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Abstract
The fundamental goal of this research has been to improve computational efficiency of the
Visually Empirical Region of Influence (VERI)1 based clustering and pattern recognition
(PR) algorithms we developed in previous work. The original clustering algorithm, when
applied to data sets with N points, ran in time proportional to  N3  (denoted with the
notation O (N3)), which limited the size of data sets it could find solutions for. Results
generated from our original clustering algorithm  were superior to commercial clustering
packages. These results warranted  our efforts to improve the runtimes of our algorithms.
This report describes the new algorithms, advances and obstacles met in their
development. The report gives qualitative and quantitative analysis of the improved
algorithms’ performances. With the information in this report, an interested user can
determine which algorithm is best for a given problem in clustering (2-D) or PR (K-D),
and  can estimate how long it will run using the runtime plots of the algorithms before
using any software.
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Extending Applicability of Cluster Based Pattern Recognition
with Efficient Approximation Techniques

1. Introduction
Clustering and PR algorithms are not new algorithms. One purpose of a clustering
algorithm is to determine (or impose) an order on an unknown set of points in a data set.
After a data set has been clustered, and depending on the quality of the clustering result,
the data will be ordered into clusters. The clustering algorithm used  determines how or
why the points in a cluster are related to each other. In a PR algorithm we utilize a training
set of known information, and a test set with unknown classes of points. The training set
contains experimental examples of each class to be identified, and these class data are used
to develop criteria for automatically identifying future examples (test points) of these
classes. For each of the test points we want to examine where it spatially occurs in the
classified training points and assign a class to the test point based on the class criteria
established.

As development of improved sensors continues, the sensor community has a greater need
for effective classification algorithms to analyze and distinguish sensor input signals. The
VERI based algorithms (1) we initially developed offer useful performance advantages
compared to other algorithms available in the classification community.  However, the
original VERI algorithms required computational times that were too long for problems
with relatively  large data sets. The fundamental goal of this research has been to improve
computational efficiency of the VERI based clustering and pattern recognition (PR)
algorithms, so that the performance advantages can be made available to a much larger set
of problems. This report describes the progress and achievements made in improving the
runtimes of our algorithms.

A chronological ordering of the work done to develop new algorithms is presented.
Section  two describes our initial work to develop fast approximation algorithms using
only a subset of the data to compute results. From the initial approximation work we
developed faster exact clustering and PR algorithms.  Section three describes a technique
to reduce the size of a training data set and still have it perform similarly to the larger set
for PR applications. An algorithm to perform this function is developed and results are
illustrated. Section four presents four different clustering approximation algorithms with
their respective qualitative and quantitative results from operating on a set of cluster
patterns.  Section five presents PR approximation algorithms we developed and also
shows results from classifying a series of data sets. Section 6 gives our conclusions and
recommendations about the algorithms. We assume that the reader is familiar with the
VERI algorithm described in Ref. 1, and definitions of the terminology associated with the
algorithm (groupers, inhibitors, VERI template, etc.) can be found there.



8

2. Reduced Inhibitor/Clustering Set Approximation Algorithm

2.1 Motivation to Improve Algorithm Runtimes

The initial clustering algorithm we developed in previous work used a straight forward
approach of examining all (O(N2) pairs) point pair combinations to determine if they
cluster (group) together or are inhibited by any third point which falls within the VERI
template (1). The algorithm is an O(N3) algorithm, which would severely limit the  size of
data sets which could be operated on in a practical amount of time.

The number of potential pairings examined for each point, and the number of points used
as inhibitor candidates will determine how much time is required to compute the groupings
for each point in the data set. If the number of grouping candidates is fixed to be a number
less than the total number of points in the test set, and the total number of points examined
as inhibitor candidates is also a fixed number, then the total number of points examined for
inhibitors/clustering is greatly reduced from the number the exact algorithm would have
examined. We call an algorithm which uses reduced inhibitor/clustering sets (RICS), a
RICS algorithm. The key issue for such an approach is how much the RICS results will
differ from the exact VERI calculation as fewer grouper/inhibitor candidate points are
examined.

2.2  Reduced Inhibitor/Clustering Set Clustering Algorithm Description

We developed a RICS version of our clustering algorithm. Based on the nature of VERI,
nearest neighbor (NN) points (using the Euclidean metric) of test and training points serve
well as clustering and inhibiting candidates. The RICS clustering algorithm uses a fixed
number of NN’s of a test point as grouping candidates for each point in the data set. A
fixed number of NN’s of the point pair examined for grouping serve as inhibitor
candidates.

We examined the RICS clustering  approximation algorithm’s performance as a function
of the number of NN’s used as inhibitor/clustering points. Several data sets over a range
of dimensions were used to test the RICS algorithm.  Data sets of two, three, six and ten
dimensions, with homogeneous, random and dissimilar density clusters were tested, each
with a range of separations between the clusters in the patterns and with varying number
of NN’s  used  as the inhibitor/clustering set. Examples of  data used are clusters patterns
bounded in a unit (hyper) cube with (a) 85 points in each cluster, (b) 225 points in each
cluster, (c)500 points in each cluster  and (d) 900 points and 100 points in each cluster.
The qualitative results using the RICS algorithm with  these test patterns were
benchmarked using our exact clustering algorithm.
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In figure 1, RICS results for two 6-D data sets are illustrated. These data sets both had
two clusters of points in a unit hyper-cube, with 225 random points in each cluster. The
separation between the clusters was different for the two data sets. The clustering results
from varying the number of inhibitor and grouping candidates are compared with the exact
clustering results produced for these data sets.  The figure shows the number of points
which clustered incorrectly as a function of the number of NN points used as
groupers/inhibitors in a RICS clustering approximation algorithm. When two or more
NN’s are used as the grouper/inhibitor candidates, the number of clustering errors tends to
remain constant and few. Fig. 2 shows an example of the weighted average number of
groupers and inhibitors needed to achieve the PR results of the exact method. The
weighting was computed by multiplying the number of grouper/inhibitor candidates used
to find groupings times the percentage of new correct groupings found with that number
of grouper/inhibitor candidates. The four 6-D data sets each had two clusters of points in a
unit hyper-cube, with 225 random points in each cluster. The separation between the
clusters was varied in the data sets. Four 10-D data sets were used to demonstrate RICS
results in multiple hyper dimension cases. The 10-D data sets each had two clusters of
random points in a unit hyper-cube. Two data sets had 500 points in each cluster, and two
had 900 and 100 points in each cluster respectively. The separation between the clusters
with the same number of points in each cluster was varied in the data sets. The fixed
weighted  average result illustrated led to a surprising (favorable) discovery; while varying
the dimensions of the data, the average number of NN’s points needed for a point to
achieve the results of the exact PR method remained constant. These results suggested the
possibility of an exact clustering procedure which might use less than O(N) grouping
candidates and/or less than O(N) inhibitor tests for each potential grouping. This led to
our development of a faster exact clustering algorithm O(Ntest

2) (sec. 2.3) and an
O(Ntest*Ntrain) (sec. 2.4) exact PR algorithm.

2.3 Fast O(Ntest
2) Clustering Algorithm

This algorithm was developed based on the constant NN findings described in section 2.2.
Each of the N data points on which the clustering process will be performed finds a fixed
number of its NN’s in the data set. All pairs of points are examined for grouping. The
NN’s of a grouping pair are used as inhibitor candidates. Many groupings are inhibited by
the NN’s. The groupings which occur are only candidate groupings at this stage as some
essential inhibitor points may not have been examined. The candidate groupings are
screened using all remaining unique test points as inhibitor candidates, yielding an exact
clustering solution in O(N2) time.

The method uses a fixed number of NN’s as inhibitor candidates for each initial grouping
attempt (O(1)) to test inhibitors). There are O(N2 ) initial groupings attempts done
requiring O(N2 ) * O(1) = O(N2 )  time to perform . Each of the N points will group with
at most a fixed number (K) points K<< N. Proof of the fixed number of groupings is
explained in G.C. Osbourn (Ref. 2). Therefore, K*N groupings are screened for exactness
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using N -2 inhibitor candidates (K*N* N-2 operations to screen), which still  leaves us
with an O(N2 ) algorithm. If we use a simple (O(N2 ) technique to find the NN’s, and we
do it on-line, we still do not change the order of the algorithms runtime.

