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Abstract

Linear chemometric algorithms were used to model the quantitative response of
an evanescent fiber optic chemical sensor in aqueous mixtures with concentrations
between 20 and 300 ppm. Four data sets were examined with two different experimental
arrangements. Two data sets contained trichloroethene, 1,1,2 trichloroethane, and toluene.

Partial Least Squares, PLS, and Principal Component Regression, PCR, algorithms

performed comparably on these calibration sets with cross-validated root mean squared
errors of prediction (RMSEP) for trichloroethene, 1,1,1 trichloroethane, and toluene of
approximately 26, 29 and 22 ppm, respectively. The third data set contained
trichloroethene, 1,1,2 trichloroethane, toluene, and chloroform and the fourth contained
these four analytes as well as tetrachloroethene. Again, both chemometric algorithms

perfomned comparably on a given data set with RMSEP for trichloroethene, 1,1,2
trichloroethane, toluene, and chloroform of approximately 6, 6,9, and 16 ppm from the
first set, and 7, 11, 13, and31 ppm from the second set with tetrachloroethene RMSEP of

31 ppm. The decrease in the quantitative performance of the sensor for modeling toluene
and chloroform upon addition of tetrachloroethene to the sample solutions is due to
increased cladding absorption features in the spectral response matrix. These features
overlap with the analyte absorption features of toluene and chloroform. These results
suggest one of the limitations with this type of sensing format.
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Introduction

Performing quantitative and qualitative monitoring of low level volatile

hydrocarbons in aqueous solutions is both difficult and essential for environmental and

public health operations. These operations include industrial waste water and process

monitoring (l), site assessment and remediation (2), and disinfection byproduct control

for the drinking water and beverage industries (3). However, measurements can be

problematic in that the analytes of concern are present at low concentrations in a large,

potentially interfering, background of water. In a typical analysis of such a sample the

volatile organic contaminate (VOC) analytes are separated from the water by sample

pretreatment. For example, the EPA approved method for this type of analysis, Method

8260, requires purge-and-trap sample preparation which allows analyte separation from

the water phase and preconcentration prior to sample injection into a gas chromatography.

An alternate approach is to use a solvent-free extraction technique. The extraction system

uses a silicone coated, silica core fiber mounted on a microsyringe in which the silicone

isolates organic analytes that are then thermally injected into a gas chromatography (4).

An alternative to these staged methods of sample pretreatment prior to a

traditional analysis method is to use polymeric membranes directly integrated into a

sensor platform where VOCS can preferentially partition. For platforms such as quartz

crystal microbalance and surface acoustic wave devices, probing changes in the

membranes, such as acoustic frequency shifis caused by chemical absorption that changes

the mass and visco-elastic properties of the membrane, provides inferential information

about the presence of chemical analytes (5,6). Another application that has been

examined extensively in the past decade employs polymer coated optical wave guides for

measurements involving evanescent wave interactions. Polymers have been used to detect

organic molecules in aqueous solutions (7-1 O) and sol-gels have been used for pH

measurements (11 ). Inherently weak in nature, the information obtained by evanescent

interactions can be enhanced by using polymeric membranes that separate and

concentrate the analytes of concern fi-om their environment. Hydrophobic polymers are
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frequently employed as cladding material for optical wave guides in both the visible and

near-infrared spectral regions (12- 17). These materials provide mechanical strength,

environmental protection, and elimination of water interference by excluding water from

reaching the optical region of the sensor.

Sensors based on this principal, known as evanescent fiber optic chemical sensors,

EFOCS, or fiber optic evanescent wave sensors, FEWS, hold promise for use in

environmental applications. Specifically, EFOCS can use commercially available plastic

clad silica, PCS, fiber optic cables as the optical waveguide element. This results in a

relatively inexpensive sensor element for alternatives to the traditional analysis methods

of aqueous sample monitoring in both environmental and industrial applications. The

silica core, silicone clad fibers are relatively inexpensive and have good transmission

properties in the overtone/combination band region of the electromagnetic spectrum

which is the region of interest for spectroscopic detection of volatile organic compounds.

