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ABSTRACT

This study developed a modeling method to predict the final failure load of
laminated composite plates which may contain cutouts and are subjected to quasi-static
in-plane tensile loads. The modeling method uses an existing finite element code
together with a progressive damage model (progressive damage analyses) that was
developed from existing composite failure models. This study focused on overcoming
numerical problems often encountered in analyses that exhibit significant stable
damage growth in the composite materials. These numerical problems limit progressive
damage analyses to problems with simple loading and geometry. These numerical
problems must be overcome to make this modeling approach practical.

To keep the computational cost at a reasonable level, the modeling method uses a
quasi-static solution procedure to solve composite plate problems with quasi-static
load. The numerical problems in the quasi-static analyses are nonconvergence problems
caused by the discontinuous material behavior from brittle fiber failure. This study adds
artificial damping to the material model to suppress the discontinuous material
behavior. The artificial damping essentially changes the material behavior, and could
adversely change the final failure load prediction. Thus, a selective scheme for adding
the damping was developed to minimize adverse damping effects. In addition, this
modeling method uses multiple analyses at different levels of artificial damping to
determine damping effects on the failure load prediction.

Fracture strength experimental data for small coupons with small cutouts and large
panels with larger cutouts available in the literature were selected and used to verify
failure predictions of the developed modeling method. Results show that, without the
artificial damping treatment, progressive damage analyses reasonably predicted the
fracture strength of the small coupons, but severely underpredicted the fracture
strength of the large panels. With the artificial damping treatment, the analyses
predicted the failure load of both the small coupons and the large panels reasonably
well.
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Chapter 1
Introduction

1.1 Motivation and Objective

Effective modeling methods for predicting the fracture strength of laminated

composite plates containing cut-outs and subjected to in-plane tensile loads are
important composite modeling tools. These modeling tools can be used to estimate the

damage tolerance of composite structures including aircraft fuselages, rocket motor

cases, various types of tanks, containers and pipes. The damage tolerance of a structure

is used to establish damage and flaw limits allowed in the structure for a specific period

of unrepaired usage [1,2]. For composite structures, the damage tolerance is usually a
major design and cost driver, especially in high performance aerospace applications

where safety and reliability are critical [3-6].

1.2 Current Technology and Research Focus

Because of the significance of the problem, extensive work has been done on this

subject. Numerous analytical models have been proposed to predict the tensile fracture

strength of composite laminates with cut-outs [7]. These models can be divided into two

groups: semiempirical criteria and comprehensive numerical methods. The
semiempirical criteria are experimentally expensive. The comprehensive numerical

methods are computationally intensive.

The semiempirical criteria are simple equations that will predict the tensile
fracture strength of notched laminates for a given loading and geometry [8-14]. These

criteria are easy to use, but require the determination of one or more “characteristic
parameters” from laboratory experiments. These empirical parameters account for the

combined effects of the material, the lay-up, the loading, and the geometry of the

problem. Examples of more popular semiempirical fracture models include the linear
elastic fracture mechanics based criterion by Waddoups-Eisenmann-Kaminski [8], the

Point Stress and Average Stress criterion by Whitney and Nuismer [9,10], the strain
based criterion by Poe-Sova [11,12], and the Mar-lin criterion [13].

Most of the semiempirical fracture criteria work has concentrated on coupons
with relatively small notches, having sizes less than 2 inches [4,7,15]. These

semiempirical criteria can predict the fracture strength of small notches reasonably well.

However, the accuracy of the fracture predictions decreases significantly when these
methods are extrapolated to predict the fracture strength of larger notch sizes [3,4,5].

The Mar-Lin criteria improves the accuracy of the fracture strength in larger notch sizes

by using an additional parameter related to the order of the notch tip singularity. This



additional parameter may require expensive experiments involving larger notch sizes

[16,17]

One disadvantage of these semiempirical criteria is that they are only applicable

to problems with very simple loading and geometry since the effects of the loading and

the geometry are accounted for by the “characteristic parameters.” Most existing

semiempirical criteria work has concentrated on flat, rectangular plates containing a

circular notch or a horizontal slit and subjected to a uniaxial tension load [7,15]. These

semiempirical criteria may not be suitable for more complex structures such as stiffened
plates or more general in-plane loads, including the biaxial membrane load of a

pressure vessel.

Comprehensive numerical methods use finite element analyses together with a

composite damage material model (progressive failure analyses) to predict the fracture
strength of notched composite laminates [16-20]. These methods are computationally

intensive. The finite element analyses are much more difficult, more time consuming,
and more expensive to perform than the semiempirical fracture criteria. On the other

hand, most of these numerical methods do not require expensive laboratory

experiments to determine “characteristic parameters.” Most damage models used in
these numerical methods may require experiments to determine material properties and

model parameters. However, these experiments are typically performed at the ply level,
and thus are much easier and cheaper to do. These numerical methods are also more

suitable for more complex geometry and loading problems since the geometry and the
loading are accounted for by the mesh and the boundary condition of the finite element

analyses.

Similar to the semiempirical criteria work, most existing progressive failure
analysis work has also concentrated on small coupons containing relatively small notch

sizes and subjected to a uniaxial tension load. Existing progressive failure modeling

methods can reasonably predict the fracture strength for these problems [21,22].
However, when applied to larger notch size and/or more complex loading and

geometry, the finite element analyses will often prematurely terminate due to numerical
problems. These problems prevent the analyses from obtaining reasonable fracture

strength predictions.

Progressive failure analyses involve degrading material properties when failures

are detected. The composite materials considered in this research are brittle material

systems, such as graphite/epoxy, kevlar/epoxy and fiberglass/epoxy. Failure

responses in these materials exhibit highly nonlinear and discontinuous behaviors.

These material behaviors often cause severe numerical difficulties in the finite element

analyses.
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In coupons containing small notch sizes under uniaxial loading, there is usually

very little damage accumulation before the final failure occurs. The little damage

accumulation causes less numerical difficulties in the ensuing finite element analyses.

Thus, some of these analyses can achieve the final failure prediction. Furthermore, since

small damage accumulations mean relatively little failure progressions, even if
numerical problems terminated these analyses before the final failure, notch strength
predictions based on the maximum analysis load can often be made without great loss

of accuracy.

For plates with larger notch sizes, experiments have shown that the cumulative

damage can grow to a substantially larger area with increased applied load before final
failure occurs [5,16]. The extensive damage could significantly reduce material

properties in a larger area and potentially causes more numerical problems.

Furthermore, larger damaged areas mean more failure progression. This means the

highest analysis load cannot be confidently used to predict the plate’s fracture strength
in analyses that terminated prematurely due to numerical problems. For larger notch

sizes, numerical problems must be overcome to obtain reasonable notch strength
predictions. Since the geometry of more realistic modeling problems will generally be

more complex than those considered in existing progressive damage modeling work,

existing comprehensive modeling methods for predicting the fracture strength of
composite plates are not effective for practical applications.

1-3
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Chapter 2
Problem Statement

Consider laminated composite plates with or without a cutout and subjected to

an in-plane load as depicted in Figure 2-1. The geometry of the plates and the cutouts

can be arbitrary. The ply orientation of the laminate can be arbitrary, but must be

symmetric with respect to its mid-plane. For a given lay-up, material system, and

loading condition, it is desirable to determine the final failure load.

PI

*$,* .: ‘; + P2
$? “i.,.,.“.(

Figure 2-1. Schematic of the modeling problem.
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Chapter 3
Method of Approach

The objective of this research was to develop an effective analytical method for

predicting the fracture strength of composite plates containing cutouts and subjected to
in-plane tensile loads. This study adopted the approach that uses finite element
analyses together with a progressive damage model. In order to achieve the objective,

the modeling method must have three working components: the finite element

modeling, the composite failure modeling, and treatments for the numerical problems

in the finite element analyses.

Since existing comprehensive modeling methods can reasonably predict the
fracture strength of coupons with small notch sizes subjected to simple loading, it was
assumed that existing finite element modeling methods and existing composite

progressive damage models are adequate for the objective of this study. Thus, to
simplify this research and to make use of existing finite element technologies, the

commercial general purpose finite element code ABAQUS /Standard [23] was used to
perform the finite element analyses. In addition, a progressive damage model was

developed based on existing work to model composite materials. This approach
allowed the current study to focus on overcoming numerical problems that prevent the

analyses from making reasonable fracture strength predictions.

The modeling method developed in this study uses quasi-static finite element
analyses to predict the fracture strength of notched composite plates. The finite element
meshes account for the geometry of the plates. In the analyses, the load is applied

incrementally, and the material properties are degraded progressively as failures occur.

Final failure is predicted when the damaged plates can no longer sustain the applied

loads.

The developed composite damage model assumes that the material behaviors

can be characterized as functions of the material damaged state. Damage initiation and

growth are predicted based on the stress state of the material and various failure

criteria. The model assumes that damaged composites can be treated as a continuous

elastic body with degraded material properties. Chapter 4 describes the constitutive
modeling and the damage growth criteria used in the material model.