2.4 Fast O(Ntest*Ntrain) Exact PR Algorithm

In the PR algorithm we utilize a training set of known information (a data set with Ntrain

classified points), and a test set with unknown classes of points (Ntest points with all points
unclassified). For each of the Ntest points we want to examine which training points group
with each test point, and assign a class (or classes) to the test point based on the classes of
the training points that grouped with it. Based on the NN findings described in section 2.2,
we developed a faster version of the exact PR algorithm. Similar to the clustering
algorithm in section 2.3, the PR algorithm incorporates the technique of using a fixed
number of NN’s of a point pair (in this case a test and training  point) as inhibitor
candidates to create a set of candidate groupings which are then screened for exactness.

For each of the Ntest test points, the algorithm tries to group (cluster)  with the Ntrain

training points one at a time. The algorithm uses a fixed number of NN’s of the training
point and a fixed number of training points, which are NN’s of the test point, as inhibitor
candidates to approximate the exact groupings. This results in Ntrain*c work per test point,
and  O(Ntest* Ntrain) work to  approximate the exact groupings for all test points. Using
Proof of Fixed Number of Groupings Per Point (Ref. 2), each test point will group with at
most K training points. K<< Ntrain. The approximate groupings are screened with all Ntrain -
1 unique training points to get exact results (which requires K*Ntest*Ntrain-1 work) in
O(Ntest*Ntrain) time.

2.5 General Observations in Exact Algorithm Development

Our RICS algorithm research led to an important discovery. Using the RICS results, we
developed an exact clustering algorithm which runs in O(N2) time, compared to the
original O(N3) runtimes. A faster exact PR algorithm was also developed. Its runtime was
improved from O(Ntest*Ntrain

2) to O(Ntest*Ntrain). The development of these algorithms
demonstrated to us that indeed faster runtimes were possible without using approximated
solutions.
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3. Reduced/Sparse Training Sets

3.1 Reduced/Sparse Training Set Motivation

As mentioned above, using the NN information from the RICS algorithm we developed an
exact PR which has its runtime reduced by a factor of Ntrain  compared to the previous
exact PR algorithm. The training set (the data comprising Ntrain) represents the known
(classified) information in a PR system.  We wanted to know if it was possible to reduce
the number of data points in the training set and still retain a PR system capable of
producing  results with minimum degradation in the test point classification process. A
smaller training set which still retains the PR capabilities of the original training set will
allow further reductions in the runtimes of the exact O(Ntest*Ntrain) algorithm. What we
wanted was an algorithm capable of producing a new training set, based on an existing
one, which would be a less dense set of points with expanded NN separations. This sparse
set must retain the original training set’s geometrical and internal structure.

3.2 Reduced/Sparse Training Set Algorithm

We developed a VERI based sparse training set algorithm. The sparse training set is
obtained by using VERI to select an appropriate subset of the original training set. A
sparse training data set is built up one point at a time on a class by class basis. The
algorithm decides on whether to include one of the original training set points into the new
sparse set by attempting to group it with the existing points in the sparse set. A sparse set
of points for a class is initialized by selecting two seed points from the class in the original
training set. Controlling the separation between the seed points helps determine where
points will be added to the sparse set for a class of training points. Points from the original
training set which are near the seed points will not be included in the sparse set. The
metric we found useful for determining the seed points is to select the first seed point at
random from the training set and then select the second point as the one which is closest
to a user specified Euclidean distance from the first seed point. A factor of the average
NN distance of the points in a class serves as an appropriate distance to specify to select
the second seed point. This value is based on a fundamental characteristic of a set of data
points and gives the user some control of where the seed points will occur. For example, if
a large factor of the NN distance is specified as the distance at which the second point
must occur, the second seed point will be the point which is furthest from the first seed
point.
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Points from the original class are used as inhibitor candidates if they are farther than a user
specified distance from the point pair being examined for grouping. By controlling  the
distance which an inhibitor training must be separated from the grouping points, we can
gain some control on how sparse the points will be in the final sparse set created for a
class. The further the specified separation an inhibitor must have from the grouping pair,
the easier it is for the grouping pair to successfully group, thereby preventing that point
from being added to the sparse set. Points are added to the sparse set being created for a
class if they do not group (cluster) with any of the existing points in the sparse set.  These
points which are added are called outliers. For each of the outlier points added, an area
(volume) of the original unreduced training set is represented without redundancy. The
sparse set for a class is completed when all points in the original class have been examined
as candidates for the sparse set.

Fig. 3 Original (Unreduced) Training Set

3.3 Reduced Training Set Algorithm Results
We successfully implemented and evaluated an algorithm for producing sparse training
sets from K-D data. Our algorithm allows direct improvement of runtimes by reducing
Ntrain while controlling the associated degradation of the PR results. Figures 3 and  4
illustrate an example of reducing a training set’s size using the Sparse Training Set
Algorithm. Fig. 3 is the original training set with Ntrain =1438 points. It consists of three
clusters. The clusters on the left are a cluster within a cluster (hierarchical clusters), each
of uniform density, with the inner cluster having a dissimilar density with respect to the
outer cluster. The clusters on the left side of the figure are well separated from the cluster
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on the right side, which is a circular cluster with non-uniform density. Fig. 4 shows the
sparse training set generated from the original training set after one iteration of the
reducing algorithm, here Ntrain =409 with the geometrical and internal structure of the
clusters similar to the original training set. In general, a sparse result can be used as input
to the algorithm to produce a sparser training set.

Fig. 4 Reduced Training Set -- One Iteration

3.4  Algorithm Runtime Analysis

The K-D algorithm produces a subset of Ntrain  points in its solution. The original class has
O(Ntrain) points in it, therefore O(Ntrain) inhibitor tests are performed each time a point pair
grouping with a point from the original class and a point in the sparse set is evaluated.
Initially, grouping pairs are examined with the candidate point for the sparse set and the 2
seed points. If the point is added to the sparse set, 3 grouping pairs are examined by the
next candidate, and so on until there are O(Ntrain) points in the final sparse class. From this

we have 2+3+4+...+ O(Ntrain) = Ntrain* (Ntrain+1)/2 -1, which is  O(Ntrain
2)  grouping pairs

examined. There are O(Ntrain) inhibitor checks for each  point added to a sparse class.

Therefore, the sparse training set algorithm runs in  O(Ntrain
3 ) time. While this is not a

favorable dependence on Ntrain, we note that this algorithm is used as a preprocessing step
for the PR algorithm, and can be run off line on large computers.

3.5 Reduced/Sparse Training Set Application and Observations
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 PR runtimes for a large, 6-dimensional training set of chemical sensor data were
successfully minimized by reducing the size of the training sets. The data consists of
responses of 6 chemical sensors to 29 chemical classes -- individual and binary mixtures of
varying concentrations. The 0.1% training set represents responses from new sensors,
while the 16% training set represents aging sensors with 16% range of reduction in
sensitivity.
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Fig. 5 Tradeoff of Runtimes and PR Results -- Sparse Training Sets

Fig. 5 illustrates the tradeoff of runtimes and computed degradation  in chemical
identifications for the chemical sensor data as a function of the number of training points.
Since this initial work, the Reduced/Sparse Training Set Algorithm has become an integral
part of our PR work when a new training set is developed. An area for future work would
be the improvement of the O(N3) runtimes of this algorithm.
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4. Divide & Conquer Clustering Algorithms

4.1  Divide & Conquer Clustering

An approximate clustering solution can be useful if it can be obtained fast and the
qualitative results do not differ much from the exact solution. We have investigated 2-D
clustering approximation algorithms using the divide and conquer (D&C) method  (Ref. 3)
of breaking a data set into subsets with fixed numbers (m) of points, independent of the
total number of points in the data set, and applying the clustering algorithm to data points
in the rectangles. Some of the algorithms use a recursive (Ref. 3) method of breaking a
data set into subsets. Each points’ clustering solution is found by examining the fixed
number of points in one of the subsets as potential groupers or inhibitors. The complete
data set is no longer analyzed to find a test points clustering solution. However, not all of
the points a data point will group with, or points that may inhibit groupings occur in the
same subset. It is possible for inter-subset inhibitors or groupers to exist. An iterative
technique is used to find the inter-subset groupers and inhibitors that may exist. When all
grouping/inhibiting candidates have been found, a final clustering pass is performed to
screen the initial groupings.

