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ABSTRACT

The Modified Embedded Atom Method (MEAM) is an empirical extension of the Embedded Atom

Method (EAM) that includes angular forces.  A detailed study is presented to show the effect of various

MEAM parameters on the calculated properties of a model material, nickel.  Over 50 physical properties

of nickel are calculated for four MEAM potentials.  It is found that, in general, the predicted material

properties are extremely insensitive to the parameter variations examined.  In a few cases: interstitial

migration; the (110) surface reconstruction; and the coefficient of thermal expansion, significant effects

of potential were found.  Minor differences were also found for the vacancy migration energy, the

interstitial formation energy, and the stability of the bcc structure.  These results point out the appropriate

experimental measurements or first principles calculations that need to be performed to obtain a reliable

MEAM parameter set.  This work results in a MEAM potential that reproduces all of the experimental

data examined.
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DETERMINATION OF MODIFIED EMBEDDED
ATOM METHOD PARAMETERS FOR NICKEL∗∗

1.  Introduction

It is well known that the Embedded Atom Method (EAM) is able to reproduce physical properties of

many metals[1].  Unfortunately the use of the EAM is restricted to materials in which angular bonding is

unimportant[2].  The modified EAM (MEAM) proposed by Baskes et al.[3-5] was developed to extend

the application to materials with all types of bonding.  The development of MEAM, however, is not as

rigorous as the EAM.  Even though most of the MEAM parameters are closely connected to direct

experimental observables, a number of them are not.  In the past these parameters have been chosen in an

ad-hoc way[5].  In addition, a number of forms for the angularly dependent electron density have been

used[5-9] as well as a number of screening functions [5, 10].  The purpose of this manuscript is to

examine the effects of the above assumptions carefully.  Specifically, we intend to examine the

sensitivity of numerous calculated physical quantities to 1) ad-hoc parameters, 2) the form of the

background electron density, and 3) the range of the many body screening function.  We will restrict our

study to a single material, nickel.  We recognize that nickel is usually thought of a material in which the

angular bonding is unimportant.  EAM potentials describe nickel quite well.  However, angular forces do

exist in nickel to the extent of allowing us to test the MEAM parameter dependence.  Our choice of

nickel is based on the fact that there is a large body of experimental data with which to compare our

results.  Clearly future work should examine the MEAM parameters in a strongly angularly dependent

material such as silicon.

In the body of the manuscript below, we will first review the MEAM formalism.  Then the four nickel

MEAM potentials will be discussed and applied to the calculation of a number of physical properties.  A

short summary is then provided.

                                               
∗ Dedicated to Professor Masao Doyama on his 70th birthday.
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2.  Theory

2.1. The model

The total energy, E, of a system of a single type of atoms in the EAM has been shown [11] to be given by

an approximation of the form:

E = F(ρi ) + 1
2 φ(Rij )

j ≠ i
∑

 

 
 

 

 
 

i
∑ (1)

where the sums are over the atoms i and j. In this approximation, the embedding function F is the energy

required to embed an atom into the background electron density at site i, 
i

ρ ; and φ is the pair interaction

between atoms whose separation is given by Rij .  In the EAM, 
i

ρ  is given by a linear supposition of

spherically averaged atomic electron densities, while in the Modified Embedded Atom Method (MEAM),

i
ρ  is augmented by angularly dependent terms  [3-5].

The pair potential between two atoms φ(R)  separated by a distance R is given by:

φ(R) = 2

Z
uE (R) − F(ρ 0 (R)){ } . (2)

where ρ 0(R)   is the background electron density for the reference structure, and Z  is the number of first

neighbors.  Here uE (R)  is the energy per atom of the reference structure as a function of nearest

neighbor distance R , obtained, e.g., from first principles calculations or the universal equation of state of

Rose et al.  [12].  Here we choose the latter:

uE (R) = − Ec 1 + a*( )e− a* (3)

with

a* = α R

re
−1

 

 
 

 

 
 (4)

and

2α = 9ΩB
cE (5)
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where Ec , re , Ω, and B  are the cohesive energy, nearest-neighbor distance, atomic volume, and bulk

modulus, respectively, all evaluated at equilibrium in the reference structure. In this work the reference

structure will be taken as fcc, resulting in:

 ρ 0(R) = Z a(0)ρ R( ) (6)

where a(0)ρ  is an atomic electron density discussed below.

