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Abstract

 

The material point method (MPM) is an evolution of the particle in cell method where 
Lagrangian particles or material points are used to discretize the volume of a material. The 
particles carry properties such as mass, velocity, stress, and strain and move through an Eule-
rian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications 
to the material point method are developed that allow the simulation of thin membranes, 
compressible fluids, and their dynamic interactions. A single layer of material points through 
the thickness is used to represent a membrane. The constitutive equation for the membrane is 
applied in the local coordinate system of each material point. Validation problems are pre-
sented and numerical convergence is demonstrated. Fluid simulation is achieved by imple-
menting a constitutive equation for a compressible, viscous, Newtonian fluid and by solution 
of the energy equation. The fluid formulation is validated by simulating a traveling shock 
wave in a compressible fluid. Interactions of the fluid and membrane are handled naturally 
with the method. The fluid and membrane communicate through the Eulerian grid on which 
forces are calculated due to the fluid and membrane stress states. Validation problems include 
simulating a projectile impacting an inflated airbag.

In some impact simulations with the MPM, bodies may tend to “stick” together when 
separating. Several algorithms are proposed and tested that allow bodies to separate from 
each other after impact. In addition, several methods are investigated to determine the local 
coordinate system of a membrane material point without relying upon connectivity data.
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CHAPTER 1. INTRODUCTION

There is an important class of problems involving fluid-structure interaction, as exemplified by 

airbag deployment in automobiles, for which a robust numerical algorithm would be desirable. The 

existing approaches are limited mainly due to the general problem of treating interfaces. Some of the 

interface problems include determining the boundaries of the fluid and structure and applying the 

correct conditions on one from the other. The material point method (MPM) developed for other 

classes of problems appears to hold considerable promise for this class as well. The objective of this 

research was to modify the MPM for fluid-membrane interaction problems and to investigate its 

potential usefulness.

In the MPM, Lagrangian particles or points are used to discretize the volume of the fluid or solid. 

These material points carry with them properties such as mass, velocity, stress, and elastic and plastic 

strain. The points move through an Eulerian mesh on which governing equations are solved and 

derivatives are defined.

The MPM has several advantages. Mesh distortion or entanglement is not a problem since the 

Eulerian mesh is under user control. Thus, highly distorted configurations of material points can be 

simulated whether it is gas flow or deformation of a solid. Since all properties are carried by the 

material points, numerical dissipation through the fixed mesh is small. Interfaces and material 

boundaries are defined by the location of the Lagrangian material points so that boundary reconstruc-

tion and mixed-cell calculations, that may be computationally intensive in a pure Eulerian method, 

are not needed. The MPM has inherent in its formulation an automatic calculation of no-slip contact. 

Thus, for a large class of problems no additional contact calculations are needed. Slip and friction 

can be simulated with the addition of a contact algorithm.

The method is potentially attractive when considering fluid-structure interaction. The motion of 

the fluid material points and solid material points are governed by the same equations. The difference 

between fluid and solid points is only in the evaluation of the respective constitutive equations and 

the additional solution of the energy equation for fluid points. 

Chapter 2 reviews the three basic computational approaches consisting of the Eulerian, 

Lagrangian, and Arbitrary Lagrangian-Eulerian (ALE) methods and provides a summary of current 

literature. It is evident that one of the areas where the proposed method improves upon others is in 
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handling interfaces.

Chapter 3 summarizes and develops the material point method in the finite element framework. 

The conservation equations for momentum, energy, and mass are discussed. Here, the framework is 

laid for subsequent modifications to the method.

In Chapter 4 modifications to the MPM are proposed that enable fluids to be simulated. The 

numerical algorithms for the fluid momentum, constitutive, and energy equations are developed and 

validation problems are provided. Sod’s problem of a shock propagating through a compressible gas 

is solved, and the results compare well with theory. A gas expansion problem is solved, and the results 

are compared with those from another fluid dynamics code.

In Chapter 5, development of the membrane material point that allows simulation of springs, 

strings, and membranes is discussed. A one-way constitutive equation is proposed to allow wrinkles 

in a membrane; that is, a material point may accumulate compressive strain without compressive 

stress. Thus, an approximation to a small wrinkle is achieved without resolving the physical geometry 

of the wrinkle which would require a fine computational grid. Simulations of a spring, string, and 

swinging pendulum demonstrate the method. Sequential mesh refinement for the pendulum problem 

demonstrates convergence.

The proposed method for fluid-structure simulations is presented in Chapter 6. An arbitrarily-

shaped membrane filled with a viscous gas under pressure that is not initially in equilibrium is simu-

lated. Large oscillations in the membrane are eventually damped out, and the membrane assumes a 

circular shape. The gas does not escape from the membrane, and the membrane (hoop) stresses are 

consistent with the final pressure of the gas. Convergence is demonstrated in four consecutive simula-

tions. A simulation of a pre-inflated airbag being penetrated by a probe is also simulated. The deflec-

tion of the probe into the bag agrees well with other simulations and experiment.

Chapter 7 presents various methods for determining the normal vectors to membrane points. The 

normal vectors must be determined to evaluate the membrane constitutive equation. The connectivity 

of material points can be used to find normal vectors, but a more general method is preferred. One 

method is shown to be superior and is successful when used on a model problem.

A stability analysis for linear elastic material points is presented in Chapter 8. A general stability 

analysis of the method is difficult because of the Lagrangian step and remap involved in a single com-
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putational cycle. The complexity of the equations is even greater if material points are allowed to 

cross cell boundaries. Thus, a simplified one-dimensional analysis is presented that indicates the Cou-

rant-Friedrichs-Lewy (CFL) stability condition governs where the length scale is based on the mesh 

and not the material point spacing (Courant et al., 1928). This is no surprise as numerical results have 

consistently shown this to be the case. It should be noted that a stability analysis has not been con-

ducted for the fluid formulation or the fluid-structure interaction formulation. However, numerical 

simulations have indeed shown that the CFL condition also governs the time step.

Section A.1 describes a solution to one of the problems discovered during the course of the 

research. In some simulations where bodies impact there is a nonphysical sticking of the two bodies 

when they should be moving away from one another. A description is given of the contact-release 

algorithm whereby grid velocities from different bodies are compared to determine if they should be 

in contact or not. The algorithm is successfully applied to two impacting bars and to a ball impacting 

a net.

The result of this research is a simple explicit algorithm based on the MPM for simulating mem-

branes, compressible fluids, and fluid-structure interaction. The potential usefulness of the algorithm 

is demonstrated by solving a wide variety of problems. In most cases the results of the demonstration 

problems are compared to theory, experiment, or to another simulation, and the results from the MPM 

consistently agree well with analytical solutions and numerical solutions based on alternative 

approaches.
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CHAPTER 2. COMPUTATIONAL ASPECTS OF FLUID-STRUCTURE INTERACTION

Fluid-structure interaction is a broad class of problems where the combined states of a fluid and a 

solid need to be determined simultaneously. These problems are especially important when the struc-

tural response is non-trivial (e.g., not rigid) and, in turn, has an effect on the fluid. Some examples are 

airflow around high-speed reentry vehicles, airflow around parachutes, fluid sloshing in a storage 

tank, and airflow in an inflating airbag.

When computational power was limited, the fluid parts of the fluid-structure problem were often 

solved with major simplifying assumptions for the structural part of the problem. Similarly, if the 

structural aspect of the problem was considered to be dominant, simplifications were made for the 

fluid behavior. However, today computers and methods have advanced to the point where the com-

bined problem may be solved, although there is still much room for improvement.

If the structure part of the fluid-structure problem is a solid, the constitutive equation depends on 

deformation which is usually small. The fluid, which may undergo large deformations, has a consti-

tutive equation that involves deformation rate and/or a constituent model such as incompressibility. 

The boundary between the fluid and structure is where the complex interaction phenomena occur.

For an inviscid fluid the boundary condition on the fluid at the fluid-structure interface should be 

one of free slip. For viscous fluids the condition may be no slip at the interface. However, the normal 

component of traction in the fluid should always be the same as that in the structure.

For numerical solutions of fluid-structure problems, an additional complication occurs when the 

solid has one small dimension, which leads to a time step restriction if the structure is treated as a 

continuum or leads to the need for plate or shell theories and corresponding difference or finite ele-

ment schemes. For a fluid-membrane problem there are further problems. Since the structure has no 

bending stiffness the deformations can be large even though the strains may be small.

2.1 Introduction to Eulerian, Lagrangian, and ALE Formulations

The Eulerian method uses a mesh fixed in space where the nodes represent the discretized spatial 

variable. On the other hand, Lagrangian methods use the location of material points at a previous 

step as the spatial variable. Total Lagrangian methods use positions at a reference time, and numeri-

cal schemes based on this method also use a fixed mesh. However, updated Lagrangian methods are 

more commonly used where the location of a material point at the end of the last time step is repre-
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sented by nodes of a mesh.

In Eulerian formulations the governing equations are solved on the fixed grid, and material moves 

through the mesh. In Lagrangian methods, the computational grid or mesh is attached to the material 

being simulated. The Lagrangian mesh moves and distorts with the material.

Figure 1 illustrates these concepts with a simple example of a material loaded with pressure and 

constrained on the right and bottom sides. In the Eulerian method (Fig. 1(a)) material is represented 

by quantities defined at the grid nodes, such as mass. At some later time, t1, in the simulation, the 

mass at the grid nodes has changed (convected) due to material deformation as governed by external 

and internal forces, but the grid remains fixed in space. The changes in the sizes of the circles indicate 

the change in the amount of mass at the grid nodes. An attempt to describe the mass distribution is 

made by showing grid masses associated with material boundaries designated with dashed lines. In 

Fig. 1(b), which shows the Lagrangian approach, the material is represented by the grid which distorts 

with the material. 

Figure 1. Eulerian (a) and Lagrangian (b) Concepts

Figure 1 shows one disadvantage of the Eulerian method, which is the lack of definition of mate-

t=0

t=t1

(a) (b)

t=0

t=t1
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rial boundaries. If a material boundary exists in one cell, then the mass at one grid node may be large, 

while another may be small, and the actual material boundary is somewhere between the two nodes.

Another disadvantage of Eulerian methods has been the lack of ability to resolve material inter-

faces when two or more materials are in the same computational cell. Also, because the grid is fixed, 

history-dependent or path-dependent materials (e.g., viscoelastic fluids or plastic solids) have been 

difficult to simulate.

In an Eulerian formulation, because the grid is fixed, a nonlinear convective acceleration term 

must be included in the governing equations. This nonlinear term is generally expensive to handle 

from a computational perspective. To overcome this limitation some approaches split the Eulerian cal-

culation into separate Lagrangian and Eulerian (remap) steps.

The great advantage of Eulerian methods is the ability to simulate highly distorted fluid flow and 

large deformations. Eulerian methods are not limited by mesh deformation. Also, free surfaces can be 

created in an Eulerian method “automatically” whereas this is more difficult in a Lagrangian code.

Lagrangian methods, however, do not have a nonlinear convective term as a part of the governing 

equations. Thus, the computations are less complicated in general until the mesh gets so distorted that 

remeshing is required. Lagrangian methods do not require special procedures to resolve material 

interfaces, and history-dependent materials are simple to model.

Usually special features have to be implemented into both Lagrangian and Eulerian codes for sim-

ulating impact between materials.

A recent application of an Eulerian method was the simulation of impact of the Shoemaker-Levy 

Comet on Jupiter with the code CTH (Deitz, 1995; Hertel, 1993). This code is used to simulate high 

velocity impacts as illustrated in Fig. 2(a) where a copper ball penetrates a steel plate at a velocity of 

14,760 ft/s (4,500 m/s). Note the numerous regions involving material failure with resulting free sur-

faces.

An example of a Lagrangian calculation done with PRONTO3D (Taylor, 1989) is shown in Fig. 

2(b) where a shipping container impacts a rigid target at 200 ft/s (76 m/s) (Slavin, 1994). Note the dis-

torted elements near the impact point at the bottom of the container. In this simulation, several contact 

surfaces are defined to simulate sliding and contact between materials (Heinstein et al., 1993).

The arbitrary Lagrangian-Eulerian (ALE) method is formulated so that the mesh can either move 
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(a) ball penetrating a plate,

(b) shipping
container
impacting
a rigid surface

solid line is radiograph of 
experiment (computational
grid not shown)

Figure 2. (a) An Eulerian and (b) A Lagrangian Impact Simulation
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with the material, remain fixed in space, or move at an arbitrary velocity. The mesh can be kept regu-

lar during the calculation if the proper mesh velocity is specified. Also, the mesh may follow or be 

adapted to certain discontinuities (e.g., a shock) to improve accuracy or resolution. Of course, one of 

the “tricks” of the method is to specify the “right” mesh velocity. Figure 3 illustrates an ALE versus a 

Lagrangian calculation of the necking that occurs in a bar being pulled. Notice that the mesh is more 

regular and, presumably, the results are more accurate in the highly deformed region for the ALE cal-

culation (Huerta, 1994). 

2.2 Fluid-Structure Simulation with Euler-Lagrange Coupling

One of the most obvious ways to solve a problem that involves both fluid and solid materials is to 

couple two existing codes - one for fluid-only simulation and one for solid-only simulation. This 

method may take advantage of advanced features that exist in each of the separate codes.

McMaster (1984) describes coupling between fluid and solid dynamics codes for simulation of 

Figure 3. ALE and Lagrangian Calculation of a Bar (Huerta, 1994)
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fluid-structure interaction. In one application the coupling is such that the structure applies a position 

and velocity boundary condition to the fluid, and the fluid applies a pressure boundary condition to 

the structure. This is typical of most coupling methods. The algorithm iterates until the boundary con-

ditions and incompressibility condition are satisfied. That is, the fluid pressure field and position of 

the structure are corrected until the normal velocities of the fluid and structure are equal. Prior to the 

iteration, the intersection of the structure with the Eulerian cells must be defined.

Figure 4 illustrates the coupling concept. On the left, velocity compatibility is symbolically repre-

sented showing the velocity vectors of the Lagrangian shell and the Euler grid nodes. The normal 

velocities of the fluid and solid must be equal to prevent penetration of the fluid through the solid. 

Thus, the velocity of the shell nodes must be mapped to the Euler grid nodes in a way that accurately 

represents the no penetration condition. The force compatibility part of Fig. 4 shows the forces 

applied on the shell by the fluid. A value of pressure at appropriate Euler grid nodes is used along with 

the information of where the shell intersects the Euler grid to determine a magnitude and direction of 

force that should be applied to the shell. Pressures that may be used in this calculation are listed P1-

P6.

As a model problem to illustrate the coupling, McMaster provided the simulation of a cylinder 

Eulerian grid Lagrangian shell

velocity compatibility

shell node velocity
fluid node velocity

fluid

vacuum

fluid

vacuum

force compatibility

P1

P2

P3 P4

P5 P6

force vector

Figure 4. Euler-Lagrange Coupling Concept
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subjected to mode 2 vibration while submerged in water. 

In a different application, McMaster describes the coupling of a compressible explicit Eulerian 

fluids code with DYNA. The coupling method is similar to that described above. It is noted that spe-

cial provisions are implemented to handle fluid advection when the structure is present in a cell. Also, 

massless marker particles can be used to monitor the flow field. A simulation of a sphere impacting 

water shows good agreement with experimental data.

A similar coupling is described by Gross (1977) between two explicit codes. Several steps are 

taken in the structural code for each step in the fluid code. This is called sub-cycling. Cylinders 

impacting water are simulated.

MSC/DYTRAN is an explicit finite element program (Buijk, 1991, 1993; Florie, 1991) that has 

been used to simulate gas and material dynamics of unfolding automobile airbags. The gas dynamics 

portion of the simulation can be turned on or off. However, when the gas flow is simulated, the inter-

section of a membrane (airbag material) element and the Euler element is calculated, and the pressure 

within the Euler element is distributed among the nodes of the membrane elements as forces. Buijk 

terms this treatment as a general Euler-Lagrange coupling because of the unlimited relative motion of 

the Lagrangian membrane elements to the Eulerian elements. This is in contrast to ALE (Arbitrary 

Lagrange-Euler) coupling where the two elements are connected and the motion of the Lagrangian 

elements is limited. Buijk reports that most of the cpu time for a simulation including gas dynamics is 

used to determine the intersection of the Lagrangian membrane elements and the Eulerian elements. 

This is essentially a contact algorithm to determine contact between the gas and the membrane.

A simulation of the impact of an unfolding airbag with a plate shows favorable agreement with 

experiment. By running simulations with and without the gas dynamics, Buijk concluded that the 

momentum of the gas plays a significant role prior to full inflation of the bag. That is, an out-of-posi-

tion occupant who contacts the inflating airbag will have significant additional acceleration due to the 

gas momentum.

The PISCES 2DELK (Euler-Lagrange Koupling) code provides coupling of a Lagrangian shell 

discretization with an Euler discretization for the fluid (gas) flow (Nieboer, 1990; de Coo, 1989; 

Prasad, 1989). This code was the predecessor of the MSC/DYTRAN code mentioned above, and thus, 

uses similar methods.
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Nieboer (1990) describes PISCES simulations where an axisymmetric model was used to show 

the effect of a rigid body impacting a sealed airbag. The model is similar to that shown in Fig. 5. After 

the impactor contacts the airbag, the gas flow within the airbag is calculated using the Euler grid. The 

airbag is modeled using linear elastic membrane elements. Good agreement is observed between the 

simulation results and the experiments.

Figure 5. PISCES 2DELK Axisymmetric Model for Fluid-Structure Interaction Simulation 
(Nieboer 1990)

Lewis (1994) describes the coupling between NIKE3D, a solid dynamics code, with an ALE fluid 

dynamics code. The motivation for this approach is to exploit the advanced features (e.g., constitutive 

models) that may reside in each separate code. The scheme is iterative and implicit, and the time step 

in the fluid and solid domain is the same. A model problem was solved where an elastic cylinder is 

submerged in an inviscid, incompressible fluid. The fluid extends to a prescribed radial boundary. An 

axisymmetric pressure pulse on the inside of the cylinder sets it into the fundamental breathing mode 

of vibration. The predicted vibrational frequency compares well with the theoretical frequency. Other 

problems involving an underwater explosion and bubble dynamics show reasonable agreement with 

experimental data.

Ghattas (1994) describes a fluid-structure interaction method that uses an Eulerian fluid descrip-

tion and a Lagrangian structure description. The method was formulated specifically for fluid-struc-

ture interaction simulations and is not a coupling of two “separate” programs. A variational 

formulation is used, and a continuous traction and velocity field is required at the fluid-structure inter-

face. The resulting set of nonlinear equations are solved with a Newton-like method. Ghattas illus-

Euler Grid
(17x27)

impactor

airbag

support

spring
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trates the method by calculating two-dimensional deformations in elastic bodies due to a surrounding 

flow field.

Bendiksen (1994) indicates aerodynamic stability calculations can be affected by the errors accu-

mulated when fluid-structure interaction is simulated by a “separate” sequential fluid and structure 

calculations (integrations). Bendiksen treats the equations for the fluid and structure as one problem 

by formulating the governing equations for both the fluid and structure in integral conservation-law 

form based on the same Eulerian-Lagrangian description. Several flutter problems are solved.

2.3 ALE Methods for Fluid-Structure Interaction

One of the first papers to describe the ALE method was by Hirt (1974). Hirt’s formulation 

involved a finite difference framework with an implicit time integration algorithm. Applications were 

for fluid dynamics simulations at all flow speeds. The computations to advance the solution one time 

step are separated into three phases. The first is an explicit Lagrangian calculation, with the exception 

that the mesh vertices do not move. The second is an iterative phase that adjusts the pressure gradient 

forces to the advanced time level. This optional phase eliminates the Courant stability condition. The 

mesh vertices are moved to their new Lagrangian positions after this second phase. The third phase, 

also optional, moves the mesh to a new position. In the Lagrangian phase, if the mesh has some veloc-

ity other than the one obtained by moving the mesh to its new position, convective fluxes must be cal-

culated. This is often called rezoning. Hirt notes that the separation of the calculations into 

Lagrangian and convection phases originated in the Particle-in-Cell method. This is also called an 

Operator Split method and is described by Benson (1992, p. 325).

Donea (1977) describes the use of the finite element method for solving coupled hydrodynamics-

structures problems. Donea’s method is conceptually similar to ALE methods that were originally 

based on finite differences. Here, the finite elements may move with the material, remain fixed, or 

move at an arbitrary velocity. The motivation for this approach is that it allows for a simple computer 

program architecture, permits straightforward treatment of fluid-solid interfaces, and enables the use 

of arbitrarily shaped elements for modeling both the fluid and solid. One fluid-structure problem is 

solved with both the Lagrangian and Eulerian methods. In the Eulerian method, the elements that are 

adjacent to the structure are prescribed to stay in contact with the structural elements, so that these 

elements are actually Lagrangian. The results for the two methods are nearly identical.
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A more recent paper by Donea (1983) illustrates the use of the ALE finite element method in sim-

ulating a contained explosive detonation in water. Similar to that described above, fluid elements adja-

cent to structural elements are pure Lagrangian and stay attached to the structural elements. Donea 

gives a detailed description of how the accelerations are determined for nodes shared by fluid and 

structural elements that result in common normal velocities.

There are many other examples of ALE applications in the literature. Liu and Ma (1981) and 

Huerta (1990) use an ALE finite element method to simulate fluid sloshing in a tank. Nomura (1994) 

also uses an ALE finite element method to investigate flow-induced vibrations of a cylinder.

2.4 Eulerian Methods for Fluid-Structure Interaction

Eulerian methods have been and still are popular for fluid dynamics simulations due to their abil-

ity to handle large distortions. There are many papers in the literature on Eulerian methods for fluid 

dynamics, and many theoretical and practical problems have been solved with this method.

There are some problems traditionally associated with Eulerian methods. These problems are: (i) 

handling multiple materials in a cell, (ii) handling history-dependent materials, (iii) tracking material 

interfaces, and (iv) handling impact or contact between materials. However, these problems are being 

overcome with sophisticated advection and interface tracking algorithms. In Benson’s (1992) survey, 

he states that most of the interface tracking algorithms use marker particles at surfaces or derive the 

surface definitions from the volume fractions of the different materials.

A state-of-the-art code called CTH is a two-step, second-order accurate Eulerian solution algo-

rithm used to solve multi-material problems involving large deformations and/or strong shocks (Her-

tel, 1993). Material strength is included in the solution. Material contact is not resolved or simulated 

in a way that is possible with an ALE or Lagrangian code. The information available in a computa-

tional cell includes the amount of each material in the cell, so it is difficult to resolve boundaries and 

enforce contact conditions. History-dependent materials (e.g., plasticity) can be modeled. History 

variables are advected with a conservative, second-order accurate van Leer (1977) scheme. 

No recent papers are found in the literature on using pure Eulerian methods for fluid-structure 

interaction where the interface of the fluid and structure needs to be resolved as a part of the solution.
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2.5 Fluid-Membrane Interaction

A subset of fluid-structure problems is that of fluid-membrane interaction. Some practical exam-

ples involving fluid-membrane interaction are: (i) inflation of airbags, (ii) sailboat sails, (iii) flexible 

fabric roofs for buildings, (iv) moving automobile belts, (v) textiles (fiber and fabric production), (vi) 

paper manufacturing, (vii) VCR and other moving tape media, (viii) bands (such as bandsaws and 

automatic transmissions), and (ix) pressure transducers.

