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Abstract

Algorithms have been developed allowing operation of robotic systems under damaged condi-
tions. Specific areas addressed were optimal sensor location, adaptive nonlinear control, fault-tol-
erant robot design, and dynamic path-planning. A seven-degree-of-freedom, hydraulic
manipulator, with fault-tolerant joint design was also constructed and tested. This report com-
pletes this project which was funded under the Laboratory Directed Research and Development
program.
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Summary

Remote operation of a robotic system is a requirement for operation in hazardous workplaces and
in contaminated cleanup sites. Robust methods of control are needed that can deal with unex-
pected changes or damage to the system. The goal of this project was to develop methodologies
and software to enable damaged robotic manipulators to reconfigure their control systems autono-
mously, approximating their original tasks in a hazardous and constrained workspace. This effort
lead to the development of off-line analysis techniques for redundant actuator placemen~ adaptive
nonlinear control methods using available sensor information, a redundant robot joint system test-
bed, and a nonlinear fault detection and isolation strategy.
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Self-Repairing Control for Damaged Robotic
Manipulators

Introduction

Remote operation of a robotic system is a requirement for use in hazardous workplaces and in
contaminated cleanup sites. Robust methods of control are needed that can deal with unexpected
changes or damage to the system. The goal of this project is to develop methodologies and soft-
ware to enable darnaged robotic manipulators to reconfigure their control systems autonomously,
approximating their original for application in hazardous and constrained workspaces. This effort
seeks to develop offline techniques for redundant sensor placement and on-line algorithms for uti-
lizing surviving assets.
employed and evaluated

A nonlinear estimation based fault
using simulated failed sensors.

detection and isolation scheme is

Optimal Design

The best approach to fault tolerant robotic operation, is to design the robot with this attribute. In
this section a method for optimally choosing link lengths, and the nominal operating configura-
tion of a cinematically redundant, planar robot is described. The robot’s workspace is maximized
for all possible single joint actuator failures. This techniques has the following features:

● Forward kinematics are used, and it is therefore faster than inverse kinematic
based schemes.

● There exist parameters for “tuning” the shape of the workspace, but nominally,

they may all be set to unity.
● It is directly extendable to multiple joint failures and three-dimensional robots

Problem Description
Joint angles corresponding to a specified end effecter position of a cinematically redundant
manipulator, in general, are not unique. Furthermore, if link lengths are free design variables,
there exist an infinite number of combinations of joint angles and link lengths to achieve a speci-
fied end effecter location. The problem addressed here is that of designing a cinematically redun-
dant robot. Nominal operation is specified in some region of the hub location. Link lengths and
nominal joint angles are to be found resulting in an optimal workspace under any single joint fail-
ure condition.

The solution to the optimal sign problem relies on the singular values of the manipulator Jacobian.
Therefore, a short discussion is presented regarding the manipulator Jacobian and the meaning of
it’s singular values.

The manipulator Jacobian is the configuration dependent mapping of joint speeds to end effecter
velocities.
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EQ(l)

where x is the end effecter position, J is the manipulator Jacobian, and ~ is the evocator of joint
angles. Note, that the manipulator Jacobian may be singular for certain joint configurations. The
physical meaning of Jacobian singularity is that specific joint speeds are not possible, and corre-
spondingly, certain end effecter velocities are not possible. This restricts end effecter motion
including direction and speed.

The singular values of the manipulator Jacobian maybe interpreted in several ways. One interpre-
tation indicates the degree of singularity of the Jacobian. Specifically, small singular values indi-
cate a closeness to singularity. From the previous discussion regarding Jacobian singularity, we
can now say that small singular values correspond to end effecter motion restriction. A second
interpretation requires a brief look back at the Jacobian itself. The Jacobian maps a hypersphere of
joint speed to a hyperellipsoid of end effecter velocity. The singukw values of the Jacobian repre-
sent the lengths of the serniaxes of the hyperellipsoid. Once again, small singular values corre-
spond to restricted end effecter velocities.

