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Abstract 

A contact enforcement algorithm has been developed for matrix-free quasistatic finite element 
techniques. Matrix-free (iterative) solution algorithms such as nonlinear Conjugate Gradients 
(CG) and Dynamic Relaxation (DR) are distinctive in that the number of iterations required 
for convergence is typically of the same order as the number of degrees of freedom of the 
model. From iteration to iteration the contact normal and tangential forces vary significantly 
making contact constraint satisfaction tenuous. Furthermore, global determination and 
enforcement of the contact constraints every iteration could be questioned on the grounds of 
efficiency. This work addresses this situation by introducing an intermediate iteration for treat
ing the active gap constraint and at the same time exactly (kinematically) enforcing the linear
ized gap rate constraint for both frictionless and frictional response. 



Nomenclature 
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anti) 
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v 
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tN 

tT 

gN(X, t) 

gT(X, t) 

* cp 

H(~,CP) 

Hc(~' cp) 

d(t) 

pint 

Pc 

pext 

Ad(t) 

'\.)' 

motion of body i 

local reference configuration of body i 

surface of body i on which contact is expected 

surface of body i 
material point (location) on body 1 
material point (location) on body 2 
time 

gap function 

outward normal vector 

Piola traction 

contact pressure (normal traction) 

contact tangential traction 

normal gap 

tangential gap 

normal gap rate 

tangential gap rate 

Coulomb friction coefficient 

instantaneous material volocity at X 

admissible material variation of body's motion 

sum of internal and external virtual work 

contact virtual work 

unknown solution vector i.e. the discrete form of cp 

internal force vector due to the stress divergence 

contact force vector 

applied force vector 

unknown incremental solution vector 

unit normal at node i 

discrete normal gap 

discrete tangential gap at node i 
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d N 

d T 

rj(.Mi t )) 

Sj 

M-1 

I3j 

u j 

e 

transformation matrix from Lld(t) to the discrete normal gap at node i 

transformation matrix from Lld( t) to the discrete tangential gap at node i 

number of discrete constraints 

residual vector 

conjugate gradient search direction for iteration j 

conjugate gradient diagonal preconditioner 

conjugate gradient Gramm Schmidt constant 

conjugate gradient line search parameter 

residual force convergence tolerance 

gap penalty 

gap rate penalty 
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1 Introduction 

Finite element implementations of contact problems have appeared frequently in the 
literature, (e.g. [1-4]), and have traditionally emphasized problems amenable to quasistatic 
and implicit dynamic frameworks using direct (matrix) solution methods. In such treatments it 
is typical to define a contact constraint wherein the contact force is conjugate to the approach, 
or gap, between opposing surfaces. Among the most recent methods applied to enforce the 
contact constraints is the method of Augmented Lagrangians (e.g. [5,7]) which is able to 
circumvent ill-conditioning while still providing accurate constraint enforcement. 

The distinctive nature of an iterative (matrix-free) solution methodology, on the other hand, 
motivates this investigation. Although several contact treatments have been presented for 
explicit transient dynamic applications (e.g. [8,9]) the focus here is on explicit quasi-static 
applications. Algorithms such as nonlinear Conjugate Gradients and Dynamic Relaxation are 
examples of explicit iterative solvers. They typically require a significant number of iterations 
for convergence particularly for nonlinear applications. In this setting, the contact normal and 
tangential forces vary dramatically from iteration to iteration making constraint satisfaction 
tenuous. Furthermore, although global determination and enforcement of the contact 
constraints every iteration has been demonstrated in SANTOS [10] and JAC3D [11], the 
efficiency of this approach could be questioned. This work addresses these shortcomings by 
introducing an intermediate iteration for treating the active gap constraint and at the same time 
exactly (kinematically) enforcing the linearized gap rate constraint for both frictionless and 
frictional response. 

The application of the proposed algorithm is in JAS3D [12] a general purpose code developed 
at Sandia National Labs for the solution of nonlinear solid mechanics problems. It has both a 
nonlinear Conjugate Gradient and a nonlinear Dynamic Relaxation solver. In the work that is 
presented here, the focus is on the nonlinear Conjugate Gradients solver, with application to 
Dynamic Relaxation being straightforward. 