This work examines the quantitative response of an EFOCS sensor to

concentrations in the parts-per-million range of aqueous solutions containing volatile

organic compounds (VOCS). Four different data sets will be examined. Solutions in the

data sets contain various VOCS Frequently present at environmental contamination sites.

These VOCS include trichloroethene (TCE), 1,1,2 trichloroethane (TCA), toluene,

chloroform, and tetrachloroethene (PCE). In particular, the usefulness of linear

chemometric algorithms for building models to predict these analyte concentrations based

on the sensor equilibrium response will be evaluated.
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Theory

EvanescentWave Spectroscopy

Light can be guided in an optical element, or wave guide, at very high efficiencies

bytotal internal reflection. Thephenomenon occurs whenlight, traveling inamediuof

refractive index nl, strikes the boundary of a second, relatively lower refractive index,

medium, n2, at an angle, measured with respect to normal, greater than eC, the critical

angle, defined as (18):

()13, = sin-l %
r+

(1)

When light undergoes this total internal reflection, a small amount of energy penetrates

into the second medium. Known as the evanescent wave it has a depth of penetration, dP,

defined as distance from the interface where intensity of the electric field is reduced to e-l

the intensity at the interface. This depth into the second medium is (19):

“

d, =
A,

2n(sin2 6 – n12
2%

)

(2)

where @ is the angle of incidence at the interface with respect to normal, Xl is the

wavelength of light in the waveguide medium, L/nl, and n12 is the refractive index ratio

of the waveguide and surrounding medium, nl/n2. Absorbing species at the interface will

interact with the evanescent wave. Resultant changes in guided light intensity provides

qualitative and quantitative information about species present in the evanescent field.

Infrared spectroscopy is performed in this format when the sample to be examined is

highly absorbing. Traditionally known as attenuated total reflection, ATR, the planar

optical elements transport light in a narrow range of angles. Therefore, light strikes the

interface between the optical element and sample at a discrete range of angles. However,

when the light guiding element is an optical fiber this sampling technique is known as
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evanescent wave spectroscopy, EWS. The mathematics that describe the phenomenon

are more complex than traditional ATR due to the range of angles that are present at the

core/cladding interface. The cone of light that an optical fiber can accept and guide from

an infinite source is referred to as the numerical aperture, NA, and is defined as (20):

(3)

where next is the refractive index of the external medium, ea is acceptance angle of the

fiber, and nl and n2 are the refractive indices of the core and cladding, respectively.

If infrared active species are present in the evanescent field of an optical fiber,

light intensity will decrease according to the following relationship (12):

-10Gj=aeLc+10&3)(4)

where I is transmitted light intensity after analyte exposure, 10is reference intensity with

no analyte present, L is fiber length, c is molar concentration, and NA and NAO are

numerical apertures of the fiber with and without analyte present, respectively. Effective

molar absorptivity, ct~, is defined,

a, = Zqp (5)

where &is molar absorptivity of infrared active species and qP is the fraction of light

entering the fiber that is present in the cladding,

~p=+ (6)

In equation 6, k is a proportionality constant, determined by Gloge (2 1) to be 1.89 for

equilibrium mode distribution in a fiber. The denominator, known as the V parameter,

determines the number of optical modes a fiber can support and is defined as,

(7)

where r is the fiber radius.
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Methods for Modeling Spectral Data

The use of statistical and mathematical methods to extract information efficiently

fi-om chemical data is known as chemometrics. Originally based on statistical data

analysis techniques borrowed from other disciplines, such as econometrics, chemometrics

is a growing chemistry sub discipline. Currently, new methods and techniques are being

developed to solve problems specific to the analysis of chemical data.

