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Introduction 

The Mound Plant in Miamisburg, Ohio, is a former DOE plutonium processing facility. The 
plant is now closed and site investigations and remedial action plans are in progress by DOE and 
contractors. Recently, site operators and regulators have become interested in a set of tools, based 
on geostatistical estimation and simulation techniques, to answer remediation and sample optimi
zation questions. The purpose of this repOli is to document an example of the use of such tech
niques on a sub-site within the Mound plant. A brief overview of the principal concepts of 
geostatistics is given, followed by a discussion of geostatistics applied to the site at Mound. The 
results produced are discussed in an economic framework relative to future sampling and remedi
ation. Results presented here are dependent on the assumptions stated in the text. 

The site examined in this report is Release Block D. Within Release Block D, the concentra
tions of Pu-238 in soil, measured in pei/g, are examined. Questions of concern to DOE within 
this release block are: 1 )What areas of the site need to be remediated for a given action level?, 2) 
How much uncertainty is associated with the specification of remediation areas? 3) What are the 
remediation costs associated with different action levels as a function of the acceptable probabil
ity of failure and 4) If more samples are necessary, where are the best locations for them? This 
repOli attempts to answer these questions through the use of geostatistical simulation. 

Geosta tistics 

Geostatistics is the study of data that exhibit spatial correlation. As many environmental and 
earth scientists have learned, samples of contaminants, sediments, porosity, etc. tend to be more 
similar when the samples are closely spaced and less similar as the distance between the sample 
locations increases. Geostatistics provides a means of quantifying this spatial correlation and also 
provides adaptations to classical regression techniques to take advantage of spatial correlation 
(Isaaks and Srivastava, 1989). 

Variograms 

At the heart of geostatistical analysis is the measurement and modeling of the degree and type 
of spatial correlation. These operations are generally accomplished through the calculation of an 
experimental variogram and then fitting of a model to that calculated variogram (Figure 1). The 
variogram is essentially a model of the increase in variability between sample locations as the dis
tance (or time in Figure 1) between the samples increases. The variogram equation is given as: 

n 

y(h) = 2~1 L (Z(x) - Z(x + h)/ 
x = 1 
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The variogram equation is similar to the calculation of variance in classical statistics. In the 
calculation of variance, the mean is subtracted from each data point (each Z(x), the differences 
are squared and then summed. In the variogram equation, the difference is taken between each 
data point and a data point a distance h away, the differences are squared and then summed. One
half of the average of these 1l differences for each separation distance is the variogram value, y. 
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Figure 1. Example variogram defining the temporal cOITelation between daily clos
ing values of the Standard and Poor's stock index over the 17 month period between 
8/93 and 2/95. The range, sill and nugget are defined in the text. 

There are several important features to a variogram model. As shown in Figure 1, the "range" 
is the distance at which the variogram model becomes parallel with the x-axis (Figure 1). The 
"sill" is the y value at the range distance. Theoretically, the value of the sill, is equal to the vari
ance of the data set. Intuitively, as the distance between sample locations decreases to zero, the 
amount of variability between samples should also decrease to zero. Often, variogram models do 
not go through the origin of the graph. In these cases, the variogram model y-intercept is known 
as the ·'nugget" value (Figure 1). The nugget effect generally represents a level of spatial variabil
ity occurring in the sample values below the smallest sample spacing as well as analytical errors. 

The variogram model can be used to define spatial continuity for problems of estimation and 
simulation. Estimation is a linear interpolation technique, while simulation is a Monte-Carlo 
technique. Both techniques are used to assign property values to unsampled locations within the 
site domain. 

Estimation and Simulation 

Estimation techniques are used to derive an estimate of a concentration at an unsampled loca
tion(s). Estimation techniques commonly used in the earth sciences include inverse distance-
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squared techniques, nearest neighbor polygons and kriging. All of these techniques can be classi
fied as methods of interpolation, i.e., estimates of unknown concentrations at unsampled locations 
are derived by interpolating from known values at other locations. A simple example of estima
tion through interpolation is to hand an earth scientist a set of sample values along a transect and 
have the scientist estimate the values at all other locations. This exercise is usually completed by 
simply drawing a line to connect the available samples and estimating an expected value at any 
given location based on the connecting lines (Figure 2). 

160.0 

140.0 

- 120.0 E 
Q.. 
0.. -c 100.0 
0 
~ 
ctI 
~ - 80.0 c 
Q) 
(.) 
c 
0 
() 60.0 

40.0 

20.0 
0 200 400 600 800 1000 

Distance (m) 

Figure 2. Example estimation of concentration values between 20 sample locations by a 
hand drawn interpolation. The horizontal lines correspond to the minimum and maximum 
sample values. The estimation is constrained within these values. 

