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ABSTRACT

We present a method for incorporating solvent effects, including ionic strength, into ab initio

electronic structure determinations and apply the method to the calculation of the free energy of

solvation of the carbonate ion, C03-2. The Green’s function-based method couples the

Schrodinger and linearized Poisson-Boltzmann equations through ~ the single and double layer

surface charge distributions induced at a molecular-solvent interface. Single and double layers of

charge are obtained from solution of the Poisson-B oltzmann equation (and added iteratively to the

., Hamiltonian) using electronic structure results (MP2/6-3 lG**) directly, eliminating the uncertainty

in employing fractional charges.
*

3/4



Single-and Double-Layer Coupling of Schrodinger and Poisson-Boltzmann

I. Introductionw

A great deal of recent interest in solvation and, in particular, ionic strength effects,

Equations

has been

,,

,*

spearheaded by the biological community, challenged by the study of proteins and nucleic

acids in aqueous environments. An extensive review of molecular interactions in solution

has been provided by Tomasi and Persico (l). Hawkins, Cramer and Truhlar (2) have

coupled semi-empirical quantum calculations with solutions of the Poisson equation to

include solvation effects in the determination of the free energy of large molecules. Miertus,

Scrocco and Tomasi (3) and also Zauhar and Morgan (4) made use of the boundary

element method to solve the Poisson equation, a method which reduces the three

dimensional problem to two-dimensional integrals over surfaces bounding regions

characterized by different dielectric constants. Atoms within a molecule are assigned
.

fractional source charges and Gauss’s Law is applied on a discretized molecular boundary.

Juffer, et al (5) developed a Green’s function approach to the solution of the linearized9,

Poisson-Boltzmann equation enabling ionic strength effects to be included. Zhou (6)

extended and applied such a method to multiple boundaries. Grant, Williams and Scheraga

(7) coupled a Poisson description of the solvent region (zero ionic strength) through a

boundary element calculation to a quantum mechanical description of a molecule. They

obtained potentials and electric fields at surface elements directly from the wave functions,

eliminating possible inaccuracies introduced by representing the molecular charge

distribution by fractional charges.

The linearized Poisson-Boltzmann equation formally applies only in regions where the

potential, @I<kT, and breaks down elsewhere, e. g., in the neighborhood of a strongly

polarizing charge (5). Finite difference methods avoid the linear approximation by solving

the full three-dimension Poisson-Boltzmann equation; several authors have coupled such a
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three-dimensional calculation to ab initio charge distributions (8-11). The accuracy of the

method, which originated with the work of WarWicker and Watson (12), depends upon a

rectangular grid over all space, making convergence as a function of volume element size

difficult to demonstrate. The discontinuity in dielectric constants is at the molecular

interface, more naturally treated with surface elements than with a cubic lattice.

Furthermore, as Zhou has pointed out (6), resolution problems make it difficult to apply

this method to two separated molecules. Tannor, et al (8) have recently applied such a

three-dimensional method, coupled to an ab initio calculation, to the determination of the

solvation free energy of a number of organic molecules in water. The coupling is achieved

by first determining partial charges from the electronic structure calculation using

electrostatic fitting procedures. These point charges are then incorporated as source terms in

the 3D Poisson-Boltzmann solver. Chen, et al (9) have used a similar method involving

point charges fitted to density functional calculations.

We present a Green’s function-based boundary element method which couples an ab initio

electronic structure calculation to a Poisson-Boltzmann solution including ionic strength

effects. The coupling is accomplished through M the single and double layers of charge

at the boundary and allows for relaxation of the quantum electronic charge distribution in

response to these surrounding layers. The method eliminates the need for assigning

fractional charges at atomic positions within the boundary. The method is applied to the

solvation energy of the doubly-charged carbonate ion and also to neutral carbon dioxide for

comparison. In Section II, we present the Poisson-B oltzmann method generalized to

include an arbitrary number of boundaries as well as the single-and-double-layer method of

coupling (SDLC) the Poisson-B oltzmann with electronic structure calculations. Section III

contains the results, including a validation for a spherical model for which an analytic

solution is available.