The method of extracting specific information about a sample from instrumental

responses consists of three steps: calibration, validation, and prediction. Calibration is a

procedure used to build an empirical model that correlates instrument response to known

variables. Specifically, for spectroscopy the calibration process builds a model using

statistical methods that correlate a physical parameter, such as analyte concentration with

spectroscopic response for a set of samples. Validation examines model precision. This

is performed to veri~ that the model is correlated to spectral features associated with the

analyte, and not with spectral noise. The prediction phase then uses the model built from

the calibration set to estimate the unknown concentration fi-om a second set of spectral

data.

Factor analysis decomposes a response matrix, A, such as the sensor spectra, of

rank r into a sum of ; pseudorank matrices that determine the true underlying

dimensionality of the matrix and describe the number of variables that are linearly

independent. The decomposition can be accomplished by a variety of methods, but the

general result is that A is decomposed into the product of at least two matrices:

A = TPT (8)

where T is a matrix of scores dimensioned m x r, where m is the number of samples, and

PT are the loading vectors, r x n, where n is the number of spectral frequencies.

Two chemometric methods were used in this study. Principle Component

Regression, PCR, and Partial least-squares (PLS) analysis. PCR is a calibration method

based on either the results from a Nonlinear Iterative Partial Least Squares, NIPALS, (22)
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or Singular Valued Decomposition, SVD, (23) of the response matrix. PLS analysis

incorporates information from both the response and concentration matrices into the

scores and loadings vectors. This results in a model that can, in general (23), model

concentration variation with fewer linear terms. The response and concentration matrices

are decomposed into smaller matrices in an iterative procedure that exchanges

information between the two data sets. Incorporation of concentration information during

the generation of the scores and loadings results in placing relevant spectral information,

i.e., that associated with concentration variation, into the earlier scores and loadings.

Experimental

Over the course of this research, two experimental arrangements were used.

Experimental Arrangement 1

Spectroscopic instrumentation consisted of a Nicolet 800 FT-IR spectrometer

configured for the near-infrared. A CaF2 beamsplitter, quartz halogen near-infrared

source, and a liquid nitrogen cooled InSb detector were used. The EFOCS was coupled

to the spectrometer using a fiber optic interface manufactured by Nicolet. Fibers were

physically attached to the interface using standard fiber optic connectors. Fine tuning of

light position on the InSb detector was performed using an X, Y, and Z translational stage

at the fiber insertion point. The number of scans co-added per spectra were 32 at 4 cm-l

resolution using Happ-Genzel anodization. Data collection, processing, and storing was

performed on a Nicolet 680 computer.

The sensor was constructed by winding jacketed fiber in a 5 cm diameter loop on an

aluminum holder designed to support the fiber in a rigid cofilguration, Figure 1. The fibers

were commercially available nylon jacketed 200 ~m silica core fibers clad in 230 pm
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Figurel. Diagraofevmescent fiber optic chemical sensor onmduinu holder

designed to provide mechanical support of the fiber. Included in the drawing is

the glass exposure vessel used during the experiments.

silicone purchased from Fiberguide Industries. The jacket was removed from the active

length of fiber by placing the wound fiber into boiling 1,2-propanediol for 5 minutes.

The stripped lengths of fiber used for results reported here were 1 m. The inactive length

of fiber was protected from the jacket stripping procedure by passing the ends through a

rubber septum on the end of a 0.5 cm I.D. glass tube.

Experimental Arrangement 2

Spectroscopic instrumentation consisted ofaBomemMD-155 Fourier-transform

infrared (FT-IR) spectrometer configured for the near-infrared. A KC1 beamsplitter,

quartz halogen near-infrared source, and a liquid nitrogen cooled InSb detector were

used. The EFOCS was coupled to the spectrometer using a Bomem fiber optic interface
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accessory manufactured by Bomem. Fibers were physically attached to the interface

using standard fiber optic connectors. The number of scans coadded per spectra were 64

at 8 cm-1 resolution using cosine anodization. Data collection, processing, and storing

was performed on a PC based computer using a Galactic software package.