More specifically, the D&C technique partitions data  into rectangles of approximately m
(constant) points which are spatially collocated. The time to partition the data can be
O(N*log N) if efficient sorting techniques are used. O(m2) VERI based clustering is
performed on each point pair inside each of the rectangles to find a set of initial grouping
candidates for each point. Point numbers of successful groupings are added to a
grouper/inhibitor list for the data points which successfully group. A fixed number of
NN’s of each point are found and are also added to the test point grouper/inhibitor lists.

Not all of the points a data point will group with, or points that may inhibit groupings
occur in the same rectangle. It is possible for inhibitors or groupers to exist in adjacent
rectangles. In order to not examine all adjacent rectangles when performing groupings for
a point, the VERI technique is used to determine if groupings may exist between points
across rectangle boundaries. A point is projected to its rectangle boundaries and the
projected point is used as a grouping candidate. A fixed number of NN’s from the original
point are used as inhibitor candidates. If the grouping between the original point and the
projected point is inhibited, it is not likely other grouping candidates exist in the adjacent
rectangle; otherwise, a projected-to point grouping requires the original point be flagged
as one with the possibility of finding more grouping/inhibitor candidates in adjacent
rectangles. Another iteration of D&C and clustering is performed with the flagged points.
We call the points which may have more grouper/inhibitor candidates across rectangle
boundaries Active Candidate Seekers (ACS). The D&C and clustering processes
continues while the chance of finding more groupers/inhibitors for ACS exists -- i.e. while
ACS exist. Each iteration of the algorithm was expected to produce a different set of
rectangle boundaries to project to, eliminating some of the ACS. The D&C and clustering
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work would be complete when there are no longer any ACS or a small fixed number
remain. However, we discovered that it is possible in some data sets for the identical
rectangles and ACS to be produced in successive iterations, so that the algorithm fails to
terminate. The versions of clustering algorithms described in this paper differ mainly in the
approaches to attempt to ensure that the algorithm terminates and in the way the ACS is
selected.

After the grouper/inhibitor candidates are found for all points in the data set, a final, more
precise clustering pass is done for each point using all the grouper/inhibitor candidate
points found for the point. Each test point (I) tries to group with each point (J) in its
grouper/inhibitor list that was created, the remaining unique points  (K) in I’s and J’s lists
are inhibitor candidates for the grouping attempt.

There are three types of clustering results which can occur for a test point, two of which
are errors. A point can correctly group (based on VERI) with its neighbors in the data set.
This is the result we get using the exact clustering algorithm. Using approximation
algorithms allows  the two error conditions to occur.  A point in a clustering
approximation can group with too many points (excess grouping) or with too few points
(missed grouping), relative to the exact clustering results.

Each iteration of the D&C portion of the algorithm requires at most O(N*log N) time to
partition the O(N) ACS set. Assuming that a fixed maximum number of iterations occur,
the clustering and projection tests require constant time to perform in each of the
rectangles. There are at most N/m (i.e. O(N)) rectangles in each iteration, so all of the
work after each partitioning is O(N). Therefore, this algorithm should run in O(N*log N )
time for sufficiently large N. This is an interesting result; given a large enough data set, it
shows the time required to cluster the data is actually bounded by the time required to
D&C the data set.

The D&C and clustering techniques applied to clustering algorithms are described in the
following sections. Referring to figures in a following section, we see that figures 7(a) and
7(b)  illustrate what a 2-D test set looks like after the D&C algorithm has been used to
partition a data set. The rectangles bounding the data represent how the algorithm
partitioned the ACS.

4.2 Data Set Generator Algorithm

We needed to develop a variety of data sets to fully test the performances of the D&C
algorithms. A procedure was developed to generate data sets which contained various
clusters, which we do not describe here. We could define the shape of a cluster (from a
fixed set of shapes), the density of points in a cluster, and the cluster separations. We
found the data generator could require a large amount (in the order of minutes) of time to
find a new point in a dense cluster. A limit had to be imposed on the amount of time spent
searching for new points, and this produced data sets with incomplete clusters. Since we
were primarily concerned with the numbers of points in the data and not the details of the
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cluster shapes, this caused no difficulty. The data set generator algorithm created the
cluster patterns used to evaluate our clustering approximation algorithms described here in
section 4.

                        Fig. 6 Software Generated Cluster Patterns

(a)

(b)

Figure 6 illustrates two of the data sets generated to use in evaluating our clustering
algorithms. Figure 6(b) (N = 32625) illustrates how the resulting patterns generated were
sometimes not the complete cluster shapes we had specified. However, as discussed
above,  they were still useful for our testing purposes. The test sets were evaluated using
the exact clustering algorithm. The exact clustering results were used to qualitatively
analyze the approximation results. The total number of exact groupings for the test set
with N = 1438 is 3115, N = 17192 is 34968, N = 32625 is 49923, and N = 105656 is
95723. An exact clustering solution was never generated for the test set with N = 152694.
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Even with the O(N2) algorithm it would have required a prohibitive amount of computing
time (~106 seconds, see fig. 8).  However, it was useful for computing runtimes for the
approximation algorithms.

4.3 D&C Clustering Algorithm #1

Our initial D&C clustering algorithm uses a straight forward method to partition the data.
For each iteration  of partitioning the ACS set into rectangles, the dimension of the data
with the largest statistical variance  was  selected as the dimension to partition the data
along. This was a nonrecursive approach, once the dimension was selected, the
partitioning consisted of selecting subsets of m points from the ACS set as the points in
the rectangles.  A fixed number of points were in each partition rectangle along the
dimension in which the data was cut.

4.3.1 Clustering Approximation Results

We soon learned the straight forward approach of partitioning data only along one axis for
each iteration of the D&C code was not without drawbacks.  Analyzing the results, we
found that subsequent iterations might produce the same partitions and thus the same ACS
set. This can prevent the ACS set from decreasing in size each iteration. Many cases were
found where the ACS does not converge to a fixed number of points to stop the D&C
iterations. This algorithm was a starting point for the development of several improved
versions which are documented below.

4.4 D&C Clustering Algorithm #2

Our next D&C algorithm is an improvement over clustering algorithm #1. A method
which would more effectively remove ACS from each iteration was developed. The
algorithm uses an improved method to determine which axis the data will be partitioned
on. For each iteration a recursive algorithm is used to partition the data. The data is
recursively partitioned by selecting the dimension with the largest statistical variance as the
one on which to partition. Initially in an iteration, the partitioning dimension is determined
from examining all the ACS, then half of the ACS, then one fourth... until a fixed number
of points still remain to be partitioned. The resulting recursive partitioning of the ACS set
at each iteration is a data set which has been cut along all (2) dimensions. The remainder
of the algorithm performs the same as described for D&C Clustering in section 4.
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First two partition steps to find  good neighbors for each data point

Final clustering result

Fig. 7 Two Partitioning Steps of D&C Clustering and Final Result

(a) (b)

(c)

