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Abstract

In this report, a study of wave propagation and damping in a fluid loaded Flexural Plate
Wave (FPW) sensor is presented. Previous to this study, it was believed that supersonic
radiation was the dominate mechanism of loss in FPW devices. However, because no pre-
vious theory had been developed to explain finite length effects, this belief was never chal-
lenged. In this paper, it will be shown that the dominate mechanism of damping is not only
due to supersonic radiation, but is also due to a fluid/structure resonance arising from finite
length effects.

The two-dimensional equations of motion for a single port FPW sensor plate are derived
and coupled to the equations of motion for a viscous Newtonian fluid. These coupled
eguations are solved by using a wave number transform approach. This approach captures
dynamics due to source terms at infinity.The resulting solution is comprised of terms
derived by Wenzel, plus additional terms representing diffracted wave dynamics. The dis-
placement field above the plate is then determined by using the Helmholtz integral equa-
tion.
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u,(x), uy(x) - displacement of the plate
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B - magnetic field

B - bulk modulus of fluid

m, - shear viscosity of fluid

m, - bulk viscosity of fluid
r - density of fluid

V, - shear forcein plate
M, - moment in plate

t,y - shear stressinfluid

tyy - normal stressin fluid

Tu .
q = ﬁy - rotation of plate

u, - first perturbation of displacement
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XYy1

T, - first perturbation of tension
- first perturbation of moment

tyy, ” first perturbations of stresses
1
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D - flexurd rigidity
j=.1
w - circular frequency

f - dilatational potential
y - shear potential
k - dilatational wave number

kg - shear wave number
F - wave number transform of dilata-
tional potential
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. h
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X(g) = (‘)x(x)e_j ¥dx - spatial Fourier
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1. INTRODUCTION

In fluid loaded microelectromechanical sensors, damping occurs due to energy losses in
the structure and/or due to energy losses into the fluid. In Flexural Plate Wave (FPW) sen-
sors [1], structural damping is usually small [2] and most energy is lost into the fluid.
Lossesinto the fluid can be due to relaxation effects such as those caused by viscosity and
heat transfer, or can be due to radiation effects such as those due to edge diffraction. In this
paper, a study of damping losses due to viscous relaxation and radiation is presented.

Viscous relaxation occurs in a number of different processes. Two well studied processes
are small amplitude fluid motion around a structure and squeeze [3]. The first processis
similar to that which is found in a tuning fork. After excitation, the tuning fork slowly
loses energy viairreversible viscous air motion around its prongs. This process can be rep-
resented by a lossy non-propagating wave solution. K. Kokubun, M. Hirata, et. a. [4]
developed a*“ string of beads’ model to represent this process, and H. Hosak, K. Itao, et. al.
[2] used Kokubun's model with a squeeze model to model the dynamics of a micro-beam.
Other researchers have aso expanded upon Kokubun's work to calculate damping due to
this process [5].

Another form of damping is radiation damping. Radiation damping is due to propagating
waves which transport energy into an ambient fluid. Y.-H. Cho, B. M. Kwak, €t. al. [6]
developed a model for the fluid damping of a micro comb drive using a radiating shear
wave solution. Their model was an improvement over a simpler Couette-type (non-wave)
model. S. W. Wenzel [7, 8] developed amore complex wave model for viscous damping in
a FPW sensor using a non-radiating solution. This solution can also be used to represent
damping due to radiation. Wenzel assumed that plate dimensionality was infinite, and
therefore, edge diffraction effects were neglected. In this paper, the Wenzel model will be
extended to include these neglected effects. It will be shown that diffracted waves can have
a catastrophic effect on sensor performance.

2. DERIVATION OF EQUATIONS OF MOTION

A single port, Lorentz actuated FPW sensor [8] is modeled. In Figure 1 the FPW sensor is
illustrated. This sensor consists of a thin SIN plate/membrane with a serpentine layer of
gold wire laid back and forth across its length. The SIN plate is supported by a Si base
which produces a clamped boundary condition at its edges. The FPW sensor operates by
exciting a predominate mode of the plate. Excitation of this mode is produced by a

Lorentz force resulting from the interaction of a current, i, with a supplied magnetic field,
B.

Assuming that the length of the SIN plate is long compared to its width and that the
excited mode is comprised of waves with low wave numbers in the length direction, atwo
dimensional analysisis appropriate. Moreover, for high wave numbers in the width direc-
tion, a ssimply supported boundary condition can be assumed. In this paper, less than 7%
error in the natural frequency of the excited mode occurs due to this assumption?.