Section 2 presents the formulation of the general contact problem with specialization to 
Quasistatics in Section 3. Following a summary of the Conjugate Gradient algorithm in 
JAS3D, a detailed description of the choices for contact constraint enforcement is given in 
Section 4 including the presentation of the proposed algorithm. Finally, Section 5 presents 
example problems that demonstrate the effectiveness of the proposed algorithm. 
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2 Problem Formulation 

Contact constraint definition 

Consider the motions <pCl) and <p(2) of two deformable bodies, denoted in their reference 

configurations by n(1) and g<2) , and select r(1) c ad1) and r(2) c ad2) to include all 

prospective contact points over the time interval [O,T]. Choosing any material point 

X e r(1) , the gap function g is defined with respect to r(2) as: 

g(X, t) = min(2)llcp(1\X) - cp(2)(y)IIsign(g) (1) 
Yer 

where 

. () {-I if qP(X) lies in the interior of qf2)(d
2», sIgn g = 

1 otherwise 

Figure 1. Motion of two bodies and definition of the contact gap 

The material point of r(2) satisfying the minimization of (1) is denoted as VeX, t) , as 

shown in Figure 1. The contact pressure acting on the point X is written as 

tN = -tv (positive if compressive) 

and the contact tangential traction acting on the point X as 

tT = -t(l-v) 

where t is Piola traction acting at X and v is the outward normal at 
the normal and tangential gaps are written as: 

gN(X, t) = v • g(X, t) 

gT(X, t) = (1- v) • g(X, t) 

8 

(2) 

(3) 

(4) 

(5) 



With these notations, the contact constraints to be enforced for all X E r(l) and for all 

t E [O,T] are summarized for frictionless response as: 

gN<::O 

tN <:: 0 

tNgN = 0 

tNgN = 0 

Graphically, these normal contact constraints are shown in Figure 2. 

Figure 2. Graphical representation of normal contact constraints 

which are shown graphically in Figure 3. 

Figure 3. Graphical representation of tangential (frictional) contact constraints 

(6) 

(7) 

Notably, the persistency condition, i.e. tNg~ = 0 in (6)4 and tTg·T = 0 in (7)z is ordinarily 

not used in traditional direct solution implementations but becomes particularly useful for 
matrix-free iterative solution techniques. Finally, it is noted that the material time derivative of 
the gap functions can be evaluated without approximation as: 
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g~ = v • (V(l)(X) - V(2\y» 

iT = (I - v) • (V(l\X) _ V(2)(y» 

where V(l) (X) and V(2) (Y) are the instantaneous material velocities of X and Y, 

respectively. Linearity of both g~ and g·T in the respective material velocities is useful 

computationally as will be seen later. 

Variational principle 

(8) 

Integrating the weighted local momentum balance in each body and combining, one can show 
that the following variational principle holds for the two body system (see e.g. [6]): 

(9) 

where <p is the collection of the <p (i) and ~ is an admissible material variation. H(~, <p ) is 

the sum of the inertial virtual work and the virtual work of the specified boundary tractions 

and body forces, and includes contributions from both bodies. Hc(~' <p ) is the contact virtual 

work, which has the following form (with a contribution from both normal and frictional 
response): 

(10) 

where ogN and ogT are the directional derivatives of gN and gT in the direction of ~, i.e.: 

ogN := d~L = JgN( CP + o:~)] 
and (11) 

It is noted that tN and tT in (10) are subject to constraints (6) and (7), respectively. 
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3 Numerical Implementation: Quasistatics 

Application of the finite element method to the variational principle summarized by (9) gives 
rise to the following set of nonlinear equations: 

pint(d(t» + Pe(d(t» = pext(t) (12) 

which holds for all t E [O,T]. In equation (12) the inertial force tenn has been omitted 

(quasistatic assumption) but t still serves as the load step indication, d(t) is the unknown 

solution vector i.e. the discrete fonn of cp, pint is the internal force vector due to the stress 

divergence, P e is the contact force vector, and pext is the applied force vector. Typically, 

nonlinear problems will require load steps, in which case (12) becomes 

pin\d(t-L1t)+~d(t))+Pe(d(t-~t)+~d(t)) = pext(t) (13) 

where now d( t - L1t) is the known solution and ~d(t) is the unknown incremental solution. 

