SANDIA REPORT

SAND97-2084 e UC-705
Unlimited Release
Printed August 1997

Final Report for the Virtual Channel
Encryptor

Laboratory Directed Research and
Development Project

Dean J. Gibson, Ricardo A. Sarfaty

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 84550

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States
Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; distribution is unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Qak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A04
Microfiche copy: A0l

SAND97-2084 Distribution

Unlimited Release Category UC-705
Printed August, 1997

Final Report for the
Virtual Channel Encryptor
Laboratory Directed Research and Development Project

Dean J. Gibson and Ricardo A. Sarfaty
Data Transport and Network Design Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185

Abstract

A workstation with a single physical connection to a data communications network may have a requirement for
simultaneous “virtual” communication channels to more than one destination. This report describes the development
of techniques based on the Data Encryption Standard (DES) which encrypt these virtual channels to secure the data
being transmitted against unauthorized access. A software module has been developed for the UNIX operating
system using these techniques for encryption, and some development has also been done on a hardware device to be
included between the workstation and network which can also provide these functions. The material presented in this

report will be useful to those with a need to protect information in data communications systems from unauthorized
access.

Contents

1. INTRODUCTION 1
1.1 CURRENT ENCRYPTION TECHNOLOGY .ccevevirruveeerreeeresassereesssssssasssssaessasssssssssanesossossstssossssssasessssnesssasssansases 1
1.2 VIRTUAL CHANNEL ENCRYPTION ..c.cittresunereerrssrseersssseressssssrsesssssssessssrassassssesssasssosssss sosssesssesnsesesssanssesassssases 2
1.3 SUPPORTING ACTIVITIES....cceeeeesouereessssunersressssssresssssesssssssssssssssssssssasasaessssesasesssenessesssnasesssassssassssnnnessssasasanas 3
2. ACROYNMS 5
3.0 THE ENCRYPTION ALGORITHM 7
3.1 CRITERIA FOR THE ALGORITHM ..c.ccosvrvmerreerevmereressssssssssssassesassssessaasssassassesessssssnes sassssssssssssssasssssssssassnsnsensen 7
3.2 CHOICE OF THE ALGORITHM....cuttetssrerereeresretrneesssssasssssssessessssssssssssssssessnssossssasssssssmsssesassssasasesssassssssnassssasans 7
3.3 HISTORY OF THE DATA ENCRYPTION STANDARDcocoecrurerarrersiesesssrnnressesssaesssessssssmsasssrossasasssassssssnassssossss 7
3.4 PRINCIPLES OF OPERATION . ..cccitttetetessseersssssssmsssssssesssassssssnsnssrsssssssessansnseaseesesessssssssssssnmnstessansssssstssssnssssssssn 8
3.5 COMPARISON OF DES ALGORITHMS.ceeeetseeveeesssemcesssssreessssssssasassssanesssasessasassossosasessanesorsssesassantssssssnsssass 10
3.6 GENERATION OF THEINTERMEDIATE KEYS c.ucuttetireiicerecieeranresreeressersrterssssessesasmssssnssesnmssesssnsssssnssssasanansens 11
3.7 INITIAL PERMUTATION. ...ceeesesereeeeesssussessessssassessssesssssssssssasansasnssesssssasssssssassossssss sosssssssossssessanssnsnsesesssnasssssss 11
3.8 ROUND IMPLEMENTATION c..cvvueeeeesrareertesessssresesssssnssmssasansessansesssesnaseesssass sessssases sesrsnsssnsssssnssasasansssesnanaesons 15
3.9 FINAL PERMUTATION. ... uveeeteeeeueeeeressssensessssssrsssrssssnnsesssnsesaassnsssnasasasessssnaseesssestsssessstsnsaesssstsncssnsassssssaneessss 17
3.10 MODES OF DES ... o eieiciiccnveensatesttesesesssssesassssssnsannsesocssssnsasnssasmsessessssassaseascosesssssssssnsasnsnsnanssssssssssanananness se 17
3.11 MODIFICATION OF THEDES ALGORITHM FOR THE VCE PROJECT.....cciseceersreccscserssserssssmsssseessansassensnaess 19
3.12 THREADS AND PROCESSES ...cccuttirstiessrerasssesissssesssesassassessessassasssss essasssssssssessssnsssssssesesssnssssasssassssnasesases 20
3.13 SEPARATION OFSTATE VARIABLEScovseeeretesrenrereseeresssnssasasmsssnesessssnnsmeeemossasssssssssssasansasnsesoassasensmesossssas 21
3.14 PROGRAMMING WITH THREADS.....cceeetrererersrnrmrmammeserssssssnscnsacsemsresssssssssmssmsesssssassssssnsansasnenesssssss yevannnannane 21
3.15 TERMINATION OF ATHREAD.ccetrevrveeeeerersesrressssssesaaasssesnsssssasasessoseesssstesesersasssessrasssassssssanssssnraesasssasesss 22
4. APPLICATION TO THE SUN WORKSTATION ENVIRONMENT 23
4.1 OVERVIEW OF SOCKETS «vvvveeeeeeeeeeessseeesssssssessisssssessssssssasesesssassssessssasestessesaesssesssssetesssrsssssnssssnesssasssnssssnestssaseesssmesoss
4.2 CREATION OF SOCKETS . .vvveeeeeraeeeeeeesieeeessssassssssssassrssassstsssessssasssssresasssssess saares sosssessssesssssssns e sassnsssssasasessasninasonsannesoasssss
4.3 BINDING OFSOCKETS ...euereerereeninesssseressonsesennessansassnse

4.4 ACCEPTING CONNECTIONS ..evuveeiierieeereeresasssnssssssmsmsesssssemseansaneernesessssossnssssssessonsonse

4.5 COMMUNICATION THROUGH THESOCKETS

4.6 CLOSING A SOCKET CONNECTION. ...covuiteresesrrreressssssssssssssassasssnssssssssscasasass sossassssosssnsasesssssnsnssssssasss sosnansessss

5. KEY HANDLING 25
5.1 APPROACHES TO KEY HANDLINGcvuttieeissreeressssnesrssssesseasssassessssessssnssssssssssssorssssssssssssssssasassasssassssens 25
5.2 OVERVIEW OF KERBEROSceeeeeeeeeisesseesesesssessnsassssssssssesansnssnssasssssssssssssssssssssssissnnsasnnnsnnasnsasanasasasssssssssoses 25
5.3 APPLICATION OFKERBEROS TO THIS PROJECT a.uvuvuvueeesrurnsesereesressasssssssssssssssassssssesseessnsssnssssnsssssosassssssssosass 25
5.4 KEY GENERATION ..oceeveveereeeseecesesesnsnsensesssssssasesserorssssessssassssas sessanssesarorsesssisssssnsssstanssesssssnsssssnrestsssssossssssen 26
5.5 KEY DISTRIBUTION. ..veeeeeeerseetesssssseseeessnensssssssssnsassssssessesnssesessssssssssssssassssnns ssessssenssasssssnsssssassassassannsss saseess 26
6. EXTENSION TO AN EXTERNAL VME-BASED PROCESSOR 29
6.1 JUSTIEICATION. cuveeeeeresseseesssnsessessssassssasastnsesessassssssessmnsss sssssssesassasnssesssnnsassnsseesssessns sesssssnnsss sansansssssassssssananes 29
6.2 ARCHITECTURE ...ooceeeevteeeeeesnssesasssssesessasssseseassssssssesssstnsosssssensesssasesesssansessssesessssansaessssssssessassnsassesatesessssses 29
6.3 IMPLEMENTATION. c.cceeeeeeeeesoseassssssssessersssssossssssssssssssnsssasssasssssssnsmeseneesssssmssstansssssssssansssssssenssnsastosssssssonssnsnes 29
7. AREAS FOR FUTURE WORK 33
7.1 HARDWARE IMPLEMENTATION .c.ecotittutrereiieesersrsasesaesesnssressssnsassesnssstsssssssnsssnssssssrssssessansstesaaeraencecssssssssesnes 33
T2 TUNTX APPLICATIONS ..uceeeeeeeeeeeeeeeetessasusssssesesesssssssssesatatsssssnsessssssssssessassssssssssssssserassssnmaesseasasnmanorsnosasassossns 33
7.3 EXTENSION TO PERSONAL COMPUTERS ... cutueeererismrreresssesaesesssseesossessessionssosssnssessssssnsessssnsssassssonee sasssssans 33
7.4 EXTENSION TO NETWORKS OTHER THAN ETHERNETuuvumerectecrrecerrntiinsineassasansssusnasansssesosssssssennanasmesnss 33
8. CONCLUSION 35
9. REFERENCES 37

10. APPENDICES
10.1 VCE LDRD PRroprOSAL

10.2 VCE LDRD UPDATE STATUS REPORT
10.3 PROCESS FLOWCHARTS

iv

Figures

FIGURE 1:
FIGURE 2.
FIGURE 3:
FIGURE 4:
FIGURE §:
FIGURE 6:
FIiGURE 7:
FIGURE 8:
FIGURE 9:
FIGURE 10
FIGURE 11
FIGURE 12
FIGURE 13
FIGURE 14
FIGURE 15
FIGURE 16
FIGURE 17
FIGURE 18

DATA NETWORK USING ENCRYPTIONcouieeitieeeriaeiteerreasaeesesesssassnsssssressecessss smaeesssntsssressessassssesnsnnsassnsssessassasses 1
SINGLE CHANNEL ENCRYPTION WITH MULTIPLEXER ...ucecvuvreeeeeiteeeeernrnessasssersereeronessesenesssnnsssssmsssemisssssssssesnsssnses
NETWORK USING VIRTUAL CHANNEL ENCRYPTION PROCESSORS ...
BrLocK DIAGRAM OF DES ALGORITHM..... e eearaeaeainraaaans

CONTENTS OF “ROUND PROCESS” BOX.....cceovveeee

INTERMEDIATE KEY GENERATION.....ccocoieierireeeaanene

INITIAL PERMUTATION ...cotieiiniiieeennrreseeieemeeeeeenene

DES INITIAL PERMUTATION ...cocooeeecereeeereneneeremnersene

DES ROUND ..ottt ieetteeeetie et eeeeeeeressstassseasaeestaesasessmseennseessneesnsaeaneeessasssnssssnns
: DES ROUND FLOWCHARTcooviiiiviictieeeeeestneeeseestnessseenns e assesesnsesnssnnsesserssneersnsas
: FINAL PERMUTATION -
: ELECTRONIC CODEBOOK MODE (ECB).....ciiii ettt ettt s e ss s e sn s st s e e
: CIPHER BLOCK CHAINING MODE (CBC)oiouiirtecieneistienesetstssitisaisstesssssasssveesessmssnsasssssssascnssssarensensesscone
: CIPHER FEEDBACK MODE (CFB)
: OUTPUT FEEDBACK MODE (OFB)....ccu ittt sr s s sttt s
: KERBEROS FLOW DIAGRAMooneiieiietteeeeieetee et aesteeesneessseesssaesasessseousesane saseme s sbmsastessssssesssesanssasansasansnsasnne
: BLock DIAGRAM OF FIRST IMPLEMENTATION
: BLock DIAGRAM OF SECOND IMPLEMENTATION

vi

1. Introduction

With the increasing use of data communications systems in our society, there has also been a growing need for
techniques which can provide protection from unauthorized access for the information being transmitted through these
networks. Traditionally, this protection has been provided by link encryption devices located at the end of each
communications link interconnecting a pair of nodes in the network. This requires a large number of encryption
devices, especially in a large network, increasing the cost of building and operating the network.

This report discusses a different approach to network encryption in which encryption processors are co-located with the
workstations and servers connected to the network to provide an end-to-end encryption capability that eliminates the
need for link encryption devices. These processors can be provided as either software packages for installation within
the workstations and servers, or as hardware devices connected between the workstations, servers, and the network.
These processors have the added feature that they can process multiple virtual channels simultaneously so that the
workstation connected to the network can communicate with many different servers simultaneously or a server can
simultaneously communicate with many different workstations.

1.1. Current Encryption Technology

Most applications of encryption to data communications networks take one of two forms. The first is link encryption.
In this case, the entire data packet, including the header, is encrypted and encryption devices are located at each end of
a link connecting two nodes (e.g., network routers, network hubs, servers, workstations, etc.) in the network to decrypt
the message to allow routing through the network. This means that at every routing point in the network, the message
must be decrypted. The second form is end-to-end encryption. In this case, only the data within the data packet, not
the header, is encrypted, thus allow the network to route the message to the destination without decrypting the message.
In this case, encryption devices are located only at the source and destination of the message. A typical example of the
latter, which is the focus of this research, would be a hospital network, in which the workstations can communicate
with an e-mail server, a financial records database, and a medical records server. Encryption devices would be placed
between the workstations and the network and the servers and the network as illustrated in Fig. 1.

If the workstations run a multitasking operating system, such as UNIX, they can support multiple client programs
running simultaneously, each communicating with one or more of the available servers on the network.

user’s
Workstation

encryption

data communications network

encryption encryption encryption
E-mail financial medical
Server records records
Server Server

Figure 1: Data Network Using Encryption

Since there is typically only one physical connection between each workstation and the network, such as in an Ethernet
system, the workstation-network connection has to support multiple virtual circuits simultaneously, with a separate
virtual circuit for each connection between a client and the server with which it communicates. This is done by using
communications protocols between the workstation and the network that divide the traffic on each of the virtual
channels into packets. Each packet carries, among other things, addressing information, so the network can route each
packet to its proper destination.

Most encryption equipment currently available cannot manage multiple virtual channels on the same physical link
between the user’s workstation and the network, so, to encrypt these channels, it is necessary to demultiplex (demux)
the virtual circuits from the workstation into corresponding physical channels, encrypt these separately, and then
remultiplex (mux) them for transmission over the network, as illustrated in Fig 2.

In many cases, the amount of multiplexing and demultiplexing, illustrated here for a user’s workstation, may be much
greater at the server, since a server typically has to handle many more simultaneous virtual channels then the user’s
workstation.

user’s
Workstation

demux

crypto crypto Crypto

mux

network

Figure 2: Single Channel Encryption with Multiplexers.

1.2. Virtual Channel Encryption

This report covers the development of a virtual channel encryption processor for workstations and/or servers. The
processor will handle multiple virtual channels without the separate multiplexers, demultiplexers, and single channel
encryption devices shown in Fig. 2. It is implemented as either a software module (within the server or workstation) or
an hardware processor (extemal to the server or workstation) that is inserted in the communication link between a
workstation, or server attached to a network, and the network itself, as illustrated in Fig. 3.

The encryption algorithm in the virtual channel encryption processor is based on the Data Encryption Standard (DES).
The Outerbridge implementation of the DES algorithm was modified to remove the state variables from the code,
placing the state variables in an array that contains a separate set of state variables for each channel supported by the
virtual channel encryption processor. With this modification, the virtual channel encryption code can support multiple
“threads” of execution, one for each virtual channel.

user’s
Workstation

virtual

channel
encryption
processor

[network I

virtual virtual virtual

channel channel channel
encryption encryption encryption
processor processor processor

Server Server

Figure 3: Network using Virtual Channel Encryption Processors

The basic virtual channel encryption algorithm is platform independent, but the interfaces between it and the operating
system in the computer on which it runs is platform dependent. An example of this is SOLARIS’s use of the
STREAMS protocol as an communication process for passing information to the network, where SUNOS uses socket
calls. A software module has been developed for installation on a SUN SPARC workstation running the SOLARIS
(UNIX based) Operating System (OS). Some design work has also been done on a software module that runs on a
VME-based processor running the proprietary VxWorks operating system supplied by Windriver Systems. The VME
processor can be installed in the link between a workstation or a server and the network (preferably close to the
workstation or server) to provide the virtual encryption function when it is not desirable to install it directly in the
workstation or server.

1.3. Supporting Activities

Key distribution is a problem in any application using data encryption. In our case, key distribution is implemented
using concepts incorporated from the Kerberos network security architecture developed at the Massachusetts Institute
of Technology (MIT). Keys are generated in a central “key distribution center” and distributed to each user as required
when that user applies to the central authority (i.e., key distribution center) key distribution center for access to a
particular resource on the network. Kerberos not only authenticates users needing access to servers through a password
scheme, but also provides key distribution protocols that encrypt keys being transmitted across the network, so that
they cannot be intercepted or used by unauthorized individuals.

Some conceptual work has also been done to implement the encryption algorithm in a separate VME-based processor
running the VxWorks OS so as to remove the burden of OS system, and many of the details of the interface between
the VME-based processor and the host workstation have been completed.

Future work to be performed includes testing of the VME-based encryption algorithm, extension to other applications
on the SUN workstation, extension to encryption algorithms other than DES, applications in networks using personal
computers, and use in networks based on transmission media other than Ethernet (e.g., FDDI, ATM, etc.). Also, the
user interface for the virtual encryption algorithm should be developed to the point where applications such as telnet
and FTP can be run, from the user’s point of view, in the same manner as when virtual channel encryption is not
involved.

2. Acronyms

Asynchronous Transfer Mode — a new digital communications technology based on cell switching
... Demultiplexer or Demultiplex

Digital Encryption Standard — a standard endorsed by NIST.

Fiber Distributed Data Interface

File Transfer Protocol

International Business Machines

Institute of Electrical and Electronics Engineers

...Internetwork Protocol — a protocol that specifies peer-to-peer communications across logical
subnetworks

LDRD....ccocicinans Laboratory Directed Research and Development — a Department of Energy program that allows its
national laboratories to invest funds into new, “leading edge” research programs
Multiplexer or Multiplex

National Bureau of Standards
..... National Institute for Standards and Technology

...National Security Agency — the developers of the Milkbush prototype ATM encryption hardware
Operating System
...Read Only Memory
Scalable Processor ARCitecture — the processor/hardware architecture used by the latest Sun
Microsystems workstations

TCP ..o Transmission Control Protocol — a protocol that provides assured, in-order delivery of PDUs over
IP.
VME....iienns versa-module, Europe

3. The Encryption Algorithm

To develop the virtual channel encryption algorithm, a version of DES was chosen in which the state variables could be
readily separated from the code, and a state variable array was set up to store the state variables separately for each
virtual encryption channel. Once this is done, each virtual encryption channel can be implemented by a separate thread
of execution, so that each of the virtual encryption channels operates independently.

3.1. Criteria for the Algorithm

In general, an encryption algorithm is a set of rules, which, when combined with a unique key, scrambles a length of
“cleartext” to produce a length of “cryptotext” in such a manner that it is difficult to recover the cleartext without
knowledge of the key, even if the algorithm is known. In our case, we would like to choose an algorithm that can also
be readily modified to be suitable for the virtual encryption processor. This requires that the state variables be
extracted from the algorithm, leaving pure code, and that the state variables can then be assembled into arrays that will
preserve the state variable information independently for each of the virmal encryption channels.

Other criteria that the encryption algorithm should meet is that it be well-known and accepted in the user community,
so that a virtual channel] encryption device based on the algorithm will also be readily accepted. There should be no
known methods to easily “break™ the algorithm; that is, given the cleartext and comresponding cryptotext, there are no
known methods to easily determine the encryption key. This will provide the virtual channel encryption device the
level of trust it needs to succeed in the user community. The algorithm should also be non-proprietary, so that it can be
adapted for the virtual encryption system without concerns over copyright or patent issues. This will allow the virtual
encryption algorithm free and unimpeded distribution throughout the user community. Finally, the encryption
algorithm should have many different hardware and software implementations available in the literature, to maximize
the number of starting points for modification for virtual encryption.

3.2. Choice of the Algorithm

Of the many different encryption algorithms available, such as those described in Schneier’s text*¥], the Data
Encryption Standard (DES) algorithm seems to meet these criteria best. There are different versions of the algorithm
available in both hardware and software, and many of these are of a form in which the state variables can be easily
extracted, leaving pure code, which is the primary criterion for use in the virtual encryption processor. The algorithm
is very well known, and is used in many different applications, such as in the banking industry, so it is trusted by those
with large sums of money at risk. While the algorithm was developed by International Business Machines (IBM) and
others, it is now non-proprietary, and it appears in hardware and software available from different sources.

3.3. History of the Data Encryption Standard

The history of the Data Encryption Standard dates from 1972, when the National Bureau of Standards (NBS), initiated
a program to protect both computer and communications data, ideally with a single algorithm that could perform both
functions. After requesting contributions from private industry and other sources, NBS received a proposal from IBM
based on LUCIFER, an internal IBM development that could be implemented easily in both hardware and software.
NBS evaluated this algorithm with the assistance of the National Security Administration (NSA), concluded that it was
suitable, and published it as a federal standard in 1976.

There have been some concerns raised by the involvement of NSA in the development of DES, specifically in the
length of the key used and in the design of the “S-boxes” that provide most of the security in the algorithm, which is
dependent on the length of the key (the longer the key, the more secure the algorithm). The concern expressed was that
if the key was short enough (e.g., 56 bits), an organization with extensive resources (such as NSA) could eventually
break the algorithm and recover the key. There were also reservations expressed about the “S-boxes”, where NSA had
considerable design input. It was known that there were certain classified considerations involved in the design of the
S-boxes, and this generated the fear that “trapdoors” had been built in these S-boxes which an organization (such as
NSA) could easily exploit to break the algorithm. At this time, it appears that the concems regarding the key length
may be well-founded, so that the DES may eventually have to be replaced when computing power has advanced to
where DES can be broken by brute force (i.e., try all the possible key values). No weaknesses have been found in the
S-boxes, thus there does not appear to be any methods by which the DES algorithm can be broken other than brute
force or poor implementation (e.g., provide variables to the user by storing in user accessible memory).

34. Principles of Operation

The Data Encryption Standard is a block cipher - it encrypts data in 64-bit blocks. It consists of three parts: the initial
permutation, 16 identical “rounds”, each using a combination of permutation and substitution operations, followed by a
final permutation to finish the encryption. The initial permutation shuffles the 64 incoming bits following a table in the
DES definition to produce another 64-bit word with the bits in a different order. This 64-bit word is then split into two
32-bit words in preparation for the first round. The first step of the round is to expand the 32 bits in the left word to a
48-bit word following a permutation table that duplicates some of the bits. This 48-bit word is then combined with a
48-bit intermediate key, formed for this round from the 64-bit master key by a key generation process. The 48-bit
result of this operation is then applied to a set of eight “S-boxes” which splits this 48-bit word into eight 6-bit words,
then performs a substitution operation to generate a set of eight 4-bit words which are combined to form a 32-bit word.
The 32 bits from the S-boxes are then passed through a “P-box” permutation, then combined with the right 32-bit
incoming word for this round to form the 32-bit right-side output for this round (note that the left and right words are
switched at the output of each round). The left 32-bit output word for this round is simply the 32-bit right input word
for this round, taken without any modification. The operations that make up this round are repeated 15 more times to
complete the 16 rounds required by the DES algorithm, with each round using a different key generated from the
master 64-bit key. After the 16th round, the two 32-bit words are recombined into a 64-bit word for output through a
final permutation function, which is the exact inverse of the input algorithm at the beginning of the encryption
operation. This process is illustrated in Figs. 4 and 5.

cleartext 64 bits

!

initial permutation

v v

Round 1 Inpuf Round 1 Input
Left 32 bits Right 32 bits

v

Intermediate
—>»|Round Process j————
Key 1
Round 2 Input Round 2 Input
Left 32 bits Right 32 bits
Intermedlatd_» Round Process pg———-
Key 2
Round 3 Input Round 3 Input
Left 32 bits Right 32 bits
! * \
1 £ 1
1 1
\ 4 * Y
Round 16 Inpu ound 16 Inpu
Left 32 bits Right 32 bits
Intermediate *
—» Round Process
Key 16

Round 16 outputj| Round 16 output
Left 32 bits Right 32 bits

v !

final permutation

v

ciphertext 64 bits

Figure 4: Block Diagram of DES Algorithm

Round Input
Left 32 bits

v

Expansion Permutation

36 to 48 bits
Intermediate Keys | __ I vop
48 bits

v v . v

S-box 1 S-box 3 S-box 5 S-box 7
6 t0 4 bits 6 to 4 bits 6 to 4 bits 6 to 4 bits
S-box 2 S-box 4 S-box 6 S-box 8§

6 to 4 bits 6 to 4 bits 6 to 4 bits 6 to 4 bits

v

P-box Permutation
32 bits in and out

!

Round Input »| XOR
Right 32 bits " l
Round Output
Left 32 bits

Figure 5: Contents of “Round Process” Box

3.5. Comparison of DES Algorithms

Several different software implementations of the DES algorithm were considered for this project, including those
developed by Outerbridge, Tanenbaum, and Young. The primary criterion for choice between these algorithms was a
tradeoff between memory storage space requirements and speed. Those with larger memory requirements tended to be
the fastest, because most of the processing was done in lookup tables as opposed to the manipulation of Boolean
equations. The tables, however, tended to take up more memory. The Outerbridge DES algorithm provided a balance
between memory requirements and speed, so it was selected for this project.

10

3.6. Generation of the Intermediate Keys

Generation of the intermediate keys for each round can be done separately from the main encryption algorithm, and has
to be done only when a new master key is supplied to the DES algorithm. The master key is usually given as 64 bits,
although only 56 of these are actually used. Generation of the intermediate keys then consists of three parts: an initial
key permutation that reduces the length of the key from 64 bits to 56 bits while shuffling the bits, a set of 16 shifting
operations that generate individual 56 bit keys for each round of the DES algorithm, and a final permutation that
reduces each intermediate key from 56 to 48 bits, in a form suitable for the DES algorithm. This process is illustrated
in Fig. 6.