In the MEAM the embedding function F(ρ )  is taken as:

F(ρ ) = AEc
ρ

0
ρ ln ρ

0
ρ (7)

where A is an adjustable parameter and 0ρ  is a density scaling parameter.  For this work (fcc reference

structure) 0ρ = Z = 12 .

The background electron density at a specific site, ρ , is assumed to be a function of what we call partial

electron densities.  These partial electron densities contain the angular information in the model.  The

spherically symmetric partial electron density ρ(0)  is the background electron density in the EAM:

ρ(0) = ρa(0)( ir )
i

∑ (8a)

where the sum is over all atoms i not including the atom at the specific site of interest and ir  is the

distance from an atom i to the site of interest.  The angular contributions to the density are given by

similar formulas weighted by the x, y, and z projections of the distances between atoms:

2(ρ(1) ) = ρa(1)(ri) rα
i

ri
i

∑ 
 

 
 α

∑
2

(8b)

2(ρ(2) ) = ρa(2)(ri )
rα

i rβ
i

ri 2

i
∑ 

 
 
 α ,β

∑
2

−
1
3 ρ a(2 )(ri )[ ]2

i
∑ (8c)

2(ρ(3)) = ρa(3)( ir )
rα

i rβ
i rγ

i

ri 3
i

∑ 
 

 
 α ,β ,γ

∑
2

. (8d)
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Here, the ρa(h)  are atomic electron densities which represent the decrease in the contribution with

distance ir  from the site of interest, and the α, β, and γ  summations are each over the three coordinate

directions with rα

i
 being the distance from the site in question in that direction.   The functional forms for

the partial electron densities were chosen to be translationally and rotationally invariant and equal to zero

for crystals with cubic symmetry.  It has been shown that the forms chosen in Eq. (8) are related to

powers of the cosine of the angle between groups of three atoms[4]. Finally, atomic electron densities are

assumed to decrease exponentially,  i.e.,

a(h)ρ (R) = − (h )β (R/ re −1)
e (9)

where the decay lengths, 
(h)β , are constants.  To obtain the background electron density from the partial

electron densities we make the assumption that the angular terms are a small correction to the EAM.  We

combine the angular dependence into one term:

Γ = t (h)

h =1

3

∑ ρ(h) ρ (0 )( )2
(10)

where t (h)  are constants.  The background density is then taken as:

ρ = ρ (0)G Γ( ) (11)

In the limit of no angular dependence Γ = 0  and to recover the EAM we must have G 0( ) = 1.  We also

choose G ' 0( ) = 1 2  in any  functions we use so that properties, e.g. elastic constants, calculated at the

perfect lattice are independent of the functional form of G.  Previously three forms of G have been

investigated :

G Γ( ) = 1 + Γ (12a)

G Γ( ) = eΓ 2 (12b)

G Γ( ) = 2
1 + e−Γ (12c)

The form used in Eq. (12a) was used in the initial formulation[5].  This form has the unfortunate

consequence that it yields imaginary electron densities for Γ < −1  which is possible if any of the t (h)  are

less than zero.  In order to correct this difficulty, the form in Eq. (12b) was used by Baskes[7] and Huang
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et al.[8] and the form in Eq. (12c), by Ravelo and Baskes[9, 13].  No controlled studies of the effect of

the form of the background electron density were performed previously, but will be presented here.

2.2 Many body screening

It is traditional in implementing EAM type models to limit the range of interaction.  Usually that is done

by smoothly truncating the radial functions near a cutoff separation.  The justification of this procedure is

that forces die off with distance and it makes little difference if the small forces on atoms at a large

distance are ignored.  However, this view is not universal.  Calculations involving long-range

pseudopotentials or electrostatic forces cannot use a short range radial cutoff.  Baskes[5] proposed a

different scheme where an additional limitation of the function interactions was imposed using a many

body screening function.  Here, the justification is that an atom between two other atoms is able to screen

the interaction between the outer atoms, hence reducing the force.  The suggested implementation in the

original manuscript[5] introduced a discontinuity in the screening function which leads to infinite forces.