II. Method of Calculation

A. Poisson-Boltzmann

We wish to find the electrostatic potential anywhere in space and the associated surface

charge distribution associated with multiple boundaries separated by an intervening

(solvent) medium characterized by a dielectric constant, S,, and a Debye length, K-l.Inside

the boundaries, Poisson’s Equation is satisfied while in the medium the linearized Poisson-

Boltzmann Equation applies. The potential, @i(x), at a general point inside boundary i can

be represented as

and in the solvent region by,

@Jx)=#j[.P$$+$gqdsk
k–1& k k

(1)

(2)

In the above, G is the Green’s function for the Poisson Equation, P = Gexp(–m), Nb is

the number of boundaries; &iis the dielectric constant of region i; $) is the surface potential

(@= @~ for k=i); pi is the real charge distribution within i (often approximated with

fractional point charges in the absence of a more accurate charge distribution). The

directions of the normals, ni, are outward from the boundaries which are discretized into

nodes (or “dots”) on a molecular surface (13). The nodes form the vertices of triangular

elements. Taking appropriate limits (5, 14) as a boundary is approached from inside and

out, one can express the potential at an element p on its inside, y:, as,

and on its solvent side as,

(3)

(4)
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where Mj is the number of elements comprising boundary i; AS: the elemental surface area

associated with the qth element of the ith boundary. G~q, ~~q, ~~q and Bjq are defined

below.

Taking the directional derivative with respect to the outward normal gives

~v: d(pq ,_=_nf@Ef : 1 ~A:q ~Asi – ~~ C:q(iyzi.y”an, 4Z q=~ i%, q–l
(5)

(6)

In the above, n! ● E? is the normal component of the electric field at the pth element of the

ith boundary due to real charges within the boundary (preferably obtained from the actual

electronic structure rather than from a point charge approximation to that distribution), and,

Gf’=~.
R$q ‘ ‘Jq=G~qex4-+fql);

( 1) k (-+iql);Biq = 1+ K R~q ~pqexp

and finally,

( 1)‘k (-+%ql)+‘2(nf’;?poRiq)exP(-K(7)Diq = 1+ K Rfiq C~qexp
I

Gauss’s Law requires the discontinuity in the normal component of the displacement vector

across a boundaty to be equal to the real charge on the boundary:

(8)
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Using this boundary condition and following Juffer, et al (5), a system of coupled linear

equations is found for the surface potential and surface charge density on each element of a

boundzuy. Solution of this system by the usual methods of linear algebra allows us to then

use Eqs. (1) and (2) to obtain the potential everywhere.

B. Coupling to ab initio Charge Distribution

The Poisson-Boltzmann method described above can be applied to any molecule for which ‘

point charges have been assigned to the atoms. Any number of fixed point charges maybe

included; hence multipole distributions maybe approximated by including multiple

charges. Of course, it must be recognized that the actual electronic charge distribution of the

molecule is being approximated by these point charges. The Scheraga group has eliminated

this approximation by including the single layer surface charges determined by a Poisson

solver directly in the Hamiltonian (7). The ab initio calculation then determines a new set of

electric fields (normal components) at the boundary elements which provide the source

charges for the Poisson solver. The calculation is iterated to convergence. Importantly, in

this method, the quantum mechanically derived charge density relaxes in response to the

electric field due the surrounding surface charges. In the solvent region, the Poisson

equation is satisfied, i. e., K=0 and ionic strength effects are neglected.

In the method presented here, the coupling of the electronic structure calculation in the

presence of the solvent, i. e., with the Poisson-Boltzmann region, is implemented through

the boundary elements which represent both single m double layers of charge. The

potentials and electric fields due to point charges representing the molecular charge

distribution are replaced by potentials and electric fields at surface elements derived from

accurate electronic structure calculations. Consideration of Eq. (1) above for the potential

within a molecular region serves to clari~ the method.