Because of the temporal and spatial discretization, the contact constraints are assumed to 
apply to nodes on one surface and finite element faces on the other at specific times during the 
solution. In this case, the discrete fonns of the gap functions are: 

i i A i i 
gN = 'l) • (nd (t) - L1de (t» 

iii i 
gT = (l-'l).(L1d(t)-~de(t» 

(14) 

where i denotes a particular surface node (called a slave node) with incremental motion 

~di( t) , which is contacting a point on the opposing surface with incremental motion L1de i( t) . 

Almost always this point requires interpolation of the nodal quantities defining the discrete 
representation of the surface (called a master surface). 

It will be convenient, then, to write equation (14) as: 

g~ = G~L1d(t) 

g~ = G~L1d(t) 
(15) 

where G~ and G~ include the interpolation, differences and orientation required (when 

multiplied by ~d(t» to provide the discrete gap at node i. Combining all G~ and G~ gives: 

~N = GNL1d(t) 
(16) 

which are the nonna! and tangential neon -vectors of the discrete constraints. 
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At this point the iterative solution methodology can be considered. Although a description of 
the Conjugate Gradient (CG) algorithm is given here, it is not intended to be a review of the 
theory. A well presented review of the theory and concepts behind linear CG can be found in 
[13]. Also in [13] is some discussion of nonlinear CG including other references on the 
subject 

Conjugate Gradient Iterative solution 

The CG algorithm of interest, Preconditioned Nonlinear Conjugate Gradients with Secant 
Method and Polak-Ribiere, can be summarized as follows (further details can be found in 
JAC3D [11] and JAS3D [12]) : 

introduce the CG iteration counter j , and for j = 0, max iterations 

Compute the residual, 
ext int ( rj(Adj(t» = F (t) - [F (d(t-At) +Adj t» +Fc(d(t-At) + Ad/t))] 

Compute the conjugate search direction, 
-1 A 

Sj+1 = M rj+PjSj 

where M is the Jacobi diagonal preconditioner and the Gramm Schmidt constant is 
based on the Polak-Ribiere formula: 

{ 
(
roTM-\ro-ro_1») 

max J J J 0 
A _ T -1 ' 
Pj - rj _ 1 M rj-1 

o 

Compute the incremental displacement, 

Adj + 1 = Adj + CtjSj + 1 

j>O 

j = 0 

where the line search parameter minimizes the residual along the search direction using 
the Secant Method: 

Convergence is obtained when rjCAdj(t» ~ e ,and AdjCt) is the desired solution. 
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4 Choices for Constraint Enforcement 

The basic issue in constraint implementation is whether to directly enforce the gap constraint 
tNgN = 0 (equation (6h), the gap rate constraint i.e. the persistency condition tNgN = 0 

(equation (6)4)' or some weighted average of both. Use of the displacement penalty parameter 
and/or the velocity penalty to enforce (6h and (6)4 has been explored by [9] and can be 

achieved in the current iterative scheme by expressing Fe via: 

d T v T 
Fe(d(t-Llt) + LldjCt)) = eNGN GNLld/t)+eNGN GNSj + 1 (17) 

which is the sum of a gap penalization (using e~ ) and a gap rate penalization (using e~ ). 
Recall that GN is an neon X neq matrix, generally depending on tl1e deformation, which 

multiplies Lld/t) and Sj + 1 to produce an neon - vector ofthe discrete normal constraints, 

see equation (16). For notational simplicity, tlris vector is assumed to contain zero entries for 
tl10se constraints which are not currently active. The vector is tl1en penalized to obtain normal 
contact forces. Note tl1at tl1e matrix GN in (17) is the same for both kinematic constraints; this 

is a direct consequence of equation (8). 

Algoritl1m 1 summarizes CG witl1 displacement penalty only, where it is seen tl1at the 
constraints at the known iterate j are penalized. As noted in [4], tlris makes tl1e Lagrange 
multipliers singular. 

Algorithm 1: CG with displacement penalty - frictionless 

Experience shows this the case to be as well, i.e. the displacement penalty method by itself is 
ill-conditioned when seeking accurate contact enforcement and is particularly true in the CG 
iterative framework. A stiff penalization combined witl1 the line search (Alg. Ih consistently 

overpredicts tl1e contact force resulting in loss of contact. Yet, a soft penalization that 
underpredicts tl1e contact force combined with tl1e conjugacy of the CG search directions (Alg. 
Ih will be extremely slow to converge. Handling of tl1e tangential constraint is even more 

difficult since neither tN or tT in equation (7h is well defined during tl1e CG iterations. For 

the moment, without further numerical treatment, tl1e gap constraints will remain difficult to 
satisfy. The proper treatment of the rate constraints, however, will lay the necessary 
foundation for tl1eir eventual treatment. 
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Gap Rate Constraints - Normal Constraint 

The rate constraint can be effectively implemented with some numerical approximation. To 
show this, the CG algorithm with velocity penalty is written in a Langrange multiplier form as 
Algorithm 2. 