Of the three estimation techniques mentioned, only kriging exploits the model of spatial corre- . 
lation derived through variogram modeling. Kriging is essentially the process of determining the 
expected value of concentration at a given location by calculating a weighted least-squares mean 
of other surrounding data points. The weights used in the least-squares estimation are calculated 
by using the model of spatial correlation as defined by the variogram. These weights account for 
the distance each data point is away from the location being estimated and the clustering of the 
data points (i.e., a number of points all close to each other provide redundant information con
cerning concentration at the point being estimated and are weighted less than a single point an 
equal distance away in another direction). Since kriging is an estimation technique, the concen
tration map derived from kriging will contain less variability than the actual sample data (lower 
variance). This smoothing effect will also ensure that the minimum and maximum of the esti-
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mated map do not fall outside the bounds of the minimum and maximum of the sample data. A 
kriged estimate of concentration along the transect in Figure 2 would look very similar to the best 
guess drawn by hand. 

The technique of simulation is designed to reproduce the measured level of variability in the 
sample data for each map of the concentration field. Whereas, estimation provides a single best 
guess of the concentration value at each location, simulation provides multiple possible maps of 
the concentration field, all of which honor the available data. Each equiprobable map of the con
taminant distribution is known as a realization. An example of two simulations of concentration 
along the transect shown in Figure 2 are shown in Figure 3. Either one of these simulations could 
be the reality from which the samples were collected. Based on the limited samples available, it is 
not possible to determine what is the underlying reality. The multiple realizations of the concen
tration field created through geostatistical simulation are all equally probable depictions of reality 
based on the available data. The creation of many different possible maps of contamination at a 
site may seem to render the problem of creating a remediation map intractable compared to a sin
gle best guess map. However, multiple possible pictures of the contamination provide a means 
by which uncertainty in the contamination maps can be addressed. One interesting question that 
can be answered by examining multiple realizations of a contaminant field, is the probability of 
exceeding a specified concentration level at any location. 
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Figure 3. Two example simulations conditioned to the sample data. Note that the sim
ulations contain more variability than the estimation and that simulated values are not 
constrained by the minimum and maximum sample concentrations. 
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Probability Mapping 

Probability mapping is defined here as the use of geostatistical simulation to determine the 
probability of exceeding a specified level of a contaminant at each location in the simulation 
domain. For example, 100 realizations of a contaminant distribution can be created. If the action 
level is 25 pCi/g and 30 of the 100 realizations show concentrations greater than 25 at a given 
location, the probability of exceeding the action level at that location is 0.30, or 30%. This con
cept is shown in Figure 4. The mean value at each location is the estimate derived from kriging. 
Due to the spatial distribution of the samples and their concentration values, there may be loca
tions in the same map with probabilities of exceeding 25 pCi/g from 0.0 to 1.0. 
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Figure 4. Conceptulaiztion of building a probability distribution at any spatial location 
through multiple geostatistical simulations. The probability of exceeding an action level 
at any location is simply the fraction of simulated concentrations across the ensemble of real
izations that are greater than the action level. 

Site Characterization and Data Set 

Overview 

The Release Block D site data were obtained from the appendices of a draft contractor report 
(EG&G, 1995). The site was sampled for Pu-238 and Th-232 on a square grid with 100 foot spac
ing. A map showing the sampling pattern and the extent qfthe domain examined in this study are 
shown in Figure 5. Note that there are several gaps in the sampling grid. Some of these are due to 
no sample recovery and some are due to information that is either missing or was not communi
cated to Sandia National Laboratories (SNL). The plutonium (Pu-238) data are analyzed in this 
study. The univariate distribution of the Release Block D plutonium data is shown in Figure 6 and 
the parameters describing the distribution are given in Table 1. Locations reported as having zero 
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concentration were set to 0.01 pCi/g to facilitate the nonnal-score transfonn in the geostatistical 
simulation process 
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Figure 5. Map of the 127 sample locations in Release Block D used for variogram analysis. 
The geostatical simulations documented in this report were done on a subset of the map as 
denoted by the dashed lines. The bounding coordinates in feet for the geostatistical simula
tions are -2400 to -50 (easting), 50 to 760 (northing). This map uses the coordinate origin of 
the EG&G (1995) report. The positive westing coordinates reported in EG&G (1995) were 
converted to negative easting coordinates for this study. ' 
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Figure 6. Histogram of the Pu-238 distribution of the 127 soil samples obtained on 
the PRS-379 site. The thick yellow and thin black dashed lines denote the mean and 
median of the distribution respectively. 
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Table 1: Distribution parameters for the sample data. 