*
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The first (second) term in the surface integral of Eq. (1) represents the contribution from

the single (double) layer of charge. An application of Green’s theorem for a source within a

boundary, integrating over the region external to the boundary, yields,

(9)

Continuity of the normal component of the displacement vector (in the absence of real

d~? = ~, J@,
charge at that boundary) requires that — —— For an infinite Debye length (K=O),

(32, E.(%,“

P=G and the familiar expression (1) for the potential within a single boundary is obtained

(with an appropriate factor multiplying the surface charge density for the Green’s function

method),

(lo)

Gauss’s Law provides a means of checking the accuracy of the numerically determined

surface charge density and can be used to normalize the surface charges for comparison

purposes. Tails of the electronic charge density may extend beyond the boundary, an effect

which has been investigated in depth by Miertus, et al (3). Scaling or normalizing to the

known charge enclosed provides a means of estimating the influence of this effect.

For finite Debye lengths, the double layer term in Eq. (1), the directional derivative of the

Green’s function (times the potential at the surface), can be recognized numerically as a

double layer of (equal and opposite) charge of magnitude #’ / 4zd, where d is the

separation between the layers. We find for a small separation, d, of -0.01 Bohr that such a

numerical description of the double layer contribution to the potential inside the boundary

agrees quite well with the potential calculated using Eq. 3. This double layer of surface

charge (as well as the single layer) is then added to the Hamiltonian in the subsequent
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electronic structure calculation (GAMESS, 15). The potential and electric field determined

by the ab initio calculation in the presence of both single and double layers of charge are

then both employed as source terms in the next iteration of the Poisson-B oltzmann solver,

and the procedure is iterated to convergence. The electron distribution relaxes in response to

the single and double layers of charge, a significantly different approach from classical

methods in which the charge distribution is fixed.

We find the iterative method to converge in only a few (-2-4) “complete” iterations; the

determination of SCF wave functions for a given set of background charges involves,

perhaps, tens of “micro” HF iterations. These HF wave functions are then employed to

obtain an MP2 energy and also as the source charge distribution for the next Poisson-

Boltzmann solution. MP2 wave functions are not determined, consistent with the

conclusions of Angyan (16) who has shown that the second-order energy can be evaluated

directly from the HF orbitals.

In this way, ionic strength effects are included and the need for a point charge description

of the molecular charge distribution is obviated. A numerical check is provided in the limit

of the dielectric constant of the solvent region being identical to the molecular region

(which is most often unity), and the ionic strength zero ( K=O). There should be no effect of

the boundary; the vacuum-state quantum result should be, and is, obtained.

III Results

A. Model Calculations

A sphere of radius 3.0 ~ was discretized using 645 nodes ( 17). Within the sphere, which

forms a boundary separating two media, the dielectric constant was chosen to be s,= 1.0;

outside the sphere, the dielectric constant of the medium (extending to infinity) was chosen

to be eithers, =20.0 ors, =8 1.0 (-water). In Fig. 1, we present the results of our
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calculations of the charging free energy for a point charge of magnitude 2e enclosed within

this sphere as a function of its relative distance from the origin. The calculations were

performed numerically as described in Section II above and compared to the results

obtained using the analytic expressions of Gilson, et al (18). The ionic strength of the outer

medium was chosen to correspond to inverse debye lengths, K, of 0.0, 0.1 and 1.0 Bohrs-

1. For these comparison calculations, the total surface charge density was normalized to the

total charge enclosed using Gauss’s law as described above.

The Born energy (EA in Fig. 1) for zero salt (K =0) was found to be -8 kcal/mole lower

for &,=8 1 than for the comparison S, =20 solution. The curves in Fig. 1 were obtained by

subtracting these K =0 energies from each. We see from Fig. 1, forS,=81 (water) the

numerical and analytical methods are found to agree within a small fraction of a kcal/mole

for relative off-center distances of the point charge<- 0.7 from the sphere center.