In the Outerbridge DES implementation, the initial key permutation takes the 64 bit master key, stored as an array of
eight 8-bit bytes, and converts it to an array of 56 entries, each containing one bit. In the process, the 8 bits not used in
the master key are eliminated. These 56 bits are divided into two 28-bit halves, each of which is shifted one or two bits
to the left for each succeeding round of the encryption operation. The two 28-bit halves obtained for each round are
then recombined to form a 56 bit word which is processed by another permutation operation to yield the 48-bit
intermediate key for each round.

Decryption is done by exactly the same algorithm that performed the encryption, except that the 16 intermediate keys
are supplied to the 16 rounds in reverse order.

3.7. Initial Permutation

As mentioned above, the DES encryption algorithm is implemented in three steps: an initial permutation, the 16
rounds of the encryption algorithm itself, and a final permutation. The initial permutation is not implemented using a
look-up table as implied in the DES standard. Instead, the 64 bits to be encrypted are divided into a high-order and a
low-order word, each containing 32 bits, which are referred to in the following discussion as “left” and “right”. A third
variable “work” is also introduced for use as a temporary storage area. The initial permutation is then implemented by
a series of shifting and masking operations as defined by the section of code in Fig. 7.

11

Master Key
64 bits

v

Initial key permutation
64 to 56 bits

Left 28 bits

Shift left 1 bit

Shift left 2 bits

Output permutation
for key 1

Output permutation
for key 2

Shift left 2 bits
Shift left 2 bits
Shift left 2 bits

Output permutation
for key 3

Output permutation
for key 4

Output permutation
for key 5

Shift left 2 bits

Output permutation
for key 6

Shift left 2 bits

Output permutation
for key 7

Shift left 2 bits

Output permutation
for key 8

Output permutation
for key 9

Shift left 2 bits

Output permutation
for key 10

Shift left 2 bits

Output permutation
for key 11

Shift left 2 bits

Output permutation
for key 12

Shift left 2 bits

Output permutation
for key 13

Shift left 2 bits
Shift left 2 bits
Shift left 1 bit

Figure 6:

Output permutation
for key 14

Output permutation

for key 15

Output permutation
for key 16

Shift left 1 bit

Shift left 2 bits

Shift left 2 bits

Shift left 2 bits

Shift left 2 bits
Shift left 1 bit
Shift left 2 bits

Shift left 2 bits

Shift left 1 bit

Intermediate Key Generation

12

work - ((left >> 4) ~ right) & 0xfOfOfOfOL ;
right = right * work ;

left - left ~ (work << 4) ;

work - ((left >> 16) ~ right) & 0x0000ffffL ;
right = right * work ;

left = left ~ (work << 16) ;
work = ((right >> 2) " left) & 0x33333333L ;
left = left ~ work ;

right = right » (work << 2) ;

work - ((right >> 8) ~ left) & OxO00ffOOffL ;

left = left ~ work ;

right = right ~ (work << 8) ;

right - ((right << 1)1 ((right >> 31) & 1L)) & Oxfffffffffl ;
work = (left ~ right) & Oxaaaaaaaal. ;

left = left ~ work ;

right = right ~ work ;

left = ((left << 1) 1 ((left >> 31) & 1L)) & Oxffffffifl ;

Figure 7: Initial Permutation

For those who are not familiar with the operators used above, they are the standard “C” language bitwise operators

defined as follows:
& bitwise AND
| bitwise inclusive OR
" bitwise exclusive OR
<< left shift (shift the value on the left of the operator by the number of bits given
by the value on the right)

>> right shift

A block diagram of the initial permutation is given in Fig. 8.

13

START

£—| Divide 64 bit input into two 32 bit halves l_l

l Left 32 bit balf H Shift right 4 bits H XOR |<-| Right 32 bit half |

| AND with fOf0fof0 |

l XOR I | Shift left 4 bits

———>| Shift right 16 bits H XOR]4——

XOR

[AND thhOOOOfﬁT]

A4
[%0r Ja—] stifiier 16bits |<——-I—>Ej

—>{ XOR |<-—| Shift right 2 bits |<——

I AND with 33333333 |

XOR Shift left 2 bits

rAND with 00FF0OE |

h 4

XOR Shift left 8 bits

———>] XOR |(-—-| Shift right 8 bits]4__
Y

XOR

o]

I AND with aaaaaaaa I

[rox]« |

->| Shiﬁright:}lbitﬂ-)' AND with 1 |
Y

—>| ShiftleftlbitH OR |

T

Left 32 bits output
to round one

Figure 8: DES Initial Permutation

14

A 4

Right 32 bits output
to round one

3.8. Round Implementation

The 16 rounds of the DES algorithm are combined into 8 steps, with each step performing two successive DES rounds.
Each step consists of a combination of shifting and table-lookup operations, which also make use of the intermediate
keys produced by the key generation function. The section of code in Fig. 9 defines the process used in each of the 8
steps:

work - (right << 28)1 (right>>4);

work - work “keys [0];

fval - SP7 [work & Ox3fL 1;

fval = fval 1 SP5 [(work >> 8) & Ox3fL];
fval = fval | SP3 [(work >> 16) & 0x3fL] ;
fval = fval | SP1 [(work >> 24) & 0x3fL];

work = right *keys[1];
fval = fval | SP8 [work & Ox3fL];
fval - fval 1 SP6 [(work >> 8) & 0x3fL.];

fval - fval | SP4 [(work >> 16) & 0x3fL] ;
fval - fval | SP2 [(work >> 24) & Ox3fL 1;
left = left ~ fval ;

work = (left<<28) I (left>>4);

work - work “keys [2];

fval = SP7 [work & 0x3fL];

fval = fval | SP5 [(work >> 8) & Ox3fL] ;
fval = fval 1 SP3 [(work >> 16) & 0x3{L };

fval - fval | SP1 [(work >>24) & 0x3fL] ;
work = left ~keys[3];

fval - fval | SP8 [work & Ox3fL] ;

fval = fval | SP6 [(work >> 8) & Ox3fL];
fval - fval | SP4 [(work >> 16) & Ox3fL | ;
fval = fval | SP2 { (work >>24) & 0x3fL | ;

Tight - right ~ fval ;

Figure 9: DES Round

The variable “fval” is a fourth temporary variable used to store intermediate results, and the arrays SP1 through SP8 are
used to implement the “S-boxes” of the DES algorithm. Once these eight steps are completed, the two 32-bit words
“left” and “right” contain the encrypted information which must still be processed by the final permutation to produce
the final encrypted result. The flowchart in Fig. 10 illustrates this process.

15

Left 32 bits of input to round l

I Right 32 bits of input to round

XOR keys(l | | keyeto) | Shift left 28 bite fl—it
Shift right 4 bite Jo—
] ANDwith3f |—o SP7
f—me——${ Shift right 8 bite [=»{ ANDwithsr |t SPs |
f———3{ Shiftright 16bits =8 AND with3f |9 SP3 |t
——»] Shifiright 24bits f—# ANDwith3f | SP1 _|—»
—»] ANDwith3f |—#f sps |4 o
] Shift right 8 bite }—»{ aNDwithsr = sps |
——>] Shift right 16 bite o[arDwithsr o] sps |
L——] Shifiright24bits |8 ANDwith3f |~ spz |—#
XOR |
b Shift left 28 bits

————] Shift right 4 bite

JIER—I'—ﬂ XOR] keys2) |

9] XOR j————] keysi3] |

|

AND with 3f

ﬂ

I11

=1

}——] Shiftright8bits }—] ANDwith 3f | e
———»] Shift right 16 bits =] ANDwith 3¢ SP3 —p
———{ Shifiright 24bits |—4 ANDwith3f |—gf SP1 ey

#{ ANDwith3f gl SP8 |—pp OF
-—’I Shift right 8 bits H AND with 3f |—-.| SP6 |—»
——»] Shiftright 16bits |~ ANDwith3f [—p] SP4 j—om
| Shiftright 24bits =g ANDwith3f |—9f SP2 |—

»
Left 32 bits of output Right 32 bits of output TOoR
from round from round

Figure 10: DES Round Flowchart

16

3.9. Final Permutation

As mentioned before, the final permutation is the exact inverse of the initial permutation. It is implemented by the
code in Fig. 11:

right - (right << 31)I(night>>1);

work = (left ~ right) & Oxaaaaaaaal ;

left = left » work ;

right = right ~ work ;

left = (left<<31)1(left>>1);

work = ((left >> 8) ~ right) & OxOOffOOffL ;
right = right ~ work ;

left = left ~ (work << 8) ;

work = (C left >>2) A right) & 0x33333333L ;
right - right » work ;

left = left ~ (work << 2) ;
work = ((right >> 16) ~ left) & 0xO000fffiL ;
left - left » work ;

right - right » (work <<16) ;

work - ((right >> 4) left) & OxOfOfOfOfL ;
left - left ~ work ;

right = right ~ (work << 4) ;

Figure 11: Final Permutation.

At the completion of the final permutation, “left” and “right” contain the left 32 bits and the right 32 bits, respectively,
of the encrypted input. These may be combined into a single 64 bit work for further processing.

3.10. Modes of DES

There are four modes in which DES can be operated. These are known as the electronic codebook mode, the cipher
block chaining mode, the cipher feedback mode, and the output feedback mode. These are illustrated in Figs. 12
through 15.

Any of these four modes could be used in the VCE encryption processor; however, the only one used at present is the
electronic code book mode. The other three modes would require an additional state variable to handle the feedback.
An initial value for this feedback variable has to be supplied as well as the key.

17

DES Encryption

cleartext DES ciphertext
block encrypt block
DES Decryption
ciphertext DES cleartext
block decrypt block

Figure 12: Electronic Codebook Mode (ECB)

Time =1 Time=2 Time

Initialization clear- clear- clear-
Vector text text text

block block block

—»| XOR

v

v

v

— 3 XOR| 3| XOR

!

v

!

DES
encrypt

DES

DES

encrypt encrypt

)
y A 4 Y
Initialization DES DES DES
Vector encrypt encrypt encrypt

DECRYPTION

—»| XOR

!

v

v

1 XOR

» XOR

!

!

!

clear-text
block

block

clear-text| |clear-text

block

Figure 13: Cipher Block Chaining Mode (CBC)

18

NP

3.11. Modification of the DES algorithm for the VCE project

To modify the DES algorithm for the virtual channel encryption project, one must modify the code so that it can
support multiple encryption processes simultaneously without conflicts between the state variables for each encryption
channel. There are two ways that this can be done. The first approach is to duplicate the entire algorithm, both code
and state variables, so that each encryption channel has its own code and state variables. The second approach is to
extract the state variables from the code, leaving only pure code to be shared by all encryption channels, then setting up
a separate structure for only the state variables for each encryption channel.

Time =1 Time =2
clear-text clear-text clear-text

block block block

Initialization J * #
Vector XOR XOR XOR
DES
DES DES
encrypt] encrypt —>] encrypt —

-

Initialization
Vector

DES | DES || ,| DEs >
encrypt encrypt encrypt

i

XOR XOR XOR ——>
clear-text clear-text clear-text
block block block

Figure 14: Cipher Feedback Mode (CFB)

19

3.12. Threads and Processes

There are two methods used in UNIX to support the simultaneous execution of multiple programs. The first method,
the process, assigns each executing program its own stack to store processor variables, its own piece of virtual memory,
its own file descriptors, and its own code for execution, which is not shared with any other process. Different
processes running on the same computer have little in common. Switching between processes must be done in the
kernel (the primary element of the UNIX OS), since a process switch involves a change between virtual memory
spaces.

Time =1 Time =2

clear-text clear-text clear-text
block block block

Initialization
Vector
‘ DES DES DES
) encrypt '1 encrypt 1v encrypt -17

Y

XOR XOR XOR

Initialization
Vector

| DES DES | || DES | >
i encrypt

encrypt 1 encrypt 1v 1'
A 4

XOR XOR XOR
DECRYPTION l l l
clear-text clear-text clear-text
block block block

Figure 15: Output Feedback Mode (OFB)

In a multi-threaded environment, each program can be assigned its own thread for execution, but different threads share
more in common when compared with different processes. While each thread has its own processor stack, it shares its
virtual memory space, file structures, and code with the other threads running for the same user on the same machine.
The main advantage of threads over processes is that it is much easier, and takes less time, for the processor to switch
between threads than between processes. The switch can be done in user space because much less information is
involved in the context switch. On the other hand, there is not as much isolation between threads as there is between
processes, and the threads can interfere with each other’s variables if care is not used, as they share the same virtual
memory space. However, interference between variables in different processes cannot occur, because processes do not
share virtual memory space. A computer using an operating system that supports threads still makes use of the process
concept. Threads are contained within processes, and one process can contain many threads. When a switch is made
between threads running under different processes, such as when users are changed, it is necessary to make a full
process context change. In the interest of speed, the threads concept is used to separate the encryption channels in the
virtual encryption processor, but care must be taken to separate the state variables for each encryption channel.

20

3.13. Separation of State Variables

Since we are using the threads concept to structure the virtual channel encryption software, we need only one block of
code which can be shared by all the threads. A separate set of state variables must be established for each channel.
This is done by putting them into a two-dimensional array, with one index being the channel number and the other, the
state variable within that channel. In the current implementation of the virtual channel encryption software, there are

eight virtual channels supported, and each virtual channel has the following state variables: “left”, “right”, “work”, and
(LfVal?)'

3.14. Programming with Threads
A thread of execution is created using the call

int thr_create (void *stack_base, size_t stacksize, void *(*startroutine) (void *), void *arg, long flags,
thread_t *new_thread)

where

“stack_base” contains the address for the stack used by the new thread. This is usually NULL, which causes
the function to create a stack of at least “stacksize” bytes.

“stack_size” is the size in bytes of the stack for the new thread. In most cases, this is set to zero, which
causes the function to use a default.

“start_routine” contains the function with which the new thread begins execution.

“flags” specifies the attributes for the created thread. In most cases, a default value of zero can be used.
Otherwise, this variable is constructed from the bitwise inclusive OR of the following:

“THR-DETACHED?” This detaches the new thread so that its resources can be used as soon as the
thread terminates. This is set when one does not want to stop execution for the thread to terminate.

“THR_SUSPENDED” This suspends the new thread and does not execute the “start_routine” until
requested.

“THR_BOUND?” This causes the new thread to be bound to a processor.
“THR_NEW_LWP” Increases the concurrency level for unbound threads by one.
“THR_DAEMON?” This marks the new thread as a daemon.

“new_thread™ points to a location where the ID of the new thread is stored. Normally set to zero and not
used.

Retumn values. “Thr_create” returns a value of zero when it completes successfully. Another value indicates an error.
Possible values are as follows:

“EAGAIN” A system limit has been exceeded.
“ENOMEM” Not enough memory available

“EINVAL” “Stack_base” is not zero, and “stacksize” is less than the value returned by “Thr_minstack™.

21

3.15. Termination of a Thread

The call “void thr_exit (void *status)” is used to terminate a thread; “status” is generally ignored unless this thread is
the last non-daemon thread, in which case it is set to zero.

The calls to create and terminate threads do not appear in the virtual encryption code itself. They appear in the code

that calls the virtual encryption process, and set up one or more threads to enter the virtual encryption code, with a
maximum of eight threads.

22

4. Application to the SUN Workstation Environment

4.1. Overview of Sockets

The interface between the VCE encryption software and user applications running on a SUN workstation using the
Solaris UNIX-based operating system is through the “sockets” concept supported by UNIX.

Sockets are a basic component of interprocess communication. Users who have a need to communicate between
different programs on the same host or different programs on different computers can use the “socket” concept to
transfer data between the programs in a manner very similar to writing to and from files on a hard disk. To use the
socket concept for communications, the user must establish a socket in each program requiring communication. Once
this is done, a link must be set up between the two sockets over the network to provide communications. The TCP/IP
internet protocols are used to support socket communications over a communications link.

4.2. Creation of Sockets
The user creates a socket using the “socket” function, which has the format
s = socket (domain, type, protocol)

In our applications, the domain is usually set to “AF_INET” to indicate an internet application. This can also be set to
“AF_UNIX” to indicate a UNIX application, which is used only between different programs running on the same host.
The second entry type refers to the type of socket being created. If sype is set to “SOCK_STREAM”, the socket will
provide a bi-directional, reliable, sequenced, and unduplicated flow of data with no record boundaries. If rype is set to
“SOCK_DGRAM?”, a datagram socket is created, which also supports the bi-directional flow of messages. Unlike the
stream socket , no guarantee is given that the messages will be received in the same order as they are sent, and
messages can be duplicated or even lost due to network problems. It is the user’s responsibility to ensure that all
messages sent are received in the proper order and that none are lost. For this reason, most applications use the
“stream” socket. The third argument protocol is used to specify the communications protocol to be used between a
socket pair. This is generally set to O to give the default protocol for the type of socket in use, which, for the stream
socket operating over almost any kind of network, will be TCP/IP.

4.3. Binding of Sockets

Once the socket has been created, a name must be bound to it so that remote programs can identify and communicate
with the socket. In this case, a communications channel is defined by five pieces of information: the protocol, the local
address, the local port, the remote address, and the remote port. The protocol argument is the protocol to be used by
the communications link, and is defined by the protocol requested when the sockets to be used at each end of the link
are established. Needless to say, the same protocol must be used at each end. The “local address™ is the host name or
IP address of the host, and the “port” is the TCP port number used to refer to the process in the local host that contains
this socket. On the other end of the communications link, the “remote address” is the host name or IP address of the
remote host, and the porr number is the TCP port number used by the program in the remote host using this socket.
There can be no more than one communications link in a network described by the same set of five unique identifiers.

The binding operation is performed by the “bind” function, which has the form

bind (s, (struct sockaddr *) &sin, sizof sin)
where “s” is the socket handle that was generated when the “socket” function created the socket, and “sin” is a structure
containing the elements “sin_addr.sin_addr” and “sin_port”. The first entry in the structure must contain the IP address
of the host supporting this socket, and the second entry is the port number of the program containing this socket. If the

IP address of the host is not immediately known, there are functions supplied by UNIX that can provide the IP address,
given the name of the host.

23

44. Accepting Connections

Once the sockets have been identified through the binding process, it is possible to set up a communications channel
between them. This is usually done in a client-server environment, with the client initiating the connection to the
server. Before this can be done, the server must perform two additional steps that allow it to receive connections from
clients. The first is to indicate the number of connections that can be queued at the server socket. This is done by
executing the “listen” function, which takes the form

listen (s, n)
The integer “s” is the socket handle for this socket which was returned when the socket was created by the “socket”
function, and “n” is the number of connection requests that can be queued up for connection to the socket before
additional requests are refused. The second step that has to be executed to set up the server socket is to execute the
“accept” function. This function takes the form

accept (s, (struct sockaddr *) & from, &from len)

where “s” is the socket handle for the program containing the socket in the server. Once this function is called, it will
block any further execution of the server program, until a client socket makes a connection to it. Once this happens,
the “from” structure will contain the IP address and TCP port number of the client, and the function will return a new
socket handle which must be used for any further writing or reading from this communications channel. This feature
allows the server program to retum to the “accept” function to process further connections to this socket, while it is
simultaneously handling traffic through the socket which has just had a connection made to it by a client.
When a client wants to connect its socket to a server, it executes the “connect” function, which has the form

connect (s, struct sockaddr *) &server, sizeof server)
where “s” is the socket handle of the socket in the client program that wants to make the connection, and “server” is a

structure containing the IP address and TCP port number of the server program in the server host. This function will
block until the connection is made, and ready for use.

4.5. Communication through the Sockets

Data is actually transferred over a connection between two sockets using the normal “read” and “write” system calls,
which are of the form

read (s. buf, sizeof buf)
and
write (s. buf, sizeof buf)

The integer “s™ is the socket handle for the socket, and “buf” is a buffer (usually an array) containing the information
being transferred

4.6. Closing a Socket Connection

Once communication is completed, the connection between the sockets should be closed by the “shutdown” function,
which takes the form

shutdown (s, how)

[T 1}

The integer “s” is the socket handle, and “how” is an integer where O disallows further receives, 1 disallows further
transmits, and 2 disallows both.

24

s. Key Handling

5.1. Approaches to Key Handling

Traditionally, key handling in a client/server network has been handled through direct negotiation between the servers
and clients requesting access to them. Each time a client requests connection to a server, it has to provide a
username/password combination to the server to identify and authenticate itself. This has two major disadvantages.
First, the username/password combination has to be transmitted over the network every time access to a server is
required, which poses potential security problems. These can be partially resolved by encrypting the passwords, but
this raises a key distribution problem. The second problem is that each server has to maintain its own
username/password table which will increase the work required to administer the network.

Kerberos is an application developed by Project Athena at the MIT to eliminate some of these problems. All password
information is stored in a central location known as a Key Distribution Center (KDC), and passwords are never
transmitted over the network, even in encrypted form. It also provides a method for key distribution so that each
session between a client and a server can be encrypted, hence a session can not be monitored even by someone who has
access to the network communication media.

5.2. Overview of Kerberos

As mentioned above, Kerberos is basically a method to control access to servers from clients in a communications
network. To get access to a Kerberos network, a user must first log on to a terminal or workstation associated with the
network. While Kerberos can control access to any terminal or workstation connected to the network, the usual
procedure is to use the local operating system in the terminal or workstation to control access to itself, typically by
requesting a password from each user when they log onto the workstation.

After a customer has logged onto his workstation or terminal through his local operating system, they are ready to log
on to the Kerberos network. They do this by issuing a “kinit” command, in which they identify themselves in the
command line, and provide a network password when prompted. The user’s workstation makes contact with the key
distribution center, and identifies the user in its request for network access. The key distribution center returns an
initial “ticket” back to the customer, which contains a session key encrypted using the user’s network password. The
workstation uses the password supplied by the user to decrypt the ticket, which contains, among other things, a session
key to be used for any further communications with the key distribution center. If the user cannot supply the correct
password, the session key is destroyed, and the user cannot make any further attempts to access any resource on the
Kerberos network. After successfully receiving their initial session key from the key distribution center, the user can
use this key to encrypt further communications with the key distribution center to request access to the servers on the
network.

When users requests a remote service, they do so by sending request to the key distribution center for access to the
server. If the user has authorized access to that particular server, they will be supplied with a session key. A copy of
the session key is also supplied to the server requested by the user, so that an encrypted session can be set up between
the user’s workstation and the server.

5.3. Application of Kerberos to this Project

A simplified version of Kerberos is used to provide key generation and key distribution. Keys are generated in a key
distribution center for use by the virtual channel encryption processors distributed throughout the network. Once
generated, the keys are distributed to the encryption processors by a simplified version of the key distribution protocols
used by Kerberos.

When an encrypted channel is to be set up through the virtual channel encryption processor, a request is made to the
key distribution center for the DES keys necessary for the session. Upon verification that the user is authorized access
to the server, copies of the session key are sent to both the user’s workstation and the server. Once the key is received
at both ends, the key is loaded into the key matrix in the virtual encryption process at both ends, and communication
can then begin over the new link. When there is no longer a need for communication between the user’s workstation
and the server, the communication link is dismantled and the keys erased.

25

54. Key Generation

Key generation in the key distribution center is done by applying the DES algorithm repeatably to a “seed” supplied to
the key distribution center, when it is established and started. This method generates unique 64-bit keys for the DES
algorithm for each session running through the virtual channel encryption processor.

5.5. Key Distribution

The user and the server are provided with fixed key distribution keys which are used only for the purposes of key
distribution. The key distribution key for the user is known only by the user and the key distribution center. The key
distribution key for the server is known only by the server and the key distribution center. The user and server do not
know each other’s key distribution keys. Only the key distribution center knows all of the keys, and for that reason,
they must be kept secure. The session kéy for the user is encrypted at the key distribution center by the user’s key
distribution key, and the user decrypts the session key using the same key distribution key. The session key for the
server is encrypted at the key distribution center using the server’s key distribution key, and is decrypted at the server
by the server’s key distribution key. Once the keys are decrypted, they are loaded into the virtual encryption algorithm,
and the link between the user and server is ready for secure operation.

The encrypted keys are distributed through network sockets separate from those used by the virtual channel encryptor
to transmit encrypted data from one host to another. The key communication socket links are kept permanently in
existence, whereas those used by the virtual channe] encryptor for encrypted communications are taken down when the
data link is no longer needed. This frees VCE channels for other use.

Key generation and distribution are illustrated in Fig. 16.

26

user requests secure
connection to server

v

message requesting
keys is sent to the Key
Distribution Center

v

Key Distribution
Center verifies that request
is permitted

v

| Key Distribution Center
generates session key

session key encrypted
by user’s key
distribution key

!

session key encrypted
by server’s key
distribution key

encrypted key sent
to user’s workstation

!

!

encrypted key sent
to server

session key
decrypted by
user’s workstation

:

session key loaded

into virtual channel

encryption process
in user’s workstation

!

session key
decrypted by
server

!

session key loaded

into virtual channel

encryption process
in server.

session established
between user’s «—!
workstation and server

Figure 16: Kerberos flow diagram

28

6. Extension to an External VME-based Processor

6.1. Justification

The primary justification for moving the encryption process out of the workstation to a separate VME-based chassis is
to remove the encryption processing load from the workstation processor. The VME-based encryption process will use
a Motorola MC68030 microprocessor to run the encryption algorithm which is virtually identical to that used in the
workstation. In general, an external encryption processor will be more useful at a server than at a user’s workstation
due to the greater number of channels handled by a server.