Using the above assumptions, the complex three dimensional Figure 1 system can be
approximated by a less complex, two dimensional Figure 2 system. The dynamics of this
two dimensional approximation can be solved for in closed form. Thus, it will supply
greater insight into relevant physics.
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S

Figure 1. Anillustration of asingle port
flexural plate wave sensor.

elastic fluid
%T properties I', B, M M,
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infinite dimensionality out of the page

Figure 2. A two dimensional approximation
of the single port sensor.

In the simplified system, the plateis h thick, is L, long, and is comprised of aSIN linear
elastic material with Elastic modulus, E, Poisonsratio, n, and density, r p The plate con-

tains an internal force per unit length, T. A differential element of the plate can move with
x and y displacement, u,(x) , and uy(x) . Current lines run back and forth across the infi-

nite width of the plate. Current, i, interacting with a supplied magnetic field, B, produces
a Lorentz force excitation on the plate. Current is driven by a voltage per unit length, V.
An semi-infinite linear Newtonian fluid with bulk modulus, B, shear viscosity, m,, bulk

viscosity, m, . and density, r , loads the plate.

A differential element of the plate is shown in Figure 3. The shear forcein the plateis V.,
the moment in the plate is M, , the rotation of the plate is q, the fluid shear stress on the

1. Thisassumption was validated by using afinite element analysis.
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plateis Cyy the normal stress on the plate is oy and the tension in the plate is T. Sum-
ming forcesin they direction gives
2
e, ga, o1 _ T4
T T Ity = T &)
y T+ﬂdx

t s

+ —
X fx
X

yy v,
t \% dx
Y
AR
4ﬂ/ Mx+ﬁ dx
T M

X

Figure 3. A differential element of the
plate of the single port sensor.

Summing the moments gives

ﬂM h

Combining (1) and (2) and noting that q = %y gives anon-linear equation of motion for the
plate

2
LTS O B .
lx T2 yy o Tx x p ﬂt

The linearized equation of motion can be determined by perturbation analysis where

u, = uyle, T=T,+T.e, M, = Mxle, tey = thle, tyy = tyy,® and e is a small value.
Substituting these equations into (3) and collecting e order terms gives
2 2 2
i/IX T ﬂ_Uyl —r hEyl — bﬂ_txyl+t (4)
X2 onx* Pt 2fx Y
Using classical analysis[9,10], the moment, M, isrelated to the normal displacement as
2
i u
Y1
M, =-D— 5
X, v ©)
End
where D = . Substituting (4) into (5) and taking the temporal Fourier transform
12(1- n)
gives
Tu ﬂza t
@D 1° Tob_ y1_Wz_y1 ~ _12? hﬂthl'_Sj ®)
‘fr hﬂx rphg ﬂX ﬂtz Tr gyyl 291x ; !



where x = Oxd"'dt, j = /41, and w isacircular frequency.
¥

Equation 6 is the linear equation of motion of a plate driven by an external normal and
shear stress. This equation was derived here to show the inclusion of the shear stress exci-

tation tyy which is usually neglected in most plate analysis [9,10]. The normal stress can

be expressed in terms of a stress due to the fluid and a stress due to the Lorentz force
excitation as

: k-1 2k—1
y, =B A (1) dF-TEL8et 7 (7)
k=1
where tyy isthe normal stresson the plate due to the fluid and d(x) isaDirac delta
f

t

function.

Combining (7) with (6) and decomposing the result into in vacuo modes gives

I‘x

geme

0 _ _) e
qme i g - Pm— 0 sing xodx (8)
p
0
where a_ = L_Xagv 2_2 2 _®D aps?, Tobapg? - _ g A gndP,o
am T 2ée'm —W g’ Wm B grphéLXﬂ q];éLxg ’ Uyl = a mSlnéL 7

m=1

~ ~ it . .
b= = a -1 < glan (2k28 1)8,and 9(x) = tyy, + gﬁxyl. Equation 8 isamodal
k=1
representation of plate dynamics. In the following section, the function g(x) will be rep-

resented in terms of these same modes.