The sensor was constructed by winding 8 m of jacketed fiber in a 6.4 cm diameter

loop onto a slotted anodized aluminum holder designed to support the fiber in a rigid

configuration, Figure 2. This holder was designed and built for the EFOCS for field

deployment of the sensor. Of primary concern in the designing and building of the holder

was breakage of the fiber element. During early stages of development and evaluation of

the EFOCS technology it was found that the silica core of these fibers, stripped of their

Figure 2. Evanescent fiber optic chemical sensor holder.

protective nylon jackets and wound in a relatively tight geometry, underwent stress,

crack, corrosion due to attack by water. The result was frequent mechanical failure of the

fiber. Therefore, this design was made to eliminate any tight bends in the fiber that would

cause such failure. A stirrer was incorporated into the EFOCS holder design to reduce

water phase diffision times of the analytes, and solution temperatures were monitored

using an Omega RTD.
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General

For both experimental setups, 400 ~m silica core/480 pm silica clad fibers were

used to couple the sensing fiber to the optical benches. These glass-on-glass fibers were

used to minimize changes in modal distribution of the sensing fiber caused by

temperature fluctuations and fiber movements. Further, this coupling technique also

allowed the sensing fiber to be used in a remote location since no inherent C-H

absorption bands are present in the evanescent field of glass-on-glass fibers to attenuate

transmission intensity. Coupling between fibers was accomplished by using bulk head

type connectors with 1,2-propanediol as a coupling gel.

Toluene, TCE, TCA, chloroform, and PCE were all purchased from Aldrich

Chemical Company. Aqueous solutions were made volumetrically. Based on earlier

diffision studies (1O), it was determined 20 minutes exposure time was sufficient the

analyte concentration in the 230 ~m silicone cladding fiber to reach equilibrium.

Therefore, during these quantitative studies the EFOCS was exposed to the mixture

solution for this period of time prior to collecting the spectrum. The experimental designs

that were used to generate the calibration data for prediction modeling are outlined in

Appendix A.

Results and Discussion

All reference spectra were taken with the EFOCS in water. A typical single

beam reference spectrum is shown in Figure 3. This spectrum illustrates the wavelength

dependent light loss determined by source characteristics, absorption and scattering losses

in the optical path, and detector responsivity. The decreased light transmission observed

between 5500 and 6000 cm-] is due to energy absorption by the overtone bands of the

iindarnental methyl fi.mctional groups present in the silicone cladding. It is a primary

factor contributing to the sensor detection limit. Total analyte signal is a fi.mction of fiber

length, equation 4. However, light transmission in the C-H overtone spectral region,
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Figure 3. Single beam evanescent reference spectrum of 1 m plastic clad silica fiber in

near-infrared spectral region.

where the analytes of concern absorb energy, determines the useful fiber length. For

example, Figure 4 shows the near infrared transmission spectra of the five organic

compounds studied. Clearly, the active spectral region for these compounds is between

5500 and 6200 cm-’.
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Figure 4. FT-IR transmission spectra of neat analytes in 2 mm cuvette for

a) TCE, b) TCA, c) toluene, d) chloroform, and e) PCE.

The equilibrium sensor responses to 50 ppm aqueous solutions of the five analytes

studied are shown in Figure 5. The sensor response to TCE, TCA, toluene, and

chloroform resemble the neat analyte spectra in Figure 4. However, each spectra also has

additional spectral features related to the silicone cladding. The presence of cladding

absorption features in the sensor analyte response spectra is caused by increasing

evanescent field penetration depth after analyte exposure due to changes in the effective

cladding refractive index, see equation 2. The changing penetration depth is evidenced

15
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Figure 5. 8 m EFOCS response spectra to 50 ppm aqueous solutions of a) TCE,

b) TCA, c) toluene, d) chloroform, and e) PCE.