Solution Approach
The design problem was solved using the RQP numerical optimization code in conjunction with
the redundant manipulator Jacobian. Specifically:

Given:
● Nominal operation location relative to the hub described by On and rn the rela-

tive angle and radius respectively

● The sum of all link lengths ~lj
i

Find:
● The nominal joint angles, and link length

Subject to:

● Equality Constraints: (3., rn, and ~ li
i

● Inequality Constraints: li >0

Minimizing:

Where ~i is the minimum singular value of the ith sub-Jacobian. The ith sub-Jacobian is found by
locking the ith joint to the nominal position. Sub-Jacobian weights are given by the wi. The Zi are



the lengths of the links, while the di are the radii of the workspace “holes” resulting from uneven
link lengths. For a planar 3 length robot, the “hole” radii can be found as

dl = (12-13)2

d2 = [21–w2c0s[e1 +e21+/3c0sre1+e2+ e3])2+

(12sin[e1+e2] +13inre1+e2+ e3])2pq2

d3 = [lq–{(l~cose~ +12c0s[e1+(32])2+

(llsinel +12sin[01 +e2])2p/2]2
EQ(2)

A weighting term of Wd may be placed on the “holes” term. The physical interpretation of the
cost function is to maximize the range of motion from the nominal (first term) while making the
workspace “holes” small.

Example
This method was examined for a three-link plamu- robot with nominal operation location at 45°
and a distance 2.0 units from the origin. The total length of the links was fixed to 2.4 units.

Two solutions were obtained. The first solution was for all weights set to unity with the exception
of Wd which was set to zero. The second case incorporated the workspace “hole” minimization by
setting Wd to unity. The values of the optimal joint configuration ei and the optimal link lengths
li are given in Table 1.Workspace plots for both cases, including failed joint actuators are shown
in Figure 1 and Figure 2.
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Nonlinear Control

To continue control of a robot with a failed component, the controller should be adaptive with
respect to the sensor information used. Furthermore, due to the inherent nonlinearities of direct-
drive and hydraulic robots, the controller should accommodate nonlinear systems. For this project
a nonlinear control strategy was developed which naturally utilizes available sensor information
to generate the torque commands for the joints.

In this section, an output feedback sliding mode control approach is presented for nonlinear
systems in general, with application to flexible link robots. Asymptotically stable sliding surfaces
are specified in the output space. Equivalent control is implemented via the typical model
cancellation approach of sliding mode control. Stability is maintained when the error between state
dependent terms of the model and output approximations of those terms is bounded. Application
to robotic systems is complicated by the state dependence of the mass matrix. The implications of
this are discussed from both a theoretical and a practical perspective. Three design examples are
given. The first is a simple nonlinear, two degree-of-freedom spring-mass-damper system intended
to illustrate fundamental aspects of the technique. The second is the slewing and vibration control
of a single flexible link. The third example is a direct-drive, two-link, flexible robot where angle
tracking and vibration suppression are desired.

Output Feedback Sliding Mode Control
Systems describable by equations of the form

x = N(x, x) +B(x)u

y=cx EQ(3)

are considered, where x is an n x 1 vector of degrees-of-freedom, N(x, k) is an n x 1 vector of
nonlinear functions of the x and i, B(x) is an n x m matrix of control weighting coefficients,
which in general maybe functions of x, U is an m x 1 vector of system inputs, y is an r x 1 vector
of measurable outputs, C is an r x n matrix relating state variables to measurable outputs. As
mentioned in the introduction, the sliding surfaces are designed in the output space, implying that
sensor output regulation or tracking will yield the desired system motion. The sliding surface may
be chosen as

s = W(y–yr)+(y–yr) = o EQ(4)

where yr is the desired sensor output time history and W is a positive definite matrix with real
valued elements.