Fig. 7 shows an example of two recursive partitionings of a data set (ACS) where
preliminary groupings and searches for NN’s of the test points are performed. The
partitioning was performed using D&C Clustering Algorithm #2. The first partitioning
iteration on the test set (7a) illustrates how the data is partitioned along both dimensions
with approximately the same number of points in each rectangle. The second iteration (7b)
illustrates how many points remain in this data set as ACS and which points these are. The
ACS are points spatially located near the rectangle boundaries created from the previous
partitioning iteration. Some points far from the inner rectangle boundaries in (7b) exist
because they grouped with points which were projected to external rectangle boundaries --
boundaries which are not adjacent to other rectangles. The succeeding versions of the
clustering algorithm did not perform a projected point grouping test to external rectangle
boundaries.  The final clustering result (7c)  is also shown where groupings between
points are represented by a line segment connecting the points.
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4.4.1 Algorithm Runtime Analysis
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Fig. 8 Cluster Algo #2  Runtime Plot
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Fig. 8  illustrates cluster algorithm #2 example runtimes using maximum partition
rectangle sizes of m =80, 300 and 460 points, respectively. The time required to execute
the exact O(N2) clustering algorithm is shown. Since its runtime is established, two true
runtime points are plotted and an O(N2)  line is used to extrapolate the results. The
runtimes of clustering algorithm #2 are bounded by  O(N*ln N ) as illustrated by the
O(N*ln N) reference curve.
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Fig. 9 illustrates how the total number of ACS changes as a function of the partition size.
The data plotted are the sum of the ACS for all the iterations required to complete
clustering algorithm #2 using two data sets. Larger partition rectangles contain more
points which do not group with projected points at rectangle boundaries and are therefore
removed from the ACS set, while small partition rectangles allow more points to group
with the rectangle boundaries. Referring to Fig. 10, we see the runtimes are not directly
related to the sum of ACS above rectangle sizes of approximately 150.  In this range, the
time to process the larger number of points in the rectangles dominates the total time.
Fewer ACS exist, but more time is required to process the increased number of points in
larger rectangles.
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Fig. 10 Cluster Algo #2 Runtimes -- Vary Partition Size

Fig. 10 shows how the runtime of cluster algorithm #2 changes as a function of partition
size using two data sets.  One data set has Ntest=20747 (genND2d_8), the other has
Ntest=30542 (genND2d_9). Optimal runtimes occur when the partition rectangle size is in
the range of approximately 50-150 points. Below that range, the total number of ACS
increases (see Fig. 9), causing the algorithm to execute more iterations to finish.

Using clustering algorithm  #2  it was still possible, but less likely than clustering algorithm
#1 to produce partition sizes on data sets which would cause the algorithm to “stall” on a
set of ACS. By this we mean that the same set of partition boundaries and the same
“stagnant” set of ACS points is produced in each subsequent iteration. In such a case, the
algorithms are designed to display an error message and terminate.
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4.4.2 Clustering Approximation Qualitative Results
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Fig. 11 Cluster Algo #2 Qualitative Results -- 3 Partition Sizes
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Fig. 11 shows the number of missed and excess groupings which occurred over the range
of test set sizes using partition rectangle sizes of 80, 300 and 460 maximum points per
rectangle. The number of errors decreases as the size of the rectangles increases.
Assuming that each point in the data set on average has more than one grouping, these
errors represent less than 10% of the total correct groupings. This algorithm produced
more missed grouping errors than excess errors over the range of test points examined.
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4.5 D&C Clustering Algorithm #3

The next D&C algorithm again attempted to improve the process of removing ACS from
each iteration of the algorithm. An attempt is made to cut the ACS in a dimension where
stagnant points along a rectangle boundary cause a single dimension to be fixated on in the
partitioning process, causing an infinite iteration problem. We arbitrarily change the choice
of partitioning dimension in some of the iterations to avoid getting stuck with the same
one each iteration. Within these selected iterations, we also selected which recursive
partition steps did not use the dimension of largest variance. For example, the user can
specify that on every second D&C iteration the fourth recursive call be modified. When
those conditions are met, the D&C recursive call is made using the opposite dimension the
program would have normally selected to partition on. The remainder of the algorithm
performs the same operations as described for D&C Clustering in section 4.

4.5.1 Algorithm Runtime Analysis

This algorithm has the same runtime analysis as clustering algorithm #2 (O(N*log N)),
with larger constants in front of the runtime equation. The partitioning iterations are
interrupted enough to further alleviate the “stagnant” ACS set problem. This version can
run using smaller partition rectangles than the previous versions and not get into the
infinite iteration problem. However, since small rectangles have fewer points available as
inhibitor candidates which could prevent the projected point groupings, the ACS set can
remain large. As a result, there are still some small partition rectangle sizes which can
cause the algorithm to hang up.
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Fig. 12 Cluster Algo #3 Runtime Plot
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Fig. 12  illustrates cluster algorithm #3 example runtimes using maximum  partition
rectangle sizes of 500,560 and 640 points. The time required to execute the exact O(N2)
clustering algorithm is shown. Its runtime is established, two runtime points are plotted
and an O(N2)  line is used to extrapolate the results. The runtimes of clustering algorithm
#3 are bounded by  O(N *ln N) as illustrated by the O(N*ln N) reference curve.
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Fig. 13 Cluster Algo #3 Runtimes -- Vary Partition Size

Fig. 13 shows how the runtime of cluster algorithm #3 changes as a function of partition
size. Almost constant runtimes are demonstrated by the two data sets in the partition
rectangle range of approximately 40-500 points, and test set #2.4  runs in constant time
for the whole range of partition sizes examined (40-460).  Test set #2.4 has Ntest =1438,
2.5a has Ntest =17192.
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4.5.2 Clustering Approximation Qualitative Results

The clustering results using algorithm #3 are improved compared to those of the previous
versions. The qualitative results from this algorithm start to approach the exact results. We
found a useful set of input parameters to alter the partitioning process. On every third
D&C iteration the fourth recursive call would be altered. These parameters allowed the
algorithm to remove points from the ACS set faster than other parameters examined.
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Fig. 14 Cluster Algo #3 Qualitative Results  -- 3 Partition Sizes
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Fig. 14 shows the number of missed and excess groupings which occurred using cluster
algorithm #3  over a range of test set sizes and using partition rectangle sizes of 500,560
and 640 maximum points per rectangle. The number of errors decreases as the size of the
rectangles increases. This algorithm produced more missed grouping errors than excess
errors (almost none) over the range of test points examined. The number of errors is two
orders of magnitude lower than the number of errors produced by cluster algorithm #2
using the same data.
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4.6 D&C Clustering Algorithm #4

In the next version of the approximation clustering algorithm we want to improve on the
estimates of whether or not a point can have groupers or inhibitors across rectangle
boundaries -- this is another attempt to determine the ACS set. While the point projection
method returns results which may be acceptable in some cases, it still has failures. Fig. 14
shows that clustering algorithm #3 had many times more missed groupings than excess
groupings. The missed groupings can be attributed to the inadequacy of our point-
projection method for estimating the presence of potential groupers in an adjacent
rectangle. The point projection technique performs a VERI grouping test with the
template perpendicular to the boundary the point was projected to. It is possible for a
point to have groupers in an adjacent rectangle such that the orientation of the template on
the data points is different from the orientation of the template on the data point and its
projected point. Because of the change in template orientation, points which inhibit the
projected point grouping may not necessarily inhibit all groupings to points in the adjacent
rectangles. Groupings which could have occurred are missed.