most strongly in the sensor response to PCE which has no spectral features in the region

of interest but has a relatively high refractive index, 1.51. The effective refractive index

of the cladding after exposure to PCE is much greater than the cladding refractive index

during acquisition of the reference spectrum. This perturbation results in what appears to

be negative absorption features and a positive baseline shift. The relative intensity of the

spectral featwes that result from exposing the sensor to a 50 ppm solution of PCE

compared to the 50 ppm solutions of the other analytes suggests that this analyte has a

higher partitioning coefficient in the silicone than the other analytes. Without the

presence of absorption features in the a.nalyte itself, the presence of this chemical in a

mixture of other a.nalytes in an aqueous sample clearly represents the most difficult

16



analyte to quantitate. Sensor response to the other analytes, all with refractive indices

greater than the cladding, show negative baseline shifts. This is probably due to lack of

temperature control in the exposure bath. The reference spectra were taken with the

sensor immersed in a water bath at room temperature while the sensor responses to the

analytes were taken in water actively stirred by a motor on the sensor holder. The warmed

motor was observed to raise the water temperature up to 6° C. Temperature increase is

known to increase the throughput of fiber optic cables due to the temperature dependent

material dispersion and could explain the baseline shifi (24).

Both PCR and PLS were used to build calibration models from all data sets.

Models were generated on mean centered data using cross-validation. Outlier detection

was performed by examining the concentration F-ratio statistic (23). The results of the

calibrations from Set 1 with the three analytes TCE, TCA, and toluene, is summarized in

Table 1 based on the chemometric algorithm used. No outliers were detected and both

Table 1
Performance of chemometric
models generated using Set 1.

PCR PLS

Analyte RMSEP @pm) factors RMSEP (ppm) factors

trichloroethene 26 3 25 3

trichloroethane 29 4 30 4

toluene 22 3 23 3

algorithms peflormed comparably on this data set. The RMSEP for all three analytes did

not differ significantly between each other or between the different algorithms. The

concentration residuals for this data set indicates an approximate 20 ppm error at the two

lower concentration levels and about 30 ppm at the higher level with the mean value for

residuals scattered around zero. The optimal number of factors determined for each

analyte model did not change between algorithms. The spectral variation of the factorial
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design, as determined by the first three eigenvectors obtained from PCR, is shown in

Figs. 6 to 8. Included in each of the figures are one neat analyte spectrum obtained in

0.6 r ‘.

1
\.\

‘\, ,/.
\ ./ \. !’: \ ,

-0.1 ./ \ ,/
“.?,..,./

.

-0.2 ~ , , ! t , ! , J
5000 5200 5400 5600 5800 6000 6200 6400 6600 6800 7000

Wavenumber (cm-1)

Figure 6. (a) Infrared transmission spectrum of neat toluene taken in transmission

through a 1 mm cuvette, (b) first PCR eigenvector from calibration model

generated using Set 1, and (c) first weight loading vector from PLS

generated toluene calibration model from Set 1.
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transmission mode through a 1 mm cuvette sample. As is apparent, spectral features

related to toluene are present in the first eigenvector while, in general, the dominant

spectral features in the second and third eigenvectors are related to TCE and TCA,

respectively. An obvious exception is the presence of the trichloroethene related

1.1

0.9 -
::
::

0.7 -
“--G

::. .
::

0.5 - ::
::
::..
:n. .

0.3 - : :

c
: :
: ;
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, , , , , ! !

5000 5200 5400 5600 5800 6000 6200 8400 6600 6800 7000

Wavenumber (cm-1)

Figure 7. (a) 1 mm cuvette infki.red transmission spectrum of neat trichloroethene,

(b) second PCR eigenvector from calibration model generated based on

Set 1, and (c) first weight loading vector from PLS generated

trichloroethene calibration model from Set 1.
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absorption feature at 6063 cm-l present in the third eigenvector. Also included in each of

the three figures is the first weight loading vector of the PLS generated calibration model

for the respective analyte. The spectral similarities between these loading vectors, the

transmission spectrum of their respective analyte, and the corresponding PCR eigenvector

are readily apparent.