Algorithm 2: CG with velocity penalty - frictionless 

ext int T ~ nor 
r/~d/t)) = p (t)-[P (d(t-At)+Adj(t))+GNJI.,j ] 

Solving Algorithm 2 for Ar
r 

yields: 

G M-IGT ~ nor G R _ pext pint 
N NJI.,j - NPjSj - - j (18) 

where the simplified notation plnt = pint(d(t - At) + Adj(t)) 

been adopted. The coefficient matrix [GNM-IG~] on the left hand side of (18) is not in 

general diagonal. This is troublesome in practice, yet the real difficulty with (18) stems from 
the Gramm Schmidt constant's dependence on the Lagrange multipliers, i.e.: 

T 
~. = rj (rj-rj_l) 

J T 
rj -1 rj_l 

(19) 
__ [pext _ ~nt _ G~Ajor] T[(F~nt _ p~n~l) + (G~Ajor _ G~Aj~r1)] 

- [pext _ p~nt _ G TA~or ]T[pext _ p~nt _ G TA~or ] 
J-1 N J-1 )-1 N J-1 

where it is now evident that (18) also contains a polynomial in the Lagrange multipliers Ajor. 

Practically, this makes (18) unsolvable in the iterative setting since the solution of the tightly 
coupled system would be prohibitive every CG iteration. 

Numerical approximation to Algorithm 2 is possible with a specialization of the rate constraint 
to one-sided contact (so called master-slave contact) such that the difficulty of directly solving 
equation (18) is addressed. 

14 



Specialization to one-sided contact 

Specialization of Algorithm 2 to one-sided contact is made by writing the rate constraint (Alg. 
2)4 with its slave and master contributions: 

(20) 

and assuming a solution to (Alg. 2h as: 

S s ext int T ~ nor o = GNrj = GN(F - Fj - GN(Jl.j )trial) (21) 

Combining (20) and (21), one can show that 
. T 

GS (Fext _F.IDt) = GS (Gs ) (Anor). = (A~or) . N J N N J trIal J tnal (22) 

where taken advantage of in (22) are the useful properties of G~ and G~ : 

s m T 
GN(GN) = 0 (23) 

neon X neon 

and 

ssT 
GN(GN) = 1 (24) 

neon X neon 

Interestingly, a physical interpretation of (22) is seen in Figure 4: 

~ nor Figure 4. Physical interpretation of the Lagrange multipliers (Jl.j )trial 

where is seen that only one side of the contact is considered (namely those constraints defined 

on Body B). The trial solution for the contact forces (Ajor )trial are a direct result of the stress 

divergence at the contact surface nodes of the slave Body B alone. 
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Substituting result (22) into (Alg. 2h, the residual at the jth CG iteration can be computed as: 

r.(lid.(t» = pext_p.int_(GN)TGNS (pext_p.int) 
J J J J 

(25) 

Because of assumption (21), the search direction must now be augmented to include slave 
node contributions, i.e.: 

( -1 /3 S s· 1 = M r·+ ·S·)+SJ·+1 J + J J J 

where SSj + 1 is found using the kinematic constraint, equation (20): 

ssT m -1 
S j + 1 = -(GN) GN(M rj + /3jSj) 

(26) 

(27) 

Note that the slave node degrees of freedom are now explicitly determined, and the resulting 
algorithm is no longer a penalty method. Summarizing, the CG algorithm with frictionless 
velocity constraint (Alg. 3) is written as: 

Algorithm 3: CG with kinematic velocity constraint and one-sided contact - frictionless 

s· 1 = -(GN ) GN (M r· + /3.s.) [ 
1 sT mJ -1 

J+ n xn J JJ 
eq eq 

Gap Rate Constraints - Tangential Constraint 

The tangential rate constraint is applied analogously to the normal rate constraint, i.e. 
assuming a sticking condition (Alg. 2h is written as: 

ext int T ~ nor T ~ tan 
rj = P - (Pj + GNl\;j + GT(l\;j )stick) 

