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Abstract

Breast cancer is a serious problem, which in the United States causes 43,000 deaths a year,
eventually striking 1 in 9 women. Early detection is the only effective countermeasure, and mass
mammography screening is the only reliable means for early detection. Mass screening has many
shortcomings which could be addressed by a computer-aided mammographic screening system.

Accordingly, we have applied the pattern recognition methods developed in earlier investigations
of spiculated lesions in mammograms to the detection of microcalcifications and circumscribed
masses, generating new, more rigorous and uniform methods for the detection of both those signs.
We have also improved the pattern recognition methods themselves, through the development of a
new approach to combinations of multiple classifiers.
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Chapter 1

Introduction

1.1 Computer Aided Mammographic Screening

Breast cancer is a serious problem, which in the United States causes 43,000 deaths a year, striking
1 in 9 women[1]. Even by age 45, one woman in 93 has contracted breast cancer. Early detection
has a dramatic impact, however, raising the survival rate from 50% to 95%. Early intervention also
permits the use of much less extreme and expensive medical remedies, and so improves quality of
life while greatly reducing health care costs.

Mass radiological screening is the only reliable means for early detection. Unfortunately,
since only one out of each hundred asymptomatic women has a lesion, examining the resulting
mammograms is tedious and inefficient, which leads to missed cancers. Further, there is an intense
need for many more exams than are currently conducted. The American population is currently
significantly undertested, with only 10% of the screenings recommended by the American Cancer
Society actually being performed. There are a handful of reasons for this, but an important one is
that there are simply not enough radiologists. If every radiologist of every discipline were to convert
over to solely reading mammograms, we’d still have only a third of the radiologists required[1].

These problems can be addressed by making mammographers more efficient, and mammogra-
phy more attractive. As it stands, the probability of detection in mammographic mass screening is
relatively low, around 85%. This is largely due to fatigue and the volume of cases that have to be
considered, as the sensitivity goes to almost 100% if the mammographer is given enough time to
consider the case. A reliable and tireless computer system that can assist the radiologist, bringing
to their attention lesions they may have overlooked, thus helps in a number of ways. It provides
for early detection and will reduce the amount of radiologist time spent per case. This last fact is
particularly important in the economic sense, as radiologist’s time accounts for approximately half
the cost of mammograms.

Accordingly, Sandia’s LDRD Program, under its Biomedical Engineering Strategic Initiative
area, funded a related three-year research project. The goal of the project was to apply prior work in
the general area of computer-aided mammographic screening to additional cancer signs, generating
a full single-sign solution integrated with a uniform pattern recognition method.

This SAND report is the documentation for that project.
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Introduction

1.2 Context and History

The work reported here is not Sandia’s first effort in this field. From 1989 until 1993 there
was an intermittently funded effort, under Sandia’s Technology Maturation Process, to investigate
spiculated lesions, the most virulent of the single cancer signs. When spotted, they are associated
with a malignant cancer 95% of the time, and so are always immediately biopsied. They are
also, unfortunately, among the trickiest to detect, as they are a lesion without an obvious center or
mass, and manifest generally only as a disturbance in the usual interior structure of the breast, a
phenomenon sometimes referred to as “architectural distortion”.

Nonetheless, the spiculated lesion detection methods were sufficiently successful that they
were tested in a retrospective clinical study at Scott and White Research Clinic in Temple, TX[2].
85 mammogram cases were analyzed by computer, and 4 mammographers then read those cases
themselves, with and without the aid of the computer. The result was that the radiologist probability
of detection increased 9.7%, from 80.6% to 90.3%. This result has a statistical p-value of 0.005,
which means that there is only one chance in 200 that it was a statistical fluke. Further, and almost
as importantly, there was no increase in false alarm rate: the increase in detection sensitivity came
with no penalty.

Though there were some innovative features developed in the spiculated lesion work, most of the
dramatic results were due to the new ideas in pattern recognition that were developed concurrently.
Detection of any property in images, lesions included, is basically pattern recognition. Whenever
one designs a pattern recognition algorithm the solution generally breaks into two pieces: the
“inference engine” which makes the classifications, and the image measurements, called “features”,
on which the classifications are based. The classification method tends to be problem independent,
while the features are tailored to the phenomena to be detected and the sort of images they arise in.

A “feature” can any measurement on an image. One of the innovations in the spiculated lesion
work was the development of the “dense feature map” (DFM) approach to feature extraction. In
the DFM method, all features are “pixel-based”, which means that they are each associated with a
particular pixel, and are extracted from some local window centered on that pixel. The basic idea
is to convert each pixel to a handful of measures which are indicative of cancer or normal tissue.
These measures are then analyzed by a classification method to assign each pixel a probability of
being cancerous; a visual representation is in Figure 1.1. The output of this process, the “probability
image”, was the second innovation of the prior work. The third main feature was the use of binary
decision trees (BDTs) as the classification method. BDTs, with their ability to ignore useless
features and their capacity for rapidly processing large amounts of data, were the only pattern
recognition method that would have made possible application of the DFM method to the huge
images common to digital mammography.

According, the aim of the current research was to apply these same pattern recognition methods
to the detection of the other two important cancer signs: microcalcifications and circumscribed
masses.
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1.3 An Overview of this Report

Feature Images

Probability ImageX−Ray Image

BDT  Data Integration 

Figure 1.1: Densities to Features to Probabilities

1.3 An Overview of this Report

The next section, Chapter 2, will discuss in more detail the nature of mammographic data and the
motivation behind the approach we took to its analysis. Chapter 3 presents methods, analysis, and
results for our investigation into the detection of microcalcifications, and Chapter 4 does the same
for the detection of circumscribed masses. Chapter 5 discusses our work on the second half of
the detection process: improving the classification methods themselves. Chapter 6 ends the main
portion of the report with a review of the accomplishments and some thoughts on how to follow
up on our results. Finally, we close with a string of appendices of interest mainly to someone who
might wish to continue this work, as they list the various loose ends and interesting but incompletely
explored avenues that we accumulated in the course of these investigations.
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Chapter 2

Statement of Problem and Method

2.1 The Basic Mammographic Cancer Signs

In America, the basic mammographic exam involves two x-ray views of each breast, resulting in a
total of four films. There is a view taken from above (the “cranio-caudal” or “CC” view) and one
from an angled side view (the “medio-lateral oblique” or “MLO” view). In both cases the breast
is compressed between paddles during the procedure; this allows for a reduction in radiation dose,
improved image quality, and some separation of overlapping tissues. The radiologist typically
looks at the current four films in conjunction with whatever films may be available from earlier
exams.

There are six basic signs that radiologists use to detect cancers in mammograms. Three,
spiculated lesions, circumscribed masses, and calcifications, apply to single mammogram views
and have all received some attention in the literature. Three apply to pairs of images; these are the
detection of asymmetry between the right and left breast, the presence or absence of a finding in
both the top and side view of the same breast, and changes in mammographic breast appearance
over time. Methods for these paired image signs are far less standard and straightforward, for both
humans and computers.

A useful atlas of characteristic visual appearances for all of these cancer signs may be found in
[3].

2.2 Why Current and Previous Work is Insufficient

Though challenging, mammogram interpretation is distinguished by the fact that it is a compar-
atively simple medical imaging problem, in that there is only one disease to look for. Further,
though there are certainly great variations in mammogram appearance and structure, the breast can
at least be imaged so that only the breast is involved. There are no bone, lung, or other obvious but
irrelevant structures to confuse the interpretation.

As a result of this simplicity, investigation into computer aided mammographic screening dates
back to 1972[4], though it was only in the late 1980’s that computer and imaging technology had
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Statement of Problem and Method

advanced to the point where such research could blossom. Though work in this field to date has been
successful enough in some specific domains, it has been hindered by the following deficiencies:

� Point solutions. That is, techniques that address one and only one of the single image cancer
signs; there were no methods for considering even all of the single-view signs, much less
all six. There are many approaches to microcalcification, circumscribed mass, or spiculated
lesion detection individually (Sandia’s earlier work falls in this category), but none which
attempt to take a unified look at all three.

� Poor information integration. The problem of pattern recognition in images can be con-
ceptually divided into image features and analysis of these features by an inference engine.
The first half is the question of the individual features, the image characteristics one uses as
low level clues as to the presence or absence of the pattern in question. The second is the
information calculus, the means by which these clues are assembled into a decision concern-
ing the existence of the pattern. Other researchers have unfortunately generally combined
clever and insightful features with pattern recognition based on ad hoc heuristics, subjective
decision boundaries, or parametric approaches whose assumptions are knowingly violated
by the problem at hand.

2.3 How To Address Those Deficiencies

Sandia’s previous work in the field of mammographic image analysis has resulted in the invention
of a powerful image feature for texture characterization, the discovery of a separate set of features
that can effectively detect normal mammographic tissue, and the demonstration of the utility of
dense feature representations. One of the results of the latter concept was a unique extension
of binary decision tree pattern recognition theory in the form of “probability images”, which are
spatially dense characterizations of the likelihood of cancer in mammogram images.

Our approach in the current work is to simultaneously address the difficulties with point solutions
and poor information integration by incorporating new or existing features for microcalcifications
and circumscribed masses into the current pattern recognition system for spiculated lesions. We
did this by exploiting the BDT’s capacity for feature exploration as well as integration. That is, the
BDT can be used as a tool to determine the relative value of a feature for separating classes, and can
further suggest refinements to improve a good but not perfect feature. So the early methodology
was the one of iterative refinement which worked so well with spiculated lesions; develop a variety
of features, either invented from scratch or from the literature, use the BDT to determine which
are the most promising, refine or expand on those, again use the BDT for evaluation, and continue
until an effective subset of features has been determined.

The advantages of this approach are best appreciated by way of contrast with the previously
standard method. The usual approach, in mammography and elsewhere, is to identify regions of
interest (ROIs) and make measurements on these. If a lesion fails to be assigned an ROI, however,
then some important information will be lost, no matter how clever the following processing. Dense,
pixel-level feature processing requires considerably more computer processing, but provides a level
of redundancy and flexibility that ROI processing cannot match. Further, it allows all the cancer
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2.3 How To Address Those Deficiencies

information for both single-image and paired-image detections to be consolidated into one powerful
representation, the probability image.

A particularly satisfying aspect of this solution, and one that typifies the rigor possible with the
use of the BDT, is that there is no human fudging or guessing. Humans are good at classification, but
much less skilled at explaining what they are doing, at codifying how they do their classifications.
As a result, human heuristics and decision procedures, once implemented for use by a computer,
are notoriously brittle and easily broken by new, unfamiliar data.

The BDT is a trained classifier, however, and is trained in an automatic, hands-off fashion. As a
result, it can be both statistically accurate and capable of robustly handling new data, as one simply
adds samples from the new data to the training set. These properties, coupled with the thorough,
detailed, and rich information representation afforded by the dense feature map paradigm, are the
cornerstone of our approach to the development of a computer aided mammographic system.

19



Statement of Problem and Method

20



Chapter 3

Microcalcification Detection

3.1 Problem Statement

Microcalcifications are the single most common of the breast cancer signs, occurring in around
40% of all cancers found mammographically. Unfortunately, they are also one of the least sensitive
signs; their presence indicates a malignant cancer only about half of the time. The shape and
distribution of the microcalcifications is important for accurate diagnosis; in particular, only clusters
of microcalcifications are considered to be clinically significant.

The goal for a computer aided mammographic screening system then is to find clustered micro-
calcifications, which means finding the microcalcifications in the first place. Microcalcifications
are small (generally less than 300 microns in diameter) dense objects of arbitrary shape; they can
resemble scattered grains of rice or sand. Since they are dense, they can be high-contrast as well,
but this is not guaranteed. They can appear anywhere in the breast, and as normal breast tissue is
highly inhomogeneous and variable, it is quite easy for their appearance to be masked.

Still, since they have an easily described visual signature, and since “peak detection” has been
a staple of signal processing since its inception as a discipline, microcalcifications have been one
of the most thoroughly studied cancer signs, with many researchers and groups proposing varied
image measurements designed to detect them.

3.2 Hypothesis

Accordingly, the intent of the current work was not to develop new and improved image features.
It seems reasonable to assume that most of the best features have already been proposed, as is
discussed in Section 3.3.3.

Therefore, the hypothesis investigated here is that it is improved classification methods, rather
than feature construction, that will best advance the state of the art in microcalcification cluster
detection. In particular, we hypothesize that we can improve detection performance by processing
the most popular of the existent features with binary decision tree methods in the dense feature
map context.
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3.3 Methods

3.3.1 Test Data and Performance Criteria

To evaluate any algorithm for calcification detection, we must describe the test data, its counterpart
“truth” information (the location and extent of calcifications and clusters in the data) and an
objective criteria for the identification of a proposed detection as a true detection or a false alarm.
These issues are examined in the following sections.

Test Data

The mammograms used1 in this phase of the research were recorded with a Kodak MIN-R/SO177
screen/film combination using various types of equipment. The films were digitized at a size of
2048 x 2048 with an Eikonix 1412 12 bits CCD camera. A sampling aperture of .05 mm in diameter
and a 0.1 mm sampling distance was used, giving a resolution of 100 microns. The images were
corrected for inhomogeneity of the light source (Gordon plannar 1417). A fixed calibration of the
CCD camera was used. The optical density of 0.18 corresponds to a maximum gray-level output
of 4095.

The dataset consists of 40 images from 21 different patients. All images show one or more
clusters of microcalcifications. The position and size of the microcalcification clusters (annotated
using circles) were marked by two expert radiologists, based on all patient data available (different
views, magnifications).

Groundtruth Data

Building a BDT requires training data in which the true class of the feature vectors is known. For
the current application, this requires images in which each pixel has been identified as being or not
being a calcification. Such “truth” data was not available for the data set at hand; though the extent
of the clusters had been identified by a radiologist, the individual calcifications and their extent had
not been marked.