A later implementation[10] has been found to work quite well and is presented below.  Let us define a

many body screening function Sik  that quantifies the screening between two atoms i and k due to other

atoms in the system, j.  We multiply the atomic electron densities and the pair potential by this function;

hence if the atoms are unscreened, Sik = 1  and if they are completely screened, Sik = 0 .  The screening

function depends on all of the other atoms in the system:

Sik = Sijk
j ≠i ,k
∏ (13)

where Sijk  is calculated using a simple geometric construction.  Consider the ellipse (see Fig. 1) passing

through atoms i, j, and k with the minor axis of the ellipse determined by atoms i and k.  The equation of

the ellipse is given by:

x2 + 1
C y2 = 1

2 r
ik( )2

(14)

where the parameter C  is determined by:
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C =
2 Xij +X jk( )− Xij − X jk( )2 −1

1− X ij − X jk( )2 (15)

where Xij = rij rik( )2

 and X jk = rjk rik( )2

.  The r’s are the distance between the respective atoms.  We

define the screening factor to be a smooth function of C:

Sijk = fc C − Cmin( ) Cmax − Cmin( )[ ] (16)

where Cmin  and Cmax  are the limiting values of C  as seen in the ellipses in Fig. 1 and the smooth cutoff

function is:

fc x( ) = }
1 x ≥ 1

1− 1 − x( )4( )2 0 < x < 1
0 x ≤ 0

(17)

For convenience we also apply a radial cutoff function to the atomic electron densities and pair potential

which is given by fc rc − r( ) ∆r[ ] where rc  is the cutoff distance and ∆r  gives the cutoff region.

2.3 Potentials

The determination of the parameters has been discussed previously in great detail[5].  Basically, analytic

expressions are obtained for the elastic constants, vacancy formation energy, and structural energy

differences.  Using these expressions and experimental data most of the parameters (or sets of

parameters) are uniquely defined.  However a number of the (h)β  (h=1 and 3) parameters and screening

parameters are not well determined and nominal values have previously been chosen for convenience.

The parameters that are well determined will form the base that will be kept constant in the study

presented here.  These parameters are given in Table 1.  We choose a radial cutoff r
c
 of 4 Å for all of the

potentials.  This cutoff is large enough so that in all of the calculations the many body screening

dominates the radial cutoff.  The cutoff region is taken to be 0.1 Å in all cases.  For the many body

screening we choose Cmax = 2.8.  This value ensures that for the fcc structure first neighbors are

completely unscreened even for reasonably large thermal vibrations.  The remaining parameters are given

in Table 2 for the four potentials considered here.  For potentials 1 and 2 we take the values of (h)β  (h=1
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and 3) used in Baskes[5] while for potentials 3 and 4 we reduce the values to investigate the effect on free

surface relaxation.  For potentials 1-3 we choose Cmin  as in Baskes[5].  This choice ensures that the

interactions are first neighbor only even in the bcc structure.  For potential 4 we reduce Cmin  so that

second neighbors in the fcc structure are not completely screened.  For potential 1 we choose the form of

the background electron density to be given by Eq. (12a) while for the remaining potentials we choose

the form of Eq. (12c).

3. Results and Discussion

3.1 Technique

Using the energetics described above we calculate a large number of properties of nickel using the four

potentials.  The calculations use  standard energy minimization and molecular dynamics (MD)

techniques.  Cell sizes were chosen to ensure that boundary effects were unimportant with the minimum

cell dimension being at least 2 r
c
.  In all cases to make results directly comparable, we used the same cell

size for the four potentials.  To calculate migration energies the saddle point was calculated by moving an

atom along the path between two equilibrium positions and relaxing the other atoms.  The maximum

energy found was taken to be the saddle point.

