH(1,3)*DGH(2,1)-DGH(1,1)*DGH(2,3)
 QNORM(3)=DGH(1,1)*DGH(2,2)-DGH(1,2)*DGH(2,1)
 CALL UNORMAL(QNORM,UNORM)
 CALL FUNDS(S,T,COORD,CCPT,UNORM,F,FP,30)
 DO 75 J5=1,6
 G1H(J5)=G1H(J5)+WTJ*WTI*F(J5)*RHO
 G1PH(J5)=G1PH(J5)+WTJ*WTI*FP(J5)*RHO
 75 CONTINUE
 DO 77 J6=1,6
 NOD=NORDER(INODE,J6)
 G1(NOD)=G1H(J6)
 G1P(NOD)=G1PH(J6)
 77 CONTINUE
 80 CONTINUE
 70 CONTINUE
 60 CONTINUE
 RETURN
 END
C
C
C
 SUBROUTINE RQINT(CCPT,G1,G1P,COORD,COORDT,IEL)
 DIMENSION CCPT(*),G1(*),G1P(*),COORD(3,9),COORDT(9,3)
 IF (IEL.LE.40) THEN

 CALL RQINTC(CCPT,G1,G1P,COORD,COORDT)
 ELSE

 CALL RQINTD(CCPT,G1,G1P,COORD,COORDT,IEL)
 ENDIF

43

 RETURN
 END
C
C
C
 SUBROUTINE SQINT(CCPT,G1,G1P,COORD,COORDT,INODE,IEL)
 COMMON /VARS/ PI,INTFL
 DIMENSION CCPT(*),G1(*),G1P(*),COORD(3,9),COORDT(9,3)
 DIMENSION ANG1(4),ANG2(4),FACT(4),IFL(4)
 IF (INODE.LT.9) GO TO 10
 NTRI=4
 SOFF=0.
 TOFF=0.
 IFL(1)=1
 FACT(1)=1.
 ANG1(1)=-PI/4.
 ANG2(1)=PI/4.
 IFL(2)=2

 FACT(2)=1.
 ANG1(2)=PI/4.

 ANG2(2)=3.*PI/4.
 IFL(3)=1
 FACT(3)=-1.
 ANG1(3)=3.*PI/4.

 ANG2(3)=5.*PI/4.
 IFL(4)=2
 FACT(4)=-1.
 ANG1(4)=5.*PI/4.
 ANG2(4)=7.*PI/4.

 GO TO 150
 10 CONTINUE
 IF (INODE.LT.8) GO TO 20
 NTRI=3
 SOFF=-1.

 TOFF=0.
 IFL(1)=2
 FACT(1)=-1.
 ANG1(1)=3.*PI/2.
 ANG2(1)=2.*PI+ATAN2(-1.,2.)
 IFL(2)=1
 FACT(2)=2.
 ANG1(2)=-ATAN(0.5)
 ANG2(2)=ATAN(0.5)
 IFL(3)=2

 FACT(3)=1.
 ANG1(3)=ATAN(0.5)
 ANG2(3)=PI/2.
 GO TO 150

 20 CONTINUE
 IF (INODE.LT.7) GO TO 30
 NTRI=3

 SOFF=0.
 TOFF=1.
 IFL(1)=1
 FACT(1)=-1.
 ANG1(1)=PI
 ANG2(1)=2.*PI+ATAN2(-2.,-1.)
 IFL(2)=2
 FACT(2)=-2.
 ANG1(2)=2.*PI+ATAN2(-2.,-1.)
 ANG2(2)=2.*PI+ATAN2(-2.,1.)
 IFL(3)=1
 FACT(3)=1
 ANG1(3)=2.*PI+ATAN2(-2.,1.)
 ANG2(3)=2.*PI

 GO TO 150
 30 CONTINUE

44

 IF (INODE.LT.6) GO TO 40
 NTRI=3

 SOFF=1.
 TOFF=0.
 IFL(1)=2

 FACT(1)=1.
 ANG1(1)=PI/2.
 ANG2(1)=ATAN2(1.,-2.)
 IFL(2)=1
 FACT(2)=-2.
 ANG1(2)=ATAN2(1.,-2.)
 ANG2(2)=2.*PI+ATAN2(-1.,-2.)
 IFL(3)=2

 FACT(3)=-1.
 ANG1(3)=2.*PI+ATAN2(-1.,-2.)

 ANG2(3)=3.*PI/2.
 GO TO 150
 40 CONTINUE
 IF (INODE.LT.5) GO TO 50
 IF (IEL.LE.40) THEN
 NTRI=3
 SOFF=0.

 TOFF=-1.
 IFL(1)=1
 FACT(1)=1.
 ANG1(1)=0.
 ANG2(1)=ATAN(2.)
 IFL(2)=2
 FACT(2)=2.
 ANG1(2)=ATAN(2.)
 ANG2(2)=ATAN2(2.,-1.)
 IFL(3)=1
 FACT(3)=-1.
 ANG1(3)=ATAN2(2.,-1.)
 ANG2(3)=PI

 ELSE
 NTRI=4

 SOFF=0.
 TOFF=-2./3.
 IFL(1)=2
 FACT(1)=-1./3.
 ANG1(1)=2.*PI+ATAN2(-1./3.,-1.)
 ANG2(1)=2.*PI+ATAN2(-1./3.,1.)
 IFL(2)=1
 FACT(2)=1.
 ANG1(2)=-ATAN(1./3.)
 ANG2(2)=ATAN(5./3.)
 IFL(3)=2
 FACT(3)=5./3.
 ANG1(3)=ATAN(5./3.)
 ANG2(3)=ATAN2(5./3.,-1.)
 IFL(4)=1

 FACT(4)=-1.
 ANG1(4)=ATAN2(5./3.,-1.)
 ANG2(4)=2.*PI+ATAN2(-1./3.,-1.)

 ENDIF
 GO TO 150
 50 CONTINUE
 IF (INODE.LT.4) GO TO 60
 NTRI=2
 SOFF=-1.

 TOFF=1.
 IFL(1)=2
 FACT(1)=-2.
 ANG1(1)=3.*PI/2.
 ANG2(1)=7.*PI/4.
 IFL(2)=1

45

 FACT(2)=2.
 ANG1(2)=7.*PI/4.

 ANG2(2)=2.*PI
 GO TO 150
 60 CONTINUE
 IF (INODE.LT.3) GO TO 70
 NTRI=2
 SOFF=1.

 TOFF=1.
 IFL(1)=1
 FACT(1)=-2.
 ANG1(1)=PI
 ANG2(1)=5.*PI/4.

 IFL(2)=2
 FACT(2)=-2.

 ANG1(2)=5.*PI/4.
 ANG2(2)=3.*PI/2.
 GO TO 150

 70 CONTINUE
 IF (INODE.LT.2) GO TO 80

 IF (IEL.LE.40) THEN
 NTRI=2

 SOFF=1.
 TOFF=-1.
 IFL(1)=2
 FACT(1)=2.
 ANG1(1)=PI/2.
 ANG2(1)=3.*PI/4.
 IFL(2)=1
 FACT(2)=-2.
 ANG1(2)=3.*PI/4.
 ANG2(2)=PI

 ELSE
 NTRI=3
 SOFF=1.
 TOFF=-2./3.
 ANG1(1)=PI/2.

 ANG2(1)=ATAN2(5./3.,-2.)
 IFL(1)=2

 FACT(1)=5./3.
 ANG1(2)=ATAN2(5./3.,-2.)
 ANG2(2)=2.*PI+ATAN2(-1./3.,-2.)
 IFL(2)=1
 FACT(2)=-2.
 ANG1(3)=2.*PI+ATAN2(-1./3.,-2.)
 ANG2(3)=3.*PI/2.
 IFL(3)=2
 FACT(3)=-1./3.

 ENDIF
 GO TO 150
 80 CONTINUE
 IF (IEL.EQ.40) THEN

 NTRI=2
 SOFF=-1.
 TOFF=-1.
 ANG1(1)=0.
 ANG2(1)=PI/4.
 IFL(1)=1

 FACT(1)=2.
 ANG1(2)=PI/4.
 ANG2(2)=PI/2.
 IFL(2)=2
 FACT(2)=2.

 ELSE
 NTRI=3
 SOFF=-1.
 TOFF=-2./3.

46

 ANG1(1)=3.*PI/2.
 ANG2(1)=2.*PI+ATAN2(-1./3.,2.)
 IFL(1)=2
 FACT(1)=-1./3.
 ANG1(2)=-ATAN2(1./3.,2.)
 ANG2(2)=ATAN2(5./3.,2.)
 IFL(2)=1
 FACT(2)=2.
 ANG1(3)=ATAN2(5./3.,2.)
 ANG2(3)=PI/2.
 IFL(3)=2
 FACT(3)=5./3.