The equivalent control is found by enforcing a condition of stationarity on the sliding surface,

i = W(y–yr)+(y–yr) = o EQ(5)

and substituting Eq. 3 into Eq. 5

CB(X)U = –CN(X, ~) +~r -W(j–jr) EQ(6)

11



The control weighting matrix, B(z) and the vector of nonlinear terms, & (J, ~) are approximated
by B(i) and ~(& ~) respectively, where

g = C“y

C’(ccq-l n>r

c* = c-l nr =

(@q-lcT n<r EQ(7)

Eq. 6 may now be written as

CB(Z)Q = –C~(l,4) +~, -W(~–~,)– Asgn(~) EQ(8)

where A is an rx r constant matrix. The A sgn (J) term is added for driving the output to the stable
sliding surface of Eq. 4 resulting in the control, U

Stability is examined using Lyapunov’s direct method with a candidate Lyapunov function as

v = @ EQ(10)

The requirement for stability is

-{ -
STW(y–j ) + CN(Z, 2) –~r–cB(4)[cB(2) l-lcN(2> i) +-r

Cll(z)[czil(j)] -yr-cl?(z)[czl( i)]-lw(j-yr) -

CB(z)[CB(Z)]-lA sgn(l) } <0 EQ(ll)

Establishing stability of the closed-loop system, based on Eq. 11, when the input weighting matrix
is a function of all the degrees-of-freedom is a formidable task. Fortunately, many real systems
have special forms of B(z) which do facilitate a proof of stability. To this end the input weighting
matrix is written as a combination of three matrices

B(z) = BO + By(z) + Bre@) EQ(12)

where BO is a constant matrix, B ~(y) is a matrix whose elements are only a function of the
measurable outputs y, and llr~~(~) is; matrix whose elements are only a function of the degrees-
of-freedom differen; from y. Clearly, if Br,~(@ is zero or negligible, then there is no
approximation in B(~) and E;. 11 simplifies to

EQ(13)s~[–Asgn(&) + C{N(Z,2) –N(2, ~)}1 Ko

12



which is valid for A diagonal with elements satisfying

Again, the vector ~(~, Z) may be composed of a constant part, a ~ only part, and a part dependent
only on the degrees-of-freedom different from y. Exploiting these relationships, during control
law implementation, may result in the trivial sta~ility constraint of A being strictly negative.

Design Examples

Exam~le 1: Position remdation of two masses

This fnst example is presented merely to illustrate the basic design procedure using a system which
exhibits both rigid body and flexible body motions. The system under consideration consists of two
masses connected by a nonlinear hardening spring and a linear damper. A force acting on the f~st
mass is the sole input to the system. The system is shown in Figure 3. where ZI and Z2 are the
displacements of the individual masses, ml and mz. The nonlinear hardening spring obeys the
following relationship

F spring = K~(z~ – z~) + Kn~(z~ – ZZ)3 EQ(15)

where K1 and Knl are the linear and nonlinear spring constants, respectively. The damping
coefficient is denoted by C and the force input to the system by F. The particular values used for
this example are given in Table 2.

‘F+t5--7-
Figure 3. Two mass, nonlinear system.

The control objective is to move the center of mass of the system

- +Z +22)
‘1–21

EQ(16)

to a spectiled location while suppressing the reciprocating motion of the entire system
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where the only measurable quantities are the position and velocity of the system center of mass,
xl and ~1.

The equations of motion, represented using the rigid body and flexible body coordinates xl and
Xz may be written in the form of Eq. 3 where

[111
B=—

2m1 1
C=[l(j

EQ(18)

The output feedback sliding mode control law is given by Eq. 4 and Eq. 9 with the stability
constraint of Eq. 14. Since n = 2 and r = 1, the vector N(z, ~) must be approximated based on

the measurable output y and y using the pseudo-inverse of Eq. 7 yielding

11 Y
o

~=“1‘1 Y
o

EQ( 9)

In this special case, the term LY(x2,X2) is not dependent on the meas~ed quantity> X1, therefore>
the approximation of ~(x2, ~2) is exactly zero.