Following Temkin [11], the linearized displacement of the fluid can be represented as
uX|+uyJ—Nf+N y (9

where le and Gyl isthe x and y displacement of afluid particle, i and | arex andy

direction unit vectors, and f andy are potential functions where

2,26 =0 a2 i2 =
gﬁl +kof =0, gﬁl +kgoy =0, (10,11)
2 2
2_W°Co _W2 2 _ w2 _W2
. 0 C (0] c
l—JW_2 | S
3c



2 _B. . .1 3 & M
c, = - isthe acoustic sound speed, n'| = 3?"0”"”03 ,and n = -

o=t IS the specific vis-

—~ |0

cosity. In air, Temkin used the work of Greenspan [12], to approximate the bulk viscosity

. . 2 2 .
of air as m, > 065}, Using the fact that ¢ = ! +r2m and that ¢ = :—n [13], m= —jwm,

: 2 5
and | = B—Jw‘g?q/o - §mog :
Equations 9,10,11 are the equations of motion for the fluid. These equation are coupled to
the equations of motion of the plate by the stress displacement relations
N (VAR VP (V)

' _ ! 1 X U X
vy, = ( +2m){ﬂ_y +ﬂ {)—an , (14)
~qu qm. .
N _ I 77Xy Y1t
'Xyl = 2|TFI\—y +ﬁ z; (15)

and the potential displacement relations

I PR R PR
Jxl_ﬁf+1]—yy’ Jyl—ﬂ_yf Wy, (16,17)

evaluatedat y = O.

3. SOLUTION OF THE EQUATIONS OF MOTION

The equations of motion (6, 9,10,11) are solved by using a wave number transform
approach.

3.1 Solution on the Surface
By definition, the wave number transform of f is

F

F (9) = (\)fN(x)e_j Fax. (18)
-y
In the wave number domain, the solution to equations 10,11 can be written as
F=AdYadY = BEY, (19,20)

where Y (g) isthe wave number transform of y (x), q = /klz—gz and s = kg—gz. Fol-
lowing the derivation by Wenzel [7], taking the transform of equations 3c,d, making the
assumption that uNX(x, y=0) @g%ay(x, y = 0) L and solvi ng for A and B gives

A = js;jgr ad B = J'qu_—igl (21,22)
g +0as g +as

where r = —j gg . Substituting equations 21 and 22 into equations 19 and 20, the result

1. This assumption comes from the derivation of flexural wave motion in a unloaded plate[10]. For
light fluids this assumption is satisfactory, however for heavy fluidsits validity becomes ques-
tionable. Hereit is assumed that the fluid is air.
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into the wave number transform of equations 16 and 17, that result into equation 14 and
15, that result into the wave number transform for the expression for g(x) , simplifying
and neglecting small terms gives

G _..2 _s
S = W (23)
Uy(g, y=0) g +sq

where G(g) isthe wave number transform of g(x) and Oy(g) is the wave number trans-
form of ay(x) . Since ay(x, y = 0) can be expressed in terms of the of the in vacuo modes of
the plate and the wave number transform isalinear operator, Oy(g, y = 0) can be expressed

in terms of the wave number transform of the in vacuo modes of the plate. Representing
Oy(g, y =0) interms of in vacuo modes, solving for G(g) and inverse transforming gives

2 ¥
a(x) = —"";— a Aqlig(n 01" x-L)], (24)
n=1
¥ J_J —Jox

Sge

where 14(n,x) = (‘)
5 2
9 )

11(n,x) can be solved by using a contour integration. The poles of theintegrand of 1(n, x)

S1_ and the branch integrations

are shownin Figure 4. Theintegral, 11(n, x), can be determined from a contour integration

Im(g)

increasingwscous damping
propagation of root with

increasing viscousdamping
propagation of root

Figure 4. Contour integration used to calculate 11 (n, x)

over the upper or lower half of the g plane. The use of the upper or lower half is depen-



dent upon the convergence of Gg¢ and Gg2 branches. Computing the integral of the

1(n x) integrand over the Gg¢ branch, lettingg = lim Re'd , and noting that

R® ¥

- - K+ K
lim (RPe?+ I2—R%'% IZ—R%'?% = = jives
RI®¥( 4/ «/I ) 2 g

p F /k§ 3 Rze| qu—j chosqest ng
X

\

lim O Rie'9dg®

R® ¥ i200 i
6%@_0 —R2e|2q+§?€2e|2q+A/k2 2 Iqu/k R2 |2q0
eL N pre S

Computing the integral over the Gg2 branch gives

2p F /k§ 3 Rze| qu—j chosqest nqg

Y X

lim Rielqdq®

R® ¥ a%m_ 2 12002 i2 2 22 2 22
o] 12q 12q 12q 1205
erLﬂ -Re ;a?eé e +«/ks_Re «/kI_Re p

Therefore, the lower set of branches can be used to evaluate Tl(n, x) for x>0 and the

upper set of branches can be used to evaluate Tl(n, x) for x<0. The integration around
other branches is calculated using standard techniques [14]. Substituting the result for