 ENDIF
 150 CONTINUE
 CALL SQUAD(NTRI,ANG1,ANG2,CCPT,G1,G1P,COORD,COORDT,IEL,
 A FACT,IFL,SOFF,TOFF)
 RETURN
 END
C
C
C
 SUBROUTINE SQUAD(NTRI,ANG1,ANG2,CCPT,G1,G1P,COORD,COORDT
 A ,IEL,FACT,IFL,SOFF,TOFF)
 COMMON /VARS/ PI,INTFL
 COMMON /QUAD/ SQPT,TQPT,WGT,GPT,SWGT
 DIMENSION ANG1(4),ANG2(4),CCPT(*),G1(*),G1P(*),FACT(4)
 DIMENSION COORD(3,9),COORDT(9,3),G1H(9),G1PH(9)
 DIMENSION SQPT(7),TQPT(7),WGT(7),GPT(4),SWGT(4)
 DIMENSION DLH(2,9),DGH(2,3),RJ(2,2),QNORM(3),IFL(4)
 DIMENSION UNORM(3),F(9),FP(9),NORDER(4,9),NODE(9)
 DATA NORDER/1,2,3,4,2,3,4,1,3,4,1,2,4,1,2,3,5,6,7,8,6,7,
 A 8,5,7,8,5,6,8,5,6,7,9,9,9,9/
 ISIDE=IEL-40
 IF (ISIDE.LE.1) GO TO 42
 DO 11 I=1,9

 NODE(I)=NORDER(ISIDE,I)
 11 CONTINUE
 DO 21 J=1,9

 NOD=NODE(J)
 DO 31 I=1,3
 COORDT(J,I)=COORD(I,NOD)

 31 CONTINUE
 21 CONTINUE
 DO 41 I=1,3
 DO 41 J=1,9

 COORD(I,J)=COORDT(J,I)
 41 CONTINUE
 42 CONTINUE
 DO 5 I=1,9
 G1H(I)=0.
 G1PH(I)=0.
 5 CONTINUE
 DO 60 K=1,NTRI
 DO 70 I=1,4

 PHI=0.5*(ANG2(K)-ANG1(K))*(GPT(I)+1.0)+ANG1(K)
 SINPHI=SIN(PHI)
 COSPHI=COS(PHI)

 IF (IFL(K).EQ.1) THEN
 RHOUL=FACT(K)/COSPHI

 ELSE
 RHOUL=FACT(K)/SINPHI

 ENDIF
 WTI=RHOUL*SWGT(I)/2.
 DO 80 J=1,4
 RHO=(RHOUL/2.)*(GPT(J)+1.)
 S=RHO*COSPHI+SOFF
 T=RHO*SINPHI+TOFF

47

 IF (IEL.LE.40) THEN
 CALL DER9T(S,T,DLH)
 ELSE

 CALL DER9TD(S,T,DLH)
 ENDIF
 DO 15 IC=1,2
 DO 25 JC=1,3
 SUM=0.
 DO 35 KC=1,9
 SUM=SUM+DLH(IC,KC)*COORDT(KC,JC)
 35 CONTINUE
 DGH(IC,JC)=SUM
 25 CONTINUE
 15 CONTINUE
 DO 45 IC=1,2
 DO 55 JC=1,2
 SUM=0.
 DO 65 KC=1,3
 SUM=SUM+DGH(IC,KC)*DGH(JC,KC)
 65 CONTINUE
 RJ(IC,JC)=SUM
 55 CONTINUE
 45 CONTINUE
 DET2=RJ(1,1)*RJ(2,2)-RJ(1,2)*RJ(2,1)
 WTJ=SQRT(DET2)*SWGT(J)*0.5*(ANG2(K)-ANG1(K))
 QNORM(1)=DGH(1,2)*DGH(2,3)-DGH(1,3)*DGH(2,2)
 QNORM(2)=DGH(1,3)*DGH(2,1)-DGH(1,1)*DGH(2,3)
 QNORM(3)=DGH(1,1)*DGH(2,2)-DGH(1,2)*DGH(2,1)
 CALL UNORMAL(QNORM,UNORM)
 CALL FUNDS(S,T,COORD,CCPT,UNORM,F,FP,IEL)
 DO 75 J5=1,9
 G1H(J5)=G1H(J5)+WTJ*WTI*F(J5)*RHO
 G1PH(J5)=G1PH(J5)+WTJ*WTI*FP(J5)*RHO
 75 CONTINUE
 DO 77 J6=1,9
 IF (ISIDE.GT.1) THEN
 NOD=NORDER(ISIDE,J6)
 ELSE

 NOD=J6
 ENDIF
 G1(NOD)=G1H(J6)
 G1P(NOD)=G1PH(J6)
 77 CONTINUE
 80 CONTINUE
 70 CONTINUE
 60 CONTINUE
 RETURN
 END
C
C
C
 SUBROUTINE RQINTC(CCPT,G1,G1P,COORD,COORDT)
 COMMON /VARS/ PI,INTFL
 COMMON /QUAD/ SQPT,TQPT,WGT,GPT,SWGT
 COMMON /NQUAD/ GP(12,8),GW(12,8),NSEV(8)
 DIMENSION CCPT(*),G1(*),G1P(*),COORD(3,9),COORDT(9,3)
 DIMENSION SQPT(7),TQPT(7),WGT(7),GPT(4),SWGT(4)
 DIMENSION DLH(2,9),DGH(2,3),RJ(2,2),QNORM(3)
 DIMENSION UNORM(3),F(9),FP(9),DVEC(3)
 DO 5 I=1,9

 G1(I)=0.
 G1P(I)=0.

 5 CONTINUE
C
C DETERMINE SEVERITY
C
C FIND LONGEST DIAGONAL OF ELEMENT

48

C
 D1=SQRT((COORD(1,3)-COORD(1,1))**2+(COORD(2,3)-COORD(2,1))**2+
 A (COORD(3,3)-COORD(3,1))**2)
 H=D1
 D2=SQRT((COORD(1,4)-COORD(1,2))**2+(COORD(2,4)-COORD(2,2))**2+
 A (COORD(3,4)-COORD(3,2))**2)
 IF (D2.GT.H) H=D2
 DVEC(1)=CCPT(1)-COORD(1,9)
 DVEC(2)=CCPT(2)-COORD(2,9)
 DVEC(3)=CCPT(3)-COORD(3,9)
 D=SQRT(DVEC(1)**2+DVEC(2)**2+DVEC(3)**2)
 HDD=H/D
 IF (HDD.LT.0.358) THEN

 ISEV=1
 ELSE

 CALL DER9T(0.,0.,DLH)
 DO 16 IC=1,2

 DO 16 JC=1,3
 SUM=0.0
 DO 36 KC=1,9
 SUM=SUM+DLH(IC,KC)*COORDT(KC,JC)

 36 CONTINUE
 DGH(IC,JC)=SUM
 16 CONTINUE

 QNORM(1)=DGH(1,2)*DGH(2,3)-DGH(1,3)*DGH(2,2)
 QNORM(2)=DGH(1,3)*DGH(2,1)-DGH(1,1)*DGH(2,3)
 QNORM(3)=DGH(1,1)*DGH(2,2)-DGH(1,2)*DGH(2,1)
 CALL UNORMAL(QNORM,UNORM)
 UDOTD=0.0
 DO 41 I=1,3
 UDOTD=UDOTD+UNORM(I)*DVEC(I)

 41 CONTINUE
 COSTH=ABS(UDOTD/D)
 ISEV=(2.37+0.424*COSTH)*HDD+1
 IF (ISEV.GE.9) THEN
 WRITE(6,100) ISEV,(CCPT(I),I=1,3)

 ISEV=8
 ENDIF
 ENDIF
 100 FORMAT(/' WARNING, SEVERITY NUMBER = (',I2,' AT
 A CCPT=',E10.4,',',E10.4,',',E10.4,')'/' LARGE
 B QUADRATURE ERRORS ARE POSSIBLE'/)
 NQ=NSEV(ISEV)
 DO 60 I=1,NQ
 DO 60 J=1,NQ

 CALL DER9T(GP(I,ISEV),GP(J,ISEV),DLH)
 DO 15 IC=1,2
 DO 25 JC=1,3
 SUM=0.0
 DO 35 KC=1,9
 SUM=SUM+DLH(IC,KC)*COORDT(KC,JC)

 35 CONTINUE
 DGH(IC,JC)=SUM

 25 CONTINUE
 15 CONTINUE
 DO 50 IC=1,2

 DO 40 JC=1,2
 SUM=0.0
 DO 30 KC=1,3
 SUM=SUM+DGH(IC,KC)*DGH(JC,KC)

 30 CONTINUE
 RJ(IC,JC)=SUM
 40 CONTINUE
 50 CONTINUE

 DET2=RJ(1,1)*RJ(2,2)-RJ(1,2)*RJ(2,1)
 DETWT=SQRT(DET2)*GW(I,ISEV)*GW(J,ISEV)

 QNORM(1)=DGH(1,2)*DGH(2,3)-DGH(1,3)*DGH(2,2)

49

 QNORM(2)=DGH(1,3)*DGH(2,1)-DGH(1,1)*DGH(2,3)
 QNORM(3)=DGH(1,1)*DGH(2,2)-DGH(1,2)*DGH(2,1)
 CALL UNORMAL(QNORM,UNORM)
 CALL FUNDS(GP(I,ISEV),GP(J,ISEV),COORD,CCPT,UNORM,F,FP,40)

 DO 10 J2=1,9
 G1(J2)=G1(J2)+F(J2)*DETWT
 G1P(J2)=G1P(J2)+FP(J2)*DETWT

 10 CONTINUE
 60 CONTINUE
 RETURN
 END
C
C
C
 SUBROUTINE RQINTD(CCPT,G1,G1P,COORD,COORDT,IEL)
 COMMON /VARS/ PI,INTFL
 COMMON /QUAD/ SQPT,TQPT,WGT,GPT,SWGT
 DIMENSION CCPT(*),G1(*),G1P(*),COORD(3,9),COORDT(9,3)
 DIMENSION SQPT(7),TQPT(7),WGT(7),GPT(4),SWGT(4)
 DIMENSION DLH(2,9),DGH(2,3),RJ(2,2),QNORM(3)
 DIMENSION G1H(9),G1PH(9)
 DIMENSION UNORM(3),F(9),FP(9),NORDER(4,9),NODE(9)
 DATA NORDER/1,2,3,4,2,3,4,1,3,4,1,2,4,1,2,3,5,6,7,8,6,7,
 A 8,5,7,8,5,6,8,5,6,7,9,9,9,9/
 ISIDE=IEL-40
 DO 11 I=1,9

 NODE(I)=NORDER(ISIDE,I)
 11 CONTINUE
 DO 21 J=1,9

 NOD=NODE(J)
 DO 31 I=1,3
 COORDT(J,I)=COORD(I,NOD)

 31 CONTINUE
 21 CONTINUE
 DO 41 I=1,3
 DO 41 J=1,9

 COORD(I,J)=COORDT(J,I)
 41 CONTINUE
 DO 5 I=1,9

 G1H(I)=0.
 G1PH(I)=0.