The output feedback sliding mode controller is compared to a simple proportional-derivative (PD)
compensator

F = ~p(yr –Y) + ~~(Yr–Y) EQ(20)

where KP and K~ are the proportional and derivative error gains respectively. The PD controller
gains, and the OFSMC gains, W and A were chosen to limit the peak overshoot to 5.5%. These
gains are given in Table 3. Although both control schemes gave similar performance in tracking a
reference command, the OFSMC exhibited enhanced disturbance accommodation characteristics.
This is shown by the closed-loop performance of the system in response to an initial velocity
applied to the second mass. The motion of the system center of gravity, xl and the measure of
flexible body motion, X2 are shown in Figure 4 and Figure 5.

14
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Exarmde 2: Slew angle and vibration control of a flexible beam

This example is intended as a precursor to the flexible two-link robot control problem of Example
3. The system consists of a flexible link attached to a torque actuator. The physical parameters of
the link are given in Table 4, and a diagram is shown in Figure 6. The control objective is to slew
the hub angle as specified and to damp the induced vibration of the flexible beam.
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Figure 6. Rotating flexible beam system.

The beam is modeled using the method of quadratic modes (Appendix A) resulting in the equations
of motion

EQ(21)

where x is the 4x 1 vector of generalized coordinates representing the hub angle, 6, and the flexible

body degrees of freedom, ql, q2 and q~. The mass normalized stiffness is represented as a linear
part, Klin, and a nonlinear part capturing the centrifugal stiffening, Kcent. Material damping has
been assumed at 0.2% and is represented by the matrix D. The control weighting matrix B is a
constant. The measured output consists of the hub angle and speed, and is reflected by the matrix
C. The derivation of these equations, and the particular numerical values used for this example are
detailed in Appendix A. Hub angle response and tip deflection response for a bang-bang hub torque
input of magnitude 0.1 N-m is shown in Figure 7. The first mode natural frequency of 4.5 Hz is
evident, as is the higher frequency modes of q~ and q3.

The flexible beam model used for the OFSMC control design, is a truncated version of Eq. 21
utilizing only the fust mode generalized coordinate, ql. The second and third modes were not
targeted for control, however, were used in the simulation to examine spillover effects. The
truncated version of Eq. 21 is easily written in the form of Eq. 3 to facilitate control design. Instead
of using Eq. 7 to form C*, the two elements of this vector were left free, and chosen to optimize
the performance of the closed-loop system. Since this results in four control parameters, a
systematic procedure is employed for tuning the closed-loop controller. Specifically, a numerical
optimization code is used to optimally choose the values of A, W and C* while minimizing the
cost function

EQ(22)

16



where the cost function calculation start time, to is chosen to be the same as the desired maneuver
time of 2.0 seconds. The weighting coefficients for the hub angle error, et and the beam residual
vibration, B were chosen as unity. The cost function evaluation time, tf = 4.0 seconds, is chosen
so as to capture averaged residual errors.

The reference motion of the hub is generated from a spline fit of the initial hub angle of O radians
to the fiial hub angle of 1.0 radians. The OFSMC, closed-loop response of this system is shown
in Figure 8 along with the reference hub command. The optimized controller parameters are given
in Table 5.

0.8 I I

.

1-
.09 I I

“.-

0.0 1.0 2.0 3.0 4.0

Time (see)

Figure 7, Nominal hub angle and tip deflection response.

17



I

-0.5 I
o 1 2 3

Time (see)

Figure 8. OFSMC controlled hub angle and tip deflection.