Composite failures include brittle failures. These brittle failures are the root

causes of the numerical problems. Chapter 5 discusses these numerical problems and
also describes material behaviors defined by the damage model that may lead to these

numerical problems.
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This study adds artificial damping to the material model to overcome numerical

problems. The artificial damping smoothes out the discontinuous failure behaviors of

the composites. The damping essentially changes the plate response in the analyses and

may have an effect on the fracture strength prediction. This artificial damping technique

only works when the damping effect on the fracture strength prediction is insignificant.

The developed modeling method uses parametric studies to determine effects of the

artificial damping on the fracture strength prediction. Chapter 6 describes the artificial

damping model, along with the modeling method and strategy required for this

artificial damping model.

Experimental fracture strength data was selected from the literature to verify the

developed modeling method. These fracture test data included coupons with small

notches and panels with larger notches. These fracture test data also included both

uniaxial tension load and biaxial tension load. Chapter 7 compares failure load
predictions between test data and model predictions. Chapter 8 gives a summary of this

study, and discusses the applicability of the developed modeling method.
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Chapter 4
Composite Failure Modeling

To predict the in-plane tensile fracture of composite laminates, the modeling

method developed in the current study requires a finite element code, a suitable

composite damage model, and treatments for nonconvergence problems caused by

brittle composite failures. The commercial finite element code ABAQUS/Standard [23]

was used to perform the analyses. This study also developed a material model based on

a damage model recently proposed by Shahid and Chang to predict failures in

laminated composites subjected to in-plane tensile and shear loads [21]. This chapter

describes the developed damage model.

4.1 Modeling Overview

This study only considered unidirectional composite laminates. Layered shells
are used to model the composite laminates. A layer can represent a ply or a ply group.

The developed modeling method uses layered plates [24-26] to model the

composite laminates. A layer can represent a ply or a ply group. The layers are modeled

simply as a homogeneous material with orthotropic properties [27]. The layers can have
different thicknesses, different principle directions, and different material behavior. The

basic material constitutive relations are defined at the layer level. The total laminate
stiffness is calculated using classical lamination theory [24].

At the layer level, the material model treats undamaged layers as elastic
materials. The material model treats layers containing damages also as continuous

elastic materials with degraded properties. Thus, elastic relations hold for both
undamaged and damaged material. Figure 4-1 shows coordinate systems used to

describe unidirectional composites.
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x,

x,

Figure 4-1. On-axis (x, y, z) and off-axis (xl, X2, X3) coordinate systems.

In a layer, the basic on-axis constitutive relations areas follows:

(4.1)

(4.2)

where ?70,Fti(i, j = x, y) and ~,, are the ply effective stresses and strains in the ply

coordinate system. QiDand G: are the effective stiffnesses of the degraded ply. u is the

parameter originally proposed by Tsai and Hahn to model the highly nonlinear shear
stress to shear strain relationship in unidirectional composites [28]. Tsai and Hahn
developed Equation 4.2 for unidirectional composites without damage.

Failure Modes

Failures in composite materials are complex and involve many modes. In

predicting the fracture strength of notched plates subjected to in-plane tensile and shear
load, the current study assumed that three in-plane failure modes are important:

4 2



l. fiber breakage dominated failure mode
2. matrix cracking dominated failure mode
3. fiber-matrix shearing dominated failure mode

The damage material model consists of two main parts: constitutive modeling

and failure prediction. The constitutive modeling defines stress-strain relations in the

plies as functions of the material damage state. The failure prediction predicts damage
initiation and growth in the material.

4.2 Constitutive Modeling

For the constitutive modeling, the material model treats both undamaged and

damaged layers as homogeneous and elastic materials. Equations 4.1 and 4.2 define the
stress-strain relations as functions of effective stiffnesses Qti?, G,: and the shear

nonlinearity constant w The effective stiffnesses are functions of the material damage

state. The damage state is defined by the extent of failure in each of the three failure
modes considered. Each failure mode degrades the material differently. These
degradations are cumulative. Therefore, the effective stiffness components are

calculated by combining the degradation from each of the three failure modes. The
following subsections describe the material degradation from each of the three failure

modes considered.

Matrix Cracking
Matrix cracks may form in laminated composites subjected to in-plane tensile or

shear load [46,47]. These cracks will degrade the materials. Based on the theory of
elasticity and fracture mechanics, Shahid and Chang proposed a model that will
calculate the effective stiffnesses Qti(~) and GXy(@),the matrix tensile strength ~(@), and

the in-plane sheer strength S(@) of each lamina in a symmetric laminate as functions of

the crack density. Expressions for QU(@), G,,(@), ~($), and S(@) can be found in

Reference [21]. In Shahid’s model, the crack density,@, measures the crack spacing
perpendicular to the fiber direction, and is defined as:

(4.3)

where 2Z is the distance between two adjacent cracks as shown in Figure 4-2. @
indicates the extent of matrix cracking damage in the material.

4-3



-4” k-
Figure 4-2. @measures spacing of matrix crack.

When the matrix cracking failure criteria is satisfied at a material point, the

degraded stress-strain relations are as follows:

(4.4)

where Q~.(@) and G~.(@) arethe effective degraded

(4.5)

stiffnesses due to the matric

cracking failure mode. These stiffnesses are defined as:

Q..,($) Q.#)4[Q(@]m‘[Q,x(@)d, Q,,(@)dS) (4.6)

G;;. = GM(@) (4.7)

where d. is the matrix cracking failure degradation factor, and is defined as

follows



(4.8)

(4.9)

where EY~is the matrix tensile failure strain of a unidirectional ply. When

ZY1z Z}:. , Qf’,, Q; and QJ~.are degraded to O.

Fiber Breakage

The degraded on-axis stress-strain relations for the fiber breakage failure mode

are as follows:

(4.10)

[1
3

6,, 3,.

7,, = ~:(o)+ ~
~

(4.11)

where Q;(@) for i,~ =x, y and G~,(@) are the effective degraded stiffnesses due to

the fiber breakage failure mode. These stiffnesses are defined as:

Q.w(@)~fQ#)d~
[Q(o)]’= (Q,,(@)dfQ,,(@)~~

)
(4.12)

G~,= GXv(@)d, (4.13)

where df is the fiber failure degradation factor, and is defined as follows:

d,= 1 when Af >62 (4.14)

df =0 when Af 262 (4.15)

where A, is the extent of the fiber failure area over which the stress is equal to or
higher than the longitudinal tensile strength, Xf, of the composites. 8 is the fiber
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interaction length of the unidirectional composite considered. When AJ 2 6‘, the failed

ply looses all of its stiffness abruptly.

By assuming a rigid-perfect plastic behavior of the matrix at the fiber-matrix

interface and applying the fiber bundle theory [29-31], Tsai and Hahn proposed to

estimate 5 as follows [24]:

(4.16)

where d is the diameter of the fibers, Xf is the average fiber strength, and ~Yis the

yielding stress of the matrix. L.is the length of the fibers under consideration (typically

one inch long). o is the shape parameter of the Weibull distribution of the fiber strength

distribution.

6 calculated from Equation 4-16 can only be used as an approximation due to

assumptions made and variations of the material parameters required. Values for 8

range from 0.025 to 0.06 for typical graphite/epoxy composites[22].

Fiber-Matrix Shearing

When the in-plane shear failure criteria is satisfied at a material point, stiffness

components will be degraded as follows:

(4.17)

1

(4.18)

where Q~T(~) and G~,(@) are the effective degraded stiffnesses due to the fiber-

matrix shearing failure mode. These stiffnesses are defined as:

Qu(@)Q.,,(@)
[Q(4]’‘[Q,X(@) Q;i@)) (4.19)

G;y = G,y(@)d, (4.20)

4-6



where d, is the degradation factor defined by Equations 4.8 and 4.9.

4.3 Failure Prediction

Fiber Breakage

The failure criteria for this failure mode is the maximum stress criteria: [32]

6,, >1
x,

(4.21)

where au is the effective longitudinal stress of the ply under consideration, and

X, is the longitudinal tensile strength of the unidirectional composites. The fiber

breakage dominated failure mode is the most severe of the three failure modes
considered. When Equations. 4-21 and 4.15 are satisfied, the material looses all of its
load-carrying capability from then on.

Matrix Cracking

The failure criteria for the matrix cracking failure mode is a modified Hashin’s

criterion [33], and is as follows:

(4.22)

where t7YYand ?f,. are the effective transverses and shear stress of the ply under

consideration, respectively. ~(@) is the effective ply transverse tensile strength. s(@) is
the effective ply shear strength. Expressions for ~(~) and S(@) are given in Reference

[21].