 5 CONTINUE
 DO 60 I=1,4
 DO 60 J=1,4

 CALL DER9TD(GPT(I),GPT(J),DLH)
 DO 15 IC=1,2
 DO 25 JC=1,3
 SUM=0.0
 DO 35 KC=1,9
 SUM=SUM+DLH(IC,KC)*COORDT(KC,JC)

 35 CONTINUE
 DGH(IC,JC)=SUM

 25 CONTINUE
 15 CONTINUE
 DO 50 IC=1,2

 DO 40 JC=1,2
 SUM=0.0
 DO 30 KC=1,3
 SUM=SUM+DGH(IC,KC)*DGH(JC,KC)

 30 CONTINUE
 RJ(IC,JC)=SUM
 40 CONTINUE
 50 CONTINUE

 DET2=RJ(1,1)*RJ(2,2)-RJ(1,2)*RJ(2,1)
 DETWT=SQRT(DET2)*SWGT(I)*SWGT(J)

 QNORM(1)=DGH(1,2)*DGH(2,3)-DGH(1,3)*DGH(2,2)
 QNORM(2)=DGH(1,3)*DGH(2,1)-DGH(1,1)*DGH(2,3)

50

 QNORM(3)=DGH(1,1)*DGH(2,2)-DGH(1,2)*DGH(2,1)
 CALL UNORMAL(QNORM,UNORM)
 CALL FUNDS(GPT(I),GPT(J),COORD,CCPT,UNORM,F,FP,41)

 DO 10 J2=1,9
 G1H(J2)=G1H(J2)+F(J2)*DETWT
 G1PH(J2)=G1PH(J2)+FP(J2)*DETWT

 10 CONTINUE
 DO 77 J6=1,9
 NOD=NORDER(ISIDE,J6)

 G1(NOD)=G1H(J6)
 G1P(NOD)=G1PH(J6)

 77 CONTINUE
 60 CONTINUE
 RETURN
 END
C
C
C
 SUBROUTINE GEOM(X,Y,Z,IJK,NODES,NE,PHI,PHIP,BET,GAM,IELTYPE,
 A NBDY,ICFL,XACP,YACP,ZACP)
 COMMON /VARS/ PI,INTFL
 CHARACTER TITLE1*80,TITLE2*80,TITLE3*80
 DIMENSION X(*),Y(*),Z(*),IJK(9,1),UN(4001,20,3)
 DIMENSION PHIP(*),IELTYPE(*),ICON(4001),PHI(*),BET(*)
 DIMENSION S(9),T(9),SS(6),TT(6),COORDT(9,3),DLHT(2,6)
 DIMENSION DLH(2,9),DGH(2,3),QNORM(3),UNORM(3),GAM(*)
 DIMENSION NBDY(*),ICFL(*),XACP(*),YACP(*),ZACP(*)
 READ(5,100) TITLE1
 READ(5,100) TITLE2
 READ(5,100) TITLE3
 WRITE(6,101) TITLE1
 WRITE(6,101) TITLE2
 WRITE(6,101) TITLE3
 100 FORMAT(A)
 101 FORMAT(1X,A)
 READ(5,*) INTFL,IEXTRA
 DATA S/-1.,1.,1.,-1.,0.,1.,0.,-1.,0./
 DATA T/-1.,-1.,1.,1.,-1.,0.,1.,0.,0./
 DATA SS/0.,1.,0.,0.5,0.5,0./
 DATA TT/0.,0.,1.,0.,0.5,0.5/
 READ(5,*) NODES,NE
 DO 10 I=1,NODES
 ICON(I)=0
 READ(5,*) NI,X(NI),Y(NI),Z(NI),PAR1,PAR2,NBDY(NI),
 A ICFL(NI)

 IF (NBDY(NI).EQ.1) THEN
 PHI(NI)=PAR1
 ELSE
 IF (NBDY(NI).EQ.2) THEN
 PHIP(NI)=PAR1
 ELSE
 BET(NI)=PAR1
 GAM(NI)=PAR2
 ENDIF
 ENDIF

 10 CONTINUE
 DO 20 I=1,NE
 READ(5,*) NI,IELTYPE(NI),(IJK(J,NI),J=1,9)
 20 CONTINUE
 DO 30 I=1,IEXTRA

 READ(5,*) XACP(I),YACP(I),ZACP(I)
 30 CONTINUE
 RETURN
 END
C
C
C

51

 SUBROUTINE CALPHI(X,Y,Z,IJK,NODES,NE,B,PHI,PHIP,BET,GAM,
 A IELTYPE,NBDY)
 COMMON /VARS/ PI,INTFL
 COMMON /QUAD/ SQPT,TQPT,WGT,GPT,SWGT
 DIMENSION X(*),Y(*),Z(*),IJK(9,1),B(*),IELTYPE(*)
 DIMENSION SQPT(7),TQPT(7),WGT(7),GPT(4),SWGT(4)
 DIMENSION AH1(4001),AH2(4001),CCPT(3),PHIP(*)
 DIMENSION PHI(*),BET(*),GAM(*),NBDY(*)
 READ(5,*) INUM
 IF (INUM.EQ.0) GO TO 30
 WRITE(6,100)
 100 FORMAT(//10X,' SOLUTION VALUES AT SELECTED POINTS'/)
 DO 10 I=1,INUM
 READ(5,*) CCPT(1),CCPT(2),CCPT(3)
 CALL INT4(0,CCPT,AH1,AH2,NODES,NE,IJK,X,Y,Z,IELTYPE)
 PS=0.
 DO 20 J=1,NODES
 GO TO (41,51,61) NBDY(J)
 41 CONTINUE

 PS=PS-PHI(J)*AH1(J)+B(J)*AH2(J)
 GO TO 20

 51 CONTINUE
 PS=PS-B(J)*AH1(J)+PHIP(J)*AH2(J)
 GO TO 20

 61 CONTINUE
 PHI(J)=GAM(J)-BET(J)*B(J)
 PS=PS-PHI(J)*AH1(J)+B(J)*AH2(J)

 20 CONTINUE
 PS=PS/(4.*PI)
 PSE=CCPT(1)+2.*CCPT(1)*CCPT(2)-CCPT(2)+CCPT(1)*
 A CCPT(2)*CCPT(3)
 WRITE(6,200) CCPT(1),CCPT(2),CCPT(3),PS,PSE
 10 CONTINUE
 30 CONTINUE
 200 FORMAT(' X=',F9.4,2X,'Y=',F9.4,2X,'Z=',F9.4,
 A 2X,'PHI=',E14.6,2X,'X=',E14.6)
 RETURN
 END
C
C
C
 SUBROUTINE DECOMP(N,COND,IPVT,WORK,A)
 DIMENSION IPVT(*),WORK(*),A(4001,4001)
 IPVT(N)=1
 IF(N .EQ. 1) GO TO 80
 NM1=N-1
 ANORM=0.0
 DO 10 J=1,N
 T=0.0
 DO 5 I=1,N
 T=T+ABS(A(I,J))
5 CONTINUE
 IF(T .GT. ANORM) ANORM=T
10 CONTINUE
 DO 35 K=1,NM1
 KP1=K+1
 M=K
 DO 15 I=KP1,N
 IF(ABS(A(I,K)) .GT. ABS(A(M,K))) M=I
15 CONTINUE
 IPVT(K)=M
 IF(M .NE. K) IPVT(N)=-IPVT(N)
 T=A(M,K)
 A(M,K)=A(K,K)
 A(K,K)=T
 IF(T .EQ. 0.0) GO TO 35
 DO 20 I=KP1,N

52

 A(I,K)=-A(I,K)/T
20 CONTINUE
 DO 30 J=KP1,N
 T=A(M,J)
 A(M,J)=A(K,J)
 A(K,J)=T
 IF(T .EQ. 0.0) GO TO 30
 DO 25 I=KP1,N
 A(I,J)=A(I,J)+A(I,K)*T
25 CONTINUE
30 CONTINUE
35 CONTINUE
 DO 50 K=1,N
 T=0.0
 IF(K .EQ. 1) GO TO 45
 KM1=K-1
 DO 40 I=1,KM1
 T=T+A(I,K)*WORK(I)
40 CONTINUE
45 EK=1.0
 IF(T .LT. 0.0) EK=-1
 IF(A(K,K) .EQ. 0.0) GO TO 90
 WORK(K)=-(EK+T)/A(K,K)
50 CONTINUE
 DO 60 KB=1,NM1
 K=N-KB
 T=0.0
 KP1=K+1
 DO 55 I=KP1,N
 T=T+A(I,K)*WORK(K)
55 CONTINUE
 WORK(K)=T
 M=IPVT(K)
 IF(M .EQ. K) GO TO 60
 T=WORK(M)
 WORK(M)=WORK(K)
 WORK(K)=T
60 CONTINUE
 YNORM=0.0
 DO 65 I=1,N
 YNORM=YNORM+ABS(WORK(I))
65 CONTINUE
 CALL SOLVE(N,WORK,IPVT,A)
 ZNORM=0.0
 DO 70 I=1,N
 ZNORM=ZNORM+ABS(WORK(I))
70 CONTINUE
 COND=ANORM*ZNORM/YNORM
 IF(COND .LT. 1.0) COND=1.0
 RETURN
80 COND=1.0
 IF(A(1,1) .NE. 0.0) RETURN
90 COND=1.0D+32
 RETURN
 END
C
C
C
 SUBROUTINE SOLVE(N,B,IPVT,A)
 DIMENSION B(*),IPVT(*),A(4001,4001)
 IF(N .EQ. 1) GO TO 50
 NM1=N-1
 DO 20 K=1,NM1
 KP1=K+1
 M=IPVT(K)
 T=B(M)
 B(M)=B(K)