6.2. Architecture

The VME-based encryption processor will be implemented on a single board VME based processor using the Motorola
MC68030 microprocessor. The board also contains RAM for variable storage, on-board PROM for program storage
and an Ethernet interface for communications between the VME board, the host workstation, and the rest of the
network.

The VME-based encryption processor will be first implemented on a board with a single Ethernet interface. This
interface will handle the traffic between the encryption processor and the user, as well as between the encryption
processor and the network, which will simplify debugging. This is an obvious security problem, since both clear text
and encrypted text appear on the network. Therefore, once the encryption processor with a single interface operates
properly, a second Ethernet interface can be installed on the board to separate the clear and encrypted text. The clear
text then passes over only a very small intra-network consisting of the encryption processor and its associated
workstation, and no clear text is transmitted over the local or wide.area network.

The VME-based encryption processor will be running the encryption process under the VxWorks OS. When the code
for the virtual channel encryptor is working properly, it can be loaded into the read-only memory (ROM) on the
processor board, eliminating any need for a disk drive, which reduces costs. VxWorks offers a number of utilities
which simplify the programming required to implement the VME-based encryptor, with the most important being those
which support the “socket” concept. The VxWorks sockets are compatible with the Solaris sockets used in the Sun
workstation, so the socket concept can be used to transfer data between the VME encryption processor and its
associated workstation, and to maintain connections over the network to a distant workstation.

6.3. Implementation

The VME-based encryption processor can be implemented in two stages. In the first, the encrypted data is sent back to
the workstation for routing to a distant workstation over the network. In the second, the VME-based encryption
processor takes care of the routing as well, and maintains the encrypted connections to the distant workstation by itself.
These two implementations are shown in Figures 17 and 18.

In the first implementation, 16 socket pairs are maintained between the VME-based encryption processor and the
associated workstation to handle the 8 virtual channels that can be processed by the encryption processor. Each full-
duplex link will then have two socket pairs, one for transmission of cleartext data from the user’s application to the
encryption processor. A second socket pair will be used to transmit the encrypted data back to the host workstation.
(Each socket pair is a full duplex link that can carry data in both directions simultaneously.) The workstation will then
route the encrypted data to another socket for transmission to the distant workstation. The sixteen socket pairs that
terminate in the VME encryption processor will be permanent. They will be set up when the encryption processor is
started, and will run continuously afterwards.

Once the first implementation is working properly, it can be converted to the second phase, where the VME encryption
processor makes connections directly to the remote workstation. There will be eight sockets set up to handle the
encrypted data, but, initially, they are not connected to any destination. Once users on the workstation associated with
the encryption processor take control, they can direct the VME encryption processor to make the actual connection to
the remote workstation. This requires a separate control channel between the workstation and the VME processor to
direct the sockets to make the appropriate connections. This option reduces the load on the workstation processor,
since it no longer has to handle encrypted data.

29

Application | * Application
one eight

Socketone | * * ¥ Socket eight

TCP/IP Multiplexer
Ethemnet Interface
one STREAMS
I loopback call
Ethernet Interface
TCP/IP Interface
Virtual Channel
Encryptor
TCP/IP Interface
Ethernet Interface
one STREAMS
| loopback call

Ethernet Interface

TCP/IP Processor
to change IP
addresses

Ethernet Interface

Network

Figure 17: Block Diagram of First Implementation

30

Application one * % % Application eight

Socket one * ok % Socket eight

TCP/IP Multiplexer

Ethernet Interface

WORKSTATION

S

Ethernet Interface

VME
TCP/IP Processor

PROCESSOR

Virtual Channel
Encryptor

TCP/IP Processor

Ethernet Interface

Network

Figure 18: Block Diagram of Second Implementation.

31

32

7. Areas for Future Work

There are a number of areas in which additional work can be done to make the virtual channel encryption concept more
useful. Some of them are listed below.

7.1. Hardware Implementation

Work needs to be completed on the VME implementation of the virtual channel encryption algorithm. The virtual
channel encryption code must be interfaced with the VxWorks operating system and tested to verify that it operates
properly. Work must also be completed on the control protocols that operate between the VME processor and the
associated workstation or server.

7.2. UNIX Applications

The necessary user interfaces should be developed so that UNIX commands such as telnet and FTP work with the
virtual encryption processor in the same manner as they do without virtual channel encryption, from the user’s point of
view. It would also be a good demonstration of the virtual channel encryption concept if it could be demonstrated in a
client-server link between a workstation and a server running an SQL database application.

7.3. Extension to Personal Computers

The virtual encryption processor should be installed in a personal computer running one of Microsoft’s operating
systems such as Windows NT. The personal computer could then be used as a client to get access to a database server
over a network with the communications channel protected by encryption.

It could also be demonstrated with LINUX, a version of UNIX that will run on personal computers. Using the virtual

encryption process with LINUX may be difficult, however, since current versions of LINUX do not support threads.
Of course, a potentially useful project would be to extend the threads concept to LINUX.

74. Extension to Networks Other than Ethernet

Two obvious choices are FDDI and ATM. Both networks can operate at speeds much greater than those found in
Ethemet, and may replace Ethernet as workstations and servers demand higher network bandwidths. Most of the effort
would be in the modification to the device drivers that control the FDDI and ATM interfaces.

33

34

8. Conclusion

This research helped in the understanding of making multi-threaded encryption algorithms in support of multi-context
switching encryption devices. The research allowed us to develop a software based virtual channel encryptor for the
SUN SPARC workstation to show proof-of-concept. The software implementation demonstrated that we could
maintain multiple encrypted channel contexts through a single DES algorithm. However, this mechanism was not
made transparent to the application. It required a knowledgeable user to setup the channels or a modification to the
application to have it call the encrypted socket or stream head. Although we were able to demonstrate the system with
several channels, we did not have the time to obtain performance measurements that could be included in this report.

Although the work successfully completed the software implementation on the Sun workstation, we were not
successful in completing the development of a working hardware implementation of the VCE. As described in the
paper, the hardware implementation would be based on the VME back-plane using the Motorola 68030
microprocessor. The hardware was procured and software modification had begun when the LDRD ended. This
research has led to another research project called the Robustness Agile Encryptor that will deliver hardware this year.
Although we were unable to complete this work the research has made an impact.

The final delivery was to try and integrate the VCE concept into a data base. This work was never started. It was
determined that the approach would not have worked within a medinm to large data base. This was the first application
dropped to assure that concept work would be completed.

Although additional work remains to be performed in this area, the concept remains valid and there continues to be a
quantifiable demand for this type of technology capability, both in the defense and non-defense arenas.

35

36

3]
(4]
(5]
(6]

(8]
[
[10]
[11]

(12]

[13]
[14]

[15]

(18]

(17}

[18]

References
W. Richard Stevens, UNIX Network Programming, Prentice-Hall, 1990.

James Martin and Joe Ceben, TCP/IP Networking: Architecture , Administration, and Programming, Prentice-
Hall, 1994.

Chris Drake and Kimberly Brown, Panic!: UNIX System Crash Dump Anaysis, Prentice-Hall, 1995.
Charles J. Northrup, Programming with UNIX Threads, Wiley, 1966.
Stephen A. Rago, UNIX System V Network Programming, Addison Wesley, 1993.

Randolph Bentson, Inside LINUX: A Look at Operating System Development, Specialized Systems
Consultants, Inc..

Steve Kleinman, Devang Shah, and Bart Smaalders, Programming with Threads, Prentice-Hall, 1996.
W. Richard Stevens, TCP/IP Tlustrated, Volume 1: The Protocols, Addison-Wesley, 1994.

Bil Lewis, Daniel J. Berg, Threads Primer, Prentice-Hall, 1996.

George Pajari, Writing UNIX Device Drivers, Addison-Wesley, 1992.

Janet I. Egan, Thomas J. Teixeira, Writing a UNIX Device Driver: Second Edition, Wiley, 1992.

Edited by Gustavus J. Simmons, Contemporary Cryptology: The Science of Information Integrity, IEEE Press,
1992.

Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, Wiley, 1994.
Harry Katzan, Jr., The Standard Data Encryption Algorithm, Petrocelli Books, Inc., 1977.

Douglas E. Comer, Interneteworking with TCP/IP: Volume 1: Principles, Protocols and Architecture, Prentice-
Hall, 1991.

Douglas E. Comer and David L. Stevens, Intemetworking with TCP/IP: Volume II: Design , Implementqaion,
and Internals, Prentice-Hall, 1991.

VxWorks Programmer’s Guide, Wind River Systems, 1995.

STREAMS Programming Guide, Sun Microsystems, 1995.

37

38

10. Appendices

10.1. LDRD Proposal

LDRD PROPOSED WORK
PROPOSAL COVER PAGE

Project Title: Virtual Channel Encryption
Responsible Project Manager (PM): Michael Sjulin, 9417
Principal Investigator(s): Dean J. Gibson, 9417, James A. Davis, 1423

Note to Preparer: These three topics (two for new proposals) may be any length. However, they must fit
in the space provided (this box).

Abstract (Nature of Work):

Modem networked computers typically support multiple simultaneous “virtual” communication channels to different
destinations over a single physical connection to a data communication network. Inherently, it has been difficult to provide
adequate security to virtual connections, although, the current solutions have employed encryption of everything passing over a
link between two nodes of the network (link encryption) or encryption of data upon entry and exit from the network (end-to-end
encryption). Both link and end-to-end encryption currently only support a single channel, either virtual or direct connect.
Another approach has been to encrypt the data files stored in a computer before transmission over the network (file encryption).

This research proposes to develop a proof-of-principle system that will support encrypting multiple virtual channels between the
user’s computer and the network without physically separating them, eliminating the need for multiplexing and demultiplexing
operations and for individual encryption devices to support each data channel. This approach would reduce the bulk and cost of
the equipment required to support 2 multi-channel communication system.

The issues to be addressed include the maintenance of multiple encryption algorithms inside a single encryption device,
synchronization of multiple encrypted virtual channels, transmission of routing information through the encryption units, and key
handling. Extensions of these concepts to protect an SQL database will also be investigated. Two approaches to implementing
this system for a database will be considered: storage of the database objects in encrypted form, which would require encryption
and decryption for the data entering and exiting the database, and encryption on access to the data base, so that clear text
information in the database is transmitted in encrypted form over the network.

Work Proposed for Next Year:

A proof-of-principle system will be established in Department 9417’s Information Technology Lab (ITL) in Building 835, using
the Sun workstations as multi-user terminals and servers. A software-based implementation of the control system, utilizing DES,
will be installed onto several workstations to support multiple virtual channels. Key-handling issues, transmission of routing
information through the encryption algorithm, process control algorithms or protocol development, and channel synchronization
are topics that will be specifically addressed. An SQL database will also be installed on one of the machines for integration into
the communications network, so that research can be extended to support database access control and data protection.

39

LDRD Data Input Form

Please ensure that an entry has been provided in every data field.

I:I 1 Year No
2 Year I:l Yes
[]3 Year

Proposal Number:
(Leave blank, can only be assigned by the LDRD Office)

Classified?:

E! No
I:I Yes

Duration: Invelves Living Subjects?:

If Renewal Proposal: [: 2nd Year - (Go to Proposal Title)

Do you wish to give an Oral Presentation for this Proposal?

Is this an NPRD propesal?

|:I Yes - (Select one)
(Go to Proposal Title)

Technology Area (Check only one)

Computational, Computer, & Mathematical Science
Manufacturing Systems

Structural Materials Development

Solid State Sciences & Technology

Engineering Mechanics

LLTTT]

Program Area (Check only one)

Engineered Processes and Materials
Microelectronics and Photonics
Integrated Capabilities

Electronics

National Security Technology

|

DNO

No - (Select a Technology Area and Program Area)

D Novel Projects

[3rd Year - (Go to Proposal Title)

Yes

Will it be classified?

ENO r_—l Yes

D Emerging Technologies

X | Information Technologies

Engineered Systems and Devices

Non Structural Materials Development

Large-Scale Systems Analysis, Design, and Integration

Environmental Sciences

X | Computational and Information Sciences

Engineering Sciences

Information Science and Technology

Advanced Manufacturing Technologies

Energy & Environmental Science and Technology

: Counter-proliferation Transportation
Biomedical Engineenng
Proposal Title: Virtual Channel Encryption
Lead Principal Investigator: Dean J. Gibson Org: 9417 E#: 20702
Project (Subcase) Manager: Michael R. Sjulin Org: 9417 E#: 23995
Funding Requested: (From LDRD Cost Estimate Worksheet)
Manpower Total Labor ($) Total Assessments
Total ($) (FTE) Total DC ($) Total SC ($) ($) Inflation ($)
FY9s 240K 1.2 192K 20K 5K 12K 11K
FY9%6 236K 1.2 192K 10K 12K 22K
FY97
TOTAL
Breakdown by Center for FY95:
Manpower Total Labor ($) Total Assessments
Center # Total ($) (FTE) Total DC (§) Total SC ($) ($) Inflation ($)
1400 36K 0.2 32K 2K 2K
9400 204K 1.0 160K 20K 5K 10K 9K

Scientific and Technical Soundness

Problem: A client or Server workstation connected to a data communication network often needs to establish
simultaneous communication channels to more than one destination. Even with only one physical connection between
the workstation and the network, multiple “virtual” channels can be supported over this link because typical data
communication technologies such as ATM and FDDI use data packets that contain addressing information which
allows the network to route the data to the proper destination.

Inherently, it has been difficult to provide adequate security to virtual connections, although, the current solutions have
employed encryption of everything passing over a link between two nodes of the network (link encryption) or
encryption of data upon entry and exit from the network (end-to-end encryption). Both link and end-to-end encryption
currently only support a single channel, either virtual or direct connect. Another approach has been to encrypt the data
files stored in a computer before transmission over the network (file encryption). Protection of information passing
over the connection between the workstation and the network is still a research topic, since present encryption
techniques cannot handle multiple virtual channels going to different destinations over a single physical link. As an
example, link encryption , a current approach, encrypts everything passing over a link between two nodes of a network,
but also decrypts everything before the data can be processed by a network node for transmission to the next
destination. Another approach, end-to-end encryption, encrypts data upon entry and exit from the network, but this
approach has limited the number of virtual channels on a physical link to one. A third approach, file encryption,
encrypts a file in the workstation before it is broken into packets for transmission over the network.

This research proposes to develop a proof-of-principle system that will support encrypting multiple virtual channels
between the user’s computer and the network without physically separating them, eliminating the need for multiplexing
and demultiplexing operations and for individual encryption devices to support each data channel. The encryption
algorithm will be placed in the communications link between a workstation and a network to process multiple virtual
conpections using an end-to-end encryption technology for each virtual chanpel. The encryption device will need to
maintain a separate encryption process fro each virtual communications channel, passing the routing address for each
virtual channel around the encryption process.

Issues: Several technical issues need to be addressed as part of this project. The first is that of developing a control
algorithm to control several simultaneous virtual channel encryption processes using a single encryption engine or
kernel. Each of these processes need to have the encryption keys and state variables maintained, the network address
information maintained, and each encryption process maintained in synchronization. There are issues surrounding the
generation and distribution of dey data and the method by which this data is updated to support a secure open network
(Kerberos will be the starting methodology used to implement this task). The technique by which the routing address
information is maintained and passed around the encryption process will be derived from current end-to-end encryption
devices, but the actual implementation will more than likely require a change to support the multiple virtual channels
running concurrently. Not only must methods be developed to maintain synchronization for N encryption processes at
each end of a virtual link, but a need to establish the practical value of N for a given system implementation is required.
Finally, the integration of this approach into query process of an SQL database needs to be addressed. One major issue
when encrypting data for storage in a database, is how will data be tagged to support plan text queries.

Approach: This proposal will support a two fold approach to implementing the mulit-virtual channel encryption
system. To support the approaches, a prototype data communications network will be established in Building 835
using the Department 9417’s Information Technology Lab (ITL).

In the first approach, a software-based encryption algorithm based on DES will be the encryption demel used on the
Sun workstations to perform the encryption process. A kemel control algorithm will be developed to control the
encryption processes required to maintain the encryption state variables, key variables, and virtual link address
information. As a deamon to this process, an algorithm to maintain synchronization between the processes at each end
of a virtual link will be developed. A key-handling scheme, initially based on Kerberos, will be used to distrubute and
update the necessary encryption keys throughout the network. The Kerberos security process will be modified as
required to better support the multi-virtual channel encryption process.

In the second approach, a hardware version of the control system described above will be prototyped for insertion in
the link between a workstation and the network. The goal is to develop a device that performs these functions without
any need for software modifications in the workstation and will support a greater number of virtual channels. This will
also eliminate the additional load that would be placed on the workstation processor in performing the encryption and

41

decryption functions. Once the two approaches are implemented, the research to evaluate system performance and the
number of virtual channels supportable by the two approaches will be determined.

The final experiment will be to install an SQL database on one of the workstations in the ITL and augment the
algorithms to support the query functions for access into the database. This implementation will use encryption in
storing objects to and retrieving objects from the database. A means by which the system can tag data objects that are
encrypted to support the query functions of the database will need to be developed. The encryption processor will also
be installed between the database and the network to demonstrate that a user on the network will have full access to the
database with adequate network security.

Expected Results: At the end of this research, we expect to have developed in software the necessary algorithms to
handle multiple virtual links between workstations on a network, and to have developed a hardware prototype which
will duplicate these functions. We will also have demonstrated that a user can access a database over a network using a
similar encryption process and will also have developed an approach to providing access separation in an SQL
database. We will have an understanding of the maximum number of virtual circuits supportable by a software and
hardware implementation of the system.

Creativity and Innovation

This project is an extension of the current state-of-the-art in encryption technology into several new areas. The concept
of a multi-channel encrypter, along with the key distribution and encryption channel synchronization technologies
necessary 1o support it is new in supporting network virtual channels. As mentioned before, encryption technologies
are available for link and end-to-end encryption, but this work will extend to handle multiple virtual circuits over a
single physical link using the same encryption engine running concurrent encryption processes. Extension of these
concepts onto the access process for an SQL database provides some unique approaches to data security. The use of
multi-channel encryption technologies will lead to some new concepts for the separation and protection of database
objects, and to new methods for controlling the necessary access of multiple, simultaneous users to the database.

Project Plan

Milestones:
Implement DES in software on workstation 10/94
Modify encryption object to pass routing information 3/95
Create Encryption Process Control Algorithm 6/95
Set up key distribution scheme 9/95
Demonstrate hardware encryption prototype 3/96
Install SQL database on a workstation 3/96
Modify SQL database to use encryption during storage/retrieval 4/96
Install encryption process between database and network 7/96
Write SAND report 9/96

42

Staffing:
Dean Gibson, Lead Principal Investigator, 9417
Contribution: Project management, Key distribution and virtual chanrel control process, and network design.
Biography: Education: PhD in Electrical Engineering Work Related: digital and analog circuit design, signal
processing, cryptographic equipment support, communication networks, and software design.

James A. Davis, Principal Investigator, 1423

Contribution: cryptographic support (key handling and algorithm implementation)

Biography: Education: PhD in Probability and Statistics Work Related: weapon system analysis, applied
mathematics, and cryptographic application (for Command & Control projects).

Budget:
FY95 FTEs Gibson (0.8), Davis (0.2), 9400 staff (0.2) - Total of 1.2 FTEs
FY9 FTEs Gibson (0.8), Davis (0.2), 9400 staff (0.2) - Total of 1.2 FTEs

FY95DCs Hardware Implementation Components - 20K
FY96DCs None

FY95 SCs Drafting Definition and Network Definition - SK

FY9 SCs Shop Support -—------=-m-n-mm- 7K
SAND Reports Processing - 3K
Total — 10K

Impact

Virtual channel encryption technologies could have a substantial impact on the protection of data on communication
networks and database storage systems. They would eliminate the need for the physical separation of communication
networks handling different types of sensitive information. Extended to database applications, these technologies
could permit the storage of different levels of sensitive information on the same computer, especially if the data is
stored in encrypted form. If one can use the appropriately approved encryption algorithms from NSA, it might be
possible to extend these concepts to the communication and storage of classified data.

These same concepts will be very useful in the evolving National Information Infrastructure. Here, they could be used
to provide protection for financial, medical, and other types of sensitive information, in both data communication and
data storage applications, eliminating much of the need for physical separation of the information to provide adequate
security. They would also provide a more seamless means to providing encryption on a Wide Area Network (WAN) or
Local Area Network (LAN) where many user nodes are involved.

Signatures
James A. Davis, 1423, Principle Investigator Dean J. Gibson, 9417, Lead Principal Investigator
Michael Sjulin, 9417, Project Manager Michael Eaton, 9400, Center Director

43

10.2. FY 1995 Progress Report

Case Number 3517.270

Project Title Virtual Channel Encryption
Project Manager M. R. Sjulin, 9417
Principal Investigators Dean J. Gibson, 9417

Abstract - A descriptive project abstract (100-200 words)

units, and key handling.

Modern networked computers typically support multiple simultaneous “virtual” communication channels to different
destinations over a single physical connection to a data communication network. Protection of such connections has

been difficult due to the lack of encryption equipment capable of simultaneously processing multiple virtual channels
over a single physical connection.

This project is the development of a proof-of-concept system that will support the encryption of multiple virtual
channels over a single physical link between a user’s computer and a network, eliminating the need for multiplexin,
and demultiplexing operations and individual encryption devices for each channel. Both a software module for
installation in the user’s computer and an external hardware module to perform these functions are being developed.
Issues being addressed include: maintenance of multiple encryption algorithms inside a single encryption device,
synchronization of multiple encrypted virtual channels, transmission of routing information through the encryption

FY95 Accomplishments - (150-400 words)

Background - This project addresses the need for security in the transmission of data over a
communications network from a workstation which can support multiple virtual channels over a single
network connection. Past approaches to this problem have required the demultiplexing of the virtual
channels mto distinct physical channels, each to be processed by its own encryption device. This project
is the development of software and hardware which can encrypt multiple virtual channels simultaneously,
eliminating the need for demultiplexing and separate encryption devices for each channel.

Main conclusions/findings - A DES (Data Encryption Standard) algorithm has been modified to handle
multiple virtual data channels simultaneously, and has been installed on a workstation. A copy of the
Kerberos network security software has also been installed on this workstation to provide key handling
and link control functions. From these activities, we conclude that one can perform the virtual channel
encryption functions in a software module that resides in the user’s workstation.

Recommendations, if any - It is recommended that this project be continued for another year to permit
the development of a hardware virtual channel encryptor to be placed in the communication link between
the workstation and the network. This will unload the encryption computations from the workstation
processor, substantially reducing the workstation’s workload.

A review of data - To handle multiple data channels simultaneously, the DES encryption algorithm
chosen for this project was modified by stripping out all of its internal variables, leaving only pure code,
so that it can handle multiple data streams simultaneously, with a separate data structure handling the
state variables for each data stream. The modified DES algorithm has been inserted into a “STREAMS”
Ethemet driver to provide the encryption function needed for the virtual channel encryptor. The
STREAMS device driver concept features a modular approach to the design of device driver components
which simplifies the insertion of the encryption software.

Kerberos is a network security concept which controls access to the resources attached to a
communications network. A “key distribution center” is used to generate a set of “tickets” which are
given to each user to gain access to resources attached to the network. Each time a user requests access to
a resource, one of these tickets is used to establish a secure link between the user and that resource

Refereed publications resulting from the work: Required info is as follows: Author(s), title of article, publisher,
where published, volume number, page numbers, date of publication (mo/yr) (see artached bibliographic reference
sheet for more detail)

none.