Fiber-Matrix Shearing Failure

The failure criteria for the fiber-matrix shearing mode is a modified Hashin’s

criterion [33], and is as follows:

(6,, > o) (4.23)

When the matrix cracking failure or the fiber-matrix failure criteria is satisfied,
the damage model increases the crack density @ by an amount A@, and degrades the
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material according to the failure mode. Then based on the current strain state and the

newly degraded material properties, the model checks for further matrix cracking or

fiber-matrix failure. This process of checking for failure and degrading the material

when failure occurs continues until there is no further failure or when the crack

density# reaches the saturated crack density level @~. Expressions for calculating @~are

given in Reference [21]. To simplify the modeling, this study keeps the crack density@
as an integer and sets A@ as 1.
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Chapter 5
Nonconvergence Problems

Predicting the fracture strength of composite laminate with cutouts using

progressive failure analyses is difficult for two reasons. The first difficulty is in the
damage modeling. The damage model must capture relevant damage mechanics so that

accurate fracture strength prediction can be made. This is a difficult task and much

work has been done in this area. The current study simply used a damage model that

was recently developed by Shahid and Chang [21]. The second difficulty is on

overcoming numerical problems in the finite element analyses brought on by the brittle

nature of progressive failures in composites. The type of composites considered in this

study are brittle materials. Thus, typical progressive damage models for these materials
require highly discontinuous constitutive relations. These discontinuous material
behaviors cause the numerical problems.

The focus of the current study is to overcome numerical problems in the finite

element analyses. This chapter discusses numerical problems involved in performing

composite progressive failure analyses. Since these numerical problems come from the

constitutive relations defined by the material model, this chapter also discusses the
damage model characteristics relating to these numerical problems.

5.1 Numerical Problems in Composite Progressive Failure Analysis

To determine the static fracture strength of a plate, a load is gradually applied to

the plate until the final failure occurs. Although the applied load is quasi-static, the
response of a notched composite plate loaded to ultimate failure will include both low

rate events (quasi-static to structural dynamic rate regimes) and very high rate events

(wave propagation rate regimes). The initial response will be in the quasi-static regime.
When brittle failure occurs, discontinuous material behaviors will generate shocks in

the plates, putting the plate response in a very high rate regime. Thus, the physics of

these composite plate fracture problems have mixed response rate regimes.

The mixing of the response rates is not simple such as all low rate response
initially and all high rate response after the first brittle failure occurs. In the real

physical problem (laboratory tests), structural damping may damp out some shocks
from initial failure. The damping may bring the plate response back to the low rate

regime until more brittle failure occurs. When brittle failures do not lead to the ultimate

structure failure, the plate is in a stable damage growth. In stable damage growths, the
response rate may change arbitrarily.
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The mixed response rates make analyses of composite progressive failure very

difficult to do. Different solution procedures are used in finite element analyses to solve

problems with different response rates [40-45]. Implicit solution procedures are more

suited for problems involving low rate responses, and are normally used for quasi-static

problems to structural dynamic problems. Explicit solution procedures are more suited

for problems involving high speed dynamic events, and are used for wave propagation

problems (shocks). It would be ideal to solve composite problems with mixed response

rates by using an explicit procedure for high-rate response parts and an implicit

procedure for low-rate response parts. However, because explicit and implicit solution

procedures are very different [43], switching back and forth between these procedures

is very difficult. Furthermore, the plate response rate in the composite fracture

problems under consideration may change in a highly arbitrary and irregular manner.
Thus, mixing implicit and explicit procedures may not be effective for these composite

failure analyses.

It is possible to use an explicit solution procedure alone to perform the composite

progressive failure analyses. However, there is a severe time-step restriction due to

stability reasons for explicit solution procedures [41,43]. The very small time-step
requirement due to this stability restriction, together with the type of quasi-static
applied loading condition considered in the current study, would result in very costly
and lengthy analyses. This makes explicit solution procedures impractical for slow rate

events, which is a large part of the composite fracture problems under consideration.

Techniques such as mass scaling or velocity scaling may shorten analyses that

uses an explicit procedure to model slow-speed events [40]. However, it is not clear if
these techniques can be effective for the composite progressive analyses of concern.

Analyses that only use an implicit integration solution procedure alone will also

be ineffective in solving the composite progressive failure problems of concern.

Standard finite element codes use implicit procedures that are unconditionally stable
with respect to time-step size [41]. Thus, implicit procedures can take step sizes that are

orders of magnitude larger than step sizes required for explicit solution procedures.
However, because implicit procedures require solutions of simultaneous equations and

explicit procedures do not, each implicit time step costs orders of magnitude more than

an explicit time step. Furthermore, because equilibrium is enforced at the end of a time

step, analyses using implicit procedures for nonlinear problems require a nonlinear

solution scheme that includes an interactive process along with convergence checks

(e.g., the Newton-Raphson scheme) [43]. Thus, implicit solution procedures are effective

if only a small number of time steps is needed. In the composite fracture problems
under consideration, when brittle composite failure occurs, the rapidly changing
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displacement field will require relatively very small time steps for convergence of the

nonlinear solution scheme.

It is seen from laboratory experiments that, with respect to time, most of the

response in these plate fracture tests is in the quasi-static regime. When brittle failure

starts, shocks in stable damage growth are quickly damped out. Unstable damage
growth or the final failure of these notched composite plates is instantaneous.

The current study chose to use the quasi-static solution procedure. Quasi-static

solution procedures also use an implicit integration scheme, but do not include time
dependent terms (inertia and viscous) in the equilibrium equation. Although, it is easier
for an implicit dynamicprocedure to converge than a quasi-static procedure in the

nonlinear solution process, quasi-static procedures are much more efficient than the

dynamic procedures for quasi-static loading problems.

The main difficulty in “implicit” analyses of composite fracture problems is the

nonconvergence problems encountered in the nonlinear solution process. Equilibrium
must be satisfied at each node within some given tolerance before a solution can be
accepted. A nonconvergence problem occurs when the nonlinear solution scheme

cannot find a displacement field that will satisfy equilibrium.

Quasi-static analyses do not include inertia and viscous forces, which are time
dependent. Thus, these analyses can only capture solutions (displacement field) in static

equilibrium states. When brittle failures cause shocks, the plate in the problem is in a
dynamic equilibrium state. To continue these quasi-static analyses, the plate has to
return to a static state from the dynamic state, and the nonlinear solution scheme must

be able to find this static solution.

Displacement field “jumps” between two quasi-static solutions caused by brittle
failure can be very large. Large displacement field change in a time increment means

the solution at the end of that time increment is far from the solution at the beginning of

the time increment. Thus, this results in difficult nonlinear problems. For “smooth”

nonlinear problems, when a time increment is too large and the solution is changing too

much, the analysis can cut down the increment size and begin again. With the smaller

increment size, the solution at the end of the time increment will be closer to the

solution at the beginning of the time increment. This makes it easier for the nonlinear
solution scheme to find the solution. This time increment reduction technique will not

work for brittle failures since the deformation will not be proportional to the load.
Essentially, when a displacement jump occurs, quasi-static analyses must be able to find

the next static solution, if one exists.
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To illustrate a displacement jump, consider the example shown in Figure 5-1. In

this example, a quasi-isotropic [45/90 /-45/O]~ unnotched plate is subjected to a uniaxial

tension load in the 0° direction. Properties and parameters for the material T800/3900-2

(see Table 7-2) were used for all examples in this chapter. For the purpose of showing a
displacement jump due to a sudden change in the plate stiffness, assume that the 45°

plies have lower longitudinal tensile strength and that they will fail in the fiber

breakage mode before the 0° ply will fail. When the 45° plies fail, they loose all of their

stiffness and the residual stiffness of the laminate will be equivalent to a [90/0],

laminate. In a quasi-static analysis, when the 45 plies fail, the plate will adjust to the

new stiffness and immediately jump to the static equilibrium displacement field. Figure

5-2 shows the history of they displacement at the top of the plate. There is no static

equilibrium during the jump. Thus, the nonlinear solution scheme must work hard to
find the static equilibrium solution at the end of the jump.

Y

t- X

+

p,uy

Elxl
+

Lay-up: [+45/90/0],

Figure 5-1. Example 5A: quasi-isotropic plate under uniaxial tension.

5-4



0.016

0.014

0.012

z= 0.01
z
2Q 0.008;m.2u
% 0.006

0.004

0.002

I

fp, uy

II

XI

[i45/90/o], ‘/
displacementjump,

/A
[90/0], stiffness

no staticequilibrium

>!

,#:-:esfai’
o 2000 4000 6000 8000 10000

Applied load (Ibs)

Figure 5-2. Displacement jump due to fiber failure in 45 plies.

5.2 Material Characteristics and Nonconvergence Problems

Brittle composite failures caused by abrupt stiffness losses generate shocks and

put the plate response into high rate regimes. This section discusses characteristics of
stiffness reductions due to the three failure modes included in the damage model

selected for this study. The selected damage model described in Chapter 4 requires
highly nonlinear material, constitutive relations, which is typical for composite
progressive failure models. Of the three failure modes considered, the fiber failure

modes causes sudden and total stiffness losses. The matrix cracking and fiber-matrix

shearing failure modes cause only gradual stiffness losses.