53

 B(K)=T
 DO 10 I=KP1,N
 B(I)=B(I)+A(I,K)*T
10 CONTINUE
20 CONTINUE
 DO 40 KB=1,NM1
 KM1=N-KB
 K=KM1+1
 B(K)=B(K)/A(K,K)
 T=-B(K)
 DO 30 I=1,KM1
 B(I)=B(I)+A(I,K)*T
30 CONTINUE
40 CONTINUE
50 B(1)=B(1)/A(1,1)
 RETURN
 END
C
C
C
 SUBROUTINE DER9TD(S,T,DLH)
 DIMENSION DLH(2,9)
 DLH(1,1)=9.*(2.*S*T**2-2.*S*T-T**2+T)/20.
 DLH(1,2)=9.*(2.*S*T**2-2.*S*T+T**2-T)/20.
 DLH(1,3)=3.*(2.*S*T**2+4.*S*T/3.+T**2+2.*T/3.)/10.
 DLH(1,4)=3.*(2.*S*T**2+4.*S*T/3.-T**2-2.*T/3.)/10.
 DLH(1,5)=-9.*(2.*S*T**2-2.*S*T)/10.
 DLH(1,6)=-3.*(2.*S*T**2-2.*S*T/3.-4.*S/3.+T**2-
 A T/3.-2./3.)/4.
 DLH(1,7)=-3.*(2.*S*T**2+4.*S*T/3.)/5.
 DLH(1,8)=-3.*(2.*S*T**2-2.*S*T/3.-4.*S/3.-T**2+
 A T/3.+2./3.)/4.
 DLH(1,9)=3.*(2.*S*T**2-2.*S*T/3.-4.*S/3.)/2.
 DLH(2,1)=9.*(2.*S**2*T-S**2-2.*S*T+S)/20.
 DLH(2,2)=9.*(2.*S**2*T-S**2+2.*S*T-S)/20.
 DLH(2,3)=3.*(2.*S**2*T+2.*S**2/3.+2.*S*T+2.*S/3.)/10.
 DLH(2,4)=3.*(2.*S**2*T+2.*S**2/3.-2.*S*T-2.*S/3.)/10.
 DLH(2,5)=-9.*(2.*S**2*T-S**2-2.*T+1.)/10.
 DLH(2,6)=-3.*(2.*S**2*T-S**2/3.+2.*S*T-S/3.)/4.
 DLH(2,7)=-3.*(2.*S**2*T+2.*S**2/3.-2.*T-2./3.)/5.
 DLH(2,8)=-3.*(2.*S**2*T-S**2/3.-2.*S*T+S/3.)/4.
 DLH(2,9)=3.*(2.*S**2*T-S**2/3.-2.*T+1./3.)/2.
 RETURN
 END
C
C
C
 SUBROUTINE DER9T(S,T,DLHQ)
 DIMENSION DLHQ(2,9)
 DLHQ(1,1)=0.250*(2.0*S*T**2-2.0*S*T-T**2+T)
 DLHQ(1,2)=0.250*(2.0*S*T**2-2.0*S*T+T**2-T)
 DLHQ(1,3)=0.250*(2.0*S*T**2+2.0*S*T+T**2+T)
 DLHQ(1,4)=0.250*(2.0*S*T**2+2.0*S*T-T**2-T)
 DLHQ(1,5)=-0.50*(2.0*S*T**2-2.0*S*T)
 DLHQ(1,6)=-0.50*(2.0*S*T**2+T**2-2.0*S-1.0)
 DLHQ(1,7)=-0.50*(2.0*S*T**2+2.0*S*T)
 DLHQ(1,8)=-0.50*(2.0*S*T**2-T**2-2.0*S+1.0)
 DLHQ(1,9)=2.0*S*T**2-2.0*S
 DLHQ(2,1)=0.250*(2.0*S**2*T-S**2-2.0*S*T+S)
 DLHQ(2,2)=0.250*(2.0*S**2*T-S**2+2.0*S*T-S)
 DLHQ(2,3)=0.250*(2.0*S**2*T+S**2+2.0*S*T+S)
 DLHQ(2,4)=0.250*(2.0*S**2*T+S**2-2.0*S*T-S)
 DLHQ(2,5)=-0.50*(2.0*S**2*T-S**2-2.0*T+1.0)
 DLHQ(2,6)=-0.50*(2.0*S**2*T+2.0*S*T)
 DLHQ(2,7)=-0.50*(2.0*S**2*T+S**2-2.0*T-1.0)
 DLHQ(2,8)=-0.50*(2.0*S**2*T-2.0*S*T)
 DLHQ(2,9)=2.0*S**2*T-2.0*T

54

 RETURN
 END
C
C
C
 SUBROUTINE SHP9T(S,T,H)
 DIMENSION H(9)
 H(1)=S*T*(S-1.0)*(T-1.0)/4.0
 H(2)=S*T*(S+1.0)*(T-1.0)/4.0
 H(3)=S*T*(S+1.0)*(T+1.0)/4.0
 H(4)=S*T*(S-1.0)*(T+1.0)/4.0
 H(5)=-0.50*T*(S+1.0)*(S-1.0)*(T-1.0)
 H(6)=-0.50*S*(T+1.0)*(T-1.0)*(S+1.0)
 H(7)=-0.50*T*(S+1.0)*(S-1.0)*(T+1.0)
 H(8)=-0.50*S*(T+1.0)*(T-1.0)*(S-1.0)
 H(9)=(S+1.0)*(S-1.0)*(T+1.0)*(T-1.0)
 RETURN
 END
C
C
C
 SUBROUTINE SHP9TD(S,T,H)
 DIMENSION H(9)
 H(1)=9.*S*T*(S-1.)*(T-1.)/20.
 H(2)=9.*S*T*(S+1.)*(T-1.)/20.
 H(3)=3.*S*T*(S+1.)*(T+2./3.)/10.
 H(4)=3.*S*T*(S-1.)*(T+2./3.)/10.
 H(5)=-9.*T*(S+1.)*(S-1.)*(T-1)/10.
 H(6)=-3.*S*(T-1.)*(T+2./3.)*(S+1.)/4.
 H(7)=-3.*T*(S+1.)*(S-1.)*(T+2./3.)/5.
 H(8)=-3.*S*(T-1.)*(T+2./3.)*(S-1.)/4.
 H(9)=1.5*(S+1.)*(S-1.)*(T+2./3.)*(T-1.)
 RETURN
 END
C
C
C
 SUBROUTINE QUADR
 COMMON /NQUAD/ GP(12,8),GW(12,8),NSEV(8)
 COMMON /TQUAD/ SGP(112,8),TGP(112,8),NSEV2(8),GWT(112,8)
 NSEV(1)=2
 NSEV(2)=3
 NSEV(3)=4
 NSEV(4)=5
 NSEV(5)=6
 NSEV(6)=8
 NSEV(7)=10
 NSEV(8)=12
 GP(1,1)=-0.577350269189626
 GP(2,1)=-GP(1,1)
 GW(1,1)=1.0
 GW(2,1)=1.0
 GP(1,2)=-0.774596669241483
 GP(2,2)=0.0
 GP(3,2)=-GP(1,2)
 GW(1,2)=0.555555555555556
 GW(2,2)=0.888888888888889
 GW(3,2)=GW(1,2)
 GP(1,3)=-0.861136311594053
 GP(2,3)=-0.339981043584856
 GP(3,3)=-GP(2,3)
 GP(4,3)=-GP(1,3)
 GW(1,3)=0.347854845137454
 GW(2,3)=0.652145154862546
 GW(3,3)=GW(2,3)
 GW(4,3)=GW(1,3)
 GP(1,4)=-0.906179845938664