All other publications resulting from the work: Required info is as follows: Author(s), title of article, name of
conference where paper was presented, date of presentation (mo/day/yr), location (city, state, country), volume
number, page numbers (see attached bibliographic reference sheet for more detail)

None

45

Number of patent disclosures:
(where the invention was at least in part attributable to LDRD
support)

None

Number of patent applications:
(where the invention was at least in part attributable to LDRD
support)

None

Number of patents:
(where the invention was at least in part attributable to LDRD
support)

None

Number of copyrights on computer software:
(where the code was at least in part attributable to LDRD
support)

None

Number of students:
(if any) supported by the project

None

Number of post docs:
(if any) supported by the project

None

Number of permanent technical or scientific staff hired:
(if any) supported by the project

None

Number of awards (and their names):
by organizations outside the laboratory to an individual or
team attributed at least in part to LDRD support

None

Number of new non-LDRD funded projects:
their amounts and source of funding

None

Your qualitative assessment about the completion of your milestones for the year in percent

100 % ||

Your qualitative assessment about the direction of the project as a result of research or other findings (Please place an

X over the number of the statement that best describes your results)

X Goals met, hypothesis proved

2 Goals partially met, hypothesis modified

3 Goals substantially modified, hypothesis redefined
4 Goals not met, hypothesis disproved

5 Project terminated because:

46

47

USED AT: AUTHOR: DATE: 8/5/96 WORKING READER DATE | CONTEXT:
PROJECT: Model 1 REV: 9/25/96 DRAFT
10.3. rocess Flowcharts AECOMMENDED N
NOTES: 123456788910 PUBLICATION A0
[server_name [] [i
login_id Initi TCP/IP
o) Initate Kkerberos
) Session called
address
message request
VCE
Establish
Sesslon —
2
—————
Distribute
Keys
3 Z_key
Create opened channel
Encrypted
Channei
4
Transmit .
user request Lserver Request transmitted gser request
L 5
= client 4
) Obtaln
Server
user) key distribution server SVCE Response file contents
g 6
Complete file to user
g Transaction _.__E.
7
— —
[bl ialnl T
sl T3 T3 T
NODE: AD TITLE: VME NUMBER:
m N
kerberos el N ™
UNIX 3
Request)
message request Keys from
—_—
Kerberos 3
1 key request
Generate
Key (2)
2 z
Encrypt
z
3 E@)
Decrypt
E@2) Z oy
by Client —-
4
E@
Decrypt
E'@Q
by Server Z_kex
/ 5
;:Iient key distribution server T server
NODE: A3 TITLE: Distribute Keys NUMBER:
—i

TCP/IP

-
transmitted user request)
R ——— N
Receive received request
Request
1
m decrypted request
2
Process
Request
3 response
Encrypt encrypted roply
Reply
4
VCE Transmit file contents
Reply 1o l———-—
Client
5
server
gliem ? I
[m]
NODE: A6 TITLE: Obtain Server Response NUMBER:
/i
VCE
~
Transter
Z_key z
=
o VCE
1 z
Initialize
VCE
2
active VCE
Encrypt opened channel
Channel —
VCE
3
client server

i

NODE: A4 TITLE: Create Encrypted Channel! NUMBER:

48

10.4. Listing of Code for the Virtual Encryption Process

49

DISTRIBUTION:

[N I

W = N =

MS 0431
MS 0451
MS 0451
MS 0100

MS 0619
MS 0899
MS 9018
MS 0449

S. G. Vamado

J. H. Moore

M. R. Sjulin

Document Processing for DOE/OSTI,
7613-2

Print Media, 12615

Technical Library, 4414

Central Technical Files, 8523-2

R. A. Sarfaty

50

:bil-version 10
:project project5

¢

)
:tooltalk

:files
:root-window

:session-management {

:sessioning-method

(
:desktop-level

)
:internationalization

:enabled

:res-file-types

:false

(vce5.bil)
veeS.mainwindow

inone

inone

51

/*** DTB_USER_CODE_START vvv Add file header below vvy #*w/
/*** DTB_USER_CODE_END ~~~ Add file header above """ *xx/

File: project5.c
Contains: main() and cross-module connections

This file was generated by dtcodegen, from project projectS

DTB_USER_CODE_END comments (even non-C code). Descriptive comments
are provided only as an aid.

** EDIT ONLY WITHIN SECTIONS MARKED WITH DTB_USER_CODE COMMENTS. %+
% ALL OTHER MODIFICATIONS WILL BE OVERWRITTEN. DO NOT MODIFY OR **

*
*

>

N

*

* Any text may be added between the DTB_USER_CODE_START and

*

*

.

*

-

* ** DELETE THE GENERATED COMMENTS! *x

tinclude <unistd.h>
#include <stdlib.h>
tinclude <stdio.h>
tinclude <sys/param.h>
tinclude <sys/types.h>
tinclude <sys/stat.h>
#include <X1l1/Intrinsic.h>
#include <Xm/Xm.h>
¢include <Xm/MwmUtil.h>
tinclude <Xm/Protocols.h>
#include <Dt/Help.h>
#include <Dt/HelpQuickD.h>
#include <Dt/Helpbialog.h>
tinclude "vce5_ui.h"
tinclude "project5.h"
tinclude "dtb_utils.h"”

/iik*kﬁ*ﬁi**** L2 2 2 2 8 2] * *
*** DTB_USER_CODE_START
de e e
*%% BR1] necessary header files have been included.
s

**%* Adad include files, types, macros, externs, and user functions here.

t*k/
XtAppContext app_usr = (XtAppContext)NULL;

/*** DTB_USER_COCDE_END
ek
w End of user code section
e
e v vl oie e e e o e e e e o o e ok e T e e A ok e o e ok e vk t&"*/

/ﬁ
* command line options...
*/
static XrmOptionDescRec optionDescList(] = {
{"-session”, "*session", XrmoptionSepArg, (XPointer)NULL}

/*** DTB_USER_CODE_START vvv Add structure fields below vvv ##xx/
/*** DTB_USER_CODE_END ~~~ Add structure fields above "~ wxx/
}:
/i
* Application Resources
*/
static XtResource resources{] = {
{"session", “"Session”, XtRString, sizeof(String),
XtOffsetOf (DtbAppRescurceRec, session_file), XtRImmediate, (XtPointer)NULL}

/*** DTB_USER_CODE_START vvv Add structure fields below vvv *#*,/
/*%** DTB_USER_CODE_END ~~~ Add structure fields above """ dww/
}:

DtbAppResourceRec dtb_app_resource_rec;

/ﬁ
* main for application project5
*/

int

main(int argc, char **argv)

{

Widget toplevel = (Widget)NULL;

Display *display ~ (Display*)NULL:
XtAppContext app = {XtAppContext)NULL;

String ~fallback_resources = (String*)NULL;
ArgList init_args = (ArgList)NULL;

Cardinal num_init_args = (Cardinal)}O;

ArgList get_resources_args = (ArgList)NULL;
Cardinal num_get_resources_args = (Cardinal)0;
Atom save_yourself_atom = (Atom)NULL;

/*t&kﬁit**iﬁ' o e e Ak e ve vk ok e e e e e e sk ok e ok Nk ok

w#% DTB_USER_CODE_START

W

*** No initialization has been done.
e

=x* Ldd local variables and code.
Ty

52

/*** DTB_USER_CODE_END

ko

»** End of user code section
hew

Ak Ak kR kAR RARRNRA AR L e e R e L e R e L

toplevel = XtApplnitialize(&app, "Project5”,
optionDescList, XtNumber{optionDescList),
&argc, argv, fallback_resources,
init_args, num_init_args);

*

* Get display and verify initialization was successful.
*

if (toplevel != NULL)
display = XtDisplayOfObject(toplevel);

}

if (display == NULL)

{
fprintf(stderr, "Could not open display.”);
exit(1);

/*
* Save the toplevel widget so it can be fetched later as needed.
*/

dtb_save_toplevel widget(toplevel);

*
* Save the command used to invoke the application.
*/

dtb_save_command (argv{0]);

XtGetApplicationResources(toplevel, (XtPointer)&dtb_app resource_rec,
resources, XtNumber(resources),
get_resources_args, num_get_resources_args):

/**Q e e e e e e e e e e o o e e Wk A e K
*%x% DTB_USER_CODE_START
T
*xx A connection to the X server has been established, and all

#** initialization has been done.
ek

%% pAdd extra initialization code after this comment.
**'/

app_usr = app;

/*** DTB_USER_CODE_END

FTTs

*** End of user code section

dew

kR AR ek et e ew k)
/t
* Initialize all global variables.
*/
dtbVceSMainwindowInfo_clear(&dtb_vceS_mainwindow);
/*
* Set up the application’s root window.
*/

dtb_veeS_mainwindow.mainwindow = toplevel:
XtvaSetValues(dtb_vce5_mainwindow.mainwindow,
XmNallowShellResize, True,
XmNtitle, "VCE Receiving Window",
XmNinitialState, NormalState,
XmNbackground, dtb_cvt_string_to_pixel(dtb_vce5_mainwindow.mainwindow, “"white"),
NULL) ;

dtb_veceS_mainwindow_initialize(&(dtb_vce5_mainwindow), dtb_get_toplevel_widget()):

/t
* Map any initially-visible windows
*/

save_yourself_atom = XmInternAtom{XtDisplay(toplevel),
"WM_SAVE_YOURSELF", False):;

XmAddWMProtocolCallback (toplevel, save_yourself_atom,
dtb_session_save, (XtPointer)NULL);

/ﬂ*'***t.*ﬁ*********titkt****ﬁ*ii*ﬁﬁ*t*t*t**i**ﬁitkﬁ*i*****’*t******Qk*****
*%» DTB_USER_CODE_START
s
il All initially-mapped widgets have been created, but not
**x* realized. Set resources on widgets, or perform other operations
*** that must be completed before the toplevel widget is
% realized.
wwwy

/*** DTB_USER_CODE_END
*xw

»** End of user code section
P

A gt ke ek e e ek ok P2 Ty AR ARk R h RN kAN [

53

Vata

e
ek
"k
LT
E Y
s

Vadal

e
ke
e de
s

XtRealizeWidget (toplevel);

SERrH T Y - ko

#% DTB_USER_CODE_START

e

e The initially-mapped widgets have all been realized, and
*** the Xt main loop is about to be entered.
ﬁﬂﬂ/

/*** DTB_USER_CODE_END

dedeh

**x* End of user code section
L]

*n

e * e de e ek ok

/t
* Enter event loop
*/
XtAppMainLoop(app);
return O;

e e e e e e o e e e e e ok ek ke ok ek Rk '

DTB_USER_CODE_START
All automatically-generated data and functions have been defined.

Add new functions here, or at the top of the file.
/

DTB_USER_CODE_END
End of user code section

e s ek e e e e *

P

54

*/

/*** DTB_USER_CODE_START vvv Add file header below vvv %%/
/*** DTB_USER_CODE_END ~~~ Add file header above "~ *xx/

/i
* File: project5.h
* Contains: object data structures and callback declarations
*
* This file was generated by dtcodegen, from project project5
-
* Any text may be added between the DTB_USER_CODE_START and
* DTB_USER_CODE_END comments (even non-C code). Descriptive comments
* are provided only as an aid.
*
* %% EDIT ONLY WITHIN SECTIONS MARKED WITH DTB_USER_CODE COMMENTS.
* %% ATT, OTHER MODIFICATIONS WILL BE OVERWRITTEN. DO NOT MCODIFY OR
* *% DELETE THE GENERATED COMMENTS!
*/

#ifndef _PROJECTS_H_
tdefine _PROJECTS5_H_

#include <stdlib.h>
#tinclude <X11/Intrinsic.h>

/k
* Structure to store values for Application Resources
*/
typedef struct {
char *session_file;

/*** DTB_USER_CODE_START vvv Add structure fields below vvv *»x/

/*** DTB_USER_CODE_END ~~~ Add structure fields above ~"" www/
} DtbAppResourceRec;

extern DibAppResourceRec dtb_app_resource_rec;

[
"
-

SRR AR RN AR K KRR AR AR AR KK ke dek kW P L T T T

%*** DTB_USER_CODE_START

Heden
#%* pAdd types, macros, and externs here
k)

/*** DTB_USER_CODE_END

#*% End of user code section

L S T e Wk e de K

tendif /% _PROJECTS_H_ */

55

*ww

/*i*
tinc
tinc
tinc
#inc
tinc
tinc,
tinc
tinc
tinc
/ﬁt*

~
*

F

T

A
o}
a

I A

*
~

#inc
tinc
tinc
tinc

/i-

* Hi
*/
tinc
tinc
tinc

VAT
*wex
*kek
1223
PTs
e
Py

void

DTB_USER_CODE_START vvv Add file header below vvv #x*x/
lude <unistd.h>

lude <sys/types.h>

iude <sys/stat.h>

lude <sys/uio.h>

lude <stropts.h>

lude <sys/conf.h>

lude <errno.h>

lude <sys/fcntl.h>

lude <stdio.h>

DTB_USER_CODE_END ~~~ Add file header above ~*" **x/

ile: vceS5_stubs.c

Contains: Module callbacks and connection functions

his file was generated by dtcodegen, from module vceS

ny text may be added between the DTB_USER_CODE_START and
TB_USER_CODE_END comments (even non-C code). Descriptive comments
re provided only as an aid.

*#% EDIT ONLY WITHIN SECTIONS MARKED WITH DTB_USER_CODE COMMENTS. %=
** ALL OTHER MODIFICATIONS WILL BE OVERWRITTEN. DO NOT MODIFY OR **
+% DELETE THE GENERATED COMMENTS! >

lude <stdio.h>
lude <Xm/Xm.h>
lude "dtb_utils.h*
lude "vceS_ui.h"

eader files for cross-module connections
lude <Xm/RowColumn.h>

lude <Xm/Label.h>
lude <Xm/TextF.h>

B L g L L P T P 272 *

DTB_USER_CODE_START
All necessary header files have been included.
Add include files, types, macros, externs, and user functions here.

/
extern XtAppContext app_usr;

check_data(

Akl
e
ok
e
ket

void
vces

DtbVceS5MainwindowInfo clientData,
XtIntervalId callData

DTB_USER_CODE_END

End of user code section

e 3 ok ke ook o e ok ke HERERIR ARSI H AR AR RN [

_textfield CBl(
widget widget,
XtPointer clientData,
XtPeointer callData

/*** DTB_USER_CODE_START vvv Add C variables and code below vvv **«x/
/*** DTB_USER_CODE_END ~~~ Add C variables and code above """ #*ax/

DtbvceSMainwindowInio dtbTarget = {DtbVceSMainwindowlnfo)clientData;
DtbVce5MainwindowInfo instance = dtbTarget; /* obsolete */

if (!(dtbTarget->initialized))
{
dtb_vece5_mainwindow_initialize(dtbTarget, dtb_get_toplevel_widget());
}
XtPopdown (instance->mainwindow);

/*** DTB_USER_CODE_START vvv Add C code below vvv **«/
printf("action: vce5_textfield CBI()\n");
/*** DTB_USER_CODE_END ~~~ Add C code above ~°7 sk

void
vceS_button_CB1(

wWidget widget,
XtPointer clientData,
XtPointer callData

/*** DTB_USER_CODE_START vvv Add C variables and code below vvv #w*x/
/*** DTB_USER_CODE_END ~~~ Add C variables and code above """ *%x/

DtbVceSMainwindowInfo dtbTarget = (DtbvceSMainwindowInfo)clientData;
DtbVceS5MainwindowInfo instance =~ dtbTarget:; /* obsolete */

if (!(dtbTarget->initialized))
{

56

dtb_vce5_mainwindow_initialize(dtbTarget, dtb_get_toplevel_widget()):

XtVaSetValues{instance->textfield,
XmNvalue, NULL,
NULL);

/*»** DTB_USER_CODE_START vvv Add C code below vvv *xk/
XtVaSetValues{instance->textfield3,
XmNvalue, NULL,
NULL);
printf("action: vceS_button_CBl()\n");
/*** DTB_USER_CODE_END ~~"~ Add C code above """ wxw/

void

exit_func(
Widget widget,
XtPointer clientData,
XtPointer callData

/**» DTB_USER_CODE_START vvv Add C variables and code below vvy *xx/
exit(0);

/*** DTB_USER_CODE_END ~~~ Add C variables and code above """ *k*/
/*%** DTB_USER_CODE_START vvv Add C code below vvy *##/

printf("action: vce5_button2_CBl()\n");
/*** DTB_USER_CODE_END ~~~ Add C code above """ wwk/

void

activate_CB(
wWidget widget,
XtPointer clientData,
XtPointer callData

/*** DTB_USER_CODE_START vvv Add C variables and code below vvy wx*/

XtIntervalld timer_id;
DtbVceSMainwindowInfo dtbTarget = (DtbVceSMainwindowInfo)clientData;
DrbvceSMainwindowInfo instance = dtbTarget; /* obsolete */

if (!(dtbTarget->initialized))

dtb_vceS_mainwindow_initialize(dtbTarget, dtb_get_toplevel_widget());

)i

/* timer set for every 3 seconds (30003 */
timer_id = XtAppAddTimeOut(app_usr, 3000, check_data, instance);

/**% DTB_USER_CODE_END ~~~ pdd C variables and code above ~77 #k%/

/*%*% DTB_USER_CODE_START vvv Add C code below vvy *»*/
/*** DTB_USER_CODE_END ~~~ pdd C code above "N wEw/

R e e bl b LA AL LA bbbt b

#** DTB_USER_CODE_START

P

%% M)l automatically-generated data and functions have been defined.
o e

#%x* Add new functions here, or at the top of the file.

Py

void

check_data(
DtbVceSMainwindowInfo clientData,
XtIntervalld callData

XtIntervalld timer_id;
int count, fd;

if ((fd = open ("test_file", O_RDWR}) < 0)
{

printf ("VCE module inactive\n”);
timer_id = XtAppAddTimeOut(app_usr, 5000, check_data,
return;

}

close (fd);

printf ("VCE mocdule found\n");
XtManageChild(clientData->textfield_rowcolumn);
XtManageChild{clientData->textfield3_rowcolumn);

XtvaSetValues({clientData->textfield,
XmNvalue, "VCE_text_or_file_name®,
NULL); /* unencrypted */

XtVaSetValues(clientData->textfield3,
XmNvalue, *VCE_text_or_file_name”,
NULL); /* encrypted */
}
/*** DTB_USER_CODE_END

57

clientData);

*koh

=%+ End of user code section
wx

R e e L 4

58

File: vceS_ul.c
Contains: user module object initialize and create functions

This file was generated by dtcodegen, from module vceS

#** DO NOT MODIFY BY HAND - ALL MODIFICATIONS WILL BE LOST

#include <stdlib.h>
#include <X1ll/Intrinsic.h>
#include <X11/Shell.h>
#include <Xm/PanedW.h>
#include <Xm/MainW.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>
#include <Xm/TextF.h>
#include <Xm/Label.h>
#include "dtb_utils.h"
#¥include *project5.h"
#include "vce5_ui.h”

DtbvceSMainwindowInfoRec dtb_vceS5_mainwindow =
{

False /* initialized */
i

/11
* Widget create procedure decls
>/
static int dtb_vceS_mainwindow_create(
DtbVceSMainwindowInfo instance,
Widget parent
)5
static int dtb_vceS_controlpane_create(
DtbVceSMainwindowInfo instance,
wWidget parent
)i
static int dtb_veceS5_button_create(
DtbvceSMainwindowInfo instance,
widget parent

)i
static int dtb_vce5_button2_create(

DtbVceSMainwindowlInfo instance,
widget parent

)i

static int dtb_vceS_textfield_create(
DtbvceSMainwindowInfo instance,
widget parent

]

static int dtb_veceS_button3_create(
DtbVce5MainwindowInfo instance,
Wwidget parent

):

static int dtb_vce5_textfield3_create(
DtbvceSMainwindowInfo instance,
Widget parent

)

static int ézb_vceS_textfieldd_create(
DtbVceSMainwincdowInio instance,
wWidget parent

)i

int

dtbVeceSMalnwindowIiréo_cs.ear(DtbVeceSMainwindowInfo instance)
(

vaid *iinstance), 0, sizeof(*instance}};

v

memset (
return

}

int
dtb_vecef_mainwind
DtbVceSMa:ir
wWidget par

WidgetList children = NULL;
int numChildren = O;
if (instance->initialized)
{

return O;

}
instance->initialized = True;

dtb_vceS_mainwindow_create(instance,
parent);
dtb_vceS_controlpane_create({instance,
instance->mainwindow_form);
dtb_vce5_button_create(instance,
instance->controlpane);
dtb_vceS_button2_create{instance,
instance->controlpane};
dtb_vce5_textfield _create(instance,
instance->controlpane);
dtb_vceS5_button3_create{instance,
instance->controlpane};
dtb_vceS_textfield3_create(instance,
instance->controlpane);

59

dtb_vceS_textfield4_create(instance,
instance->controlpane);

/*
* Add widget-reference resources.
*/

XtvaSetValues(instance->mainwindow_mainwin,
XmNworkWindow, instance->mainwindow_form,

NULL);
/ﬁ
* Call utility functions to do group layout
*/
/’t
* Manage the tree, from the bottom up.
*/

XtvaGetValues(instance->textfield_rowcolumn,

XmNchildren, &children, XmNnumChildren, &numChildren,
XtManageChildren(children, numChildren);
XtvVaGetValues(instance->textfield3_rowcolumn,

XmNchildren, &children, XmNnumChildren, &numChildren,
XtManageChildren (children, numChildren);
XtManageChild(instance->button);
XtManageChild(instance->button2);
XtManageChild(instance->button3);
XtManageChild(instance->textfieldd);
XtVaGetValues(instance->mainwindow_form,

XmNchildren, &children, XmNnumChildren, &numChildren,
XtManageChildren(children, numChildren);
XtManageChild(instance->mainwindow_form);
XtVaGetValues(instance->mainwindow,

XmNchildren, &children, XmNnumChildren, &numChildren,
XtManageChildren(children, numChildren);

/t
* Add User and Connection callbacks
*/

XtAddCallback(lnstance->button,
XmNactivateCallback, vce5_button_CBl1,
(XtPointer)&{*instance));

XtAddCallback{instance->button2,
XmNactivateCallback, activate_CB,
(XtPointer)&(*instance));

XtAddCallback (instance->textfield,

NULL);

NULL) ;

NULL) ;

NULL);

XmNvalueChangedCallback, vceS5_textfield CB1,

(XtPointer)&(*instance});
XtAddCallback(instance->button3,
XmNactivateCallback, exit_func,
(XtPointer)&(*instance));
return 0;
}

static int

dtb_vceS_mainwindow_create(
DtbvceSMainwindowInfo instance,
Widger parent

XmString label_xmstring = NULL:
Display *display= (parent == NULL? NULL:XtDisplay(

if (instance->mainwindow == NULL) ({
instance->mainwindow =

XtvVaCreatePopupShell{"mainwindow"”,
toplLevelShellWidgetClass,
parent,
XmNallowShellResize, True,
XmNtitle, "VCE Receiving Window”,
XmNinitialState, NormalState,
XmNbackground, dtb_cvt_string_to_pixel{parent,
NULL):

if (instance->mainwindow == NULL)
return -1:

if (instance->mainwindow_mainwin == NULL) {
instance->mainwindow_mainwin =
XtVaCreateWidget({"dtb_vceS5_mainwindow_mainwin®”,
xmMainWindowWidgetClass,
instance->mainwindow,

XmNbackground, dtb_cvt_string_to_pixel(instance->mainwindow,

NULL);

if (instance->mainwindow_mainwin == NULL)
return -1:

if (instance->mainwindow_form == NULL) {
instance->mainwindow_form =
XtvaCreateWidget("mainwindow_form*",
xmFormWidgetClass,
instance->mainwindow_mainwin,
XmNmarginHeight, O,
XmNmarginwWidzh, O,
XmNresizePolicy, XmRESIZE_GROW,
XmNheight, 287,
XmNwidth, 520,

60

parent));

"white"),

"white"},

XmNbackground, dtb_cvt_string_to_pixel(instance->mainwindow_mainwin,

NULL) ;

if (instance->mainwindow_form == NULL)
return -1;

return 0;

static int

dtb_vceS5_controlpane_create(
DtbVceS5MainwindowInfo instance,
wWidget parent

if {instance->controlpane == NULL) {
instance->controlpane =
XtVaCreateWidget ("controlpane”,

xmFormWidgetClass,
parent,
XmNbottomAttachment, XmATTACH_NONE,
XmNrightOffset, G,
XmNrightAttachment, XmATTACH_FORM,
XmNleftOffset, 1,
XmNleftAttachment, XmATTACH_FORM,
XmNtopOffser, 1,
XmNtopAttachment, XmATTACHE_FORM,
XmNresizePolicy, XmRESIZE_GROW,
XmNmarginHeight, O,
XmNmarginWidth, O,
XmNheight, 285,
XmNwidth, 519,
XmNy, 1,
XmNx, 1,
XmNbackground, dtb_cvt_string_to_pixel(parent, “Blue"),
NULL};

1

if (instance->controlpane == NULL)

return -

return 0;

static int

dtb_vce5_button_create(
DtbVceSMainwindowInfo instance,
Widget parent

XmString label_xmstring = NULL;

label _xmstring = XmStringCreateLocalized("Clear");
if (instance->button == NULL) {
instance->button =
XtvaCreateWidget ("button”,
xmPushButtonWidgetClass,
parent,
XmNbottomAttachment, XmATTACH_NONE,
XmNrightAttachment, XmATTACH_NONE,
XmNleftOffset, 53,
XmNleftAttachment, XmATTACH_FORM,
XmNtopOffset, 247,
XmNtopAttachment, XmATTACH_FORM,
XmNrecomputeSize, True,
XmNalignment, XmALIGNMENT_CENTER,
XmNy, 247,
XmNx, 53,
XmNbackground, dtb_cvt_string_to_pixel(parent, "Yellow"),
XxmNlabelString, label_xmstring,
NULL);
xmStringFree(label_xmstring);
label_xmstring = NULL:

}
if (instance->button =~ NULL)
return -1;

return 0;

static int

dtb_vceS5_button2_create(
DtbVeceSMainwindowInfo instance,
widget parent

XmString label_xmstring = NULL;

label_xmstring = XmStringCreateLocalized("Activate”);
if (instance->button2 == NULL) {
instance->button2 =
XtvaCreateWidget (*button2"”,
xmPushButtonWidgetClass,
parent,
XmNbottomAttachment, XmATTACH_NONE,