For &~=20, the largest variation is found for the K=O (zero ionic strength) results, a variation

of-2 kcal/mole at r/a=O.6 and -3 kcal/mole at r/a=O.7. Consistent with the findings of

Juffer, et al (5), we do not have confidence in continuum calculations as the charge

approaches -1 ~ from the sphere boundary (r/a >-0.65).

B. The Carbonate Ion

The discretized C03-2 molecule employing 590 nodes is shown in Fig. 2. In Fig. 3, we

have plotted the calculated electrostatic component of the free energy of solution of a C03-

2 ion emersed in a dielectric having S, = 10 orS,=81 at the MP2 level of theory. The

calculations are presented as a function of inverse debye length, K.Normalized curves in

Fig. 3 are obtained for comparison purposes by scaling the surface charge to the total

charge enclosed (-2e) by the boundary in accordance with Gauss’s Law, an -170 effect on

the charge (see above, Section II). It is first of all to be noted that the energy transferred in

placing an ion into a solution characterized by a dielectric constant of ~, =8 1 (relative to the
,..
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ion in a medium of dielectric constant El) is -15 kcal/mole greater than for a medium

a

characterized bye, =10. The ionic strength dependence is greater for the 8, = 10 medium

than fors, =81: at K =10 Bohrs- 1 we find the free energy of solution to be only -2

kcal/mole different between the two solvent media. The dielectric constant and K

dependence are consistent with the approximate analytic expression for a sphere (19),

[

~_ Q* (E,–E.)_ K

2E~ (1+ m) 1 (11)
roE1

where Q is real charge enclosed, r. the radius of the sphere and “a” the exclusion radius of

the dimensions of a salt ion. We find values of r. =6.18 Bohrs and a= 10.0 Bohrs in Eq. 11

well-represent the first-principles calculations (see Fig. 3). Such a validation for a near-

spherical ion is encouraging for future more complex molecules.

The compm’ison between the calculations and experiment is displayed in Fig. 4 where the

abscissa is ionic strength and the scale is expanded forS,=81 (water) only. The.

normalization of the surface charge is seen to have little (<0.5 kcal/mole) effect. The

d
experimental points in Fig. 4 are from a recent formulation of Pitzer’s regression (20) for

C03-2 in water relative to zero salt and translated to the zero ionic strength calculated value.

Cavitation and dispersion contributions to the solvation free energy are assumed to be

constant as a iimction of ionic strength alone and are hence not included in the comparison.

The results indicate that the single-and-double-layer method of coupling (SDLC) the

linearized Poisson-Boltzmann equation to an MP2-level quantum calculation gives

reasonable results over a wide range of ionic strengths.

The free energy of solvation of a neutral carbon dioxide molecule was also determined

using the single and double layer (SDLC) coupling method presented here. Using the same

parameters for the solvent surface as for C03-2, we employed 544 dots to describe the
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surface. We find effectively zero free energies (to four places of accuracy) as a function of

both dielectric constant and ionic strength, consistent with experiment (20).

In conclusion, we have developed a method to couple Schrodinger calculations of the

properties of molecules with Poisson-Boltzmann calculations of the influence of an

electrolyte on a molecule. The coupling is accomplished through m the single and double

layers of charge induced on the boundary and represents the main focus of this

communication. The results for the solvation energy of the carbonate ion as a function of

ionic strength are found to be in excellent agreement with experiment.
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Figure 2. Discretized C03-2 molecule employing 590 nodes.
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Figure 4. Electrostatic component of the solvation energy of a C03-2 molecule as a function of ionic strength in units of molalitv. The

curves are calculated at the MP2 level of theory and the experimental data points are from Peiper-%d Pitzer (20). -
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