Still using the D&C modifications from clustering algorithm #3 to partition the data, we
introduce another concept to produce a better estimate of whether or not points may have
groupers across a rectangle boundary and be included in the ACS set.  As described in
Osbourn and Martinez1, the VERI algorithm uses a region of influence (ROI)
encompassing a pair of grouping candidates to determine if they group together. If no
other points from the data set lie in the ROI (template), the grouping of the two points is a
success. Similarly, we can define an Inverse Template (IT), for a grouping point and an
inhibiting point, which determines the volume around the grouping point in which
grouping with other points is not inhibited by the inhibiting point. This IT can be
computed from the VERI shape. For computational simplicity, we use an approximate IT
shape (a rectangle) which contains the true IT. What this version of the algorithm does for
each test point in the ACS  is use the points in its grouper/inhibitor list as inhibitor
candidates to generate an approximate IT (a rectangle containing the IT) for the
grouper/inhibitor pair. If the inverse template can project across one rectangle boundary,
then the point has a good chance of finding groupers in an adjacent rectangle, and is
flagged for the next ACS. The fact that the approximate IT is larger than the true IT
means that some points which occur in the rectangle may appear to be likely grouping
candidates, but are not. We expect this method to produce larger ACS sets at each
iteration than the projection methods in clustering algorithms #1-#3. The remainder of the
algorithm performs the same operations described for D&C Clustering in section 4.
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4.6.1 Algorithm Runtime Analysis

This algorithm has the same runtime analysis as clustering algorithm #3
 (O(N*log N)),  with larger constants in front of the runtime equation.
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Fig. 15 Cluster Algo #4 Runtime Plot
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Fig. 15  illustrates cluster algorithm #4 example runtimes using maximum partition
rectangle sizes of 240,440 and 640 points. The time required to execute the exact O(N2)
clustering algorithm is shown.. Cluster algorithm #4 has O(N*log N ) runtime behavior,
but because the constant in front of that runtime equation is large, the time to cluster
small (<2000 points) test sets using cluster algorithm #4  begins to approach (or exceed)
the time required to execute the exact algorithm on small data sets.   The runtimes of
clustering algorithm #4 are bounded by  O(N * ln N) as illustrated by the O(N * ln N)
reference curve.
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Fig. 16 Cluster Algo #4 Runtimes -- Vary Partition Size

Fig. 16 shows how the runtime of cluster algorithm #4 changes as a function of partition
size for two data sets. Test set #2.5a has N = 17192, 2.6 has N = 32625. Almost constant
runtimes are demonstrated by the two data sets in the partition rectangle range of
approximately 300-650 points.
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4.6.2 Clustering Approximation Qualitative Results

The clustering results using clustering algorithm #4 are again improved compared to those
of the previous versions. The partitioning iterations are altered, this in conjunction with
the inverse template is effective in determining which points to retain as ACS.  If a true
inhibitor point is not found some excess groupings can occur, but under most
circumstances missed groupings will not occur. A case when groupers/inhibitors can be
missed exists when a point being examined for groupings occurs close to a boundary of
two adjacent rectangles. Only one of the adjacent rectangles is examined for
groupers/inhibitors when in fact candidates could exist in the other rectangle too. The
clustering results from this algorithm closely resemble the exact results, in most cases they
are exact.
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Fig. 17 Cluster Algo #4 Qualitative Results -- 3 Partition Sizes
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Fig. 17 shows the absolute number of missed and excess groupings which occurred using
cluster algorithm #4  over a range of test set sizes and using partition rectangle sizes of
240,440 and 640 maximum points per rectangle. With partition size of 640, one grouping
was missed. All other clustering results were correct.

4.7 General Cluster Approximation Results/Observations

Algorithms #3 and #4 were evaluated and used more extensively from this set of cluster
approximation algorithms. Clustering algorithm #4 using the IT produces essentially exact
clustering results, but on average runs >200% slower than algorithm #3, which produces
results approaching exact. The partition rectangle size which generates the fastest runtime
is dependent on the data set being evaluated. However, a range of rectangle sizes which
produced faster timing results was observed for each algorithm using 2-D data. For
algorithm #2, the range is approximately 50-150 points, for algorithm #3 the range is
about 40-500 points, and for cluster algorithm #4 the range is about 300-650 points per
rectangle. In general, optimal runtime does not imply best clustering results. The problem
of infinite iterations can be circumvented if small partition sizes on the lower end (or
below) of the optimal ranges are avoided.
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5. Discrimination Approximation Algorithms

This next section describes the approximation discrimination  (PR) algorithms we
developed to improve the runtime efficiency of our exact O(Ntest*Ntrain)  PR algorithm. PR
algorithms use a set of known classified points (training set) to determine the class of
unknown data points (test points). The class(es) assigned to a test point usually are a
function of the class(es) of the training points in which the test point spatially occurs. A
training set is a well defined and classified set of points, it does not change unless new or
old class information is added to or deleted from the set. Therefore, we can take
advantage of its static nature and apply one time preprocessing functions to the training
set off-line. The preprocessing allows us to set up and store data structures which enable
us to efficiently search the training set. The on-line algorithm can be designed to use the
data structures and efficiently classify test points.

The training data is D&C partitioned into (hyper)rectangles with a fixed maximum number
of points per rectangle and is stored in a search tree in a preprocessing step. The
partitioning operation performed on the training set is similar to the partitioning of the
data set done in clustering, but with one major difference; the training set is partitioned
only one time and the data structure generated to represent the partitioned training set is
stored to file.

A key feature of the data structure created to represent the training set is that it allows
O(log Ntrain) search times to find where in the training set’s rectangles a test point occurs.
A fixed number of NN’s are also found and stored for each training point off-line. The
discrimination algorithms operate on K-D data, K>=2. Test points are classified one at a
time.

The first major operation performed in our PR algorithms is to find where in a training set
a test point occurs -- which rectangle in the preprocessed training set it is bounded by.
Once this rectangle has been found, all of the training points in that rectangle are examined
as potential groupers. A fixed number of NN’s of the training point grouping candidates
are used as inhibitor candidates. A fixed number of test point NN’s in the current rectangle
are found and added to the grouper/inhibitor list. Following this step, it is necessary to
seek additional groupers/inhibitors that may be in adjacent rectangles. Two types of
grouping candidates are distinguished here -- internal candidates and external candidates.
Internal candidates are the training points a test point attempts to group with which are in
the rectangle a test point occurs in, external candidates are the training points in adjacent
rectangles (with respect to the test point's rectangle) where a test point may find grouping
candidates.
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Fig. 18(c) grouped point projection -- test for more inhibitors
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Fig. 18(a) illustrates a schematic showing  a partitioned training set with a test point in the
rectangle where it spatially occurs in the training data. The training points in the same
rectangle as the test point are the internal grouping candidates. The rectangle sharing the
same boundaries as the rectangle where the test point occurs is where the external
grouping candidates exist.  In our PR approximation algorithms, projections of the test
point are used to find extra grouping and inhibiting candidates. This is analogous to the
projections used in some of our clustering algorithms. The projected point, on the
rectangle boundary, is tested for grouping with the test point. A fixed number of the test
points NN’s are used as the inhibitor candidates for the grouping attempt with the
projected point. If the test point successfully groups with the projected point, then a
search for external grouping candidates and NN’s is done in the adjacent rectangle on
which the projection of the ad hoc point occurred. Fig. 18(b) illustrates a test point
projection. The same method of finding groupers in the rectangle where the test point
occurs (internal candidates) is used to find groupers in the adjacent rectangles. After all
the initial pair groupings  of a test point and training points have been examined, a
secondary screening of the groupings is performed. All the training points in the projected-
to rectangles, in the test points NN list and in the test points rectangle (if necessary ) will
be used as inhibitor candidates of the grouping.

We also test if it is possible for more inhibitors to exist in rectangles different from those
already examined. For each of the surviving groupings, a test is performed  to determine
the likelihood of finding more inhibitors in adjacent rectangles. The test is done by
projecting a grouped-to training point to the test point’s rectangle boundaries and using
the projected point as another inhibitor candidate of the grouping. If the grouping attempt
is inhibited, the training points in the projected-to  rectangle are used as more inhibitor
candidates of the grouping. If the grouping has not been inhibited, the same projection
technique is applied to the test point in a final attempt to find more inhibitor candidates.
Fig. 18(c) illustrates an example of these projections.

After searching for more inhibitor candidates and using them in an attempt to inhibit the
test points groupings, a final PR result is computed. The class value of the training points
which a test point remained grouped to are used to compute the classification result of a
test point. In these approximation results, the  class(es) of training points a test point
groups with are stored as the classification result.

As mentioned before, the search tree data structure applied to the training data allows
O(log Ntrain) search times to find where in the training set a test point spatially occurs
(what rectangle it’s in). Once the rectangle  has been found, it is constant time to process
the test point. There are Ntest  test points
to process, therefore the on-line PR algorithm should run in O(Ntest*log Ntrain) time for
sufficiently large Ntrain.