And again making the one-sided contact assumption, equation (28) is written as: 
S S ext int T ~ nor T tan o = GTrj = GT[P - (Pj + GNl\;j + GT(A.j )stick)] 

from which (A.rn)stick can be found as: 

16 

(28) 
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(30) 

The stick - slip discontinuity in the contact force can now be considered: 

tan j (A.r')stick if (A~)stick:::; /lAjor 
A- = 

J tan nor _ tan nor 
(Aj )slip = /lAj if (Aj )stick> /lAj 

(31) 

where Coulomb friction is assumed to hold. Finally, the search direction must be modified for 
sticking conditions: 

sj~C~ = {_(G~)TG:;-(M-\ + ~jSj) if sticking (32) 

o otherwise 

Summarizing, the CG algorithm with kinematic velocity constraint and one-sided contact 
(Alg. 4) is written as: 

Algorithm 4: CO with kinematic velocity constraint and one-sided contact - general 

[ 
1 T s] ext int T ~ tan r-(Ad-(t» = -(GN ) GN (F -P- )-(GT) 1\,-

J J n xn J J eq cq 

[ 
1 sT mJ -1 R stick s- 1 = -(GN ) GN (M r- + p-s-) + s- 1 

J+ n Xn J JJ J+ 
eq eq 

Gap Constraints 

Remaining now is the treatment of the normal and tangential gap constraint. Consideration of 
the displacement penalty during the CG iterative process was shown to be problematic 
because of its interaction with the CG methodology. Yet, with the gap rate constraint treatment 
(Alg. 4) as a foundation, the gap constraints can now be effectively considered. 

17 



Intermediate Iterations with Rate Constraint Linearization 

It is proposed that the normal and tangential gap constraint be treated with the introduction of 
an intermediate iteration to (Alg. 4) - where the normal gaps are kinematically removed and 
some amount of frictional slip is allowed if required. This is accomplished in a loop around 
the CG algorithm and an incremental kinematic prescription of the gap removal, i.e.: 

T 
L1dk + 1 = L1dk + L1dj * + f3NGNGN( d(t - L1t) + L1dk + L1dj *) (33) 

for the normal gap constraints. In equation (33), the second iteration counter k is the gap 

enforcement loop, L1dk is the accumulated displacement increment for the kth intermediate 

solution, L1dj * is the displacement increment for the current (k + 1) th intermediate solution, 

and f3N is a pushback factor, i.e. 0 < f3N ::;; 1 on the normal gap. A graphical depiction of this 

treatment is shown in Figure 5. It is seen that after a kinematic removal of a portion of the 
normal gap (horizontal lines), the rate constraints alone are active during the CG iterations 

* (vertical lines); note that the CG algorithm converges at iteration j = j . 

k=j.l 
k=2 

.. * ,.-0 
J=J 

k=1 j=1 

Figure S. Incremental enforcement of normal gap constraint 

The tangential gap constraints are treated in a similar manner, i.e.: 
-1 s T tan 

L1dk + 1 = L1dk +L1dj*+aM (GT) (f3Tr
k ) (34) 

where a is the line search parameter, f3 T is a allowable slip factor, i.e. 0 < f3 T ::;; I , and r:n is 

the residual tangential force unbalance, i.e. 
tan • [0 (s s ext int rk =mm , GT-IlGN)(F -Fj *)] (35) 

As shown in Figure 6, the tangential constraints are also gradually enforced. The frictional 
slip (horizontal lines) is determined from a line search along the steepest descent direction 

M-1(G~) T (f3Tr:n), and the rate constraints are active during the CG iterations while 

assuming sticking conditions (vertical lines), i.e. 

18 



A~ = (A~n) . k = G
T
s (pext _p.int) 

J J stic J (36) 

Importantly, equation (36) avoids the stick-slip decision during the CG iterations and allows 
the gap constraints (nonnal and tangential) to be enforced properly without interacting with 
the CG solution methodology. 

• -
Figure 6. Incremental enforcement of the tangential gap constraint 

The importance of this approximation can be understood by considering the behavior of the 
frictional constraint from iteration to iteration. It is seen in (Alg. 4) that a stick-slip decision is 
made based on the external forces and internal forces every iteration. However, the stress field 
is not yet in equilibrium and in some cases the external forces are still changing (i.e. in the 
case of an applied pressure). This can lead to errors in satisfying the frictional constraint since 
the slip is irrecoverable in a kinematic treatment. 