3.2 Bulk properties

In Table 3 we present the results of the calculations of some properties of bulk nickel in various crystal

structures.  The properties that are followed by an asterisk are those that were initially fit for potential 1.

Experimental values are included for reference.  The experimental elastic constants presented here are

slightly different than those fit in Ref. [5].  We note that all of the fit properties except for the bcc

cohesive energy remain essentially unchanged as we modify the potential.  This result is anticipated as

we have not modified any potential  near equilibrium.  As expected the calculated bcc properties change

in potential 4 where the range of the potential is increased to include second nearest neighbors.  Even in

this case the change is moderate (~0.1 eV).  The expected decrease in cohesive energy and nearest

neighbor distance with coordination (fcc=12, bcc=8, sc=6, dc=4) is reproduced by all four potentials.
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The c/a for hcp is predicted to be near the ideal value for all four potentials.  We also see that extending

the range of interaction changes the predicted coefficient of thermal expansion.  Potentials 1-3 strongly

underestimate this quantity, while potential 4 predicts a result very close to experiment [14].  Note that

all four potentials predict the specific heat in excellent agreement with experiment [14].

3.3 Surface properties

In Table 4 the results of a number of surface calculations are given.  The stacking fault energy is the only

quantity here that was initially fit in the development of potential 1.  Clearly the predicted value as well

as the interplanar expansion is essentially unaffected by potential variation.  The calculated free surface

energies vary by ~10% between potentials, but in all cases the (111) surface is predicted to have the

lowest energy with the (100) and (110) surface energies close in value.  The calculated surface energies

are in reasonable agreement with the experimental polycrystalline average [15].  By changing the decay

length β(h) for the electron density we can bring the free surface relaxation into agreement with

experiment.  Potentials 1 and 2 predict an increase in near surface interlayer spacing for all of the low

index surfaces while potentials 3 and 4 predict a large contraction of the (110) surface, a small

contraction for the (100) surface, and a small expansion for the (111) surface in agreement with

experiment [16].  We also have calculated the energy of the missing row (110) 2x1 reconstructed surface.

Here we find that potentials 1,3, and 4 predict the 1x1 surface to be more stable than the 2x1 in

agreement with experiment (see Foiles [17] for a discussion of the (110) reconstruction in fcc metals).

Only potential 2 predicts the 2x1 reconstruction in conflict with experiment.  It is quite encouraging that

potentials 3 and 4 which yield the correct surface relaxation also yield the correct (110) structure.

3.4 Intrinsic defect properties

In Table 5 we present the calculated values for a number of point defects in the fcc structure.  The

vacancy formation energy is the only quantity fit in the development of potential 1.  Potential variation

leads to only small (<0.1 eV) changes in this quantity.  For all potentials, the magnitude of the atomic



13

relaxation around the vacancy is predicted to be below the experimental estimate[18] of -0.3 atomic

volumes.  The calculated vacancy migration energy is similar for potentials 1-3, but slightly smaller for

potential 4.  The numbers are in reasonable agreement with experiment [19] indirectly calculated using

measured vacancy formation and self diffusion energies.  The smaller result for potential 4 is due to a

change in the saddle point location.  The saddle point for the migration process occurs about halfway

between the vacancy and the <100> split vacancy configurations for potentials 1-3, but at the <100> split

vacancy configuration for potential 4.  Thus we see that the range of the potential is important for

vacancy migration as previously seen for SiC [8].  We have also calculated the energy of divacancies

both at 1st and 2nd neighbor positions.  Little effect of potential is seen.  The results for first neighbor

binding are in reasonable agreement with experiment [20].  Recently Johnson [21] found that vacancy

formation energies are significantly altered near a free surface in a 2D model EAM material.  He found

that the vacancy formation energy was reduced in the first layer, but increased in the second layer.  We

have investigated this effect for all four potentials for vacancies in the first three layers near low index

surfaces.  In constast to Johnson’s results for a 2D material we see that the vacancy formation energy in

the second layer near (100) and (111) surfaces is the lowest, while near the (110) surface, the 1st layer

has the lowest vacancy formation energy.  In all cases we see little effect of potential.