The training data used to evaluate the discrimination algorithms is derived from the
chemical sensor data described in sec. 3.5. Seven sparse training sets from the 0.1%
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training data and three sparse training sets from the 16% training data were generated.
The original training set with 11202 points was used as a test set and  classified with each
of the sparse training sets. If a test set with known classes (a training set) is classified ,
four possible classifications can result. The test point can group with the correct class in
the training set (ok), it can not group with any training points (out), it can group with an
incorrect class (nok) or it can group with multiple classes of test points (mult). These four
classifications (ok,out,nok and mult) are used to produce qualitative results for our PR
algorithms.

The versions of our PR approximation algorithms differ mainly in the methods used to
determine the internal and external grouping candidates of test points in the partitioned
training data. training points. The differences are described in a section devoted to each
algorithm.

5.1 Discrimination (PR) Approximation Algorithm #1

Once the rectangle in the partitioned training data where a test point occurs has been
found, a test point is paired for potential grouping with all the training points in the
rectangle where it occurs. In this version, to find internal grouping candidates, a test point
and training point pair are examined for potential grouping using only a fixed number of
NN’s from the training point grouping candidates as inhibitor candidates. The training
points successfully grouped with and a fixed number of test point NN’s in the current
rectangle are added to the grouper/inhibitor list of the test point.
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5.1.1 Algorithm Runtime Analysis
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Fig. 19 Discrim Algo #1 Runtime Plot
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Fig. 19 illustrates discrimination algorithm #1 example runtimes using maximum partition
rectangle sizes of 50,100 and 150 points. Since the same test set was classified with each
training set, the runtime plot of this test and training set pairs should be O(log Ntrain ) for
sufficiently large Ntrain. The constant in front of the runtime equation is large enough that
the time to do PR with  small (<2000 points) training sets (reduced from 16% training
data) exceeds the time required to execute the exact algorithm. The runtimes of
discrimination algorithm #2 on the 0.1% training data are constant, with larger rectangle
sizes requiring more time to complete execution than small rectangles. However, down at
the data set sizes of 100-300 (extrapolate results), runtimes on the 0.1% data are longer
than the time required for the exact algorithm to run on those same sized data sets.
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We are not seeing the asymptotic O(log Ntrain ) runtimes with training data sets of this size.
The runtimes are being dominated more  by the time to process the test point and not by
the time to find the test points rectangle in the training set. The training data with the 16%
error has a runtime slope greater than that of the O(log Ntrain ) curve. This can be
attributed to the extra work of finding extra grouping and inhibitor candidates (see
discrimination algorithm #5 timing results).

5.1.2 Qualitative Approximation Results
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Fig. 20 Discrimination Algo #1 Qualitative Results,  0.1% Training Data
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Fig. 20 illustrates PR algorithm #1 qualitative results using the seven sparse 0.1% training
sets. The figure shows how the results degrade (relative to the exact results) as smaller
training sets are used with the smallest partition size (50) used. The dashed line through 0
represents the exact algorithms results. The deviations from exact results were small with
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the partition sizes of 100,150 points. Some points went from being (ok) to (out) (Ntrain

=3883).  Most errors were from less points that grouped (ok) and extra  points which
grouped (nok) and (mult) (Ntrain =467) or extra points that grouped (ok) and less points
which grouped (mult) (Ntrain =165). The  smaller partition rectangles generate more errors
than the larger rectangles. In the smallest training set (Ntrain =165) the larger partition sizes
(100, 150) had more errors than the partition size of 50. The classification results using
the larger training sets produced less errors than the smaller training sets.
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Fig. 21 Discrimination Algo #1 Qualitative Results, 16% Training Data
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Fig. 21 illustrates PR algorithm #1 qualitative results using the three sparse 16% training
sets. The dashed line through 0 represents the exact algorithms results. Using the reduced
16% training data generated  more errors than the 0.1% training data. The  smaller
partition rectangles generate more errors than the larger rectangles, but unlike the 0.1%
training data, the classification results using the smaller training sets produced less errors
than the larger training sets. Most errors were from extra points that classified as (ok) and
less as (mult).

5.2 Discrimination (PR) Approximation Algorithm #2
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In this version, to find internal grouping candidates, a test point and training point pair are
examined for potential grouping using a fixed number of NN’s from the training point
grouping candidate as inhibitor candidates. PR algorithm #1 and #2 are not very different.
In this version, the NN’s of the test point are also examined as inhibitor candidates if the
training points NN’s do not inhibit the grouping. In PR Approximation Algorithm #1, the
NN’s of the test point are added to the grouper/inhibitor list of the test point, but not
examined as inhibitor candidates in the internal grouping candidate tests. The training
points successfully  grouped with and a fixed number of test point NN’s in the current
rectangle are added to the grouper/inhibitor list of the test point. The other details of the
algorithm, i.e., methods for finding external grouping candidates, secondary screening of
groupings, finding extra inhibitor candidates, and the final grouping tests are the same as
PR approximation #1 and are described in section 5.

5.2.1 Algorithm Runtime Analysis
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Fig. 22 Discrim Algo #2 Runtime Plot
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Fig. 22 illustrates discrimination algorithm #2 example runtimes using maximum  partition
rectangle sizes of 50, 100 and 150 points. Since the same test set was classified with each
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training set, the runtime plot of this test and training set pairs should be O(log Ntrain ) for
sufficiently large Ntrain. The constant in front of the runtime equation is large enough that
the time to do PR with  small (<2000 points) training sets (sparse sets from 16% training
data) exceeds the time required to execute the exact algorithm. The runtimes of
discrimination algorithm #2 on the 0.1% training data are constant, with larger rectangle
sizes requiring more time to complete execution than small rectangles.

As in discrimination algorithm #1, we are not seeing the asymptotic O(log Ntrain ) runtimes
with training data sets of this size. The runtimes are being dominated more  by the time to
process the test point and not by the time to find the test points rectangle in the training
set. The training data with the 16% error has a runtime slope greater than that of the
O(log Ntrain ) curve. This can be attributed to the extra work of finding extra grouping and
inhibitor candidates (see discrimination algorithm #5 timing results).

This version runs about 10-20% faster than PR algorithm #1 on the same test patterns.
More initial grouping were inhibited with the test points NN’s as inhibitor candidates than
in the previous version which didn’t use the test points NN’s as initial inhibitor candidates.
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5.2.2 Qualitative Approximation Results
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Fig. 23 Discrimination Algo #2 Qualitative Results, 0.1% Training Data
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Fig. 23 illustrates PR algorithm #2 qualitative results using the seven sparse 0.1% training
sets. The figure shows how the results degrade (relative to the exact results) as smaller
training sets are used with the smallest partition size (50) used. The dashed line through 0
represents the exact algorithms results. The deviation from exact results was small with
the partition sizes of 100,150. Some points went from being (ok) to (out) (Ntrain =3883).
Most errors were from less points that grouped (ok) and extra  points which grouped
(nok) and (mult) (Ntrain =467) or extra points that grouped (ok) and less points which
grouped (mult) (Ntrain =165). The  smaller partition rectangles generate more errors than
the larger rectangles. The classification results using the larger training sets produced less
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errors than the smaller training sets. By using the test point’s NN’s as inhibitor candidates
in the internal grouping tests, this version produced less errors than PR algorithm #1.
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Fig. 24 Discrimination Algo #2 Qualitative Results, 16% Training Data
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Fig. 24 illustrates PR algorithm #2 qualitative results using the three sparse 16% training
sets. The dashed line through 0 represents the exact algorithms results. Using the reduced
16% training data generated  more errors than the 0.1% training data. The  smaller
partition rectangles generate more errors than the larger rectangles, but unlike the 0.1%
training data, the classification results using the smaller training sets produced less errors
than the larger training sets. Most errors were from extra points that classified as (ok) and
less as (mult).
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5.3 Discrimination (PR) Approximation Algorithm #3

The order in which the training points are used as inhibitor candidates is modified from
previous versions. The ordering  is  modified with the expectation that the training points
in the NN list of a test point may be better inhibitor candidates than the NN’s of a training
point.  It is possible that a test point’s NN’s are closer to the test point than a training
points NN’s are to it. A fixed number of test point NN’s in the test point’s rectangle are
found and added to the test points grouper/inhibitor list and are used as inhibitor
candidates. If the test point’s NN’s do not inhibit the grouping, a fixed number of NN’s of
the training point grouping candidates are used as inhibitor candidates.