Example 3: Flexible two-link robot 0FSi14C

The system considered consists of two serially connected flexible links, each with its own torque
actuator. A diagram is shown in Figure 9, with the physical parameters in Table 6. The OFSMC
method of Section 3 is applied to the robot to achieve joint command tracking and link vibration
suppression. The maneuver considered is a simultaneous rotation of each joint from O to 1 radians
where the second joint rotation angle is relative to the first joint angle. Again, the method of
quadratic modes is used for system modeling as described in Appendix B. The system outputs are
the joint rotational quantities, 6 ~, e 1, e2 and &. Flexible body generalized coordinates are
denoted as q~ for the fust link and q; for the second link. The cotilguration vector, z is defined as

[
x~=e 11 (?!’2~j EQ(23)

Writing the equations of motion in the form of Eq. 3 results in a configuration dependent input
weighting matrix, B(z). This is primarily due to the inversion of the configuration dependent mass
matrix of the robot. Expansion of this matrix, as in Eq. 12, indicates the presence of constant terms,
BO, terms dependent on the measured quantities, BY(y), and terms due to the unmeasured flexible
body generalized coordinates, llre~(~). Fortunately, fie Br=~(z) is small in magnitude compared
to the other two, and is negligible. The stability constraint of Eq. 14 is therefore appropriate.

The fust mode of each link is targeted during controller design. The equations of motion in
Appendix B are readily cast in the form of Eq. 3. Unlike the previous two examples, the scalar
controller parameter, W and A are 2x2 matrices whereas C* is 4x2. The numerical optimization
procedure, used in example 2, is employed for choosing control parameters where the cost function
minimized is

18



EQ(24)

Unlike Eq. 22, angle errors are not included in the cost function since they are specified as equality
constraints. The optimal parameters are given in Table 6 and the closed loop results of the OFSMC
of Eq. 9 are shown in Figure 10 through Figure 13.

Y

!YI

x

t)

Figure 9. Two-link flexible robot.
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Figure 12. Controlled elbow response.
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Figure 13. Controlled tip response.

Summary
An output feedback sliding mode control method has been presented for nonlinear systems in
general with specific application to flexible link robots. A constraint has been derived, based on
Lyapunov’s direct method, ensuring stability of the closed-loop system. For systems, including
rigid link robots, with equations of motion where the input weighting coefficient matrix is constant,
or dependent only on the measured quantities, the stability constraint is directly assessable. For
flexible link robots with joint measurements only, or systems with input weighting matrices
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dependent on unmeasured states, the stability constraint becomes difficult to evaluate. Fortunately,
when this dependence is negligible, as with flexible link robots, the simplified stability constraint
is valid.

Path-Planning

Robotic path planning is an important component of an overall fault-tolerant system. Should an

actuator fail, the previously planned trajectory becomes invalid. For continued operation, a new
path must be devised. Furthermore, if optimal paths are required, then the path planning algorithm
must take into account the dynamics of the robot. For this project, two computationally efficient,
dynamic path-planner algorithm’s were developed. The first method is based on dynamic pro-
gramming [1], while the second method is relies on an efficient, quadratic programming-like
algorithm [2]. Both methods generate a path solution requiring order(N) calculations, where N is
the number of path discretization points. The second method was experimentally verified using
the Sandia planar, three-link robot test bed.

Fault-Detection and Isolation

Central to the development of a fault tolerant robot system, is the ability to detect that an anomaly
has occurred and to isolate the component. This process is commonly referred to as fault detection
and isolation (FDI). Once the failure has been identified, the control system can take appropriate
action to mitigate damage and allow the robot to continue operation. An extended Kalman filter
approach was developed, based on the closed-loop dynamic model for all possible failed scenar-
ios, for FDI.

The FDI strategy is based on the identification of n failure modes of the system. The closed-loop
model (typically nonlinear) of the robot for each of the n failure modes is used in conjunction
with an extended Kalman Filter to estimate the actual joints states of the robot. These joint states
are then compared to the sensor data. When the valid sensor joint data coalesce with the valid
joint state for any of the estimated states, then the fault has been simultaneously detected and
identified. The nominal robot joint states are also estimated, using a linear Kalman Filter, as an
additional check for simply detected that a fault has occurred.