61

*white"),

Xm¥rightAttachment, XmATTACH_NONE,
xmNleftOffset, 170,
XmNleftAttachment, XmATTACH_FORM,
XmNtopOffset, 99,
XmNtopAttachment, XmATTACH_FORM,
XmNrecomputeSize, True,
XmNalignment, XmALIGNMENT_CENTER,
XmNy, 99,
XmNx, 170,
XmNbackground, dtb_cvt_string_to_pixel{parent, "Yellow"},
XmNlabelString, label_xmstring,
NULL);
XmStringFree(label_xmstring);
label_xmstring = NULL;
}
if (instance->button2 == NULL)
return -i;

return 0;

static int

dtb_vce5_textfield_create(
DtbvceSMainwindowInfo instance,
Widget parent

XmString label_xmstring = NULL;
Arg args(47]; /* need 42 args {add 5 to be safe) */
int n = 0;

if (instance->textfield_rowcolumn == NULL) {
instance->textfield_rowcolumn =
XtVaCreateWidget (“textfield_rowcolumn®,
xmRowColumnWidgetClass,
parent,
XmNbottomAttachment, XmATTACH_NONE,
XmNrightAttachment, XmATTACH_NONE,
XmNleftOffset, 45,
XmNleftAttachment, XmATTACH_FORM,
XmNtopOffset, 159,
XmNtopAttachment, XmATTACH_FORM,
XmNadjustlLast, True,
XmNspacing, 0,
XmNmarginWidth, 0,
XmNmarginHeight, 0,
XmNentryAlignment, XmALIGNMENT_END,
XmNorientation, XmHORIZONTAL,

XmNy, 159,
XmNX, 45,
NULL);

}
if (instance->textfield_rowcolumn == NULL)
return -1;

label_xmstring = XmStringCreateLocalized("Unencrypted Text:");
if (instance->textfield_label ==~ NULL) [
instance->textfield_label =
XtvaCreateWidget ("textfield_label",
xmlLabelWidgetClass,
instance->textfield_rowcolumn,
XmNlabelString, label_xmstring,
NULL);
XmStringFree(label_xmstring);
label _xmstring = NULL:
}
if (instance->textfield_label == NULL)
return -1;

if (instance->textfield == NULL) {
o = 0;
tSetArg(args[n}, XmNmaxLength, 80); ++n;
XtSetArg(args{n}, XmNeditable, True); ++n:
XtSetArg{args{n}, XmNcursorPositionVisible, True); ++n;
XtSetArg(argsin], XmNcolumns, 42): ++n;
instance->textfield =

XmCreateTextField(instance->textfield_rowcolumn,
“textfield", args, n);

}

if (instance->textfield == NULL)
return -1;

return O:

static int

dtb_vce5_button3_create(
DtbVceSMainwindowInfo instance,
Widget parent

XmString label_xmstring = NULL;

label _xmstring = XmStringCreateLocalized("Exit");
if (instance->button3 == NULL) {
instance->button3 =
XtvaCreateWidget("button3",

62

xmPushButtonWidgetClass,

parent,

XmNbottomAttachment, XmATTACH_NONE,
XmNrightAttachment, XmATTACH_NONE,
XmNleftOoffset, 273,
XmNleftAttachment, XmATTACH_FORM,
XmNtopOffset, 100,
XmNtopAttachment, XmATTACH_FORM,
XmNrecomputeSize, False,
XmNalignment, XmALIGNMENT_CENTER,

XmNheight,

XmNwidth,

XmNy, 100,
XmNx, 273,

23,
50,

XmNbackground, dtb_cvt_string_to_pixel(parent, "Yellow"),
XmNlabelString, label_xmstring,

NULL);

XmStringFree(label_xmstring);
label_xmstring =~ NULL;

)

if (instance->button3 == NULL)

return -1;

return 0;

static int

dtb_vce5_textfield3_create(
DtbVceSMainwindowInfo instance,

Widget parent

XmString label_xmstring = NULL;
Arg args[50]: /* need 45 args (add 5 to be safe) */

int n = 0;

if (instance->textfield3_rowcolumn == NULL) {
instance->textfield3_rowcolumn =
XtVaCreateWidget("textfield3_rowcolumn*,
xmRowColumnWidgetClass,

parent,

XmNbottomAttachment, XmATTACH_NONE,
XmNrightAttachment, XmATTACH_NONE,
XmNleftOffset, 62,
XmNleftAttachment, XmATTACH_FORM,
XmNtopOffset, 196,
XmNtopAttachment, XmATTACH_FORM,
XmNadjustLast, True,

XmNspacing, O,

XmNmarginWidth, O,

XmNmarginHeight, O,
XmNentryAlignment, XmALIGNMENT_END,
XmNorientation, XmHORIZONTAL,

XmNy, 196,

AmNx, 62,

XxmNforeground, dtb_cvt_string_to_pixel(parent, "Red"),

NULL) ;
}

if (instance->textfield3_rowcolumn == NULL)

return -1;

label_xmstring = XmStringCreateLocalized("Encrypted Text:");
if (instance->textfield3_label == NULL) {
instance->textfield3_label =
XtVaCreateWidget("textfield3_ label”,

xmLabelWidgetClass,
instance->textfield3_rowcolumn,
xmNforeground, dtb_cvt_string_to_pixel(instance->textfield3_rowcolumn, "Red”),
XmNlabelString, label_xmstring,

NULL):

XmStringFree(label _xmstring):
label_xmstring = NULL;

}
if (instance->textfield3_label =~ NULL)

return -1:

if (instance->textfield3 == NULL) {

n = 0;

XtSetArg(args(n],
XtSetArg(args(n],
XtSetArg(args(n],
XtSetArg(args(nj,
XtSetArg(args(n],

XmNmaxLength, 80); ++n;

XmNeditable, True); ++n;

XmNcursorPositionVisible, True); ++n;

XmNcolumns, 42); ++n;

xmNforeground, dtb_cvt_string_to_pixel(instance->textfield3_rowcolumn,

instance->textfield3 =
XmCreateTextField(instance->textfield3_rowcolumn,
"textfield3”, args, n);

1

if (instance->textfield3 == NULL)

return -1;

return C;

static int

dtb_vce5_textfieldd_create(
DtbvceSMainwindowInfo instance,

Widget parent

63

"Red"));

+4n;

Arg args(19]); /* need 14 args (add 5 to be safe) */
int n = 0;

if (instance->textfield4 == NULL) {
n = 0;
XtSetArg(args([n], XmNbottomAttachment, XmATTACH_NONE}; ++n;
XtSetArg(args(n], XmNrightAttachment, XmATTACH_NONE); ++n;
XtSetArg(args(n], XmNleftOffset, 157); ++n;
XtSetArg(args(n), XmNleftAttachment, XmATTACH_FORM); ++n;
XtSetArg{args[n], XmNtopOffset, 46); ++n;
XtSetArg(args(n], XmNtopAttachment, XmATTACH_FORM); ++n;
XtSetArg(args[n], XmNvalue, "Transmission Functions"); ++n;
XtSetArg(args([n], XmNmaxLength, 80); ++n;
tSetArg(args{nl], XmNx, 157); ++n;
XtSetArg(argsin], XmNy, 46); ++n;
XtSetArg{args{n], XmNeditable, False): ++n;
XtSetArg(args{n], XmNcursorPositionVisible, False); ++n;
XtSetArg{argsin], XmNcolumns, 23); ++n;
XtSetArg({args[n], XmNbackground, dtb_cvt_string_to_pixel{pareat, "Gold")};
instance->textfield4 =

XmCreateTextField(parent,

"textfieldd4”, args, n):
}
if (instance->textfield4 =~ NULL)

return -1;

return O;

64

+40;

File: vce5_ui.h
Contains: Declarations of module objects, user create procedures,
and callbacks.

This file was generated by dtcodegen, from module vceS

LR B

** DO NOT MODIFY BY HAND - ALL MODIFICATIONS WILL BE LOST **
*/

#ifndef _VCES_UI_H_

#define _VCES_UI_H_

#include <stdlib.h>
#include <Xl11/Intrinsic.h>
#include "dtb_utils.h”

/l'
* User Interface Objects
*/

/a
* Shared data structures
*/

typedef struct

Boolean initialized:;

widget mainwindow; /* object “"mainwindow” */
widget mainwindow_mainwin;

widget mainwindow_form;

Widget controlpane;

Widget button;

wWidget button2;

Widget textfield_rowcolumn; /* object "textfield"
widget textfield_label;

widget textfield;

Widget button3;

Widget textfield3_rowcolumn; /* object "textfield3”
wWidget textfield3_label;

Widget textfield3;

widget textfieldd;

} DtbVceSMainwindowInfoRec, *DtbVceSMainwindowlnfo;

extern DtbVceSMainwindowInfoRec dtb_vce5_mainwindow;

/*
* Structure Clear Procedures: These set the fields to NULL
*/

int dtbVceSMainwindowInfo_clear(DtbVceS5MainwindowInfo instance};

*
* Structure Initialization Procedures: These create the widgets

*/

int dtb_vceS5_mainwindow_initialize(
DtbVceSMainwindowInfo instance,
widget parent

yi

*
* User Callbacks
*/

void exit_func!

widget
XtPointer
XtPointer

Yi

void activate T3
wWidget
XtPcinter
XtpPointer

)

/ﬁ
* Connections
*/
void veceS5_textfield CBI!
wWidget widget,
XtPointer clientData,
XtPeinter callData

b
void veeS5_button_CBl(

Widget widget,
XtPointer clientData,
XtPointer callData

)
#endif /* _VCES_UI_EK_ */

65

*/

*/

File: dtb_utils.c
CDE Application Builder General Utility Functions

This file was generated by dtcodegen, from project projects

*» DO NOT MODIFY BY HAND - ALL MODIFICATIONS WILL BE LOST

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/Frame.h>
#include <Xm/Label.h>
#include <Xm/MessageB.h>
tinclude <Xm/PanedW.h>
#include <Xm/PushB.h>
tinclude <Xm/SashP.h>
#include <Xm/RowColumn.h>
#include <Dt/Help.h>
#include <Dt/HelpDialog.h>
#include <Dt/HelpQuickD.h>
#incliude <Dt/Session.h>
#include <Dt/Dnd.h>
#include "dtb_utils.h"

tifndef min
tdefine min(a,b) ((a) < (b)? (a):(b))
#endif

#ifndef max
#define max(a,b) ((a) > (b)? (a):(b))
tendif

¢ifndef ABS
#define ABS(X) ((X) >= 07 (xX):(-(x)))
*tendif

typedef struct
{

Widget widget;

DtDndProtocol protocol;

unsigned char operations;

Boolean bufferlIsText;

Boolean allowDropOnRootWindow;
wWidget sourcelcon;
DtbDndDragCallback <callback:
XtCallbackRec convertCBRec([2];
XtCallbackRec dragToRootCBRec[2];
XtCallbackRec dragFinishCBRec{2];

} DtbDragSiteRec, *DtbDragSite;

typedef struct

wWidget widget;

DtDndProtocol protocols;

unsigned char operations;

Boolean textIsBuffer;

Boclean dropsOnChildren;

Boolean preservePreviousRegistration;
DtbDndDropCallback callback;

XtCallbackRec animateCBRec(2]
XtCallbackRec transferCBRec(2];

} DtbDropSiteRec, *DtbDropSite;

/ﬁ
* This structure keeps track of widget/menu pairs
*/
typedef struct
widget widget;
Widget menu;
} DtbMenuRefRec, *DtbMenuRef;

/i
* Private functions used for dynamic centering of objects
*/

static void center_widget(

Widget form_child,
DTE_CENTERING_TYPES Type
3i
static void uncenter_widget(
widget form_child,
DTB_CENTERING_TYPES type
):
static void centering_handler(
widget widget,
XtPointer client_dazta,
XEvent *event,
Boolean *cont_dispatch

Vi
/*h
* Static functions used for dynamic aligning of group objects
*/
static Widget get_label_widget(
Widget widget
)

66

static Position get _offset_from_ancestor(

Widget ancestor,
Widget w

¥i

static Dimension get_label_width(
Widget widget

):

static void get_widest_label(
WidgetList list,
int count,
Widget *child_widget,
Dimension *label_width

)i

static void get_widest_value(

Widgetlist list,

int count,

Widget *child_widget,
Dimension *value_width

)i

static void get_widget_rect(
Widget widget,
XRectangle *rect

)5

static void get_greatest_size(

wWidget *list,
int count,
int *width,
int *height,
Widget *tallest,
Widget *widest

);

static void get_group_cell_size(

widget parent,
DtbGroupInfo *group_info,

int *cell_width,
int *cell_height

}:

static void get_group_row_col{

Widget parent,
DtbGrouplnfo *group_info,

int *YOWS,
int *cols

b
static Widget get_group_child(

Widget parent,
DtbGrouplnfo *group_info,
int X_pos,
int Y-pos
)
static void align_children(
Widget parent,
DtbGroupInfoc *group_info,
Boolean init
)i
static void align_handler(
widget widget,
XtPointer client_data,
XEvent *event,
Boolean *cont_dispatch

Y:

static void expose_handler(

Widget widget,

XtPointer client_data,

XEvent *event, -
Boolean *cont_dispatch

)i
static void

free_group_info(

widget widget,
XtPointer client_data,
XtPointer call_data

)i

static void align_rows(
Widget parent,
DtbGrouplnfo *group_info,
Boolean init

yi

static void align_cols(
Widget parent,
DtbGrouplnfo *group_info,
Boolean init

¥i

static void align_left(
wWidget parent,
DtbGroupInfo *group_info

)i

static void align_right(
widget parent,
DtbGrouplInfe *group_info

v

)i

static void align_labels(
widget parent,
DtbGroupInfo *group_infc

)i

static void align_vcenter(
wWidget parent,
DtbGrouplnfo *group_info,
Boolean init

)

static void align_top(
widget parent,
DtbGrouplnfo *group_info

67

)i

static void align_bottom(

Widget parent,
DtbGrouplnfo *group_info

)i

static void align_hcenter(
widget parent,
DtbGrouplInfo *group_info,
Boolean init

)i

/vz
* Private functions used for finding
*/
static int determine_exe_dir(
char *argvO,
char *buf,
int bufSize

)i

static int determine_exe_dir_from_argv(

char *argvo0,
char *buf,
int bufSize

)i

static int determine_exe_dir_from_path (

char *argv0,
char *buf,
int bufsize

¥i

static Boolean path_is_executable(

char *path,
uid_t euid,
gid_t

)

egid

static void dtb_popup_menu(

widget widget,
XEvent *event,
string *params,
Cardinal *pum_params

)

static veid dtb_popup_menu_destroyCBs(

)i

widget
XtPointer
XtPointer

paths

widget,
clientData,
callbata

static int dtb_drag_terminate(DtbDragSite dragSite);

static void dtb_drag_buttonl_motion_handlex(

Widget draginitiator,
XtPointer clientData,
XEvent *event

):

static void dtb_drag_button2_event_handler(

wWidget

XtPointer

XEvent

draglnitiator,
clientData,
*event

)i

static int dtb_drag_start(DtbDragSite dragSite,

static void dtb_drag_convertCB(

v,
Ji

static void

}

static void

)i

static void

)

static void

b1

/ﬂ
* Variable
*/

widget
XtPointer
XtPointer

dtb_drag_to_rootCB(

Widget

XtPointer

XtPointer

dtb_drag_finishCB(

widget
XtPointer
XtPointer

dtb_drop_animateCB(

Widget
XtPointer
XtPointer

dtb_drop_transferCB(

widget
XtPointer
XtPointer

XEvent *event);

dragContext,
clientData,
callbData

dragContext,
clientData,
callData

dragContext,
clientData,
callData

dragContext,
clientData,
callData

dragContext,
clientData,
callData

for storing client session save callback

68

static DtbClientSessionSaveCB dtb_client_session_saveCB = NULL;

*

* Variable for storing top level widget
*

static Widget dtb_project_toplevel_widget - (Widget)NULL;
/*
* Variable for storing command used to invoke application
*
st;tic char *dtb_save_command_str = {char
/t-

* Variables that keep track of which menus go with which widgets
*/

static DtbMenuRef popupMenus = NULL;

static int numPopupMenus = 0;

#include <Dt/Dnd.h>

#define DRAG_THRESHOLD 4
static Boolean draglnProgress = False;

static int dragInitialX = -1;
static int draginitialY = -1;
/ﬁ

* Directory where the binary for this process whate loaded from
*/
static char *dtb_exe_dir = (char *)NULL;

-
* Application Builder utility funcs
*/

/ﬁ
* Create/load a Pixmap given an XPM or Bitmap files
* NOTE: this allocates a server Pixmap; it is the responsibility
* of the caller to free the Pixmap

*/

int

dtb_cvt_file_to_pixmap(
Striang fileName,
wWidget widget,
Pixmap *pixmapReturnPtr

)

{

#tdefine pixmapReturn (*pixmapReturnPtr)
Pixmap pixmap - NULL:
Screen *screen = NULL;

Pixel fgPixel = O;
Pixel bgPixel = 0;
char image_path[MAXPATHLEN+1];

Boolean pixmap_found = False;
/*

* Get default values

*/

screen = XtScreenOfObject(widger);
fgPixel = WhitePixelOfScreen({screen);
bgPixel = BlackPixelOfScreen(screen);

/i
* Get proper colors for widget
*/

XtVaGetvalues{widget,
XmNforeground, &fgPixel,
XmNbackground, &bgPixel,
NULL);

3
* In CDE, XmGetPixmap handles .xpm files, as well.

i;/(lpixmap_found)

{ pixmap = XmGetPixmap(screen, fileName, fgPixel, bgPixel);
;ixmap_found = ({pixmap != NULL) && (pixmap != XmUNSPECIFIED_PIXMAP));

if (!pixmap_found)

{
sprintf(image_path, "%s/%s", dtb_get_exe_dir(), fileName);
pixmap = XmGetPixmap({screen, image_path, fgPixel, bgPixel):

pixmap_found = ((pixmap != NULL) && (pixmap != XmUNSPECIFIED_PIXMAP)):

if (tpixmap_found)

1
sprintf(image_path, "%s/bitmaps/%s”, dtb_get_exe_dir(), fileName);
pixmap = XmGetPixmap(screen, image_path, fgPixel, bgPixel);

}

pixmap_found = ((pixmap != NULL} && (pixmap != XmUNSPECIFIED_PIXMAP));

1f (!pixmap_found)
{
return -1;

}

pixmapReturn = pixmap;
pixmapReturn = pixmap;
return O;

#undef pixmapReturn

3

69

*)NULL;

/>
* Sets both the sensitive and insensitve pixmaps

*/

int

dtb_set_label_from_bitmap_data(
Wwidget widget,
int width,
int height,

unsigned char *bitmapData

Display *display = NULL;
Screen *screen = NULL;
Drawable window = NULL;

long bgPixel = 0;

long fgPixel = 0O;

unsigned int depth = 0;

Pixmap labelPixmap = NULL;
if (widget == NULL)

(height < 1)

(

| (width < 1)

|

| (bitmapbData == NULL))

{

return -1;
}
/-
* Get a whole slew of information X needs
*/
{
Pixel widgetBg = O;
Pixel widgetfg =~ 0;
int widgetDepth = 0;
display = XtDisplay(widget):
screen = XtScreen(widget);
window = XtWindow({widget);
if (window == NULL)
I
/* Widget has not been realized, yet */
window = RootWindowOfScreen(screen);
}
XtVaGetValues({XtIsSubclass(widget, xmGadgetClass)? XtParent(widget)
XmNbackground, &widgetBg,
XmNforeground, &widgetFg,
XmNdepth, &widgetDepth,
NULL):
bgPixel = widgetBg;
fgPixel = widgetFg;
depth = widgetDepth;
3}
/>

* Create the pixmap
*
labelPixmap = XCreatePixmapFromBitmapData(
display,
window,
(char *) bitmapbata,
width, height,
fgpPixel, bgPixel,
depth):
if {labelPixmap == NULL)
{
return -1;
)

dtb_set_label_pixmaps(widget, labelPixmap, NULL);

return 0;

/t
* Sets the label and insensitive label pixmaps of the widget.
*

* If either (or both) pixmap is NULL, it is ignored.
*/
int
dtb_set_label_pixmaps(
Widget widget,
Pixmap labelPixmap,
Pixmap labellInsensitivePixmap

1f ¢ (widget == NULL)

li {((labelPixmap == NULL) && (labellnsensitivePixmap == NULL)}))
{

return -1;

)

/ﬂ
* Set the approriate resources.
*/
XtvaSetvalues(widget, XmNlabelType, XmPIXMAP, NULL);
1f (labelPixmap != NULL)
{

70

: widget,

XtVaSetValues(widget, XmNlabelPixmap, labelPixmap, NULL);

if (labellnsensitivePixmap != NULL)
{
XtVaSetValues(widget, XmNlabellnsensitivePixmap,
labelInsensitivePixmap,

}

return O:

/*
* Returns True if the fileName has the extension
*/
Boolean
dtb_file_has_extension(
tring fileName,
String extension
)
i
Boolean hasExt = False;

%

if (extension == NULL)
{
hasExt = ((fileName == NULL) || (strlen(fileName) == 0}
)
else
{
if (fileName == NULL)
hasExt =~ False;
else
{
char *dotPtr= strrchr(fileName, ‘.’);
if (dotPtr == NULL)
hasgExt= False;
else if (strcmp(dotPtr+l, extension) == 0)
hasiExt = True;
}
}
return hasExt;

* Appends the extension to fileBase and attempts to load in
* the Pixmap

*/

int

dtb_cvt_filebase_to_pixmap{

int

widget widget,
string fileBase,
string extension,
Pixmap *pixmap_ptr
char fileName(512];
int rc = 0;

strcpy{fileName, fileBase):;

strcat({fileName, extension);

rc = dtb_cvt_file_to_pixmap(fileName, widget, pixmap_ptr);
return Ic;

dtb_cvt_image_file_to_pixmap(

Widget widget,

string fileName,

Pixmap *pixmap
int rc = 0; /* return code */
Pixmap tmpPixmap = NULL;
int depth;

if (dtb_file_has_extension(fileName, "pm*) ||
dtb_file_has_extension(fileName, “xpm”) ||
dtb_file_has_extension(fileName, "bm*) ||
dtb_file_has_extension(fileName, "xbm"))

/* If explicit filename reguested, use it directly */

NULL):

rc = dtb_cvt_file_to_pixmap{fileName, widget, &tmpPixmap);

}
else /* Append extensions to locate best graphic match */
{

XtVaGetvValues(XtIsSubclass(widget, xmGadgetClass)? XtParent{widget) : widget,

XmNdepth, &depth, NULL);

if (depth > 1) /* Look for Color Graphics First */

{
rc = dtb_cvt_filebase_to_pixmap(widget, fileName,
if (rc < 0}

".pm*, &tmpPixmap);

rc = dtb_cvt_filebase_to_pixmap(widget, fileName, “.xpm", &tmpPixmap);

if (rc < 0)

rc = dtb_cvt_filebase_to_pixmap{widget, fileName, ".bm", &tmpPixmap);

if (rc < 0)

rc = dtb_cvt_filebase_to_pixmap(widget, fileName, ".xXbm", &tmpPixmap);

}

else /* Look for Monochrome First */

71

rc = dtb_cvt_filebase_to_pixmap(widget, fileName, ".bm”, &tmpPixmap);
if (re < 0)

rc ~ dtb_cvt_filebase_to_pixmap(widget, fileName, ".xbm", &tmpPixmap);
if (re <)

rc = dtb_cvt_filebase_to_pixmap(widget, fileName, ".pm", &tmpPixmap);
if (re < Q)

rc =~ dtb_cvt_filebase_to_pixmap(widget, fileName, *.xpm", &tmpPixmap):;
}

if (rc < Q)

{
*pixmap = NULL;
return rc;

}

*pixmap = tmpPixmap;
return O;

/i
* Sets the XmNlabel from the image file (either xbitmap or xpixmap format).
*

* returns negative on error.

*/
int
dtb_set_label_from_image_file(
widget widget,
string fileName
)
{
int rc = 0; /* return code */
Pixmap labelPixmap = NULL;
Pixmap insensitivePixmap = NULL;
int depth;

rc = dtb_cvt_image_file_to_pixmap(widget, fileName, &labelPixmap):
if (r¢ < Q)
{

}

return rc;

insensitivePixmap = dtb_create_greyed_pixmap{widget, labelPixmap);
rc = dtb_set_label_pixmaps(widget, labelPixmap, insensitivePixmap);
if (rc < ©0)
{

return rc;

)

return O;

unsigned long
dtb_cvt_resource_from_string(

Widget parent,
string res_type,
unsigned int size_of_type.