Therefore, we created pixel-level truth data using the radiologist’s cluster circles and existent
computer aided calcification detection methods. Nico Karssemeijer, of the University Hospital
Nijmegen, and Laura Mascio, of Lawrence Livermore National Laboratory, supplied the image
output of their respective calcification detection algorithms, both operated at their most sensitive
parameter settings. All objects whose center was outside of all truth circles in a given image were
discarded as false alarms. A union of all remaining objects formed a single result image. These
result images were used as the pixel level truth data for subsequent training.

Visual inspection of the resulting images indicates that this procedure did indeed manage to
capture most all of the true calcifications, at the expense of marking as calcifications some non-
calcifications within the truth circles. Since some non-calcification behaviors would thus be flagged
as calcification-like, the expected result is to increase the false alarm rate of the final classifier.

1Images were provided by courtesy of the National Expert and Training Centre for Breast Cancer Screening and
the Department of Radiology at the University of Nijmegen, the Netherlands.
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Note that these pixel-level truth images are used only for training the statistical classifier, not for
evaluating the final performance of the detection scheme. The performance criteria, discussed in the
next section, depends only on the radiologist-selected truth circles, not the individual calcifications.

Performance Criteria

In order for the current performance results to be entirely commensurable with some competing
prior results on this database, we implemented the same performance criteria used to generate those
results, [5]. A given cluster is considered to have been detected if two or more detected objects
are found in its associated truth circle. In this fashion a probability of cluster detection (PD) was
determined for each image, and the overall PD reported is the average of the individual PDs across
the 40 test images.

All detections not within any truth circles are considered to be false alarms. To determine the
number of false alarm clusters, a 0.5 cm radius circle is inscribed around the center of each false
alarm, merging nearby objects. A false cluster is counted for each resulting contiguous region. The
overall false alarm rate (FAR) is the total number of false alarms detected, averaged across the 40
test images.

3.3.2 Initial Segmentor Set

To detect a microcalcification cluster, one must first detect, and segment, its microcalcifications,
where “segment” here just means to determine the shape of the microcalcification. Since the
features are highly sensitive to the shape, the choice of segmentor strongly affects the quality of
the features that are extracted.

Rather than commit to one single segmentor, we use a host of segmentors, computing the same
features on the output of each. One segmentation algorithm may produce objects which, using
the shape feature for example, can accurately distinguish microcalcifications (MCs), while another
segmentor may produce objects where the shape feature provides no predictive power. With the
DFM approach, it is expected that the BDT will discover which features of which segmentors are
useful for distinguishing MC objects from non-MC objects. So that true MCs would not be missed
and a dense feature map would be generated, we set parameters on the segmentors so that many
non-MC objects are found.

There are two types of segmentors used: all-at-once and at-every-pixel. All-at-once segmentors
find objects throughout an image, returning a single image with objects indicated. Then for every
point that is part of an object, features are computed for the object that contains the point. Since
neighboring points are usually part of the same object, they will have equal feature values.

At-every-pixel segmentors find the best object centered at every pixel. No one single image
with all the objects is returned since the objects for neighboring points would overlap. Rather,
for each pixel a small sub-image is extracted around that pixel and the one best object within that
sub-image which contains the center point of the sub-image is found. Features are computed for
every point in that object. In this case, neighboring points may be within similar objects so feature
values may be similar, but this need not be the case. The segmentation algorithm is given a slightly
different sub-image so the resulting objects can be different.
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In the at-every-pixel approach, the size of the sub-image (1100�1100 microns) is large enough
to contain most calcifications, therefore, any objects that are not completely contained within the
sub-image are discarded. Similarly, in the all-at-once approach, if the object is not completely
contained with a sub-image centered at a point, no features are computed for that point. Note that
other points within the same object may have features computed since the object may be contained
with the sub-image centered on the other point.

Since a segmentation is desirable at every point, at-every-pixel methods are attractive. However,
some segmentation methods are more naturally applied in an all-at-once fashion. Below is a brief
description of the six segmentors used. The first three (MES, Peak and Adaptive Threshold)
are at-every-pixel algorithms. The second three (Boundary, Woods and Outlier) are all-at-once
approaches.

Minimal Error Segmentor (MES): This is a region growing algorithm where the “error” of
merging regions is minimized [6]. First, 4-connected regions with equal gray-level are found in the
sub-image. Then regions are incrementally merged with their neighbors in an “optimal” fashion.
That is, at each point the merge is chosen which will introduce the least amount of squared pixel
error into the image. This continues until an “optimal” stopping point has been reached, one which
minimizes complexity while maximizing accuracy. That is, let N be the current number of regions
in the image, MS1 be the maximum amount of error possible to the image (determined by merging
until only one homogeneous region is left) and MSN be the mean squared error in the image if
one merges until N regions are left. Then the termination function used is

f(N) =
N

log(MS1)� log(MSN)
:

Here, the complexity in the image is modeled byN , the number of regions in the image. log (MS1),
the natural log of the maximum amount of error possible to the image, is an information theoretic
measure of the amount of information in the image. log(MSN) is a measure of the error introduced,
or the information lost. Thus their difference is a measure of the information still present, or the
accuracy of the image. And so a global minimum in the ratio of complexity to accuracy, as defined
above, is the stopping point we seek. Accordingly, the MES algorithm computes f(N) for all N ,
and then selects the stopping point, the optimal N , to be the one at which f(N) is minimized.

Peak Segmentor: In this approach the sub-image is thresholded at a percentage of the gray-level
value of the central pixel, [7]. Then all objects that do not overlay the central pixel are discarded.

Adaptive Threshold: The histogram of the points in the sub-image is found. If an MC is present
then there should be two peaks in the histogram, one from the MC and one from the background.
This algorithm finds the valley between the peaks and uses this value as a threshold. The sub-image
is then thresholded with this value.

Boundary: First an edge detector is applied to the entire image. Small gaps in detected lines are
filled as follows. The edge image is dilated and eroded once with the dilation only being performed
if 4 or fewer neighboring pixels are edge pixels. Then any pixel which was an edge point in the
original edge image but is not in the dilated and eroded image, is converted back to an edge point.
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This corrects lines which are broken by the eroding. Finally, an edge thinning algorithm is applied.
Every enclosed region is then an object.

Woods (Threshold): This segmentor was developed by Woods [8]. For each point in the entire
image, the difference between that pixel value and the mean of its surround is computed. Each pixel
in the difference image is then thresholded with the threshold set to one of two values depending
on the maximum value around the point in the difference image. If the maximum value is greater
than 15 then a threshold of 10 is used. If the maximum value is less than 15 then a threshold of 5 is
used. Woods then eliminates all but the highest contrast points, though here we retain all resulting
points since a dense feature map is desired.

Outlier Threshold: This algorithm is a combination of the approaches taken in [9, 10]. For every
point p in the entire image, a local window w around the point is considered. If the original gray-
level of p is greater than a threshold defined as the mean of w plus three times the local standard
deviation of w, then the point is considered to be “extreme”. The extreme points are then grouped
into segmented calcifications on a four-connected basis.

3.3.3 The Initial Feature Set

Calcifications are one of the most studied of breast cancer signs, to the point that papers surveying
and listing the first stirrings of a consensus on the useful features were beginning to appear when
we started our research[11, 8]. Rather than starting from scratch, we make use of the most popular
features; with the exception of edge strength variation along an object boundary, all these features
have been used by others. However, we do have to modify some of them, to convert them to a pixel
orientation.

That is, a typical calcification feature (some measure of shape or edge strength, for example)
is measured over a segmented region which has been indicated by some pre-processing step as a
possible calcification. As mentioned in the previous section, here our approach is to measure each
feature over the segmented shapes returned by each of the segmentors we are considering.

Below are detailed descriptions of each feature. Table 3.1 summarizes the features and lists
other researchers who have used the same or a similar feature, and Section 3.3.4 will present the
features that survived after they were weeded down to their most potent subset.

Area: The number of pixels in the object.

Shape: Shape is defined as P 2� 4�AwhereA is the area as defined above and P is the perimeter,
defined as the number of pixel sides of the object that touch a background pixel. “P 2� 4�A � 0”
is known as the Isoparametric Inequality [12]. Equality holds if and only if the object is a circle.

Average Edge Strength: Average of
q
(x0)2 + (y0)2 for all points (x, y) on the perimeter, where

x
0 and y0 are the x and y gradients, respectively, for a point. The gradients are computed using 3�3

kernels.

Edge Strength Variation: Difference of maximum and minimum edge strength of perimeter
points. Edge strength is defined as above.
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Table 3.1: The features computed for each object (except for Laws) returned by a segmentor, with
a partial list of researchers who have used the feature or one similar.

Feature Definition Used by
Area Number of pixels [15, 16, 8]
Shape P

2 � 4�A [15, 17, 18, 16]
Ave. Edge Strength Mean edge strength of perimeter pixels [17, 16, 8]
Edge Strength Var. Difference of max and min

perimeter pixel edge strengths
Contrast Difference of mean gray-levels [10, 19, 20, 15, 8, 21]

of object and surround
Object Std. Dev. Standard Deviation of object pixels [15, 8]
Background Std. Dev. Standard Deviation of surround pixels [10, 8]
Laws Convolution at every pixel [22, 23]

in the mammogram image

Contrast: Difference of average gray-level within the object and average gray-level of a two-pixel
wide surround of the object.

Object Standard Deviation: Standard deviation of the gray-level values within an object.

Background Standard Deviation: Standard deviation of the gray-level values within two pixels
of the object.

Laws Texture: Unlike the other features, these are computed from the mammogram image at
every pixel, rather than on an object returned from a segmentor, as they are intended to learn to
recognize the range of normal appearances. The Laws features are based on the application of a
small set of convolution kernels to the image (each kernel designed to respond to a different local
behavior), followed by the measurement of the local sum of absolute values.

In the notation of Pietikainen et. al.[13], the convolution kernels used in this study are L5*E5,
E5*S5, L5*S5, and R5*R5. The size of the window for the computation of the sum of absolute
values texture energy measure was 15�15, as suggested by Laws[14].

3.3.4 Feature Set Reduction

Having established this set of 46 features (seven features measured across six segmentors, plus the
four Laws features), the next step is to winnow these down to their useful subset.

Segmentor Variation

One would expect that the shapes generated by the various segmentations might be basically similar,
and that as a result a given feature would be highly correlated across the segmentors. Interestingly,
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Figure 3.1: The left column shows a portion of a mammogram with three calcifications arranged in
a triangle. It is shown twice to facilitate easier viewing along rows. The top row shows the results
of the local segmentors (from left to right) MES, Peak, and Adaptive Threshold. The second row
shows the results of the global segmentors (from left to right) Boundary, Woods and Outlier.

however, the segmentors varied fairly significantly in their response to the same data.
For instance, Figure 3.1 presents a patch of one of the mammograms with three calcifications

arranged in a triangle. This figure illustrates the response of the six segmentors to that same image.
Note that Adaptive Threshold and MES failed to segment the calcifications. Outlier and Woods
both captured the shape of the calcifications but Woods had more non-calcification objects.

The Reduced Feature Set

The behavior of the features was investigated through growing trial BDTs and noting which
features were most prominent, and through regression and correlation analysis. Attention was paid
to examining the behavior of feature sets within the context of single segmentors, and segmentor
sets within the context of single features. The general trends are as follows:

� The features derived from adaptive threshold segmentations are not useful, due to that
algorithm’s frequent failure to produce any segmentation.

� The Laws features are heavily utilized by all test BDTs, indicating that they are indeed
fulfilling the desired background discrimination role.

� All of the Boundary-derived set of features are pertinent, with the exception of object standard
deviation, which was not useful when computed from any of the segmentors.
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� The contrast features are useful from almost all of the segmentors, even in combination with
one another, and despite the fact that they were indeed fairly correlated.

� The area and shape features were notably useful only from the Woods segmentor, perhaps
implying that it managed to recover shapes that best distinguished between calcifications and
false alarms.

Taking these trends into account, the list of features used to produce the current performance results
are given in Table 3.2.

Table 3.2: The Reduced Set of Selected Features

Boundary Peak MES Outlier Woods Laws
Area Contrast Contrast Contrast Area L5*E5
Shape Ave. Edge Str. Shape E5*S5
Edge Str. Var. L5*S5
Contrast R5*R5
Background SD

3.4 Results

Performance results were generated from this data using a half/half classification protocol [2, 22].
That is, in order to provide performance results for the entire data set, it was randomly separated
into two sets, A and B, of 20 images each. Two separate BDTs were grown from randomly sampled
data points from each image in each subset. Then the tree from set A was used to convert the full
original images in set B into probability images, and vice versa. Finally, all of these probability
images were mean filtered with a 700 by 700 micron window, to create a spatial consensus for the
pixel classifications.

To determine the ROC statistics of the smoothed probability images, they were thresholded
50 times, at increments of 0.02, forming binary report images consisting of segmented regions.
These were scored by the criteria discussed in Section 3.3.1, generating (PD, FAR) pairs for each
threshold level. The resulting curve is plotted in Figure 3.2, against a result on the same data from
an alternative algorithm based on random field models [24, 5]. Note that where the DFM method
approaches the PD of the random field model, it does so at the cost of a higher FAR of about two
clusters per image. We hypothesized that this was partially due to presence of non-calcifications
in the calcification portion of the training set, as discussed in Section 3.3.1. Impure training data
is not a factor in the random field model results, as there the control parameters are fixed during
algorithm development, rather than dynamically optimized for the available data.

So we reconsidered the groundtruth data with an eye to wiping out the most obvious errors, in
the hopes of creating more accurate “truth”. To aid this process, we created mosaic versions of each
cluster, mosaics which which presented various views of the same raw data, including adaptive
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Figure 3.2: Initial ROC Curve Comparing Random Field Model and Dense Feature Map Perfor-
mance

histogram stretch, adaptive histogram equalization, the original image, the initial segmentation,
full image histogram equalization and full-image histogram stretching.