Fiber tension failures are brittle failures. Equations 4.10 to 4.15 defined stiffness
degradations due to the fiber tension failure mode. When the failure conditions are met,

the material looses all of its stiffness immediately; the stiffness losses due to fiber failure

are sudden and total. These abrupt stiffness losses will cause a singularity in the stress-

strain relations. Essentially, all stiffnesses of the failed ply are removed. The effective

stiffness of the laminate will be reduced abruptly, especially in the failed ply direction.
If the effective laminate stiffness change is large, this stiffness change may generate

shocks through the plate as it tries to readjust itself to the new stiffness and loading

configuration. Thus, the material degradation from the fiber breakage failure mode will

cause shocks and nonconvergence problems in the finite element analyses.
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The matrix cracking failure mode causes only small and gradual stiffness losses.

This failure mode is not a main cause of numerical problems. To illustrate matrix

cracking stiffness degradations, consider Example 5A above again. In this example, the

90° plies are subjected to a transverse tensile load. Thus, these plies will fail in the
matrix cracking mode. Figure 5-3 shows stiffness degradations in one of these 90° plies.

These degradations are typical matrix cracking degradations. Note that only

Q,,, Qyy,alld GXYare reduced from the matrix cracking failure mode. These

degradations are also more gradual compared to the stiffness losses in the fiber
breakage failure mode. QZ~,which is the fiber direction stiffness component, was not

reduced by the matrix cracking failure mode. Fibers are the main load carrier in a
unidirectional ply. Ql, is about 20 times larger than the other stiffness components.

Thus, the stiffness of the ply will not change significantly when matrix cracking failure

occurs. Therefore, the laminate stiffness will also not change significantly. Matrix failure
will not cause large change in the displacement field. Thus, matrix cracking failure only

causes mild stiffness reductions, and therefore is a not a concern in the task of

overcoming nonconvergence problems.
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Figure 5-3. Stiffness degradations due to matrix cracking in 90° plies.

Similar to the matrix cracking failure mode, the fiber-matrix shear failure mode

only causes gradual and mild stiffness reductions. Thus, this failure mode is also not a
concern in the task of overcoming nonconvergence problems. Consider Example 5B
show in Figure 5-4. Here, a [+45], plate is subjected to a uniaxial tension load in the 0°

direction. The plies will experience high shear stress, and fiber-matrix shear failure will

occur. Figure 5-5 shows the stiffness degradations due to the fiber-matrix shear failure

load in one of the 45 plies.

For the composite damage model developed by Shahid and Chang [21] and

selected for this study, only the fiber breakage failure mode causes brittle material

degradation that will cause dynamic instabilities. The matrix cracking and fiber-matrix

shearing failure modes cause mile material degradations and are not the cause of
numerical problems.
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Chapter 6
Artificial Damping Model

To predict the fracture strength of notched composite plates, the current study

uses finite element analyses along with a composite progressive damage model. The

finite element analyses use a quasi-static solution procedure, which is an implicit

integration scheme. Composite progressive failure analyses using quasi-static solution

procedures will likely encounter nonconvergence problems as discussed in Chapter 5.

This chapter presents treatments developed in this study to overcome these

nonconvergence problems.

The nonconvergence problems arise from large and sudden deformations

(shocks) due to brittle fiber failures. As discussed in Chapter 5, one way to model these
shocks is to use an explicit integration scheme. However, this method would cost too

much for the quasi-static loading problems under consideration. The approach taken in

this study is to modify the material model so that the shocks will be suppressed and the
analyses can be completed with just an implicit integration scheme.

Essentially, the current study opted to change very difficult problems involving

both low and very high rate responses into easier problems with only low rate
responses. This study assumes that for the purpose of predicting the plate fracture

strength, it is not necessary to simulate the shocks. This assumption is critical, and must
be verified on a case by case basis before the modeling method presented here can be

successfully used.

6.1 Artificial Damping Model

To suppress the shocks in the analyses, this study added an artificial damping

model to the damaged material model presented in Chapter 4. The artificial damping

adds viscous stiffness to the material. This viscous stiffness acts as shock absorbers and

suppresses shocks that may be caused by brittle fiber failures.

Damping is associated with a rate. There is no real time (as measured in seconds

or minutes) in quasi-static analyses. However, nonlinear finite element analyses are

solved incrementally with respect to the external load [38]. This external load can be

parameterized by “time,” or equivalently, an external load parameter. In this study, the
external load parameter, orthe “time” in quasi-static analyses, is denoted by z.

Let n denotes the increment number of the load step (rzf~zincrement of the

analysis). The time at the beginning of the increment n in the analysis is defined as:
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n-1

T,, = 2A Tj (6.1)

where A~j is defined in this study as follows:

Mj
ATj = —

P

in which, P is the total external load to be applied, and &j is the magnitudeof the

external load applied in measure of the normalized external load progression.

Rate terms in these quasi-static analyses are defined in terms of ~. For example

the longitudinal strain rate component for the increment n is calculate as:

(6.3)

Adding artificial damping to a material causes the stress in the material to be

dependent on both the strain and the strain rate. Thus a stress surface replaces the

stress-strain curve. In this study, the added artificial viscosity is only for overcoming
nonconvergence problems, and not for modeling any physical behavior. Figure 6-1

shows a one-dimensional spring and dashpot representation of this model. Figure 6-2

shows the corresponding stress versus strain and strain rate surface for this one-

dimensional model.

The purpose for adding the artificial damping model is to help the finite element

analyses on overcoming nonconvergence problems. However, since the problem
response is changed by the added artificial damping, this artificial damping may
adversely change the fracture strength prediction. Thus, it is important to add the

artificial damping such that it will overcome nonconvergence problems without

significantly changing the plate fracture strength prediction. To do this, the current

study tailored the artificial damping model for the characteristics of the selected

composite progressive damage model.

(6.2)
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Figure 6-1. ID spring and dashpot representation of the ID model.
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Figure 6-2. Stress surface of the ID model.

The assumption that the added artificial damping will overcome the

nonconvergence problems without significantly changing the final failure load
prediction is absolutely critical to the success of the modeling with artificial damping

method. If this assumption is accurate, the failure load prediction from the analysis can

be used. If this assumption is not accurate, then this artificial damping is significantly

changing the failure prediction. In this latter case, the failure load prediction should not
be used.

Since the above assumption is so critical, it is also important to determine the

effects of the artificial damping on the fracture strength prediction (the accuracy of the
above assumption). This study uses multiple analyses at different levels of artificial

damping (a parametric study) to do this. This study uses one active parameter in the

artificial damping model to simplify required parametric studies.

The artificial damping is added by adding viscous stiffness in parallel to the

elastic stiffness to the material model as depicted in Figure 6-1. Thus the stress in the

material can be decomposed into an elastic part and an artificial damping part:
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(6.4)

where ~“’c”’ denotes on-axis stress. ~$~i, are defined by the composite damage

model (Equations 4.1 and 4.2. The damping is artificial and should be tailored to

overcome nonconvergence problems without significantly changing the failure load

prediction. Based on the degradation characteristics of the selected composite damage

model, the artificial damping is added to the composite as follows:

(6.5)

where b(sj, ~) is the artificial damping coefficient, ~ is the analysis “time”

previously defined. sfis the state variable indicating whether fiber breakage failure has

occurred or not. sfis defined as follows:

Sf= 1 fiber failure occurred (6.6)

‘f= o no fiber failure (6.7)

Equation 6.5 can be written in terms of viscous stiffness as:

(6.8)

The artificial damping coefficient is dependent on the damage state and the
analysis time. The artificial damping is not added if failure has not occurred. b (s$, t) is

defined as follows:

b(s, =o+o (6.9)
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l++=o T<rfl (6.10)

t+ =1, T)=bo

[ ‘=:-7”))’b(sf=l,7)=bo 1- (7fl+T”) <K(Tfl+T”+TJ (6.12)

b (s~ =l,T)=O ( )Tf+’r”+7r <’r (6.13)

where b. is the initial damping coefficient, ~fl is the fiber failure time, and Tuis

the initial period of full damping, and ~, is the damping ramp down period. b. , ~U,

and r, are parameters required for the viscous model. However, this study use
constants TVand ~, that the viscous model is essentially a simple one active parameter

model. The artificial damping distribution in Figure 6-3.

b(s~,~)

b o

0

t

Figure 6-3. Artificial damping distribution.

In Equation 6.8, only the damping component in the fiber direction of the ply is

new. This damping coefficient is a function of the damage state and the analysis time.

Here is how the model attempts to add artificial damping only where and when it is

needed. The model only adds artificial damping after the fiber failure mode is detected.

Fiber failure causes the shocks, which cause nonconvergence problems. Without brittle
fiber failures, there would be no shocks, and there would be no need for artificial

damping. The model adds damping only in the fiber direction, because most of the load

in the other direction is carried by other plies, not by the ply that has just failed. The

model removes damping after a predetermined period q Also there is no need for

artificial damping anymore once convergence is attained. Thus, the damping is
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removed slowly (ramped down linearly) over a predetermined period ~r after fiber

failure occurs.