Niemi et al. (1987) use the finite element method to strongly couple gas and membrane dynamics 

to study natural frequencies of a membrane moving in air. In this case, the physical situation being 

modeled is that of paper moving between two rolls (Fig. 6a). Standard finite element techniques are 

used to obtain discrete equations of motion for the fluid and the membrane. The coupling is achieved 

by enforcing equality of normal (to the membrane) accelerations for “wet” nodes on the membrane. 

The resulting set of equations is used to calculate frequencies of vibration.

A variety of large-motion, fluid-membrane problems are solved by Han et al. (1987) using an iter-

ative method. The fluid is assumed to be inviscid and irrotational, and is simulated with a boundary 

element method. The membrane is modeled using shell finite elements. The membrane and fluid ele-

ments are implemented in three-dimensional space. An analysis begins with a given membrane shape 

as a boundary to the fluid. The flow analysis is performed with the boundary element method. With 

the new fluid loads known, the finite element solution determines the position of the membrane. If the 

new membrane position is within a specified tolerance of the old profile the calculation continues to 

the next time step. If not, then the boundary element solution is called again given the new membrane 

position. Iterations continue until convergence is achieved. Good results are obtained for a preten-

sioned, pressure-loaded square membrane and a pressurized cylindrical membrane in crossflow (Fig. 

6b).

Yamamoto et al. (1992) simulate steady two-dimensional flow past a flexible membrane using 

finite difference techniques (Fig. 6c). The fluid is governed by Navier-Stokes equations in terms of a 

vorticity-stream function. Coupling of the fluid with the membrane is done by enforcing zero normal 

fluid velocity at the surface of the membrane and by applying forces to the membrane due to the fluid 

pressure.

Smith (1995) has simulated incompressible, unsteady viscous flow over a flexible, linear elastic 

membrane wing with an implicit finite difference method (Fig. 6d). The fluid imparts a normal and 
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shear stress to the membrane. The boundary conditions at the membrane surface require the fluid 

velocity to equal the membrane velocity. An iterative procedure is used to solve the coupled problem 

until a predetermined convergence criterion is satisfied.

Other papers in the literature use methods similar to those described above to simulate cylindrical 

pneumatic structures subjected to wind loading (Uemura, 1971), blood flow (Rast, 1994; Fig. 6e), and 

membrane sensors (Lerch, 1991).

Figure 6. Various Fluid-Membrane Interaction Simulations In The Literature

2.6 Particle-In-Cell Methods

Harlow (1964) reported that the Particle-in-Cell (PIC) method was developed in 1955 at Los Ala-

mos National Laboratory for the solution of complicated fluid dynamics problems. It is a combination 

of a Lagrangian and an Eulerian method that naturally handles no-slip interfaces between materials 

and large slippage and distortions. The details of the code are discussed by Amsden (1966).
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In general, the idea of the PIC method is to solve the governing equation on an Eulerian grid 

where derivatives can be conveniently defined. Information is transferred from the grid to Lagrangian 

material particles via mapping functions. The material particles move or convect and carry with them 

certain properties. Variations on the method can occur by changing the mapping method. That is, the 

mapping functions themselves may be changed or the method of mapping may be changed. In Har-

low’s classical version of PIC, velocities were mapped from the grid to the particle. In a less dissipa-

tive version called FLIP (FLuid-Implicit-Particle) (Brackbill, et al. 1986, 1988), material particle 

velocities are only updated from the grid solution. 

An outline of a FLIP-type algorithm is as follows:

1.) Solve the governing equation to obtain acceleration at the grid nodes.

2.) Integrate the acceleration to obtain the velocity on the grid.

3.) Map the acceleration to the particles to update the velocity.

4.) Move the particles based on the velocity determined in step 2.

5.) Map particle quantities to the grid in preparation for the solution at the next time step,

6.) Determine velocity gradient, strains, and stresses at nodes (or vertices),

7.) Determine grid forces from stresses.

Sulsky and Brackbill (1991) use a method similar to Peskin’s (1977), but based on the PIC 

method, to simulate suspended bodies moving in a fluid. A force density term, F(x,t), is added to 

equations for Stokes’ flow for an incompressible fluid

(2.1)

where the gradient  and Laplacian  are taken with respect to current position, x is current posi-

tion, u is velocity, p is pressure, and the force, F, is determined from the sum of internal and external 

forces. The external forces may be those due to gravity or magnetic fields. The internal forces only 

exist in the suspended body and are due to the strains within the body. The internal forces are deter-

mined from

p∇– µ u∆ F+ + 0=

∇ u⋅ 0=

∇ ∆
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(2.2)

where E is a material modulus that is a function of position because it is zero in the fluid regions, and 

d is the displacement field. Peskin’s method has also been used for flow where the acceleration terms 

are significant (Peskin, 1995).

The basic ideas from the PIC or FLIP methods have been adapted recently to solid dynamics by 

changing step (6) of the FLIP-type algorithm. These field variables are evaluated at material points, 

and the resulting approach is applied to impact problems with elastic and elastic-plastic constitutive 

equations (Sulsky et al., 1993; Sulsky et al., 1994).

2.7 Immersed Boundary Methods

There have been several papers published on simulations where a moving boundary or interface is 

immersed in a fluid or other medium. The common thread to these methods is that they attempt to 

describe the evolution of the entire system with a common governing equation.

Peskin (1977) studied blood flow through the heart. In his development he attempted to make as 

little distinction as possible between the fluid and nonfluid (heart muscle) regions. Peskin solved the 

governing equations on an Eulerian grid. The governing Navier-Stokes equations are modified with a 

force density term, F(x,t), which is nonzero only for the nonfluid regions

(2.3)

where  is density, u is velocity, p is pressure, and  is viscosity.

The heart valves are treated as Lagrangian bars that can only support a tensile or compressive 

force, and that move within the Eulerian grid. The force in a bar (representing a valve) is a function of 

the relative displacement of its endpoints. The bars representing the heart muscle are a pair of parallel 

springs, one in series with an active “contractile element” that causes the springs (muscle) to contract 

in a prescribed manner. It is the forces in these bars that are interpolated to the Eulerian grid to define 

F(x,t). A more recent paper (Peskin and McQueen, 1995) describes three-dimensional simulations 

using the immersed boundary method.

f int x t,( ) ∇ E x t,( ) d∇ d∇( )T
+( )⋅=

ρ
t∂

∂u u u∇⋅+ 
  p∇– η u∆ F+ +=

ρ η
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2.8 Stability of Fluid-Structure Interaction Formulations

Some information was presented in the above sections regarding stability and time step limits. 

However, it is felt that this topic warrants its own section as there are several papers where stability is 

the main subject.

In general, explicit integration schemes lead to a condition on the time step for the calculations to 

be stable, a situation called conditional stability. In contrast, some implicit schemes are uncondition-

ally stable and the time step can be larger than that of an explicit calculation. The time step for the 

implicit calculation is determined by the accuracy needed in the solution. Implicit schemes, however, 

require a system of equations to be solved simultaneously. In certain problems, these equations may 

be nonlinear, which may increase the solution time. The hope is that the increase in computation time 

for each step on an implicit scheme can be offset by using significantly larger time steps than allowed 

by stability constraints of an explicit scheme.

Stability of finite difference and finite element schemes for fluid or solid simulations are well doc-

umented in the literature. Some new stability issues may arise when fluid and solid simulations are 

combined.

Tu and Peskin (1992) provide a numerical investigation of stability with their immersed boundary 

method. The immersed boundary method calculates motion of a Lagrangian structure embedded in a 

fluid whose governing equations (Stokes flow is assumed) are solved on a regular stationary grid. The 

effect of the structure on the fluid is determined by interpolating forces from the structure to the grid. 

The model problem used to examine stability is an elastic closed boundary (like a cylinder) immersed 

in an incompressible fluid. The closed boundary is perturbed into the form of an ellipse, and then the 

calculations demonstrate the boundary relaxing into a circular shape.

Tu and Peskin use three methods to calculate the force from the immersed, closed boundary. They 

are: explicit, approximate implicit, and implicit methods. The approximate implicit method estimates 

the boundary configuration at the end of the time step to calculate the boundary forces. This has been 

the method used in practice. The stability results are as expected. The most stable method is implicit, 

followed by approximate implicit, and, finally, explicit. The computational time per time step is 

ordered in reverse, which is also expected. It is stated that the implicit method is probably too expen-

sive for practical applications.
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The work of Neishlos et al. (1981, 1983) on explicit finite difference schemes for fluid-structure 

simulations shows that the time step limit for the coupled problem may be more severe than that for 

either the fluid or solid alone for some schemes. It is shown that the reduced limit can be avoided by 

varying the scheme of differencing the governing equations.

Jones (1981) shows a similar result with Euler-Lagrange fluid-structure coupling. In a one-dimen-

sional spring-piston-fluid coupled problem he indicates that certain “injudicious choices” of the cou-

pling formulation and discretization parameters can make an unconditionally stable Implicit 

Continuous-fluid Eulerian (ICE) algorithm unstable. He shows this analytically by deriving a damp-

ing parameter, D, which has as one of its variables . For  the current rather than the advanced 

structural velocity values are used to update the position of the structure, which is called weak cou-

pling. In the expression for D, this is destabilizing. For strong coupling , where advanced 

velocities are used to move the structure, and the effect is stabilizing. Depending on particular param-

eters of the problem, such as mass of the piston, spring constant, tube length, coarseness of the dis-

cretization, etc., it is possible for D to be negative, and thus result in an unstable algorithm.

Belytschko (1980) describes various methods for integrating the equations for fluid-structure 

interaction. The following schemes for integrating the equations are discussed: (i) integrating both the 

solid and fluid equations explicitly with the same and different time steps, (ii) integrating the solid 

implicitly and fluid explicitly, and (iii) integrating both implicitly. The motivation for the mixed meth-

ods is that a single time step for a fluid-structure simulation done purely explicitly may result in 

unreasonable run times if the solid is stiff compared to the fluid. Also, purely implicit methods may 

require too much core memory and too many iterations due to large fluid meshes. A detailed compar-

ison is not made between the methods, but several example problems are solved. The conclusion is 

that the solution method should be picked according to the specific problem.

2.9 Summary and Opportunities for Improvement in Current Approaches

One of the major areas that can be improved upon is the handling of interfaces. Interfaces are the 

contact points/surfaces between fluid and solids as well as between two or more solids or several flu-

ids. Pure Eulerian methods in general have difficulty accurately simulating boundaries, interfaces, and 

contact. Lagrangian codes must employ sophisticated contact algorithms to detect and compensate for 

ψ ψ 0>

ψ 0=



Chapter 2 - Computational Aspects of Fluid-Structure Interaction

21

interfaces.

Most of the work in fluid-structure simulations uses coupled codes, including ALE schemes. With 

coupling, there may be two separate codes that are coupled or a single code that uses an Eulerian fluid 

description and a Lagrangian solid description. Generally, in ALE simulations the fluid description 

tends more towards Eulerian and the solid towards Lagrangian. ALE codes still have to employ a gen-

eral-purpose contact algorithm to handle generation of new contact surfaces. In several published 

ALE simulations, the solid mesh is initially attached to the Eulerian fluid mesh.

In coupled codes, computational effort must be expended to determine the intersection of the 

Lagrangian solid with the Eulerian grid. If the “right” mesh velocity is applied to Eulerian fluid ele-

ments in an ALE simulation, some of this effort may be avoided. However, determining the optimum 

mesh velocity in general is not trivial. In addition, interface equations that prescribe continuity of nor-

mal velocity may have to be solved (ref Fig. 4).

The material point method offers potential advantages if applied to fluid-structure interaction 

problems. One of these advantages stems from the fact that the material point method uses both an 

Eulerian and Lagrangian mesh description. There is better resolution of material boundaries and 

mixed cells and a natural way of handling history-dependent materials as compared to purely Eulerian 

methods. Highly distorted flow can be simulated without causing mesh distortion, which is a common 

problem in updated Lagrangian methods. A no slip contact algorithm is automatic to the method. That 

is, it comes at no additional computational expense.

The material point method can use a common momentum equation for both the compressible fluid 

and the solid. The fluid is to be treated no differently than the solid except in the constitutive routine 

to determine stress as a function of strain rate. Thus, the enforcement of potentially nonlinear bound-

ary conditions between the fluid and solid is not an issue. The method will automatically enforce con-

tinuity of normal velocities between the fluid and the solid.

The material point method developed for history-dependent materials is described in Chapter 3. 

Modifications to the MPM to handle compressible, inviscid or viscous fluids and membranes are dis-

cussed in subsequent chapters.
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The MPM evolved from a particle-in-cell (PIC) method called FLIP (FLuid-Implicit-Particle) 

(Brackbill and Ruppel, 1986), which itself is an improved version of Harlow’s (1964) original PIC 

method. Several references were made in Section 2.6 to descriptions of the PIC, FLIP, and MPM 

methods. In the extension of FLIP to history-dependent materials, strain and stress are now defined 

on the material points as opposed to the cell centers. This is the significant difference between FLIP 

and the MPM.

To begin the description of the MPM, we start with the equation for conservation of linear 

momentum given by 

(3.1)

The specific stress, , is defined as  and is symmetric. The constitutive equation is given, for 

the moment, in rate form by

(3.2)

where the strain rate is the symmetric part of the velocity gradient

(3.3)

The gradient operator  is with respect to the current configuration. The specific body force is 

 

b,

 

 

 

and the acceleration is 

 

a

 

. The strain rate, , is defined to be the symmetric part of the gradient of 

velocity, 

 

v

 

, while  is the tangent modulus tensor relating specific stress rate and strain rate.

To obtain weak forms of the governing equations, suppose equations 3.1 through 3.3 are multi-

plied by the weighting functions, 

 

W

 

, 

 

w

 

, and , in turn, and an integration over the current con-

figuration, , is performed. After the use of the divergence theorem for the first equation (3.1), the 

resulting set of equations is

(3.4)

(3.5)
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(3.6)

Here,  denotes the prescribed part of the traction on the surface . Differentials of volume and 

surface are denoted by  and , respectively.

Now approximate the variables in equations 3.4, 3.5, and 3.6 over a discrete domain using shape 

or basis functions. The objective is to obtain a set of equations that can be solved on a discrete domain 

to approximate the solution to the continuous form of the governing equations (3.1 through 3.3).

First, consider a mesh of material points with  denoting a subdomain of Lagrangian material 

points. Associated with each subdomain is a material point  in the reference configuration and a 

material point  in the current configuration. At t=0 the configurations are  as shown in Fig. 7. 

The choice of precisely where the material point is located in a particular subdomain is arbitrary.

At a later time the original configurations deform into configurations . The deformation is arbi-

trary, and the material points are tracked with their reference vectors . The boundary material 

points and interior points are treated the same. 

Over the material points, define piecewise constant basis functions  such that  for all 

material points on ; otherwise . It follows that . Suppose these basis func-

tions are used to represent the functions 

 

w

 

, ,  and  in the weak form of equations 3.5 and 3.6. 

For example,

(3.7)

where  and  are the time-dependent stress and strain variables which are taken to be constant 

over .

Dirac delta functions are used as basis functions for the mass density:

(3.8)

where M

 

p

 

 is the mass of particle 

 

p

 

.

Then, with the argument that the generalized variables  and  are arbitrary, equations 3.5 and 3.6 

ρw*
: εεεε̇ 1

2
--- v∇( ) v∇( )T

+[ ]–
 
 
 

dv
Ω
∫ 0=

ττττ ∂Ω

dv ds

Ωp

Xp
o

Xp Ωp
o

Ωp

Xp

Up Up 1=

Ωp Up 0= Ui X j( ) δij=

w* σσσσs εεεε

σσσσs σσσσp
s
Up

p 1=

N

∑= εεεε εεεεpUp
p 1=

N

∑=

σσσσp
s εεεεp

Ωp

ρ Mpδ X Xp–[ ]
p 1=

N

∑=

wp wp
*



Chapter 3 - The Material Point Method

25

become:

(3.9)

and

(3.10)

in which the subscript, , in the expression for the strain rate indicates that the function in the square 

brackets is evaluated at the material point. In other words, the stress and strain rate are evaluated at 

those material points which will be tracked as part of the computational procedure. This is the princi-

pal difference between the MPM and other approaches such as the finite element method and the orig-

inal FLIP algorithm. In many finite element codes, stress and strain rates are determined at element 

centers or at Gauss points. The original FLIP algorithm for fluids applies constitutive equations ele-

Figure 7. Mesh of Lagrangian Material Points and Their Subdomains
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ment-by-element to compute the stress at element centers. A similar approach has also been used for 

linear elastic solids where there is no history dependence in the constitutive equations. By contrast, 

the MPM makes greater use of the material points to maintain current values of history variables and 

material parameters; and constitutive equations are evaluated at material points rather than at element 

centers. 

Now, define a mesh over the spatial computational domain, and let x define position in this 

domain. The grid nodes in the computational domain are labeled xi. This spatial mesh can be thought 

of as conventional finite elements and will be used in addition to the mesh of material points. Figure 8 

illustrates a mesh of material points overlaid on the Eulerian computational mesh with spatial nodes 

xi. Suppose these elements are used to form nodal basis functions  associated with spatial 

Figure 8. Mesh of Lagrangian Material Points Overlaid on the Computational Mesh
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points  with i=1, ..., n. The remaining variables W, v and a must be continuous at least in the limit as 

the spatial mesh size goes to zero. The conventional finite element representations for the continuous 

variables are:

(3.11)

(3.12)

(3.13)

in which ,  and  denote the nodal vectors for the respective functions. Introduce the mapping 

matrix, [S], whose components, , are values of the nodal basis functions at the current locations of 

the material points. Also define the set of gradient vectors, , which represent the gradient of each 

basis function at the current locations of the material points. The components of these matrices are

(3.14)

Consider the weak form of the equation of motion given as equation 3.4. With the use of equations 

3.8, and 3.11 through 3.14, the first and second terms in the equation become:

(3.15)

(3.16)

The term  denotes a component of the mass matrix associated with the computational grid, and 

 is the internal force vector associated with node i. Nodal vectors for the body force field, , and 

the surface traction are defined as a natural consequence of the volume and surface integrals involving 

applied forces:
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(3.17)

(3.18)

Alternatively, since the body force and surface traction are explicitly given, the conventional finite 

element form can be used in which these functions are evaluated at the grid nodes. The external force 

vector, , is obtained from the body force and surface traction in a consistent manner. The compo-

nents of  are arbitrary except for those points where components of the displacement are pre-

scribed. With the understanding that the constraints on the displacement field are invoked, the weak 

form of the equation of motion yields

(3.19)

The set of equations given by 3.9, 3.10 and 3.19 are similar in form to those obtained by conven-

tional finite element schemes. For example, the internal and external force vectors associated with 

nodes are developed by sweeping over elements at each time step. The components of physical vec-

tors are arranged sequentially to form a vector of scalar components. The constitutive equation sub-

routines are also traditional. 

Equation 3.19 is to be solved at discrete times, tk. After the acceleration is obtained at time level k, 

the grid node velocity is advanced over the time interval  using this acceleration. A 

simple explicit integration gives

(3.20)

The tilde on  indicates that these are temporary grid velocities that will be replaced later by 

mapping from material points.

After equation 3.19 is solved for grid acceleration, the material point velocities, positions, strains, 

and stresses are updated to reflect this new solution. This part of the solution procedure assumes an 

updated Lagrangian frame. That is, the grid has moved in this time increment  with each node hav-

ing a velocity as defined in equation 3.20. Figure 9 illustrates this concept. 
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The new material point positions, determined by moving them in the computed velocity field 

given by equation 3.12, are

(3.21)

and since the grid uses isoparametric elements the shape function values at the new time level are the 

same as the previous time level. The velocity field in which the material points move is single valued 

so that unphysical interpenetration of two materials does not occur.

The material point velocities are also updated according to

(3.22)

The strain increment at material points is updated using the new grid velocity values and discrete gra-

dient as

(3.23)

where  are defined in equation 3.14. With the updated material point velocities now considered 

known, “convected” nodal quantities  (note lack of tilde) are obtained using a least squares 

weighting of material point velocities
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Figure 9. Material Point Convection
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(3.24)

Next we shall consider the conservation of mass. The mass of each material point is constant in 

the MPM. Thus, conservation of mass is satisfied if the mapping of mass from the material points to 

the grid is conservative. The grid mass is given in terms of the material point mass (from equation 

3.15) as

(3.25)

It can be shown in general that the sum of 

all entries of  equals the sum of Mp, which 

is due to the sum over grid points of the shape 

functions being unity. For example, consider a 

single material point in a cell as shown in Fig. 

10. The 4x4 mass matrix is given by

(3.26)

If the rows are summed to obtain the diagonal form, and the common term  is factored from 

each diagonal element, the expression simplifies to

(3.27)
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where it is seen that the sum of all four diagonal terms equals Mp since . In general 

(3.28)

and

(3.29)

Therefore, the grid mass is equal to the material point mass. In practice the diagonal form of the mass 

matrix is used in equation 3.19 to avoid inverting the mass matrix (or solving a set of equations simul-

taneously); this is common practice in explicit finite element schemes used for structural dynamics 

simulations.

The final conservation law considered is conservation of energy. For simulation of solid dynamics, 

the current formulation of the MPM is isothermal. That is, the energy equation is not solved. How-

ever, the use of an equation of state for solids that may depend on temperature is not precluded and 

could be implemented if desired.

The MPM computational algorithm is summarized as follows:

1) initialize material point locations, velocities, strains, and stresses,
2) map momentum, mass, and internal forces to the grid,
3) solve the momentum equation on the grid,
4) update material point locations based on grid velocity and update their velocities,
5) obtain convected grid velocities,
6) determine new velocity gradients and strains and stresses at the material points, 
7) regrid,
8) go to 2.

Momentum is used in step 4 to prevent numerical problems due to division in some cases by a small 

grid mass value. Grid mass is determined by mapping material point masses to the grid with the shape 

functions. Thus, the small grid mass is due to the small value(s) of shape functions. When momentum 

is used, the numerator and denominator of the material point equations are balanced by the shape 

function value. That is, the numerator and denominator both contain a multiplication by the shape 

function, and numerical problems are avoided.

The equations below summarize the algorithm for the first time step for a linear elastic material in 

one dimension. Time levels are denoted by superscripts; “0” is the first time step, and “L1” is the first 

Lagrangian step. The equations marked as “*” and “**” below are the implementation of the momen-
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tum formulation; note the shape function  in the numerator of these equations and mass in 

the denominator.