After all the groupings of a test point with the training points using the test and training
point NN’s as inhibitor candidates have been found, a secondary screening of the
groupings is performed.  As in finding the internal groupings of a test point, the order in
which the training points are used as inhibitor candidates in the secondary screening of
groupings are modified from previous versions. All the training points in the test points
rectangle, the test points NN list and the training points rectangle (if different from the test
points rectangle) will be used as inhibitor candidates of the grouping. The other details of
the algorithm, i.e., methods for finding external grouping candidates, finding extra
inhibitor candidates, and the final grouping tests are described in section 5.
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5.3.1 Algorithm Runtime Analysis
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Fig. 25 Discrim Algo #3 Runtime Plot
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Fig. 25 illustrates PR approximation algorithm #3 example runtimes using maximum
partition rectangle sizes of 50,100 and 150 points.  For each training set the same fixed
sized test set of 11202 points was classified. Therefore the runtime plot of these test and
training set pairs should be O(log Ntrain) for sufficiently large Ntrain. The time required to
execute the exact discrimination algorithm is shown.

The constant in front of the runtime equation is large, the time to do PR using small
(<2000 points) training sets (reduced from 16% training data) exceeds the time required
to execute the exact algorithm. The runtimes of discrimination algorithm #3 on the 0.1%
training data are constant, with larger rectangle sizes requiring more time to complete
execution than small rectangles. As discussed in sec 5.2.1, we are not seeing the
asymptotic O(log Ntrain ) runtimes with the 16% training data. These timing results are
very similar to the timing results of PR algorithm #2.
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5.3.2 Qualitative Approximation Results
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Fig. 26 Discrimination Algo #3 Qualitative Results, 0.1% Training Data

Fig. 26 illustrates PR approximation algorithm #3 qualitative results using the seven sparse
0.1% training sets. The figure shows how the results degrade (relative to the exact results)
as smaller training sets and the smallest partition size (50) are used. The deviation from
exact results was small with the partition sizes of 100,150. Some points went from being
(ok) to (out) (Ntrain =3883). Most errors were from less points that grouped (ok) and extra
points which grouped (nok) and (mult) (Ntrain =467) or extra points that grouped (ok) and
less points which grouped (mult) (Ntrain =165). These qualitative results are similar to
those of PR algorithm #2.
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Fig. 27 Discrimination Algo #3 Qualitative Results, 16% Training Data

errors max part 50
errors max part 100
errors max part 150

Ntrain=2105

Ntrain=530

Ntrain=205

Fig. 27 illustrates PR approximation algorithm #3 qualitative results using the three sparse
16% training sets. Using the these training data sets generated  more errors than the
reduced 0.1% training data sets. The  smaller partition rectangles generate more errors
than the larger rectangles, but the larger training sets produced more errors than the
smallest training set. Most errors were from an excess of points that grouped (ok) and less
points grouped (mult). These qualitative results have more errors in the case where Ntrain =
530 with the maximum rectangle size of 50 than those of PR algorithm #2.
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5.4 Discrimination (PR) Approximation Algorithm #4

In order to speed up the internal grouping time, the only points which are used as inhibitor
candidates for the internal groupings are a fixed number of  NN’s of the test point and the
training point. As mentioned in section 5, in order to find external grouping candidates the
test point is projected to the boundaries of the rectangle where it occurs and creates ad
hoc points to use as grouping candidates. A fixed number of the test points NN’s are used
as the inhibitor candidates for the grouping attempt with the projected point. If the test
point successfully groups with the projected point, then a search for more grouping
candidates and test point NN’s is performed in the adjacent rectangle. The extra groupings
and NN’s found are added to the test points grouper/inhibitor list.

In this version, we increase the number of inhibitor candidates examined in a grouping
attempt by a test point and training point pair with expectations of improving the (ok)
classifications which occur for the test points. All the accumulated points in the NN list of
the test point are used as inhibitor candidates when searching in adjacent rectangles for
external grouping candidates. As adjacent rectangles are searched for external grouping
candidates, NN’s of the test point are found and added to the grouper/inhibitor list of the
test point and used as inhibitor candidates. The more adjacent rectangles searched for
external grouping candidates, the more NN’s are added to the test point’s list and used in
the test point’s subsequent grouping tests as inhibitor candidates. A fixed number of the
training points NN’s are used as inhibitor candidates if the grouping is not inhibited by the
test points NN’s. This number is increased to six points from the usual three used by the
other algorithms. The other details of the algorithm, i.e., secondary screening of
groupings, finding extra inhibitor candidates, and the final grouping tests are described in
section 5.
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5.4.1 Algorithm Runtime Analysis
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Fig. 28 Discrim Algo #4 Runtime Plot
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Fig. 28 illustrates discrimination algorithm #4 example runtimes using maximum partition
rectangle sizes of 50,100 and 150 points.  For each training set the same fixed sized test
set was classified. Therefore the runtime plot of this test and training set pairs should be
 O(log Ntrain ) for sufficiently large Ntrain. The time required to execute the exact
discrimination algorithm is also shown.

The constant in front of the runtime equation is large.  The time to do PR using small
(<2000 points) training sets (reduced from 16% training data) exceeds the time required
to execute the exact algorithm. The runtimes of discrimination algorithm #4 on the 0.1%
training data are constant, with larger rectangle sizes requiring more time to complete
execution than small rectangles. At times the partition rectangles  have the same number
of points in them even if different maximum sizes are specified. For this reason some of
the timing points in the partition sizes 100 and 150 are similar. As discussed in section
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5.2.1, we are not seeing asymptotic O(log Ntrain ) runtimes with training data sets of this
size.
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Fig. 29 Analysis of Discrimination Algorithm Runtime

 In Figure 29 the runtimes of three classified data sets are analyzed,  showing  how PR
approximation algorithm #4  utilizes it’s time. The first label (test point loc) plots the total
time spent finding the test points rectangle in the partitioned training data. This time is
negligible -- in the noise of the total time. The label (int group) is used to represent the
total time spent finding internal groupers. About 40% of the total time is spent finding
internal groupers. The label (ext group/screen) represents the time spent searching for
external groupers and screening the groupings the test points make. The largest fraction of
time, about 50%,  is spent searching for external groupings and screening the groupings.
The label (file io) represents the time spent (about 10%) reading in test points and
outputting classification results to file.

5.4.2 Qualitative Approximation Results
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Fig. 30 Discrimination Algo #4 Qualitative Results, 0.1% Training Data, 6,3 NN
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Fig. 30 illustrates PR approximation algorithm #4 qualitative results using the seven sparse
0.1% training sets. The figure shows how the results degrade (relative to the exact results)
as smaller training sets and the smallest partition size (50) are used. The deviation from
exact results was small with the partition sizes of 100,150. Some points went from being
(ok) to (out) (Ntrain =3883). Most errors were from less points that grouped (ok) and extra
points which grouped (nok) and (mult) (Ntrain =467) or extra points that grouped (ok) and
less points which grouped (mult) (Ntrain =165). These qualitative results are similar to
those of PR algorithm #2 and #3.
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Fig. 31 Discrimination Algo #4 Qualitative Results, 16% Training Data, 6,3 NN
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Fig. 31 illustrates PR approximation algorithm #4 qualitative results using the three sparse
16% training sets. Using the training sets with 16% error introduced generated  more
relative errors than the .1% training data. The smaller partition rectangles generate more
errors than the larger rectangles, but the smaller training sets produce less overall errors
than the larger training sets. Most errors were from an excess of points that grouped (ok)
and less points grouped (mult). These qualitative results are similar to those of PR
algorithm #2 and #3.
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5.5 Discrimination (PR) Approximation Algorithm #5

In analyzing the runtimes of PR approximation algorithm #4 we found a large fraction of
time was devoted to the secondary screening process and to finding and evaluating extra
inhibitor candidates (see Fig. 31). In this version the processes of secondary screening of
groupings and of finding and evaluating extra inhibitor candidates are not performed.