Parameter Pu-238 pCi/g 

Mean 17.52 

Median 17.50 

Standard Deviation 12.25 

Coefficient of Variation 0.70 

Minimum 0.01 

Maximum 60.0 

10th Percentile 1.0 

90th Percentile 35.0 

Number of Data 127 

The concentrations within Release Block D were obtained with a field screening technique 
that has a reported lower detection limit of 25 pCi/g (D. Carfagno, pers. conun., 9/4/96). How
ever, prior studies at the Mound site have shown the soil screening technique to provide good cor
relation with concentrations measured through geochemical analyses done in a laboratory at 
concentrations well below the 25 pCi/g detection limit (D. Carfagno, pers. comm., 9/4/96). The 
question arises as to what is the actual concentration below which the data are classified as non
detects? For this study, the assumption was made that any sample reporting a zero concentration 
is classified as a non-detect. This approach assumes that the concentrations below 25 pCi/g are 
reliable measurements and is consistent with communications from the Mound site. 

Variography 

In the practice of variogram calculation and modeling, a conceptual model defining the history 
ofthe physical or chemical property being analyzed is essential: " ... it is subjective interpretation . 
. . that makes a good model; the data by themselves, are rarely enough" (Deutsch and Journel, 
1992, p. 58). It is readily apparent that the data alone will not adequately define the variogram 
models at Release Block D. The main reason for this insufficiency of the data is the sample grid 
spacing of 100 feet, when, in fact, much of the spatial variability in Pu-238 at Release Block D 
occurs over distances less than 100 feet. 

A complete conceptual model of how the Pu-238 was deposited across Release Block D has 
not been communicated to SNL. It is possible that a single mechanism or a number of mecha
nisms acted to deposit the Pu-238 across the site. In lieu of a well-defined conceptual model, two 
different conceptual models of contaminant deposition are considered during construction of the 
variograms for the Release Block D data: 1) "the random model" defines a process with a high 
degree of variability at short separation distances. This type of spatial distribution could result 
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from a spatially random process such as occasional spills of contaminant from a vehicle transport
ing the contaminant on various routes across the site. 2) "the continuous model" defines a deposi
tion process that produces low variability in contaminant concentrations at short separation 
distances between samples. These type of deposits are generally created by a diffusive deposition 
process such as air fall from a smokestack. These two conceptual models are implemented in the 
variogram modeling by using different nugget values in the variogram models. 

The simulation algorithm chosen to model the continuous distribution of contaminant concen
trations is the multi-variate guassian algorithm coded into the program sgsim (Deutsch and Jour
nel, 1992). This algorithm requires that the variogram be calculated in standard nonnal space. 
The standard nonnal distribution has a mean of zero and a standard deviation of 1.0 and is dis
cussed thoroughly in almost any statistics textbook (e.g., Walpole and Myers, 1989). The mecha
nism for transfonning the concentration data collected in the field to a standard nonnal 
distribution is the "normal-score" transfonnation. This transformation provides a robust means of 
transfonning almost any distribution of data into a standard nonnal distribution. The nonnal 
score transfonnation is accomplished in this study using the program llscore (Deutsch and Jour
nel, 1992). 

The experimental nonnal-score variogram and the model fit to it representing the random con
ceptual model of contaminant emplacement are shown in Figure 7a. The parameters defining the 
model fit to the experimental variogram are given in Table 2. The model fit to the experimental 
variogram for the continuous deposition conceptual model is shown in Figure 7b and the model 
parameters are also given in Table 2. A double-nested structure was used to fit the variogram for 
the continuous deposition conceptual model. Calculation and modeling of the variograms was 
accomplished using the vario and variofit software packages in, UNCERT (Wingle, et aI., 1995) 

Table 2: Variogram model parameters. 