55

 GP(2,4)=-0.538469310105683
 GP(3,4)=0.0
 GP(4,4)=-GP(2,4)
 GP(5,4)=-GP(1,4)
 GW(1,4)=0.236926885056189
 GW(2,4)=0.478628670499366
 GW(3,4)=0.568888888888889
 GW(4,4)=GW(2,4)
 GW(5,4)=GW(1,4)
 GP(1,5)=-0.932469514203152
 GP(2,5)=-0.661209384666265
 GP(3,5)=-0.238619186083197
 GP(4,5)=-GP(3,5)
 GP(5,5)=-GP(2,5)
 GP(6,5)=-GP(1,5)
 GW(1,5)=0.171324492379170
 GW(2,5)=0.360761573048139
 GW(3,5)=0.467913934572691
 GW(4,5)=GW(3,5)
 GW(5,5)=GW(2,5)
 GW(6,5)=GW(1,5)
 GP(1,6)=-0.960289856497536
 GP(2,6)=-0.796666477413627
 GP(3,6)=-0.525532409916329
 GP(4,6)=-0.183434642495650
 GP(5,6)=-GP(4,6)
 GP(6,6)=-GP(3,6)
 GP(7,6)=-GP(2,6)
 GP(8,6)=-GP(1,6)
 GW(1,6)=0.101228536290376
 GW(2,6)=0.222381034453374
 GW(3,6)=0.313706645877887
 GW(4,6)=0.362683788378362
 GW(5,6)=GW(4,6)
 GW(6,6)=GW(3,6)
 GW(7,6)=GW(2,6)
 GW(8,6)=GW(1,6)
 GP(1,7)=-0.973906528517172
 GP(2,7)=-0.865063366688985
 GP(3,7)=-0.679409568299024
 GP(4,7)=-0.433395394129247
 GP(5,7)=-0.148874338981631
 GP(6,7)=-GP(5,7)
 GP(7,7)=-GP(4,7)
 GP(8,7)=-GP(3,7)
 GP(9,7)=-GP(2,7)
 GP(10,7)=-GP(1,7)
 GW(1,7)=0.066671344308668
 GW(2,7)=0.149451349150581
 GW(3,7)=0.219086362515982
 GW(4,7)=0.269266719309996
 GW(5,7)=0.295524224714753
 GW(6,7)=GW(5,7)
 GW(7,7)=GW(4,7)
 GW(8,7)=GW(3,7)
 GW(9,7)=GW(2,7)
 GW(10,7)=GW(1,7)
 GP(1,8)=-0.981560634246719
 GP(2,8)=-0.904117256370475
 GP(3,8)=-0.769902674194305
 GP(4,8)=-0.587317954286617
 GP(5,8)=-0.367831498998180
 GP(6,8)=-0.125233408511469
 GP(7,8)=-GP(6,8)
 GP(8,8)=-GP(5,8)
 GP(9,8)=-GP(4,8)
 GP(10,8)=-GP(3,8)

56

 GP(11,8)=-GP(2,8)
 GP(12,8)=-GP(1,8)
 GW(1,8)=0.047175336386512
 GW(2,8)=0.106939325995318
 GW(3,8)=0.160078328543346
 GW(4,8)=0.203167426723066
 GW(5,8)=0.233492536538355
 GW(6,8)=0.249147045813403
 GW(7,8)=GW(6,8)
 GW(8,8)=GW(5,8)
 GW(9,8)=GW(4,8)
 GW(10,8)=GW(3,8)
 GW(11,8)=GW(2,8)
 GW(12,8)=GW(1,8)
 NSEV2(1)=6
 NSEV2(2)=7
 NSEV2(3)=16
 NSEV2(4)=19
 NSEV2(5)=28
 NSEV2(6)=64
 NSEV2(7)=76
 NSEV2(8)=112
 SGP(1,1)=0.9157621/10.
 SGP(2,1)=SGP(1,1)
 SGP(3,1)=0.8168476
 SGP(4,1)= 0.4459485
 SGP(5,1)=SGP(4,1)
 SGP(6,1)=0.1081030
 TGP(1,1)=SGP(1,1)
 TGP(2,1)=0.8168476
 TGP(3,1)=0.9157621/10.
 TGP(4,1)=SGP(4,1)
 TGP(5,1)=SGP(6,1)
 TGP(6,1)=SGP(4,1)
 FACT=SQRT(3.)/2.
 GWT(1,1)=FACT*0.6348067/10.
 GWT(2,1)=GWT(1,1)
 GWT(3,1)=GWT(1,1)
 GWT(4,1)=FACT*0.1289694
 GWT(5,1)=GWT(4,1)
 GWT(6,1)=GWT(5,1)
 SGP(1,2)=1./3.
 SGP(2,2)=0.1012865
 SGP(3,2)=SGP(2,2)
 SGP(4,2)=0.7974270
 SGP(5,2)=0.4701421
 SGP(6,2)=SGP(5,2)
 SGP(7,2)=0.5971587/10.
 TGP(1,2)=SGP(1,2)
 TGP(2,2)=SGP(2,2)
 TGP(3,2)=0.7974270
 TGP(4,2)=SGP(2,2)
 TGP(5,2)=SGP(5,2)
 TGP(6,2)=SGP(7,2)
 TGP(7,2)=SGP(5,2)
 GWT(1,2)=0.1125
 GWT(2,2)=FACT*0.7271102/10.
 GWT(3,2)=GWT(2,2)
 GWT(4,2)=GWT(2,2)
 GWT(5,2)=FACT*0.7643780/10.
 GWT(6,2)=GWT(5,2)
 GWT(7,2)=GWT(5,2)
 SGP(1,3)=1./3.
 TGP(1,3)=1./3.
 SGP(2,3)=0.4592926
 TGP(2,3)=SGP(2,3)
 SGP(3,3)=SGP(2,3)

57

 TGP(3,3)=0.8141482/10.
 SGP(4,3)=TGP(3,3)
 TGP(4,3)=SGP(2,3)
 SGP(5,3)=0.5054723/10.
 TGP(5,3)=SGP(5,3)
 SGP(6,3)=SGP(5,3)
 TGP(6,3)=0.8989055
 SGP(7,3)=TGP(6,3)
 TGP(7,3)=SGP(5,3)
 SGP(8,3)=0.1705693
 TGP(8,3)=SGP(8,3)
 SGP(9,3)=SGP(8,3)
 TGP(9,3)=0.6588614
 SGP(10,3)=TGP(9,3)
 TGP(10,3)=SGP(8,3)
 SGP(11,3)=0.7284924
 TGP(11,3)=0.2631128
 SGP(12,3)=TGP(11,3)
 TGP(12,3)=SGP(11,3)
 SGP(13,3)=0.8394777/100.
 TGP(13,3)=TGP(11,3)
 SGP(14,3)=TGP(11,3)
 TGP(14,3)=SGP(13,3)
 SGP(15,3)=SGP(13,3)
 TGP(15,3)=SGP(11,3)
 SGP(16,3)=SGP(11,3)
 TGP(16,3)=SGP(13,3)
 GWT(1,3)=FACT*0.8332066/10.
 DO 10 I=2,4

 GWT(I,3)=FACT*0.5490118/10.
 10 CONTINUE
 DO 11 I=5,7

 GWT(I,3)=FACT*0.1873992/10.
 11 CONTINUE
 DO 12 I=8,10

 GWT(I,3)=FACT*0.5959258/10.
 12 CONTINUE
 DO 13 I=11,16

 GWT(I,3)=FACT*0.1572143/10.
 13 CONTINUE
 SGP(1,4)=1./3.
 TGP(1,4)=1./3.
 SGP(2,4)=0.4896825
 TGP(2,4)=SGP(2,4)
 SGP(3,4)=SGP(2,4)
 TGP(3,4)=0.2063496/10.
 SGP(4,4)=TGP(3,4)
 TGP(4,4)=SGP(2,4)
 SGP(5,4)=0.4370896
 TGP(5,4)=SGP(5,4)
 SGP(6,4)=SGP(5,4)
 TGP(6,4)=0.1258208
 SGP(7,4)=TGP(6,4)
 TGP(7,4)=SGP(5,4)
 SGP(8,4)=0.1882035
 TGP(8,4)=SGP(8,4)
 SGP(9,4)=SGP(8,4)
 TGP(9,4)=0.6235929
 SGP(10,4)=TGP(9,4)
 TGP(10,4)=SGP(9,4)
 SGP(11,4)=0.4472951/10.
 TGP(11,4)=SGP(11,4)
 SGP(12,4)=SGP(11,4)
 TGP(12,4)=0.9105410
 SGP(13,4)=TGP(12,4)
 TGP(13,4)=SGP(11,4)
 SGP(14,4)=0.7411986

58

 TGP(14,4)=0.2219630
 SGP(15,4)=TGP(14,4)
 TGP(15,4)=SGP(14,4)
 SGP(16,4)=0.3683841/10.
 TGP(16,4)=TGP(14,4)
 SGP(17,4)=TGP(14,4)
 TGP(17,4)=SGP(16,4)
 SGP(18,4)=SGP(16,4)
 TGP(18,4)=SGP(14,4)
 SGP(19,4)=SGP(14,4)
 TGP(19,4)=SGP(16,4)
 GWT(1,4)=FACT*0.5608138/10.
 DO 21 I=2,4

 GWT(I,4)=FACT*0.1809110/10.
 21 CONTINUE
 DO 22 I=5,7

 GWT(I,4)=FACT*0.4493375/10.
 22 CONTINUE
 DO 23 I=8,10

 GWT(I,4)=FACT*0.4598464/10.
 23 CONTINUE
 DO 24 I=11,13

 GWT(I,4)=FACT*0.1476728/10.
 24 CONTINUE
 DO 25 I=14,19

 GWT(I,4)=FACT*0.2498976/10.
 25 CONTINUE
 SGP(1,5)=1./3.
 TGP(1,5)=1./3.
 SGP(2,5)=0.2598914/10.
 TGP(2,5)=SGP(2,5)
 SGP(3,5)=SGP(2,5)
 TGP(3,5)=0.9480217
 SGP(4,5)=TGP(3,5)
 TGP(4,5)=SGP(2,5)
 SGP(5,5)=0.9428750/10.
 TGP(5,5)=SGP(5,5)
 SGP(6,5)=SGP(5,5)
 TGP(6,5)=0.8114250
 SGP(7,5)=TGP(6,5)
 TGP(7,5)=SGP(5,5)
 SGP(8,5)=0.4946368
 TGP(8,5)=SGP(8,5)
 SGP(9,5)=SGP(8,5)
 TGP(9,5)=0.1072645/10.
 SGP(10,5)=TGP(9,5)
 TGP(10,5)=SGP(8,5)
 SGP(11,5)=0.2073434
 TGP(11,5)=SGP(11,5)
 SGP(12,5)=SGP(11,5)
 TGP(12,5)=0.5853132
 SGP(13,5)=TGP(12,5)
 TGP(13,5)=SGP(11,5)
 SGP(14,5)=0.4389078
 TGP(14,5)=SGP(14,5)
 SGP(15,5)=SGP(14,5)
 TGP(15,5)=0.1221844
 SGP(16,5)=TGP(15,5)
 TGP(16,5)=SGP(14,5)
 SGP(17,5)=0.8588703
 TGP(17,5)=0.1411297
 SGP(18,5)=TGP(17,5)
 TGP(18,5)=SGP(17,5)
 SGP(19,5)=0.
 TGP(19,5)=TGP(17,5)
 SGP(20,5)=TGP(17,5)
 TGP(20,5)=0.