Once the fault has been identified, the robot joint sensor data, used for the joint servo controllers,
is modified by replacing the invalid sensor data with the estimated signal from the appropriate
extended Kalman Filter. A block diagram of this system is shown in Figure 14.

This architecture was simulated for a two-link robot, and the results for a failure of a joint #2
tachometer failure shown in Figure 15 through Figure 16. The maneuver slews both links to +23
degrees from an initial O-degree (both links aligned) orientation. An encoder to measure joint
angles and a tachometer to measure joint angle rates were simulated at each joint. The control sys-
tem employs a computed-torque scheme to cancel the nonlinear dynamics and proportional-deriv-
ative control on the remaining 2nd-order linear dynamics to attain the desired angles. During

22
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Figure 14. Block diagram of FDI architecture.

the maneuver, the joint 2 tachometer will be “synthetically” failed and estimated rate values will
be used in its place.
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The Kalrnan Filter equations areas follows:

lk
State Propagation : xP(t~) = xU(t~_ ~) + ~ ~(xU(~), ~((~), ~))d~

LA-1
lk

Covariance ~opogation: PP(t~) = Z’U(t~_~) + J [F(T)PU(T)+PU(T)FT(T)+Q(T)l~T
tk-1

-1
Filter Gain: K(t~) = PP(t~)H~(t~)[H( t~)PP(t~)~~(t~) + ~(~k)l

State Estimate Update : xU(t~) = xP(t~) + K(tk)[z(tk) - h(xp(tk), ~k)l

Covariance Update: PU(t~) = [1 - K(tk)(H(tk))lPp(tk)

where the p and u subscripts denote propagation and update at sample times, tk, x is the vector of
dynamical states, ~represents the nonlinear dynamics model, u is the vector of controls, P is the
covariance matrix of the linearized states, F is the linearized dynamics matrix, Q is the matrix of
linearized state propagation noise covariances, H is the linearized sensor model, R is the matrix of
sensor noise covariances, h is the nonlinear sensor model, and 1 is the identity matrix.

After some experimentation, it was decided that the Kalman filter residuals, Z(~k) – h(~p(~k), ~k),

would provide the necessary information to determine if a fault had occurred. If no failure had
occurred the Kalman filter modeling the nominal “healthy” dynamics would soon converge and
the residuals would approach zero. However, if a failure had occurred then the filter would be
using an incomplete set of measurements (as well as dynamics) and would generate erroneous
state estimates and divergent residual behavior.

The tachometer residuals were still noisy after Kalman filtering and all residuals were then Butter-
worth-filtered with a low-pass, 60-Hz cutoff frequency configuration assuming a sample rate of
500 Hz. This provided graphic visual evidence of the fault as shown in Figure 15. However for the
system to act autonomously, a mathematical determination of “fault” had to be made. This was
done by “windowing” every 21 data points and integrating the area under the individual residual
curves (using Simpson’s method) and dividing by the time length of the window. When this
exceeded a preset threshold, a flag (equal to a value of 1.0) was “thrown” (as seen in Figure 16).

In the example shown, the fault was preset to occur at 1.5 seconds. Note that the error was
“flagged” almost instantaneously. Note also that false flags occur before the Kalman filter has
converged to the true unfailed condition. This will have to be accounted for under actual operating
conditions.
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Figure 15. Encoder and Filter Simulation Results
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Figure 16. Filtered Simulation Residuals and Error Flags
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Test-Bed

Some degree of fault-tolerance can be accommodated via software using FDI approaches and
adaptive control. However, the most effective fault-tolerance is realized by hardware redundancy.
Unfortunately, this is usually at the expense of weight and system complexity. As part of this
project, joint actuator redundancy was addressed through the development of a hydraulic, 2-axis
joint design. As a proof of concept, a 4 degree-of-freedom (DOF) testbed was developed incorpo-
rating this design. The 4 DOF test bed, shown in Figure 17, incorporates two hydraulic, two-axis
joints where each DOF torque actuator capable of 2100 N-m.