Algorithmic Efficiency 

This approach has an additional benefit via linearization of the active rate constraints. Rather 

than updating G~ and G~ (global degree-of-freedom to constraint transfonnations) every 

CG iteration j , they are held fIxed until equilibrium. Recognizing that this is an intennediate 

equilibrium anyway (due to possible additional nonnal or tangential gap removal), (G~)k 

and (G~)k are updated (to (G~)k+l and (G~)k+l ) and another equilibrium confIguration 

is sought. The updates k = 0, 1, 2, ... naturally converge when the residual after an update is 
below the user specified amount. The algorithm can be summarized in Algorithm 5. 
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Algorithm 5: CG with displacement penalty, kinematic velocity constraint and one-sided 
contact - general 

introduce the gap constraint enforcement loop counter k, and for k = 0, 1,2, ... 

where Adk = 0 = 0, and (Adj*)k is detennined by introducing the CO iteration counter j, 

and for j = 0, 1, 2, ... 

Compute the residual, 

Compute the conjugate search direction, 

[ 1 sT m s T mJ -1 s· 1 = -(ON) ON - (OT) 0T (M r· + ~.S.) J+ n xn J J J 
eq eq 

where M is the diagonal preconditioner and the Oramm Schmidt constant is based on 

( 

T -1 ) r· M (r·-r. 1) 
the Polak-Ribiere fonnula: ~j = max J T J_

1 
.J - , 0 (with ~o = 0) 

rj_l M rJ-l 

Compute the incremental displacement, Adj + 1 = Adj + UjSj + 1 

where the line search parameter minimizes the residual along the search direction using 
T 

r· s· u. = J J 
J T T 

rj(Adj +sj +1)sj-rj Sj 
the Secant Method: 

Convergence of the CO algorithm is obtained when rj«Ad/t))k)::::; e , and 

(Adj*(t))k = (Ad/t))k is the desired solution. 

Convergence of the gap enforcement loop is obtained when rj = o«Ado(t))k+ 1)::::; e and 

Adk* = Adk(t) is the desired solution. 

20 



5 Numerical Examples 

Two examples are provided to demonstrate the important aspects of the proposed algorithm. 
Namely, that the extremely non-linear stick-slip frictional phenomenon can be robustly treated 
and that the efficiency of the contact constraint enforcement benefits from the constraint 
linearization. 

Frictional Stick-Slip Example 

The following problem is proposed by [14] and is solved here because of the analytical 
solution available (with small strain, one dimensional assumptions). As shown in Figure 7, it 
consists of a flat bar sliding against a rigid foundation. The loading is sequenced in the 
following manner. First, a vertical deflection of the top of the bar is prescribed such that the 
contact surface can support a tangential traction. Second, as a result of an applied load, p, the 
bar is gradually stretched causing progressive slipping along its length. 

The bar has a length L = 20, a height h = 2, a thickness t = 1 and is meshed with 40 
elements along its length, 4 thru its height and 4 thru its thickness. The elastic material is 
assumed to have the following properties: Youngs modulus E=10000 psi and poisson's ratio 
v =0.0. Unless explicitly stated otherwise, the force convergence tolerance used in obtaining 

these results was e =0.005. 

0.004 

0.0 f-.,.------rl~ 
0.0 0.Q1 1.0 

time (non-dimensional) 

35.0 

0.0 +-+------rl~ 
Figure 7. Bar sliding against a rigid foundation 0.00.01 1.0 

time (non-dimensional) 

The normal and tangential tractions for various times (several applied loads p) are shown in 
Figures 8 and 9 respectively. It is seen that the applied vertical deflection results in a nominal 
normal contact traction of 20 psi, although there is some two dimensional effect. The two 
dimensional effect is a result of the pressure "following" the non-planar deformation of the 
initial straight cross-section. 