As we are ourselves not trained radiologists, attempting to remove the falsely identified calcifi-
cation objects was a nerve-racking process, and after a couple of false starts we decided to created
two weeded data sets, one in which we would remove only those objects which seemed to be
obvious false alarms, and another, much smaller, which we would permit to contain only obvious
calcifications. That is, the “borderline” objects were retained in the dataset we called “some” and
removed in the case we call “few”. The original dataset was called “all”.

Retraining on both the old data and the two weeded datasets, results in the trio of ROC curves
illustrated in Figure 3.3. In these figures we plot only from 0.5 to 1.0 on the probability of detection
axis to better show the differences. Note that the “all” curve, using the initial groundtruth, has
improved considerably; this is due only to the feature changes, particularly the revision of the Laws
texture choices. Note also that “some” and “few”, on the whole, dominate “all”, suggesting that
the system is more sensitive to the training data than we had first hypothesized.

Finally, we show the “few” curve from the previous figure plotted against the Random Field
Model’s result. It is still dominated through most all of its length, but it does move up to dominate
the competing approach at the far right of the curve. This is important, as the right end of the ROC
curve is the end that reflects operation in the sensitive regime that will be required in clinical use.
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Figure 3.3: Results on the Few, Some, and All Datasets
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Figure 3.4: Results on the Few, Some, and All Datasets
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3.5 Conclusions and Future Work

In this chapter, we have reported on results from the application of the DFM method to the
detection of calcifications in mammograms. Our evaluation method has been to share the data and
performance criteria of other work on this problem, so as to be able to rigorously compare results.
This has served not only to objectively assess the relative weaknesses of the current implementation
of the DFM, but also to focus our future attention on the specific problem of false alarm rate.

The raw performance of our approach was shown to be comparable to the best competitor on
the same dataset, and further, to be better in the most sensitive regime. This is important as it is in
this regime that any practical, clinical CAMS system will operate.

Future efforts towards improving the performance of the DFM method for microcalcifications
would include

� Development of a segmentor and features customized to address lacks in the initial selection
set turned up by our analysis.

� Objective re-examination of the entire feature set, to determine the truly optimal subset of
pertinent features.

� Use of training data in which a radiologist has certified the location and extent of each
calcification.
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Chapter 4

Mass Detection

Masses appear in mammograms as compact shapes ranging from millimeters to centimeters in size,
with densities lower to greater than that of surrounding tissue. The challenge is to detect these
masses consistently in the face of the broad variation of normal tissue types.

4.1 Problem Statement

We address a subset of the image data and possible mass characteristics present in typical 4-view
mammogram cases, choosing to analyze single views and modeling masses as approximately
circular and denser than surrounding tissue. Our objective is to generate a feature that responds
strongly to masses and minimally to normal tissue which is consistent across breast tissue types
and is amenable as input to the dense feature map (DFM - see Section 1.2) approach. The context
in which the masses are to be detected is one containing a great deal of interfering structure due to
the complex appearance of normal parenchyma and wide ranges in brightness due to the presence
of fatty and/or glandular tissue. Figure 4.1 illustrates this complexity in shape and background
for relatively obvious masses. Accordingly, the situation calls for a detection approach which
performs well over wide ranges of scale and contrast, despite partial or distorted shapes and
interfering structure.

4.2 Hypothesis

Our detection hypothesis is that a significant subset of masses are reasonably well characterized
by a roughly circular disk that is denser than surrounding tissue. This disk is presumed to have
a well-defined edge around a substantial portion of the circumference, but is embedded in normal
tissue varying widely in density and structure. These considerations motivate the development of
a method based on the circular Hough transform.

33



Mass Detection

(a) 019ll (b) 015lm

(c) 021ll (d) 132rx

Figure 4.1: Subimages of selected MIAS masses
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4.3 Methods

Our method for detecting circumscribed masses in mammograms is built around the circular Hough
transform [25]. The input is a mammogram as described in Sections 4.4.1 and 4.4.2, and the end
result is a feature image that correlates with the likelihood of a circumscribed mass at each pixel
location in the input mammogram. The intermediate steps of the algorithm we use are outlined in
the flowchart in Figure 4.2. We segment the input mammogram, preprocess the image to normalize

Segmentation

Edge Detection

Circular Hough Transform

Hough Peak Normalization

Peak Qualification

Contrast Rectification

Feature Mapping

Mammogram

Feature Image

Edge Classification

Contrast Variability Reduction

Linear Structure Suppression

Boundary Gradient Flattening

Figure 4.2: Circumscribed mass detection algorithm flowchart

the contrast and suppress linear structures, detect intensity edges, sort and threshold these edges
by length and strength, perform the circular Hough transform, filter the Hough accumulator to
normalize it with respect to radius, qualify peaks in the accumulator using the contrast of those
peaks, and finally map the qualified peaks into a feature image. We describe these algorithm steps
in more detail in Sections 4.3.1–4.3.11

4.3.1 Subsampling and Segmentation

At 50-100 microns, the original data is at a resolution finer than practical for initial algorithm
investigation. Accordingly, it was subsampled using Gaussian/sinc interpolation [26] to create data
with a pixel resolution of 800 microns. At this spatial resolution, the circumscribed masses in the
MIAS database have a radius that varies from 4.5 to 49 pixels.

After subsampling, the images were edited by hand to remove artifacts from the background
(non-tissue) regions. They were segmented by a process that thresholds the image at a level
dynamically chosen to be just finer than the background histogram peak, and then finds and retains
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the largest resulting 4-connected object. The rest of the objects are merged into the background,
and the background value is set everywhere to zero. The result is an image in which the breast
region is the only region that contains non-zero values.

4.3.2 Boundary brightness Gradient Flattening

The brightness roll-off at the breast boundary varies considerably from image to image, due to
both the characteristics of the individual breast and the compression for imaging. This roll-off
creates a variable background image gradient which masks subtle mass boundaries in the region
and introduces spurious edges.

Figure 4.3 illustrates the comparative differences in the brightness histogram as a function of
distance from the boundary for two mammograms. We reduce the boundary roll-off by forming a
two dimensional cumulative distribution

c(d; v) = c(d; v � 1) + h(d; v) (4:1)

where
h(d; v) =

X
8i2I(d;i)=v

1 (4:2)

is the histogram of the image I(d; i) containing the number of image points with value v at distance
d from the segmentation boundary. I(d; i) is simply the mammogram mapped onto the coordinate
system d; i. The cdf is then that of the image brightness along the segmented boundary of the breast
tissue as a function of the distance from the boundary, where I is the image and d is the distance
from the boundary and i spans the pixels at each d. The cdf is then normalized

cn(d; v) =
c(d; v)

c(d; vmax)
(4:3)

This normalized cdf is then thresholded

t(d) = vcn(d;v)>T (4:4)

where T is typically set to 0:3, so that t(d) captures the general curve of the brightness roll-off.
The image values are then mapped through

O(d; j) = I(d; j)� t(d) exp

 
I(d; j)�B

S

!5

(4:5)

where B is the constant image value of exposed film and S is the value for unexposed film. This
maps values near exposed film nearly linearly, while those near the densest tissue are changed
little. This mapping flattens the border regions while avoiding over-compensation in areas of dense
tissue.
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(a) 017ls image (b) 028rl image

"017ls.2cstf"

5

10

15

20

25

30

35

40
50

100

150

200

250

0
5

10
15
20
25
30
35
40
45

(c) 017ls histogram as a function of distance from
boundary

"028rl.2cstf"

5

10

15

20

25

30

35

40
50

100

150

200

250

0
10
20
30
40
50
60
70
80
90

(d) 028rl histogram as a function of distance from
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Figure 4.3: Image and boundary histogram examples
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(a) Isotropic function (b) Ridge function

Figure 4.4: Linear feature suppression function shapes

4.3.3 Contrast Variability Reduction

Both the tissue composition of the breast and the compression for imaging contribute to contrast
variation across the image, making it difficult to accurately measure the contrast for a candidate
mass. We lessen this variation by fitting two bicubic surfaces to the image, one to the breast
boundary region and one to the central breast region. These two surfaces reasonably model gross
variations over the image while responding minimally to image features on the scale of masses.
The two bicubics are then stitched together by choosing points from each along their mutual
boundary that minimize the mean squared error with respect to the fit over both surfaces. The
mutual boundary is then iteratively adjusted, with the fitting and stitching steps repeated, further
minimizing the mutual fit error. Finally, this composite surface is subtracted from the mammogram.

4.3.4 Suppression of linear structures

The linear structures arising from the normal parenchyma and blood vessels in the breast create a
large number of edges that tend to mask the often weaker edges created by masses. To improve
the detection of mass edges, we characterize each point in the image as best fit either by a smooth
isotropic or oriented ridge model similar to those shown in Figure 4.4.

Points fitting an oriented ridge are further qualified by checking for an extrema in the second
derivative larger than the first derivative, both at the same orientation and location as the ridge
model. Points passing this test are deemed representative of a linear structure in the image and the
ridge response, scaled by the second derivative, is subtracted from the image.

This process is repeated over two scales and eight orientations at present, and is similar in
concept to that used in the initial detection stages of [27], though the objective is suppression,
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(a) Original edge points (b) Edge points above length-strength threshold

Figure 4.5: Edge point qualification

rather than characterization of linear structure.

4.3.5 Edge detection

Our objective for edge detection is a sensitive edge indicator that also provides accurate normal
directions, as these are required for our implementation of the circular Hough transform. We use
a simple algorithm based on that of Canny [28], filtering the input image with a 2-d symmetrical
Gaussian (�x = �y = 1:0), then estimating the image gradient using first differences taken in the
image X and Y directions, computing the magnitude and phase angle of the gradient, and finally
suppressing all points but those which are a local maxima in the direction of the gradient.

4.3.6 Edge Sorting and Thresholding

These edges are then sorted and thresholded by length and strength based on the assumption that
long, strong edges are more significant that short, weak ones [29], rejecting 50-90% of the original
edge points, as can be seen in Figure 4.5.

4.3.7 Circular Hough transform

We chose the Hough transform [30, 25, 31, 32] as a detection algorithm for its robust performance
over a wide range of scale in the face of noise and background clutter. We parameterize the Hough
accumulator for circles for two reasons: first, circles are a reasonable first order approximation for
circumscribed masses, and second, we wished to limit the dimensionality of the search for peaks in
the accumulator. Figure 4.6a schematically illustrates the circular Hough transform accumulator,
which is quantized at 1 unit in x, y, and r, where fx; yg indicate the origin of a circle and r
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indicates its radius. Edge points are projected in the direction normal to the rising edge as shown
in Figure 4.6b. Figure 4.6c illustrates the projection of a gradient local maxima at f40; 20g with
direction 1; 0 through the Hough accumulator fx; y; rg, incrementing each point along the line
f40 + r; 20; rg. Similarly, a maxima at f60; 20g with direction f�1; 0g increments each point in
the accumulator along the line f60 � r; 20; rg. Edge points arranged in a circle will thus result in
a cluster of values about the point 50; 20; 10 in the Hough accumulator where the projected lines
converge. The result is a volume of points with higher densities indicating the possibility of circular
structure in the original image, as seen in Figure 4.6d.

4.3.8 Hough peak normalization

We desire an indication of circular structure in the input mammogram which is independent of
radius, as we will be mapping peak heights in the 3-d Hough accumulator down to the 2-d pixel
level feature image (Section 4.3.11) to indicate the significance of a detected mass, irrespective of
the peak’s radius. Unfortunately, the height and density of peaks in the raw Hough accumulator
are affected by the number of edge points contributing to a peak and by the accuracy of the edge
location and gradient normal. The total number of edge points contributing to an accumulator peak
for a circle is / 2�r, but the spatial distribution of the edge points projected along the gradient
normal is affected in a complex, deterministic way by the pixel sampling of the circle border, which
is both a function of circle radius and location. This results in peak heights and densities that vary
considerably with respect to radius, even for images of perfectly circular structures.

As an example, Figure 4.6e is a plot of peak height versus radial distance from the peak center
for perfectly circular (digital) disks of radius 2, 10, 20, and 50. We compensate for this behavior by
normalizing the Hough accumulator with respect to r using an empirically designed exponential
filter matched to the peak shapes created by circular disks. The filtering operation is the convolution

g(x; y; r) = f(x; y; r) � h(x; y; r) (4:6)

of the raw Hough accumulator f(x; y; r) with the exponential normalizing filter

h(x; y; r) = c(r) exp

0
BB@�

�
x

2 + y
2
�a(r)

2

b(r)

1
CCA (4:7)

resulting in the normalized Hough accumulator g(x; y; r). The terms a(r); b(r), and c(r) are
weights as a function of the circle radius r, and were empirically determined for each r by
summing the Hough accumulator response for a large number of circular disks displaced uniformly
over the interval x0 � 0:5; y0 � 0:5. Figures 4.6e–f illustrate the effect of normalizing the Hough
accumulator for circles of varying radius.

4.3.9 Hough peak qualification

Peaks in the Hough transform accumulator described above indicate circular structures in the mam-
mogram. Unfortunately, many Hough peaks of similar height are created, due to both interfering
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structure and to non-circular masses. The Hough transform measures the outline of a structure,
as indicated by edge points on its periphery, disregarding the interior. Our approach to improving
this performance is to measure the image contrast between the interior and exterior of the circle
described by a peak in Hough space by computing the difference between the mean value of the
interior of the circular region and the mean of an annulus exterior to the circle as shown in Fig-
ure 4.7a. We then use this contrast to scale the Hough peak in a multiplicative fashion, resulting in
a measure of the region contrast, as well as the support for a circle.

lesion
 mean

exterior
  mean

(a) Mass contrast measurement
region

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

’028rl.cdfn.ascii’

(b) Cumulative distribution
mapping

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

x/219.0

(c) Linear mapping

Figure 4.7: Mass contrast schematic and image mapping functions

4.3.10 Contrast rectification

The significance of any degree of contrast in a given image depends on the range of contrasts possible
in that image. A high contrast circular region is much more significant in a fatty mammogram than
in a dense one. Accordingly, we address image to image variability in contrast by extracting, for
each image, a histogram of the contrast levels seen in that image. Then the specific contrast noted
for the disk suggested by a Hough peak is mapped through either a linear or cumulative distribution
function, as illustrated in Figure 4.7b and c. As a result, the raw contrast values are converted to a
value in the range 0.0–1.0 which reflects the significance of that contrast in that particular image.