Deposition Variogram Nugget Sill Range 
Model 

Nest 
Model Type (pCi/g)2 (pCi/g)2 (feet) 

Random 1 Spherical 0.54 0.46 425.0 

Continuous 1 Spherical 0.0 0.60 125.0 

2 Spherical 0.40 ' 475.0 

Simulation 

The Release Block D site was discretized into lOx 1 0 foot grid elements for the geostatistical 
simulations. Given the dimensions of Release Block D, this grid spacing allows for a total of 
16,380 simulation elements (234x70). The extent of the simulation domain is described in the 
caption of Figure 5. It is noted that the simulations will replicate the distribution of the data 
across the site. Because of this conditioning to the univariate data distribution, the simulations 
will represent samples of concentration at the same scale as the samples collected in the field. 
This is conceptualized as a sample located at every grid centroid separated from every other sam
ple by 10 feet of space in each direction. It is important to keep in mind that each simulated point 
does not represent the concentration across the lOx 1 0 foot panel unless those samples were col
lected as composites within the 1 Ox 1 0 foot cells. The two nonnal-score variograms are used to 
create two ensembles of 100 concentration realizations each. The maximum possible simulated 
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Figure 7. Modeled normal-score variograms for the random (A) and the continuous (B) con
ceptual models of contaminant deposition. 

concentration value was set to be 100 pCi/g in all realizations. Example realizations created with 
the random and continuous conceptual models of deposition are shown in Figures 8 and 9. 

All six of the realizations shown in Figures 8 and 9 have similar features. Low concentrations 
predominate between easting coordinates of -500 and -1100 and to the west of the -2000 easting 
coordinate. The highest concentration values occur along the southern edge of the of the domain 
near the -300 easting coordinate and also between easting coordinates of -1500 and -2000. The 
similarities between simulations are controlled by conditioning each simulation to the sample 
data. In areas without conditioning data, there can be large differences in the concentration maps 
between realizations. A clear example of this effect is the difference in concentration surrounding 
the -1050,400 coordinates between realizations 50 and 75 on Figure 8. 

The obvious difference between the simulations created with the random deposition model 
and the continuous deposition model is the smoothness of the images. The random deposition 
model creates simulations with a random "salt-and-pepper" appearance. These features of the 
image are controlled by the large nugget effect in the variogram. The large amount of variability 
in simulated concentrations separated by only 4 or 5 grid blocks is caused by the nugget effect. 
The long range correlation of the variogram produces areas of a similar range of concentrations 
near to each other. For the simulations created with the continuous model of deposition, there is a 
much smoother transition from a high value, through the full range of simulated values to a lower 
value. 

The simulations can be processed to determine the total amount of predicted contaminant 
across the site. This calculation is accomplished by assuming that each measurement of concen
tration is representative of a lO'x 10' x 0.5' volumes of soil (as would be the case with composite 
sampling). Consequently, the simulated concentrations are also representative of the same vol
ume of soil. The contaminant is assumed to be evenly distributed throughout the volume, 'and the 
soil is assumed to have a density of 100lbs/ft3. Thisl calculation yields the amount of Pu-238 
within the simulated domain in curies. The total simulated amount of curies within Release Block 
D are shown in Figure 10 as a function of the simulation number for both conceptual models of 
deposition. Because the same vector of random seed values was used in sgsim to create both 
ensembles of realizations, the general shape of the graphs is similar. However, for each pair of 
realizations, the total amount of curies is higher in the random deposition model compared to the 
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Figure 8. Thiee example realizations created with the random deposition conceptual model. 
The top image is realization #25, the center image is #50 and the bottom image is #75. 

continuous deposition model. From Figure 10, the lowest and highest amount of total simulated 
concentration across the site for the random deposition model are given by realizations 59 and 75 
respectively. For the continuous model of deposition, the lowest total amount ofPu-238 occurs in 
realization 63 and the highest amount in realization 76. Figures 11 and 12 show the low and high 
(best and worst case) realizations for each conceptual model of deposition. 

One question ~hat must be considered is whether or not 100 realizations are enough to capture 
the full variability of the concentration values and ensure the correct remediation decision at any 
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Figure 9. Three example realizations created with the continuous deposition conceptual 
model. The top image is realization #25, the center image is #50 and the bottom image is #75. 

location. The concept of a representative elementary volume (REV) is taken from the ground 
water hydrology literature (Bear, 1972) to address this question. In the field of ground water 
hydrology, an REV is a volume of the porous media that is large enough to average out any dis
crete local effects of heterogeneity in the media, but small enough to not be affected by determin
istic trends in the distribution of the property. A classic example of an REV is given by measuring 
porosity in a sandstone with a larger and larger sampler. At the smallest sample size the porosity 
will be either 0.0 or 1.0 depending on whether or not the sampler encounters a sand grain or a void 
space. As the size of the sample increases, the fluctuations in the porosity value will diminish as 
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Figure 10. The total amount of contaminant on the site as a function of the simulation num
ber for both conceptual models of deposition. 

the sampler begins to sample a representative volume of the porous media. If the size of the sam
ple continues to increase, portions of the sample will begin to come from other sedimentary units 
(e.g., a nearby shale) and the sampled value of the porosity will deviate from the representative 
value. 