String res_str_value,

unsigned long error_value

unsigned long cvt_value_return = error_value;
unsigned char cvt_valuel = O;
unsigned short cvt_valuel2 =~ 0;

unsigned int cvt_value3 = 0;

unsigned long cvt_valued = 0;

XtPointer cvz_value_ptr = NULL:
irt which_cvt_value = -1;
Xrmvalue source;

rmvalue dest;

if (size_of_type > sizeof(cvi_value_return))

{
/* Type we are converting to is too large */
return cvt_value_return;

}

/i

* Get a data object of the appropriate size
*/

if (size_of_type == sizeof(cvt_valuel))

which_cvt_value = 1;
cvt_value_ptr = (XtPointer)acvt_valuel;

else if (size_of_type == sizeof(cvt_value2))

which_cvt_value = 2;
cvt_value_ptr = (XtPointer)&cvt_value2;

else if (size_of_type == sizeof{cvt_value3))

which_cvt_value = 3;
cvt_value_ptr = (XtPointer)&cvt_value3;

else if (size_of_type ==~ sizeof(cvi_valued))

which_cvt_value = 4;

72

/ﬁ
* For a given pixmap, create a 50% greyed version. Most likely this will
* be used where the source pixmap is the labelPixmap for a widget and an
* insensitivePixmap is needed so the widget will look right when it is
* *"not sensitive” ("greyed out” or "inactive").
*
* NOTE: This routine creates a Pixmap, which is an X server resource. The
* created pixmap must be freed by the caller when it is no longer
* needed.
*/
Pixmap
dtb_create_greyed_pixmap(
widget widget,
Pixmap pixmap
)
{
Display *dpy:
window root;
Pixmap insensitive_pixmap;

cvt_value_ptr = (XtPointer)&cvt_valued;
}

else
{
return cvt_value_return;
}
/*
* Actually do the conversion
*/

source.size = strlen(res_str_value) + 1;
source.addr = res_str_value;

dest.size = size_of_type;
dest.addr = (char *)cvt_value_ptr;

if (XtConvertAndStore(parent, XtRString, &source,
res_type, &dest) != 0)
{
switch (which_cvt_value)
{
case 1:
cvt_value_return = (unsigned long)cvt_valuel;
break;

case 2:
cvt_value_return = {(unsigned long)cvt_value2;
break;

case 3:
cvt_value_return = (unsigned long)cvt_value3;
break;
case 4:
cvt_value_return = (unsigned long)cvt_value4;
break:;
1

return cvt_value_return;

Pixel background;
unsigned int width, height, depth, bw;

int X, Y
XGCvValues gev;
XtGCMask gem;

[eled gc;

dpy = XtDisplayOfObject(widget);

if(pixmap == XmUNSPECIFIED_PIXMAP || pixmap ==~ (Pixmap)NULL) {
return((Pixmap)NULL});
}

XtvaGetvalues(widget,
xmNbackground, &background,
NULL) ;

/* Get width/height of source pixmap */

if (!XGetGeometry(dpy,pixmap,&root, &x,&y,&width, sheight, sbw, sdepth)) {
return((Pixmap)NULL):

}

gcv.foreground = background;

gcv.fill_style = FillStippled;

gev.stipple = XmGetPixmapByDepth(XtScreenOfObject(widget),

"50_foreground”, 1, 0, 1);:
gcm = GCForeground | GCFillStyle | GCStipple;
gc = XtGetGC(widget, gam, &gcv):

/* Create insensitive pixmap */

ingensitive_pixmap = XCreatePixmap(dpy, pixmap, width, height, depth);
XCopyArea(dpy, pixmap, insensitive_pixmap, gc, 0, 0, width, height, 0
XFillRectangle(dpy, insensitive_pixmap, gc, O, O, width, height);

XtReleaseGC(widget, gcC);
return{insensitive_pixmap);

73

0);

/!
** Routines to save and access the toplevel widget for an application.
** This is useful in dtb_ convenience functions, and also probably by
** developers in routines they provide in their _stubs.c files.
** static Widget dtb_project_toplevel_widget - (Widget) NULL;
*/
void
dtb_save_toplevel_widget(
widget toplevel
)
({

}

dtb_project_toplevel_widget - toplevel;

Widget
dtb_get_toplevel_widget()
{

}

return(dtb_project_toplevel widget);

/t

** Function to turn off traversal on the invisible sash within a
** PanedWindow. This is primarily used for the PanedWindow within
=% 3 Custom Dialog object.

*/
void
dtb_remove_sash_focus(
Widget widget
)
{
WidgetList children:
int numChildren, 1i:
if (widget == NULL |} !XtIsSubclass(widget, xmPanedWindowWidgetClass))
return;

XtvaGetvValues(widget,

XmNchildren, &children,
XmNnumChildren, &onumChildren,
NULL);

for(i = 0; i < numChildren; i++)
if (XtIsSubclass{children{i], xmSashWidgetClass))}
XtvVaSetValues(children([i], XmNtraversalOn, False, NULL);

/*
** Routines to save and access the command used to invoke the application.
*/
void
dtb_save_command (
char *argv0
)
{
char exe_dir[MAXPATHLEN+1];
dtb_save_command_str = argvQ;

*
/* Save the path to the executable
*
if/(determine_exe_dir(arng, exe_dir, MAXPATHLEN+1) >= 0)
' dtb_exe_dir = (char *)malloc(strlen(exe_dir)+1l);
if (dtb_exe_dir != NULL)
; strepy(dtb_exe_dir, exe_diry:

char *
dtb_get_command()
{
return{dtb_save_command_str);

1

/«

** Generic callback function to be attached as XmNhelpCallback and

** provide support for on-object and Help-key help. The help text to
** be displayed is provided via a specialized data structure passed in
** as client data.

*/
void
dtb_help_dispatch(
Widget widget,
XtPointer clientData,
XtPointer callbata
)
{
DtbObjectHelpData help_data = (DtbObjectHelpData)clientData;
int i;
Arg wargs{(10};
char buffer(100];
Widget back_button;

static Widget Quick_help_dialog = (Widget)NULL:

74

static Widget MoreButton;

/Q

+% In order to save the more-help info (help volume & location ID) as part

** of the guick help dialog’s backtrack mechanism, we have to splice the

** volume & ID strings together and save them as the help volume field.

«*» If there isn’t supplemental help information, we save a null string.

%

*«» Checking the status of the more-help info also lets us decide whether

#* the "More...” button should be enabled on the dialog.

*

if(help_data->help_volume ==0 || *({help_data->help_volume) == NULL |
help_data->help_locationID ==0 || *(help_data->help locationID)== NULL){

buffer(0] = ’\0’;

}

else {
sprintf(buffer, "$s/%s”, help_ data->help_volume, help_data->help_locationlD);

}

/’
#x If this is our first time to post help, create the proper dialog and
** set its attributes to suit the current object. If not, then just
update the attributes.
ok
#* (You have to be careful about gratuitous SetValues on the dialog because
=% its internal stack mechanism takes repeated settings as separate items
** and updates the stack for each.)
*/
if (Quick_heip_dialog == (Widget)NULL) [
/* Create shared help dialog */

i=0;
XtSetArg(wargs(i],XmNtitle, "Application Help"); id+;
XtSetArg(wargs(i),DtNhelpType, DLHELP_TYPE_DYNAMIC_STRING); i++;
XtSetArg(wargs(i},DtNstringData, help_data->help_text); i++;
XtSetArg(wargs[i],DtNhelpVolume, buffer); i+4;

Quick_help_dialog = DtCreateHelpQuickDialog(dtb_get_toplevel widget(),
"Help*,wargs,i);

/*

** Fetch out the Dialog’s More button child and hook the ‘more help’

+*» handler to its activateCallback. Set it’s current status to

+ indicate whether this object has supplemental help data.

*/

MoreButton = DtHelpQuickDialogGetChild(Quick_help_dialog,
DtHELP_QUICK_MORE_BUTTON):

XtManageChild (MoreButton);

XtAddCallback (MoreButton, XmNactivateCallback,dtb_more_help_dispatch,
(XtPointer)Quick_help_dialog);

if(buffer{0] == ’\0’) XtSetSensitive(MoreButton, False};

/*

** Fetch out the Dialog’s Backtrack button child & hook a callback

#% that will control button sensitivity based on the presence of more

** help data.

-

back_button =~ DtHelpQuickDialogGetChild(Quick_help_dialog,

DtHELP_QUICK_BACK_BUTTON);
XtAddCallback (back_button,XmNactivateCallback,dtb_help_back_hdlr,
{XtPointer)Quick_help_dialog);

}
/* Otherwise the dialog already exists so we just set the attributes. */
else {

/i

** If we have supplemental help info, enable the more button.

** Also save this info for later use in the backtrack handler.

*/

if(buffer(0} == ’'\0") {

XtSetSensitive(MoreButton,False);
}
else {
XtSetSensitive{MoreButton, True};
}

XtVaSetValues(Quick_help_dialog,
DtNhelpType, DLHELP_TYPE_DYNAMIC_STRING,
DtNhelpVolume, buffer,
DtNstringData, help_data->help_text,
NULL) ;
}

/* Now display the help dialog */
XtManageChild(Quick_help_dialog);

/i

*% This callback is invoked when the user presses "More..."” on the

** QuickHelpDialog. It figures out whether a help volume entry is associated
=% with the displayed help text, and if so it brings up a GeneralHelpDialog
#** to display the appropriate help volume information.

*/

void

dtb_more_help_dispatch(
wWidget widget,
XtPointer clientData,
XtPointer callData

)

{ s
int i;
Arg wargs{10];
String buffer, vol, loc:

75

char *Cp:

static widget GeneralHelpDialog = (Widget) NULL;

Widget help_dialog = (Widget)clientData;
Widget more_button;

/* Fetch the saved volume/locationID information from the dialog widget */
XtVaGetvalues(help_dialog,

DtNhelpvVolume, ébuffer,

NULL);

** parse the combined volume/locationID string. If that fails there
** must be no data, so don’t bother displaying the GeneralHelpDialog.
** (We shouldn‘t be in this callback routine if that happens, though...)
*/
if((cp=~strrchr(buffer,’/‘)) = (char *)NULL) {
*cpt+ =~ O;
vol = buffer;
loc = cp;

)

if (GeneralHelpDialog == (Widget)NULL) {
/* Create General Help Dialog */

i =0;
XtSetArg(wargs({i],XmNtitle, "Application Help"); i++;
XtSetArg(wargs{i],DtNhelpType, DtHELP_TYPE_TOPIC); i++;
XtSetArg(wargs(i],DtNhelpvolume, vol): i+4;
XtSetArg(wargs(i],DtNlocationld, loc); i++;

GeneralHelpDialog = DtCreateHelpDialog(dtb_get_toplevel_widget(),
"GeneralHelp",wargs,i);

}

else {
i =0;
XtSetArg(wargs(i],DtNhelpType, DtHELP_TYPE_TOPIC); it4;
XtSetArg(wargs(i],DtNhelpvolume, vol); 44
XtSetArg(wargs(i)],DtNlocationld, loc); i++;

XtSetValues(GeneralHelpDialog,wargs,i):
)

/* Now take down the quick help dialog and display the full help one */
XtManageChild(GeneralHelpDialog);
XtUnmanageChild(help_dialog);

/ﬁ
** Callback that is added to the QuickHelpDialog widget’s "Backtrack” button
** and is used to control the "More.." buttoa. At each step in the backtrack,
#% this routine checks to see if there is help volume & location info stored
** in the dialog’s helpVolume resource. If so, then the "More..." button is
*% enabled. If not, then it is disabled.
*/
void
dtb_help back_hdlr(
Widget widget,
XtPointer clientData,
XtPointer callData
)
{
String buffer, text, vol, loc;
char *Ccp;
Widget more_button;
Widget help_dialog = (Widget)clientData:
/* Fetch the saved volume/locationID information from the dialog widget */
XtVaGetValues(help_dialeg,
DtNhelpVolume, &buffer,
DtNstringData, &text,
NULLY;
/* Get a handle to the "More..." button */
more_button = DtHelpQuickDialogGetChild(help dialog,
DLEELP_QUICK_MORE_BUTTON);
/*
»* parse the combined volume/locationID string. Disable the "More..."
pbutton if there isn’‘t any help info, and enable it if there is.
*
/
if(buffer == 0 ;| (*buffer == NULL) |
(cp=strrchr(buffer,’/’)) == (char *)NULL) {
XtSetSensitive(mcre_button,False);
}
else {
XtSetSensitive(more_button,True);
}
}
/*

** Utility function used to provide support for on-item help.
#* It is typically invoked via a callback on the "On Item" item in the
** main menubar’s "Help" menu.

void
dtb_do_onitem_help()
{
widget target;

/* Call the DtHelp routine that supports interactive cn-item help. */

if (DtHelpReturnSelectedWidgetId(dtb_get_toplevel_widget(),
(Cursor)NULL, &target} != DtHELP_SELECT_VALID) return;

76

/-.
+* Starting at the target widget, wander up the widget tree looking
#* for one that has an XmNhelpCallback, and call the first one we
=+ find.
*/
while(target != (Widget)NULL) {
if({ XtHasCallbacks(target, XmNhelpCallback) =~ XtCallbackHasSome)
XtCallCallbacks(target, XmNhelpCallback, (XtPointer)NULL);
return;
}
else {
target = XtParent(target);
)
)

return;

Utility function called to display help volume information.
It needs the name of the help volume and the location ID (both as
strings) so it can configure the full help dialog widget properly.

int
dtb_show_help_volume_info(

*

*/

char *volume_name,
char *location_id

int i
Arg wargs{10];
static Widget GeneralHelpDialog = (Widget) NULL;

if (GeneralHelpDialog == (Widget)NULL) {
/* Create General Help Dialog */

i = 0;
XtSetArg(wargs(i], XmNtitle, "Application Help"); i+4;
XtSetArg{wargs[i}, DtNhelpType, DtHELP_TYPE_TOPIC); i++;
XtSetArg(wargs(i],DtNhelpVolume, volume_name); i+4;
XtSetArg(wargs{i],DtNlocationId, location_id): i++;

GeneralHelpbhialog = DtCreateHelpDialog(dtb_get_toplevel widget(),

"GeneralHelp"”, wargs,i);

else {
i=0:
XtSetArg(wargs{i),DtNhelpType, DULEELP_TYPE_TOPIC); i++;
XtSetArg{wargs{i],DtNhelpVolume, volume_name); 1++;
XtSetArg(wargs{i],DtNlocationld, location_id); i++;

XtSetValues(GeneralHelpDialog,wargs,i):

/* Now display the full help dialog */
XtManageChild(GeneralHelpDialog);

return{0);

dtb_call_help_callback()

Utility routine to call the help callbacks on a target widget. This
is predominantly usec to display help data on a dialog by having this
function as the activate callback on the dialog’s help button.

void
dtb_call_help_ca.lback

Widget widce
XtPointer
XtPointer Labata

widzer targe: = (Widget)clientData:

zCa..Za..tacrs: target, XmNhelpCallback, (XtPointer)NULL);

/t
* dtb_session_save(}
= Callback that is caliled when the application (top level
* widget of application) gets a WM_SAVE_YOURSELF ClientMessage
* This callback will call the client/application’s session
* save callback.
>/
void
dtb_session_save(
widget widget,
XtPointer clientData,
XtPointer callData
)
{
int new_argc,
client_argc = 0,
new_argc_counter,
i
char **new_argv,

**client_argv = NULL,
*session_file_path,
*session_file_name,

77

{

*app_name =~ NULL;
Boolean status = False;
DtbClientSessionSaveCB session_saveCB;

/\b
* Return if no widget passed in.
*/
if (!widget)
return;

/*
* Get session file path/name to store application’s state
*/
if (DtSessionSavePath(widget, &session_file_path, &session_f£{ile_name)

return;

/*

* Get client session save callback

*/

session_saveCB = dtb_get_client_session_saveCB():
/i

* Call client session save callback

*/

if (session_saveCB)
*

* client_argv and client_argc are the variables that

* will contain any extra command line options

* that need to be used when invoking the application

* to bring it to the current state.

*/

status = sesgsion_saveCB(widget, session_file_path,
&client_argv, &client_argc);

/Q
* Generate the reinvoking command and add it as the property value
*/
*
* Fetch command used to invoke application
*/
app_name = dtb_get_command();
/*
* new_argc and new_argc are the variables used to reconstruct
+ the command to re-invoke the application

*/
/*
* Start new_argc with:
* 1 for argv(0], normally the application
* client_argc any extra command line options as
* returned from client session save
* callback
*/
new_argc = 1 + client_argc;
/t
+ If the status returned from session save callback is ’True’,
* the session file was actually used. This means we need to
* add:
* -segsion <session file name>
* to the command saved, which is 2 more strings.

if (status)
new_argc += 2;

/ﬂ
* Allocate vector
*/

new_argv = (char **}XtMalloc(({sizeof(char **) * new_argc});

/i
* Set new_argv[0] to be the application name
*/
new_argc_counter = O;
new_argv{new_argc_counter] = app_name;
new_argc_counter++;

/i

* Proceed to copy every command line option from
* client_argv. Skip -session, if found.

*/

for (i=0; i < client_argc;)

{

if (strcmp(client_argv{i], "-session"))

{
new_argvinew_argc_counter] = client_argv[i];
new_argc_counter++;

}

else
{
/t
* Skip "-session”
* The next increment beilow will skip the session file.
*/
+41;
}
++1;

78

== False)

]
/ﬂ

* If session file used, add
* -session <session file name>
*/

if {status)

{

new_argvi{new_argc_counter] = "-session”;
new_argc_counter++;
new_argv(new_argc_counter] = session_file_name;
}
else
{
/t
* otherwise, destroy session file
*/
{voidjunlink(session_file_path);

-
* Set WM_COMMAND property with vector constructed
*

XSetCommand (XtDisplay(widget), XtWindow(widget),

new_argv, new_argc);

/*
* Free argument vector
*/

XtFree ((char *)new_argv);

/ﬁ
* CDE Sessioning API states that the path/name
* strings have to be free’d by the application.
*/

XtFree ((char *)session_file_path);

XtFree ((char *)session_file_name);

/*
* dtb_get_client_session_saveCB()
*/
DtbClientSessionSaveCB
dtb_get_client_session_saveCB()
{

return(dtb_client_session_saveCB);

/ﬂ-
* This function will center all the passed form’s children.
* The type of centering depends on what ’'type’ is.

*/
void
dtb_children_center(
Widget form,
DTB_CENTERING_TYPES type
)
{
WidgetList children_list;
int i,
num_children;
if (!form || (type == DTB_CENTER_NONE})
return;
/*
+ Get children list

*/

XtVaGetValues{form,
XmNnumChildren, &num_children,
XmNchildren, &children_list,

NULL) ;
/t
* Center all children
*/

for (i=0; i < num_children; ++1i)
{

dtb_center(children_list(i]), type):
1

/t
* This function ‘uncenters’ the children of the passed
* form widget.

*/

void

dtb_children_uncenter(
Widget form,
DTB_CENTERING_TYPES type

)

{
widgetList children_list;
int i;
int num_children;
if (!form || (type == DTB_CENTER_NONE))

79

return;

/*
* Get children list
*/
XtvaGetvValues(form,
XmNnumChildren, &num_children,
XmNchildren, &children_list,

NULL):
/i
* Center all children
*/

for (i=C; i < num_children; ++i})
{

dtb_uncenter{children_list([i], type);
}

* This function centers the passed widget.

* This is done by setting the proper offsets.

* Dynamic centering is accomplished by attaching an event handler

* which detect resizes and recomputes and sets the appropriate offset.

*/

void

dtb_center(
widget form_child,
DTB_CENTERING_TYPES type

)

{
if (!form_chilé || (type == DTB_CENTER_NONE)})

return;
center_widget{form_child, type):

XtAddEventHandler(form_child,
StructureNotifyMask, False,
centering_handler, (XtPointer)type):

/t
* This function ‘uncenters’ the passed widget.
* This involves resetting the attachment offsets
* and removing the resize event handler.

*/

void

dtb_uncenter(
widget form_child,
DTB_CENTERING_TYPES type

]

{
if (!form_chilé || (type == DTB_CENTER_NONE}})

recurn:

uncenter_widget(form_child, type):;

XtRemoveEventKandler(form_child,
StructureNotifyMask, False,
centering_handler, (XtPointer)type):;

* This function certers the passed widget.

* This is doase by rar the appropriate offset equal

* Co the negative nal £ it’s width/height (depending

* on whether hcr. or vertical centering was chosen.

form_child,

type
widget parent;
Dimension width = 0,
height = 0;
int center_offset;

unsigned char .eft_attach = XmATTACH_NONE,
top_attach = XmATTACH_NONE;

if (!form_chilcd | !XtIsMaraged(form_child) || !XtIsRealized(form_child)
. return:

parent = XtParen:(form_child);

if (!parent || !XtIsSubclass(parent, xmFormWidgetClass))
return;

XtVaGetValues{form_child,
XmNwidth, &width,
XmNheight, &height,
XmNleftAttachment, &left_attach,
XmNtopAttachment, &top_attach,
NULL);

switch (type) {
case DTB_CENTER_POSITION_VERT:

80

if (left_attach != XmATTACE_POSITION)
return;

center_offset = -{width/2):

XtVaSetvValues(form_child,
XmNleftOffset, center_offset,
NULLY;

break;
case DTB_CENTER_POSITION_HORIZ:

if (top_attach != XmATTACH_POSITICN)
return;

center_offset = -(height/2);

XtVaSetvalues(form_child,
XmNtopOffset, center_coffset,
NULL) ;
break;

case DTB_CENTER_POSITION_BOTH:
{
int left_offset,
top_offset;

if ((left_attach != XmATTACH_POSITION) &&
(top_attach != XmATTACH_POSITION))
return;

left_cffset =~ -(width/2);
top_offset = -(height/2);

XtVaSetValues(form_child,
XmNleftoffset, left_offset,
XmNtopOffset, top_offset,
NULL);

break;

*
* This function ’uncenters’ the passed widget.
+ It merely resets the offsets of the top/left attachments to 0.
*/
static voiad
uncenter_widget(

widget form_child,
DTB_CENTERING_TYPES type

)

{
Widget parent;

unsigned char left_attach = XmATTACH_NONE,
top_attach = XmATTACH_NONE;

if (i!form_child || !XtIsManaged(form_child) |! tXtIsRealized(form_child))
return;

parent = XtParent(form_child);

if (!parent || !XtIsSubclass(parent, xmFormWidgetClass))
)
return;

XtVaGetValues(form_child,
XmNleftAttachment, &left_attach,
XmNtopAttachment, &top_attach,
NULL) ;

switch (type) {
case DTB_CENTER_POSITION_VERT:

if (left_attach (= XmATTACH_POSITION)
return;

XtvVaSetvValues(form_chilad,
XmNleftOffset, O,
NULL) ;
break;

case DTB_CENTER_POSITION_HCRIZ:

if (top_attach != XmATTACH_POSITION)
return;

XtVaSetValues(form_child,
XmNtopQfiset, O,
NULL);
break:

case DTB_CENTER_POSITION_BOTH:
if ((left_attach != XmATTACH_POSITION) &&

(top_attach !~ XmATTACH_POSITION))
return;

81

XtvaSetvalues{form_child,
XmNleftOffset, O,
XmNtopOffset, O,
NULL);

break;

/*
* Event handler to center a widget
* The type of centering needed is passed in as client_data
*/
static void
centering_handler(

Widget widget,
XtPointer client_data,
XEvent *event,
Boolean *cont_dispatch

XConfigureEvent *xcon = §event->xconfigure;
wWidget resized_child;
DTB_CENTERING_TYPES type = (DTB_CENTERING_TYPES)client_data;

if ((event->type != ConfigureNotify) && (event->type != MapNotify))
return;

resized_child = XtWindowToWidget(XtDisplay(widget), xcon->window);

if {!resized_child)
return;

center_widget(resized_child, type):

/*
* Given a widget, return it’s label widget.
*/

static widget

get_label_widget(

Widget widget

)

{
wWidgetList children_list;
Widget label_widget = NULL;
int i,

num_children = 0;
char *subobj_name = NULL,
*label_name = NULL;

char *underscore_ptr = NULL;

if (XtIsSubclass(widget, xmLabelWidgetClass)) {
return(widget);

1

subobj_name = XtName(widget);
label_name = (char *)XtMalloc(l + strlen(subobj_name) + strlen(”_label®) + S5);
label_name{0] = ’*‘;
strepy(label_name+l, subobi_name):
if ((underscore_ptr = strrchr(label_name, ’_’)) != NULL)
{
strepy(underscore_ptr, "_label®);
label _widget = XtNameToWidget(widget, label_name);
}
if (label_widget =~= NULL)
{
strcpy(label_name+l, subobj_name);
strcat(label_name, "_label”};
label_widget =~ XtNameToWidget(widget, label_name};
}

XtFree((char *)label_name);

if (label_widget)
return(label_widget):

/i
* How to look for 1lst child of group object ??
* How do we know if ‘widget’ is a group object ??
* For now, just check if it is a form
-
/
if (XtIsSubclass(widget, xmFormWidgetClass) ||
XtIsSubclass(widget, xmFramewidgetClass))
XtVaGetValues{widget,
XmNnumChildren, &num_children,
XmNchildren, &children_list,
NULL);

if (num_children > 0)
return(get_label_widget(children_list(0]));

return (NULL);

static Position
get_offset_from_ancestor(
Widget ancestor,

82

Widget w

Widget cur = w;

widget cur_parent = NULL;
Position offset -~ 0;

if (lancestor || !w || (w == ancestory})

return (0);
XtVaGetValues(cur, XmNx, &offset, NULL);
cur_parent = XtParent(cur):
while (cur_parent != ancestor)
{

Position tmp_offset = 0;

cur = cur_parent;
XtvVaGetValues(cur, XmNx, &tmp_offset, NULL);

offset +~ tmp_offset;
cur_parent = XtParent(cur);
}

return (offset);

static Dimension
get_label_width(

widget widget

)

{
WidgetList children_list;
Widget 1bl_widget = NULL;
Dimension 1bl_width = 0;

1bl_widget = get_label_widget(widget}):
if (lbl_widget)
{
Position offset = 0;
XtVaGetValues(lbl_widget,
XmNwidth, &lbl_width,
NULL);
offset = get_offset_from_ancestor(widget, lbl_widget);

1bl_width +~ (Dimension)offset;
}

return (lbl_width);

static void
get_widest_label(

widgetList list,
int count,
Widget *child_widget,
Dimension *label_width
)
[
Widget cur_widest = NULL;
Dimension cur_width = O;
int i;

for (i = 0; i < count; ++i)