0.3

0.2

0.1

0.0

-0.1

[

-0.2’’’” ! , , \ ( I )

5000 5200 5400 5600 5800 6000 6200 6400 6600 6800 7000

Wavenumts (cm-l)

Figure 8. (a) Infi-ared transmission spectrum of 1 mm cuvette sample of neat 1,1,1

trichloroethane, (b) third PCR eigenvector from calibration model

generated using Set 1, and (c) first weight loading vector from PLS

generated trichloroethene calibration model from Set 1.
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PCR and PLS calibrations on Set 2, were also performed and compared to the

models generated using an independent experimental design, Set 1, but using the same

three analytes of concern. One of the 15 samples in this data set was identified as an

outlier and eliminated from the data set prior to calibration. The resultant loading vectors

were similar to those obtained on the full factorial data set. However, to directly compare

the performance of the models generated using the Set 2 data with the Set 1 data requires

a correction for the different number of samples used to generate the model. The higher

number of samples included in the factorial design data set results in models with less

errors. Just like signal averaging, increasing the number of samples in a data set lowers

the error, or noise, as a square root of the number of samples used. Therefore, to partially

correct for this discrepancy between the data sets, the RMSEP for each model was

multiplied by the square root of the ratio of number of samples in Set 2 to those in Set 1.

The RMSEPS from the resultant PCR models were, 29,23, and 32 and from PLS were

29,20, and 32 for the three analytes trichloroethene, trichloroethane, and toluene,

respectively.

Independent validation of both the PCR and PLS generated models was obtained

by predicting aqueous concentrations in Set 2 with the model generated on Set 1 data.

Table 2
Independent validation of models generated

using data from Set 1 to predict on Set 2 data.

PCR PLS
I

Analyte RMSEP@pm) RMSEP@pm)

trichloroethene 29 29

trichloroethane 27 27

toluene I 40 I 39

The results are listed in Table 2. As can be seen, the performance of the PCR and PLS

model, on the independent data set, is comparable to that on the model building data set.
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Plots of the predicted concentration versus reference concentration are shown in Figures

9-11 for TCE, TCA and toluene, respectively. Included in each figure is the least squares

e
o ,, I ,,, , ,,, ,,, ,,, ,,, ,, ,, I

o 50 100 150 200 250 300 350

Reference Concentration (ppm)

Figure 9. Trichloroethene concentration, reference vs. concentration predicted by PCR

model using data from Set 1.

fit of the predicted versus reference concentrations. The models for both TCE and TCA

appear to have no relative bias with respect to prediction, with calculated slopes for the

least squares lines of 0.97 and 0.98, respectively. The toluene model, however, exhibited

a tendency to underpredict the concentration. This was demonstrated as a relative bias

and a least squares slope of 0.70. In general, the models performed well with limited

failures observed. At the lowest trichloroethane concentration both models predicted a

concentration close to zero. The model also underpredicted the lowest trichloroethene

concentration. Whereas these data points are not tagged as outliers in the generation of
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Figure lO. Reference versus predicted concentration forl,l,l ticMoroetime.

Concentration predicted by PCR model generated using Set 1.

any of the models, these concentrations are close to the sensors detection limit for these

analytes and therefore could pose problems in both the calibration and prediction phases.