59

 SGP(21,5)=0.
 TGP(21,5)=SGP(17,5)
 SGP(22,5)=SGP(17,5)
 TGP(22,5)=0.
 SGP(23,5)=0.6779377
 TGP(23,5)=0.2772206
 SGP(24,5)=TGP(23,5)
 TGP(24,5)=SGP(23,5)
 SGP(25,5)=0.4484168/10.
 TGP(25,5)=TGP(23,5)
 SGP(26,5)=TGP(23,5)
 TGP(26,5)=SGP(25,5)
 SGP(27,5)=SGP(25,5)
 TGP(27,5)=SGP(23,5)
 SGP(28,5)=SGP(23,5)
 TGP(28,5)=SGP(25,5)
 GWT(1,5)=FACT*0.5079372/10.
 DO 31 I=2,4
 GWT(I,5)=FACT*0.5048531/100.
 31 CONTINUE
 DO 32 I=5,7

 GWT(I,5)=FACT*0.2198641/10.
 32 CONTINUE
 DO 33 I=8,10

 GWT(I,5)=FACT*0.1088620/10.
 33 CONTINUE
 DO 34 I=11,13

 GWT(I,5)=FACT*0.4166142/10.
 34 CONTINUE
 DO 35 I=14,16

 GWT(I,5)=FACT*0.4002720/10.
 35 CONTINUE
 DO 36 I=17,22

 GWT(I,5)=FACT*0.4250674/100.
 36 CONTINUE
 DO 37 I=23,28

 GWT(I,5)=FACT*0.2370388/10.
 37 CONTINUE
 DO 40 IJ=6,8

 II=IJ-3
 IF (IJ.EQ.6) IK=16
 IF (IJ.EQ.7) IK=19
 IF (IJ.EQ.8) IK=28
 DO 50 IL=1,IK
 SGP(IL,IJ)=0.5*SGP(IL,II)
 TGP(IL,IJ)=0.5*TGP(IL,II)
 GWT(IL,IJ)=GWT(IL,II)/4.

 50 CONTINUE
 IK1=IK+1
 IK2=IK*2

 DO 60 IL=IK1,IK2
 JJ=IL-IK
 SGP(IL,IJ)=0.5*(1.0+SGP(JJ,II))
 TGP(IL,IJ)=0.5*TGP(JJ,II)
 GWT(IL,IJ)=GWT(JJ,II)/4.0

 60 CONTINUE
 IK3=IK2+1

 IK4=IK2+IK
 DO 70 IL=IK3,IK4
 JJ=IL-IK2
 SGP(IL,IJ)=0.5*SGP(JJ,II)
 TGP(IL,IJ)=0.5*(1.+TGP(JJ,II))
 GWT(IL,IJ)=GWT(JJ,II)/4.0

 70 CONTINUE
 IK5=IK4+1
 IK6=IK4+IK

 DO 80 IL=IK5,IK6

60

 JJ=IL-IK4
 SGP(IL,IJ)=0.5*(1.0-SGP(JJ,II))
 TGP(IL,IJ)=0.5*(1.0-TGP(JJ,II))

 GWT(IL,IJ)=GWT(JJ,II)/4.
 80 CONTINUE
 40 CONTINUE
 RETURN
 END

61

Appendix B. FEM Session Files
Session file for BEM node/mesh generation using COSMOS/M

Session file for 1/4 pin fin (with weld fillet)
Generates surface meshed pin fin geometry for subsequent BEM analysis
G.A. Knorovsky, May 1997 using COSMOS/M v 1.70A

set coordinate system:
PLANE,Z,0,1,
VIEW,1,1,1,0,

enter key points:
PT,1,4.49,0,0,
PT,2,0,4.49,0,
PT,3,-4.49,0,0,
PT,4,0,-4.49,0,
PT,5,0,0,0,

generate model edges and internal curves:
CRPCIRCLE,1,5,1,1.5875,360,4,
SCALE,0,
CRPLINE,5,1,2,3,4,1,
PTGEN,1,1,5,1,0,0,0,.889,
CRPLINE,9,10,11,12,13,10,
CRRELOC,1,4,1,0,0,0,7.239,
SCALE,0,
CRGEN,1,1,4,1,0,0,0,-6.35,
CRRELOC,13,16,1,0,0,0,1.5,
PT,27,0,0,.889,
CRPCIRCLE,17,14,10,2.25,360,4,
CRLINE,21,1,10,
CRLINE,22,4,13,
CRLINE,23,3,12,
CRLINE,24,2,11,
CRLINE,25,12,29,
CRLINE,26,11,28,
CRLINE,27,10,27,
CRLINE,28,13,30,
CRLINE,29,25,29,
CRLINE,30,24,28,
CRLINE,31,26,30,
CRLINE,32,23,27,
CRLINE,33,17,25,
CRLINE,34,16,24,
CRLINE,35,15,23,
CRLINE,36,18,26,
CRLINE,37,5,1,
CRLINE,38,5,2,
CRLINE,39,5,3,
CRLINE,40,5,4,

generate model surfaces:
SF3CR,1,5,38,37,0,
SF3CR,2,6,39,38,0,
SF3CR,3,7,40,39,0,
SF3CR,4,8,37,40,0,
PTGEN,1,5,5,1,0,0,0,7.239,
SF4CR,5,24,5,21,9,0,
SF4CR,6,24,6,23,10,0,
SF4CR,7,23,7,22,11,0,
SF4CR,8,21,8,22,12,0,
SF4CR,9,9,27,17,26,0,
SF4CR,10,10,26,18,25,0,
SF4CR,11,11,25,19,28,0,

62

SF4CR,12,12,28,20,27,0,
SF4CR,13,17,32,13,30,0,
SF4CR,14,18,30,14,29,0,
SF4CR,15,19,29,15,31,0,
SF4CR,16,20,31,16,32,0,
SF4CR,17,1,34,13,35,0,
SF4CR,18,2,33,14,34,0,
SF4CR,19,3,36,15,33,0,
SF4CR,20,4,35,16,36,0,
SFPTCR,21,1,31,0,
SFPTCR,22,2,31,0,
SFPTCR,23,3,31,0,
SFPTCR,24,4,31,0,
SF4PT,25,1,2,3,4,0,

designate element groups (common boundary conditions) and type (SHELL9 = 9 pt
quadrilateral element), then mesh corresponding surfaces:

bottom of heat exchanger shell:
EGROUP,1,SHELL9,0,0,0,0,0,0,0,
M_SF,25,25,1,9,2,2,1,1,
cut edges of hx shell:
EGROUP,2,SHELL9,0,0,0,0,0,0,0,
M_SF,5,8,1,9,1,2,1,1,
top of hx shell:
EGROUP,3,SHELL9,0,0,0,0,0,0,0,
MA_NUSF,9,12,1,1,1,1,1,0,
MASFCH,9,12,1,Q,9,1,3,0.4,2,5,
cylindrical and fillet portions of pin:
EGROUP,4,SHELL9,0,0,0,0,0,0,0,
M_SF,13,16,1,9,2,1,1,1,
M_SF,17,20,1,9,2,2,1,1,
end of pin:
EGROUP,5,SHELL9,0,0,0,0,0,0,0,
MA_SF,21,24,1,0,4.9,0,
MASFCH,21,24,1,Q,9,1,3,0.4,2,5,

SCALE,0,
VIEW,1,1,1,0,
SCALE,0,

apply pressure loading to check for inside-out surfaces:
PSF,5,1,25,1,1,1,4,
VIEW,1,1,1,0,

fix those which are flipped:
ELRELOC,57,68,1,2,0,0,14.478,180,0,0, (elements on end of pin)
ELRELOC,9,10,1,2,-4.49,-4.49,0,0,0,180, (elements on one cut edge of shell)
ELRELOC,7,8,1,2,-4.49,4.49,0,0,0,180, (elements on another cut edge of shell)
VIEW,1,0,0,0,
ELRELOC,1,4,1,1,180,0,0, (elements on bottom of shell)

merge nodes within element groups (determined by listing nodes, which includes their
EG information), then renumber nodes/elements consecutively (compress)
NMERGE,1,25,1,0.0001,1,1,0,
NMERGE,26,85,1,0.0001,1,1,0,
NMERGE,86,185,1,0.0001,1,1,0,
NMERGE,186,345,1,0.0001,1,1,0,
NMERGE,346,421,1,0.0001,1,1,0,
NCOMPRESS,1,421,
ECOMPRESS,1,68,