This whole process of Hough peak qualification results in a volume of pointsfx; y; rgdescribing
the relative likelihood of a dense circular structure with radius r at a point fx; yg. To see the effects
of contrast rectification on feature separation, consider Figure 4.9. Figures 4.9a and b are plots of
the “Peak disk” and “Sum disk” features (see Section 4.3.11) without contrast rectification for all
44 mammograms in the data set. Figures 4.9c and d illustrate the linear map contrast rectification
over the set and Figures 4.9e and f illustrate the cumulative distribution map contrast rectification.
Note that the rectification does tend to improve spread and reduce variability.
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4.3.11 Feature mapping

The last step in the feature extraction algorithm is to create a feature image indicating the relative
likelihood of a circumscribed mass at a pixel level. We do this by mapping points in the qualified,
rectified Hough image in x; y; r space onto disks of radius r on the image plane at x; y. We
experimented with two different methods of collapsing the vector of r possible Hough space values
onto the feature image plane:

Peak disk: Setting each feature image pixel to the maximum likelihood encountered over r at
the point x; y.

Sum disk: Setting each feature image pixel to the sum of the likelihoods encountered over r at
the point x; y.

Figures 4.8 and 4.11 illustrates the “Peak disk” and “Sum disk” features for selected mammograms,
as well as the original mammograms.

4.4 Experimental Results

We analyzed two data sets during the course of our investigation. The first was the 22 image subset
of MIAS database containing circumscribed masses, and the second was a 129 image subset of
the BGSM database. The data set, truth data, performance criteria, and experimental results are
described for each data set in turn below.

4.4.1 Results for the MIAS Database

MIAS Test Data Description

The data analyzed in this investigation is a subset of version 1.2 of the digital mammographic
database created and distributed by the Mammographic Image Analysis Society (MIAS). (See
the WWW site http://s10d.smb.man.ac.uk//MIAScom.html for more information.)
These are single-view mammograms scanned with the Joyce-Loebl microdensitometer SCANDIG-
3, which has a linear response in the optical density range 0–3.2. The resulting pixels have a spatial
resolution of 50 microns and a grey-scale resolution of 8 bits.

The MIAS database characterizes each image according to the class of abnormalities present.
We shall present results on the 22 ground-truthed images in the database that contain circumscribed
masses. To match these images, 22 entirely normal images were selected at random from the set
of 204 normal images in the MIAS database, resulting in a data subset containing 44 images.

MIAS Groundtruth data

Version 1.2 of the MIAS database provides groundtruth for its masses in the form of circles which
indicate the approximate center and radius of each abnormality. Since circumscribed masses are
rarely perfectly circular, and since the MIAS policy was to err on the side of making the groundtruth
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circles completely inclusive rather than too small, the groundtruth regions often contain a substantial
amount of normal tissue. Therefore, for the subset of masses in which the border was both clearly
visible and substantially different from the original groundtruth circle, the truth regions were edited
to more closely reflect the actual mass shape1.

These edited truth regions are used when training classifiers and when applying the performance
metrics discussed in the next section. However, the original truth regions are and will be used
whenever end-to-end detection rates are computed, in order to permit accurate comparison with
results from other institutions making use of the same data.

MIAS Performance Criteria

We use an objective 50% overlap criteria to determine the performance of any given report image.
That is, a given true mass is considered to have been detected if there is a reported mass such
that the area of their overlap is at least 50% of the larger of their individual areas. If TL and FL
are the number of correct detections and false alarms, respectively, across all the test data, NL
the number of true masses, and NI the number of test images, then we compute (PD; FAR) as
(TL=NL;FL=NI). To determine the ROC statistics of the smoothed probability images, they
were thresholded 50 times, at increments of 0.02, forming binary report images consisting of
segmented regions.2 These were scored by the criteria discussed in the previous section, generating
(PD; FAR) pairs for each threshold level. The resulting curve is shown in Figure 4.10.

MIAS Example Feature Images

The images in Figure 4.8 illustrate the peak and summed disk features generated for the MIAS
database.

MIAS Feature Plots

Figures 4.9a and b are plots of the “Peak disk” and “Sum disk” features without contrast rectification
(Section 4.3.10) for all 44 mammograms in the data set. Figures 4.9c and d illustrate the linear
map contrast rectification over the set and Figures 4.9e and f illustrate the cumulative distribution
map contrast rectification.

MIAS ROC Curve Results

Figure 4.10 illustrates the ROC curve results for the MIAS data set. These results are competitive
with published results on other circumscribed mass datasets, particularly in the relatively low FAR.

1The edited truth data for the 22 mass images is available via anonymous ftp from ca.sandia.gov as
/pub/wpk/stuff/tiwdm/truth.tar.gz.

2The ROC curve appears to be formed from fewer than 50 points because not all thresholds generate unique report
images, and all equivalent report images map into the same performance point.
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(a) Peak disk feature for “005ll”
image

(b) Original “005ll” mammo-
gram

(c) Summed disk feature for
“005ll” image

(d) Peak disk feature for
“015lm” image

(e) Original “015lm” mammo-
gram

(f) Summed disk feature for
“015lm” image

(g) Peak disk feature for “021ll”
image

(h) Original “021ll” mammo-
gram

(i) Summed disk feature for
“021ll” image

(j) Peak disk feature for “023ll”
image

(k) Original “023ll” mammo-
gram

(l) Summed disk feature for
“023ll” image

Figure 4.8: Peak, original, and summed disk feature images for selected mammograms from the
MIAS database.
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(d) Linear map minus mean summed disk feature
plot
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(e) Cdf map minus mean peak disk feature plot
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(f) Cdf map minus mean summed disk feature plot

Figure 4.9: Plots of features across the 44 mammogram MIAS data set.
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Figure 4.10: Performance Results as a ROC Curve for the MIAS data set.

4.4.2 Results for the BGSM Database

BGSM Test Data Description

The data analyzed in this investigation was drawn from a 117 case data set acquired at the Bowman-
Gray School of Medicine. Approximately half of the cases were selected for the presence of a
mass, and half selected from those read as normal. The mass cases were confirmed by pathology
and the normals by normal followup films for three years. The cases were digitized at 100 microns
on a Lumysis 200 film digitizer with a 12 bit resolution over an optical density of 0–3. The 117
4-view cases resulted in 129 images containing masses. Eight films had two masses each, for a
total of 137 masses in the data set.

Our results are based on the 129 truthed images that contain masses and the 336 normal images
in the data set.

BGSM Groundtruth data

Ground truth for the BGSM data set was obtained by digitizing the mammogram, having a radiol-
ogist trace the mass on the film, redigitizing the traced mammogram, registering the two images,
tracing the radiologist’s outline on the computer, filling in this region, and writing a binary truth
image containing 1 inside the mass and 0 elsewhere. These truth regions are used when training
classifiers and when applying the performance metrics discussed below

BGSM Performance Criteria

We use an objective 50% overlap criteria to determine the performance of any given report image.
That is, a given true mass is considered to have been detected if there is a reported mass such
that the area of their overlap is at least 50% of the larger of their individual areas. If TL and FL
are the number of correct detections and false alarms, respectively, across all the test data, NL
the number of true masses, and NI the number of test images, then we compute (PD; FAR) as
(TL=NL;FL=NI).
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To determine the ROC statistics of the smoothed probability images, they were thresholded 50
times, at increments of 0.02, forming binary report images consisting of segmented regions. These
were scored by the criteria discussed in the previous section, generating (PD; FAR) pairs for each
threshold level. The resulting curve is shown in Figure 4.13.

BGSM Example Feature Images

The images in Figure 4.11 illustrate the peak and summed disk features generated for the BGSM
database.

BGSM Feature Plot

Figures 4.12a–4.12c are plots of the cumulative distribution map contrast rectification, with
Figure 4.12a illustrating the features across the images containing malignant masses, Figure 4.12b
illustrating part of the normal images containing no masses, and Figure 4.12c illustrating the
features across the images containing masses found to be benign.

BGSM Performance Analysis

Tables 4.2– 4.5 indicates the performance we attained for a subset of the algorithm steps on the
BGSM database. The table columns represent the major feature algorithm steps from “Visible
Without Truth” on the left, which represents the mass in the image, to the “CDF Peak Disk”
to the right, which represents the final output for the CDF peak disk feature. The contents of
each of these columns are scaled 0 to 4, indicating the visibility of the mass in “VWOT”, the
number of edge quadrants coincident with the truth for “EdgeQ”, and the quarters of area overlap
for “HP” and “CDFPD”. The rightmost three columns are the “Dense Feature Map Smoothed”
and “Dense Feature Map Thresholded” probability images, followed by the “Dense Feature Map
Result” indicating the final detection result. The contents of each of these columns are scaled 0 to 4,
indicating the quarters of area overlap for “DFMsmth” and “DFMthr”, and detection for “DFMres”.
The table is sorted in order of increasing number of steps feature visibility and detection. There
were 60 correct detections and 77 missed detections out of 137 masses. Of the missed detections,
49 coincided with low “CDFPD” feature values. An additional 22 had high “CDFPD” values, but
failed to generate a high probability in “DFMsmth”, resulting in failed detections. The remaining 6
failed detections had high (� 3) feature and probability values which failed to generate detections
in the “DFMres” column.

Table 4.1 contains the key to the column titles in Tables 4.2–4.5.
This data was drawn from:

gorp:/export/disk3/brg/m/All/Analysis/T.sort.dfmsmth.pd.hp.ed.

The full data set may be found in:

gorp:/export/disk3/brg/m/All/Analysis/T.mega.nums
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(a) Peak disk feature for
“090.m.l.mlo” image

(b) Original “090.m.l.mlo”
mammogram

(c) Summed disk feature for
“090.m.l.mlo” image

(d) Peak disk feature for
“005.m.l.cc” image

(e) Original “005.m.l.cc” mam-
mogram

(f) Summed disk feature for
“005.m.l.cc” image

(g) Peak disk feature for
“024.m.r.cc” image

(h) Original “024.m.r.cc” mam-
mogram

(i) Summed disk feature for
“024.m.r.cc” image

(j) Peak disk feature for
“080.m.r.cc” image

(k) Original “080.m.r.cc” mam-
mogram

(l) Summed disk feature for
“080.m.r.cc” image

Figure 4.11: Peak, original, and summed disk feature images for selected mammograms from the
BGSM mammogram data set. 49
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(a) Plot of cdf-m map of malignant features
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(b) Plot of cdf-m map of normal features
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(c) Plot of cdf-m map of benign features

Figure 4.12: Plots of features across part of the BGSM mammogram data set.

50



4.4 Experimental Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

False Alarm Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

False Alarm Rate

Figure 4.13: Performance Results as a ROC Curve for the BGSM data set.

Caption Meaning
Filename Root image filename

Mass First or second mass in image
VWOT Visible without truth
EdgeQ Quadrants of edge coincident with truth

HP Hough peak
CDFPD CDF peak disk feature

DFMsmth Dense feature map smoothed
DFMthr Dense feature map thresh
DFMres Dense feature map result

Table Entry 0 � feature visibility or detection � 4

Table 4.1: Key to column captions and numerical table entries.
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Filename Mass VWOT EdgeQ HP CDFPD DFMsmth DFMthr DFMres
008.r.mlo 1 0 0 0 0 0 0 0
009.r.cc 1 0 1 0 0 0 0 0
011.l.mlo 1 0 0 0 0 0 0 0
018.r.mlo 1 0 0 0 0 0 0 0
026.l.mlo 1 0 1 0 0 0 0 0
063.l.mlo 1 0 0 0 0 0 0 0
069.l.mlo 1 0 0 0 0 0 0 0
071.r.mlo 1 0 0 0 0 0 0 0
083.l.mlo 1 0 1 0 0 0 0 0
006.r.cc 2 1 0 0 0 0 0 0
019.l.mlo 1 1 0 0 0 0 0 0
023.l.cc 2 1 1 0 0 0 0 0
072.l.mlo 1 1 0 0 0 0 0 0
023.l.mlo 2 4 0 0 0 0 0 0
065.l.cc 1 4 0 0 0 0 0 0
087.l.mlo 1 4 0 0 0 0 0 0
089.r.mlo 1 4 0 0 0 0 0 0
083.l.cc 1 0 1 1 0 0 0 0
084.l.cc 1 0 2 2 0 0 0 0
089.r.cc 1 0 0 2 0 0 0 0
001.r.cc 1 0 4 4 0 0 0 0
013.l.mlo 1 1 2 4 0 0 0 0
025.l.mlo 1 1 1 4 0 0 0 0
007.l.mlo 1 4 4 4 1 0 0 0
068.l.mlo 1 4 3 4 0 0 0 0
019.l.cc 1 1 2 0 1 0 0 0
079.l.cc 1 4 3 2 1 0 0 0
012.l.cc 1 0 1 2 2 0 0 0
006.r.mlo 2 4 4 2 2 0 2 0
016.r.mlo 1 4 4 2 2 1 1 0
090.l.cc 1 4 2 2 2 0 0 0
033.r.cc 1 1 2 4 2 0 0 0
066.l.mlo 1 1 3 4 2 0 0 0
012.l.mlo 1 4 3 4 2 0 0 0
064.r.mlo 1 4 4 4 2 0 0 0
018.r.cc 1 0 1 1 4 0 0 0
064.r.cc 1 1 1 1 4 0 0 0