The method used to find internal and external grouping candidates is the same as in PR
algorithm #4, and is described in section 5.4.

5.5.1 Algorithm Runtime Analysis 6,3 NN
Two different sets of results were generated for PR algorithm #5. In one case 6 NN’s of a
training point and 3 NN’s of a test point were used as inhibitor candidates. In the other
case, 6 NN’s of a training point and 6 NN’s of a test point were used as inhibitor
candidates.
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Fig. 32 Discrim Algo #5 Runtime Plot, 6,3 NN
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Fig. 32 illustrates PR approximation algorithm #5 example runtimes using maximum
partition rectangle sizes of 50,100 and 150 points. In this case 6 NN’s of a training point
and a dynamic list of training points consisting of 3 NN’s of a test point per adjacent
rectangle visited were used as the only inhibitor candidates for grouping attempts a test
point made. For each training set the same fixed sized test set was classified. Therefore the
runtime plot of this test and training set pairs should asymptotically be O(log Ntrain ) for
sufficiently large Ntrain. The time required to execute the exact discrimination algorithm is
shown.

The runtimes of PR approximation algorithm #5 on the 0.1% training data are constant,
with larger rectangle sizes requiring more time to complete execution than small
rectangles. At times the partition rectangles  have the same number of points in them even
if different maximum sizes are specified. For this reason some of the timing points in the
partition sizes 100 and 150 are similar.

The most important feature to note is that the 16% training data no longer has a runtime
slope greater than that of the O(log Ntrain ) curve. It ran in constant time. This result is
different from the previous versions of the PR algorithm where extra screening of the
groupings and searching for more groupers was occurring.  This difference can be
attributed to not doing the extra work of screening groupings and finding and evaluating
extra inhibitors. The approximation PR algorithm was faster than the exact PR algorithm
and faster than the other versions with one exception. In the next case of algorithm #5
where 6 NN’s of a training point and 3 NN’s of a test point were used as the only
inhibitors, the time to run partition rectangle size 100 is faster than here.
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5.5.2 Qualitative Approximation Results 6,3 NN
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Fig. 33 Discrimination Algo #5 Qualitative Results, 0.1% Training Data, 6,3 NN
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Fig. 33 illustrates PR approximation algorithm #5 qualitative results using the seven sparse
0.1% data sets. The figure shows how the results degrade (relative to the exact results) as
smaller training sets are used with the larger partition sizes (100,150). More variations in
the grouping results occur with PR approximation algorithm #5 than with the other
versions.
Less screening allows more groupings to exist in the final result. Most errors were from
less points that grouped (ok) and extra  points which grouped (mult).
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Fig. 34 Discrimination Algo #5 Qualitative Results, 16% Training Data, 6,3 NN
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Fig. 34  illustrates PR approximation algorithm #5 qualitative results using the three sparse
16% training sets. The figure  shows how the results degrade (relative to the exact results)
as smaller training sets are used with the larger partition sizes (100,150). Again, more
variations in the grouping results occur with this PR approximation algorithm than with
the other versions. Less screening allows more groupings to exist in the final result. Most
errors were from less points that grouped (ok) and extra  points which grouped (mult).
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5.5.3 Algorithm Runtime Analysis 6,6 NN
Two different sets of results were generated for PR approximation algorithm #5. In this
other case, 6 NN’s of a training point and 6 NN’s of a test point were used as inhibitor
candidates.

1 0

1 0 0

1 0 0 0

1 04

1 0 0 1 0 0 0 1 4

Fig. 35 Discrim Algo #5 Runtime Plot, 6,6 NN
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Fig. 35 illustrates PR approximation algorithm #5 example runtimes using maximum
partition rectangle sizes of 50,100 and 150. In this case 6 NN’s of a training point and a
dynamic list of training points consisting of 6 NN’s of a test point per adjacent rectangle
visited were used as the only inhibitor candidates for grouping attempts a test point made.
For each training set the same fixed sized test set was classified. Therefore the runtime
plot of this test and training set pairs should be O(log Ntrain ) for sufficiently large Ntrain .
The time required to execute the exact discrimination algorithm is shown.

The runtimes of PR approximation algorithm #5 on the 0.1% training data are constant,
with larger rectangle sizes requiring more time to complete execution than small
rectangles. At times the partition rectangles  have the same number of points in them even
if different maximum sizes are specified. For this reason some of the timing points in the
partition sizes 100 and 150 are similar.

The 16% training data has a runtime slope which more closely approximates that of the
O(log Ntrain ) curve. This result is different from the previous versions of the PR
approximation algorithm where extra screening of the groupings and searching for more
groupers was occurring.  This difference can be attributed to not doing the extra work of
finding extra grouping and inhibitor candidates done for each test point classification. PR
approximation algorithm #5 was faster than the exact PR algorithm and faster than the
other versions of the PR approximation algorithms. This case where 6 NN’s of both the
test and training sets were used as the inhibitor groupings ran slower than the case with 3
NN’s of the test point  and 6 NN’s of the training point used as inhibitors
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5.5.4 Qualitative Approximation Results 6,6 NN
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Fig. 36 Discrimination Algo #5 Qualitative Results, 0.1% Training Data, 6,6 NN
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Fig. 36 illustrates PR approximation algorithm #5 qualitative results using the seven sparse
0.1% data sets. Fig. 36 shows how the results degrade (relative to the exact results) as
smaller training sets are used with the larger partition sizes (100,150). Most errors were
from less points that grouped (ok) and extra  points which grouped (mult). These
qualitative results are similar to the results using  6 and 3 NN’s. This suggests that even
though more NN’s are available as inhibitor candidates, they are not inhibiting many
groupings.
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Fig. 37 Discrimination Algo #5 Rualitative Results, 16% Training Data, 6,6 NN
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Fig. 37  illustrates PR approximation algorithm #5 qualitative results using the three sparse
16% training sets. The figure  shows how the results degrade (relative to the exact results)
as smaller training sets are used with the larger partition sizes (100,150).

In this case the smallest partition rectangle (50) found less (mult) classed points and more
(ok) points which increased as the training set got smaller. This is different (opposite) to
the case using 6 and 3 NN’s. This suggests that in the smaller partition rectangles where
less points (of different classes) exist, the extra 3 NN’s are enough to prevent some of the
extra groupings a test point makes. Since there are not many other classes of points in the
smaller rectangles a test point cannot be grouped as frequently with multiple classes and
therefore the test point that was once classified as (mult) is now is classified (ok). Less
screening allows more groupings to exist in the final result. The other errors which
occurred were from less points that grouped (ok) and extra  points which grouped (mult).
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5.6 General Discrimination Algorithm Observations
There were qualitative and quantitative improvements made between PR approximation
algorithm #1 and algorithms #2-#4. PR approximation algorithms #2 -#4  perform
similarly quantitatively and qualitatively. The changes made to create each version of the
algorithm were not significant enough to alter the algorithm performances. PR
approximation algorithm #5 runs faster than the other versions, but does not produce the
same quality of results. In its worse cases we saw about two orders of magnitude more
errors using the 0.1% training sets and about four times more errors using the 16%
training data. Any of PR approximation algorithms #2 -#4 will suffice as a good
alternative to using the exact PR algorithm, but will  provide no speedup in runtimes
unless the training set are sufficiently large, where Ntrain >= 3000 points.
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6. Conclusions

Several algorithms were developed to improve the runtime performance of clustering and
PR problems. An  algorithm to reduce the number of points in a training set was
developed. With this reducing algorithm smaller training sets can be generated with spatial
and qualitative properties similar to the unreduced training set. Faster exact versions of PR
and clustering  algorithms were developed. Quantitative and qualitative results of  the
exact and approximated clustering and PR algorithms operating on a variety of data sets
were illustrated. With this information about the algorithms, users can now reference this
document and determine runtimes for their PR and clustering problems. With the
quantitative data of the approximation algorithms, users can determine if an exact or
approximated solution is needed and decide which algorithm to use to find solutions for
problems at hand.
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