The familiar stress resultant to strain relations for symmetric composite

laminates subjected to only in-plane load [24,26] are:

N = A&”

where N is the in-plane stress resultant force (integration of stress through the

thickness) of the plate. A is the plate extensional stiffness. ~“ is the plate extensional

strain. With the artificial damping, Equation 6.14 becomes:

N = AEO+ A’&” (6.15)

where A is the extensional viscous stiffness of the plate and i“ is the extensional

strain rate (defined in terms of AT). Appendix A gives more details on these relations

including the characteristics of A’. Note that the viscous terms come from the artificial
damping, which is added only to overcome nonconvergence problems. The viscous
terms are not real material behavior, and should be included only as part of the

incremental solution process.

6.2 Modeling Strategy

The validity of this modeling with artificial methods depend on the accuracy of

the above assumption. The accuracy of this assumption varies from problem to

problem. There is no prior knowledge of this assumption accuracy. However, this

accuracy may be determined by using multiple analyses for the same problem at
different levels of artificial damping (a parametric study),

In ideal problems, the parametric study will show that the above assumption is

accurate, and the failure load prediction can be confidently used. In troublesome

problems, the parametric study will show that the above assumption is inaccurate, and
this modeling method can not be used. Figure 6-4 shows a typical failure load

prediction versus artificial damping plot that may be generated from a parametric
study.

(6.14)
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Figure 6-4. Typical damping effects on failure load prediction.

The plot in Figure 6-4 shows effects of the artificial damping on the failure load

prediction. The accuracy of the assumption that the damping does not have significant
effects on the failure load prediction can be determined from such a plot. The beginning

part of this plot is expected to be flat. The elastic stiffness (damage model component)

and the damping stiffness are in parallel. Thus, when the damping stiffness is very low

relative to the damage stiffness, the material behavior is dominated by the damage

model, and the artificial damping will not have significant effects on the failure load

prediction. At zero damping, the material is just the damage model. Failure load
prediction at zero damping is the intended solution, which is what the damage plus
damping model tries to obtain. On the opposite end, when the damping level and thus

the damping stiffness is relatively high compared to the elastic stiffness, the material

behavior is dominated by the damping. In these cases, the artificial damping will have

significant effects on the failure load prediction.

Thus, if the failure load prediction is on the initial flat part of the curve, the main

assumption is accurate, and the prediction can be used. If the failure load prediction is

not on the initial flat part of the curve, the main assumption is not accurate, and the

prediction cannot be confidently used. A few points on this plot that are far enough
from each other can determine whether a prediction is on this flat part of the curve. And

so, a parametric study is required to assess the accuracy of the all important main

assumption.

For analyses with nonconvergence problems, failure prediction on the first part

of the curve will not be obtainable due to nonconvergence problems. This is the reason

for the current research. In these problems, there will be a minimum amount of artificial



damping level, bfi,, that must be used to overcome all nonconvergence problems so

that a failure load prediction can be made. Ideally, all higher artificial damping levels

will overcome all nonconvergence problems and yield a failure load prediction. Based

on the monotonical nature of Figure 6-4, the best failure load prediction using the
artificial damping modeling method is at the bntimartificial damping level. Thus, it is

important to obtain a failure prediction using b~inor a little higher value of artificial

damping, and also to determine where this failure prediction is on the failure load

versus artificial damping curve.

With only one active damping parameter, the artificial damping model makes it
easy to perform the required parametric study and to estimate b~,~.With just one active

parameter, each analysis provides a point on the failure load versus artificial damping
curve. The current study uses a simple algorithm to estimate bfin automatically from

the first analysis as follows. The first analysis is started with zero artificial damping.

Convergence characteristics are monitored throughout the analysis. When
nonconvergence problems are detected, the material model increases the artificial

damping level by small increments, and this level of artificial damping is used from

then on. The process continues until the end of the analysis. The maximum level of
artificial damping used in the first analysis is the estimated btin.

With bti~ estimated from the first analysis, the parametric study can be

performed by simply increasing the level of artificial damping based on the estimated
b~i~.In ideal problems, order of magnitude changes in the artificial damping level will

not cause significant changes in the failure load prediction.

The developed damping model is easy to implement and use. It has one active

parameter. This parameter is estimated during the finite element analysis run. The

active model parameter, the damping level, is not a parameter to calibrate the failure

prediction of the model. in fact, the key assumption, which is required for the artificial

damping model, is accurate only when this damping level has little or no effect on the
failure load prediction.

6.3 Material Model Implementation

The current modeling method uses finite element analyses by

ABAQUS/Standard (referred from hereon simply as ABAQUS) and the developed

damage model to predict the tension fracture strength of notched composites. The

damage model interacts with ABAQUS through a user defined material subroutine [34-
3q
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All analyses performed in this study were quasi-static. These analyses used the

finite deformation theory [35,38] to model the large deformation expected from

composite brittle failures.

This study uses layered shells to model the composite laminates [36]. The

laminate layups, the plies’ thicknesses and orientations are input directly into ABAQUS.

With these input, ABAQUS performed the stiffness transformations of the layers and

the stiffness integration through the thickness of the laminates outside of the material

user subroutine. Thus, the subroutine only needs to define the on-axis material behavior

[35]. In addition, ABAQUS also performed the transformations of the stresses and
strains due to rigid body rotation for finite deformation theory outside of the material

user subroutine. Thus, the material subroutine defines the material behavior in terms of

Cauchy Stress and logarithmic strain [34,35,39].

ABAQUS calls the material subroutine for each material calculation point at each

iteration of every increment. When the subroutine is called, ABAQUS passes in the
material state at the start of the increment (stress, solution dependent state variables,

etc.), the strain increments, and the time increment. The subroutine calculates the stress
and the solution dependent state variables at the end of the increment and also the

/

~~loc.1
material Jacobian matrix ~zl.~.l for the current increment [34]. The material

Jacobian is defined as:

/

~ &cal

~pll = (6.16)

Equation 6.16 required by ABAQUS is the “tangent stiffness” of the material

stress-strain curve. The “tangent stiffness” works well for smooth nonlinear material

behavior such as metal plasticity. However, for brittle material behavior, where the
stress-strain curve contains discontinuities (drops), methods using “tangent stiffness”
will have problems. This study uses a “secant stiffness” method to model composite

brittle material behavior. The secant method calculates the stress from total strain with
updated (damaged) stiffness.



Figure 6-5 illustrates the nonlinear solution method using “secant stiffness”. This

nonlinear example problem will be solved by breaking the displacement controlled

external load, d, into small increments. The solution is solved incrementally using

iterations inside the increments when a nonlinearity (failure) occurs. This method uses

the current stiffness, and the total strain to calculate the current stress. When failure is

detected by the failure criteria in the model, a new, reduced stiffness is calculated.

Let the subscript n denotes the increment counter, and the superscript k denotes

the iteration counter inside the TZ‘lZincrement. The nonlinear solution scheme works for

an increment n that contains 1 failure as follows. The increment start with the load ~~

and the displacement dll. The first iteration uses the stiffness at the start of the

increment, Qa. From this stiffness and he applied displacement dll +1, the load P: is

obtained. This load will satisfy the failure criteria (d > df ), which will prompt the

solution scheme to degrade the stiffness to Qb, and start the second iteration. From the

applied displacement dll+1 and the new stiffness Qb, the new load Pn2is calculated. With

this load, no more failure is predicted and this load becomes the solution for increment

n.

The solution at any point in this problem is linear. The solver can obtain this

solution in 1 calculation if the correct (degraded) stiffness is used. Thus, in the above

example, 1 extra iteration was required to account for 1 failure (1 stiffness change). The

selected damage material model defines the material as elastic with damage. Thus, this

study uses the “secant stiffness” for these problems.

The functions of the material model in an ABAQUS analysis are to defined the

on-axis stress G“’cu’the solution dependent state variables (damage state of the material)

at the end of

the current increment, and the on-axis Jacobian matrix
/

35’(””’

under consideration.

~ ~l~,.~for the layer

The material model uses Equation 6.4 to calculate the total stress to be returned

to ABAQUS.Chapter 4 presented the equations for calculating the elastic stress
a‘$~~.Cand the solution dependent state variables. The model uses Equation 6.8 to

calculate the damping stress i5~~~in8.Combining these equations, the component of the

total stress to be returned to ABAQUS are:
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6-5. Secant method to model brittle failure.