2) Map material point mass and momentum to the grid: 

3) Solve the momentum equation on the grid: 

4) Update material point velocities and locations: 

5) Obtain convected grid velocities: 

6) Determine velocity gradients, strains and stresses at material points where the strain increments, 

, are based on the symmetric part of the velocity gradient, E is Young’s modulus, and  is the 

new stress:  (note: this is for one dimension)

7) Regrid: The grid can be regenerated as specified by the user. In this work the same grid is used 

throughout the computations to simplify the algorithm.
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CHAPTER 4. THE MPM FOR FLUIDS AND VALIDATION OF THE FLUID 
FORMULATION

Here we give the specific constitutive equation and energy equation used to simulate problems 

involving compressible fluids. The general development of the momentum equation in Section 3 con-

tinues to hold except that the stress tensor for a fluid point (as opposed to a solid point) is given as 

(4.1)

where  is shear viscosity, and p is pressure which is usually determined from an equation-of-state. 

Equation 4.1 assumes the Stokes condition  where  is bulk viscosity, and as a result, 

the static pressure (spherical component of stress) is equal to the thermodynamic pressure. Due to the 

presence of the delta function, only the diagonal terms in the stress tensor contain  and pressure 

terms. That is, when i≠j, .

Equation 4.1 is applied point-by-point. The strain rates for a material point are given in two 

dimensions by

(4.2)

and are approximated with the discrete gradient operator as

(4.3)

The equation of state implemented is for an ideal gas where pressure is related to density and 

internal energy by

(4.4)

where i is specific internal energy, and  is the ratio of specific heats. Equation 4.4 is applied point-

by-point.

There are several methods of determining material point density for use in calculating pressure in 
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equation 4.4. The first is cell density where all material points in a cell are assigned the cell density. 

That is

(4.5)

where  is the mass of material point p, and  is the volume of cell c. Quadratic interpolation 

determines the cell density as 

(4.6)

where  is a quadratic interpolation function whose support in one-dimension spans one cell to the 

left and right of the cell containing material point p (ref Appendix 3.2, page 174). Material point den-

sity is determined the same as in equation 4.5. The continuity equation can also be used to update 

each material point’s density as

(4.7)

where  is the divergence of velocity evaluated at the material point.

The equation of state (4.4) is dependent upon internal energy as well as density. Thus, the energy 

equation must be solved for each fluid point. Conservation of energy requires that 

(4.8)

where i is the specific internal energy,  is the symmetric stress tensor defined in equation equation 

(4.1), and  is the strain rate. Using equations 4.1 and 4.2 this expression can be expanded (for two-

dimensional Cartesian system with x and y coordinates) in terms of velocity and its derivatives as

(4.9)

where  is shear viscosity, p is pressure, and u and v are the x and y components of velocity. This 

equation is solved using the velocity derivatives that are also used to calculate material point strains. 

Once the derivatives are calculated it is straight-forward to update the energy according to equation 
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4.9. The energy update for a fluid point is

(4.10)

which is calculated for each fluid material point every time step.

It is well known that most numerical simulations of compressible-fluid shocks provide more accu-

rate results if some type of artificial viscosity is used at the shock front. The artificial viscosity imple-

mented in the MPM is similar to that described by Wilkins (1980). An additional term, q, is added to 

the material point pressure under shock conditions as

(4.11)

where

(4.12)

and  is the maximum sound speed in the fluid, g is a geometric constant proportional to the mesh 

size,  is an artificial bulk modulus,  is density, and c1 and c2 are constants. Variable D defined in 

equation 4.12 forces the artificial viscosity, q, to be zero unless the material point is in compression.

The MPM computational algorithm with the modifications for fluid simulation is summarized as 

follows:

1) initialize material point locations, velocities, strains, and stresses,
2) map momentum, mass, and internal forces to the grid,
3) solve the momentum equation on the grid,
4) update material point locations based on grid velocity and update their velocities,
5) obtain convected grid velocities,
6) determine new velocity gradients and strains and stresses at the material points; if the material 

point is fluid then (i) apply the fluid constitutive equation and (ii) update the fluid point’s 
energy, 

7) regrid,
8) go to 2.
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4.1 Simulation of Shock Propagation in a Fluid (Sod’s Problem)

The objective of the simulation is to test the implementation of the MPM fluid formulation with a 

problem that has an analytical solution to determine if it is a viable method for future fluid-structure 

interaction simulations. The MPM results for pressure, density, velocity, and energy can be compared 

to their theoretical values.

Sod (1978) investigated finite difference schemes for simulation of a shock propagating through 

fluids. His model problem consists of a shock tube where a diaphragm separates two regions which 

have different densities and pressures. Initially the regions have zero velocity. At time t=0, the dia-

phragm is broken. Figure 11 illustrates the initial conditions of the problem. The shock strength is 

defined as the ratio of p2/p1. For this problem the shock strength is approximately 3.0, which gives a 

shock speed of about 1.75 (Liepman, 1957). The shock is allowed to travel a distance of 0.25, which it 

should do in 0.143 seconds.

This simulation is done with the formulations previously described. This is a one-dimensional 

problem, however, it is solved with the MPM in two-dimensions, and the solution variables are con-
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Figure 11. Sod’s Fluid Shock Propagation Problem
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stant with respect to the y (vertical) direction. 

The initial set-up for the simulation is shown in Fig. 12. The square grid used is 100 x 1 with a cell 

dimension of 0.01, and nine material points are initially placed in each cell. 

It was observed during the first attempts at using the MPM for simulation of Sod’s problem that 

the results appeared noisy. It was noted that in FLIP some smoothing of the data is accomplished 

using higher order interpolation. Thus, several methods of data smoothing were investigated in the 

MPM to improve the solution to Sod’s problem. The main contributor to the noise seemed to be the 

material point density calculation. Figure 13 shows the density at cell centers for the three methods 

described previously (page 33), with the solid line being the theoretical value. The plot marked cell 

density is a result of calculating the density of a cell and assigning all material points in that cell the 

same density. The plot marked quadratic interpolation smooths the densities over multiple cells, and 

the plot marked continuity equation uses the continuity equation to update each material point’s den-

sity.

It is obvious that either the quadratic interpolation or the continuity equation improves the results 

significantly over the cell density method. The results for the continuity and quadratic calculations are 

very similar. When corresponding data points in the two plots are subtracted, the maximum difference 

is less than 0.005 which is small compared to density values ranging between 0.125 and 1.0. 

The results of the MPM simulations using quadratic density calculations are shown in Figure 14 

with circles marking each data point, and the theoretical values are shown with a solid black line. In 

Fig. 14(a), top, the simulation is performed without artificial viscosity, and the bottom figure shows 

how the artificial viscosity smooths the oscillations at the shock front. All data are calculated and plot-
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Figure 12. Initial material point Positions for the MPM Simulation of Sod’s Problem
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ted at grid vertices except density which is at cell centers.

The results show reasonable agreement with theory. A qualitative comparison of this method with 

the twelve methods compared in Sod’s paper indicates that the results here are better than the worst 

methods but not as accurate as the best methods. Since the objective of this work is to investigate 

fluid-structure interaction, no attempt was made to optimize the MPM for simulation of compressible 

fluids. The results were accurate enough to show the viability of using the MPM for simulating fluid-

structure interaction.
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Figure 14. Results of Sod’s Problem Simulation with the MPM
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4.2 Gas Expansion

This simulation was run solely as another test of the MPM fluid formulation. The physical prob-

lem consists of allowing an initially cylindrical body of gas of radius 0.38 to expand into a vacuum. 

The MPM simulation is compared to the same simulation run implicitly and explicitly with FLIP.

Figure 15 shows the problem set up which was run with 1/4 symmetry conditions on the x and y 

axes. The gas is considered to be inviscid.

The mesh size used is 0.025 x 0.025 with nine material points per cell. Figure 16 shows the calcu-

lated material point positions for the three simulations at t=0.005. The material points are overlaid on 

the 20 x 20 grid.

The MPM simulation most closely agrees with the implicit FLIP simulation. The scattering and 

non-physical bunching of material points in the explicit FLIP calculation is attributed to the difficul-

ties that this formulation has with the large pressure gradient at the edge of the expanding gas. Figures 

17 and 18 show the results for pressure and specific internal energy. The MPM shows reasonable 

agreement with the implicit FLIP calculation.

4.3 Chapter 4 Summary

Simulations have been performed with model fluid problems with the standard MPM formulation 

subject to certain fluid-specific modifications for density and shock effects. The results compare well 

with finite-difference methods and with the implicit FLIP version. Existing references show that the 

MPM is a viable method for solid continua. This chapter shows that the same basic formulation is 

x

y

gas with initial pressure=100

vacuum

Figure 15. Gas Expansion Problem
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equally suitable for both solid and fluid continua.

MPM

FLIP explicit

FLIP implicit

Figure 16. Gas Expansion Results from the MPM and FLIP-Material Point Positions
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A membrane is a thin-walled structure that has stiffness only in the plane tangent to the structure 

and ideally no stiffness in bending. The stress components and traction, 

 

t 

 

(vector of units force per 

unit area), through the thickness of a membrane are constant. Figure 19 shows an arbitrarily shaped 

membrane supporting an external force 

 

F

 

. On the right is shown a slice of the membrane in the 

 

x

 

-

 

y

 

 

plane of width 

 

ds

 

 inclined at angle . The traction on the edges of the membrane does not vary 

through the thickness, and the traction acts in the plane of the membrane or tangent to the membrane, 

in this case oriented at angle  to the 

 

x

 

-

 

y

 

 plane. 

There are no physical structures that exhibit perfectly ideal membrane behavior. However, there 

are many examples of materials that can be approximated using membrane theory. Some examples of 

these materials are thin-walled metallic structures, thin-walled elastomeric materials such as balloons 

or diaphragms, paper, most fabrics, and many types of biological entities such as the walls of cells or 

simple organisms. Strings and thin wire can be considered a one-dimensional membrane.

A string or wire can only support a tangent stress which is due to a tangent strain. The strains in 

the other two perpendicular directions are such that the stresses in these directions are zero. This is a 

uniaxial stress formulation. A membrane surface is similar except that stresses exist only in the plane 

of the surface, i.e. a state of plane stress is assumed. The out-of-plane strain components must be 

adjusted to provide the plane stress formulation. Furthermore, in either case, the tangent stress does 

not vary through the thickness.
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Figure 19. Three-Dimensional Representation of a Membrane (left) and Section View
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The initial question concerned how to implement the MPM for membrane problems. Several vari-

ations of multiple material points through the thickness were investigated. Here we show that a partic-

ularly simple version of only a single layer of material points is quite adequate. One of the key points 

is to determine the strains in the local normal-tangential coordinate system and adjust them to be con-

sistent with the membrane assumptions. 

Figures 20(a) and 20(b) illustrate a configuration of material points that might represent a string or 

membrane. Figure 20(a) shows the material points in the computational grid. Figure 20(b) shows the 

interpretation of the string or membrane (dashed line) represented by the material points and the local 

tangential-normal (

 

1'

 

-

 

3'

 

) coordinate system at a representative material point. If a uniaxial stress for-

mulation is used, the string in Fig. 20(b) has stress only in the tangential (

 

1'

 

) direction. If a plane 

stress formulation is used, this same arrangement of material points may also represent a membrane 

as shown in Fig. 20(c). Here, the stress is in the 

 

1'

 

-

 

2'

 

 surface. The implementation of the string and 

membrane formulations is described in the following sections.

 

5.1 Uniaxial Stress Formulation for a Spring or String

 

This section describes the formulation of a method for simulation of an isotropic elastic spring 

(bar) or string.

The strain rate is defined by the symmetric part of the velocity gradient as

1'
3'

θ

(a) (b)

1'

3'

2'

(c)

surface

membrane

Figure 20. (a) Points in MPM Simulation, (b) Physical Representation of Membrane 
and its Local Coordinate System and (c) Perspective View of Membrane Surface
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(5.1)

where 

 

v

 

 is the velocity of material point 

 

p

 

. The total calculated material point strain at time level 

 

k

 

+1 

is  where  is the total tangent strain from the previous time step. These strains are not 

those used to determine the material point stress, and, thus, use of the tilde. The components of strains 

 in the tangential-normal (

 

1'

 

-

 

3'

 

) coordinate system are calculated. To be consistent with the physics 

of a string, the 

 

3'

 

 and 

 

2'

 

 (into the page in Fig. 20) strains are adjusted so that the only stress is in the 

tangential (

 

1'

 

) direction. The tangent strain increment is given by

(5.2)

where 

 

t

 

 is the unit tangent vector directed along the length or surface of the string. The total tangent 

strain is 

(5.3)

Expanding equation 5.3, the updated tangential strain component is

(5.4)

and the tangent stress is

(5.5)

where 

 

E

 

 is Young’s modulus. For uniaxial stress the other strains are

(5.6)

In practice, the strains in the primed (local) coordinate system (equations 5.2 and 5.6) are input into a 

matrix multiplication routine to determine the stresses as follows

(5.7)

where the elasticity matrix, , is
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(5.8)

After simplification equation 5.7 reduces to

(5.9)

After the tangent stress is calculated, these components of stress and strain are transformed back to 

the global 

 

x

 

-

 

y

 

 coordinate system to compute the global 

 

x

 

 and 

 

y

 

 forces.

 

5.2 The One-Way Constitutive Equation

 

An addition can be made to the formulation that enables a material point to accumulate negative 

strain without causing a compressive stress. The idea is to simulate a wrinkle, which can be thought to 

occur when a string is in compression, without having to resolve the buckling/bending of the mem-

brane. This enables a more realistic flexible string simulation at low cost. The addition to the method 

is to have Young’s modulus zero for negative tangent strains as shown in Fig. 21. 

 

5.3 Computational Algorithm

 

The computational algorithm (as compared to that on page 31) now has steps 7 and 8 added for 

E[ ] E
1 ν+( ) 1 2ν–( )

--------------------------------------

1 ν–( ) ν ν 0

ν 1 ν–( ) ν 0

ν ν 1 ν–( ) 0

0 0 0 1 2ν–( )

 .=

σ1'

σ3'

σ2'

σ1'-3'

E
1 ν+( ) 1 2ν–( )

--------------------------------------

1 ν–( )ε1' 2ν2ε1'–

νε1' 1 ν–( ) νε1'( )– ν2ε1'–

νε1' ν2ε1'– 1 ν–( ) νε1'( )–

0

Eε1'

0

0

0

 .= =

E1'

ε1'

Figure 21. One-Way Constitutive Form to Simulate Wrinkles in a String
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the membrane, and if the “wrinkle” or one-way constitutive model is being used step 7(ii) is followed. 

The algorithm now is:

1) initialize material point locations, velocities, strains, and stresses,
2) map momentum, mass, and internal forces to the grid,
3) solve the momentum equation on the grid,
4) update material point locations based on grid velocity,
5) obtain convected grid velocities,
6) determine new velocity gradients and strains and stresses at the material points, 
7) if the material point is a membrane, determine the tangent vector, rotate total material point 

strains into the tangent plane, apply the uniaxial or plane stress constitutive model, for either (i) 
tensile-compressive membranes or (ii) one-way membranes (wrinkle algorithm),

8) rotate the stresses back to the global system for evaluation of internal forces,
9) regrid,
10) go to 2.

5.4 Other Considerations

5.4.1 Resolving the Membrane Forces on a Cartesian Grid

One may ask the question, “Does this even have a chance at working?” It’s a good question when 

you realize that the membrane forces should be tangent to the membrane in the material point mesh 

and also on the Cartesian Eulerian mesh, or least the resultant interpolated back to the material points 

should be. The concept is illustrated in Fig. 22 which shows a line of material points representing a 

membrane oriented at an arbitrary angle, , to the horizontal. The picture begs the question, will the 

mapping of the divergence of the material point stress to the grid result in material point accelerations 

in a direction tangent to the membrane? One can imagine that if a small enough grid and enough 

Figure 22. Material Points Representing a Membrane Oriented Obliquely to the Grid
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F
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material points were used that this would be true, but it may not be efficient since the time step is gov-

erned by the size of a computational cell. If larger cells are used, what happens when the membrane 

has curvature inside a single computational cell? The problems solved in this and other sections indi-

cate the MPM membrane formulation does indeed work, and at reasonable grid resolutions.

5.4.2 Rotating Strains

In a prior implementation of step 7 in the computational algorithm of Section 5.3, page 47, only 

the strain increments were rotated into the plane of the membrane. This was later determined to be 

incorrect. For large changes in the tangent plane of the membrane during a simulation this resulted in 

accumulation of stresses that were not tangent to the membrane. Thus, the rotation of these stresses 

back to the global x-y system could result in forces inconsistent with the membrane orientation. The 

correct implementation keeps track of the total membrane strains each time step to determine the tan-

gent stress which when rotated back to the x-y coordinate system is consistent with the membrane ori-

entation.

5.4.3 Noise When Material Points Change Cells

Another problem was found when using a small number of material points per cell. In the MPM 

algorithm the internal force at a grid node is determined by taking the divergence of the stress of each 

material point that contributes to the grid node. Now consider a 1-D problem where there are only a 

few material points per cell and one crosses a cell boundary. Since the shape functions are linear, the 

derivatives of the shape functions which are used to form the divergence are piecewise constant over 

the elements. The contribution to internal force at a grid node from the material point that just crossed 

a cell boundary will change sign when the material point crosses the cell boundary. This causes noise 

in the simulation. In most simulations, the noise is not detectable when examining output. However, 

in some cases the noise in the material point’s velocity may be of the same order as the material 

point’s velocity. This can happen in simulating oscillating problems when a material point’s velocity 

is very small, say at the apex of an oscillation when the velocity goes through zero to change direc-

tions. Section A.2, page 171, contains an example to demonstrate this problem.

With this problem noted, several corrections were investigated. One type of solution was aimed at 

smoothing the stresses. An algorithm to use a cell-centered stress to calculate the internal forces 

instead of using the stress of each material point was somewhat successful. The addition of more 

material points also was successful because the noise is overwhelmed by the contribution of internal 
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forces by other material points. In any event, it was decided not to concentrate on solving this prob-

lem at this time since the problem had been identified and “workarounds” were established. There is 

currently research being conducted using a conjugate gradient method to solve the MPM equations 

implicitly, and this may have the best potential for a permanent solution to the noise problem.

5.4.4 Setting the Mass of the Membrane Points

The existing algorithm for setting material point mass is cell-based and has been used to initialize 

masses for material points representing solids. The material points are assigned a fraction of the vol-

ume associated with each cell because these material points are initially distributed in a regular pat-

tern in the cells. Figures 23(a) and (b) show the physical solid material and the MPM discretization. 

The shaded areas represent the volume, , associated with each material point which in this case is 

one-quarter of the cell volume because there are initially four material points per cell. In general, the 

membrane material points have no ordered relationship with the grid as shown in Figs. 23(c) and (d). 

Thus, the masses of these material points should be initialized in a different manner.

If s is the total length of the membrane,  is the mass per unit area of the membrane material, 

and Nm is the total number of membrane material points, the mass of a membrane material point can 

be set as . The quantity , where , is used to associate a length of the 

Ωp

Figure 23. Solid: (a) Physical Representation and (b) MPM Representation and Mem-
brane: (c) Physical Representation (d) MPM Representation
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membrane with each material point. Typically,  is a fraction of the smallest cell dimension. Frac-

tions of one-third to one-tenth have been used in simulations. It is essential that the membrane mate-

rial points not become separated by more than one cell or the membrane will essentially be “broken.” 

The effective thickness of the membrane is accounted for in .

The user must beware that if the grid width is different from the membrane thickness then the 

membrane force will be distributed over a larger area. One can imagine cases where choosing the grid 

size much larger than the membrane thickness may have unphysical results. This does not seem to 

have that much of an effect in the cases reported here. The airbag simulations in Section 6.3 use a grid 

size of 20 mm and a membrane thickness of 0.5 mm, and the results appear physical and show reason-

able agreement with experiment.

5.4.5 Multiple Points through the Membrane Thickness

Some work was done in the area of using multiple material points through the thickness of the 

membrane. This concept is motivated by the idea that you may want to distribute the membrane force 

over more than one cell width. This idea was quickly abandoned for the reasons outlined below.

Membranes are usually thin, so having multiple material points through the thickness means that 

the material points have to be very close to one another. To resolve the membrane force over more 

than one cell width means that the grid in the area of the membrane has to be very small which leads 

to extremely small time steps. Also, there must be some relationship between the material points 

through the thickness so that the stress components can be modified to obtain constant stress through 

the thickness. This requirement leads to the need for connectivity data that can result in a very com-

plicated algorithm.

5.5 Spring-Mass System Simulation

As a first step in validating the membrane formulation, the MPM is used to simulate an oscillating 

mass on a spring. This problem is simple and has a well defined analytical solution.

5.5.1 Spring-Mass Problem Description

The Spring-Mass problem is illustrated in Fig. 24. A rigid mass is attached to a massless rigid 

spring of unstretched length L and spring constant k which is connected to a stationary wall. All ele-

ments lie in the x-y plane. An acceleration due to gravity, g, acts on the system.

∆s

ρ̂0



Chapter 5 - The MPM for Membranes and Validation of the Membrane Formulation

51

If position y is measured from the static equilibrium position, the governing differential equation 

of this system is

(5.10)

The solution to equation 5.10 is 

(5.11)

where  is the natural frequency, and  is the initial velocity. Note that the period of oscilla-

tion, T, is given by .

5.5.2 MPM Spring-Mass Vibration Simulation Results

The spring-mass problem is simulated with the MPM method using ten membrane material 

points. The simulation is approximate because the spring is modeled with non-rigid elastic material 

points that have mass in contrast with the theoretical problem which has a massless rigid spring. How-

ever, the mass of these material points is very small compared to the mass m. The initial position of 

the material points and the computational grid for the simulation are shown in Fig. 25.

The heavy material point in the simulation has a mass of 3.33 which is 10,000 times the mass of 

the other material points. The equivalent spring constant, k, of the system is AE/L where A is the 

cross-sectional area of the spring1, E is Young’s modulus, and L is the length of the string. For this 

simulation, A=0.1, E=1.0e6, g=-250, and L=0.3 which is the distance between the top and bottom 
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Figure 24. Idealized Spring-Mass System
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material points.

The deflection of the “heavy” material point at the end of the spring is illustrated in Fig. 26 (top). 

Also plotted in this figure is the deflection of the mass of the equivalent theoretical system which is 

calculated using the above parameters and equation 5.11. The theoretical kinetic energy as a function 

of time can be determined by differentiating equation 5.11 to obtain velocity (KE=mv2/2), and the 

potential energy of the spring is a function of the displacement and spring constant (PE=kx2/2). The 

potential energy due to gravity (mgh) is not included. The time history of energy in the MPM simula-

tion is shown along with the theoretical calculations in Fig. 26 (bottom).

1. In this context, the spring can be thought of as a bar.
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5.6 String-Mass System With Initial Slack

The spring-mass system discussed in the previous section is modified to be a string-mass with ini-

tial slack. The physical problem being simulated is illustrated in Fig. 27 along with the MPM repre-

sentation. Material points 4-9 are given an initial negative strain. With the one-way constitutive model 

there is no force generated by the material points until the material point has a positive tangent strain 

(in tension).

The results are presented in Figures 28 and 29. Figure 28 shows the material point positions at 

various times. Note that at least one material point is crossing a cell boundary during the oscillation. 