(Dimension tmp;
tmp = get_label_width(list{i]):
if (tmp > cur_width)

cur_width = tmp;
cur_widest = list{i);

}

*child_widget = cur_widest;
*label_width = cur_width;

static void
get_widest_value(

WidgetList list,
int count,
widget *child_widget,
Dimension *value_width
)
{
Widget cur_widest = NULL;
Dimension cur_width = 0;
int i;

for (i = 0; i < count; ++i)

{

83

}

Dimension tmp, label_width, obj_width =~ 0;

label_width = get_label_width(list{i]);

XtVaGetvalues(list{i], XmNwidth, &obj_width, NULL);

tmp = obj_width - label_width;

if (tmp > cur_width)

{
cuy_width = tmp;
cur_widest = list([i];

*child_widget = cur_widest;
*value _width = cur_width;

static void

get_widget_rect(
wWidget widget,
XRectangle *rect

if (!rect)

return;

XtvVaGetValues(widget,

XtNwidth, (XtArgval)&{rect->width),
XtNheight, (XtArgval)s&(rect->height},
XLNX, (XtArgval)&(rect->x),
XtNy, {XtArgval)&(rect->y),
NULL);

static veoid
get_greatest_size(

Wwidget *list,
int count,
int *width,
int *height,
Wwidget *tallest,
wWidget *widest

XRectangle w_rect;

int i:
int previous_width, previous_height;
if (!list (count < 0})

I
return;

get_widget_rect(list(0], &w_rect});

*width = w_rect.width;
previous_width = *width;

*height = w_rect.height;
previous_height = *height;

if (tallest != NULL)

*tallest = list{0];

if (widest != NULL)

for

{

*widest = list[0]:

(i=0: 1 < count; i++)

get_widget_rect(list[i}, &w_rect):;

*width = max{{int) w_rect.width, (int) *width);
if (widest != NULL && *width > previous_width)

*widest = list(i];

*height = max((int) w_rect.height, (int)*height);

if (tallest != NULL && *height > previous_height)

*tallest = list[i];

static void
get_group_cell_size(

Widget parent,
DtbGroupInfo *group_info.
int *cell_width,
int *cell_height
)
{
WidgetList children_list = NULL;
int i,
num_children = 0;
/%

* Get children list

*/

XtvaGetvalues(parent,

XmNnumChildren, &num_children,
XmNchi.dren, &children_list,

84

NULL);

get_greatest_size(children_list, num_children,
cell_width, cell_height,
(Widget *)NULL, (Widget *)NULL);

static void
get_group_row_col(

widget parent,
DtbGrouplnfo *group_info,
int *IOWS,
int *cols
)
{
WidgetList children_list = NULL;
int num_rows,
num_cols,

num_children;

if (!parent || !group_info)
{
*rows = *cols = -1;

return;

/*
* Get children list
*
XtvaGetvalues(parent,
XmNnumChildren, &num_children,
XmNchildren, &children_list,
NULL);

num_rows = group_info->num_rows;
num_cols = group_info->num_cols;

if ((num_rows <= 0) && (num_cols <= 0))
{

*TOWS = *COls = -1;

return;

}

if (num_cols <= 0)
num_cols = (num_children/num_rows) + ((num_children % num_rows) 2 1 : 0);

if (num_rows <= Q)
num_rows = (pum_children/num_cols) + ((num_children % num_cols) ? 1 : 0);

*TOWS = NUM_TIOWS;
*cols = num_cols;

static Widget
get_group_child(

Widget parent,
DtbGroupInfo *group_info,

int X_pos,
int _pos

DTB_GROUP_TYPES group_type;

widgetList children_list = NULL;

wWidget ret_child = NULL:;

int num_children = O,
num_rows,
num_columns,
i=-1;

if (:parent || !group_info |

(x_pos < 0) |l (y_pos < 0))

return (NULL);

group_type = group_info->group_type;
num_rows = group_info->num_rows;
num_columns = group_info->pum_cols;

/t
* Get number of children
*/
XtvVaGetValues(parent,
XmNnumChildren, &num_children,
XmNchildren, &children_list,
NULL);

if (num_children <= 0)
return (NULL};

switch (group_type)
{

case DTB_GROUP_NONE:
break:

case DTB_GROUP_ROWS:
/t
* pum_xows = 1
* y pos is ignored

85

*/
i = x_pos;
break;

case DTB_GROUP_COLUMNS:
/i
* pum_columns = 1
* x_pos is ignored
*/
i = y_pos;
break;

case DTB_GROUP_ROWSCOLUMNS:
if (!num_rows && ‘num_columns)
break;

if (num_rows > 0)

*
* ROWFIRST
*/
if (y_pos < num_rows)
i = (Xx_pos * num_rows) + y_pos;

else
{
*
* COLFIRST
*/
if (x_pos < num_columns)
i = x_pos + (y_pos * num_columns);
}
break;
default:
break;

}
if ((1i >= 0) && (i < num_children))
{

ret_child = children_list[i];
}

return (ret_child);

void

dtb_children_align(
Widget parent,
DTB_GROUP_TYPES group_type.
DTB_ALIGN_TYPES row_align,
DTB_ALIGN_TYPES col_align,

int margin,
int RUMmM_IOWS,
int num_cols,
int hoffset,
int voffset

)

{
DtbGroupinfo *group_info;

switch (group_type)
f
case DTB_GROUP_COLUMNS:
num_rows = 0;
num_cols = 1:
break;

case DTB_GROUP_RCWS:
num_rows = 1:
num_cols = 0;
break:;

}
group_info = (DtbGrouplnfo *)XtMalloc(sizeof(DtbGroupInfo));

group_info->group_type = group_type:
group_info->row_align = row_align;
group_info->col_align = col_align;
group_info->margin = margin;
group_info->nUM_IOwS = nUM_rows;
group_info->num_cols = num_cols;
group_info->hoffset = hoffset;
group_info->voffset = voffset;
group_info->ref_widget = NULL;

align_children(parent, group_info, True);

/t

Register expose handler

Some group objects depend on it’s members’ sizes for their layout.
Unfortunately, some group members have invalid sizes prior to
XtRealize(), so the group layout has to be recalculated after the
group is realized or exposed in this case, since there is no realize
callback.

LR A

*/
switch(group_info->group_type)
v

case DTB_GROUP_NONE:

86

}

break;

case DTB_GROUP_ROWS:
if (group_info->row_align == DTB_ALIGN_HCENTER)
XtaddEventHandler (parent,
ExposureMask, False,
expose_handler, (XtPointer)group_info);
break;

case DTB_GROUP_COLUMNS:
if ((group_info->col_align == DTB_ALIGN_LABELS) ||
(group_info->col_align == DTB_ALIGN_VCENTER))
XtAddEventHandler(parent,
ExposureMask, False,
expose_handler, (XtPointer)group_info);
break;

case DTB_GROUP_ROWSCOLUMNS:
if ((group_info->row_align == DTB_ALIGN_HCENTER) |
(group_info->col_align == DTB_ALIGN_LABELS) ||
{group_info->col_align == DTB_ALIGN_VCENTER))
XtAddEventHandler(parent,
ExposureMask, False,
expose_handler, (XtPointerj)group_info);

break;

XtAddCallback({parent, XtNdestroyCallback,

free_group_info, (XtPointer)group_info);

static void
align_children(

wWidget parent,
DtbGroupinfo *group_info,
Boolean init
)
{
if (tparent || t‘group_info)
return;

switch(group_info->group_type)

{

case DTB_GROUP_NONE:
break;

case DTB_GROUP_ROWS:
align_rows({parent, group_info, init);
align_left(parent, group_info):
break;

case DTB_GROUP_COLUMNS:
align_cols({parent, group_info, init);
align_top(parent, group_info);

break;

case DTB_GROUP_ROWSCCLUMNS:
align_rows(parent, group_info, init);
align_cols(parent, group_info, init);
break;

static void
align_handler(

Widget widget,
XtPointer client_data,
XEvent *event,
Boolean *cont_dispatch
)
{
DtbGroupinfo *group_info = (DtbGroupInfo *)client_data;
WidgetList children_list;
int i,
num_children = 0;
Boolean relayout_all = False;
/i

+ Get children list

*/

XtvaGetvalues(widget,

XmNnumChildren, &num_children,
XmNchildren, &children_list,
NULL);

if (num_children <= 0)

return;

XtRemoveEventHandler(widget,

SubstructureNotifyMask, False,
align_handler, (XtPointer)client_data);

if (event->type == ConfigureNotify) {

XConfigureEvent *xcon = &event->xconfigure;
Widget resized_child;

87

if (xcon->window != xcon->event)
{
resized_child - XtWindowToWidget(XtDisplay(widget), xcon->window);

switch(group_info->group_type)
{
case DTB_GRCUP_NONE:
break;

case DTB_GROUP_ROWS:
if (group_info->row_align == DTB_ALIGN_HCENTER)
relayout_all =~ True;
break:

case DTB_GROUP_COLUMNS:
if ((group_info->col_align == DTB_ALIGN_LABELS) ||
{group_info->col_align == DTB_ALIGN_VCENTER))
relayout_all = True;
break;

case DTB_GROUP_ROWSCOLUMNS:
if ((group_info->row_align == DTB_ALIGN_HCENTER) |
(group_info->col_align == DTB_ALIGN_LABELS) ||
(group_info->col_align == DTB_ALIGN_VCENTER}))

relayout_all = True;

|

break;

»
* Relayout when new widgets are created
*7
if (event->type == CreateNotify) {
XCreateWindowEvent *xXcreate = &event->xcreatewindow;

relayout_all = True;
}

/*
* Relayout when widgets are destroyed
*/
if (event->type ==~ DestroyNotify) {
XDestroyWindowEvent *xdestroy = &event->xdestroywindow;
widget destroyed_child;

destroyed_child = XtWindowToWidget (XtDisplay(widget)
xdestroy->window);

relayout_all = True;

}
if (relayout_all)

align_children(widget, group_info, False);

)

XtAddEventHandler(widgest,
SubstructureNotifyMask, False,
align_handler, {(XtPointer)client_data};

static veid
expose_handler(

Widget widget,
XtPointer client_data,
XEvent *event,
Boolean *cont_dispatch
)
{
DtbGrouplnfo *group_info = (DtbGroupInfo *)client_data:
WidgetList children_list;
int i,
num_children = 0;
Boolean relayout_all = False,

register_align_handler = False;

if (event->type != Expose)
return;

if (!group_info)

return:
/>
* Get children list
*/

XtvaGetValues(widget,
XmNnumChildren, &num_children,
XmNchildren, &children_list,
NULL);

if (num_children <= 0)
return;

XtRemoveEventHandler(widget,

ExposureMask, False,
expose_handier, (XtPointer)client_data);

88

switch(group_info->group_type)
{
case DTB_GROUP_NONE:
break;

case DTB_GROUP_ROWS:
if (group_info->row_align == DTB_ALIGN_HCENTER)
{

relayout_all = True;

register_align_handler = True;
}

break:

case DTB_GROUP_COLUMNS:
if ((group_info->col_align == DTB_ALIGN_LABELS) ||
(group_info->col_align == DPB_ALIGN_VCENTER})
{
relayout_all = True;

register_align_handler = True;
}

break;

case DTB_GROUP_ROWSCOLUMNS:

if ((group_info->row_align == DTB_ALIGN_HCENTER) |
(group_info->col_align == DTB_ALIGN_LABELS) ||
(group_info->col_align ==« DTB_ALIGN_VCENTER))

relayout_all = True;

register_align_handler = True;
}
break;

}

if (relayout_all)
{

align_children(widget, group_info, False);
}

if (register_align_handler)

/*
* Register align handler to relayout group if/when
* any of it’s members resize
*/
XtAddEventHandler{widget,
SubstructureNotifyMask, False,
align_handler, (XtPointer)group_info);

static void
free_group_info(

widget widget,
XtPointer client_data,
XtPointer call_data
)
{
DtbGreuplnfo *group_info = (DtbGroupInfo *)client data;;

XtFree((char *)group_info);

static void
align_rows(

wWidget parent,
DtbGrouplnfo *group_info,
Boolean ipit
)
{
if (!parent || !group_info || (group_info->group_type == DTB_GROUP_COLUMNS))
return;

switch (group_info->row_align)
{
case DTB_ALIGN_TOP:
align_top(parent, group_info);
break;

case DTB_ALIGN_HCENTER:
align_hcenter(parent, group_info, init):
break;

case DTB_ALIGN_BOTTOM:
align_bottom(parent, group_info);
break;

default:
break;

static void
align_cols(
Widget parent,

89

DtbGroupinfo *group_info,
Boolean init

if (!parent || tgroup_info || (group_info->group_type == DTB_GROUP_ROWS)
return;

switch (group_info->col_align)

case DTB_ALIGN_LEFT:
align_left(parent, group_info);
break;

case DTB_ALIGN_LABELS:
align_labels(parent, group_info):
break:

case DTB_ALIGN_VCENTER:
align_vcenter(parent, group_info, init):
break;

case DTB_ALIGN_RIGHT:
align_right(parent, group_info):
break;

default:
break:;

static void
align_left!

Wwidget parent,
DtbGroupInfo *group_info
)
{
WidgetList children_list;
Widget child,
previous_child;
int num_children = 0O,
num_columns,
num_rows,
cell_width,

cell_height,
i,

Js
if (!parent || !group_info)
return;
/*
* Get children list
*/

XtVaGetvalues(parent,
XmNnumChildren, &num_children,
XmNchildren, &children_list,
NULL) ;

if (num_children <= 0)
return;

get_group_cell_size(parent, group_info, &cell_width, &cell_height);
get_group_row_col{parent, group_info, &num_rows, &num_columns);

for (j = 0; 3 < num_rows; j++)
{
for (i = 0; i < num_columns; i++)
{
Arg args(12}1;
int n = 0;

child = get_group_child(parent, group_info, i, j);

if (tchild)
continue;

if ((1 == 03 && (3 == 0))
{

XtSetArg{args(n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg(args{n], XmNleftOffset, 0); nt++;
XtSetArg(args(n}, XmNrightAttachment, XmATTACH_NONE}; n++;

XtSetvalues(child, args, n);

continue;
}
if (3 == 0)
{
int offset = group_info->hoffset;
DTB_GROUP_TYPES group_type = group_info->group_type:;

previous_child = get_group_child(parent, group_info, i-1, 3):

if (!previous_child)
continue;

if (group_type == DTB_GROUP_ROWSCCLUMNS)
{

Dimension width - 0;

90

XtVaGetValues(previous_child, XmNwidth, &width, NULL);
offset +=~ (cell_width - (int)(width));

}
XtSetArg(args([n}, XmNleftAttachment,
XMATTACH_WIDGET) ; n++;
XtSetArg(args[n], XmNleftWidget, previous_child); n++;
XtSetArg(args[n), XmNleftOffset, offset); n++;
XtSetArg(args(n), XmNrightAttachment, XmATTACE_NONE): n++;

XtSetValues(child, args, n);

continue;

}
previous_child = get_group_child(parent, group_info, i, j-1);

if (previous_child)
{
XtSetArg(args([n}, XmNleftAttachment,
XmATTACH_QPPOSITE_WIDGET);

XtSetArg(args[n}, XmNleftWidget, previous_child}; n++;
XtSetArg(args[n], XmNleftOffset, 0); n++;
XtSetArg(args(n], XmNrightAttachment, XmATTACE_NONE); n++;

XtSetvalues(child, axgs, n);

static void
align_right(

Widget parent,
DtbGroupInfo *group_info
)
{
wWidgetList children_list;
wWidget child,
previous_child;
int num_children = O,
num_columns,
num_rows,

cell_width,
cell_height,

offset,
i,
35
if (:!parent || !group_info)
return;
/*
* Get children list
*/

XtVaGetvValues (parent,
XmNnumChildren, &num_children,
XmNchildren, &children_list,
NULL);

if (num_children <= 0)
return;

get_group_cell_size(parent, group_info, &cell_width, &cell_height};
get_group_row_col(parent, group_info, &num_rows, &num_columns);

for (j = 0: 3 < pum_rows; j++)
{
for (i = 0; i < num_columns; i++)
{
Arg args[12);
int n - 0;

child = get_group_child(parent, group_info, i, 3);

if (tchild)
continue;

if ({1 == 0) && (J == 0))
{
Dimension width = 0O;

XtVaGetValues{child, XmNwidth, &width, NULL);

offset = (cell_width - width);

XtSetArg(args(n], XmNleftAttachment, XmATTACH_FORM); n+t;
XtSetArg(args([n], XmNleftOffset, offset); n++;
XtSetArg{args{n], XmNrightAttachment, XmATTACH_NONE); nt++;

XtSetvalues(child, args, n);

continue;
}

if (§ == 0)
{

previous_child = get_group_chilé(parent, group_info, i-1, 3j);

91

if (!previous_child)
continue;

offset = group_info->hoffset;

if (group_info->group_type == DTB_GROUP_ROWSCOLUMNS)
{

Dimension width = 0;

XtvaGetValues(child, XmNwidth, &width, NULL};
offset += (cell_width - width);
}

XtSetArg(args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;

XtSetArg(args(n], XmNleftWidget, previous_child); n++;

XtSetArg(args[n), XmNleftOffset, offset); n++;
XtSetArg(args{n], XmNrightAttachment, XmATTACH_NONE); n++;

XtSetvalues(child, args, n);

continue;

1
previous_child =~ get_group_child(parent, group_info, i, 3-1);
if (previous_child)

{
XtSetArg(args(n], XmNrightAttachment,

XmATTACH_OPPOSITE_WIDGET); nt+;

XtSetArg(args(n), XmNrightWidget, previocus_child); n++;
XtSetArg(args(n], XmNrightOffset, 0); o+t
XtSetArg(args(n}, XmNleftAttachment, XmATTACH_NONE); n++;

XtSetValues(child, args, n);

static void
align_labels(

Widget parent,
DtbGroupInfo *group_info
)
{
widgetList children_list = NULL,
one_col;
widget previous_child = NULL,
child,

ref_widget,
previous_ref_widget = NULL;
Dimension ref_lbl_width = O,
max_label_width = 0,
max_value_width = 0;
int aum_children = 0,
nUM_Tows,
aum_columns,

ce width,
cell_height,
ofiset,
ref_x
if (!parent tgrour_info)
return:
/t
* Get chilcdre- ..st
*/
XtvaGetValtes pare
XmANnumCTholdr &num_children,
&children_list,
it -

get_groug_ce.l_siTezarent, group_info, &cell width, &cell_height);

get_widest_label!crnildren_list, num_children, &child, &max_label_widthj};
get_widest_value(children_list, num_children, &child, &max_value_width):

if (cell_width < ‘int)(max_label_width + max_value_width))
cell_width = (int)(max_label_width + max_value_width):

get_group_row_col{parent, group_info, &num_rows, &num_columns);

if (aum_rows > 0)
one_col = (WidgetList)XtMalloc(num_rows * sizeof(WidgetList)):

for (i = 0; i < num_columns; i++)

{

wWidget ref_widget;
Dimension ref_width;

Arg args(12];
int n o= 0;

for (3 = 0; J < num_rows; j++)
one_col(j) = get_group_child(parent, group_info, i, J3):

92

get_widest_label(one_col, num_rows, &ref_widget, &ref width);

if ('ref_widget)
continue;

if (previous_ref_widget)

offset = (i * (group_info->hoffset + cell_width));
else

offset = 0:

XtSetArg(args(n], XmNleftAttachment, XmATTACH_FORM}; n++;
XtSetArg(args(n], XmNleftOffset, offset); n++;
XtSetArg(args{n], XmNrightAttachment, XmATTACH_NONE); n++;

XtSetValues(ref_widget, args, n);
for (j = 0; J < num_rows; Jj++)
child = get_group_child(parent, group_info, i, J):

if (tchild || (child =~ ref_widget))
continue;

offset ~ (1 * (group_info->hoffset + cell_width));
offset += (int)(ref_width - get_label_width(child));

n = 0;
XtSetArg(args(n), XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNleftOffset, cffset); n++;

XtSetArg{args[n], XmNrightAttachment, XmATTACH_NONE); D+
XtSetvValues(child, args, n);
previous_ref_widget = ref widget;
}

if (num_rows > 0)
XtFree{(char*)one_col);

static void
align_vcenter(

wWidget parent,
DtbGrouplnfo *group_info,
Boolean init

)

{
widgetList children_list;
Widget child,

previous_child;
DTB_GROUP_TYPES group_type:;
int num_children = O,
num_columns,
num_rows,
cell _width,
cell_height,
group_width,
group_height,
offset,
gridline,
i,
3
if (:parent || !group_info)
return;
/*
* Get children list
*

XtvaGetvalues(parent,
XmNnumChildren, &num_children,
XmNchildren, &children_list,
NULL);

if (num_children <= Q)
return;

get_group_cell_size(parent, group_info, &cell width, &cell_height};
get_group_row_col (parent, group_info, &num_rows, &num_columns);
offset = group_info->hoffsetr;

group_type = group_info->group_type;

%f (group_type == DTB_GROUP_ROWSCOLUMNS)

group_width = (num_columns * cell_width) + ((num_columns-1) * offset);

for (i = 0; i < num_columns; i++)
{
if (group_type =~ DTB_GROUP_ROWSCOLUMNS)
gridline = (((i * (cell_width + offset)) + (cell width/2)) * 100)/group_width;
else
gridline = 50;

for (j = 0; j < num_rows; j++)

93

Arg args(12};
int n = 0;
Dimension width = 0;

child = get_group_child{parent, group_info, i, j):

if (:child)
continue;

XtvVaGetValues(child, XmNwidth, &width, NULL);
if (init)
int offset = 0;
%f (!XtIsSubclass(child, compositeWidgetClassy))

offset = (cell_width - (int)width)/2;

if (group_type == DTB_GROUP_ROWSCOLUMNS)
offsez += (i * (cell_width + group_info->hoffset));

I

XtSetArg(args(n), XmNleftAttachment, XmATTACE_FORM); n++;
XtSetArg(args{n}, XmNleftOffset, offset); n++;
tSetArg(args(n]), XmNrightAttachment, XmATTACH_NONE); n++;
}
else
f .
XtSetArg(args(n], XmNleftAttachment,
XMATTACE_POSITION); n++;
XtSetArg(args{n], XmNleftPosition, gridline); n++;
XtSetArg(args(n], XmNleftOffset, (int)(-(width/2))): n++;
XtSetArg(args(n], XmNrightAttachment, XmATTACH_NONE); n++;

}

XtSetValues{child, args, n);

static void

align_top(
Widget parent,
DtbGrouplnfo *group_info
)
{
WidgetList children_list;
Widget previous_child = NULL,
child,
cur_chilag;
int num_children = 0,
num_columns,
RUM_Iows,
cell_width,
cell_height,
i,
3
if (:parent || !group_info)
return;
/*
+ Get children list
*/

XtVaGetValues(parent,
XmNonumChildren, &num_children,
XmNchildren, &children_list,
NULL);

if (num_children <= 0}
return;

get_group_cell_size(parent, group_info, &cell_width, &cell_height);
get_group_row_col(parent, group_info, &num_rows, &num_columnsj);

for (3 = 0; J < num_rows; Jj++)
{
for (i = 0; 1 < num_columns; 1i++)}
{
Arg args{12};
int n = O3

child = get_group_child{parent, group_info, 1, j):

if (:child)
continue;
if ((i == 0) && (J == 0))
{
XtSetArg(args(n}, XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg(args{n], XmNtopOffset, 0); n++;
XtSetArg(args(n], XmNbottomAttachment, XmATTACH_NONE); n++;

wSetvalues(child, args, n};

continue;

94

if (1 == 0)
{
previous_child = get_group_child(parent, group_info, 0, 3j-1);

if (previous_child)
{
DTB_GROUP_TYPES group_type = group_info->group_type;
int offset = group_info->voffser;

if (group_type == DTB_GROUP_ROWSCOLUMNS)
{
Dimension height = 0;
XtVaGetValues(previous_child, XmNheight, &height, NULL};

offset += (cell_height - (int)(height));
}

XtSetArg(args(n], XmNtopAttachment, XmATTACH_WIDGET): n++;
XtSetArg(argsin], XmNtopWidget, previous_child); D+
XtSetArg(args(n], XmNtopOffset, offset); n++:;
XtSetArg{args(n], XmNbottomAttachment, XmATTACH_NONE); n++;

XtSetvalues{child, args, n):
}
continue;

3
previous_child - get_group_child(parent, group_info, i-1, J);

if (previous_child)

XtSetArg{args{n], XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET); n++;
XtSetArg({args{n], XmNtopWidget, previous_child); n++;

XtSetArg(argsi{n}, XmNtopOffset, 0); n++;
XtSetArg(args{n), XmNbottomAttachment, XmATTACH_NONE): n++;

XtSetvValues(child, args, n);

static void
align_bottom(

widget parent,
DtbGrouplnfo *group_info

)

{
wWidgetList children_list:
Widget child,

previous_child;
DTB_GROUP_TYPES group_type;
int num_children = 0,
num_columns,
nUm_rows,
cell_height,
cell_width,
offset,
i,
3
if (iparent || !group_info)
return;

/*
* Get children list
*
XtVaGetValues(parent,
XmNnumChildren, &num_children,
XmNchildren, &children_list,
NULL);

if (oum_children <= 0)
return;

get_group_cell_size(parent, group_info, &cell_width, &cell_height};
get_group _row_cel(parent, group_info, &num_rows, &num_columns);
for (j = 0; J < num_rows; Jj++)
{

for (1 = 0; i < num_columns; 1i++)