Notice that the tangential tractions are converged to that supported by the normal traction. 
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Figure 8. Contact normal traction along bar at various times 
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Figure 9. Contact tangential traction along bar at various times 

Figure 10 is presented to indicate the quality of the constraint satisfaction that can be 
achieved. The frictional constraint satisfaction is shown to converge from "above" (that is to 
say it is always higher than that supported by the normal traction) as the convergence 
tolerance is progressively made smaller, in this case e =0.05, 0.005, and 0.0005. This is a 
direct result of the slave node stiffness being higher than the stiffness corresponding to any of 
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the overall structural defonnation modes. Thus, the amount of slip is detennined based on the 

slave nodal stiffness M-1 (,1slip = G~aM-l (G~) T r:' ) and is always conservatively 

predicted. 
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.~ 

~ 2.05 

<a 
.~ 

= 4) 

§ ... 
t) 2.00 

~ 
u 

G--El e= 0.05 
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~e=0.0005 
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o Distance along Bar [in.] 20 
Figure 10. Tangential traction for various force convergence tolerances at t=0.5 

Figure 11 shows the accumulated axial slip at the end of the bar as a function of time. The 
comparison between the analytical solution and the numerical solution appears acceptable. 
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Figure 11. End-point horizontal displacement 
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A more precise comparison can be made by looking at the axial slip along the length of the 
bar. Figure 12 shows the accumulated axial slip at various times. It is seen that the proposed 
algorithm (Alg. 5) solves for the slip/no slip boundary (i.e. at time t=0.3 the slip/no slip 
boundary is located at approximately 12.5 in. along the length of the bar). 

......., 

.S ....... 
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'" <a ..... 
~ 

0.05 IF---r---r-....,.....--.---.---.-"""T""-~ 

0.04 
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0.0 
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analytical JAS3D 
- 0 t=O.1 
- c t=0.3 

¢ t=0.5 
A 

-- <2 

t=0.7 
t= 1.0 

Distance along Bar [in.] 20 

Figure 12. Accumulated axial slip along length of bar at various times 

Example Problem with many Contacts 

The following problem highlights the efficiency of linearizing the contact constraint 
definition. Figure 13 shows a symmetric model of an extrusion process. The Aluminum 

material is elastic-plastic with the following properties: Youngs modulus E = 68900 MPa, 

poisson's ratio v = 0.3, yield stress cry = 68.9 MPa, and Hardening Modulus H=O MPa. 

-'-L.Ju...w...J..l...J...I.. ............. .J..L...I.o'-............... ~ - - - - - - - - - - - - - - - -tL-

Figure 13. Symmetric half of an extrusion process 
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The force convergence tolerance was e = 0.005 and both the CG and Dynamic Relaxation 
nonlinear iterative solution strategy was used. Figure 14 shows the typical defonned shape 
after prescribing a displacement 8 = 0.038m in 10 equal increments. The comparison made 

"///////////////// 

8 = 0.038m 

_1'11£- --tt 

Figure 14. Extrusion of billet after ram displacement 0.038 m 

here is between the CG (and DR) iterative solution using Alg. 4 and Alg. 5 (and DR 
counterpart to Alg. 4 and Alg. 5, denoted as (Alg. 4 )DR and (Alg. 5) DR) for the contact 
constraint treatment. Table 1 summarizes the computational resources required (on a CRAY 
J90) for these simulations. It is seen that the linearized contact treatment (i.e. Alg. 5) using 
either CG or DR is considerably more efficient than not linearizing. Note also the added 
benefit of reducing the number of iterations for DR applications using (Alg. 5)OR. This is due 
to a more optimal algorithmic damping that results from linearizing the contact constraints. 

Table 1: Computational resources required for Extrusion simulation 

Algorithm Memory (Mb) CPUs (J90) iterations CPUslitr. 

CGAlg.4 2.243 445 12964 0.0343 

CGAlg.5 2.243 303 13810 0.0219 

DR (Alg. 4)DR 2.243 854 30911 0.0276 

DR (Alg. 5)DR 2.243 349 23144 0.0151 

25 



6 Conclusions 

A contact enforcement algorithm has been developed for matrix-free Conjugate Gradients 
(CG) and Dynamic Relaxation (DR) quasistatic finite element techniques. The algorithm 
introduces an intennediate iteration for treating the active gap constraint and at the same time 
exactly (kinematically) enforces the linearized gap rate constraint for both frictionless and 
frictional response. 

The essential feature of this approach is to move the nonnal gap constraint and tangential 
stick-slip constraint outside the CG (or DR) iterative solution loop. Thus, the inherently non
linear stick-slip frictional phenomenon can be robustly treated. 

Furthennore, global detennination of the contact constraints every iteration is no longer 
necessary making contact constraint definition much more efficient. 

Two examples were provided to demonstrate these important aspects of the proposed 
algorithm. 
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