Figure 29(top) shows the displacement of the bottom material point, and the lower plot is the energy 

history. This figure warrants some discussion.
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For t<0.013 the mass is in free fall, and the slack is being taken out of the material points initial-

ized with negative strain. At about t=0.013 the slack is taken up, the string pulls on the mass, and the 

mass begins to slow down. From here until about t=0.023 the string acts as a spring in tension. Note 

that the displacement during this time is about 0.01 which is twice that of the mass-spring in Section 

5.5 (see Fig. 26, page 53). The mass displaces more here due to its nonzero initial velocity when the 

string forces begins acting on the mass. At about t=0.023 the string is in compression generating no 

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
as

s 
D

is
pl

ac
em

en
t

Time

0

10

20

30

40

50

60

70

80

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

E
ne

rg
y

Time

potential

kinetic

total

Figure 29. Displacement and Energy Results for the String-Mass Simulation

free fall

slack taken up

rebound

free flight up

free fall

string in tension



Chapter 5 - The MPM for Membranes and Validation of the Membrane Formulation

56

resistance force, and the mass begins free flight up until it reaches its apex at about t=0.0375. From 

here the cycle begins again.

5.7 Pendulum Simulation

The pendulum simulation uses the uniaxial stress membrane formulation. This problem demon-

strates that the forces due to material point membrane stresses can be adequately resolved on a square 

Cartesian computation grid. Also, convergence toward an updated Lagrangian finite element solution 

is demonstrated.

5.7.1 Pendulum Problem Description

The pendulum problem is illustrated in Fig. 30. A mass is attached to a string of length L which is 

connected to a stationary wall. All elements lie in the x-y plane. The string is initially inclined at an 

angle  from vertical. A field force due to gravity, g, acts on the system. Table 1 summarizes the 

problem parameters.

Table 1: Pendulum Simulation Parameters

Item Value Item Value

L 0.73 E 1x106

m 3.3 0.1

g 20.0 0.0

θο 19.8° t 0.1

θ0

m

g

x

y
t

ρ L E ν,,,

Figure 30. Pendulum Problem Set-Up

θ0

ρ

ν
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5.7.2 MPM Pendulum Simulation Results

The pendulum problem is simulated with the MPM and membrane material points. For these sim-

ulations, the wrinkle algorithm or one-way constitutive equation described in Section 5.2 is used. 

Four simulations with different degrees of mesh refinement are presented. An additional simulation 

performed with an explicit finite element method (FEM) using bar elements is used for comparison 

purposes. The FEM code used is documented by York (1990).

The initial position of the material points and the computational domain for each simulation is 

shown in Fig. 31. The edge length of a square computational cell is given by . In each simulation, 

the material point at the end of the string is given a mass equal to 3.3. Figures 32 through 35 illustrate 

the position of the material points at various times in the simulations which are carried out for about 

one and one-half oscillations. The execution time for the simulation with =0.1 on a Macintosh Pow-

erPC 9500 (120 MHz 604 processor) is about 17 minutes and on a IBM-compatible machine with a 

Pentium II 233 MHz processor is about 9.5 minutes. Note that no attempt has been made to improve 

the run speed of the code as it is essentially a research code at this time.

Figure 36 shows plots of the FEM simulation. The points (nodes) in Fig. 36 are connected to 

emphasize this calculation was done with bar elements.

Figure 37 compares the simulations for the angle theta. In the simulations, the angle theta is 

defined by the angle made by a straight line joining the first and last material points. The MPM simu-

lations agree reasonably well with the explicit FEM simulation, and convergence toward the FEM 

simulation is observed. As the simulation is refined, the length of the string and direction of stresses in 

the string are more accurately resolved on the computational grid. The material points stay aligned 

better as the simulation is refined. The reduced amplitude of oscillations (seen in Figure 37) in the 

MPM results when compared with the FEM results indicates numerical dissipation. However, the dis-

sipation is decreasing with mesh refinement.

∆

∆
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Figure 32. Pendulum Position at Various Times - MPM Simulation (20 mp)
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Figure 33. Pendulum Position at Various Times - MPM Simulation (40 mp)
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Figure 34. Pendulum Position at Various Times - MPM Simulation (80 mp)
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Figure 35. Pendulum Position at Various Times - MPM Simulation (320 mp)
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Figure 36. Pendulum Position at Various Times - FEM Simulation
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5.7.3 MPM Pendulum Simulation Results - Without Wrinkle Algorithm

If the wrinkle algorithm is not used as described in Section 5.1, the results are similar, but in some 

cases appear slightly nonphysical. This is why the convergence study is presented using the wrinkle 

algorithm. The position of the material points at various times for a simulation without the wrinkle 

algorithm is illustrated in Fig. 38, page 66. 

Without the wrinkle algorithm the alignment of material points is not as good (Fig. 38). One pos-

sible explanation of why this misalignment occurs lies in the fact that as the pendulum swings it also 

oscillates due to the spring-like effect of the string. The oscillations “up” may cause some material 

points to go into compression. The material points cannot support compression in this configuration 

so a phenomenon similar to buckling may occur which tends to misalign the material points.

5.8 Plane Stress

The plane stress formulation is similar to uniaxial stress, except that other conditions on the 

strains are enforced. In this case, the strain in the 3' direction is set so that the stress in this direction is 

zero. Also, a plane strain assumption in the 2' direction dictates that the strain in this direction be zero, 

but the stress is nonzero. Figure 39 illustrates a small material element in a state of plane stress. These 

plane stress assumptions are

(5.12)

The strains in the primed (local) coordinate system are input into a matrix multiplication routine to 

determine the stresses as follows

1'

3'

2'
surface

σ1' 0≠  , ε1' 0≠

σ2' 0≠  , ε2' 0=

σ3' 0=  , ε3' 0≠

Figure 39. Plane Stress Assumptions

ε3' ν– ε1' 1 ν–( )⁄= and ε2' 0.=
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Figure 38. Pendulum Simulation (40 mp, =0.1) Without Wrinkle Algorithm∆∆∆∆
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(5.13)

Expanding equation 5.13 gives

(5.14)

which simplifies to

(5.15)

In this simplified formulation, there is no shear in the 1'-3' or 1'-2' directions. In general this is not 

true for the 1'-2' plane.

5.9 Ball and Net Simulation

A hypothetical problem of a ball impacting a stationary net was used to test the membrane plane 

stress formulation. The problem set-up is shown in Fig. 40. The constitutive model for the ball is 

plane strain and that of the net is membrane plane stress.1 The material properties used are listed in 

Table 2. 

1. Since plane strain is assumed, the simulation is one of a solid cylinder impacting a membrane.

σ1'

σ3'

σ2'

σ1'-3'

E[ ]

ε1'

ε3'

ε2'

ε1'-3'

E[ ]

ε1'

ν– ε1' 1 ν–( )⁄

0

0

= =

σ1'

σ3'

σ2'

σ1'-3'

E
1 ν+( ) 1 2ν–( )

--------------------------------------

1 ν–( ) ν ν 0

ν 1 ν–( ) ν 0

ν ν 1 ν–( ) 0

0 0 0 1 2ν–( )

ε1'

ν– ε1' 1 ν–( )⁄

0

0

=

σ1'

σ3'

σ2'

σ1'-3'

E
1 ν+( ) 1 2ν–( )

--------------------------------------

ε1' 1 ν–( ) ν2ε1' 1 ν–( )⁄–

νε1' νε1'–

νε1' ν2ε1' 1 ν–( )⁄–

0

Eε1' 1 ν2
–( )

0

Eε1'ν 1 ν2
–( )

0

 .= =
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Intuitively, one knows that the ball will impact the net; the net will displace; and the ball will 

release from the net to the left with a velocity smaller than its initial impact velocity. It was these 

common-sense features of this problem that were being tested.

With the addition of a contact-release algorithm as described in Section A.1.1, page 154, the pre-

dicted positions of the ball and net seem plausible. The criteria listed in equation 9.9 of the appendix 

were used to control the contact and release of the ball.

The material point positions are shown in Fig. 41. At about t=2.8 the ball releases from the net and 

moves at constant velocity to the left. This is more evident in Fig. 42 where the histories of the center 

of mass velocity and position of the ball and net are plotted. Here it is seen that the ball’s velocity is 

constant at about -0.7 when , and the slope of the ball’s position curve is constant indicating 

constant velocity. The net continues to oscillate after the ball releases.

Table 2: Parameters for the Ball and Net Simulation

 Parameter Ball Value Net Value

Density 1.0 0.5

Young’s Modulus 1 x 104 1 x 104

Poisson’s Ratio 0.3 0.0

Initial Velocity 1.0 0.0

Figure 40. Ball and Net

vb
0

t 2.8≈
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Figure 41. Ball and Net Material Point Positions at Various Times
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5.10 Chapter 5 Summary

Simulations of membranes have been performed with the material point method. A relatively sim-

ple modification to the material point constitutive equation allows springs, strings, and membranes to 

be simulated. The spring-mass-with-slack system and ball and net simulations give qualitatively cor-

rect results. The results of the other simulations compare favorably to theory and to other simulations. 

This chapter shows that the MPM is a viable method for simulation of membranes. The finite element 

method may be more efficient for simulating some of the problems discussed here. However, the 

strength of this approach is treating more complicated fluid-structure interaction efficiently. The next 

chapter combines the fluid and membrane formulations and discusses fluid-structure interaction.



CHAPTER 6. FLUID-STRUCTURE INTERACTION WITH THE MPM

It is proposed that fluid-structure interaction problems be simulated with the MPM. The idea is 

straight forward in that the coupled problem is set up as any other type of MPM simulation. The dif-

ference now being that some material points are designated membrane material points and others are 

designated fluid material points.

The effect of the fluid on the structure and vice-versa will be determined on the grid when the 

equations of motion are solved at each grid node. The coupling of the fluid and solid is indirect in the 

sense that the pressure from a fluid material point is not directly applied to the neighboring structure 

material points. Instead, the forces from fluid and solid material points are calculated together at grid 

nodes where the divergence of the material point stress is summed. Figure 43 illustrates the idea of 

summation of the grid forces, fg, from the fluid and membrane stresses,  and , and the respective 

material point volumes,  and .

The net effect of the force summation is that the structure forces cause accelerations of neighbor-

ing fluid and structure material points, and pressure and fluid shear stresses cause accelerations of 

neighboring structure and fluid material points. The accelerations are imposed on the material points 

as velocities in the calculations.

Since Lagrangian material points are used for both the fluid and the structure and since the two are 

indirectly coupled, the time-consuming calculations involved in defining the interface and applying 

σσσσf σσσσm

V f p, Vm p,

σσσσf
fg

grid node

fluid material point

membrane material point

σσσσm

f g ∇ σσσσf⋅( )V f p,
f
∑ ∇ σσσσm⋅( )Vm p,

m
∑+∝

Figure 43. Fluid-Structure Coupling
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the correct boundary conditions can be avoided. Recall in Section 2.2 that one author reported calcu-

lating the intersection of the Lagrangian elements with the Euler fluid elements took the majority of 

the cpu time in his fluid-structure interaction calculation. Also, mixed cells are handled naturally as 

the material points carry material properties with them.

6.1 Piston-Container Problem

The piston-container problem is a relatively simple one-dimensional problem. The objective of 

running this simulation was to test the fluid-structure interaction algorithm on a simple scale using a 

test problem with a known solution.

6.1.1 Problem Description

An illustration of the piston-container fluid-structure problem is shown in Fig. 44. A massless 

spring of constant K and length L is attached to a piston. The piston can move without friction to com-

press or expand a compressible fluid of density  and bulk modulus . A similar fluid-structure prob-

lem is presented by Olson (1983).The objective is to compare the theoretical frequency of vibration 

with that from an MPM simulation.

The fluid is assumed to be compressible, inviscid, and adiabatic. The continuity, energy, and con-

stitutive relations combine to give the relationship between pressure and displacement as follows:

(6.1)

ρ β

K, L

piston: mass=m, area=A

density ρ=

bulk modulus β=
fluid

Figure 44. Piston-Container Problem

p β– ∇ U⋅( )=
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where U is displacement and  is the isentropic bulk modulus. The analytical expression for the nat-

ural frequency, , of vibration of the mass satisfies the equation

(6.2)

where c is the wave speed , and A is the piston cross-sectional area.

6.1.2 Piston-Container Simulation Results

The parameters used in the MPM simulation are as follows: L=20, A=1.0, K=100, =0.0001, 

, and m variable. Compared with Olson’s paper, the area here is reduced by a factor of 

5, and  is increased by a factor of 5. The density in the simulation is 1e-4 compared with 9.35e-5 

used in Olson’s problem. The problem is set up with the MPM simulation as illustrated in Fig. 45. A 

line of code was added to the equation of state subroutine in the MPM program to determine the pres-

sure as indicated in equation 6.1. Also, the heavy material point in the spring is “hardwired” to have a 

mass of 100 times that of other spring material points, which is an approximation of the massless 

spring.

To determine the frequency of vibration, the heavy material point representing the piston is given 

a small initial velocity, and the position of this material point is monitored.

The first solution of equation 6.2 gives the fundamental mode of vibration. Table 3 lists the theo-

retical natural frequency and period for a given mass along with the period observed in the MPM sim-

ulation. The observed periods are very close to the theoretical ones. Figure 46 shows the time history 

of displacement of the mass. The vertical dashed lines in the plot represent the theoretical periods of 

vibration.

β

ω

ω K ρωcA ωL c⁄( )cot+[ ] m⁄– 0=

β ρ⁄

ρ

β 1.58
6×10=

β

0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

spring (membrane) point
fluid point

“heavy” mat’l point

Figure 45. Piston-Container MPM Simulation Set-up
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The period of vibration with a mass of 1.0 in a vacuum (no fluid) is 0.628 s, so the effect of the 

fluid in the case of m=1 is to increase the frequency of vibration by a factor of nearly 30.

Table 3: Piston-Container Periods of Vibration 

mass, m
Theoretical 

 (rad/s)
Theoretical 
period (s)

MPM Simulation 
period (s)

0.1 886.2 0.00709 0.0071

1.0 281.2 0.02234 0.022
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Figure 46. Mass (Piston) Deflection in the Piston-Container Simulations
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6.2 Membrane Expansion

The dog-bone-to-cylinder membrane expansion simulation is an arbitrary problem (not seen in the 

literature) that tests several aspects of fluid-structure interaction. The initial conditions for the prob-

lem are shown in Fig. 47, and the problem parameters are listed in Table 4. A computational cell size 

of 0.1 is shown in the figure; a total of four different cell sizes were used. 

membrane

fluid

x=0.5

y=1

Pi=100

θ 0=

θ 90=

cell size of 0.1
for reference

Figure 47. Initial Conditions for the Dog-bone Membrane Expansion Simulation

 

Table 4: Fluid and Membrane Properties

Fluid Property Value
Membrane 
Property

Value

density 1.0 density 0.5

viscosity, 0.1 Young’s modulus 1x106

initial specific inter-
nal energy, i

250 Poisson’s ratio, 0.3

ratio of specific 
heats, 

1.4
wrinkle algo-
rithm

on

artificial viscosity off

µ

ν

γ
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The problem consists of a gas under internal pressure which expands filling a cavity that is ini-

tially dog-bone shaped. A membrane forms the cavity and confines the gas. At early times, the mem-

brane oscillates due to unbalanced forces. Since the fluid is given a nonzero viscosity coefficient, the 

membrane oscillations are damped until a steady state condition is reached.

There are several areas where this problem can be compared to theory. Some of these are as fol-

lows:

• the gas should not escape from the membrane,

• the equilibrium shape of the membrane should be circular,

• the stress in the membrane should be consistent with the internal pressure.

Table 5 lists some of the results of the four simulations that were performed. The simulations are 

more refined going from 1 to 4 as indicated by the cell or mesh size in the second column. Square ele-

ments are used. The last two columns show the final pressure and radius of the membrane at 0 and 90 

degrees (see Fig. 47 for 0 and 90 degree locations). The final radii of the membrane show convergence 

with mesh refinement, and the final pressures do also, but convergence is not as rapid as for the radii. 

The higher final pressures of the more refined simulations are consistent with less energy dissipation 

observed in the plots of the total energy.

Table 6 is a comparison of the theoretical hoop stress, calculated with the final radius and pres-

sure, with the hoop stress observed in the simulations. There is nominally a ten percent difference 

between the theoretical value and the simulation value. On source of error arises from the fact that the 

a. Material points per cell.
b. Total number of membrane material points.
c. Calculated by averaging the final pressure at interior grid points.

Table 5: Membrane Expansion Simulation Parameters and Results

Simulation
Cell 
Size

No. Mat’l Points
Fluida Membraneb

Total 
Mass

Final 
Radius (0°/

90°)

Final 
Internal 

Pressurec

1 0.4 64 56 0.600 1.08/1.13 33.4

2 0.2 64 100 0.584 1.335/1.334 24.9

3 0.1 64 200 0.583 1.388/1.387 27.0

4 0.05 64 400 0.584 1.394/1.396 29.0
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forces are calculated at grid nodes, and the radius used for the hoop stress calculation in the first col-

umn is based on material point locations.

Figures 48 through 55 illustrate the detailed results of the four membrane expansion simulations. 

For each simulation, the material point positions during the initial oscillations are shown along with 

the shape at steady state. Following this is a plot of the radii at zero and 90 degrees and the energy.

6.2.1 Simulation 1

Simulation 1 is the coarsest simulation with an element size of 0.4. Figure 48 shows the material 

point locations at increasing times. The simulation is so coarse that the folds or wrinkles in the mem-

brane can not be pulled out to a circular shape at equilibrium. However, it can be seen that gas does 

not escape the membrane and that the membrane shape does move toward a circular shape although 

the circular shape is not totally achieved. Figure 49 shows the time history plots of radii and energy. 

The radii plot shows the noncircular shape at equilibrium, and the oscillations appear quite noisy. The 

energy plot shows that about 3.6 percent of the energy is lost due to numerical dissipation.

Some trends to look for in the upcoming plots of solutions with mesh refinement are: (i) the final 

shape of the membrane becomes more circular, (ii) the oscillations are smoother, and (iii) there is less 

energy dissipation.

6.2.2 Simulation 2

Figure 50 shows the material point locations at increasing times for the simulation where the 

a. Hoop stress, pr/t, is calculated using the final radius and pressure 
from Table 5 with thickness equal to 0.1.

Table 6: Comparison of Hoop Stress

Simulation
Hoop 

Stressa

Hoop 
Stress - 

Simulation

% 
Difference

1 369 394 6.75

2 332 372 11.95

3 375 417 11.31

4 405 447 10.49
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Figure 50. Material Point Position Plots for Simulation 2



Chapter 6 - Fluid-Structure Interaction with the MPM

81

mesh size is one-half of simulation 1, or . The results appear more physically intuitive than 

the previous one. However, one might question the bulges in the membrane at t=0.1 as being non-

physical. In general, the membrane oscillations are reasonable, and the final shape is approximately 

circular. Figure 51 shows that the radii are approximately equal at zero and 90 degrees, and the energy 

plot shows that about 3.4 percent of the energy is lost due to dissipation. 

6.2.3 Simulation 3

 Figure 52 shows the material point locations at increasing times for a mesh size of 0.1. The for-

mat of this figure is slightly different from that of previous material point plots because a different 

post-processing technique was required due to the large number of material points. Note also that the 

bulges at t=0.1 do not appear in this simulation which suggests that they may have been due to poor 

resolution in the previous simulation. Also, the smoother curves in the membrane are probably attrib-

utable to higher resolution.

Figure 53 shows the radii and energy plots.The oscillations in the membrane are less noisy than 

the previous ones, and the change in energy is only about 1.2 percent.

6.2.4 Simulation 4

Figure 54 shows the material point locations at increasing times for the simulation with the high-

est resolution (mesh size 0.05). The trends in changes between this simulation and the previous one 

are similar to changes observed between simulations 2 and 3. The membrane lines are smoother, but 

the general shape is approximately the same as in Simulation 3. The same applies to the radii and 

energy as seen in Fig. 55. The oscillations in the radii are smoother and the change in energy is less 

than one percent.

The pressure and membrane stress contours are shown in Fig. 56 for quadrant I (0 to 90°). Both 

pressure and stress are interpolated to grid points from material points. There is no smoothing of the 

contours done by the plotting package; thus, some of the contours are jagged.

∆x 0.2=
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Figure 52. Material Point Position Plots for Simulation 3

t=0    t=0.05   
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Figure 54. Material Point Position Plots for Simulation 4
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Figure 55. Radii and Energy for Membrane Expansion Simulation 4
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6.3 Airbag Impact Simulation

6.3.1 Problem Description

Axisymmetric calculations of the interaction of an impacting probe with an inflated airbag were 

performed and are reported by de Coo (1989). The calculations were compared to experimental 

results. A schematic of the problem is shown in Fig. 57. The MPM is used to perform two different 

simulations reported by de Coo where the diameter, mass, and impact velocity of the cylindrical 

probe were varied. The parameters of the two simulations are listed in Table 7.

Material properties for the simulations are listed in Table 8.

Table 7: Airbag Impact Simulations

Simulation
Cylinder 

Diameter (mm)
Cylinder 

Mass (kg)

Cylinder 
Initial Velocity 

(m/s)

Cyl-200 200 6.03 3.90

Cyl-500 500 8.05 4.70

Table 8: Airbag Impact Simulation - Material Properties

Airbag Property Value Air Property Value

Thickness 0.5 mm Specific Heat Ratio 1.4

Density 662 kg/m3 Density 1.2156 kg/m3

probe

airbag, (580 x 315 mm
support

spring

Figure 57. Airbag Impact Problem

major axes)

vo
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Material properties of the cylinder were not listed. Therefore, Young’s modulus was arbitrarily 

chosen to be 5 x 107 N/m2, and the density was adjusted to give the correct mass. The total airbag 

mass was derived to be 367.2 g. Thus, airbag material point volumes were prescribed such that the 

total airbag mass was correct.

6.3.2 Cyl-200 Simulation Results 

The initial positions of the membrane material 

points for this simulation were arrived at by conduct-

ing a simulation with a tether in the airbag as shown 

in Fig. 58. The objective of this exercise was to 

obtain an initial shape that matches that reported by 

deCoo. This simulation was run to approximately 

steady state where the gas expanded and put the 

tether in tension. 

The plots of the probe and airbag material point 

positions for various times during the simulation are 

shown in Fig. 59. The effect of the using the tether to 

determine initial material point positions is seen in 

the first plot of Fig. 59. The tether pulled the material to the left (denoted by the arrow in the top left 

plot).

For the simulation with the probe, the tether was removed at the instant the simulation was started 

because in the axisymmetric MPM calculation this tether is actually a conical shape and affects the 

flow of the gas material points. The approximately 3,000 gas material points are not shown in Fig. 59 

to increase the clarity of the airbag shape.

The predicted configuration of the airbag and impactor look plausible. The impactor causes the 

airbag to bulge out on the sides. It eventually stops and rebounds to the right.