Table 4.2: BGSM dataset performance analysis - part 1
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Filename Mass VWOT EdgeQ HP CDFPD DFMsmth DFMthr DFMres
071.r.mlo 2 4 2 1 4 0 0 0
018.l.mlo 1 0 1 4 4 0 0 0
031.l.cc 1 0 2 4 4 0 0 0
001.r.mlo 1 1 4 4 4 0 0 0
026.l.cc 2 1 4 4 4 0 3 0
033.r.mlo 1 1 4 4 4 0 0 0
067.l.mlo 1 1 4 4 4 0 0 0
023.l.mlo 1 4 4 4 4 0 0 0
068.l.cc 1 4 2 4 4 0 2 0
075.r.mlo 1 4 3 4 4 0 0 0
088.r.cc 1 4 4 4 4 0 0 0
002.r.mlo 1 0 0 1 1 1 1 0
010.r.cc 1 4 2 2 2 1 4 0
008.r.cc 1 0 4 4 2 1 3 0
008.r.mlo 1 0 0 0 0 0 0 0
009.r.cc 1 0 1 0 0 0 0 0
011.l.mlo 1 0 0 0 0 0 0 0
018.r.mlo 1 0 0 0 0 0 0 0
026.l.mlo 1 0 1 0 0 0 0 0
063.l.mlo 1 0 0 0 0 0 0 0
069.l.mlo 1 0 0 0 0 0 0 0
071.r.mlo 1 0 0 0 0 0 0 0
083.l.mlo 1 0 1 0 0 0 0 0
006.r.cc 2 1 0 0 0 0 0 0
019.l.mlo 1 1 0 0 0 0 0 0
023.l.cc 2 1 1 0 0 0 0 0
072.l.mlo 1 1 0 0 0 0 0 0
023.l.mlo 2 4 0 0 0 0 0 0
011.r.mlo 1 4 3 4 2 1 1 4
016.r.cc 1 4 4 4 2 1 4 4
077.l.cc 1 4 4 4 2 1 1 0
006.r.mlo 1 4 3 1 4 1 3 4
080.r.mlo 1 4 1 2 4 1 1 0
010.r.mlo 1 4 3 4 4 1 4 4
015.l.cc 1 4 4 4 4 1 4 4
082.r.mlo 1 0 1 0 1 2 2 0
017.l.mlo 1 1 3 1 1 2 2 0
018.l.cc 1 1 1 1 1 2 2 0
014.l.cc 1 4 2 1 2 2 3 0
002.r.cc 1 0 2 2 2 2 2 0

Table 4.3: BGSM dataset performance analysis - part 2
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Filename Mass VWOT EdgeQ HP CDFPD DFMsmth DFMthr DFMres
084.l.mlo 1 0 0 2 2 2 2 0
003.l.cc 1 4 1 2 2 2 2 0
086.l.cc 1 4 2 2 2 2 2 0
013.l.cc 1 0 1 4 2 2 4 4
029.l.xcc 1 1 2 4 2 2 2 0
015.l.mlo 1 4 4 4 2 2 4 4
066.l.cc 1 4 2 4 2 2 2 0
071.r.cc 2 4 2 1 4 2 2 0
030.l.cc 1 4 3 2 4 2 4 4
087.l.cc 1 0 4 4 4 2 4 4
066.r.mlo 1 1 3 4 4 2 4 4
003.l.mlo 1 4 4 4 4 2 2 0
004.r.cc 1 4 4 4 4 2 4 4
011.r.cc 1 4 4 4 4 2 4 4
014.l.mlo 1 4 4 4 4 2 4 4
022.r.mlo 1 4 3 4 4 2 4 4
024.r.mlo 1 4 3 4 4 2 2 0
027.l.mlo 1 4 4 4 4 2 3 4
028.l.cco 1 4 4 4 4 2 4 4
031.l.mlo 1 4 3 4 4 2 4 4
032.l.mlo 1 4 4 4 4 2 3 4
065.l.mlo 1 4 4 4 4 2 4 4
072.l.cc 1 4 4 4 4 2 4 4
075.r.cc 1 4 3 4 4 2 2 0
077.l.mlo 1 4 2 4 4 2 4 0
079.l.mlo 1 4 3 4 4 2 4 4
085.r.cc 1 4 4 4 4 2 2 0
085.r.mlo 1 4 4 4 4 2 4 4
086.l.mlo 1 4 3 4 4 2 2 0
029.l.mlo 1 1 3 2 4 3 4 4
004.r.mlo 1 0 2 4 4 3 3 0
070.r.cc 1 0 4 4 4 3 3 0
026.l.cc 1 1 4 4 4 3 3 4
006.r.cc 1 4 4 4 4 3 4 4
022.r.cc 1 4 4 4 4 3 3 4
023.r.cc 1 4 4 4 4 3 4 0
067.l.cc 1 4 4 4 4 3 4 4
070.r.mlo 1 4 4 4 4 3 3 4
073.r.cc 1 4 4 4 4 3 3 4
074.r.cc 1 4 3 4 4 3 3 4

Table 4.4: BGSM dataset performance analysis - part 3
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Filename Mass VWOT EdgeQ HP CDFPD DFMsmth DFMthr DFMres
074.r.mlo 1 4 4 4 4 3 4 4
076.r.cc 1 4 4 4 4 3 3 4
078.l.cc 1 4 4 4 4 3 4 4
081.r.mlo 1 4 4 4 4 3 3 4
090.l.mlo 1 4 4 4 4 3 4 4
030.l.mlo 1 4 2 1 1 4 4 4
011.l.cc 1 4 4 4 2 4 4 4
071.r.cc 1 4 4 4 2 4 4 0
082.r.cc 1 0 2 1 4 4 4 4
026.l.mlo 2 0 3 4 4 4 4 4
025.l.cc 1 1 4 4 4 4 4 4
062.l.mlo 1 1 4 4 4 4 4 4
005.l.cc 1 4 4 4 4 4 4 4
005.l.mlo 1 4 4 4 4 4 4 4
009.l.cc 1 4 4 4 4 4 4 4
009.l.mlo 1 4 4 4 4 4 4 4
009.r.mlo 1 4 4 4 4 4 4 4
020.l.cc 1 4 4 4 4 4 4 4
020.l.mlo 1 4 4 4 4 4 4 4
021.r.cc 1 4 3 4 4 4 4 4
021.r.mlo 1 4 2 4 4 4 4 4
023.l.cc 1 4 4 4 4 4 4 4
023.r.mlo 1 4 4 4 4 4 4 0
024.r.cc 1 4 4 4 4 4 4 4
027.l.cc 1 4 4 4 4 4 4 0
028.l.mlo 1 4 4 4 4 4 4 4
032.l.cc 1 4 4 4 4 4 4 4
062.l.cc 1 4 4 4 4 4 4 4
063.l.cc 1 4 4 4 4 4 4 4
066.r.cc 1 4 4 4 4 4 4 4
073.r.mlo 1 4 4 4 4 4 4 4
078.l.mlo 1 4 4 4 4 4 4 4
080.r.cc 1 4 3 4 4 4 4 0
081.r.cc 1 4 4 4 4 4 4 4

Table 4.5: BGSM dataset performance analysis - part 4
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4.5 Conclusions

We have succeeded in completing and testing an end-to-end framework for mass detection which is
both competitive with those published elsewhere on different data sets and serves to illuminate some
of the counter-intuitive areas of success and failure in this extremely complex detection problem.
The algorithm performance is illustrated in Figures 4.10 and 4.13, and some of the background
material and experiments involved in the algorithm design are described in Appendix C. While
this performance is encouraging, much remains to be done prior to introduction in clinical practice.
We bring up a number of possible avenues for extension of this work in the next section.

4.6 Discussion

The research and experiments on feature generation described in the last few sections produced an
end-to-end detection system with reasonable performance, given the simplistic assumptions made
about masses and breast tissue. While the work described herein is a good first step, achieving
clinically significant detection and false alarm rates will require more sophisticated methods. One
such approach is outlined below:

1. Conduct a study to characterize masses by their size, shape, difficulty of detection by humans,
and rate of incidence. In addition, characterize mammograms by breast tissue makeup,
difficulty in reading, and density. Analysis of the traced masses in the BGSM database
would be a good first step in this direction.

2. Form a mathematical model capable of encompassing the mass shapes and breast tissue types
encountered that takes the image formation process into account. Elliptic series [33, 34] are
one method capable of describing mass shapes.

3. Determine a computationally feasible detection method employing this mass and image
formation model. Simulated annealing techniques, whether stochastic [35, 36] or mean field
[37, 38], form one set of methods for approaching problems of this complexity.
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Chapter 5

Combination of Multiple Classifiers

5.1 Introduction

The previous two chapters have discussed the extraction of features from mammograms, features
suitable for the detection of microcalcifications or circumscribed masses. Equally important to
the detection process is the classification method used to analyze those features. In this chapter
we report on an approach for improving classification performance through combining multiple
classifiers, in an intuitive but original fashion.

5.2 Context and Related Work

Many pattern classification techniques exist, each with inherent strengths and weaknesses. No
single classifier is suitable for all applications. Similarly, it may be difficult to achieve acceptable
performance for complex data distributions using any single classifier. One alternative in the
search for greater performance is integrated or adaptive methods which are capable of capitalizing
on the strengths of several individual classifiers. Indeed, recent work in handwritten character
recognition has shown promising results when several classifiers are combined to reach a decision
[39, 40, 41, 42, 43, 44, 45, 46, 47]. This is often referred to as Combination of Multiple Classifiers
(CMC). There are two basic approaches a CMC algorithm may take: classifier fusion, and dynamic
classifier selection.

In classifier fusion algorithms, individual classifiers are applied in parallel, and their outputs
are combined in some manner to achieve a “group consensus". A common characteristic of the
fusion-type algorithms is that all classifiers contribute to the final decision. Common types of
classifier fusion algorithms are voting methods, such as the majority vote [44, 47], the Borda
count [40], unanimous consensus [40, 47], and thresholded voting [47]. The CMC algorithms
described in [43] and [45] are polling methods which utilize heuristic decision rules to combine
the assignments of two classifiers. The averaged Bayes classifier described in [47] is essentially
a voting method that combines classifier decisions at the measurement level. More sophisticated
classifier fusion algorithms arrange that better classifiers are weighted more heavily. Ho et al. [40]
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describes a method that uses logistic regression to assign weights to the ranks produced by each
classifier. Mandler [48] and Xu [47] use the Dempster-Shafer theory to derive weights for each
classifier’s vote. Methods of multistage classification [41] are basically classifier fusion algorithms
in which the outputs of several classifiers are used as the inputs to another classifier. Thus, a generic
classifier is used to determine the combination function.

Another class of CMC algorithms, known as Dynamic Classifier Selection (DCS), attempts
to predict which single classifier is most likely to be correct for a given sample. First, partitions
are defined that categorize input samples with respect to their responses to each classifier. For
example, partitions can be defined by the set of individual classifier decisions [42], according to
which classifiers agree with each other [40], or even by features of the input samples. Then, the
“best" classifier for each partition is determined using training or validation data. For classification,
an unknown sample is assigned to a partition, and the output of the best classifier for that partition
is used to make the final decision. Thus, the final decision of a DCS algorithm does not directly
involve all individual classifiers. Note that the partition assignment will likely utilize all classifiers.
Since one or more of the classifier decisions are known to be incorrect, DCS algorithms attempt to
ignore those classifiers that are not likely to be correct.

Some other CMC techniques may not be so easily categorized as either classifier fusion or
dynamic classifier selection. Ho et al. [40] use a hybrid algorithm which defines partitions, and
then uses logistic regression to determine a weighted voting scheme for each partition. This could
be considered dynamic model selection since the weights assigned to each classifier’s vote are
determined after an input pattern has been assigned to a partition. Drucker et al. [39] describe
a method of training an ensemble of neural networks, called “boosting". Here, the attention is
focused on how the individual classifiers are trained, rather than how the classifiers are combined.
Classifiers are trained in stages, and are therefore dependent on the classifiers in previous stages.
The classifier decisions are combined using a polling method.

Most of the approaches mentioned treat the training data as a monolithic whole when deter-
mining classifier accuracy. However, it seems intuitive that the accuracy might vary with position
in feature space. Given an arbitrary test sample and classifiers which may have different feature
spaces, it is reasonable to think that a given classifier would perform similarly for other samples
near the test sample in its feature space. So this chapter examines a method of dynamic classifier
selection that uses estimates of a classifier’s accuracy in local regions of feature space. Our pro-
posed CMC algorithm simply selects the classifier which is most accurate for a subset of training
samples nearest to the test sample. Note that the particular samples in the subset may vary among
classifiers.

5.3 Our Method Compared to Related Approaches

We have selected two previously published algorithms [42, 46] for direct comparison to our
proposed algorithm. We also implemented a modified version of one of these algorithms.
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5.3 Our Method Compared to Related Approaches

5.3.1 The Proposed Approach: DCS-LA

We term our approach to CMC as Dynamic Classifier Selection by Local Accuracy, or DCS-LA.
The basic idea is to estimate each classifier’s accuracy in local regions of feature space surrounding
an unknown test sample, and then use the decision of the most locally accurate classifier. In our
implementation “local regions" are defined in terms of the K-nearest neighbors in the training
data. We examine two methods for estimating local accuracy. One is simply the percentage of
training samples in the region that are correctly classified. We shall refer to this as the overall
local accuracy. Another possibility is to estimate local accuracy with respect to some output class.
Consider a classifier that assigns a test sample to class Ci. We can determine the percentage of the
local training samples assigned to class Ci by this classifier that have been correctly labeled. We
shall refer to this as the local class accuracy.

5.3.2 The Behavior-Knowledge Space Approach

The Behavior-Knowledge Space (BKS) algorithm has recently been proposed in connection with an
application for recognizing handwritten numerals. Behavior-Knowledge Space is an N-dimensional
space where each dimension corresponds to the decision of one classifier. Each classifier can assign
a sample to one of M possible classes. Each unit of a BKS represents a particular intersection of
individual classifier decisions. Thus, the BKS represents all possible combinations of the individual
classifier decisions. Each BKS unit accumulates the number of training samples from each class.
For an unknown test sample, the decisions of the individual classifiers index a unit of BKS, and the
unknown sample is assigned to the class with the most training samples in that BKS unit.