11(n,x) into (24) gives

¥ for x>0
0 for x<0O

0 for x>0
¥ for x<0

I i
i i [&éE
| I -] 5 2X
| 1 c (n)e kS+kI
i i
i [ 2
| | 22
| ) ksk X
¥ I o J 242

11 ag_e u I s

~ o 7 11 Cy(n)sing Xofor O<x<L, i i C,(n)e

509 = & Anjt 1" Xy*i X
i T

n=1 i1 0 otherwise p i | ;sklz(x_l_x)
! I K +ki
| I ~-1)"Co(ne
! I 272
i i KoK
I i j 5(x-Ly)
! | kS + ki
I i —(-1) "Co(n)e
i i
where




The bracketed expression in (25) is the solution for the force on the plate due to the exci-

tation of the n" in vacuo mode. Notice that the first term in brackets s the result of Wen-
zel. The second set of terms in brackets are due to edge diffraction. Substituting (25) into
(8) gives

aeALnb - b 2 &AN_n('j 26
méi o Pm* A ‘méi g (26)
n=1
where
i 2.2 {
i i kskl ai
i mp i - LTl
1 : L L : m+n n m kg * kI2 X':' :
p'i 2 KK 0
| Py __S | i L
i eL.e 2 2l i
i X7 kK IO;
(27)

A matrix solution can be used to solve (26) for Am wheren = 1, 2, 3%. Thissolution can
then be used to solve for the impedance of the electrical system,

1 F

o o dm 21 o I
=R & gLy (8)

l=1m=1

3.2 Solution in the Domain

In the above subsection a wave number transform method was used to determine a closed
form solution for g(x) on the surface of the domain. If this same transform method were
used to determine the solution in the domain, a branch cut would have to be made in Fig-
ure 4 which would require the numerical evaluation of a difficult integral. This difficulty
can be avoided by the evaluation of potential functions on the surface of the domain, the
use of the two-space Helmholtz integral equation, and the use of (9).

Using the method described in subsection 3.3, f(x, y=0), Y (X,y = 0), 1T_yf(x,y =0), and
%37 (x, y = 0) can be determined. These functions are given in the Appendix. The two-space

Helmholtz integral equation can then be used to determinef (x, y) andy (X, y). For f (x, y),
Helmholtz iswritten as

f(xy) = é);G(k|. % YIXg Yogyf (%Y = 0) =g Gl X, ¥ixg, Yo)f (x.y = mgde (29)
G

where G(k;, x, y|xy, ¥,) = —i—lHol(kI R), R = A/(x—x0)2+(y—y0)2 and where G represents a

contour extending along the surface of the plate, out to infinity and back. Since the Som-
merfeld radiation condition [15] is not satisfied in two space acoustics, (29) cannot be
used to solve for sources at infinity. The effects of sources at infinity were included in the
wave number transform solution. Equation (29) will only be used to map information



from the surface of the domain, into the domain. Since lim H$® 0, thismapping islocal.
X® ¥

For y (X, y) , Helmholtz is written as

Y 06) = @ Glky X Yixg Yo)goy (%Y = 0) = gLGlkg X Y[xg Yly (Y = O)gdG’ (30)
|
G

_ i 1 _ 2 2 . 1z
where G(kx y|x, y,) = ~2Ho (kR and R = A/(x—xo) +(y-Y,) - The functions Wf (X,Y)

and %37 (x, y) can be determined by taking the spatial derivatives of (29) and (30), and Uy,

and u, can be determined from (9).

4. NUMERICAL RESULTS

In this section, the equations of motion will be solved for an air loaded SiN plate. The
properties of the plate and air are given in Table 1. The tension in the plate was adjusted
such that the excited mode always had a natural frequency of 0.406 Mhz. To study the
mechanisms by which the plate loses energy to the fluid, the length of the plate was var-
ied. As the length of the plate was varied, the sound speed of waves in the plate was
altered by an associated variation in tension. Plate sound speeds were sub-sonic, super-
sonic, or sonic to waves in the fluid. The major damping mechanism in the plate was that
due to a resonance in both the fluid and the structure. This resonance occurred when the
waves in the plate were sonic to diffracted waves in the fluid.