Young’s Modulus 6x107 N/m2 Initial Pressure 4000 N/m2

Poisson’s Ratio 0.4
Initial Specific 
Internal Energy

8226 J/kg

Table 8: Airbag Impact Simulation - Material Properties

Airbag Property Value Air Property Value
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Figure 59. Deformed Airbag Shapes of Cyl-200 Simulation 
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Figure 60 shows a comparison of the displacement of the probe into the airbag for the MPM sim-

ulation, the PISCES simulation and the experiment. Figure 61 shows that the deformed airbag shapes 

at t=40 ms are similar.

The slope of the displacement past the peak appears different than the experimental slope. It was 

thought that the effect of no tether may cause a more rapid rebound of the impactor. To test this the-

ory, a simulation was conducted where the tether was left in the simulation for the duration. It was 

observed that the slope past the peak closely matched that of the experiment. However, the cylinder 

displaced about 20 mm farther into the airbag. This excessive displacement is attributed to the “coni-

cal” effect of the tether on the gas flow for an axisymmetric calculation.

6.3.3 Cyl-500 Simulation Results

The deformed configurations at various times are shown in Fig. 62. While the “Cyl-200” simula-

tion (Section 6.3.2) seemed somewhat insensitive to the initial configuration of the airbag, this simu-
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Figure 60. Displacement Results for Cyl-200 Simulation



Chapter 6 - Fluid-Structure Interaction with the MPM

92

lation was indeed dependent upon the initial shape. More effort was put forth in this simulation to get 

closer to the initial airbag shape used by de Coo. Preliminary simulations done with the 500 mm 

diameter cylinder and the airbag initial shape as shown in Fig. 58 (but without the tether) showed 

more displacement of the impactor into the airbag. The discrepancy seems to lie in the fact that when 

the airbag shape is flatter the initial force that decelerates the impactor is higher.

Figure 63 shows the displacements of the 500 mm diameter probe for the MPM and PISCES sim-

ulations and the experiment. It takes longer for the probe in the MPM simulation to rebound. A possi-

ble explanation for the difference comes from examining Fig. 64 that shows both simulation 

configurations at t=40 ms. There is more intimate contact between the probe and the airbag in the 
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Figure 62. Deformed Airbag Shapes of Cyl-500 Simulation 
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PISCES simulation than in the MPM simulation. The explanation is that contact between materials in 

the MPM is defined on the grid. Thus, the probe can cause the airbag to displace away from the probe 

even when they are not in the same cell. To get the full effect of the gas pressure on the probe the air-

bag and probe should be very near to each other. This effect should be reduced with mesh refinement.
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Figure 63. Displacement Results for Cyl-500 Simulation
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Figure 64. Comparison of PISCES and MPM Deformed Configuration for t=40 ms
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6.4 Chapter 6 Summary

Simulations of three different problems demonstrate the ability of the MPM to model fluid-struc-

ture interaction. The interaction is achieved by tagging material points as either a fluid or a structure 

and applying the appropriate constitutive model to determine stress components of the material 

points. The standard MPM algorithm is then used to determine the grid-based internal force compo-

nents from the stress components of each material point. The results of the problems simulated com-

pare favorably to theory and/or experiment. Thus, the viability of a simple and robust algorithm for 

simulating the interaction of fluids and solids has been demonstrated.
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In all of the previously discussed problems, the local normal-tangential coordinate system for the 

membrane material points was determined using the connectivity of the points. This local coordinate 

system must be determined to evaluate the membrane constitutive equation. Figure 65 shows a mem-

brane which is represented by the dashed lines through the material points which are solid circles. 

When using connectivity, the normal vector, 

 

n

 

, for a material point is determined from an average of 

its neighbors. For example the tangent angle with respect to horizontal for particle 

 

p

 

 in Fig. 65 is 

(7.1)

and the normal is 90 degrees offset from . 

In two dimensions using the connectivity data to determine the local coordinate system is conve-

nient and simple. In all the problems previously presented the connectivity data is obtained at no 

additional “cost” to the user since the connectivity is the same as the input sequence for the material 

points. However, a more general method to determine the local coordinate system would have the 

advantage of allowing the user more flexibility in specifying the initial shape of the membrane. This 

is especially true in a three-dimensional application. Using connectivity data in three-dimensions to 

determine the local coordinate system puts a heavy burden on the user to generate this data and will 

require additional storage in the code. This chapter presents four different methods for determining 
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the material point normals without using connectivity data. The methods are presented in order from 

the least effective to the most effective. Following the presentation of the various theories, each one is 

tested on a model problem.

 

7.1 Simple Color Function Approach

 

The basic idea with this method is to define a color (number) function that is constant along the 

membrane. The gradient of this function should be normal to the membrane. Thus, we start by defin-

ing a color, , for each membrane material point. All membrane material points have the same color. 

Take the gradient of this function to define grid normals, , as

(7.2)

where  are the gradients of the shape functions as defined in equation 3.14.

To obtain normals at the material points, interpolate the grid normals to the points using linear 

interpolation

(7.3)

This method averages the grid normals at neighboring grid points to define a normal at the material 

point position. The use of equation 7.2 to determine grid normals is not accurate because only mate-

rial points in the membrane are used which is insufficient data to set up a gradient. The next two meth-

ods use higher order interpolation in an attempt to smooth the data.

 

7.2 Quadratic Interpolation

 

This method uses quadratic interpolation to define a cell color. The gradient of this cell color is 

defined at grid nodes. The material point normals are determined by interpolating from the grid gradi-

ent.

The cell color is defined as

(7.4)
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where each material point will contribute to nine cell centers with the use of the weighting function 

 (see Appendix 3.2 on page 174 for the definition of the weighting functions). The normal 

for grid node 

 

i

 

 is calculated by mapping the cell-centered color function to grid nodes using the same 

gradient operator as in equation 7.2

(7.5)

The material point normals are determined by equation 7.3.

 

7.3 Cubic Interpolation

 

In this method the grid color is defined by using cubic interpolation. The normals at the material 

points are calculated using a cubic gradient function. The higher order interpolation should give 

smoother varying results than the last method.

The grid color is defined as

(7.6)

where each material point will contributes to 16 grid vertices with the use of the weighting function 

. Material point normals are determined using the cubic gradient operator as

(7.7)

 

7.4 Mass Matrix Approach

 

This method solves a system of equations simultaneously to determine grid colors that define a 

constant color along the membrane material points. We require that the grid colors, , define the con-

stant material point color, , according to 

(7.8)

where 

 

i

 

 ranges from one to the number of grid nodes. Now we ask what are the correct grid colors, , 
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to use in determining the particle normals as

(7.9)

Equation 7.8 will be manipulated to define a system of equations. Multiply both sides by  and 

sum over 

 

p

 

 which gives

(7.10)

Define a mass matrix T

 

ij

 

 as 

(7.11)

Now the system of equations to be solved can be written in matrix form as

(7.12)

where subscripts 

 

n

 

p

 

, the number of material points, and 

 

n

 

g

 

, the number of grid nodes, indicate the 

dimension of the vector or matrix. This approach can be applied globally or locally. That is, all mem-

brane material points may be included in the solution to equation 7.12 to globally determine the grid 

colors or it may be applied on some subset of material points. A convenient choice of a subset of 

material points are those in a single computational cell. This reduces the mass matrix to 4 x 4 which 

can be quickly solved for the four grid colors.

If only membrane material points are included in a cell, one solution to the system defined in 

equation 7.12 is for each grid color to equal the membrane material point color. However, this is the 

trivial solution which results in no gradient of the color. The desired solution is obtained by adding 

one additional material point in the cell with a color different than that of the membrane color. When 

the system of equations is solved there is a gradient in the color, but the color is constant along the 

contour defined by the membrane material points.

 

7.5 Testing the Methods on a Model Problem

 

The model problem is that of a circular cylinder of radius 1.0 as shown in Fig. 66(a). The first test 
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of the methods is to calculate the normals for the first time step of the calculation before any deforma-

tion has occurred. In some cases the calculation is improved by adding material points interior to the 

membrane as in Fig. 66(b). In these cases four and 16 points-per-cell are used to illustrate the 

improvement. The second test is running the cylinder expansion problem using the different methods 

to calculate the normals.

7.5.1 Calculating Normals for the First Time Step

Figure 67 shows the results for the simple color function approach. For both a vacuum and 4 PPC 

fluid on the interior, the results are unacceptable. The results with fluid points on the interior as shown 

in Fig. 67(b) illustrate how the normals change direction at cell boundaries. This is a common prob-
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Figure 66. (a) Quarter Symmetry Model Problem for Testing Normal Calculations and 
(b) Material Point Plots for No Fluid, 4 Points-Per-Cell (PPC) Fluid, and 16 PPC Fluid
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Figure 67. Normals to the Membrane Points Calculated by the Simple Color Function Method for: (a) Vacuum 
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lem that will also be seen in other methods.

Figures 68 and 69 show the results for the quadratic approach. Without interior fluid points the 

results are poor. However, with fluid points on the interior the results improve drastically. Further 

improvement is seen by having more fluid points on the interior as illustrated by comparing Fig.s 

68(b) and 69. It should be noted that the normals only have to be determined to a precision of  

degrees, although it is aesthetically pleasing to have the normals in a consistent direction. 

Figures 70 and 71 show the results for the cubic method. The results without fluid points on the 

interior are not as good as for the quadratic method, but with interior fluid points the results are better 

than with the quadratic method. As seen previously, the results improve with more interior fluid 
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Figure 68. Normals to the Membrane Points Calculated by the Quadratic Method for: (a) Vacuum and (b) 
4 PPC Fluid Material Points
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Figure 70. Normals to the Membrane Points Calculated by the Cubic Method for: (a) Vacuum and (b) 
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points. The results for the cubic method were obtained by running a full 360 degree simulation 

because the boundary conditions for the cubic gradient were not implemented for this test.
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Figure 71. Normals to the Membrane Points Calculated by the Cubic Method for 16 
PPC Fluid Material Points
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The results for the mass matrix method are shown in Fig. 72(a). Here no fluid points are necessary 

for the interior. In fact the solution using the mass matrix method takes more computations if extra 

non-membrane material points are used, and the results are degraded. For comparison the normals 

using the material point connectivity are shown in Fig. 72(b). There is only a small difference 

between the mass matrix approach and the computation of normals using the connectivity of the 

material points.
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7.5.2 Simulating an Expanding Cylindrical Membrane

The model problem was run with the internal fluid using the various methods to calculate the nor-

mals. The pressure of the fluid was such that the membrane should expand and begin to oscillate. The 

only method that is successful besides using the connectivity is the mass matrix method. Figure 73 

shows the time history of the change in the average cylinder radius.* Using the standard connectivity 

approach (thick solid line), the cylinder expands and then begins to oscillate. This is also true with the 

mass matrix approach (long dashed line). However, the other approaches are not successful. It can be 

seen in the cubic method (thin solid line) how the forces in the membrane only temporarily stop it 

from expanding. This indicates that the normals are not accurate enough to result in stresses directed 

*The change in the radius of material points at 0, 45, and 90 degrees are averaged.
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tangent to the membrane. The quadratic method is worse than the cubic method. By t=0.005 there are 

enough accumulated errors so that the membrane has virtually no resistance to expansion. The mate-

rial point positions and normals associated with the membrane points at t=0.01 are shown in Fig. 74 

for the two unsuccessful methods - quadratic and cubic. The material point positions for the four 

methods at t=0.05 are shown in Fig. 75. The boundary of the simulation was at x,y=1.5, and a zero 

velocity boundary condition was placed on these boundaries, so material will not expand beyond that 

point.

Figures 75(a) and 75(b) are similar, which is expected since the cylinder deflections were similar 

(Fig. 73). Figure 75(c) shows results for the cubic method. Some forces in the membrane where gen-

erated to resist expansion. Figure 75(d) shows results for the quadratic method were the membrane 

did not resist expansion much at all. The membrane has been pushed against the boundaries of the 

domain by the fluid.
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Figure 74. Material Point Positions and Normals for: (a) the Cubic Method and 
(b) the Quadratic Method at t=0.01
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Figure 75. Material Point Positions When Calculating Normals Using (a) Connectivity, 
(b) Mass Matrix (linear shape functions), (c) Cubic, and (d) Quadratic Methods
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7.6 Further Analysis of the Mass Matrix Method 

This section quantifies the effectiveness and the limitations of the mass matrix method when using 

linear shape functions and solving a four-by-four system for each cell containing membrane points. 

Recall that we desire that the grid colors, , define a constant material point color, , according to

(7.13)

where i ranges from one to the number of grid nodes. The particle normals are defined to be

(7.14)

There will be some limitations in describing the particle normals with the gradient of linear shape 

functions. Since the shape functions are linear, the gradients with respect to x will be constant in the x 

direction and vary linearly in the y direction. Similarly, the gradients with respect to y will be constant 

in the y direction and vary linearly in the x direction. Thus, the polynomial describing gradients is 

only linearly complete. The gradients of linear membrane contours should be accurately defined. 

Other nonlinear contours may not be accurately represented. However, there is x-y coupling that will 

be able to capture some nonlinearities in the membrane color contour.

Figure 76 shows results for a linear membrane contour oriented at 45 degrees to horizontal. The 

membrane points are represented by solid circles. The color of the membrane material points is 1.0, 

and the contours of color throughout the cell are plotted with solid black lines. These contours are 

determined using the right-hand-side of equation 7.13 and the calculated grid colors . As expected, 

the line connecting the membrane points represents a constant contour of 1.0. The predicted normal 

vectors are exactly at 90 degrees (to machine precision) to the line connecting the membrane points. 

Figure 77 shows results for a linear membrane contour oriented at 80 degrees from horizontal. The 

material points are not evenly spaced. Again, the color contour of 1.0 is aligned with the material 

points. The normal vectors are close to the theoretical angle. On average, each vector orientation is 

within 0.01 degrees of being exact.

Figure 78 shows results for a nonlinear configuration of the membrane points. Here the function 

defining the location of the material points is , where C is a constant. Note the 

χi χ p
0

χ p
0 χiNi Xp( )

i
∑=

np χi∇ Ni Xp( ).
p
∑=

χi

xy 0.1x C+ + 0=
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presence of the bilinear term xy. It can be seen in Figure 78 that the color contour of 1.0 is aligned 

with the material points. The endpoints (x,y) of the predicted normal vectors are aligned with the the-

oretical ones to within the fifth decimal place. 

Figure 79 shows the results for a circular contour of membrane particles of radius 0.4. In this case, 

the color contour of 1.0 does not lie on membrane points. The interpolated color of the membrane 

points ranges from about 1.08 to 1.25. As expected the normals are not as accurate as in previous 

cases. One material point normal is off several degrees while others are more accurate (compare solid 

thick vectors to dashed vectors). 

The previous examples show that the method can give very good results. However, there are cer-

tain conditions under which this method fails. If the particles are arranged in a cell such that the mass 

matrix is singular or nearly singular, the resulting solution for grid color is inaccurate. For example 

consider a vertical arrangement of membrane material points. In this case the mass matrix is nearly 

singular. The arrangement of material points and results are shown in Figure 80(a). The normals, 

which should be exactly horizontal, are obviously inaccurate. If one material point is perturbed in the 
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x direction, the condition number of the mass matrix improves greatly. However, the solution for grid 

color is such that there is no gradient in the center of the cell as shown in Figure 80(b). In this case the 

resulting contours within the cell are nearly symmetric. The material points away from the cell center 

have accurate normals, but the one point near the center does not.
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It can be shown that equation 7.14 can be written in terms of the material point local coordinates 

(r,s) and constants a and b as

(7.15)

where constants a, b, and c are functions of the grid colors 

(7.16)

The nomenclature for the local coordinates and grid colors is shown in Fig. 81. The relationship in 

equation 7.15 reveals a limitation in describing material point normals within a single cell. Consider 

three material points in a unit cell as shown in Fig. 82. Assume that the normals for the material points 

are as shown, and treat the unknowns as the constants a and b in equation 7.16. The equations for 

material points one and two are

 (7.17)

where  and  are the local y-coordinate of the two material points, and  and  are the x 

components of the particle normals. Now assume material points one and two have the same y-coordi-
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nate. The two equations now have the same left-hand-side. Thus, the only solution is for the normal 

component in the 

 

x

 

 direction to be the same for both material points which, in general, is inconsistent 

with our initial assumptions about the normal vectors. A similar analysis can be done for material 

points that have the same 

 

x

 

-coordinate. The result in this case requires that the normal component in 

the 

 

y

 

-direction be the same for the two particles. It is difficult to infer the performance of this method 

given the above discussion because when one assumes the material points have an identical 

 

x

 

 or 

 

y

 

 

local coordinate nothing is said about the other. The following example helps to quantify the problems 

associated with predicting normals to an arc within a cell.

Figure 83 shows the color contours and normals to a circular arc. The lower plot of Figure 83 and 

those in Figure 84 show the normals after progressively rotating the circular arc about the center of 

the cell. It can be seen that material points that have nearly the same 

 

y

 

 coordinate (near the top of the 

arc) have 

 

x

 

 components of normals that are nearly the same. This is most evident in the lower plot of 

Fig. 84 where the material points with identical 

 

y

 

 coordinates are labeled.

p1

Figure 82. Unit Cell with Three Material Points
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7.7 Using Quadratic Shape Functions in the Mass Matrix Method

Using higher order shape functions should improve the calculation of the normal vectors in cer-

tain situations when the method with linear shape functions breaks down. Equations 7.13 and 7.14 

can be rewritten with higher order shape functions as

(7.18)

where c ranges from one to nine. The quadratic shape functions, ,are defined in Appendix 

Section A.3.2. Here, colors are defined at nine cell centers instead of four grid vertices. The particle 

normals are defined to be

(7.19)

Figure 85 illustrates the normals to a circular arc and color contours using quadratic shape func-

tions. The membrane material point positions are identical to those of Fig. 84(bottom). Cells sur-

rounding the one with material points which were empty are not shown. The predicted normal vectors 

lay on top of the theoretical ones, which is an improvement from the previous method. Also, note that 

the contour of color within the cell is circular. This circular contour is not possible using linear shape 

functions.

The dog-bone membrane expansion problem discussed in Section 6.2 (page 75) was run using the 

mass matrix method with linear shape functions. The results showed that the membrane expanded too 

much indicating errors in the normal vectors. Thus, the mass matrix method with quadratic shape 

functions was used, and the results were better. Figure 86 compares the normals to the membrane par-

ticles at t=0 using the mass matrix method with quadratic shape functions and the connectivity of the 

membrane points. The normals are accurate with the mass matrix method. Figure 87 compares the 

positions of material points at various times during the simulation using the connectivity approach 

and the mass matrix method with quadratic shape functions to calculate the normal vectors. The left-

hand (blue/red combinations of material points) side is the simulation using connectivity, and the 

right-hand (cyan/dark-red combinations of material points) side is the simulation using the mass 

matrix method. 

χ p
0 χcSc
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In the cases when a single membrane material point was in a cell, the region considered was 

expanded to a group of four cells and the mass matrix method with linear shape functions was used. 

Only the normal for the single membrane point was calculated using the expanded cell.

Figure 87 shows that at early times the particle positions are similar, indicating that the mass 

matrix method is calculating normals effectively. However, at later times differences are seen in the 

solutions. The radius of the membrane grows larger using the mass matrix method as compared to 

using connectivity. The reasons for this are still under investigation.
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Figure 87. Membrane Expansion Simulation Using Connectivity and the Mass Matrix Method to Determine Normals
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7.8 Chapter 7 Discussion and Summary

It is desired that a membrane simulation be performed without having to specify the connectivity 

of the material points to define the local normal-tangential coordinate system. Several methods were 

investigated that allow the membrane normal to be determined without using connectivity data. The 

quadratic and cubic methods (not using a mass matrix approach) seemed to hold promise, but they 

require more material points to “assist” in defining the normal. Also, the additional material points 

need to be clustered near the membrane to provide consistently good normal data. These methods 

failed in the practical application to a cylindrical membrane filled with a fluid under pressure. The 

only method (besides using connectivity) that worked in the practical application was the mass matrix 

method. When linear shape functions are used, a set of four equations must be solved simultaneously 

for each cell containing a membrane particle. The solution gives grid colors that when interpolated to 

the membrane material points result in a contour of constant color. The gradient of this color function 

is used to define the material particle normals. However, there are limitations to this method. For 

example, normals to a circular arc cannot be represented exactly.

A disadvantage to this method is when there is only one 

membrane material particle in a cell. The single-cell-based 

method has no way of defining a contour with only one parti-

cle. One solution may be to use the previously calculated nor-

mal until there are at least two membrane material points per 

cell. Or, a larger “ghost cell” can be defined that includes 

more material points. (Fig. 88).

The mass matrix method with linear shape functions is 

not adequate for the complex dog-bone membrane expansion problem. Therefore, a quadratic method 

was used with some success. The quadratic method can accurately calculate normals to a circular con-

tour. However, there are still limitations to this method that need to be defined.

cell with
a single
membrane
particle

ghost cell
(dashed line)

Figure 88. Ghost Cell Concept
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CHAPTER 8. STABILITY ANALYSIS

8.1 Background

A stability analysis of the material point method was motivated from simulations where unphysi-

cal material point accelerations were observed. After further study of the problems with these simula-

tions it was determined that there were two causes, neither of which were stability-related. The first 

was with the numerical implementation of the method. In some cases division by a very small grid 

mass caused unnaturally large accelerations. This problem was corrected by changing to a momen-

tum formulation where the numerator and denominator balanced. The potential benefits of the 

momentum formulation were known before this research started.

The second problem occurred during slow, quasi-static, or dynamic relaxation (static) simula-

tions when a small number of material points per cell (PPC) were used (ref Section 5.4.3, page 48). 

Because the internal force is proportional to the number of PPC in the current implementation, 

unphysical internal forces which lead to noisy increments in accelerations may result (ref Section 2, 

page 171). These noisy accelerations cause larger relative error in slow or static simulations. This 

problem can be corrected by using a larger number of PPC or by using smoothing techniques.

There have not been any numerical indications of instabilities with the MPM when applying the 

CFL condition on the timestep based on the grid size. However, a stability analysis can frequently 

give insight into how to improve the method. Since a formal analysis of the MPM method has not 

been documented, an attempt is made here at such an analysis. The results of this section show that 

the CFL condition based on the grid size is the proper criterion to apply.

8.2 Introduction

Because one full time step in the material point method involves both a Lagrangian step, where 

the material points and grid vertices move, and a regrid step, a rigorous analytical stability analysis 

that considers arbitrary movement of material points is difficult. This is especially true if material 

points are allowed to cross cell boundaries in the analysis.

The von Neumann method is used here because it is usually the easiest method to apply (Fletcher 

1991). Also, the problem is reduced to one dimension and limited to a linear elastic material.

In the von Neumann method, the errors distributed along grid lines at one time level are expanded 

as a finite Fourier series. The stability of the algorithm is determined by considering separate Fourier 
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components of the error. In a stable algorithm, the errors decay (or do not grow) from one time step to 

the next. In an unstable algorithm, the errors amplify.

For linear discrete governing equations, the corresponding error terms will satisfy the same equa-

tions. The procedure used in this analysis is as follows:

1) determine the governing equation at one grid node that advances the solution one time incre-
ment,

2) substitute for the solution variable the quantity  where , j is the grid node des-

ignator,  is the error, , and  is the grid spacing,

3) form the quantity, , where  is the gain or amplification factor,

4) determine the conditions for which , which should impose some condition on the time 
step.