Session file for FEM model of pin fin COSMOS/M

Session file for GEOSTAR 1.70A to generate and analyze by FEM a welded pin fin:
G.A. Knorovsky, June, 1997

63

set orientation:
PLANE,Z,0,1,
VIEW,1,1,1,0,

enter key points:
PT,1,0,0,0,
PT,2,6.35,0,0,
PT,3,6.35,6.35,0,
PT,4,0,6.35,0,
PT,5,3.175,3.175,0,
SCALE,0,

generate edges and internal curves:
CRPCIRCLE,1,5,1,1.5875,360,4,
CRPLINE,5,1,2,3,4,1,
CRPCIRCLE,9,5,1,2.25,360,4,
CRPLINE,13,1,10,10,
CRPLINE,14,2,11,11,
CRPLINE,15,3,12,12,
CRPLINE,16,4,13,13,
CRPLINE,17,10,6,6,
CRPLINE,18,11,7,7,
CRPLINE,19,12,8,8,
CRPLINE,20,13,9,9,

generate surfaces:
SF4CR,1,5,14,9,13,0,
SF4CR,2,6,15,10,14,0,
SF4CR,3,7,16,11,15,0,
SF4CR,4,8,13,12,16,0,
SF4CR,5,9,18,1,17,0,
SF4CR,6,10,19,2,18,0,
SF4CR,7,11,20,3,19,0,
SF4CR,8,12,17,4,20,0,

define material properties for elements to be generated:
MPROP,1,KX,13.4E-3,ALPX,13.2E-6,EX,200000,NUXY,.3,C,442,DENS,8.8E-6,

generate surface elements (Default element, but these will be deleted after volume
elements are generated in a subsequent step):
M_SF,1,1,1,4,4,1,1,1,
M_SF,2,2,1,4,4,1,1,1,
M_SF,3,3,1,4,4,1,1,1,
M_SF,4,4,1,4,4,1,1,1,
M_SF,5,8,1,4,4,1,1,1,
SF4CR,9,1,2,3,4,0,
SFPTBRK,9,5,0.0001,0,
SCALE,0,
M_SF,9,12,1,4,2,2,1,1,

define volume element (8-node solid)
ACTDMESH,VL,1,
EGROUP,1,SOLID,0,1,0,0,0,0,0,
ACTSET,MP,1,

generate volume elements from surface elements previously defined (hx shell):
VLEXTR,1,12,1,Z,.889,1,-1,

define fillet as triangle, then generate 2D weld collar mesh:
PT,46,4.7625,3.175,.889,
PT,47,5.425,3.175,.889,
PT,48,4.7625,3.175,2.389,
CRPLINE,101,30,47,48,30,
SF3CR,74,101,103,102,0,
M_SF,74,74,1,4,1,2,1,1,

64

generate more volume elements:
ACTDMESH,PH,1,
PHEXTR,SF,41,41,1,Z,1.5,2,-1,1,0.283441,0.0001, (bottom of pin under weld fillet)
PHEXTR,SF,46,54,4,Z,1.5,2,-1,1,0.283435,0.0001, "
PHEXTR,SF,75,75,1,Z,4.85,6,-1,1,0.283441,0.0001, (top of pin above weld fillet)
PHEXTR,SF,80,88,4,Z,4.85,6,-1,1,0.283435,0.0001, "
CSYS,3,0,5,3,4,
ACTSET,CS,3,
PHSWEEP,SF,74,74,1,Z,360,4,4,1,1,0.6,0.0001, (generate 3D weld collar)
VIEW,0,0,1,0,
ACTSET,CS,0,
VIEW,1,1,1,0,
SCALE,0,

merge nodes, renumber nodes and elements sequentially:
NMERGE,1,NDMAX,1,.025,0,0,0,
NCOMPRESS,1,NDMAX,
ECOMPRESS,1,ELMAX,

apply isothermal temperature condition to bottom of shell:
NTSF,1,750,12,1,
ECHECK,1,256,1,5,0,

delete surface elements no longer needed:
EDELETE,1,48,1,

renumber elements:
ECOMPRESS,1,256,

apply convective boundary conditions to surfaces:
CESF,13,.0001,1627,18,5,0,
CESF,22,.0001,1627,26,4,0,
CESF,119,.0002,1627,122,1,0,
CESF,92,.0002,1627,93,1,0,
CESF,97,.0002,1627,99,2,0,
CESF,101,.0002,1627,102,1,0,
CESF,105,.0002,1627,106,1,0,

set analysis type and defaults for iteration, tolerances, data to be saved, etc.:
A_THERMAL,S,0.001,1,1,20,0,
HT_OUTPUT,1,1,1,

run steady-state thermal analysis
C* R_THERMAL,

65

Appendix C. Conversion Code
CONVERT.CPP, the main program that controls the conversion process.
**

#include <fstream.h>
#include "model.h"
#include "node.h"
void packet1(const model & nl,ostream & fout);

void main(){

model md;

char filein[25]={0}, fileout[25]={0};
cout<<"Enter the filename from Cosmos listlog "<<flush;
cin>>filein;
cout<<"Enter the filename for BE input deck "<<flush;
cin>>fileout;

ifstream fin(filein); //Input
ofstream fout(fileout); //Output

fin>>md;

md.applybc(); //apply element-based bc's to nodes

md.scandir(); //check directions

 char yn='y';
 double nx,ny,nz;
 cerr<<"Would you like to check with a different center? (y/n) "<<flush;
 cin>>yn;
 while (yn!='n' && yn!='N'){
 cerr<<"Enter a new center as x y z: "<<flush;
 cin>>nx,ny,nz;
 md.scandir(nx,ny,nz);
 cerr<<"Would you like to check with a different center? (y/n) "<<flush;
 cin>>yn;
 }

//Print out packet 1
packet1(md,fout);

//Print out packet 2: nodes w/ bc's & packet 3: element list
fout<<md ;

//No packet 4, IEXTRA=0
//Print packet 5, collocation points
fout<<"Replace this line with # of collocation points"<<endl;
fout<<"X Y Z Replace and duplicate this line for # of collocation

points"<<endl;

}

void packet1(const model & md,ostream & fout){
fout<<"Single Pin Fin Thermal Model"<<endl;
fout<<"Generated by Cosmos and converted to Ingber input deck"<<endl;
fout<<"More Title Here"<<endl;
fout<<"0 0 "<<endl;
int nn=md.nnodes();
int ne=md.nel();
fout<<nn<<' '<<ne<<endl;

}

66

The model class contains the elements and nodes that make up the model
**

#ifndef MODEL_H
#define MODEL_H
#include <fstream.h>
#include <assert.h>
#include <string.h>

#include "node.h"
#include "element.h"

class model{
private:

node center;

void addsizel(int n=100);
int size;
int numels;
element * elements;

void addnsize(int n=100);
node * nodes;
int sizen;
int numnodes;

public:
model(int elements=100, int nodes=100);
~model();

int nel() const;
int nnodes() const;
friend ostream & operator << (ostream & fout, const model & md);
friend istream & operator >> (istream & fin, model & md);

void applybc();
void scaneg(int neg, int eg[]) const;
void geteg(int nodeg[]) const;

void scandir(double nx=-999, double ny=-999, double nz=-999);
 double dir(const element & e);

};

#endif

Model Class Implementation:
**

#include "model.h"

model::model(int e,int n)
{

size=e;
numels=0;
elements=new element[e];
sizen=n;
numnodes=0;
nodes=new node[n];
node center;

}

model::~model()

67

{
delete [] elements;
delete [] nodes;

}

void model::addsizel(int n)
{

element * larger_array;
larger_array=new element[size+n];
for (int i=0;i<numels;i++){

larger_array[i]=elements[i];
}
delete [] elements;
elements=larger_array;
size += n;

}

void model::addnsize(int n)
{

node * larger_array;
larger_array=new node[sizen+n];
for (int i=0;i<numnodes;i++){

larger_array[i]=nodes[i];
}
delete [] nodes;
nodes=larger_array;
sizen += n;

}

istream & operator >> (istream & fin, model & md)
{

//Read in and discard heading line, Node list is first
fin.clear();
char line[100];
char ready[]="Z-C";
do{
fin.getline(line,80);
cout<<"Node header discard:"<<endl<<line<<endl;
}
while(! strstr(line,ready));

//Read in nodes until a failure occurs, indicating element header read:
//for(int i=nl.numnodes;i<nl.sizen && fin>>nl.nodes[i];i++){
for(int i=md.numnodes;fin>>md.nodes[i];i++){

//If numnodes = sizen, then we may have more, so add to sizen
//Note we ignore case of an even 100's of nodes, so array could

//inadvertantly get too big, but who cares!
md.numnodes++;
if (md.numnodes==md.sizen-1){

md.addnsize();
}
md.center += md.nodes[i]; //sum nodes to find center for surface

check
}
md.center/=md.numnodes; //average location to find center

//Read in and discard heading line for elements
fin.clear();
fin.getline(line,80);
cout<<"Element header discard:"<<endl<<line<<endl;

//Read in elements until a failure occurs, indicating eof:
//for(int i=ell.numels;i<ell.size && fin>>ell.elements[i] && !fin.eof();i++){
for(i=md.numels;fin>>md.elements[i] && !fin.eof();i++){

//If numnodes = size, then we may have more, so add to size

68

//Note we ignore case of an even 100's of nodes, so array could
//inadvertantly get too big, but who cares!