(6.17)

(6.18)

(6.19)



The constitutive relations for i711,and ~,, are elastic and rate independent. Thus,

the Jacobian components relating to these stress are just the elastic stiffness:

The calculations of the
/

J &cal
~ ~h)c.rCOrnpOn@S for Fx,use

the stable central difference operator [34]:

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)



(6.26)

(6.27)

wheref is some function,f~ is its value at the beginning of the

increment, A~is the change in the function over the increment, and AT

ATis the time increment. Applying this to Equation 6.17 for the T + —
2

gives:

()
Ai7

au + - = Q:((%)T ‘~r 2 )+Q:((5,Y),+~)+b($,.,& (6.28)
r

~(At7,,,)
The components related to ZfX,are calculated as

d(AFti)
in Equation 6.28:

(6.29)

(6.30)

(6.31)
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Figure 6-6. Flow chart of material model subroutine.
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Chapter 7
Model Verification

The developed composite progressive failure model was verified using two sets

of experimental data. The first set included small coupons with simple geometry under

uniaxial tension load. The second set included large panels with more complex

geometry under both uniaxial tension and biaxial tension load. This chapter presents

the verification cases, the finite element analyses, failure load comparisons between

experimental data and model predictions, and the effects of the artificial damping on
failure load predictions.

Without the artificial damping component, finite element analyses using the

developed damage model alone represent old, existing modeling methods. The focus of
this research was to overcome nonconvergence problems often encountered when using

these existing modeling methods. Thus, analyses using the damage model with the
developed artificial damping model represent new modeling methods for predicting
the composite fracture strength developed in this research. This chapter compared the

composite plate fracture strength predictions between the old and new modeling
methods.

7.1 Small Coupon Verification

The objective of the small coupon tests was to verify both the existing modeling

methods (analyses with damage model alone) and the new modeling method (analyses

with both the damage model and the artificial damping model) for the simple

geometry. Since the geometry was simple, both modeling methods were expected to

perform reasonably well.

Experimental Data

The experimental data for the small coupon tests was obtained from Sandia

National Laboratories [50]. There were nine test cases that included five coupon

geometries, one material, three lay-ups, and one loading. Figure 7-1 shows the basic test

configuration. Figure 7-2 shows the five geometries. The material was Toray 3900-2.

Table 7-1 summarizes the data of the nine small coupon test cases.
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Table 7-1. Small coupon test cases.

Case Geometry

s A

70A

s B

70B

s B

76B

s c

70C

s D

70D

s D

54D

s D

76D

s E

70E

s E

54E

Material Lay-up

T800/3

900-2

T800/3

900-2

T800/3

900-2

T800/3

900-2

T800/3

900-2

T800/3

900-2

T800/3

900-2

T800/3

900-2

T800/3

900-2

[(45/90/45/0),1,

[(45/90/45/0)2],

[45/90 /-

45/0/ T45/9oi45/o/ T45],

[(45/90/45/0)2],

[(45/90/45/0)2],

[45/0/45/902/45/902/45/0],

[45/’90/-

45/0/ T45/9ot45/ot45],

[(45/90/45/0)2],

[45/0/45/902/45/902/45/0],

Progressive Damage Analysis

All analyses in this study were quasi-static analyses. Since large deformation

was expected due to the brittle nature of composite failures, the analyses used finite

deformation theory [35, 38,39].

Finite element analyses using the damage model alone and the combination of

the damage model and the artificial damping model were performed for the nine small

coupon test cases. This study used the commercial finite element code

ABAQUS/Standard to perform the element analyses. The analyses used an implicit
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integration scheme, a quasi-static solution procedure. The reduced integration S4R shell

element in ABAQUS was selected for this study.

The uniaxial tension load was applied by prescribing displacement controlled

boundary conditions. The X2 displacement was fixed at the bottom side of the coupon.

The load was applied by prescribing a X2 displacement at the top side. Figure 7-3 shows

the loading and boundary conditions of small coupon analyses. In simplifying the

analyses, only half of coupon geometry B and C were modeled. This study assumed

that the deformation and damage growth were symmetric about the X2 – X3 plane.

d
displacement controlled

x2

L
‘1 E22ZZI

Figure 7-3. Boundary condition and displacement controlled load condition.

The composite laminates were modeled using layered shell elements. Each layer
represented a ply, and each ply had its own principal orientation. The analyses used
three- and sometimes five-section integration points for each layer [36]. Table 7-2 shows

the material properties and the damage model parameters used for the Toray 3900-2

graphite/epoxy system.

The finite element meshes for coupon geometries B, C, D, and are shown in
Figure 7-4.



Table 7-2. Properties and parameters used
in small coupon analyses.

Properties T800/3900-2

E, (msi) 23.2

Ey(msi) 1.30

Vxy 0.28

G,, (msi) 0.90

a(l/psi~) 1.Oe-14

Gy,(mi) 0.50

G,,z(msi) 0.90

Thermal

aI(l/F) 0.22e-6

ay(l/F) 16.03-6

~.,,re(F) 340

~,,,,,,,(F) 75

Other

Pro~erties
412

X, (ksi)

~(in.) 0.041

h(i7t.) 0.0065

G,c(lblin.) 1.65

G,,c(lb/in.) 3.30

T“ 0.03

7, 0.05



B c D E
Figure 7-4. Finite element meshes for small coupon analyses (not to scale).



Failure Load Comparison

Table 7-3 summarizes failure load results for the small coupons. Figure 7-5 plots

the two predictions normalized by the experimental data. Predictions using both the

damage model and the damping model represented new capability from this study.

Predictions using the damage model alone represent an existing modeling method.

Table 7-3. Failure load comparison for small coupons.

Case Test data Damage/Da Damage
(lb) roping (lb)

(lb)

S70A

S70B

S76B

S70C

S70D

S54D

S70D

S54E

S76E

15,700

10,200

11,300

9,900

9,900

8,300

5,800

3,100

5,800

16,290

10,600

12,800

10,600

9,420

8,220

6,100

3,700

6,100

16,290z

10,600

12,800

10,500

9,420

8,200

5,700

3,500

5,700
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Figure 7-5. Fracture strength comparison for small coupons.

These results show that the damage with damping model predicted failure load

of large panels with more complex geometry reasonably well. Without the artificial
damping, the damage model alone could not have overcome nonconvergence problems

and terminated too early in the analyses. The maximum load at which the analyses

terminated is seen to be much lower than the experimental failure load data.

Artificial Damping Eflects on Failure Load Prediction

We performed multiple analyses using a different level of artificial damping
parameter, bO,for each of the small coupon problems. Figure 7-6 plots some of these

results, which shows the effects of the artificial damping parameter on the final failure
load prediction.
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Figure 7-6. Damping effects on small coupon failure prediction.

These results show that for small coupons, some analyses did not have any
nonconvergence problems, and some analyses only needed a very small level of -

artificial damping to overcome nonconvergence problems. Furthermore, for analyses

that did use artificial damping to overcome nonconvergence problems, the artificial

damping did not have any significant effects on the failure load predictions.

7.2 Large Panel Verification

Data from several large panel experiments were used to verify failure load

prediction of the damage with artificial damping model. There were five uniaxial
tension data and two biaxial tension data. These test data were obtained from the

Boeing Company [5,51].



Experimental Data

Figure 7-7 shows a schematic of the large panel under uniaxial tension test case.

Table 7-4 shows the dimensions, material, and lay-ups of the five test cases. The width

of the slit for all five cases was 0.070 inch.

t

P

Figure 7-7. Schematic’ of large panel under uniaxial tension load.

Table 7-4. Large panels under uniaxial tension test cases.

Case (i~o) (i~~ Material Lay-up

P8 36 8 IM7/8551-7 [*45/90iOlt601~]s

P9A 36 9 IM7/8551-7 [*45/ ()/90 /i30/G]s

p9B 36 9 AS4/938 [i45/o/90/t30/G].s

P12A 60 12 AS4/938 [f45/()/9()/* 30/ 6]s

P12B 60 12 AS4/938 [t45/9010/+60i15 /90/- l5/T6O/O/9OlT45]s



Figure 7-8 shows the basic configuration of the biaxial tension test. There were

two setsof test data. Table 7-5 summarizes these two tests.

Figure 7-8. Large panel under biaxial tension tests.

Table 7-5. Biaxial panel test cases.
———. —

Case Material Lay-up
—

B A [45/0 /-45/0 /90/0]s

iaxl S4/938

B A [-45/90 /45/90 /0/90]s

iati S4/938

Progressive Damage Analyses

Finite element analyses using both the damage with damping model and the

damage model alone were performed for the large panels. These analyses were of the

same type with those of the small coupon cases. In simplifying the analyses, symmetry

conditions about the X2–X3plane were assumed, and only half of the geometry were

modeled. The external load for the uniaxial panel analyses was displacement controlled.
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The load for the biaxial analyses was load controlled. Table 7-6 shows the properties

used in the analyses for the large panel cases. Figure 7-9 shows the mesh used for the

biaxial analyses

x2

I

xl

Figure 7-9. Biaxial mesh.



Table 7-6. Properties and parameters used in large panel analyses.

Properties IM7/8551-7 AS41938
—

Moduli

E,y(msi)

EY(msi)

Vxy

GrY(msi)

a(l /psi~)

GY:(msi)

G,, (msi)

Other
Prot3erties

ax(l/F)

aJ1/F)

~,,r~(F)

~,,(,,,,(F)

X, (ksi)

ti(in.)