5.3.3 The Classifier Rank Approach

Sabourin et al. [46] present an algorithm which has some similarities to our DCS-LA approach.
One variation of their algorithm selects the classifier that correctly classifies the most consecutive
neighboring training samples (relative to the unknown test sample). The selected classifier is said
to have the highest “rank". Although they do not associate their algorithm with the concept of local
accuracy, their notion of classifier rank certainly has this flavor. We will refer to this algorithm as
the Classifier Rank method.

5.3.4 A Modified Classifier Rank Approach

In terms of our work, the Classifier Rank algorithm presented in [46] uses what we would describe
as an overall local accuracy estimate. An obvious alternative would be to use local class accuracy.
Given a test sample assigned to class Ci by a classifier, local accuracy for the classifier is estimated
as the number of consecutive nearest neighbors assigned classCi which have been correctly labeled.
We refer to this algorithm as Modified Classifier Rank.

59



Combination of Multiple Classifiers

5.4 Methods

5.4.1 Data Sets

Our experiments focused on the data generated by the microcalcification work in Chapter 3. To
review, recall that a data set of 40 digitized mammograms1 containing some abnormalities was
divided into two sets of images, Set A and Set B. From each set of images, pixels from the
abnormal and normal class were randomly sampled. Set A has 19,735 samples from the normal
class, and 3001 samples from the abnormal class. Set B is made up of 20,028 normal samples and
5159 abnormal samples. For each pixel, 63 features were computed. A more detailed description
of this feature data is in Section 3.3.4.

Initially, Set A is used as training data for the individual classifiers and the CMC algorithm, and
Set B is used to measure performance. Then the roles of Sets A and B are reversed. Thus, at no
time are samples from the same image used for training and testing in the same set of experiments.
Whenever we talk of training (or test) data, both Set A and Set B have been utilized independently
in that capacity. Thus, the results of feature selection, individual classifier performance, and CMC
results should be expected to be similar, but not identical, for Sets A and B.

5.4.2 ROC Analysis

Since the pattern recognition task here is to detect abnormalities in mammograms, labeling pixels
as either “normal" or “abnormal" tissue, we have a 2 class problem.2 Further, the accuracy of a
classifier in a 2-class problem can be characterized by a plot of the classifier’s true positive detection
rate versus its false positive rate, called a receiver operating characteristic (ROC) curve. The Area
Under the ROC Curve (AUC) is an accepted way of comparing overall classifier performance
[49, 50]. Hanley and McNeil [51] describe methods to determine if the observed difference
between two AUCs is statistically significant. These standard statistical methods compare AUCs
over the full range of TP rates. Our empirical ROC results only cover a portion of the full range, and
so AUCs must be expressed as conditional probabilities prior to applying the methods of Hanley
and McNeil.

First, the AUCs over the range of interest are estimated using the trapezoid rule for the discrete
operating points. The area under a portion of an ROC curve can be expressed as a conditional
probability via the following transformation:

AUC =
Ap

TP2 � TP1
(5:1)

where Ap is the area under the ROC curve computed between TP rates TP1 and TP2. The formula

1Images were provided by courtesy of the National Expert and Training Centre for Breast Cancer Screening and
the Department of Radiology at the University of Nijmegen, the Netherlands.

2Though note that the DCS-LA algorithm is also applicable to multi-class problems such as character recognition.
Additionally, multi-class problems can be defined in terms of 2 classes by making a binary (yes or no) decision for
every class.
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for the z statistic is

z =
AUC1 �AUC2q
SE1

2 + SE2
2

(5:2)

where AUC1 and AUC2 are the two estimated AUCs, and SE1 and SE2 are the estimated standard
errors of each AUC. We use a two-tailed test for statistical significance. The null hypothesis is that
the two observed AUCs are the same. The alternate hypothesis is that the two AUCs are different.
A critical range of z > 1:96 or z < �1:96 (a level of significance � = 0:05) indicates that the null
hypothesis can be rejected.

A conservative estimate of the standard error of an AUC value (from [51]) is:

SE(AUCi) =

s
�(1� �) + (nA � 1)(Q1 � �2) + (nN � 1)(Q2 � �2)

nAnN

(5:3)

where Q1 and Q2 are two distribution-specific quantities, � is the “true" area under the ROC curve,
and nA and nN are the number of abnormal and normal samples, respectively. The estimate AUCi

is used as an estimate of �. The quantities Q1 and Q2 are expressed as functions of �:

Q1 =
�

2� �
and Q2 =

2�2

1 + �
(5:4)

Each of the individual classifiers is usually able to generate operating points running from 0%
to 100% with fairly small increments between consecutive points. To generate a single operating
point for a CMC algorithm, the individual classifiers are all set to approximately the same level of
sensitivity, and the CMC is executed. This procedure is repeated with the individual classifiers set
to other sensitivity levels, resulting in a series of operating points for each CMC algorithm. The
ROC curves generated for each CMC algorithm will not cover the full range of TP rates. Therefore,
in a test for statistical significance, two ROC curves are compared only over the range of TP rates
that are common to both curves.

5.4.3 Individual Classifiers

Six individual classifiers were used in the various CMC algorithms, two parametric and four non-
parametric. They are: Linear Bayesian, Quadratic Bayesian, K-Nearest Neighbor (K-NN) with
the Euclidean distance metric [52], a fully connected back-propagation artificial neural network
(ANN) with sigmoid activation functions [53], the C4.5 decision tree implementation [54], and a
CART decision tree classifier [55].

For a CMC approach to be of practical use, it should improve on the best individual classifier,
given that the individual classifiers have been reasonably optimized with regards to parameter
settings and available feature data. In our work, an earnest effort was made to optimize each
individual classifier with respect to selecting “good" values for the parameters which govern its
performance. For the K-NN classifier, a value of K must be determined, and the Mahalanobis
[52] distance metric is used. For ANNs, the numbers of hidden layers and hidden nodes in a layer
must be selected. The parameters for the C4.5 decision tree algorithm are selected based on our
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previous experience with this classifier, and the CART parameters are those that were determined
to be optimal in the research discussed in Section 3. The Bayesian classifiers do not require any
sort of parameter selection or optimization.

If each individual classifier is not given the opportunity to select from all features, then the
comparison of CMC algorithms to individual classifiers is biased. So here we performed feature
selection for each classifier separately, letting each start from the full set of 63 features and weed
down to the subset of those features that maximizes performance for that classifier. After applying
these individual feature selection algorithms, each classifier ended up making use of between 5 and
15 features; the number and specific features actually used depends on the individual classifier.

5.4.4 DCS-LA Implementation and Application

The DCS-LA algorithm uses the training data, which may be different for each classifier, and the
class assignments made by each classifier. Given an unknown sample, it is first labeled by all the
individual classifiers. If all classifiers agree, there is no need to estimate local accuracy. When the
individual classifiers disagree, local accuracy is estimated for each classifier, and the decision of
the classifier with the highest local accuracy estimate is selected.

Occasionally, two (or more) classifiers with conflicting decisions will have the highest local
accuracy estimates. Tie-breaking is handled by choosing the class that is selected most often among
the tied classifiers. If a tie still exists, the classifier(s) with the next highest local accuracy will
break the tie in the same manner as before. Determining the appropriate size for a local region is
part of designing the DCS-LA approach. We ran experiments for various region sizes ranging from
K = 1 to K = 51 using the Mahalanobis distance metric

Also, we would like to investigate the effect of setting the individual classifiers to various sen-
sitivity levels prior to applying CMC. We tested all CMC algorithms with the individual classifiers
set to 6 different TP rates: 70%, 75%, 80%, 85%, 90%, and 95%. If a classifier could not be set
exactly to the desired TP rate desired, it was set as close as possible. As before, we ran experiments
for various region sizes ranging from K = 1 to K = 51 for each of the 6 levels of individual
classifier sensitivity.

5.5 Results

We show only those results obtained when the first half of the data set is used as training data.
Nearly identical results were obtained for the experiments which utilized the other half of the data
set in the training capacity.

Figure 5.1 shows partial ROC curves plotted for all 6 individual classifiers. The best individual
classifier is KNN if the overall AUC is considered. However, there is no single best classifier across
all TP rates. As a benchmark for useful CMC performance, we consider a composite ROC curve
consisting of the “best" parts of the individual ROC curves. The composite ROC is a lower bound
for practical CMC performance. We also plot ROC curves for an Oracle classifier, the theoretical
upper bound on CMC performance. The composite and Oracle ROC curves are shown in Figure
1B.
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A
)

B
)

Figure 5.1: A) Partial ROC curves for 6 individual classifiers, and their AUCs. B) Composite ROC
curve for the individual classifiers, and the ROC curve for an Oracle classifier.
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A comparison of the ROC curves generated by the DCS-LA algorithm using both methods of
local accuracy estimation shows that local class accuracy is superior to overall local accuracy. The
difference in AUCs, however, is not statistically significant (z = 1:44 for TP rates ranging from
78% to 94%). Further ROC analysis of the DCS-LA algorithm with various local region sizes
shows that regions defined by K = 10 generally seem to result in the best performance for this
data set.

Figure 5.2 compares the composite ROC curve with the results for DCS-LA using local class
accuracy. We also show the results of the Behavior Knowledge Space, Classifier Rank, and the
Modified Classifier Rank algorithms. To be fair, only the best single value of K (10) is used in the
plot for the DCS-LA results. Thus, the ROC curves for all four CMC algorithms are composed of
6 operating points each.

The DCS-LA algorithm is better than the best individual classifier at all times. The difference
between the AUCs, computed over the range of common TP points (from 82% to 93%), for
DCS-LA ROC curve and the Composite ROC curve is statistically significant (z = 3:51). The
Modified Classifier Rank method performs nearly as well as DCS-LA at lower sensitivities, but
less so at higher levels. It is significantly better than the best individual classifier (z = 2:71) over
the common TP range (82% to 88%). The Classifier Rank method provides improvement, though
not statistically significant, at some levels of sensitivity. As with our initial set of experiments, the
Behavior Knowledge Space method is not able to improve upon the performance of the optimized
individual classifiers. The DCS-LA method performed significantly better than the Behavior
Knowledge Space method (z = 4:91 for TP rates ranging from 84% to 92%), and the Classifier
Rank method (z = 3:81 for TP rates ranging from 82% to 91%).

Table 5.1 shows the results of the CMC algorithms when the individual classifiers are set (as
close as possible) to a TP rate of 80%. The DCS-LA algorithm uses local class accuracy with
K = 10. The number of times each individual classifier was selected by the DCS-LA algorithm is
also shown. In this example, the DCS-LA algorithm finds operating points with higher TP rates and
lower FP rates than points obtained by any individual classifier. All classifiers agree on the class
assignment for a majority of the test samples (89.5%), and therefore any of the CMC algorithms
are actually executed a relatively small percentage of the time. The number of times an individual
classifier is selected by the DCS-LA algorithm seems closely correlated to the overall accuracy of
the classifier. Results at other sensitivity levels show the same general trends. In general, since
the DCS-LA algorithm is attempting to lower the total number of misclassifications, it generates
operating points which make the appropriate TP/FP trade-off in order to drive the overall error rate
down. Consider when all the individual classifiers are set to lower sensitivities (approximately less
than 90%). Given the number of test samples per class, it is possible to misclassify fewer total
samples by trading off a higher TP rate for a corresponding higher FP rate. By contrast, when
we set all classifiers to TP rates of approximately 95%, the DCS-LA algorithm usually generated
an operating point with a TP rate lower than 95%. In this situation, trading off the lower TP rate
for the corresponding lower FP rate resulted in fewer total classification errors, and therefore an
improved overall accuracy.
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Figure 5.2: The composite and Oracle ROC curves for the 6 individual classifiers compared to
the results for the DCS-LA, Behavior Knowledge Space, Classifier Rank, and Modified Classifier
Rank methods.
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Method of Set at Overall # times classifier
Classification (TP rate, FP rate) Accuracy selected by DCS-LA
Neural Network (80.1, 0.85) 95.3% 1287
K-Nearest Neighbor (79.8, 0.87) 95.2% 425
CART decision tree (80.5, 1.11) 95.1% 444
C4.5 decision tree (78.4, 0.57) 95.1% 287
Quadratic Bayes (80.0, 1.84) 94.4% 125
Linear Bayes (80.2, 1.97) 94.4% 67

Oracle (94.7, 0.11) 98.8% -
DCS-LA: Local Class Acc. (87.7, 0.55) 97.0% -
Behavior Knowledge Space (89.7, 1.42) 96.8% -
Classifier Rank Method (82.6, 0.56) 96.0% -
Modified Classifier Rank (85.5, 0.46) 96.7% -

Table 5.1: CMC results with individual classifiers set to TP rates as close to 80% as possible. All
classifiers agree for 22,552 of the samples, or about 89.5% of the time.

5.6 Conclusions

We have shown that even if all the individual classifiers have been optimized, dynamic classifier
selection by local accuracy is still capable of improving overall performance significantly. By
contrast, simple voting techniques, and even a recently proposed CMC algorithm, were not able
to show any significant improvement when the individual classifiers were sufficiently optimized.
At times, some of the other CMC algorithms actually hurt performance. The proposed DCS-LA
algorithm was always capable of improving performance.

In this work, we have attempted to address some issues relevant to the construction of a
multiple classifier system which have not previously received attention. First, we have made efforts
to optimize the individual classifiers with respect to the available feature data. Certainly it would
be preferable to use a single classifier as opposed to a combination of several classifiers if the
performance of the two systems is equivalent. Second, we have suggested a systematic procedure
for determining if certain classifiers are redundant or detrimental, and could therefore be removed
from the mix of individual classifiers prior to CMC. The end result is improved performance, and
faster execution time. Finally, we observed the effect of varying the sensitivity of the individual
classifiers on the CMC algorithm.