The same procedure, discussed above, was used to generate calibration models on

Sets 3 and 4. The results of these calibrations are summarized in Table 3. No significant

difference in the precision of the models generated using either algorithm for a particular

data set was observed. In general, it can be observed that PCR required a higher number

of factors to obtain comparable performance to PLS. This is due to the incorporation of
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Figure 11. Toluene concentration, reference vs. concentration predicted on Set 1

by PCR.

chemical information earlier in the model building with PLS (23). However, the models

generated on data Set 3 performed significantly better, as determined by F-ratio test at the

95% confidence limit, for toluene and chloroform than the models generated on data Set

4. This reduced precision is illustrated by plotting reference concentration versus the PLS

model predicted concentration for both data sets, Figure 12. The greater error associated

with the predicted concentrations can be observed across the entire data set with what

appears to be a positive bias at the low concentration range.
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Table 3
Modeling of EFOCS response data

from two data sets using different

chemometric algorithms

Analyte PLS No. PCR No. PLS No. PCR No.
RMs of RMs of RMs of RMs of
Set 1 Factors Set 1 Factors Set 2 Factors Set 2 Factors

toluene 6 5 6 9 13 5 12 7

TCE 6 3 7 2 7 3 7 4

TCA 9 4 9 6 11 6 13 9

chloro 16 8 19 13 31 6 28 7

PCE 31 3 28 4
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Figure 12. Reference versus predicted concentration for toluene based on PLS

generated models from Set 3 (+) and Set 4 (x).
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As discussed above, the presence of PCE in the solution mixtures resulted in a

significant contribution of the cladding spectral features to spectral variation of the sensor

response. The relationship between the cladding absorption bands and the PCE

concentration is best illustrated in Figure 13 where the first PLS weight loading vector for

the PCE model, Set 4, is plotted. Also included in the figure is the ratioed spectrum of

two
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Figure 13. (a) First weight loading vector of PLS model from Set 4 and (b) ratioed

EFOCS spectra with silicone clad fibers of different length.

fibers of different lengths which shows the spectral contribution due to the silicone

cladding. The spectral similarities between these two spectra clearly shows that the model

generated for PCE concentration is related primarily to absorption bands overlapping
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with the cladding spectral features that undergo a relatively high variation in Set 4. Figure

14 shows the first weight loading vectors for the toluene models generated from both data

sets. Also included in the figure is the sensor response spectrum to a 50 ppm aqueous

toluene solution for comparison. As can be observed, similar spectral features are present

in all vectors. However, intensity of features associated with the analyte is of lower

relative intensity in Set 4. This was also observed for chloroform. Therefore, analytes

with absorption features that overlap with the cladding absorption features become more

difficult to model when a relatively high refractive index analyte is present due to spectral

interference, especially at low toluene or chloroform concentrations where the spectral

contribution from the analyte of concern is minimal compared to the spectral variance

caused by the PCE.
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Figure 14. (a) First weight loading vector for toluene PLS model from Set 1, (b) first

weight loading vector for toluene PLS model from Set 2, and (c) EFOCS

response to 50 ppm aqueous toluene solution.
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The ability to model TCE and TCA concentrations using PLS or PCR comparably

in both data sets is due to the presence of analyte spectral features shifted from the

cladding bands. This is best illustrated in Figure 15 where the first weight loading vectors

for the TCE calibration models for both data sets are plotted. Also included in this plot is

the sensor response spectrum to a 50 ppm aqueous solution of TCE. The spectral features

associated with the analyte and silicone cladding for the loading vectors are of

comparable relative intensity, suggesting that spectral variance caused by the presence of

PCE in the mixtures did not interfere with the ability of PLS to model the TCE

concentration. This

1 i
-0.1 J

5000 5200 5400 5600 5800 6000 6200 6400 6600 6800 7000

Wavenumber (cm-1)

Figure 15. (a) First weight loading vector for TCE PLS model from Set 3, (b) first

weight loading vector for TCE PLS model from Set 4, and (c) EFOCS

response to 50 ppm aqueous TCE solution.
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reduced interference is illustrated by plotting reference concentration versus the PLS

model predicted concentration for both data sets, Figure 16. The data points overlay each

other almost exactly. However, the reduced precision at the higher concentrations shows

that the linear methods used here may not fully fit the data. This lack of fit maybe due to

a number of nonlinear effects that are occurring. The reference analyte concentrations

used

70

50 1

t
50 70 90 110 130 150 170 190 210

Reference Concentration (ppm)