Figure 17. 4-DOF testbed during construction and after completion
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Case # 61 (deg) 92 (deg) es (deg) 11 12 13

1 34.9 72.2 -84.2 0.89 0.60 0.91

2 37.5 58.9 -78.2 0.60 0.75 1.06

Table 1. Optimization Results

I Symbol I Units I Value I
ml kg 1.0

m2 kg 0.1

c k@ 0.2

Kl kjzJs/s 8.0

Knl kgJ(m*m*s*s) 50.0

Table 2. Physical parameters of two mass system.

Symbol Units Value

A l/see 0.4

w llsec 1.9

Kp kg/s/s 5.0

Kd kgJs 7.0

Table 3. Controller of the two mass system.
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Symbol Description Units Value

P Density kg/m/m/m 2700

E Young’s Modulus GPa 70

L Length m 1

w Width mm 76.2

h Thickness mm 1.6

Table 4. Physical parameters for the beam.

symbol Units Value

w l/see 100.07

A llsec 100.04

c; n.d. 0.694

c; n.d. -0.00651

Table 5. Optimal controller parameters for the beam.

Symbol Description Units Value

P1 Density Link 1 kg/m/m/m 2700

P2 Density Link 2 kgJm/m/m 2700

El Young’s Modulus: Link 1 GPa 70

Ez Young’s Modulus: Link 2 GPa 70

L1 Length: Link 1 m 0.463

Lz Length: Link 2 m 0.489

WI Width: Link 1 mm 152

w~ Width: Link 2 mm 76.2

hl Thickness:Link 1 mm 4.76

hz ‘IWcknesxLink 2 mm 1.59

Table 6. Physical parameters for the flexible two-link robot.



Symbol Units VaIue

Wll llsec 10.0

W22 I/see 10.0

All I/see 10.0

An vsec 10.0

C:l llsec 1.153

C;2 n.d. 2.83E-06

C;3 n.d. 0.0

C;4 n.d. 0.0

c“21 n.d. 0.0

C*9’-) n.d. 0.0

c*23 n.d. 1.105

CL n.d. 1.06E-04

Table 7. Optimal controller parameters for the OFSMC design.
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Appendix A

Appendix A describes the modeling of the slewing flexible link system of Example 1. Analytic
expressions for the equations of motion along with the actual numerical values are given. Appendix
B presents a similar description of the governing equations for the
Example 2.

two-link flexible robot of

i%mendix A

The slewing flexible beam, shown in Figure 6, is modeled using the method of quadratic modes.
This assumed modes method employs an expansion of the deformation ~(~, t) as

where the mode shapes $i are the typical cantilevered linear mode shapes for lateral beam vibra-
tion. The quadratic mo~es g~ represent foreshortening of the beam consistent with the linear
mode shapes. The quadratic fiode shapes for a beam are given by

(A-2)

The deformation generalized coordinates are represented by the qi(t) terms.

The equation of motion for both the rigid body, e and the flexible body, qi degrees of freedom are
found using the Lagrange’s equations. To this end, the kinetic energy, T, the potential energy, V,
and the work from external forces, WF are used to form the Lagrangian, L = T – V + w’~. The
kinetic energy is

T = jmO[e2(qiqj~i@j+ 2~qiqjgij+~')+~igj$i@j+ 204i~$i]d~ (A-3)

o

where nZOis the mass per unit length of the beam. The potential energy is
r

f-l

where 1 is the mass moment of inertia of the beam. The work from external forces is

L

o

(A-4)

(A-5)

The Euler-Lagrange equation for the rigid body motion is
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()daLA aL ~——.—=
dt a(j ae (A-6)

resulting in the equation of motion

The Euler-Lagrange equations for the flexible body degrees of freedom are

()

d 8L 8L
~%–—=

aqi 0

resulting in flexible body equations of motion

L L

o 0
~L L

12~gij)d~ qj = –T@’(o)