The benefits of a CMC approach may be limited when there is a very small amount of training
data, or when the classification accuracy of an individual classifier is sufficiently high. Thus, we
believe the greatest potential for CMC algorithms is for large data sets with data distributions that
are too complex for most individual classifiers.
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Chapter 6

Discussion

6.1 An Outline of Accomplishments

The long-term goal of this LDRD effort was to advance the state of the art in computer-aided
mammographic screening. The approach taken was to use the pattern recognition methods that
worked so well with spiculated lesions (that is, the use of dense feature maps, binary decision
trees, and probability images) and apply them to appropriate features for microcalcifications and
circumscribed masses. The aim behind using a common pattern recognition approach was not only
to follow a successful lead, but also to investigate the benefits of having a common “malignancy”
representation, in the form of probability images. Accordingly, we also looked at methods for
combination of classifiers and of representations.

A terse summary of the results of this work is as follows:

� 8 technical journal and conference papers, and numerous conference presentations.

� A demonstration of the improvements gained by use of our microcalcification methods as
compared to the prior best known results on a given data set.

� Acquisition of a substantial mammogram database containing a variety of biopsy-proven
masses, as well as 3 year followup normals.

� Widely applicable algorithms for flattening contrast near breast tissue boundaries and sup-
pression of linear features in mammograms.

� Completion and testing of an end-to-end mass detection algorithm which performed reason-
ably well and offered broad insight into the problem area.

� The development of the local-feature-accuracy approach to combination of multiple classi-
fiers, and a statistically rigorous demonstration of the substantial improvements gained by its
use on mammographic data.
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6.2 Future Work

There are three main research lines or projects that would sensibly continue the current work,
outside of the various specific recommendations made in each earlier chapter:

Probability Image Integration: At present we have established image features for detecting spic-
ulated lesions, microcalcifications, and circumscribed masses. In each case, we use the same
pattern recognition method, which results in a probability image that suggests, at each pixel,
the likelihood that each pixel is located on a lesion. The next step is to work out how best to
combine these probability images so as to represent all of the cancer signs in a single image,
while further allowing positive signs to reinforce each other.

One approach would be to simply combine the probability images with an appropriate
probability calculus; this should be the first line investigated. Much more ambitious, but with
a higher payoff, would be to combine the separate features used for each sign, to grow only
one binary decision tree, and so only one probability image. This has the potential problem
of greatly increasing the dimensionality of the feature space, but the potential benefit of
allowing the previously separate features to interact to their mutual benefit.

Dual Image Investigations: Of the three dual-image problems, only asymmetry and sequential
change detection have received any attention, and none of it has been entirely successful.
All considered approaches have depended on registration of the image pairs. The difficulty
here is that the breast is compressed during a mammogram, which seems to so randomize its
appearance that registration becomes a possibly insoluble problem.

So an interesting approach would be to address the detailed image registration problem by
avoiding it entirely. The core idea is to count on the dense, pixel-level feature representation
(in which each pixel becomes associated with a vector of image measures) and the fact of
general spatial continuity to provide information on local area trends without the need for
precise, pixel to pixel matching.

A Clinical Study: The final step of any such work should be a clinical evaluation of its impact on
the sensitivity and specificity of a screening mammographer. The computer’s solo perfor-
mance can be easily measured and reported. However, both the realities of mammographic
practice and past experience indicate that the question of primary clinical interest is how well
the computer/human system works together. Accordingly, any ‘ integrated detection method
should be tested in a final retrospective clinical study. From prior experience, the scale
should be such to have screening mammographers examine on the order of 500 four-view
mammogram cases with and without computer prompting, to objectively determine the effect
of the CAMS technology.

In addition, there remains a larger issue in CAMS research: Computer methods have yet to
perform successfully in the clinical setting as a “second reader” or aid to the radiologist for the
general mammographic screening process. A useful line of inquiry would be to determine if
computer methods can be used to rule out cancers with a high degree of accuracy for a subset of the
image population, thereby eliminating human readers entirely for that subset. This hypothesis could
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be tested in parallel with the usual “second reader” approach by analyzing the images producing
correct detections for image properties which would unequivocally identify them as analyzable by
computer with high probability of success.
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Appendix A

General Notes on the Appendices

The following appendices are most likely of interest only to someone who is interested in resuming
one or more of the lines of research initiated in this project. They contain accumulated notes on
ideas that were not investigated thoroughly enough to be included in the main report, various partial
results, “to do” lists of issues to investigate, bugs to fix, code to write, and other general loose ends.

In particular, the comments in these appendices are not intended to be complete, polished, or
even self-contained. They assume that the interested reader will follow up with searches through
the relevant on-line work notes. As of when this SAND report was published, these notes are
available as follows:

Philip Kegelmeyer: CA/RAN network, machine ananda, directory ˜wpk/sandia/. The
work notes are in LATEX format, and are organized by year and by month within the year.
See the Perl script when in wpk/util/bin/ for an easy way to do date-ordered regular
expression searches on the work notes.

See also the wpk/cams/ directory, particularly its Docs/ subdirectory.

Bennett Groshong: CA/RAN network, machine gorp, directory ˜brg/text/jarchive/.
The work notes are in LATEX format, and are organized by year and by month within the year.
See also the bgsm/, khoros book, ldrd96/, mammo/, mi96/, sand97/,
tiwdm96/ sub-directories of brg/text/.

Mark Allmen: CA/RAN network, machinegorp, directory˜allmen/sandia/notes/daily.
(Though note that the bulk of these notes concern a project unrelated to this computer aided
mammography effort). See also allmen/sandia/applications/cams/.
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Appendix B

Microcalcification Issues

There is one significant outstanding issue in the MC analysis. In the wake of the successful use
of quasi-sequential feature (QSFS) analysis to select the best subset of the Laws features for MC
detection, that analysis was expanded to cover all 63 of the features investigated. The processing
and analysis is documented in Philip Kegelmeyer’s work notes for the last few months of 1994,
and is summarized by the entries on November 23, 1994.

Those investigations turned up an oddity that was never completely explained. The anomaly is
that portions of the QSFS analysis did not well match the empirical analysis, and that end-to-end
performance testing of some of the QSFS-suggested features resulted in lower scores than the
original feature set. This was surprising in that the QSFS analysis was expected to entirely raise
scores.

Discussion and proposed explanation are in the cited notes, but the primary possibility is the
way the QSFS runs were scored. As an estimate of end-to-end performance (which would have
been very time consuming to compute), the resubstitution error rate (RER) of each tree was used. It
now seems likely that this was too crude an estimate, in particular since it can be driven artificially
to zero simply by reducing the degree to which the tree was pruned. An additional possibility is
the way the RER value is currently normalized across the entire set of trees, in order to remove the
influence of the simple number of internal nodes.

There are, then, three initial projects that would follow up this concern:

� One should be a smaller scale QSFS experiment in which end-to-end performance is consid-
ered, to see at what point these results diverge from the RER-generated results.

� It might also be useful to look at all 2 case pairs. Though note that even with using the faster
RER criteria, to check the best five from Level 1 vs exhaustive matching from Level1 would
take about 21 days of parallel processing on HEAT.

� Lastly, consider the exact set of “optimal” features that was selected as part of the analysis
in Section 5.4.3. This is yet another opinion as to which of the MC features is most useful,
and may provide a useful perspective.
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Appendix C

Mass Feature Issues

C.1 Notes and Experiments

The following items are from Bennett Groshong’s notes on investigations and experiments per-
taining to mass feature algorithm development during the course of the project. They contain
background material that supports the current algorithm choices and material that would be rele-
vant to future investigations in this area.

Gauss filtering, edge detection accuracy: We experimented with a larger Gaussian (�x = �y =

2:0), which increased the accuracy of the gradient phase angle dramatically for smaller
radii circles, but failed to improve end-to-end detection performance noticeably. We also
experimented with a directional Canny [28] using 8 oriented filters (�x = 1:0; �y = 2:0) with
similar results. We attribute this lack of improved detection performance to the quantity of
background structure cluttering in the mammograms. This experiment was conducted prior
to adding linear feature suppression and Venkatesh edge classification and thresholding to
the algorithm.

Hough transform: Experiments with the Hough transform and htccmax (Hough parameter space
peak detection) aren’t hugely encouraging. It is too sensitive, detecting peaks that have
little apparent relevance in the image - eg. slightly curved vessels. Signal to noise ratio is
definitely a problem.

Hough back projection: Talked to WPK about idea of correlation of nearby points. He brought
up several ideas - one was “back-projection” of peaks. The idea is to take Hough peaks and
then project back into image domain to see whether the peaks are plausible. This is way of
relating peaks in the Hough domain to the image domain. It could be a used to find “good”
peaks in Hough domain, rather than just big ones.

I mentioned spatial density and clustering in Hough domain. My point was that nearby
feature points in model space are correlated, nearby points in image space are correlated,
how can we use this to improve performance of Hough? Philip’s idea was to back-project a
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Circle radius Hough peak radius
10 1
20 3
30 5

Table C.1: Circle and Hough accumulator peak radius correlation

circle, expanding into a ring - uncertainty due to cloud of points in Hough domain and then
do correlation to determine the quality of match.

Hough transform accumulator: Peaks aren’t focused, even for exact circles with no noise. Ex-
perimentally, the larger the circle, the more spread the accumulator (HTA) values. The
correspondence between circle radius and Hough accumulator peak radius is There is an
uncertainty in r of about += � 1 pixel due to sampling and edge detection, and an angular
uncertainty in projecting the edge point along r to the supposed circle center for the same
reasons. Since the edge location error doesn’t scale with radius, the peak spread change must
be due to the angular uncertainty. The uncertainty will be greater for mammograms, with
their added noise and interfering structure.

Hourglass Hough accumulator filter: Operate on the Hough accumulator with an hourglass or
double cone local maxima approach. This will capture some of the correlation in the Hough
accumulator. It should outperformcylindrical filter, but will be horrendously computationally
complex.

Cylindrical Hough accumulator filter: Idea for a cylinder maxima filter: determine the maxi-
mum over cylinder in r, then determine the peak over r at each point, then output a disk on
this to obtain the absolute maximum. This would be reasonably efficient, but not as good as
the cone filter above.

Inside-outside means: Post process the cylinder filter (htccmax) data, evaluating the mean for
points inside a disk of radiusR, and compare this response with the mean of an R <= r <=

2R disk outside. If the inside mean is > x , then mark as a candidate. This performs well
where the overall background image gradient is fairly low, with performance falling off as
the gradient increases.

Hough transform peak characterization: We performed an experiment to measure Hough peak
behavior radially out from center for circles of radii 2 <= r <= 30. The behavior appears
to reasonably follow either 1� exp(1�x

2
:8)=(1� e) or (1�x)3

:3. The tail of the observed
data is a little low as compared to the analytic functions.

Hough transform peak normalization: Three empirically determined filtering approaches to
normalization of the Hough accumulator with respect to radius were tried:
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No noise
Raw HTA Gaussian Exponential Integral

radius P OP R P OP R P OP R P OP R
06 32 5 6.4 1.37 0.88 1.56 1.0 0.19 5.26 1.0 0.32 3.13
10 40 4 10 2.39 0.3 7.97 1.0 0.1 10 1 0.4 2.5
16 32 7 4.57 3.60 1.15 3.13 1.0 0.23 4.35 1 1.13 0.88
20 16 5 3.20 4.04 0.9 4.49 1.0 0.25 4 1 0.79 1.27

White Gaussian Noise Added (� = 50)
Raw HTA Gaussian Exponential Integral

radius P OP R P OP R P OP R P OP R
06 6 7 0.86 1.01 1.07 0.93 0.22 0.24 0.94 0.5 0.5 1
10 6 6 1 1.51 0.85 1.76 0.25 0.14 1.83 0.9 0.57 1.58
16 6 6 1 1.43 1.19 1.2 0.24 0.18 1.36 0.77 0.71 1.08
20 7 4 1.75 1.79 0.88 2.03 0.38 0.15 2.50 0.95 0.61 1.56

Table C.2: Comparison of peaks for clean and noisy circle images.

Integral: We designed a simple integral or box filter to give exact peak heights for synthetic
circles.

Gaussian: We designed a simple Gaussian filter to give exact peak heights for synthetic
circles.

Exponential: We designed an exponential filter fit to the peak heights and shapes at each
radius, approximating a matched filter for the peak in the Hough accumulator generated
by a circle of a given radius.

Experiments with Gauss filter, exponential filter, and integrated sum for noiseless and noisy
circles with radii between 6 <= r <= 20 are shown in Table C.2. One might argue that
using the exponential alone makes as much sense as anything else with added noise. The
min-max peak ratio for the exponential filter is 1:7 and for the integrated sum is 1:9.

Edge accuracy experiments: We coded and recorded edge accuracy for a radius 30 circle. Edge
radial accuracy is described as the distance between the measured radius determined by the
edge location and the circle center point and the specified radius, used in constructing the
circle. ( sqrt((ex� cx)

2 +(ey� cy)
2)� r where e(x; y) is the edge point, c(x; y) is the circle

center, and r is the circle radius.) Edge angular accuracy is the difference between the angle
described by the edge pixel location and the circle center ( tan�1ey � cy; ex � cx ), and the
angle described by the gradient direction. ( tan�1(dy; dx) )

Figure C.1 is a plot of the radial accuracy, generated by

gnuplot> plot ’c.30.gglout.sort’ using 4:5 with lines
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Figure C.1: Plot of radial edge location error vs angle around circle for a radius of 30 pixels.

where ’c.30.gglout.sort’ is in ˜brg/khoros/k2/exp/circ and describes the behavior of the edge
accuracy for each edge point around the radius 30 circle. Columns 4� 5 describe the angle
from the edge point to the circle center and the radial error for that point. Edges were
computed by the gf3d Gaussian low pass filter with an x; y� = 1:0, then computing the
gradient, then the gradient local maxima.

Figure C.2 is a plot of the angular accuracy, generated by

gnuplot> plot ’c.30.gglout.sort’ using 4:6 with lines

where ’c.30.gglout.sort’ is as above. Columns 4� 6 describe the angle from the edge point
to the circle center and the angular error for that point. Figure C.3 is a plot comparing the
angular accuracy of the “Canny” and “glmax” edge detectors, generated by:

gnuplot> plot ’c.30.gglout.sort’ using 4:6 with lines,
’c.30.cangglout.sort’ using 4:6 with lines

where ’c.30.gglout.sort’ is as above, and ’...can...’ is the canny output.