For this analysis the governing equations of the material points are used. It appears that these 

equations are easier to manipulate than the equations for a grid node. This is due to the fact that the 

velocity of a material point does not change from the Lagrangian step through the regrid step, which 

is not true for a grid node. This is elaborated upon in the next section.

8.3 Notation for Time Levels and Relevant Equations

Table 9 gives the material point equations and corresponding diagrams for a full time step of the 

MPM algorithm. It is assumed that the initial material point stress and initial internal grid forces are 

zero. Two-dimensional figures are used for illustration purposes only.

The material point equations at time level L2 will be written in terms of material point quantities 

at time level L1.

εk
e

iθj
i 1–( )=

ε θ π x∆= x∆

G G
εk 1+

εk
-----------=

G 1≤
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Table 9: Material Point Method - Equations for One Full Time Step

Time 
Level

Description Configuration Equations

0

Given initial material 
point positions, 

stresses, and veloci-
ties. Map initial quan-

tities to grid.

L1

Lagrangian step: The 
grid equations of 

motion are solved. 
Material point veloci-
ties and positions are 
updated. The updated 
material point veloci-
ties are used to deter-

mine new grid 
velocities from which 
material point strains 

are calculated.

re-
grid

Return grid to original 
or arbitrary config. -

1

The material point 
quantities are 

mapped to the new 
grid vertices.

L2

Lagrangian step: The 
grid equations of 

motion are solved. 
Material Point veloci-
ties and positions are 

updated.
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8.4 Stability of the Material Point Equations

Consider the one dimensional problem shown in Figure 89 with grid nodes indexed 1,..., j-1, j, 

j+1,...,n and, similarly, material points designated 1,..., p-1, p, p+1,...,n-1. Both the grid nodes and 

material points are equally spaced, with spacing . There is one material point per cell. The follow-

ing simplifying assumptions will be made at some point in the analysis (it will be clearly stated when 

these assumptions are made):

• The material points have the same mass, m, density, , and Young’s modulus, E.

• The material points initially have the same spacing relative to one another. This does not 

assume that they are in the center of the cell. This will lead to the assumption that the initial 

grid masses, M, are equal to m, and that the shape function values are initially equal. That is, 

N1 for all material points is the same and N2 for all material points is the same, but N1 does 

not necessarily equal N2.

Figure 89. One-Dimensional Problem Notation

The one dimensional shape functions for element [j,j+1] are

(8.1)

where  is the x coordinate of grid node j+1, and xp is the x coordinate of material point p. These 

shape functions have compact support. That is, the shape functions are nonzero for material point p 

only in the element which contains material point p. Figure 90 illustrates the shape functions associ-

ated with each element. Note that for brevity the “(x)” has been dropped from the shape functions, 

and the shape functions are a function of the x coordinate. The contribution of material point p to 

nodes j and j+1 is determined by shape functions Nj and (1-Nj).

∆x

ρ

material particle

grid node

p-2 p-1

j-1 j+1j

x

j-2 j+2 n1

p p+1 p+2

N1 N j xp( )
x j 1+ xp–

x∆
-----------------------= = N2 xp( ) 1 N1– 1 N j–= =

x j 1+
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Figure 90. Shape Functions Associated with Each Element

The governing equations will be developed for material point p, in element [j,j+1]. First the equa-

tion for the velocity at time level L2 for material point p will be determined. Then the terms of this 

equation will be subsequently expanded until only terms at time level L1 are present. The velocity 

increment for material point p is determined by the forces at the surrounding nodes, j and j+1, 

(8.2)

where superscript L2 designates the Lagrangian velocity at step 2, superscript 1 designates the mate-

rial point velocity at step 1,  is the time increment and  is the mass value at grid node i. Expand-

ing the summation about the indicated grid nodes gives

(8.3)

where it is understood that  is replaced by  so that the indices of the shape 

function and material point coordinate, j and p, are the same.

Now the forces at nodes j and j+1 can be written in terms of the stresses at time level 1. This gives

(8.4)

where  is the gradient of the shape function (the one-dimensional equivalent to equation 3.14). 

Making the assumptions that all material points have the same mass, m, and density, , simplifies this 

j-1 j+1jj-2 j+2 n1

Nj-2 1-Nj-2

Nj-1 1-Nj-1

Nj 1-Nj

Nj+1 1-Nj+1

p-2 p-1 p p+1 p+2
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equation to

(8.5)

After substituting the expressions for the gradients, equation 8.5 becomes

(8.6)

Updating equation 8.3 with the force values from equation 8.6 gives

(8.7)

Now the stresses in equation 8.7 will be written in terms of grid velocities and subsequently mate-

rial point velocities. The stress at a material point is written in terms of the surrounding grid node 

Lagrangian velocities, . For example

(8.8)

where the factor of  takes strain rate to strain, and the factor E takes strain to stress. By shifting the 

indices in equation 8.8, expressions for the stresses at material points p-1 and p+1 can be written as

(8.9)

Letting  and substituting equations 8.8 and 8.9 into 8.7 gives

f j
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– ṽ j

L1
+{ }= σp 1+

1
E

∆t
∆x
------ ṽ j 1+
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(8.10)

Now, the Lagrangian grid velocities need to be written in terms of material point velocities. For 

grid node j-1, this is written 

(8.11)

Since the shape function index always matches the material point index, we can simplify the notation 

by letting

(8.12)

Shifting indices in equation 8.11 gives the Lagrangian velocities at other grid nodes as 

(8.13)

Equations 8.12 and 8.13 need to be substituted into equation 8.10. First, rewrite equation 8.10 as 

(8.14)

where
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(8.15)

Now expand aL1 to give 

(8.16)

and bL1 to give

(8.17)

Now apply the assumption that the material points are initially evenly spaced so that the grid 

masses equal the material point masses initially. This implies that all  are equal, but 

the indices will be carried to illustrate the form of the equations. Then aL1 and bL1 simplify to 

(8.18)
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(8.19)

Let  and  where the superscript “(1)” 

indicates this term is a function of variables at the “1” time level. Similarly, let  

Then equation 8.14 can be rewritten as

(8.20)

where the superscript on  was changed from 1 to L1, because  for all material points. 

Next, the material point velocities in equation 8.20 need to be factored. Consider the term 

. This is expanded to give

(8.21)

which is simplified to

(8.22)
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(8.23)

Note that if all material point velocities are initially equal, then  and equation 8.23 

reduces to . This makes sense because if the material point velocities are equal there will 

be no velocity gradient, and, thus, no strains or internal forces are acting on the system.

To this point we have carried node indices for the shape functions at time level L1. The assump-

tion that the material points are initially equally spaced results in

(8.24)

where N is the initial value.

The coefficients  and  can be written in terms of material point velocities at time level 

“L1.” Recall that

(8.25)

and

(8.26)

The expression for  depends on the old value, , and the velocity increments . Thus,

(8.27)
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(8.28)

Replace in equation 8.28 the expression for grid node velocities and write them in terms of mate-

rial point velocities. As in equation 8.11, this gives

(8.29)

and the other  have similar forms obtained by shifting the indices. Setting all ini-

tial material point velocities to zero except , substituting equation 8.29 and similar forms into equa-

tions 8.25 and 8.26 and substituting this into equation 8.23 gives1

(8.30)

Now assumptions can be made on the initial location of the material points which defines the shape 

function values, N. For the first case consider N=0 which gives

(8.31)

Neglecting the higher order term in equation 8.31 gives

(8.32)

Substituting the error  for  and assuming  gives the relation

1. Algebraic calculations performed with Maple (see Appendix A.4.14).
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(8.33)

This gives an amplification factor of 

(8.34)

For  two cases are evaluated. The first is 

(8.35)

which puts no condition on the time step.

The second case, , gives 

(8.36)

which is the Courant or CFL condition. For N=1, the final result is the same as in equation 8.36.

For N=0.5, where the material points are initially in the center of the cell, equation 8.30 reduces to

(8.37)

which, after neglecting higher order terms, substituting  for , and assuming that , gives

(8.38)

For this case the amplification factor is 

εp
L2 εp

L1
c

2 ∆t
∆x
------ 

  2 2εp
L1∆x ∆t⁄( )

εp
L1 ∆x ∆t⁄+( )

-----------------------------------
 
 
 

– εp
L1

c
2 ∆t

∆x
------ 

  2
2εp

L1( ) .–≈=

G 1 c
2 ∆t

∆x
------ 

  2
2 .–=

G 1≤

G 1≤ c
2 ∆t

∆x
------ 

  2
2– 0≤⇒

G 1–≥

G 1–≥ c–
2 ∆t

∆x
------ 

  2
2 2–≥⇒

c
2 ∆t

∆x
------ 

  2
1≤

∆t
∆x
c

------≤

vp
L2

vp
L1

c
2 ∆t

∆x
------ 

  2
2vp

L1 vp
L1( )

2
4 ∆x ∆t⁄( )2

–

vp
L1( )

2
16 ∆x ∆t⁄( )2

–
---------------------------------------------------

 
 
 
 

–=

εp vp εp 1«

εp
L2 εp

L1
1 c

2 ∆t
∆x
------ 

  2
2εp

L1 4 ∆x ∆t⁄( )2

16 ∆x ∆t⁄( )2
------------------------------

 
 
 

–
 
 
 

≈ εp
L1

1
c

2

2
----- ∆t

∆x
------ 

  2
– 

   .=



Chapter 8 - Stability Analysis

141

(8.39)

which puts no condition on the time step.

(8.40)

The other case gives the following result.

(8.41)

This result (equation 8.41) indicates that using material points initially in the center of the cell allows 

for a time step twice as large as the time step that can be used when material points are initially on the 

sides of the cells.

8.5 Numerical Simulations Performed to Test Analytical Results

A model problem was set up test the results of the previous analysis. This elastic one-dimensional 

problem used five material points, all with zero initial stress. The input file is listed in the appendix on 

page 189. The center material point was perturbed with a velocity in the +x direction. Table 10 gives 

the parameters used in the problem.

Table 10: Stability Test Problem Parameters 
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The time step was varied and the energy was monitored over time as an indicator of stability. Fig-

ure 91 shows the energy history plots. The time step was varied from a value below that of the CFL 

condition to a value above it. The legends in the plots indicate the size of the time step.

For material points initially in the center of the cells, the first unstable time step observed was 

twice that of the CFL limit. For material points at the sides of the cells, the first unstable time step 

observed was a factor of 1.1 times the CFL limit. The results are close to the analytical results involv-

ing factors of 2.0 and 1.0 times the CFL limit, respectively.

density 1.0

velocity perturbation 1.0e-8

Table 10: Stability Test Problem Parameters (Continued)

Item Description Value
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(a) material points initially in center of the cells

(b) material points initially to the side of the cells

Figure 91. Numerical Results of Stability Tests for: (a) Points Initially in the Cell Cen-
ters and (b) Points Initially at the Sides of the Cells
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8.6 Stability Summary

In this chapter a stability analysis of the MPM was performed with many simplifying assump-

tions. The analysis assumes a one-dimensional linear-elastic material with one material point per-

turbed from its initial position. The material point is not allowed to change cells following the 

perturbation. These assumptions must be made to reduce the equations to a manageable form.

The results of the analysis show that the critical time step is a function of the location of the mate-

rial points. For the cases examined the smallest critical time step corresponds to the CFL condition. 

Numerical tests were performed simulating the particular cases that were studied analytically. Favor-

able agreement is seen between the critical time step determined analytically and the critical time step 

observed in the simulations.
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The first two chapters are introductory in nature. In Chapter 1 the problem of fluid-structure 

interaction is introduced. The material point method (MPM) is identified as a potential framework 

for simulating the interaction of fluids and solids. The structure considered in this work is a mem-

brane which had not been previously modeled using the MPM. Chapter 2 summarizes the current lit-

erature and methods that are used to simulate fluid-structure interaction. One of the areas identified 

as needing improvement is the handling of interfaces. The most popular method (as measured by the 

amount of literature on the subject) for simulating the interaction of fluids and solids is a coupling 

between an Eulerian method for the fluid and a Lagrangian approach for the solid. In this type of 

coupling there is no problem with fluid mesh distortion. One disadvantage of the method is that the 

interface of the structure with the Eulerian mesh must be determined and the appropriate interface 

conditions have to be imposed. Herein lies the opportunity for improvement by using the MPM. No 

slip contact conditions and enforcement of the interface conditions are inherent to the MPM and are 

obtained at no additional computational cost.

In Chapter 3 the basic formulation for the MPM is presented and forms the baseline for the 

research. The formulation fits within a framework that is standard to the finite element approach. The 

MPM employs a fixed mesh and Lagrangian material points that move through the mesh. The weak 

forms of the governing equations are determined. A discrete form of the momentum equation is 

obtained that is solved at grid or mesh vertices, and the relationship between the grid solution and 

material points is presented. When a diagonal mass matrix is used, a simple explicit algorithm is the 

result.

In Chapter 4 the modifications necessary to simulate compressible viscous fluids are discussed. 

The additions to the method are a new constitutive equation and the solution of the energy equation 

which is necessary to employ an equation of state (i.e., the ideal gas law) for the fluid. Different 

methods of determining fluid density were investigated. The nearest-grid-point method is noisy, but 

this is improved by using the continuity equation or a higher order interpolant (e.g., quadratic) to 

determine material point density. The fluid formulation is validated by simulating a propagating 

shock (Sod’s problem) and a gas expansion problem.

The modifications to the MPM necessary for the simulation of a membrane are described in 

Chapter 5. Prior to the beginning of the research it was unknown if the method could accurately 

resolve the forces along a contour of material points using a reasonable mesh size, especially if only 



 

Chapter 9 -Summary and Conclusions

146

 

a single layer of points were used through the thickness. The results indicate that indeed the method is 

quite successful at describing a membrane. The use of multiple particles through the thickness was 

investigated and determined not to be feasible at this time due to the requirement of connectivity data 

between the material point layers. With success of a single layer of particles for representing a mem-

brane there is also no strong need to develop a formulation with multiple layers.

A novel way to incorporate a wrinkle in a membrane is introduced. A “one-way” constitutive 

equation is proposed that results in a material point contributing zero force to the grid when it is in 

compression. The compressive strain is accumulated and released incrementally until the particle is 

determined to be in tension, the point at which the wrinkle is “pulled out.”

Several model problems are solved involving a membrane. A swinging pendulum problem is sim-

ulated, and convergence is demonstrated. A spring-mass system is simulated, and the results compare 

favorably to theory. Other simulations show results that are intuitively correct.

Chapter 6 discusses how the fluid and membrane descriptions can be combined to model fluid-

membrane interaction. The approach is simple in that nothing “extra” has to be done. Fluid and mem-

brane points are tagged as such, and the appropriate constitutive equations are invoked for each mate-

rial point. The standard MPM approach to solving the governing equations using the internal forces 

from the fluid and membrane is used. This method for fluid-structure interaction is simple and robust. 

Three model problems demonstrate the utility of the method. Convergence is demonstrated in the 

membrane expansion problem with four consecutively refined simulations. The impact of a probe 

with an airbag shows reasonable agreement with experiment. The most dramatic part of these results 

is that a complex phenomena involving retention of gas in the airbag and impact of the probe with the 

airbag is simulated with a simple algorithm.

Chapter 7 summarizes the approaches that were investigated to obtain the normal to the mem-

brane at a material point without using connectivity data. Once the normal vector is known, it is easy 

to ensure that the stresses in the membrane points are tangent to the membrane. Although no work has 

been in this research with respect to three-dimensional simulations, it was realized that having to use 

connectivity data of material points to define the surface in 3-D would be difficult, and it was desired 

not to preclude the extension of this work to 3-D.

One method was found to be superior to the others. The current implementation involves solving a 

four-by-four or nine-by-nine system of equations for grid or cell colors that, when interpolated to the 

material points, defines a contour of constant color. The gradient of this constant contour defines a 



 

Chapter 9 -Summary and Conclusions

147

 

normal. This method, known as the mass matrix method, was used to simulate an oscillating fluid-

filled cylindrical membrane, and the results are virtually the same as when the material point connec-

tivity is used. The dogbone-shaped membrane expansion problem was also simulated without using 

connectivity.

Chapter 8 presents a stability analysis of the MPM for a linear elastic material in one dimension. 

Simplifying assumptions must be made to have tractable equations. The results indicate that the CFL 

condition governs the critical time step.

To conclude, this research has developed a version of the material point method applicable to 

problems involving fluid-membrane interaction. At each step of the development the results were val-

idated. The inherent simplicity of the explicit algorithm has been retained, and the method is shown to 

be effective on a number of problems. However, for applications to industrial problems, a three-

dimensional version of the code is necessary. This research provides the foundation that indicates the 

work implicit in a three-dimensional formulation is justified. Overall, the simplicity and generality of 

the algorithm would make solutions to complex fluid-membrane interaction problems tractable with 

modest computer resources.
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A.1C

 

ONTACT

 

-R

 

ELEASE

 

 A

 

LGORITHM

 

A.1.1 Background

 

In attempting to run several example problems involving contact, it was observed that two bodies 

sometimes “stick” to one another unphysically when they should separate. This is caused in some sit-

uations when material points from two bodies come close to each other and are in the same computa-

tional cell.

A simple example of two impacting bars will demonstrate the problem, and then an algorithm is 

described that allows the bars to release from one another.

 

A.1.2 Two-Bar Impact With No Contact-Release Algorithm

 

The initial conditions for the two-bar impact problem are shown in Fig. 92. The left bar has an ini-

tial nonzero velocity , and the right bar is stationary. What should happen in this situation for a 

purely elastic impact where the bodies have no resulting strain energy is that the right bar will move 

to the right with velocity , and the left bar will have zero velocity.

What happens in reality for elastic materials is that the right bar will move off with a larger veloc-

ity than the left bar, which will be nonzero. The ratio between the initial and final velocities is the 

coefficient of restitution, , where .

vr
0=0

vl
0

For both bars:

E=1x105

plane stress 

ν 0.3=

ρ 1=

left bar right bar

Figure 92. Initial Conditions for Two-Bar Impact
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Figure 93(a) shows the initial material point configuration and the configuration at 

 

t=0.5

 

. It can be 

seen that the two bodies do not separate. This is more evident in the lower plot of the center of mass 

velocity and position. The velocity of the two bodies oscillate as they move to the right together. The 

portion of the velocity plots between 

 

t=0.35

 

 and 

 

t=0.425

 

 where the two bodies have constant velocity 

occurred when the bodies were separated by one cell, and thus, were not in contact with each other. 

Contact is defined to be the case when two bodies share a grid node, i.e., when material points of two 

bodies both contribute to the solution at a grid node. This does not necessarily mean that material 

points from two bodies are in the same computational cell.

Another way to look at the problem is to consider the constitutive equation for material at the sur-

face of a body. Free surfaces identify a state of plane stress. When two bodies come in contact, normal 

and shear components of the traction vector can be sustained and the constitutive equation must 

reflect this condition. When the bodies start to release, the normal component of traction becomes ten-

sile. In fact the constitutive equation should be altered back to plane stress but in a general algorithm 

this step is never performed. The result is an “apparent” sticking which is not a physical phenomenon. 

Solutions consist of altering the constitutive algorithm or checking the nodal velocities. The latter 

approach is probably the most efficient and is described next.

 

A.1.3 Algorithm to Allow Release

 

A simple algorithm is proposed that allows bodies to release. The idea is that if the bodies are 

moving toward one another, as determined by some test criterion, the standard MPM method is used. 

That is, the material points of each body are moved in the “center-of-mass” velocity field which 

enforces the no-penetration condition. If the bodies are moving away from one another, they are 

moved in their own velocity field.

Recall from equation 3.19 that center-of-mass velocities are obtained by solving and integrating 

the governing equation 

(9.1)

where  is the internal force at grid node 

 

i

 

 resulting from all material points even if they are from 

different bodies. New center-of-mass velocities are obtained from integrating the center-of-mass 

mija j
j 1=

n

∑ Fi
int Fi
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accelerations 

(9.2)

Recall that the velocity at time level 

 

k

 

 is determined from material point velocities at time level 

 

k

 

 as

(9.3)

Equations 9.1 through 9.3 can also be written for a separate body 

 

I

 

 as

(9.4)

where the internal force is from material points in body I. Equation 9.4 is integrated to give a velocity 

field on the grid due only to body I

(9.5)

where the velocity at the previous time step is determined from material points of body I

(9.6)

If the bodies are determined to be in contact, equations 9.1 through 9.3 are used, and if they are 

releasing from one another equations 9.4 through 9.6 are used.

The contact-release criterion is evaluated at each grid node that is shared by two bodies. Cur-

rently, three criteria have been evaluated. The first compares the normal component of the velocity of 

body 1 to that of body 2. The criterion at grid node i is 

(9.7)

where  is the outward grid normal from body 1, which in this case has been designated the master 

body.

The second criterion is similar, but compares the velocity of the body to the center-of-mass veloc-
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ity 

(9.8)

where the superscript cm indicates center-of-mass. This formulation is attractive because the informa-

tion as to which body is contacting body 1 is not needed. Here, body 1 is considered the master body. 

The test criteria in equations 9.7 and 9.8 gives the same result for the two-bar impact problem and the 

ball and net problem that will be described in Section 1.6. For each of these problems a single shared 

grid node was monitored at each time step throughout the entire simulation. At this grid node both cri-

teria were evaluated and were found to give identical results as to whether or not to enforce contact or 

allow release. Also the time history data for position and velocity of both bodies are the same for both 

criteria.

The third criterion does not use the master body concept. Here, if two bodies are in close proxim-

ity to one another, each of the bodies’ velocity is compared to the center of mass velocity. Release is 

allowed only if both criteria agree, and subsequent changes to contact, release, etc. are allowed only 

then. This criterion can be stated as

(9.9)

A.1.4 Calculating Grid Normals

The method for calculating the grid normals in equations 9.7 and 9.8 uses the color function 

approach described here. Each material point of a particular body is assigned a color (number) unique 

to that body. Interpolation of the material point color to the background grid defines the color func-

tion. The normals to bodies are determined by taking the gradient of this color function.

Let  be the color of a material point belonging to body I. To smooth the function somewhat, 

interpolate the material point color to cell centers using quadratic interpolation

(9.10)
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where each material point will contribute to nine cell centers with the use of the weighting function 

, and  is the cell-centered color function for body I. The normal for grid node i is calcu-

lated by mapping the cell-centered color function to grid nodes using the same gradient operator 

described in Section 3

(9.11)

An example of the normals calculated using equation 9.11 is shown in Fig. 94. Due to the nine 

point stencil of the quadratic interpolating function more normals are calculated than would be used 

in the contact-release algorithm and, thus, only the pertinent normals are shown in the figure.