{

Arg args{12];
int n = 0;

child = get_group_child(parent, group_info, i, 3):

if (tchild)
continue;

if ((1 == 0) && (J == 0O))
{
Dimension height = 0O;

XtvVaGetvalues(child, XmNheight, &height, NULL):

offset ~ cell_height - height;

95

XtSetArg(argsin], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg(args(n], XmNtopQffset, offset); ntt;
XtSetArg(args(n], XmNbottomAttachment, XmATTACH_NONE); nt++;

XtSetvalues(child, args, n);

continue;

}
if (1 == 0)
{
previous_child = get_group_child(parent, group_info, 0, 3-1);
if (previous_child)
{
Dimension height = 0;
XtvaGetvalues(child, XmNheight, &height, NULL):
offset = group_info->voffset;

if (group_info->group_type == DTB_GROUP_ROWSCOLUMNS)
offset += (cell_height - height);

XtSetArg(args{n], XmNtopAttachment, XmATTACH_WIDGET); nt+;
XtSetArg(args{n}, XmNtopWidget, previous_child}; n++;
XtSetArg(args{n), XmNtopOffset, offset); nt+;
XtSetArg(args(n), XmNbottomAttachment, XmATTACH_NONE): n++;

XtSetvalues{child, args, n);
1
’ continue:
)
previous_child = get_group_child(parent, group_info, i-1, 3);
%f (child && previous_child)

XtSetArg(args([n], XmNbottomAttachment,

XmATTACH_OPPOSITE_WIDGET); n++;
XtSetArg(args(n], XmNbottomWidget, previous_child); n++;
XtSetArg(args(n)], XmNbottomOffset, 0): n++;

XtSetArg{args(n], XmNtopAttachment, XmATTACH_NONE}; n++;

XtSetvalues(child, args, n);

static void
align_hcenter(

wWidget parent,
DtbGroupInfo *group_info,
Boolean init

)

{
widgetList children_list = NULL;
widget child,

previous_child;

DTB_GROUP_TYPES group_type:;

int num_children = 0,
num_columns,
num_rows,
cell_width,
cell_height,
group_width,
group_height,

offset,
gridline,
i,
i
if (!parent || !group_info)
return;
/*
* Get children list
*/

XtvVaGetValues(parent,
XmNnumChildren, &num_children,
XmNchildren, &children_list,
NULL);

if (num_children <= 0}
return;

group_type = group_info->group_type:

get_group_cell_size(parent, group_info, &cell_width, &cell_height);
get_group_row_col(parent, group_info, &num_rows, &num_columns);

offset = group_info->voffset;
if (group_type == DTB_GROUP_ROWSCOLUMNS)

1
group_height = (num_rows * cell_height) + ((num_rows-1) * offset);

for (j = 0; j < num_rows; Jj++)

96

if (group_type == DTB_GROUP_ROWSCOLUMNS)
gridline =
(((3 * (cell_height + offset)) + (cell_height/2)) * 100)/group_height;
else
gridline = 50;

for (i = 0; i < num_columns; i++)

{

Arg args(12];
int n o~ 0;
Dimension height = 0;

child = get_group_child(parent, group_info, i, 3):

if (:echild)
continue;

XtVaGetValues(child, XmNheight, &height, NULL);
if (init)
{ int init_offset = 0;
if (!XtIsSubclass({child, compositeWidgetClass))
‘ init_offset = (cell_height - (int)height)/2;
if (group_type == DTB_GROUP_ROWSCOLUMNS)
init_offset += (3 * (cell_height + group_info->voffset)):
}

XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM): n++;

XtSetArg(args[n), XmNtopOffset, init_offset); n++;
XtSetArg(argsfn], XmNbottomAttachment, XmATTACH_NONE); n++;
}
else
{
XtSetArg({args{n], XmNtopAttachment,
XmATTACH_POSITION); nt+;
XtSetArg(args(n], XmNtopPosition, gridline); n++;
XtSetArg(args(n], XmNtopOoffset, (int)(-(height/2))): n++;
XtSetArg(args{n), XmNbottomAttachment, XmATTACH_NONE); n++;

}

XtSetvalues(child, args, n);

/*
*» Returns the directory that the executable for this process was loaded
* from.
*/
String
dtb_get_exe_dir(void)
{
return dtb_exe_dir;

}

/*
* Determines the directory the executable for this process was loaded from.

*/

static int

determine_exe_dir(
char *argvQ,
char *buf,
int bufSize

Boolean foundDir= False;
if ((buf == NULL) || (bufSize < 1))
{

return -1;

if (determine_exe_dir_from_argv(argv0, buf, bufSize) >= 0)

foundDir = True;

if (!foundDir)
if (determine_exe_dir_from_path({argvQ, buf, bufSize) > 0)

foundDir = True;

/t

* Convert relative path to absolute, so that directory changes will
* not affect us.

*/

if (foundDir && (buf[Q] i= '/'))

{

char cwd [MAXPATHLEN+1];
char *env_pwd = NULL;
char *path_prefix = NULL;

97

char abs_exe_dir [MAXPATHLEN+1];

if (getcwd(cwd, MAXPATHLEN+1) != NULL)
{
path_prefix = cwd;

else
{
env_pwd = getenv{"PWD"};
if (env_pwd != NULL)
{
path_prefix = env_pwd;
}
}

if (path_prefix != NULL)
{
strcpy(abs_exe_dir, path_prefix);
if (stremp(buf, ".”) t= 0)
{
strcat(abs_exe_dir, "/");
strcat(abs_exe_dir, buf);
}

strcpy(buf, abs_exe_dir):
}

return foundDir? 0:-1;

/%
* Locks for absolute path in arv{0].
*/

static int

determine_exe_dir_from_argv(

char *argvo0,
char *buf,
int bufSize

int i= 0;
Boolean foundit~ False;
for (i~ strlen(argv0)-1; (i >= 0) && (argvO(i] != "/"y; --i)

{
}

1€ (1 >= 0)

{
int maxstringSize~ min(i, bufSize);
stracpy(buf, argv0, maxStringSize);
buf[min(maxStringSize, bufSize-1)}= 0;
foundit = True;

}
retura foundit? 0:-1i;
1
/*
* Assumes: bufSize > 0
*/

static int
determine_exe_cir_tro~_vath (
char *argv(C,
char *buf,

int bufSize

)

{
Boolearn
Boolean
char *sziIxeNare-
int eNameLen= strlen(szExeName);
char T
char "\TELEN+1];
int .VarLen= 0;
char AXPATHLEN+1];
int . eatPathLen- 0;
int N ntPathStart= 0;
int D=

o
uid_t euicd= geteuid():
uid_t egid- getegid{)
szTemp= getenv"PATH"):
if (szTemp == NULL)
{
morelirs= False;
1
else
{
stroncpy(szPathvar, szTemp, MAXPATHLEN);
szPathvVar [MAXPATHLEN]= O;
iPathvarlen=~ strlen(szPathVar};

while ((!foundDir) && (moreDirs))
/* £ind the currernt directory name */

for (i=~ iCurrentPathStart; (i < iPathvVarlen) && (szPathvar{i]
)

98

{

}

iCurrentPathLen= i - iCurrentPathStart;

if ((iCurrentPathlen + iExeNameLen + 2) > MAXPATHLEN)
{

++1i;

iCurrentPathLen= MAXPATHLEN - (iExeNamelen + 2);
}

/* create a possible path to the executable */

strncpy(szCurrentPath, &szPathVar[iCurrentPathStart], iCurrentPathlen);
szCurrentPath[iCurrentPathlLen]= O;

strcat(szCurrentPath, */*);:

strcat(szCurrentPath, szExeName);

/* see if the executable exists (and we can execute it) */
if (path_is_executable(szCurrentPath, euid, egid))
{
foundpir= True;
}

/* skip past the current directory name */
if (tfoundDir)
{
iCurrentPathStart+~ iCurrentPathLen;
while ¢ (iCurrentPathStart < iPathvarLen)
&& (szPathvar[iCurrentPathStart] (= ‘:’))
{

}
if (iCurrentPathStart < iPathVarLen)

{

++jiCurrentPathStart; /* find : %/

++iCurrentPathStart; /* skip : */
if {iCurrentPathStart >= iPathVarlLen)
{ moreDirs= False;
}
} o/ wgile ifoundDir */

if (foundDir)

szCurrentPath[iCurrentPathLen]= O;
strncpy(buf, szCurrentPath, bufsSize);
buf [bufSize-1]= 0O;

}

return foundDir? 0:-1;

/-.
* returns False is path does not exist or is not executable
*/
static Boolean
path_is_executable(
char *path,
uid_t euid,

gid_t egid

)

{
Boolean bExecutable= False;
sStruct stat sgStat;

if (stat(path, &sStat) == Q)

{
Boolearn bDetermined= False;

if (!bDetermined)
{
if {!S_ISREG({sStat.st_mcde))
{
/* not a regular file */
bDetermined= True;
bExecutable= False;

1

if (!bDetermined)
{
if ¢ {euid == 0)
&& ({{sStat.st_mode & S_IXOTH) (= 0)
t] ((sStat.st_mode & S_IXGRP) !~ 0)
t!l (({sStar.st_mode & S_IXUSR) != Q))

bDetermined= True:;
bExecutable= True;

if (!bDetermined)
{

{{(sStat.st_mede & S_IXGRP) != 0) && (sStat.st_gid == egid))

if ({((sStat.st_mode & S_IXOTH) != 0))
|
| (((sStat.st_mode & S_IXUSR) != 0) && (sStat.st_gid == euid))

|
|

bDetermined= True:;
bExecutable~ True;

99

}
} /* if stat */

return bExecutable;

/>
* Registers a popup menu to be brought by button three on the parent
*/

int

dtb_popup_menu_register(Widget popupMenu, Widget parent)

'

static XtTranslations pcpupMenuTrans = NULL;
static XtActionsRec menuActions{; =
{

{"DtbPopupMenu”, (XtActiconProc)dtb_popup_menu }
N
int i=0;
Boolean foundEntry = False;

if (popupMenuTrans == NULL)
{

XtAppContext appContext =
XtWidgetToApplicationContext(dtb_get_toplevel_widger()):;
XtAppAddActions(appContext, menulActions, XtNumber{menuActions));
popupMenuTrans = XtParseTranslationTable(
"<Btn3Down>: DtbPopupMenu()"):

}
XtoverrideTranslations(parent, popupMenuTrans):

/*
* Save the reference from this widget to the menu
*/
/* see if an entry already exists */
for (i = 0; i < numPopupMenus; ++i)
{
if ¢ (popupMenus(i] .widget == parent)
|} (popupMenus(i].menu == popupMenu) }
{
foundEntry = True;
break;
}

/* look for an empty slot */
if (tfoundEntry)
{
/* look for an empty slot */
for (1 = 0; 1 < numPopupMenus; ++i)
{
if (popupMenus{i].widget == NULL)
{
foundEntry = True;
break;

}
}
/* make a new slot, if necessary */
if (!foundEntry)
{
/* It’s not in the list - add it */
DtbMenuRef newPopupMenus = (DtbMenuRef)
realloc(popupMenus, sizeof (DtbMenuRefRec)*(numPopupMenus+l)):
if (newPopupMenus != NULL)
{
popupMenus = newPopupMenus;
t++numPopupMenus;
i = numPopupMenus-1;
foundEntry = True;
}
/* we have a slot; fill it in */
if (foundEntry)
{
popupMenus (i) .widget = parent;
popupMenus (i) .menu = popupMenu;
XtAddCallback (popupMenus(i].widget,
XmNdestroyCallback, dtb_popup_menu_destroyCB, (XtPointer)NULL);
XtAddCallback (popupMenusii}.menu,
XmNdestroyCalliback, dtb_popup_menu_destroyCB, (XtPointer)NULL);

return 0;

static void
dtb_popup_menu

Widget widget,
XEvent *event,
String *params,
Cardinal *num_params
)
(
int i=0;
wWidget menu = NULL;

if (event->type == ButtonPress)
{

100

for (i = 0 ; i < numPopupMenus; ++i)

{
if (popupMenus{i].widget == widget)}
{

menu = popupMenus{i].menu;

)

if (menu != NULL)

{
XmMenuPosition (menu, (XButtonPressedEvent*)event):
XtManageChild(menu);

/-h
* This keeps the list of popup menus up-to-date, if widgets are destroyed
*/
static void
dtb_popup_menu_destroyCB(
wWidget widget,
XtPointer clientData,
XtPointer callData

int i = 0;
for (i = 0; i < numPopupMenus; ++i)

if ((popupMenusfi) .widget == widget)
|| (popupMenus[i].menu == widget))
{
popupMenus|[i].widget = NULL:
popupMenus (i) .menu = NULL;

break:
}
}
}
/*
* Returns non-negative if successful.
*/
int
dtb_drag_site_register(
Widget widget,
DtbDndDragCallback callback,
DtDndProtocol protocol,
unsigned char operations,
Boolean bufferIsText,
Boolean allowDropOnRootWindow,
Pixmap cursor,
Pixmap cursorMask,

DtbDragSiteHandle *dragSiteHandleOut

‘tbDragSite dragSite = (DtbDragSite)XtCalloc(l,sizeof(DtbDragSiteRec));
Widget sourcelcon = NULL;

if (dragSite != NULL)
{
dragSite->widget = widget;

dragSite->protocol =~ protocol;
dragSite->operations = operations:
dragSite->bufferisText = bufferIsText:
dragSite->allowDropOnRootWindow = allowDropOnRootWindow;
if ((cursor != NULL) && (cursorMask != NULL))

dragSite->sourcelcon =
DtDndCreateSourcelcon (widget, curser, cursorMask);
1
dragSite->callback = callback;
dragSite->convertCBRec[0].callback = dthb_drag_convertCs;
dragSite->dragToRootCBRec[0] .callback = dtb_drag_to _rootCB;
dragSite->dragFinishCBRec[0].callback =« Atb_drag_finishCB;

XtaddEventHandler(widget, ButtonlMotionMask, False,
(XtEventHandler)dtb_drag_buttonl_motion_handler,
{XtPointer)dragsite):

XtAddEventHandler(widget, ButtonPressMask, False,
(XtEventHandler)dtb_drag_button2_event_handler,
(XtPointer)dragS$ite);

}

/t
* pass back a handle, so that this can be freed, later. Unregistering
* drag sites is not currently implemented, but this gives the ability
* to provide this functionality ia the future.
*
if (dragSiteHandleOut !~ NULL)
{
*dragSiteHandleOut ~ (DtbDragSiteHandle)dragSite;
}
return O;

int
dtb_drop_site_register(

101

Widget widget,

DtbDndDropCallback callback,

DtDndProtocol protocols,

unsigned char operations,

Boolean dropsonChildren,

Boolean preservePreviousRegistration,
DtbDropSiteHandle *dropSiteHandleOut

DtbDropSite dropSite = (DtbDropSite)NULL;

if

({callback != NULL)
&& ((dropSite = (DtbDropsSite)XtCalloc(l,sizeof(DtbDropSiteRec)))

DtbDndDropRegisterInfoRec reglnfo;

/* initialize the data */
dropSite->widget = widget:
dropSite->callback = callback;
dropSite->protocols = protocols;
dropSite->operations = operations;
dropsite->dropsOnChildren = dropsOnChildren;
dropSite->preservePreviousRegistration = preservePreviousRegistration;
dropSite->animateCBRec[0].callback = dtb_drop_animateCB;
dropSite->animateCBRec[0].closure = (XtPointer)dropSite;
dropSite->transferCBRec{0] .callback ~ dtb_drop_transferCs;
dropSite->transferCBRec{0] .closure = (XtPointer)dropSite;

/* Let the client modify the drop site initialization */

regInfo.protocols = dropSite->protocols;

regInfo.operations = dropSite->operations;

regInfo.textIsBuffer =~ dropSite->textIsBuffer:

reglnfo.preservePreviousRegistration =
dropSite->preservePreviousRegistration;

reglnfo.respondToDropsOnChildren = dropSite->dropsOnChildren;

dropSite->callback (widget, DTB_DND_REGISTER, ®lInfo, NULL, NULL);

/* actually register it! =/

DtDndVaDropRegister (
widget, reglnfo.protocols, regInfo.operaticns,
dropSite->transferCBRec,
DtNregisterChildren, reglnfo.respondTeDropsOnChildren,
DtNtextIsBuffer, regInfo.textIsBuffer,

tifdef DtNpreserveRegistration

tendif

}

if
{

}

DtNpreserveRegistration, regInfo.preservePreviousRegistration,
DtNdropAnimateCallback, dropSite->animateCBRec,
NULL) ;

(dropSiteHandleQut != NULL)

*dropSiteHandleOut = (DtbDropSiteHandle)dropSite;

return ((dropSite == NULL}? -1:0);

static int
dtb_drag_terminate(DtbDragSite dragSite)

{

/*
*
*
*

*

dragInProgress = False;

draglInitialX - -1;

dragInitialY = -1;
dragSite->convertCBRec|{0).closure = NULL;
dragSite->dragToRootCBRec{0] .closure = NULL;
dragSite->dragFinishCBRec([0] .closure = NULL;
return 0;

dragMotionHandler

Determine if the pointer has moved beyond the drag threshold while button 1
was being held down.

*/
static void
dtb_drag_buttonl_motion_handler(

widget draglnitiater,
XtPointer clientData,
XEvent *event

int diffx, diffy;
DtbDragSite dragSite = (DtbDragSite)clientData:;
if (!dragInProgress) f{

/t
* If the drag is just starting, set initial button down coords
*/
if (dragInitialX == -1 && draglnitialY == -1) {
dragInitialX =~ event->xmotion.x;
dragInitialY = event->xmotion.y;
}

/*
* Find out how far pointer has moved since button press

102

I= NULL})

*/
diffX = draglnitialX - event->xmotion.x;
diffYy = draglInitialY - event->xmotion.y:

if ((ABS(diffX) >=- DRAG_THRESHOLD) ||
(ABS(diffY) >= DRAG_THRESHOLD))
{
dtb_drag_start(dragSite, event);
dragInitialX = -1;
dragInitialY = -1;

/t
* Starts a drag if Button2 is pressed (if the system is configured for
* Button2 transfers).

*/

static void

dtb_drag_button2_event_handler(

Widget draglnitiator,
XtPointer clientData,
XEvent *event

if ¢ (event->type == ButtonPress)
&& (event->xbutton.button == 2))
{

Boolean enableBtnlTransfer = (Boolean)0;
Boolean mouseButton2IsTransfer = False;
/*

+ We need to determine whether mouse button 2 is adjust or
* transfer. Although the resource value is of type Boolean, it
+ can actually have integer values. This code is from page 52
* of _Common Desktop Environment: Programmer’s Guide_.
*
XtVaGetValues((Widget)XmGetDisplay(dragInitiator),
“enableBtnlTransfer”, &enableBtnlTransfer,
NULL);
mouseButton2IsTransfer = (enableBtnlTransfer != 1);

if (mouseButton2IsTransfer)
{
DtbDragSite dragSite = (DtbDragSite)clientData;

/* A mouse-down event has occurred on Button2, and Button2 is
* configured to be transfer.
*/

dtb_drag_start(dragSite, event);

static int
dtb_drag_start(DtbDragSite dragSite, XEvent *event)
(

DtbDndDragStartInfoRec dragStart;
Arg args(3];
int n = 0;

draglnProgress = True:

dragSite->ccrverilBrec(0] .closure = {XtPointer)dragSite;
dragSite->dragTcRootCBRec(0] .closure = (XtPointer)dragSite;
dragSite->dragf:nisnCBRec[0].closure = (XtPointer)dragSite;

J*
« Call the client ca..pback to update values for drag start
*/
memset{{velde &ar , 0, sizeof(DtbDndDragStartInfoRec));
dragStari.groiocc. .= sSite->protocol;

- dragSite->operations;

dragStart. dragSite->sourcelcon;

dragStarct. sText ~ dragSite->bufferlsText;

dragsStarz. xcotWindow = dragSite->allowDropOnRootWindow;
dragStar:t. -1

if (dragSite->callzack !~ NULL)
{

dragSLte->caL;back(DTS_DND_DRAG_START, &dragStart, NULL,NULL,NULL,NULL);
}

n = 0;
if (dragStart.cursoxr != NCULL}
{

XtSetarg(args[n], DtNsourcelcon, dragStart.curser); ++n;
if ¢ (dragStart.bufferIsText)

&& (dragStart.protocol == DtDND_BUFFER_TRANSFER) }
{

}
if (dragStart.allowDropOnRootWindow)

XtSetArg(args(n)], DtNbufferIsText, True); ++n;

XtSetArg(args(n), DtNdropOnRootCallback, (XtPointer)dragSite->dragToROOLCBReC); ++0;
}
if (DtDndDragStart(dragSite->widget, event,

dragStart.protocol,

dragStart.numltems,

103

dragStart.operations,
dragSite->convertCBRec, dragSite->dragFinishCBRec,
args, n) == NULL)

/* drag start failed =/
dtb_drag_terminate(dragSite);
return -1;

}

return O;

static veid

dtb_drag_convertCB/{
Widget dragContext,
XtPointer clientData,
XtPointer callData

DtbDragSite dragsSite = (DtbDragSite)clientData;
DtDndConvertCallback convert = (DtDndConvertCallback)callData;
DtDndContext *dragData = convert->dragData;

int i=0;

switch (convert->reason)
{
case DtLCR_DND_CONVERT_DATA:
dragSite->callback (DTB_DND_CONVERT, NULL, convert, NULL,NULL, NULL) ;
break;

case DtCR_DND_CONVERT_DELETE:
dragSite->callback (DTB_DND_DELETE, NULL, NULL,NULL, convert, NULL);
break;

static void

dtb_drag_to_rootCB({
widget dragContext,
XtPointer clientData,
XtPointer callbData

DtbDragSite dragSite = (DtbDragSite)clientData;
DtbDndDroppedCnRootWindowInfoRec dropInfo;
memset {&droplnfo, O, sizeof(DtbDndDroppedOnRootWindowInfoRec)):

dropInfo.droppedOnRootWindow = True;
dragSite->callback (DTB_DND_DROPPED_ON_ROOT_WINDOW,
NULL, NULL, &dropInfo, NULL, NULL};

static void

dtb_drag_£inishCB(
Widget dragContext,
XtPointer clientData,
XtPointer callData

DtbDragSite dragSite =~ (DtbDragSite)clientData;
DtDndDragFinishCallback finish = (DtDndDragFinishCallback)callData;

dragSite->callback (DTB_DND_FINISH,NULL,NULL, NULL, NULL,finish);
dtb_drag_terminate((DtbDragSite)clientData);

static void

dtb_drop_animateCB(
Widget dragContext,
XtPointer clientData,
XtPointer callData

DtbDropSite dropSite = (DtbDropSite)clientData;
DtDndDropAnimateCallback animatelnfo -
{DtDndDropAnimateCallback)callData;
dropSite->callback(
dropSite->widget, DTB_DND_ANIMATE, NULL, NULL, animatelnfo);

static void

dtb_drop_transferCB(
widget dragContext,
XtPointer clientData,
XtPointer callData

DtbDropSite dropSite = (DtbDropSitejclientData;
DtDndTransferCallback transferInfo = (DtDndTransferCallback)callData;

dropSite->callback(
dropSite->widget, DTB_DND_RECEIVE_DATA, NULL, transferInfo, NULL):

104

DISTRIBUTION:

1

N Lh =

W = A =

MS 0431
MS 0451
MS 0451
MS 0100

MS 0619
MS 0899
MS 9018
MS 0449

S. G. Varnado

J. H. Moore

M. R. Sjulin

Document Processing for DOE/OSTI,
7613-2

Print Media, 12615

Technical Library, 4414

Central Technical Files, 8523-2

R. A. Sarfaty

105

	Abstract
	Contents
	1. Introduction
	1.1. Current Encryption Technology
	1.2. Virtual Charnel Encryption
	1.3. Supporting Activities

	2. Acronyms
	3. The Encryption Algorithm
	3.1. Criteria for the Algorithm
	3.2. Choice of the Algorithm
	3.3. History of the Data Encryption Standard
	3.4. Principles of Operation
	3.5. Comparison of DES Algorithms
	3.6. Generation of the Intermediate Keys
	3.7. Initial Permutation
	3.8. Round Implementation
	3.9. Final Permutation
	3.10. Modes of DES
	3.11. Modification of the DES algorithm for the VCE project
	3.12. Threads and Processes
	3.13. Separation of State Variables
	3.14. Programming with Threads
	3.15. Termination of a Thread

	4. Application to the SUN Workstation Environment
	4.1. Overview of Sockets
	4.2. Creation of Sockets
	4.3. Binding of Sockets
	4.4. Accepting Connections
	4.s. Communication through the Sockets
	4.6. Closing a Socket Connection

	5. Key Handling
	5.1. Approaches to Key Handling
	5.2. Overview of Kerberos
	5.3. Application of Kerberos to this Project
	5.4. Key Generation
	5.5. Key Distribution

	6. Extension to an ExternaI VME-based Processor
	6.1. Justification
	6.2. Architecture
	6.3. Implementation

	‘7. Areas for Future Work
	7.1. Hardware Implementation
	7.2. UNIX Applications
	7.3. Extension to Personal Computers
	7.4. Extension to Networks Other than Ethernet

	8. Conclusion
	9. References
	10. Appendices
	DISTRIBUTION