There are many possible interstitial configurations.  We present the results of the calculations of a few

configurations in Table 5.  Calculated interstitial formation energies vary a small amount with potential,

but in all cases the <100> split interstitial is predicted to be the minimum energy configuration.  The

interstitial relaxation volume is in reasonable agreement with experiment [18].  The interstitial migration

energy if found to be quite similar for potentials 1-3, but significantly smaller for potential 4.  Again as

noted above for the vacancy, this difference may be attributed to a shift in saddle point.  Potentials 1-3

predict a saddle point about halfway between the O
h
 and <100> split configurations, but potential 4

predicts the O
h
 configuration to be the saddle point.  Thus, for both vacancy and interstitial migration we

find the range of the potential to be quite important.  The calculated interstitial migration energy is

significantly above the experimental value [22] for potentials 1-3, but much closer for potential 4.
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4.0 Summary

The MEAM is an empirical modification of the EAM which allows angular forces to be included.  We

have compared the behavior of a model material, Ni, with small angular forces described by four

different MEAM potentials by calculating over 50 properties.  In general it is found that the vast majority

of properties are essentially unaffected by the potential variations.  However, there are a number of

significant exceptions.  It is found that two of the electron density decay parameters strongly control

surface relaxations, but do not significantly affect any other properties.  The form of the background

electron density function is found to affect only the relative stability of the missing row reconstructed

(110) surface.  The range of the potential is found to be important for the bcc cohesive energy, the

thermal expansion coefficient, and the vacancy and interstitial migration energies.  These calculations

have led us to a new MEAM potential for Ni (potential 4) that reproduces quantitatively all of the

experimental data that we have examined.
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TABLES

Table 1: Common parameters for all potentials.  The units for Ec  are eV and for re , rc , and ∆r  are Å.

Ec re α A (0)β (2)β (1)t (2)t (3)t Cmax rc ∆r

4.45 2.49 4.99 1.10 2.45 6.0 3.57 1.60 3.70 2.8 4.0 0.1

Table 2: Parameters for the four potentials.

potential (1)β (3)β Cmin G Γ( )

1 2.2 2.2 2.0 Eq. (12a)

2 2.2 2.2 2.0 Eq. (12c)

3 1.5 1.5 2.0 Eq. (12c)

4 1.5 1.5 0.8 Eq. (12c)
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Table 3: Comparison of calculated bulk properties.  Properties marked with an asterisk were fit in the

development of potential 1.  Experimental values are presented for reference.  All quantities are

fully relaxed and calculated at 0 K except for the coefficient of thermal expansion and specific

heat which are calculated near room temperature.   The coefficient of thermal expansion is the

only quantity that significantly depends upon  potential.

property structure potential experiment

1 2 3 4
cohesive energy (eV)* fcc 4.45 4.45 4.45 4.45 4.45a

cohesive energy (eV) hcp 4.43 4.43 4.43 4.43 4.43b

cohesive energy (eV)* bcc 4.36 4.36 4.36 4.23 4.36b

cohesive energy (eV) sc 4.07 4.07 4.07 4.06

cohesive energy (eV) dc 3.35 3.32 3.34 3.34

nearest neighbor distance (Å)* fcc 2.49 2.49 2.49 2.49 2.49a

nearest neighbor distance (Å) hcp 2.48 2.48 2.48 2.48

nearest neighbor distance (Å) bcc 2.39 2.39 2.39 2.45

nearest neighbor distance (Å) sc 2.33 2.33 2.33 2.34

nearest neighbor distance (Å) dc 2.33 2.34 2.32 2.32

c/a hcp 1.65 1.65 1.65 1.65

bulk modulus (eV/Å3)* fcc 1.13 1.13 1.13 1.14 1.15a

shear modulus (eV/Å3)* fcc 0.78 0.78 0.78 0.79 0.76a

second shear modulus (eV/Å3)* fcc 0.32 0.32 0.32 0.33 0.29a

coefficient of expansion (10-6  K-1) fcc 3.66 3.58 2.11 12.38 13.3a

specific heat (meV  K-1) fcc 0.26 0.26 0.24 0.27 0.28a

a Reference [14] b Reference [23]
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Table 4: Comparison of calculated surface properties. Properties marked with an asterisk were fit in the

development of potential 1.  Relaxations are changes in the relative spacing between first and

second surface layers or the two layers at the stacking fault.  Experimental surface energy is the

polycrystalline average. All quantities are taken from fully relaxed configurations at 0 K.  The

surface relaxations and reconstruction are the only quantities that depend significantly upon

potential.