Sc
2( ) Xp( ) χc

I( )

ni
I( )

Gciχc
I( )

c 1=

9

∑=
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A.1.5 Two-Bar Impact With Contact-Release Algorithm

Now let’s return to the two-bar impact problem and see the results using the contact-release algo-

rithm as described in Appendix 1.3. The criteria listed in equations 9.7 and 9.8 give the same results, 

which are presented here. Figure 95(a) shows the material point positions at t=0 and t=0.5. At t=0.5 

the right bar has moved away from the left bar. This is more evident in Fig. 95(b) where the center of 

mass velocity of the left bar goes from 2 to about 0.3 and the right bar goes from 0 to about 1.7.

The coefficient of restitution is calculated to be . The tilde is 

applied to  to indicate a pseudo coefficient of restitution that includes numerical dissipation. This 

value is reasonable for impact of two elastic bodies and more physical than  which is the result 
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Figure 95. Two-Bar Impact Simulation with the MPM and the Contact-Release Algo-
rithm: (a) Material Point Positions, and (b) Center of Mass Velocities and Positions
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without the contact-release algorithm.

It has been observed that the contact-release algorithm is dissipative whereas for elastic bars, there 

is no dissipation. Figure 96(a) shows the energy history plot for the simulation above where . 

There is about an 11% drop in energy after the impact. Figure 96(b) shows the total energy histories 

for two different bar impact simulations. Here  and results are plotted for two mesh sizes. 

The dissipation appears to be less in the more refined simulation, and the amount of energy dissipated 

is about 2% in each case. For these simulations the more refined simulation showed , and 

the less refined showed . The energy spike in the less refined simulation represents only 

about a 3% increase and is attributed to noise.
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A.1.6 Ball and Net Simulation

The physical situation for this simulation is shown in Fig. 97. A disk (called a ball) of radius R=3 

has an initial velocity in the x direction and impacts a wire (called a net) which has a length of 10. The 

net is modelled as a uniaxial membrane and the ball uses a plane stress model. Both are assumed to be 

linear elastic.

The parameters of the problem are listed in Table 11.

It was this problem that motivated the development of a release algorithm. Originally the reason 

to run this simulation was to demonstrate the membrane formulation, but it was discovered that the 

ball would stick to the net and not release properly when rebounding to the left.

Figure 98 shows the simulation results without a contact-release algorithm. The ball actually does 

release from the net, but the velocity is very small (~0.1) as it releases to the left. The lower plot 

Table 11: Parameters for the Ball and Net Simulation

 Parameter Ball Value Net Value

Density 1.0 0.5

Young’s Modulus 1 x 104 1 x 104

Poisson’s Ratio 0.3 0.0

Initial Velocity 1.0 0.0

thickness n/a 0.0125

Figure 97. Ball and Net
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showing the ball velocity indicates that the ball does not release when the velocity is the maximum to 

the left, but sticks to the net which slows it down.

Figure 99 shows the simulation results with a contact-release algorithm. Figure 100(top) shows 

that the ball releases from the net when the ball’s velocity is (approximately) maximum to the left. 

This is what should occur in a realistic situation. The bottom plot of this figure shows the energy his-

tory. After approximately t=0.8 the ball total and net total energies remain approximately constant 

indicating that the two bodies are not interacting.

Figure 101 shows the ball and net grid normals calculated with the algorithm described in Section 

1.4. As in the previous figure showing the bar normals, the normals that would not be used in calcula-

tions are not shown. Note that the normals from the membrane are directed outward from both sides 

of the membrane. This gives the membrane an effective thickness for contact problems. The mem-

brane can contact materials from both sides without the problem of having to know from which side 

of the membrane the normal is directed, which may occur, for example, in finite element calculations 

with shell elements.

In fact this method allows the membrane to be pinched between two materials which cannot be 

done with conventional Lagrangian finite element contact schemes. The breakdown in the finite ele-

ment contact approach to pinching occurs when the thin material is forced out of one body and imme-

diately goes inside the other body. The contact algorithm responds by forcing the thin material out of 

this second body and back inside the first.

The disadvantage to the contact in the MPM is that the boundaries of the material are somewhat 

smeared over a cell width. Thus, the fidelity of precisely defining the contact surfaces may be lost. 

However, the fidelity improves as the mesh is refined.
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Figure 99. Ball and Net Material Point Plots With Contact-Release Algorithm
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Figure 101. Ball and Net Normals at Time t~1
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A.2 EXAMPLE: NOISE FROM A PARTICLE CHANGING CELLS

This material supports the discussion in Section 5.4.3, page 48. Consider the mass-spring simula-

tion shown in Fig. 102 that consists of ten material points numbered sequentially from top to bottom. 

This problem was run with the MPM code.

At some time in the simulation, material point 6 is just about to cross cell boundaries. At this point 

in the simulation there are stresses, sy, (in the y-direction) and grid node forces, fy, as shown below.

The stresses are constant in each cell because the velocity gradients in the y-direction are constant in 

each cell.

At the next Lagrangian step the particle position and velocity are updated. Then the grid nodes are 

updated with new velocities to calculate strains. Next, we regrid. Now material point 6 is in the next 

top: zero velocity BC

g

material point 1

material point 10

material point 6

mass=100x others
x

y

Figure 102. Set Up for a MPM Spring Simulation

sy=123,034

sy=181,170

fy=66

fy=111

fy=3,114

Figure 103. Forces and Stresses Prior to Material Point Crossing a Cell Boundary

}
}
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lower cell, but its stress was calculated based on velocity gradients from its previous cell. So the situ-

ation with stresses and new grid forces is

Note the change in direction of forces which occurs since material point 6 is in a cell with two 

other material points that have a large stress (a total of 3 material points) and the cell above is left with 

only two particles that have a lower stress. This situation causes material point 6 to have an unphysi-

cal negative y acceleration (down), and, in fact, induces a slowly developing instability defined as an 

increase in energy over time.

There may be another contributing factor to the increase in energy. Just when this situation with 

point 6 occurs, the spring is nearly at its peak of vibration. Thus, the velocity of point 6 is small when 

it crosses the cell boundary. As noted in the discussion in Section 5.4.3, page 48, this problem is alle-

viated if force smoothing or more material points per cell are used.

sy=123,274

sy=123,274
sy=179,802
sy=179,802

fy=2,183

fy=-3,940

fy=5,123
in same cell

}

Figure 104. Forces and Stresses After Material Point 6 Crosses a Cell Boundary
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A.3 INTERPOLATION FUNCTIONS

A.3.1 Linear Interpolation

For linear mapping or shape functions the 

convention shown in Fig. 105 is adopted. A 

rectangular cell of size  by  is defined 

with four grid nodes locally numbered from 1 

to 4 in a counterclockwise manner. The cell 

in physical space is mapped to a unit cell in 

logical space. A material point p resides at 

logical (or local) coordinates (r,s) in the cell. 

The logical coordinates range from 0 to 1 

with the origin at the bottom left grid node. 

The four linear shape functions defined over 

the cell in logical space are:

N1=(1-r)*(1-s),

N2= r*(1-s),

N3= r*s,

N4= (1-s)*r.

Derivatives of the shape functions are used to define a discrete gradient and divergence. The deriva-

tives with respect to the global x direction are:

G1x=-(1-s)/ ,

G2x= (1-s)/ ,

G3x= s/ ,

G4x=-s/ ,

and the derivatives with respect to the global y direction are:

G1y=-(1-r)/

cell

grid nodes
locally numbered
counterclockwise

1 2

34

p

r

s

Figure 105. Nomenclature

x

y

∆x

∆y

∆x ∆y

∆x

∆x

∆x

∆x

∆y
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G2y=-r/

G3y= r/

G4y= (1-r)/

A.3.2 Quadratic Interpolation

In this case the logical coordinates r and s are defined from the cell center as shown in Fig. 106(a) 

and range from -0.5 to +0.5. A particle in cell 1 will contribute to the cell centers of the nine neighbor-

ing shown in Fig. 106(b).* The support of the quadratic shape function is  and 

similarly for s.

The weighting functions, S(2), for each of the nine cell centers as a function of the material point’s 

logical coordinates are listed in Table 12. 

* Note that this function is mapping to cell centers and not grid vertices.
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These functions are denoted  where the “(2)” indicates a quadratic interpolation func-

tion, and “c” indicates the cell index. Table 13 lists the derivatives of the quadratic interpolation func-

tions.

Table 12: Quadratic Interpolation Functions for a Unit Cell in Logical Space

=(0.75-r2)*(0.75-s2)

=0.5*(0.5+r)2*(0.75-s2)

=0.5*(0.75-r2)*(0.5+s)2

=0.5*(0.5-r)2*(0.75-s2)

=0.5*(0.75-r2)*(0.5-s)2

=.25*((.5+r)*(.5+s))2

=.25*((.5-r)*(.5+s))2

=.25*((.5-r)*(.5-s))2

=.25*((.5+r)*(.5-s))2

Table 13: Derivatives Quadratic Interpolation Functions

x derivatives y derivatives

=- 2r (.75 - s2)/

=(.5 + r) (.75 - s2 )/

=-r(.5+s)2/

=-(.5-r)(.75-s2)/

=-r(.5-s)2/

=.5(.5+r)(.5+s)2/

=-.5(.5-r)(.5+s)2/

=-.5(.5-r)(.5-s)2/

=.5(.5+r)(.5-s)2/

= - 2s (.75 - r2 )/

=-s(.5 + r)2/

=(0.75-r2)(.5+s)/

=-s(.5-r)2/

=-(.75-r2)(.5-s)/

=.5(.5+r)2(.5+s)/

=.5(.5-r)2(.5+s)/

=-.5(.5-r)2(.5-s)/

=-.5(.5+r)2(.5-s)/

S1
2( )

S2
2( )

S4
2( )

S6
2( )

S8
2( )

S3
2( )

S5
2( )

S7
2( )

S9
2( )

Sc
2( ) Xp( )

S1x
2( ) ∆x

S2x
2( ) ∆x

S4x
2( ) ∆x

S6x
2( ) ∆x

S8x
2( ) ∆x

S3x
2( ) ∆x

S5x
2( ) ∆x

S7x
2( ) ∆x

S9x
2( ) ∆x

S1y
2( ) ∆y

S2y
2( ) ∆y

S4y
2( ) ∆y

S6y
2( ) ∆y

S8y
2( ) ∆y

S3y
2( ) ∆y

S5y
2( ) ∆y

S7y
2( ) ∆y

S9y
2( ) ∆y
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A.4 INPUT FILES

Input files are listed in boxes. In some cases there are two input files for each simulation. The sec-

tion and the page number containing the simulation are listed in the heading.
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A.4.1 Sod’s Problem (Section 4.1, page 36)

'"ary'"
"sods problem" '
$in
nx=101, ny=2, iprint=0, igen=1,gravc=0.0,
xleft=0.0e0,xright=1.0e0,ybot=0.e0,ytop=0.01,cntr=1.0,
tmax=0.143,tstep=1.d-4,dtmax=1.d-4,tplt=0.4,
tol=1.e-4,miter=30,large=.false.,wl=6,wr=6,wb=6,wt=6
iout(13)=1,tiout(13)=0.0501,
iout(30)=0,tiout(30)=0.01,
iout(33)=0,tiout(33)=0.001,
iout(34)=0,tiout(34)=0.01,
iout(35)=0,tiout(35)=5.00,
iout(36)=0,tiout(36)=0.01,
iout(37)=0,tiout(37)=2.5e-1,
iout(38)=0,tiout(38)=0.01,
iout(39)=1,tiout(39)=0.05
$
$fluid
mu=.00, gm1=.4, siep(1)=2.50, siep(2)=2.0, lambda=1.00,
coef1=1.0,coef2=1.0
$
$regrig
$
$reg
nreg=2,
nvi=4,4,
xvi(1,1)=0.0e0,.5e0,0.5e0,0.0e0,
yvi(1,1)=0.0e0,0.0e0,0.01e0,0.01e0,
xvi(1,2)=0.5e0,1.0e0,1.0e0,0.50e0,
yvi(1,2)=0.0e0,0.0e0,0.01e0,0.01e0,
xcenter=0.25e0, ycenter=0.21e0,
rix(1)=0.0e0, rex(1)=200.,
riy(1)=0.0e0, rey(1)=200.,
rix(2)=0.0e0, rex(2)=200.,
riy(2)=0.0e0, rey(2)=200.,
nprg=9,9,
densir(1)=1.e0,densir(2)=0.1250,
matr(1,1)=1.e5,0.0e0,10.e25,2.e25,1.0e20,1.e2,0.e0,
matr(1,2)=1.e5,0.0e0,10.e25,2.e25,1.0e20,1.e2,0.e0,
ipath(1,1)=3,3,3,9,
ipath(1,2)=3,3,3,9,
vrx(1)= 0.0e0,
vry(1)= 0.0e0,
vrx(2)= 0.0e0,
vry(2)= 0.0e0
$

Box 1. Input File For Sod’s Problem
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A.4.2 Gas Expansion (Section 4.2, page 40)

'"ary"'
'"1/4 cylinder gas expansion" '
$in
nx=21, ny=21, iprint=0, igen=1,
xleft=0.500e0,xright=1.50e0,ybot=0.500e0,ytop=1.50e0,cntr=1.0,
tmax=0.02d0,tstep=0.001e0,dtmax=0.001e0,tplt=0.5,
tol=1.e-4,miter=30,large=.false.,wl=6,wr=1,wb=6,wt=1
iout(13)=1,tiout(13)=0.5,
iout(30)=0,tiout(30)=1.d-1,
iout(31)=0,tiout(31)=1.d-1,
iout(32)=0,tiout(32)=1.d-1,
iout(33)=1,tiout(33)=0.02,

$fluid
mu=.00e0, gm1=.4, siep(1)=250.0, lambda=0.00,
coef1=0.0,coef2=0.0
$
$regrig
$
$reg
nreg=1,
nvi=4,
xvi(1,1)=0.0e0,1.0e0,1.0e0,0.0e0,
yvi(1,1)=0.0e0,0.0e0,1.0e0,1.0e0,
xcenter=0.5, ycenter=0.5,
rix(1)=0.0d0, rex(1)=0.376,
riy(1)=0.0d0, rey(1)=0.376,
nprg=9,
densir(1)=1.e0,
ipath(1,1)=3,3,3,7,
vrx(1)= 0.0e0,
vry(1)= 0.0e0,
$

Box 2. Input For Gas Expansion Simulation
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A.4.3 Spring-Mass Simulation (Section 5.5, page 50)   

'"ary"'
'"mass on a single vertical spring " '
$in
nx=2, ny=21, iprint=0, igen=0,
xleft=0.00e0,xright=0.100e0,ybot=0.00e0,ytop=2.00e0,cntr=1.0,
tmax=0.101d0,tstep=0.18d-5,dtmax=0.18d-5,tplt=0.5,
tol=1.e-4,miter=30,large=.false.,wl=1,wr=1,wb=1,wt=0
iout(13)=1,tiout(13)=0.2,
iout(30)=0,tiout(30)=0.001,
iout(31)=0,tiout(31)=1.d-1,
iout(32)=1,tiout(32)=0.2,
iout(33)=1,tiout(33)=0.0002,
iout(34)=1,tiout(34)=0.0002,
gravc=-250.0d0
methd=0
$
$fluid
$
$regrig
$
$reg
$

Notes on running this problem: Hardwire mass of heavy particle. 
Make sure input in file 2 for no. particles per cell is correct.

Box 3. Input File 1 for Spring-Mass Problem 

 1.0d-1       !density
 1.d6,0.0d0,10.d25,2.d25,1.0d25,1.d2,0.d0 !material cons

 3,3,3,8      !constitutive equation
10            !no. particles in the sequence
10,3          !total no. particles, no. per cell
0.0500001.9900000.000.000.000.000.00
0.0500001.9566670.000.000.000.000.00
0.0500001.9233330.000.000.000.000.00
0.0500001.8900000.000.000.000.000.00
0.0500001.8566670.000.000.000.000.00
0.0500001.8233330.000.000.000.000.00
0.0500001.7900000.000.000.000.000.00
0.0500001.7566670.000.000.000.000.00
0.0500001.7233330.000.000.000.000.00
0.0500001.6900000.000.000.000.000.00

Box 4. Input File 2 for Spring-Mass Problem 
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A.4.4  String-Mass (Section 5.6, page 54)

The first input file is identical to that of the spring-mass simulation. The second input is different 

and is listed in Box 5.

Box 5. Input File 2 for String-Mass Simulation

 1.0d-1   !density
 1.0d6,0.00d0,10.d25,2.d25,1.0d25,1.d2,0.d0
 3,3,3,8         !constitutive equation
10
10,3.0
0.050000 1.990000 0.00 0.00 0.00 0.00 0.00
0.050000 1.956667 0.00 0.00 0.00 0.00 0.00
0.050000 1.923333 0.00 0.00 0.00 0.00 0.00
0.050000 1.890000 0.00 0.00 0.00 -1.d5 0.00
0.050000 1.856667 0.00 0.00 0.00 -1.d5 0.00
0.050000 1.823333 0.00 0.00 0.00 -1.d5 0.00
0.050000 1.790000 0.00 0.00 0.00 -1.d5 0.00
0.050000 1.756667 0.00 0.00 0.00 -1.d5 0.00
0.050000 1.723333 0.00 0.00 0.00 -1.d5 0.00
0.050000 1.690000 0.00 0.00 0.00 0.00 0.00
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A.4.5 Pendulum Simulation (Section 5.7, page 56)

The pendulum problem requires two input files. The first is the standard input file, and the second 

is file containing the initial material particle positions. Boxes 6 and 7 show the input for the pendulum 

simulation with 40 material particles. Input for the other simulations is obtained by changing the grid 

definition and time step in the first input file, and putting in the initial particle locations in the second 

input file. 

'"ary"'
'"swinging pendulum" '
$in
nx=8, ny=11, iprint=0, igen=0,
xleft=0.00e0,xright=0.700e0,ybot=0.00e0,ytop=1.00e0,
tmax=1.75d0,tstep=2.e-5,dtmax=2.e-5,
tol=1.e-4,miter=30,large=.false.,wl=1,wr=1,wb=1,wt=0
iout(13)=1,tiout(13)=0.25,
iout(30)=1,tiout(30)=0.2,
iout(31)=0,tiout(31)=1.d-1,
iout(32)=1,tiout(32)=0.2,
iout(33)=1,tiout(33)=0.0100,
iout(34)=1,tiout(34)=0.0100,
iout(35)=0,tiout(35)=5.d-2,
iout(36)=0,tiout(36)=0.01,
iout(37)=0,tiout(37)=0.1,
iout(38)=1,tiout(38)=1.00d-2,
iout(40)=0,tiout(40)=0.1,
gravc=-20.0d0,methd=0
$
$fluid
$
$regrig
$
$reg
nreg=1
$

Notes on running this problem: Hardwire mass of heavy particle. 
Make sure its mass is 3.3. Use np2=6.06/3.03/1.515 for 20/40/80 
simulations

Box 6. Input File 1 for Pendulum Simulation
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Box 7. Input File 2 for Pendulum Simulation

 1.0d-1   !density
 1.d6,0.00d0,10.d25,2.d25,1.0d25,1.d2,0.d0 
 3,3,3,8         !constitutive equation
 40
40,3.03   !2 rows
0.333330.99990 0.0 0.0 0.0 0.0 0.0
0.327380.98203 0.0 0.0 0.0 0.0 0.0
0.321420.96416 0.0 0.0 0.0 0.0 0.0
0.315460.94629 0.0 0.0 0.0 0.0 0.0
0.309500.92842 0.0 0.0 0.0 0.0 0.0
0.303550.91055 0.0 0.0 0.0 0.0 0.0
0.297590.89268 0.0 0.0 0.0 0.0 0.0
0.291630.87482 0.0 0.0 0.0 0.0 0.0
0.285680.85695 0.0 0.0 0.0 0.0 0.0
0.279720.83908 0.0 0.0 0.0 0.0 0.0
0.273760.82121 0.0 0.0 0.0 0.0 0.0
0.267800.80334 0.0 0.0 0.0 0.0 0.0
0.261850.78547 0.0 0.0 0.0 0.0 0.0
0.255890.76760 0.0 0.0 0.0 0.0 0.0
0.249930.74973 0.0 0.0 0.0 0.0 0.0
0.243970.73186 0.0 0.0 0.0 0.0 0.0
0.238020.71399 0.0 0.0 0.0 0.0 0.0
0.232060.69612 0.0 0.0 0.0 0.0 0.0
0.226100.67825 0.0 0.0 0.0 0.0 0.0
0.220150.66038 0.0 0.0 0.0 0.0 0.0
0.214190.64252 0.0 0.0 0.0 0.0 0.0
0.208230.62465 0.0 0.0 0.0 0.0 0.0
0.202270.60678 0.0 0.0 0.0 0.0 0.0
0.196320.58891 0.0 0.0 0.0 0.0 0.0
0.190360.57104 0.0 0.0 0.0 0.0 0.0
0.184400.55317 0.0 0.0 0.0 0.0 0.0
0.178440.53530 0.0 0.0 0.0 0.0 0.0
0.172490.51743 0.0 0.0 0.0 0.0 0.0
0.166530.49956 0.0 0.0 0.0 0.0 0.0
0.160570.48169 0.0 0.0 0.0 0.0 0.0
0.154620.46382 0.0 0.0 0.0 0.0 0.0
0.148660.44595 0.0 0.0 0.0 0.0 0.0
0.142700.42808 0.0 0.0 0.0 0.0 0.0
0.136740.41022 0.0 0.0 0.0 0.0 0.0
0.130790.39235 0.0 0.0 0.0 0.0 0.0
0.124830.37448 0.0 0.0 0.0 0.0 0.0
0.118870.35661 0.0 0.0 0.0 0.0 0.0
0.112910.33874 0.0 0.0 0.0 0.0 0.0
0.106960.32087 0.0 0.0 0.0 0.0 0.0
0.101000.30300 0.0 0.0 0.0 0.0 0.0
40 mp for pendulum swing
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A.4.6 Ball and Net Simulation (Section 5.9, page 67)

'"ary"'
 '"ball and net orig" '
  $in
 nx=41, ny=41, iprint=0, igen=3,
 xleft=0.00e0,xright=10.000e0,ybot=0.00e0,ytop=10.0e0,cntr=1.0,
 tmax=4.02,tstep=0.0001d0,dtmax=0.0001d0,tplt=0.5,
 tol=1.e-4,miter=30,large=.false.,wl=0,wr=1,wb=0,wt=0,
 iout(13)=1,tiout(13)=1.0,
 iout(31)=0,tiout(31)=1.d-1,
 iout(32)=0,tiout(32)=1.d-1,
 iout(33)=0,tiout(33)=0.005,
 iout(34)=1,tiout(34)=0.005,
 iout(37)=0,tiout(37)=2.5e-1,
 iout(40)=0,tiout(40)=0.1,
 methd=0,gravc=0.0
 $
 $fluid
 $
 $regrig
 $
 $reg
 nreg=1,
 nvi=4,
 xvi(1,1)=0.0e0,10.0e0,10.0e0,0.0e0,
 yvi(1,1)=0.0e0,0.0e0,10.0e0,10.0e0,
 xcenter=5.625, ycenter=5.0,
 rix(1)=0.0d0, rex(1)=1.5,
 riy(1)=0.0d0, rey(1)=1.5,
 nprg=4,
 densir(1)=1.e0,
 ipath(1,1)=3,3,3,0,
 matr(1,1)=1.e4,0.30e0,10.e25,2.e25,1.0e25,1.e2,0.e0,
 vrx(1)= 1.0e0
 $