G,c(lb/in.)

G,,c(lb/in.)

h (in.)

Tu

T’

20.2

1.43

0.30

0.76

8.Oe-15 [48]

0.61 [52]

0.76

-0.17e-6 [52]

15.6e-6 [52]

267 [52]

75

320

0.0052

1.00

2.00

0.0074

0.03

0.05

21.0

1.39

0.31

0.69

1.Oe-14

0.61

0.69

-0.17e-6

15.6e-6

340

75

222 [53]

0.005

0.85

1.70

0.007

0.03

0.05



Failure Load Comparison

Table 7-7 shows the failure load comparisons between experimental data and

predictions using both the damage with damping model and the damage model alone.

Predictions for the damage model alone were based on maximum load in the analyses

since these analyses terminated before final failures due to nonconvergence problems.

Figure 7-10 plots the two predictions normalized with experimental data. Again,

predictions using the damage model alone represented existing modeling methods.

Predictions using both the damage model and the damping model represented new

capability from this study.

Table 7-7. Failure load comparison for large panels.

Case Test Data Damage/ Damage Damage
(lb) (lb) (lb)

P8 78,000 80,000 43,000

P9A 71,000 77,000 38,000

P9B 64,000 70,000 59,500

P12A 135,000 118,000 70,000

P12B 150,000 135,000 56,000

Biaxl 100,000 115,000 54,000

Biax2 100,000 95,000 48,000
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Figure 7-10. Fracture strength comparison for large panels.

These results show that the damage with damping model predicted failure load

P12A P12B

of large panels with more complex geometry reasonably well. Without the artificial

damping, the damage model alone could not overcome nonconvergence problems and

stopped too early in the analyses. The maximum loads at which the analyses terminated
are seen to be much lower than the experimental failure load data.

Artificial Damping E#ects on Failure Load Prediction

Figure 7-11 shows the effects of damping on failure load prediction for some

the large panel analyses. It is seen that very large changes in the artificial damping

parameter only had little effects on the failure load predictions.

of
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Figure 7-11. Damping effects on large panel failure predictions.



Chapter 8
Summary and Discussions

An analytical method that can effectively predict the fracture strength of

composite plates containing damages is a much needed modeling capability. This type

of modeling is required for damage tolerance analyses of composite pressure vessels.
Existing modeling methods, including failure criteria based on fracture mechanics and

finite element analyses using progressive damage models (progressive damage

analyses), are not effective. The fracture criteria are expensive and lack accuracy. The

progressive damage analyses have serious numerical difficulty in modeling brittle
failures of composites. The current research objective was to develop a damage model

that can be used with current finite element codes to predict the failure load of damaged

composite shells subjected to in-plane tension load.

There are two difficulties involved with using progressive damage analyses.
First, the composite progressive damage model must capture the relevant damage
mechanics. Second, the finite element analyses must model brittle composite failures as
defined by the progressive damage models. The focus of this research is on overcoming

the numerical difficulty caused by brittle composite failures.

Problems involving predicting failure composite plates with damages are very

difficult to model. These difficulties arise because of the physics of these problems

include both slow rate regime (quasi-static to structural dynamic), and very high rate

(wave propagation) regime. This study considered only quasi-static loading problems,

such as the slow pressurization of a pressure vessel. For such a case, most of the

problem is in the slow loading regime, but when brittle failures occurred, they created
shocks in the structures. These shocks are in high rate regime. Slow rate regime

problems work best with implicit integration schemes. However, current finite element

codes cannot handle both of these regimes in the same analysis. This problem renders
the progressive damage analyses ineffective against failure modeling of composite

structures.

Analyses that use a slow rate solution scheme, an implicit integration scheme,
will usually encounter serious numerical difficulties when shocks occur and will

terminate prematurely. These difficulties are failures of the solution scheme in finding a
displacement field that will satisfy equilibrium requirements within some given

tolerances. Basically, the time step taken by the slow rate scheme is too large when the

problem is in the shock regime. On the other hand, analyses that use a high rate
solution scheme, an explicit integration scheme, will cost too much because these
schemes require relatively small time step, and the majority of these plate problems is in

the slow rate regime.



Instead of solving these real problems, the current research changed these

problems into easier problems that can be solved withcurrent finite element

capabilities. To obtain the easier problems, the current research uses a slow rate solution

scheme and adds artificial damping to the material model. The artificial damping

suppresses the shocks caused by brittle fiber failures and keeps the finite element
analyses in the slow rate regime. This allows the analyses to overcome nonconvergence

problems so that the analyses can be finished and the final failure load can be predicted.

In doing this, the modeling method relies on a very important assumption. The

assumption is that the added artificial damping will overcome the nonconvergence

problems without significantly changing the final failure load prediction, the desired

analysis results.

The validity of this modeling with artificial method depends on the accuracy of

the above assumption. The accuracy of this assumption varies from problem to

problem. There is not a prior knowledge of this assumption accuracy. However, this
accuracy may be determined by using multiple analyses for the same problem at

different levels of artificial damping (a parametric study).

In ideal problems, the parametric study will show that the above assumption is

accurate. Thus, the artificial damping had little effects on the final failure load

predictions. In troublesome problems, the parametric study will show that the above

assumption is inaccurate, and the predictions can not be used. The model in the current

study was developed to maximize the chance for this key assumption to be accurate.

The developed model is easy to use and can be easily implemented into standard

finite element codes. The model also simplifies required parametric studies by limiting

the damping model to only one active parameter, the damping level. Furthermore,
values for the damping level to be used are automatically estimated from the analyses.

Thus, no experiment or calculation is required to determine the damping level prior to

the analyses.

The active model parameter, the damping level, is not a parameter to “calibrate”
the failure prediction of the model. In fact, the key assumption, which is required for
the artificial damping model, is accurate only when this ‘damping level has little or no

effect on the failure load prediction.

The cost of this modeling with artificial damping method depends on the
number of analyses required to determine the effects of the artificial damping on the

final failure load prediction. In ideal problems, this number could be as low as two. On

the other hand, if the artificial damping has too much effect on the final failure load,
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then the final failure predictions cannot be used. In these cases, all analyses performed

for such problems are wasted.

The current study tested the effectiveness of the modeling with damping method

using two sets of fracture strength experimental data. The first set involves small

coupons with small cutouts. The second set involves large panels with larger cutouts.

For the small coupons, there was little fiber failure propagation before the final

failure occurred. Both progressive damage models, with the artificial damping and

without the artificial damping, predicted the coupons’ fracture strength well. However,

all analyses with the artificial damping finished properly, where some of the analyses
without the artificial damping stopped before the final failure load was predicted due to

nonconvergence problems. In small coupon analyses with nonconvergence problems,

the fracture strength was simply calculated from the maximum load in the analyses.

This practice seemed to work for small coupons since there was very little failure

propagation before the final failure; the final failure load was very close to the
maximum load in analyses with nonconvergence problems. For these small coupons,

parametric studies showed that the assumption that the artificial damping does not

have significant effects on the failure load.

For the large panels, analyses without artificial damping terminated prematurely
due to nonconvergence problems at about half of the experimental failure load data.

Analyses with artificial damping predicted the final failure load reasonably close to the

experimental failure load data. From the analyses’ results,it was seen that there was

much more fiber failure progressions in the analyses with artificial damping than in

analyses without artificial damping. For these large panels, parametric studies showed

that the assumption that the artificial damping does not have significant effects on the

failure load, and predictions were reasonably accurate.

For the two verification data sets used in this study, the modeling with artificial

damping was effective in predicting the fracture strength of composite plates subjected

to in-plane tension loads. These results showed promising potential for this modeling

method. More verifications, especially for more complex geometry and loading, are

needed to further assess the usefulness of this modeling method.

The artificial damping model was developed and verified for the selected

damage model. However, this damping modeling method can be applied to other

composite damage models. When applied to other damage model, the artificial
damping model should be tailored to the degradation characteristics of the damage

model under consideration.
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Before this study, analytical methods for predicting the fracture strength of

composite plates subjected to in-plane loading were simply ineffective. For practical

problems, progressive damage analyses will encounter severe numerical problems due

to the brittle nature of composite failures. These numerical problems prevent the

analyses from obtaining reasonable fracture strength predictions. This study developed

a modeling method that can help progressive damage analyses to overcome these

numerical problems. Thus, the developed modeling method has advanced the modeling

technology for these composite fracture problems.
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Appendix A
Extensional Viscous Stiffness Matrix

~A.1 Constitutive Equations for Unidirectional Composites

This appendix summarizes equations for calculating the extensional viscous

stiffness matrix A’. These equations are the same as those for calculating the

familiar extensional stiffness matrix A [24,26]. .

This study only considers composite laminates comprised of unidirectional

plies. Figure A-1 shows coordinate systems for unidirectional composites.