(A-7)

(A-8)

(A-9;

Using cantilevered mode shapes of the form

$i = Ai[(sin~iL - sinhfliL)(sin@~- sinh~i~) -

(COS&L+ cosh~iL)(cos~i~ - cosh/.3i~)] (A-1O)

where the ~iL = 1.875, 4.694, 7.855 for mode shapes 1 through 3. The normalization
coefficients, Ai are chosen so as to mass normalize the term

L

JmO $i$jd~ (A-n)

o

Using the values of Table 4, numerical expressions for the equations of motion maybe written as
in Eq. 21
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(A-12)

(A-13)

(A-14)

(A-15)
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Appendix B

The flexible two-link system is shown in Figure 9 where the joint angle 01 is measured between
the tangent of the connection of the fiist link to the hub and the inertial X axis. The deformation
of the first link, UI(~ ~,t) is measured relative to the rotating Xl axis. The joint angle ez is
measured between the tangent of the connection of the second link to the second joint and the
rotating X1 axis. The deformation of the second link, U2(%2,t) is measured relative to the rotating
Xz axis. The rotating Xl, ~1, ZI coordinate system is attached to the first link and rotates with
speed, 01. The rotating Xz, ~z, Zz system is attached to the second link and rotates with speed &.

Lagrange’s equations are applied to the system with Lagrangian

L = T–V+lVF (B-1)

The kinetic energy, T is

(B-2)

o 0

where ml and m~ are the mass per unit length of links 1 and 2. The displacement of any particle
along the links is denoted by al and ~2, with reference point, in the undeformed configuration,

given by xl and Z2 are found via a kinematic analysis, using the quadratic modes expansion as

(B-3)

+

(A-16)

Applying Lagrange’s equations and substituting in the physical parameters of Table 6, the
equations of motion may be written in the form

il!f(~)~+ ~(~, @ = B(@~ (B-4)

where the explicit values of the coefficients of each term are
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ikf~l = 0.11 + 0.04 C2–0.10S471

ivl~~ = – 0.26 – 0.05c2 + 0.08s2q~

M31 = – 0.01 + o.02c~ – o.05s~q:

M41 = – 0.03 – 0.04c2 + 0.1 lszq~ – 0.83s2q;

il’fl~ = lkl~~

M21 = 0.67

M32 = – 0.05c2 + 0.08s2q~ – 0.1 lszq;

M42 = 0.11C2

M13 = zi431

M2~ = M~2,

M3g = 0.01

M43 = –0.03

ikfl~ = ikf~~

Mw = Md2

M3d = Mh3

Ma = 0.07

IVl = (o.04s~ + o.loc2q~)elo2 + (o.02s~ + o.05c2q~ + o.04c.2q;)el +

O.10s2~~~1– 0.08 S2Qj&

~2 = (–().l()s2-().z5c2q: +().llC2q;)&62–(().().5S2+0.1’7C2q;+o.lzqf)~~–

(0.05S2 +0.08c2q/ -o.llC2q~)6;-o.lhj@l + 0.21 S24;02- 1271q:

(B-5)

(B-6)

(B-7) ~

(B-8) ‘

(B-9)

(B-1O)

(B-II)

(B-12)

(B-13)

(B-14)

(B-15)

(B-16)

(B-17)

(B-18)

(B-19)

(B-20)

(B-21) .

(B-22)
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lv~= (–o.02s~– o.05c24f)e?+O.1OS24O1

Nd = –0.16q~el~2– (0.83q~c2 + 0.08q~)(lf -O.Olq~f)~–

0.1 Ls2@l – 20.2qj

B 11 =B3Z = 1.0

B22 = –3.88q~

B 12 =B21 =B31 =BA1 =

(B-23)

(B-24)

(B-25)

(B-26)

(B-27)
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