property potential experiment

1 2 3 4
(111) energy (mJ/m2) 2014 2182 2217 2216

(100) energy (mJ/m2) 2423 2677 2701 2698 2240a

(110) energy (mJ/m2) 2371 2607 2595 2593

(111) relaxation (%) 2.72 3.35 0.43 0.43 -1±1b

(100) relaxation (%) 2.53 3.56 -0.74 -0.74 1±1b

(110) relaxation (%) 3.81 4.24 -6.94 -6.94 -8±1b

(110) 2x1 relative energy (mJ/m2) 39 -227 78 51 >0

(111) stacking fault energy (mJ/m2)* 123 123 124 124 125c

(111) stacking fault relaxation (%) 0.31 0.31 0.27 0.27

a Reference [15]

b Reference [16]

c Reference [24]
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Table 5: Comparison of calculated point defect properties. Properties marked with an asterisk were fit in

the development of potential 1.  Volume relaxations are changes in volume per atomic volume

of nickel.  All quantities are taken from fully relaxed configurations at 0 K.  The vacancy and

interstitial migration energies are the only quantities that depend significantly upon potential.

property potential experiment

1 2 3 4

vacancy formation energy (eV)* 1.42 1.44 1.48 1.48 1-4-1.6a

vacancy relaxation (∆V/Ω) -0.11 -0.10 -0.12 -0.08 -0.3b

vacancy migration energy (eV) 1.50 1.52 1.49 1.22 1.3-1.5c

di-vacancy binding energy

(1st neighbor) (eV)

0.34 0.23 0.21 0.21 0.33d

di-vacancy binding energy

(2nd neighbor) (eV)

0.05 0.07 0.08 0.08

vacancy 1st layer (100) (eV) 0.49 0.49 0.48 0.48

vacancy 2nd layer (100) (eV) 0.44 0.32 0.31 0.31

vacancy 3rd layer (100) (eV) 1.41 1.43 1.48 1.48

vacancy 1st layer (111) (eV) 0.88 1.01 0.99 1.00

vacancy 2nd layer (111) (eV) 0.66 0.60 0.59 0.60

vacancy 3rd layer (111) (eV) 1.40 1.42 1.48 1.48

vacancy 1st layer (110) (eV) 0.35 0.21 0.28 0.28

vacancy 2nd layer (110) (eV) 0.65 0.56 0.59 0.49

vacancy 3rd layer (110) (eV) 0.87 0.84 0.84 0.84

O
h
 interstitial formation energy (eV) 4.24 4.27 4.16 4.54

T
d
 interstitial formation energy (eV) 5.23 5.26 5.18 5.56

<100> split interstitial formation energy
(eV)

4.04 4.06 3.90 4.24

<100> split interstitial formation volume
(∆V/Ω)

1.45 1.44 1.56 2.13 1.7±0.3b

<110> split interstitial formation energy
(eV)

5.05 5.08 4.97 5.59

<111> split interstitial formation energy
(eV)

5.55 5.61 5.59 4.66

interstitial migration energy (eV) 0.68 0.70 0.70 0.28 0.15e

a Reference [25, 26]
b Reference [18]
c Using the above vacancy formation energy

and the self diffusion energy [19]
d Reference [20]
e Reference [22]
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Figure 1: Potential screening of atoms i and k by atom j.  Atoms in the shaded region (bounded by

C=2.8) do not screen atoms i and k, while those inside the full (dashed) curve screen atoms i and k

completely for C
min

=0.8 (2.0).  Coordinates are scaled by half of the distance between atoms i and k, r
ik
.
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