Thought: How does angle and location accuracy vary with Gaussian blurring? This should
produce a major improvement in angular error.

Figure C.4 is a plot comparing the angular accuracy of the “glmax” edge detector using an
input image filtered with a Gaussian of 1 and 2, generated using
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Figure C.2: Plot of radial edge angle error vs angle around circle for a radius of 30 pixels.
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Figure C.3: Plot comparing radial edge angle error for the “Canny” and “glmax” edge detectors.
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Figure C.4: Plot comparing radial edge angle error for the “glmax” edge detector operating from a
Gaussian blur of 1 and 2 for a circle radius of 30

gnuplot> plot ’c.30.gglout.sort’ using 4:6 with lines,
’c.30.ggl2out.sort’ using 4:6 with lines

where ’c.30.gglout.sort’ is as above resulting from a Gaussian filter � = 1, and ...ggl2out...
results from a Gaussian blur with � = 2.

Now let’s compare these errors with those for circles of radius 10 and 60 for a Gaussian
lowpass filter of 1:0.

Figure C.5 is a plot comparing the angular accuracy of the “glmax” edge detector using an
input image filtered with a Gaussian of 1 for a circle radius of 10, 30, and 60. It was generated
using

gnuplot> plot ’c.30.gglout.sort’ using 4:6 with lines,
’c.10.gglout.sort’ using 4:6 with lines,
’c.60.gglout.sort’ using 4:6 with lines

Improvement for Gaussian filtering with � = 2:0 is about 4 : 1 for radii of 10, 30, and 60.

The statistics in Table C.3 indicate the differences in pixel error in the Hough transform
accumulator projection using a Gaussian lowpass � = 1, compared to that of � = 2.

This resulted in a major compaction of the Hough accumulator peak. now we can re-evaluate
Hough peak shapes using images filtered with sigma = 2.
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Figure C.5: Plot comparing radial edge angle error for the “glmax” edge detector operating from a
Gaussian blur of 1 for circle radii of 10, 30, and 60.

statistic radius = 10 radius = 30 radius = 60
Gaussian � 1 2 1 2 1 2

n 72 72 228 224 474 448
min 0 0 0 0 0 0
max 1.25626 0.814008 5.45835 1.44132 12.668 4.09466
mean 0.59825 0.452372 2.41006 0.741779 4.6941 1.9474
var 0.153853 0.072003 2.31143 0.14218 9.51329 1.54465
sd 0.392241 0.268334 1.52034 0.377068 3.08436 1.24284

Table C.3: Edge accuracy statistics for images filtered with a Gaussian � = 1; 2
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Figure C.6: Maximum pixel error wrt circle center for radii 2-60 and Gauss filter sigma = 1 and 2

Edge accuracy experiments: One of the next moves is to implement a Canny with extended
directional shapes. We will need to add orthogonal pairs with same footprint for angle
detection. Must add SNR detection when we go to multiple detectors. Maximum response
is no longer sufficient.

Figure C.6 is a plot of the maximum error in projected pixel location wrt the circle center for
images filtered with a Gaussian � = 1; 2.

Figure C.7 is a plot of the angular error for radii of 10, 30, and 60 over 1=8 of the circle with
respect to the circle center for images filtered with a Gaussian � = 1.

Figure C.8 is a plot of the angular error for radii of 10, 30, and 60 over 1=8 of the circle with
respect to the circle center for images filtered with a Gaussian � = 2.

CAMS Idea: Why not operate directly on the gradient image rather than edge detecting? The
idea is to create a polar map or histogram of the gradient pointing at point. Better yet,
map a linear function that mimics a mass at each radius —flat out to edge, then Gaussian
derivative. We could build this from a filtered image for the center region, plus the derivative
at mass edge. It is not clear there is an advantage. I think it is clear that there is information
about the mass center we are not using. We want to keep the Hough transform nonlinear
summation of contributors versus a linear filter, which will be adversely affected by other
structure overlapping the mass.

We want our function then to integrate data from hypothetical mass center, perform differen-
tiation at the mass boundary, ignore anything past the boundary, and be relatively insensitive
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Figure C.7: angle error wrt circle center for radii 10,30,60 and Gauss filter sigma = 1

-4

-3

-2

-1

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

'c.10.ggl2out.sort'
'c.30.ggl2out.sort'
'c.60.ggl2out.sort'

Figure C.8: angle error wrt circle center for radii 10,30,60 and Gauss filter sigma = 2
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to structure overlapping the mass. In addition, of course, we want the best noise rejection
possible. Furthermore, we want it to be parameterizable as with the Hough.

This is beginning to sound like the elliptic series stuff [34] I did. we’ve got a cross section.
now, instead of a linear derivative calculation, can we come up with an approach similar to
the Hough transform.

Once again, it would be wonderful to be able to use some sort of SNR measure on the data.
this is basically determining confidence limits or measures on model parameters, where the
model is, for instance, the edge detector.

Next, we might measure the response of said function over the radius (distance, parameter)
range in question and determine the maximum response at each angle. These votes for max-
imum response could then be tabulated in a histogram, indicating the most likely parameter
setting at that image point. So, for circles, evaluate the 1-d CL detection function at each
radius out from the center, determine the maximum, and increment the appropriate r value
for the point. repeat over 0 - 2 pi. Filter accumulator in r direction and pick maximum as
best representation at x,y. One could also simply output the filtered r value as an indication
of the likelihood of mass vs r at that point. Also note that points near in x,y should have
similar behavior in r.

What we want ideally is an absolute measure of mass likelihood at each point. The approach
outlined above can give the relative likelihood of a mass of radius r over r at each point
by computing the statistics over the entire image. A more absolute measure would require
statistics over the entire data set. It seems obvious that the measure should be normalized for
the image, then these normalized values normalized over the data set.

What if we take a simple first derivative edge detector and operate on it with the radial
histogramming indicated above? The same sort of response should occur, albeit with a lower
SNR. apply this transform to the image, then analyze the result along r at each point. the r
trace should be smooth, with low value out to the radius of the mass, then peak at this radius,
then become noisy due to other structure. all we are doing is converting an xy gradient
to a radial gradient about a point, and then detecting on this. BUT the one difference is
instead of linear summing of the gradient around the circle, only positive contributions are
considered. This avoids negation by other structure, as with the Hough. In addition, we can
limit contribution to some angle dotted with the vector out from the circle center.

Now, what about non circular objects? - go to an ellipse representation.

Venkatesh edge processing: I’ve set up the Venkatesh [29] code to allow me to clip edge lengths
as well, tshort <= edge lengths <= tlong.

Performance results, as measured by the gnuplots of statistics, are negative. The results
appear uniformly worse when the edges are clipped for length in addition to the normal venk.
length-strength linear cutoff. All venk. processing appears worse than clipping edge points
based on the edge magnitude cdf.
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I wonder if Venk. could be modified to use the CDF of the edge length and strength.
Obviously it could, the question is whether or not it would result in any improvement.

The premise behind Venk. is that long, weak edges have perceptual significance. For
circumscribed masses, the shape formed by the edge points is important.

When I compare the statistics by normalizing with the std dev, I get different results.

C.2 Unexplored Avenues

A number of areas involving mass features remain to be explored:

Wavelet multiscale representation and analysis: I use this term rather loosely. We’re currently
operating at a single resolution for our mass analysis. It seems obvious that a resolution
hierarchy, and analysis thereon, would be an important improvement.

Fourier signature of mass outline: An analysis of mass shape at a range of resolutions (corre-
sponding to image resolutions) would indicate what shapes and shape characteristics charac-
terize masses. I’m unaware of the existence this information at this point.

Radiograph is a transmission image: hence a region can have several labels - each pixel is the
sum of several tissue types. It would appear fruitful to explore masses as densities summed
on top of normal tissue.

Laws - Gabor filter correspondence: It is apparent that Laws filters correspond exactly to certain
Gabor filters. I am unaware of any writeup of this.

C.3 Feature Analysis Methods and Experiments

Feature Separation Plots: Our usual method for taking a quick but crude look at the quality
of a given feature was to work up a “feature separation plot”, such as those illustrated in
Figure 4.9. Those plots illustrate the mean of the foreground and background values for a
particular feature, with error bars to indicate a single standard deviation.

A potentially richer, but unexplored, way of looking at the same information would be to use
the “boxplot” facilities of the S-Plus data analysis package, which also indicates quartiles,
the complete range of the data, and outliers.

Tree-Growing Parameter Analysis: The usual idiom for determining the right tree growing pa-
rameters (size of terminal nodes, number of cross-validation trees, degree and proportion of
weeding of the training data) was to grow a number of trees in which these parameters were
varied, determine which parameters gave the best performance, and use those parameters for
all future trees.

This method may not have been very robust, as the shape of the performance curve as a
function of these parameters was never examined, and so it is possible that the peak was
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narrow, or even accidental. In future work, it would be best to examine the parameter sets
and their resultant performance as a whole, perhaps via N-dimensional scatter plots, in order
to pick a parameter set as robustly optimal as possible.

Peak vs. Sum Features: As discussed in Section 4.3.11, we compute both “peak” and “sum”
versions of the overlay of the features. Early in our experiments, these approaches seemed to
have complimentary strengths and weaknesses, and so including them both was worthwhile.
Once the quality of the features was improved, however, this issue was not revisited, even
though it is possible that one may now be shadowed by the other.

Accordingly, it would be useful to run a comparison experiment in which only the peak
and Laws features are used in one run, and only the sum and Laws features in the other,
to determine whether they are both making roughly equal contributions. In parallel, the
vfeatrank tools should be used to examine the current trees, with the same end in mind.

Hough vs. Laws Features: Similarly, it would be interesting to run a comparison experiment
where only the peak and sum features are used in one run, and only the Laws features used
in the other. Comparing “peak and sum” to the current “peak, sum, and Laws” results should
indicate to what degree the current performance depends on being able to recognize and
reject normal tissue.

Bare Minimum Performance Characterization: Lastly, it would be interesting to compare the
current performance of the current system with the performance that would be observed if
one or more of the best Hough features were thresholded at their single best threshold (both
as judged by the separation plots). The latter performance is the bare minimum one would
expect to achieve; whatever increased performance can be observed in the full system would
thus be due to the more sophisticated classification provided by the BDT approach, separate
from the issue of dense feature map representation.
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Appendix D

Miscellaneous Issues

D.1 Classification Coding

The two main software tools used in the binary decision tree growing and use in this research
are varbor (for growing trees) and vbotany (for applying them, to generate output probability or
classification images). These are programs that were written at the University of New Mexico
under contract from Sandia, and subsequently thoroughly modified. The source code is located
at ˜wpk/work/tmp/src/. There are a number of code modifications and fixes that should be
considered if this code is to be further used, particular in follow-on efforts to this project:

� There are a variety of versions of the BDT code, spawned by wanting to develop various
features in parallel with each other. Now that the features are stable, the BDT versions should
be consolidated; see Kegelmeyer’s work notes of 9/20/95 and on. This would be usefully
tackled before the following list of enhancements.

� Implement dynamic allocation of the array, in version 1.3.1, that allows only a subset of the
input feature bands to be investigated. (The “weak link array”.)

� It would be good to run tree growing timing tests, with and without masks, and with and
without use of the “-fl” flag, to confirm that optimized compilation is happening properly.

� varbor should be upgraded to not require “-fl”.

� DataInput() in varbor should be upgraded to complain if “-s” is provided as a flag but
the mask file does not exist. Once implemented, confirm that it is doing the right thing, as
this has been tricky in the past.

� varbor should be upgraded to have a “node specific probabilities” mode as well.

� varbor and vbotany should have a “-p 1/0” argument to select or deselect per-node proba-
bilities.

� Debug the vbotany problem documents in Kegelmeyer’s 9/4/92 notes.

� Work up better man pages for both, in particular documenting the use and implications of
per-node RER computation.
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D.2 Analysis Tools

There are a handful of small projects that would be useful but which were never sufficiently high
priority during the life of the program:

� To ease examination of large trees, write a single script or alias using rer2ps to extract only
the terminal node probabilities.

� Currently, lesions and clusters are reported by drawing a tight boundary around the perimeter
of the finding. This is entirely appropriate objective performance evaluation of the computer
detection schemes, but it may not be so appropriate for creating output images to be viewed
by a human. Work by Krupinski and others[56] suggests that a tight boundary may actually
interfere with the human perceptual process, and that an indicator circle, sized slightly larger
than the longest object radii, might be a better match to human vision.

This could be implemented as a conversion tool, “blob to circ” or something like that, which
finds blobs, fits a circle to them (by noting center of mass and greatest radial extent), and
then expands the circle by the desired number of pixels. A place to start would be to look at
labeling software in the Mmach toolbox in Khoros 2.0. .

� A useful tool would be one that takes in a feature image and a BDT, and then paints the pixels
of the output image with the node label of the node into which that pixel’s feature vector fell.
This would permit one to note image spatial coherence (or its lack) in the partitioning of the
feature space. See Kegelmeyer’s 6/21/95 notes for some further design considerations.

� The tool vnico scr, which scores detected MC clusters according to Nico Karssemeijer’s
detection criteria, needs interior and man page documentation. It also needs to be considerably
sped up; its current slowness is the main reason it could not be used as the performance criteria
in the QSFS analysis discussed in Chapter B.

� The S-Plus data analysis package also has some facilities for growing BDTs. Though it
lacks good tools for automatically pruning trees, and was designed for considerably smaller
data sets, it would nonetheless be instructive to grow trees on some of the same feature data
already analyzed. This would serve as an additional verification and validation step for our
home-grown BDT codes.

� As part of the earlier, spiculated lesion efforts, Roger Tilley did a fair amount of work to try
to wean the various CAMS Khoros codes off of their reliance on RIPPLE, a now-moribund
image analysis package. These converted codes should be validated against the RIPPLE-
based codes and, once it is confirmed that they generate the same results, moved in to replace
them.
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