This resonance can be seen in (25). The first term in the outer brackets of this equation is
the forced excitation response. Notice that the C; coefficient in front of the this term is
Wenzel’s expression for fluid loading. The second set of terms represent loading due to
edge diffraction. These terms are proportional to C,. In Figure 5, the coefficients, C;

Tablel
Flexural plate wave material, electrical and geometric properties
SIN electrical
, value : value
properties properties
E 0.27 N amm? B 7.78 x10”" N o(A xmm)
p 2.95x10"4 kg xm o’ R 7.87 107 Wa(nm)
n 0.24
e ——
& BTN value ar. value
properties properties
L 2000 nm B 214x10" N o
h 1mm r 1.77 x102* kg xm o’
m 1.85 x10 " kg arm xs




and C,, are evaluated verses c, ocy where ¢, isthe sound speed of awave in the plate and

22
kskl

. Near the sonic con-

Cy isthe sound speed of adiffracted wave with wave number | ——
k. +k
s

dition, edge diffraction dominates plate loading (\Cz\ is big). Above and below the sonic

condition, both C, and C, are small. This represents the response of a resonance condi-
tion.

Figure 5. Relative contribution of response due to
Wenzel’sterm and due to edge diffraction.

In Figures 6, 7, and 8 the impedance response of the fluid loaded FPW for sub-sonic, sonic,
and super-sonic waves in the plate is shown. Also shown in Figures 6, 7, and 8 are the
impedance

MAGNITUDE

PHASE

[T L nofluid loading - -

1.0

)

%OO

=R
-0.5

00 : y ) ; -1.0 - : : : -
0.405 0.406 0.407 0.408 0.405 0.406 0.407 0.408
Frequency (MHz) Frequency (MHz)

Figure 6. Calculated impedance of fluid loaded and unload sensor for sub-sonic waves
inthe plate. ¢, 7y = 0.336 .
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MAGNITUDE

0.040

(2]
£
£ 0.020

volts

0.010

0.030[ - -7---

PHASE

- - -k - -1 nofluidloading - -
| , .

}/withhuid loading -

0.000

0.405

0.4

06

0.407
Frequency (MHz)

-1.0
0.408 0.405

N e
L A N e I
0.406 0.407 0.408
Frequency (MHz)

Figure 7. Calculated impedance of fluid loaded and unload sensor for sonic wavesin
the plate ¢,y = 1.00

MAGNITUDE

0.040

0.030

volts
amps

0.020

0.010

PHASE

|
|

0.000

0.405

0.406

0.407
Frequency (MHz)

-1.0
0.408 0.405

0.406 0.407
Frequency (MHz)

0.408

Figure 8. Calculated impedance of fluid loaded and unload FPW sensor for super-sonic

waves in the plate. Cp oy 7 1.34

responses of the FPW without fluid loading. If the viscosity of the fluid were zero in any
condition, the fluid loaded and unloaded responses would be similar. Therefore, the domi-
nate mechanism of damping into the fluid is not due to radiation but due to viscous relax-

ation. At fluid/structure resonance, thislossis the greatest.

The displacement field above the plate can be determined from (29) and (30). Figure 9,10,

and 11 show the displacement in the fluid for sub-sonic, sonic, and super sonic conditions.

Notice the ordinate changes between each plot.
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Figure 9. Particle displacements in the loadmg fluid for sub-sonic wave propagation
in the plate relative to the diffracted surface wave. p /ey = 0336 .
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Figure 10. Particle displacements in the loading fluid for sonic wave propagation
in the plate relative to the diffracted surface wave. ¢p/¢g = 100 -
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Figure 11. Particle displacements in the loadmg fluid for super-sonic wave propagation
in the plate relative to the diffracted surface wave. €,/¢g = 1.34
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5. CONCLUSIONS

In this paper, anew model representing the mechanisms of radiation and viscous relaxation
in afluid loaded Flexural Plate Wave (FPW) sensor was presented. From this model, it was
determined that when the wave number of the FPW plate is close to the wave number of a
diffracted surface wave, a fluid/structure resonance exists which produces substantial
energy loss from the structure. This mechanism of viscous loss has not been sited in the
previous literature. It is a new understanding of the limitations which bound the operation
of FPW devices.

Previous to this, it was believed that supersonic radiation was the dominate mechanism of
damping in these devices. Because no previous theory had been devel oped to explain finite
length effects, this belief was never challenged. In this paper, it was determined that the
major mechanism of loss into the fluid was not due to supersonic radiation, but due to a
fluid/structure resonance.
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APPENDI X

In this appendix expressionsfor f (x,y = 0), y (X,y = 0), 1]1yf~(x, y =0), and ﬂlyi (x,y = 0)

are presented. These expressions were derived using a wave number transform approach.
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