md.numels++;
//cerr<<ell.numels<<' '<<ell.size<<' '<<i<<endl;

if (md.numels==md.size-1){
md.addsizel();

}
}

return fin;
}

ostream & operator << (ostream & fout, const model & md)
{

//Print packet 2, the nodes
for (int i=0;i<md.numnodes;i++){

fout<<md.nodes[i]<<endl;

}
//Print packet 3, the elements
for (i=0;i<md.numels;i++){

fout<<md.elements[i]<<endl;
}

return fout;
}

int model::nel() const
{

return numels;
}

int model::nnodes() const
{

return numnodes;
}

void model::applybc()
{

//This routine applies the boundary conditions found in el to the nodes
const int maxbcs=10;
int eg[maxbcs]={0}; //Element group, specifies bc's
int neg=0;
int nbdy[maxbcs];
int i;
double par1[maxbcs];
double par2[maxbcs]={0.0};

//First we determin how many element groups there are
scaneg(maxbcs,eg);

//Now we get the parameters for each element group:
cout<<"Boundary conditions:"<<endl;
cout<<"NBDY=1: PAR1=specified T, PAR2=0 "<<endl;
cout<<"NBDY=2: PAR1=specified Flux, PAR2=0 "<<endl;
cout<<"NBDY=3: PAR1=1/h, PAR2= T inf "<<endl;

for(i=0;i<maxbcs;i++){
if (eg[i] != 0){
cout<<"For element group "<<eg[i]<<" enter NBDY, PAR1, PAR2: "<<flush;
cin>>nbdy[i]>>par1[i]>>par2[i];
}

}

//Now we scan elements and apply BC to each node
//Array bcapplied is used to look for conflicting bc's applied to same node
int *bcapplied;
bcapplied=new int [numnodes];

69

for(i=0;i<numnodes;i++){
bcapplied[i]=0;
}

geteg(bcapplied);

//Now we apply the list of BC's to the nodes
for(i=0;i<numnodes;i++){

nodes[i].bc(nbdy[bcapplied[i]],par1[bcapplied[i]],par2[bcapplied[i]]);
}

}

void model::scaneg(int neg, int eg[]) const
{ //First we determin how many element groups there are

for (int i=0;i<numels;i++){
assert(elements[i].eg() < neg);

eg[elements[i].eg()]=elements[i].eg();
}

}

void model::geteg(int nodeg[]) const
{

int nlist[9];
for(int i=0;i<numels;i++){

elements[i].tellnodes(nlist);
for(int j=0;j<9;j++){

if(nodeg[nlist[j]] != 0 && nodeg[nlist[j]] != elements[i].eg()){
cerr<<"Conflicting BC: node "<<nlist[j]+1<<" was eg#

"<<nodeg[nlist[j]]<<", requested "<<elements[i].eg()<<" on element "<<i+1<<endl;
}else{
nodeg[nlist[j]]=elements[i].eg();
}

}
}

}

void model::scandir(double nx, double ny, double nz)
{
 if (nx != -999){
 center=node(nx,ny,nz);
 }

for (int i=0;i<numels;i++){
if(dir(elements[i])<0){

cout<<"Possible orientation problem, element
"<<i+1<<endl<<elements[i]<<endl;

}
}

 cout<<"center was at "<<center.getx()<<' '<<center.gety()<<'
'<<center.getz()<<endl;
}

double model::dir(const element & e)
{//Return the relative direction of the normal and the vector from the center

//Negative could indicate the element is bass ackwards

//Check element normal direction against center of nodal mass
double nx=0,ny=0,nz=0,cx=0,cy=0,cz=0;
double ax,ay,az,bx,by,bz,dp;
int nlist[9];

e.tellnodes(nlist);

//Vector from center to 2nd node
cx=nodes[nlist[1]].getx()-center.getx();
cy=nodes[nlist[1]].gety()-center.gety();

70

cz=nodes[nlist[1]].getz()-center.getz();
//Vector normal to second node
ax=nodes[nlist[1]].getx()-nodes[nlist[0]].getx();
ay=nodes[nlist[1]].gety()-nodes[nlist[0]].gety();
az=nodes[nlist[1]].getz()-nodes[nlist[0]].getz();
bx=nodes[nlist[2]].getx()-nodes[nlist[1]].getx();
by=nodes[nlist[2]].gety()-nodes[nlist[1]].gety();
bz=nodes[nlist[2]].getz()-nodes[nlist[1]].getz();
nx=ay*bz-az*by;
ny=az*bx-ax*bz;
nz=ax*by-ay*bx;
//Dot product to check relative direction
dp=cx*nx+cy*ny+cz*nz;
return dp;

}

The node class defines the node abstract data type:

#ifndef NODE_H
#define NODE_H
#include <fstream.h>

class node{
private:

int nbdy;
double par2;
double par1;
double z;
double y;
double x;
int globalnum;

public:
void bc(int btype,double p1,double p2);

friend ostream & operator << (ostream & fout, const node & nd);

friend istream & operator >> (istream & fin, node & nd);
node(double nx=0,double y=0, double z=0);
void operator += (const node & n);
void operator /= (const double & n);
double getx();
double gety();
double getz();

};
#endif

#include "node.h"

node::node(double nx, double ny, double nz)

{

 x=nx;
 y=ny;
 z=nz;

globalnum=nbdy=0;
par1=par2=0.0;

}

void node::operator += (const node & n)
{//Overlaods the += operator to summ nodal locations

x+=n.x;
y+=n.y;

71

z+=n.z;
}

void node::operator /= (const double & n)
{//Overlaods the += operator to summ nodal locations

x/=n;
y/=n;
z/=n;

}

double node::getx()
{return x;}

double node::gety()
{return y;}

double node::getz()
{return z;}

istream & operator >> (istream & fin, node & nd)

{//Reads the current node from the file created by Cosmos.
//Assumes format is from nlist, sent to file by listlog
fin>>nd.globalnum;
fin>>nd.x>>nd.y>>nd.z;
return fin;

}

ostream & operator << (ostream & fout, const node & nd)

{//This returns a node card for NPOT3D, a BEM code by Ingber
//Card Packet 2
char c=',';
fout<<nd.globalnum<<c<<nd.x<<c<<nd.y<<c<<nd.z<<c<<nd.par1<<c<<nd.par2<<c<<nd.n

bdy<<c<<'0';
return fout;

}

void node::bc(int btype,double p1,double p2=0)

{

nbdy=btype;
par1=p1;
par2=p2;

}

The Element class defines the abstract data type of Element:
**

#ifndef ELEMENT_H
#define ELEMENT_H

#include <fstream.h>
#include "node.h"

class element{
private:

int elgrp;

int node[9];

72

int ieltype;

int elnum;

public:
friend ostream & operator << (ostream & fout, element el);

friend istream & operator >> (istream & fin, element & el);

void tellnodes(int nlist[]) const;

int eg()const;

element();
};
#endif

#include "element.h"

element::element()

{//Default constructor

elgrp=0;
ieltype=40; //40 is a quadrilateral 9-node element

}

int element::eg() const

{//Report the element's group, used for bc separation

return elgrp;

}

void element::tellnodes(int nlist[]) const

{//report the node list for an element
for(int i=0;i<9;i++){

nlist[i]=node[i]-1;
}

}

istream & operator >> (istream & fin, element & el)

{
int garbage;

fin>>el.elnum>>el.elgrp>>garbage>>garbage>>garbage;
for(int i=0;i<9;i++){

fin>>el.node[i];
}

return fin;

}

ostream & operator << (ostream & fout, element el)

{

73

char c=',';

fout<<el.elnum<<c<<el.ieltype;
for (int i=0;i<9;i++){

fout<<c<<el.node[i];
}

return fout;

}

74

Distribution

Internal (Sandia) Distribution:
Mail Stop Name Department Quantity
0703 C.E. Andraka 6216 5
0703 J.B. Moreno 6216 2
0703 C.E. Tyner 6216 1
0703 T.A. Moss 6216 1
0703 R.B. Diver 6216 1
1127 K.S. Rawlinson 6215 2
1127 J.M. Chavez 6215 1
1127 Library 6215 5
0835 D.R. Adkins 9113 1
1110 R. Allen 9205 1
1405 C. A. Drewien 1822 5
0340 G. Knorovsky 1833 5
0619 Review and Approval 12690 2

for DOE/OSTI
9018 Central Technical Files 8940-2 1
0899 Technical Library 4916 2

External Distribution:

National Renewable Energy Laboratory 1
Attn: Mark Bohn (2 copies)
1617 Cole Blvd.
Golden CO 80401-3393

Brian Smith 1
University of New Mexico
Department of Computer Science
Albuquerque, NM 87131

Mark Ingber 2
University of New Mexico
Department of Mechanical Engineering
Albuquerque, NM 87131

	ABSTRACT
	TABLE OF CONTENTS
	List of Figures
	List of Tables

	Introduction
	Background
	The Heat Exchanger and Pin Fin
	The Boundary Element Method

	Purpose
	Approach
	Project Plan
	BEM 3D Steady State Code
	Code Modifications
	Timing Tests
	Mesh Description
	Cube Trial Runs
	Mesh Generation
	Mesh Conversion
	Data Visualization
	Pin Fin Analysis
	Finite Element Method applied to Pin Fin
	Pin Fin BEM Results
	Pin Fin FEM Results
	Timing Results

	Summary/Conclusions
	Acknowledgments
	References
	Appendix A. NPOT3D BEM Code
	Appendix B. FEM Session Files
	Appendix C. Conversion Code
	Distribution