Figure 16. Reference versus predicted concentration for TCE based on PLS

generated models from Set 3 (+) and Set 4 (x).

in generating all models were aqueous analyte concentrations. In general, partitioning of

these organic analytes into silicone from aqueous solutions increases its relative

concentration. This is the premise for this type of sensing format. However, this

partitioning, as well as any co-solvency effects that could be occurring due to the high

concentration of other analytes, has not been included in the generation of the calibration
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models. Furthermore, as discussed earlier, a change in sample pathlength occurs when the

relatively high index analytes diffise into the cladding. This change, a nonlinear effect,

also has not been incorporated into the models generated using either algorithm.

Conclusions

Linear chemometric algorithms, such as PLS and PCR, were used to model TCE,

TCA, and toluene concentrations in mixtures between 20 and 300 ppm. Both algorithms

performed comparably on the calibration sets with RMSEP’S typically less than 10% of

the concentration range examined. Both algorithms peflormed comparably on a given

data set. For data sets obtained from aqueous solutions of toluene, TCE, TCA, and

chloroform between 50 and 200 ppm, both algorithms performed comparably with

RMSEPS again typically less than 10% of the concentration range. However, addition of

PCE to the mixtures, while allowing comparable precision for predicting concentrations

of TCE and TCA, reduced the precision for toluene and chloroform. This is due to

spectral overlap of the analyte absorption features with the silicone cladding that

undergoes significant variance due to the presence of the relatively high refractive index

PCE. These results suggest the limitation for this type of sensing format due to the

frequent presence of PCE in contaminated ground water sites.
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Appendix A

Data Set 1: Run Number Trichloroethylene Trichloroethane Toluene

1 150 300 150

2 150 300 20

3 20 300 20

4 150 20 300

5 300 150 150

6 150 300 300

7 20 150 150

8 150 150 300

9 20 150 300

10 20 150 20

11 150 150 20

12 20 300 150

13 20 20 150

14 300 20 150

15 300 300 150

16 20 300 300

17 150 20 20

18 300 150 300

19 20 20 20

20 150 150 150

21 300 20 20

22 300 300 20

23 300 150 20

24 20 20 300

25 300 150 300

26 300 300 300

27 150 20 150
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Data Set 2: Run Number Trichloroethylene Trichloroethane Toluene

1 300 240 80

2 220 80 300

3 120 120 120

. 4 260 60 20

5 80 20 160

6 280 40 240

7 140 180 180

8 100 100 200

9 60 280 140

10 20 220 280

11 180 300 260

12 40 140 40

13 160 200 60

14 200 260 100

15 240 160 220
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Data Sets 3 &4: PCE

Run Number Trichloroethylene Trichloroethane Toluene Chloroform (in Set 4 only)

1 75 150 200 100 50

2 150 125 125 150 75

3 200 175 175 175 125

4 175 50 100 125 100

5 50 75 75 200 150

6 I00 200 150 50 200

7 125 100 50 75 175

8 175 125 50 100 75

9 50 200 75 200 150

10 I00 150 200 75 125

11 200 175 175 50 50

12 150 100 125 125 175

13 75 50 100 150 200

14 125 75 150 175 100

15 125 175 150 175 100

16 200 125 50 200 75

17 50 75 175 75 200

18 150 200 125 150 150

19 75 100 75 125 50

20 100 50 100 50 125

21 175 150 200 100 175

22 175 200 125 200 200

23 150 100 50 175 100

24 125 50 200 125 150

25 50 150 100 150 75

26 75 175 75 50 50

27 100 125 175 100 125

28 200 75 150 75 175

29 150 75 125 50 50

30 200 50 200 200 150

31 175 200 75 75 125
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DataSets3 &4:

Run Number Trichloroethylene Trichloroethane Toluene Chloroform

32 50 150 50 100
1

33 100 175 100 150

34 125 100 150 125
I I I I

35 75 125 175 175

PCE I

.
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