Box 8. Input File 1 for Ball and Net Simulation
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A.4.7 Membrane Expansion (Section 6.2,page 75)

'"ary"'
 '"membrane_expansion" '
  $in
 nx=33, ny=33 iprint=0, igen=3,
 xleft=0.0d0,xright=1.60d0,ybot=0.0d0,ytop=1.60e0,cntr=1.0,
 tmax=8.500014,tstep=0.35e-4,dtmax=0.35e-4,tplt=0.5,
 tol=1.e-4,miter=30,large=.false.,wl=4,wr=1,wb=4,wt=1,
 iout(13)=1,tiout(13)=2.00,
 iout(32)=1,tiout(32)=2.00.,
 iout(33)=1,tiout(33)=0.02,
 iout(34)=1,tiout(34)=0.02,
 iout(37)=0,tiout(37)=0.15,
 iout(39)=1,tiout(39)=2.0,
 iout(40)=1,tiout(40)=2.00,
 iout(41)=1,tiout(41)=2.0.,
 methd=0
 $
 $fluid
 mu=0.10, gm1=.4, siep(1)=0.25d3,0.25d3,
 lambda=0.00,coef1=0.0,coef2=0.0
 $
 $regrig
 $
 $reg
 nreg=2,
 nvi=4,4,4,4,4,
 xvi(1,1)=0.0, 0.426,  0.426, 0.00,
 yvi(1,1)=0.0, 0.000,  0.900, 0.95,
 xvi(1,2)=0.426, 0.90, 0.90, 0.426,
 yvi(1,2)=0.650, 0.65, 0.74, 0.900,
 xcenter=0.0,0.0,
 ycenter=0.0,0.0,
 rix(1)=0.0d0, rex(1)=2000.,
 riy(1)=0.0d0, rey(1)=2000.,
 rix(2)=0.0d0, rex(2)=2000.,
 riy(2)=0.0d0, rey(2)=2000.,
 nprg=64,64,
 densir(1)=1.d0,densir(2)=1.d0,
 ipath(1,1)=3,3,3,7,
 ipath(1,2)=3,3,3,7
 $

0.5
 1.0d6,0.300d0,10.d25,2.d25,1.0d25,1.d2,0.d0
 3,3,3,8
600 
600, 6.8207 
0.4999900.0011100.00.00.00.00.0

Box 9. Input for Membrane Expansion Simulation 4
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A.4.8 Cyl-200 Airbag Simulation (Section 6.3,page 88)

  '"ary"'
 '"TNO Airbag Sim circ plate 200-restart" '
  $in
 nx=17, ny=26, iprint=0, igen=3,
 xleft=0.00e0,xright=0.320e0,ybot=-0.001e0,ytop=0.499e0,
 tmax=100.e-3,tstep=3.5e-6,dtmax=3.5e-6,
 tol=1.e-4,miter=30,large=.false.,wl=5,wr=1,wb=0,wt=0,
 iout(13)=1,tiout(13)=20.e-3,
 iout(33)=1,tiout(33)=8.e-4,
 iout(34)=1,tiout(34)=4.e-4,
 iout(41)=1,tiout(41)=10.e-3,
 gravc=0.0d0,methd=0,cyl=1.0
 $
 $fluid
 gm1=.4,siep(1)=8226.39,siep(2)=8226.39,mu=0.0
 $
 $regrig
 nregrig=0
 $
 $reg
 nreg=3,
 nvi=10,3,4,
 xvi(1,1)=0.0  ,0.14,0.22, 0.26, 0.28 ,0.26, 0.22, 0.18,0.14, 0.0, 
 yvi(1,1)=0.002,0.01,0.037,0.077,0.139,0.219,0.261,0.289,0.299,0.299,
 xvi(1,2)=0.08, 0.0,  0.0,
 yvi(1,2)=0.299,0.318,0.299,
 xvi(1,3)=0.0, 0.10,0.1,0.00,
 yvi(1,3)=0.329,0.329,0.409,0.409,
 xcenter=0.0,0.0,0.0, ycenter=0.0,0.0,0.0,
 rix(1)=0.0, rex(1)=100.0,
 riy(1)=0.0, rey(1)=100.0,
 rix(2)=0.0, rex(2)=100.0,
 riy(2)=0.0, rey(2)=100.0,
 rix(2)=0.0, rex(3)=100.0,
 riy(2)=0.0, rey(3)=100.0,
 nprg=16,16,4,
 densir(1)=1.2156,densir(2)=1.2156,densir(3)=2375.,
 matr(1,1)=1.e0,0.3e0,0.00e0,0.00e0,1.0e20,0.e2,0.e0,
 matr(1,2)=1.e0,0.3e0,0.00e0,0.00e0,1.0e20,0.e2,0.e0,
 matr(1,3)=5.e7,0.3e0,10.00e25,10.00e25,1.0e20,0.e2,0.e0,
 ipath(1,1)=3,3,3,7,
 ipath(1,2)=3,3,3,7,
 ipath(1,3)=3,3,3,0,
 vry(3)=-3.90
 $

Box 10. Input File 1 for Cyl-200 Simulation
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A.4.9 Cyl-500 Airbag Simulation (Section 6.3.3, page 91)

   '"ary"'
 '"TNO Airbag Sim circ plate 500-restart" '
  $in
 nx=18, ny=26, iprint=0, igen=3,
 xleft=0.00e0,xright=0.340e0,ybot=-0.001e0,ytop=0.499e0,
 tmax=40.e-3,tstep=3.5e-6,dtmax=3.5e-6,
 tol=1.e-4,miter=30,large=.false.,wl=5,wr=1,wb=0,wt=0,
 iout(13)=1,tiout(13)=20.e-3,
 iout(33)=1,tiout(33)=8.e-4,
 iout(34)=1,tiout(34)=4.e-4,
 iout(36)=0,tiout(36)=0.01,
 iout(41)=1,tiout(41)=10.e-3,
 gravc=0.0d0,methd=0,cyl=1.0
 $
 $fluid
 gm1=.4,siep(1)=8226.39,siep(2)=8226.39,mu=0.0
 $
 $regrig
 $
 $reg
 nreg=3,
 nvi=10,3,4,
 xvi(1,1)=0.0  ,0.14,0.22, 0.26, 0.28 ,0.26, 0.22, 0.18,0.14, 0.0,
 yvi(1,1)=0.002,0.01,0.037,0.077,0.139,0.219,0.261,0.289,0.299,0.299,
 xvi(1,2)=0.08, 0.0,  0.0,
 yvi(1,2)=0.299,0.31,0.299,
 xvi(1,3)=0.0,  0.250,0.25, 0.00,
 yvi(1,3)=0.315,0.315,0.395,0.395,
 xcenter=0.0,0.0,0.0, ycenter=0.0,0.0,0.0,
 rix(1)=0.0, rex(1)=100.0,
 riy(1)=0.0, rey(1)=100.0,
 rix(2)=0.0, rex(2)=100.0,
 riy(2)=0.0, rey(2)=100.0,
 rix(2)=0.0, rex(3)=100.0,
 riy(2)=0.0, rey(3)=100.0,
 nprg=16,16,9,
 densir(1)=1.2156,densir(2)=1.2156,densir(3)=360.,
 matr(1,1)=1.e0,0.3e0,0.00e0,0.00e0,1.0e20,0.e2,0.e0,
 matr(1,2)=1.e0,0.3e0,0.00e0,0.00e0,1.0e20,0.e2,0.e0,
 matr(1,3)=5.e7,0.3e0,10.00e25,10.00e25,1.0e20,0.e2,0.e0,
 ipath(1,1)=3,3,3,7,
 ipath(1,2)=3,3,3,7,
 ipath(1,3)=3,3,3,0,
 vry(3)=-4.70
 $

Box 11. Input File 1 for Cyl-500 Simulation
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A.4.10 Piston-Container (Section 6.1, page 72)  
 '"ary"'
 '"Olson-Bathe (1983) spring-piston-fluid'"
  $in
 nx=2, ny=41, iprint=0, igen=3,
 xleft=0.00e0,xright=1.00e0,ybot=0.00e0,ytop=40.0e0,cntr=1.0,
 tmax=0.035,tstep=5.d-5,dtmax=5.d-5,tplt=0.6,
 tol=1.e-4,miter=30,large=.false.,wl=1,wr=1,wb=0,wt=0
 iout(13)=1,tiout(13)=0.03,
 iout(30)=0,tiout(30)=2.d-4,
 iout(31)=0,tiout(31)=0.01,
 iout(32)=0,tiout(32)=0.2,
 iout(33)=1,tiout(33)=1.d-4,
 iout(34)=0,tiout(34)=0.001,
 iout(35)=0,tiout(35)=2.d-4,
 iout(36)=0,tiout(36)=0.01,
 iout(37)=0,tiout(37)=0.001,
 iout(38)=0,tiout(38)=0.01,
 iout(39)=0,tiout(39)=1.d-1
 iout(40)=0,tiout(40)=0.1,
 gravc= 0.0d0
 $
 $fluid
 mu=0.00e0, gm1=.4, siep(1)=0.10, lambda=0.00,
 coef1=0.0,coef2=0.0
 $
 $reg
 nreg=1,
 nvi=4,
 xvi(1,1)= 0.35d0, 0.650d0, 0.650d0, 0.350d0,
 yvi(1,1)= 0.d0, 0.0d0, 20.0d0, 20.0d0,
 xcenter=0.5, ycenter=5.0,
 rix(1)=0.00d0, rex(1)=100.0d0,
 riy(1)=0.00d0, rey(1)=100.0d0,
 nprg=1,
 densir(1)=1.d-4,
 ipath(1,1)=3,3,3,8,
 matr(1,1)=1.58e6,0.30e0,10.e25,2.e25,1.0e25,1.e2,0.e0
 vrx(1)= 0.0e0,
 vry(1)= 0.0e0,
 vrx(2)= 0.0e0,
 vry(2)= 0.0e0
 $

Notes on running this problem: Quadratic interpolation for den-
sity of fluid may cause problems at the interface. This one run with 
regular MPM implementation. Have to allow fluid particles to accu-
mulate strain as opposed to regular fluid where strain rate is used 
and accumulation is not necessary. Hardwire mass of piston.

Box 12. First Input File for Piston-Container Problem
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1.0d-3   !density
2010.0d0,0.0d0,10.d25,2.d25,1.0d25,1.d2,0.d0
3,3,3,8  !constitutive equation
20       !number of particles in the sequence
20,1     !total number of particles to read in; no. per cell
0.500000 39.500000 0.00 0.00 0.00 0.00 0.00
0.500000 38.500000 0.00 0.00 0.00 0.00 0.00
0.500000 37.500000 0.00 0.00 0.00 0.00 0.00
0.500000 36.500000 0.00 0.00 0.00 0.00 0.00
0.500000 35.500000 0.00 0.00 0.00 0.00 0.00
0.500000 34.500000 0.00 0.00 0.00 0.00 0.00
0.500000 33.500000 0.00 0.00 0.00 0.00 0.00
0.500000 32.500000 0.00 0.00 0.00 0.00 0.00
0.500000 31.500000 0.00 0.00 0.00 0.00 0.00
0.500000 30.500000 0.00 0.00 0.00 0.00 0.00
0.500000 29.500000 0.00 0.00 0.00 0.00 0.00
0.500000 28.500000 0.00 0.00 0.00 0.00 0.00
0.500000 27.500000 0.00 0.00 0.00 0.00 0.00
0.500000 26.500000 0.00 0.00 0.00 0.00 0.00
0.500000 25.500000 0.00 0.00 0.00 0.00 0.00
0.500000 24.500000 0.00 0.00 0.00 0.00 0.00
0.500000 23.500000 0.00 0.00 0.00 0.00 0.00
0.500000 22.500000 0.00 0.00 0.00 0.00 0.00
0.500000 21.500000 0.00 0.00 0.00 0.00 0.00
0.500000 20.500000 0.00 -1.d0 0.00 0.00 0.00

Box 13. Second Input File for Piston-Container Problem
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A.4.11  Stability Test Problem (Section 8.5, page 141)

'"ary"'
'"stability test problem " '
$in
nx=6, ny=2, iprint=0, igen=0,
xleft=0.00e0,xright=5.00e0,ybot=0.00e0,ytop=1.00e0,
tmax=0.03,tstep=0.0010,dtmax=0.001,
tol=1.e-4,miter=30,wl=0,wr=0,wb=1,wt=1,
gravc=000.0d0
$
$fluid
mu=0.00e0
$
$regrig
$
$reg
$

1.0d0           !density
1.0d6,0.00d0,10.d25,2.d25,1.0d25,1.d2,0.d0
3,3,3,0         !constitutive equation
5
5,1
0.0001 0.5 0.00 0.00 0.00 0.00 0.00
1.0001 0.5 0.00 0.00 0.00 0.00 0.00
2.0001 0.5 1.d-8 0.00 0.00 0.00 0.00
3.0001 0.5 0.00 0.00 0.00 0.00 0.00
4.0001 0.5 0.00 0.00 0.00 0.00 0.00

Box 14. Input Files for Stability Test Problem
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A.4.12 Two-Bar Impact (Section A.1.5, page 160)

 '"ary"'
 '"2 bars impacting" '
  $in
 nx=21, ny=21, iprint=0, igen=1,
 xleft=0.00e0,xright=5.000e0,ybot=-0.000e0,ytop=5.00e0,cntr=1.0,
 tmax=0.501,tstep=0.0007e0,dtmax=0.0007,tplt=0.5,
 tol=1.e-4,miter=30,large=.false.,wl=1,wr=1,wb=1,wt=1,
 iout(13)=1,tiout(13)=0.1,
 iout(30)=0,tiout(30)=1.d-1,
 iout(31)=0,tiout(31)=1.d-1,
 iout(32)=0,tiout(32)=1.d-1,
 iout(33)=1,tiout(33)=0.005,
 iout(34)=1,tiout(34)=0.0025,
 iout(35)=0,tiout(35)=0.0007,
 iout(36)=0,tiout(36)=0.01,
 iout(37)=0,tiout(37)=2.5e-1,
 iout(40)=0,tiout(40)=0.1,
 methd=0,gravc=0.0
 $
 $fluid
 $
 $regrig
 $
 $reg
 nreg=2,
 nvi=4,4,
 xvi(1,1)=1.0, 2.25,2.25,1.0,
 yvi(1,1)=0.25,0.25,4.75,4.75,
 xvi(1,2)=2.75,4.0, 4.0, 2.75,
 yvi(1,2)=0.25,0.25,4.75,4.75,
 xcenter=0.0,0.0, ycenter=0.0,0.0,
 rix(1)=0.0d0, rex(1)=1.5e3,
 riy(1)=0.0d0, rey(1)=1.5e3,
 rix(2)=0.0d0, rex(2)=1.5e3,
 riy(2)=0.0d0, rey(2)=1.5e3,
 nprg=4,4,
 densir(1)=1.0,1.0,
 ipath(1,1)=3,3,3,2,
 ipath(1,2)=3,3,3,2,
 matr(1,1)=1.e5,0.30e0,10.e25,2.e25,1.0e25,1.e2,0.e0,
 matr(1,2)=1.e5,0.30e0,10.e25,2.e25,1.0e25,1.e2,0.e0,
 vrx(1)= 2.0e0,
 vrx(2)= -0.0e0
 $

Box 15. Input File 1 for Ball and Net Simulation
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A.4.13 Ball and Net Simulation (Section A.1.6, page 164)

'"ary"'
 '"ball and net orig" '
  $in
 nx=41, ny=41, iprint=0, igen=3,
 xleft=0.00e0,xright=10.000e0,ybot=0.00e0,ytop=10.0e0,cntr=1.0,
 tmax=4.02,tstep=0.001d0,dtmax=0.001d0,tplt=0.5,
 tol=1.e-4,miter=30,large=.false.,wl=0,wr=1,wb=0,wt=0,
 iout(13)=1,tiout(13)=1.0,
 iout(31)=0,tiout(31)=1.d-1,
 iout(32)=0,tiout(32)=1.d-1,
 iout(33)=0,tiout(33)=0.005,
 iout(34)=1,tiout(34)=0.005,
 iout(37)=0,tiout(37)=2.5e-1,
 iout(40)=0,tiout(40)=0.1,
 methd=0,gravc=0.0
 $
 $fluid
 $
 $regrig
 $
 $reg
 nreg=1,
 nvi=4,
 xvi(1,1)=0.0e0,10.0e0,10.0e0,0.0e0,
 yvi(1,1)=0.0e0,0.0e0,10.0e0,10.0e0,
 xcenter=5.625, ycenter=5.0,
 rix(1)=0.0d0, rex(1)=1.5,
 riy(1)=0.0d0, rey(1)=1.5,
 nprg=4,
 densir(1)=1.e0,
 ipath(1,1)=3,3,3,2,
 matr(1,1)=1.e4,0.30e0,10.e25,2.e25,1.0e25,1.e2,0.e0,
 vrx(1)= 1.0e0
 $

Box 16. Input File 1 for Ball and Net Simulation
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A.4.14 Maple Calculations

Input to Maple

Nj1:=N-dt/dx*( (vpm1+vpp1)*(N-N^2)+vp*(2.*N^2-2.*N+1.) );
Mj1:=1.-dt/dx*( (vpp1-vpm2)*(N-N^2)+(vp-vpm1)*(3.*N^2-3.*N+1.) );
d:=Nj1/Mj1;
Mjp1:=1.-dt/dx*( (vpp2-vpm1)*(N-N^2)+(vpp1-vp)*(3.*N^2-3.*N+1.) );
e:=(1.-Nj1)/Mjp1;
f:=vpm2*(-d)*(1.-N)+
vpm1*( d*(2.-3.*N)-e*(1.-N) )+
vp*( d*(3.*N-1.)+e*(2.-3*N) ) +
vpp1*( -d*N + e*(3.*N-1.) )+
vpp2*(-e)*N;
vpm2:=0.0;
vpm1:=0.0;
vpp1:=0.0;
vpp2:=0.0;
simplify(f);
fH:=subs(N=0.5,f);
simplify(fH);
f0:=subs(N=0.0,f);
simplify(f0);
f1:=subs(N=1.0,f);
simplify(f1);

Output from Maple

   |\^/|      MAPLE V
._|\|   |/|_.  Copyright (c) 1981-1990 by the University of Waterloo.
 \  MAPLE  /   All rights reserved.  MAPLE is a registered trademark of
 <____ ____>   Waterloo Maple Software.
      |        Type ? for help.
> read maple;
                                           2            2
                   dt ((vpm1 + vpp1) (N - N ) + vp (2. N  - 2. N + 1.))
        Nj1 := N - ----------------------------------------------------
                                            dx

                                       2                     2
               dt ((vpp1 - vpm2) (N - N ) + (vp - vpm1) (3. N  - 3. N + 1.))
   Mj1 := 1. - -------------------------------------------------------------
                                             dx

                                          2            2
                  dt ((vpm1 + vpp1) (N - N ) + vp (2. N  - 2. N + 1.))
              N - ----------------------------------------------------
                                           dx

    d := ------------------------------------------------------------------
                                      2                     2
              dt ((vpp1 - vpm2) (N - N ) + (vp - vpm1) (3. N  - 3. N + 1.))
         1. - -------------------------------------------------------------
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                                            dx

                                        2                     2
                dt ((vpp2 - vpm1) (N - N ) + (vpp1 - vp) (3. N  - 3. N + 1.))
   Mjp1 := 1. - -------------------------------------------------------------
                                              dx

                                             2            2
                     dt ((vpm1 + vpp1) (N - N ) + vp (2. N  - 2. N + 1.))
            1. - N + ----------------------------------------------------
                                              dx
    e := ------------------------------------------------------------------
                                      2                     2
              dt ((vpp2 - vpm1) (N - N ) + (vpp1 - vp) (3. N  - 3. N + 1.))
         1. - -------------------------------------------------------------
                                            dx

        vpm2 (N - %3) (1. - N)
 f := - ----------------------
                  %4

             /(N - %3) (2. - 3. N)   (1. - N + %3) (1. - N)\
      + vpm1 |-------------------- - ----------------------|
             \         %4                      %2          /

           /(N - %3) (3. N - 1.)   (1. - N + %3) (2. - 3 N)\
      + vp |-------------------- + ------------------------|
           \         %4                       %2           /

             /  (N - %3) N   (1. - N + %3) (3. N - 1.)\   vpp2 (1. - N + %3) N
      + vpp1 |- ---------- + -------------------------| - --------------------
             \      %4                   %2           /            %2

                                  2
%1 :=                         3. N  - 3. N + 1.

                                           2
                   dt ((vpp2 - vpm1) (N - N ) + (vpp1 - vp) %1)
%2 :=         1. - --------------------------------------------
                                        dx

                                    2            2
            dt ((vpm1 + vpp1) (N - N ) + vp (2. N  - 2. N + 1.))
%3 :=       ----------------------------------------------------
                                     dx

                                           2
                   dt ((vpp1 - vpm2) (N - N ) + (vp - vpm1) %1)
%4 :=         1. - --------------------------------------------
                                        dx

                                   vpm2 := 0

                                   vpm1 := 0

                                   vpp1 := 0

                                   vpp2 := 0
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           2   2  4       2   2          2     2   2        2
  vp (6. dt  vp  N  - 6. N  dx  + 6. N dx  + dt  vp  - 2. dx  + 2. N dx dt vp

               2   2  3         2   2  2        2   2                    /
       - 12. dt  vp  N  + 11. dt  vp  N  - 5. dt  vp  N - 1. dt vp dx)  /  (
                                                                       /

                            2
      ( - 1. dx + 3. dt vp N  - 3. dt vp N + dt vp)

                      2
      (dx + 3. dt vp N  - 3. dt vp N + dt vp))

                         /            dt vp               dt vp\
                         |   .5 - .50 -----      .5 + .50 -----|
                         |              dx                  dx |
                fH := vp |.5 -------------- + .5 --------------|
                         |            dt vp               dt vp|
                         |   1. - .25 -----      1. + .25 -----|
                         \              dx                  dx /

                                         2     2   2
                             vp ( - 4. dx  + dt  vp )
                     2. ----------------------------------
                        ( - 4. dx + dt vp) (4. dx + dt vp)

                              /          dt vp           \
                     f0 := vp |1. ------------------ + 2.|
                              |      /        dt vp\     |
                              |   dx |1. - 1. -----|     |
                              \      \          dx /     /

                               vp (dt vp - 2. dx)
                               ------------------
                                 - 1. dx + dt vp

                      /             dt vp                         \
                      |    1.0 - 1. -----                         |
                      |               dx               dt vp      |
             f1 := vp |2.0 -------------- - 1.0 ------------------|
                      |             dt vp          /        dt vp\|
                      |     1. - 1. -----       dx |1. + 1. -----||
                      \               dx           \          dx //

                               vp (2. dx + dt vp)
                               ------------------
                                   dx + dt vp

_____________________________________________________________________________
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