X2

xl

Figure A-1 On-axis (z, y, z) and off-axis (ZI, X2, Z3) coordinate systems.

A-1



Based on the plane stress assumption, only three in-plane components of stress

and strain are used in this study. Defining the on-axis plane stress and strain matrix

as:

(Al)

(A.2)

where the superscript local indicates the on-axis coordinate system (local x-y). ~zv

is the engineering shear strain. The on axis stress-strain relations of a unidirectional

ply are as follows:

{}(
0== Qzz Qzy o
QYY = Qyz Qyy o
Uz y o 0 Q,.

Using matrix notation, Equation A.3 is written as:

~local = QlocalElocCll

Ez=

~YY

?’Zy

(A.3)

(A.4)

where QIOcaLis the on-axis stiffness matrix. The components of QIOcaJare calculated

as follows:

Q.. = Ezz/(1 – V.YVV.)

A 2



QYu = J%v/(1- v.,v,.)

Q.v = VvzJ%z/(l– VWVW) (A.5)

Qvz = vzJ&J(l – w+z)

where E= and 13Vare Young’s moduli in the x and ~ directions, respectively. VZV

and VVZare Poisson’s ratios. VZVmeasures the transverse strain in the y direction

when the material is stressed only in the x direction. ~yz me~ures the strain in the

x direction when the material is stressed only in the y direction.

The global stress, strain and stiffness are:

{}

al 1

lobal _
Dg — C722

U12

(A.6)

(A.7)

(A.8)
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where the superscript global in C@-’baf,egfobutand Q910baLdenotes the glo-bal off-axis

stress, strain and stifkess respectively. The global stress-strain relations are:

09 lobal = Qglobaleglobal

on axis tress can be transformed to off-axis stress as follows {24,26]:

~ = T–l~l

(A.9)

(A.1O)

where the transformation matrix T is calculated as:

(
COS26J 5in20 2iinf3cos6’

T= sin29 c0s2e –2sinfkos0
–sinOcos@ sinOcosf3 COS20– sin2f3 )

(All)

in which O is the orientation of the ply under consideration (see Fig. A-1). The

strain @lObaL and ~~oca~contain engineering shear strain and not tensorial shear

strain. The transformation horn global to local coordinates for the strain is:

~~ocal = T–TEglobai (A.12)

.

Combining Equation A.4, A. 10, and A.12, the on-axis to off-axis stiffness matrix

relation is calculated as:

Qglobal = T-1 Qlocal@’ (A.13)
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The components of Q91°b”1are:

QII = QX~COS4e + 2(QXY+ 2QJs~n26cos20 + Qy@n4@

Q12 = (Qzz + Qyy– 4QS~)sin20cos2$ + Qzy(sin40 + COS40)

Q22= QzAn46’+ XQzv+ 2Qs~)sin20cos20+ QYVCOS4$
(A.14)

Q16= (Q=~– Q~v– 2QJinocos3e + (Q.y – Qyu+ 2Qs.)sin3ecos0

Q26 = (Qzz– Q~v– 2Qgs)sin3ecos@+ (Q~y– Qyy+ 2Qss)sinecos3e

QIX3= (Qzz+ Qyy– 2Q.V– 2Q~$)sin20cos26 + Q.,(sin46 + cos40)

$A.2 Extensional Elastic Stiffness Matrix

For flat plates subjected to in-plane tension load, the in-plane strain-displacement

relations are:

(A.15)

where u1 and U2 are displacement in the z 1 and Z-2direction respectively. e: are

the membrane strain of the plate. Figure A-2 shows the laminate z (thickness)

coordinate convention.

A-5



z

A

t Iii.
I l“..”””ply N

~“”””””ply’
1----1,~ x -1------- mid-da..

Figure A-2 Laminate’s z coordinate (thickness direction).

The global stress-strain relations in the /cthlayer of a laminate under in-plane

load has the form:

{i‘{%}=(38
The resultant forces in the plate are obtained

each layer through the thickness of the laminate:

.

Qf6
Q$6
QE6

(A.16)

by integrating the stresses in

From Equations A.16and A.17, thestress resultants andin-plane strain rela-

tions are:

(A.18)
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Since Q$j are constant in Ply k and can be moved outside of the integration.

Also, the in-plane strain is constant through out the thickness. Thus, Equation A. 18

can be remitten as:

in which.

(A.19)

(A.20)
k=l

~A.3 Extensional Viscous Stiffness

For the artificial damping model, the calculations of the extensional viscous

stiffness, denotes as A’, are the same way as the calculations of extensional elastic

stiffness. From the model developed in Chapter 6, the on axis stress-strain rate

relations are:

where the fiber failure state variable s~, the analysis “time” r and the strain rate

are defined in Chapter 6. Equation A.21 can be rewritten in matrix form as:

i==

tyy

ixy

(A.22)
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In global coordinates:

(A.23)

The stress, strain, and stiffness transformations are the same for the viscous

components as for the elastic components. Thus the viscous stiffness transformation

is:

Q::~p:ng
= @Q fOCCd

dampingT-T

From Equations A. 14, A.21 and A.3, the components of Q~$$P~ng are:

Q; 1 = b(sf, 7-) COS’%

Qi2 = ~(sj,T)Sin2QCOS20

Q!2 = b(sj,~)sin4d

Qh = b(sj, T)sir&Os30

Q\G= b(sf, ~)sin30cos0

Q&j= b(sf, ~)sin20cos20

(A.24)

(A.25)

where the ‘ denotes artificial damping components. The force resultants due to

damping are also calculated in the same manner as for the elastic force resultants.

Furthermore, since the strain rate are independent of the thickness coordinate, the

viscous form of Equation A. 19 can be written as:

A 8



(A.26)

in which:

4,= fq(.k-a-d (A.27)
k=l
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Appendix B

Using PDLAM with ABAQUS/Standard

The composite damage material model developed in Chapter 4 and the artificial

damping model developed in Chapter 6 was implemented into a material user

subroutine called PDLAM. PDLAM can be used with ABAQUS/Standard to predict the

tension fracture of composite plates. This appendix summarizes preparations required

for using PDLAM with ABAQUS. The user is assumed to be familiar with using

ABAQUS.

B.1 Overview

ABAQUS calls PDLAM to get the material behavior in an analysis. PDLAM
requires various data to perform the material modeling. PDLAM receives data from

ABAQUS/Standard during the analysis and from external files generated before the

analysis start. There are two preparations required to use PDLAM with

ABAQUS/Standard. First, the user needs to perform some preprocessing to generate

the external data files for PDLAM. Second, the user needs to prepare the ABAQUS
input file to work with PDLAM.

8.2 Preprocessing for PDLAM

PDLAM requires data input from external files that are generated before the start

of the finite element analysis. These external files are obtained by running
preprocessing programs. Table B-1 summarizes the required external files, their

contents, and the programs that can generate these files.

Table B-1. External files required for PDLAM.

File Contents Program

plyi.OUTa Q(q), y(q), s(q) for ply i PDCOMP

pdens.OUT saturation crack density for all PDCOMP
plies

rsde.OUT residual thermal strain for all RSDE
plies

area.OUT element surface area VAREA

‘i= 1,2,..., number of ply in laminate.

B-1



To run PDCOMP, the user must prepare an input file called pdcomp.inp. This

input file requires laminate data, material properties and parameters for PDCOMP.

Documentation for preparing pdcomp.inp and running PDCOMP can be obtained from

[21].

The user must execute PDCOMP before executing RSDE because PDCOMP

generates the file prsde.OUT that is used as input for RSDE. VAREA is a user friendly

program that calculates element area for flat plates from nodal coordinates and element

connectivity data in the ABAQUS input file.

B.3 ABAQUS Input File Preparation for PDLAM

PDLAM was developed to be used with layered shells (S4R, S4R5, S8R, S8R5, etc.

in ABAQUS). For layered shells, the *SHELL SECTION, *ORIENTATION, and

*MATERIAL commands are used to define the lay-up, layer thicknesses, layer local

orientation, and layer material.

The *USER MATERIAL command tells ABAQUS to use a user defined material

subroutine. The lines following this command are used to provide data to the material
subroutine during the ABAQUS analysis. PDLAM reserves 32 space for data input from
ABAQUS. Table B-2 lists the required data for PDLAM.

The *DEPVAR command tells ABAQUS to reserve space for solution dependent

state variables for the material point. PDLAM reserves 20 state variable spaces. Not all
20 spaces are used.
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Table B-2. Data for PDLAM through ABAQUS input file.

Dataa Description

1 Elx

2 EJJ

3 Vn

4 G,.,

5 XT, longitudinal tensile strength

8 a, shear nonlinearity parameter

9 number of ply

11 number of element

18 A@\Delta \phi, crack density increment

19 6 \delta, fiber interaction length

30 7V\tau_{v], full damping period

31 bO,initial artificial damping level

32 r,, damping ramp down period

‘Unlisted numbers are inactive data.
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