The REV concept can be applied to analyzing geostatistical simulations by recalling that at -
the basis of geostatistics, the ergodic hypothesis allows for the replacement of a spatially infinite 
sample by a large number of spatially finite, stochastically generated images. While this hypoth
esis is a basic tenet of geostatistics, the practical question of "What is large?" or at least large 
enough remains to be answered for the Pu-238 contamination at within Release Block D. In order 
to answer this question, the spatial averaging of the REV in ground water hydrology is replaced 
by a running average of concentration, across an ever increasing number of realizations. The cal
culated statistic is no longer an REV, but is now termed the representative number of relizations 
(RNR). If the average value stabilizes to a constant, representative value, then the number of real
izations is deemed to be large enough. 

The RNR is calculated at four different locations for each ensemble of realizations. The loca
tions are chosen with respect to the conditioning data to cover the range of possible outcomes: a 
location with a generally high simulated concentration ("'Location 1" at -1800, 250), a location 
with a generally low simulated concentration ("Location 2" at -650, 550), a location midway 
between relatively high and low concentration conditioning data ("Location 3" at -350, 100) and a 
location with a high kriging variance, as distant as possible from any conditioning data ("Location 
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Figure 11. The best case (lowest total amount of curies) simulation (top) and the worst case 
(highest total amount of curies) simulation (bottom) for the random deposition conceptual 
model. 

4" at -1050, 400). The values of the RNR are given in Figures 13 and 14 as a function of the num
ber of simulations for the random and continuous conceptual models respectively. 

The two graphs of the RNR's as a function of the number of simulations used in the averaging 
show that the average values at each of the four locations examined stabilize at approximately 90 
simulations or less. The variability of the RNR calculated with the continuous deposition concep
tual model is much lower than the RNR's created with the random deposition conceptual model. 
As expected, the RNR calculated at location 3, midway between a high and a low concnetration 
conditioning point has the highest variability. There do not appear to be any significant differ
ences in the shape of the RNR graphs, other than the relative position on the Y-axes, between the 
four locations examined. Based on these RNR calculations, it is concluded that 100 simulations 
are enough for the probabilistic study of Pu-238 contamination within Release Block D. 

Probability Mapping 

Both ensembles of 100 realizations can be processed to create probability of exceedence 
maps. Three action levels were chosen and employed in the probability mapping: 10, 25 and 50 
pCi/g. The 25 pCi/g action level corresponds to the ALARA goal set for the Mound facility. 
Higher action levels of75 and 150 pCi/g employed at other locations across the Mound site would 
be oflittle use in Release Block D due to the measured data maximum of 60 pCi/g. The probabil
ity maps corresponding to the three action levels are displayed for the random and continuous 
models of deposition in Figures 15 and 16 respectively. 
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Figure 12. The best case (lowest total amount of curies) simulation (top) and the worst case 
(highest total amount of curies) simulation (bottom) for the continuous deposition conceptual 
model 

The sample locations are apparent in the probability maps, especially the probability maps 
constructed with the random conceptual model of deposition. Since the simulations are condi
tioned to the available data, the sample locations can only have a probability of exceedence equal 
to 0.0 or 1.0. The simulated values at the data locations do not change from realization to realiza
tion, i.e., the actual sample value is returned in every simulation. If the sample value is below the 
action level, the probability of exceedence is 0.0; if the sample value is above the action level, the 
probability of exceedence is 1.0. 

A probability map is further processed to develop a remediation map by selecting an accept
able probability of remediation failure (pfait) and then remediating all locations with a probability 
of failure greater than pfail. Example remediation maps for pfail = 0.05 at an action level of 25 
pCi/g are shown in Figure 17. It is noted that in the case of an action level in the upper tail of the 
data distribution and a low pfail, the number of false negatives (leaving behind contaminated soil) 
can be well controlled. However, for this situation, the number of false positives (remediating 
locations that are clean) can become quite large. 

The probability maps are used to generate plots of cost as a function of the probability of leav
ing behind a contaminated panel during the remediation (probability of failure in the remedia
tion). These curves are predicated on the realization that cost-effective remediation can only be 
achieved if some probability of failure is accepted by the regulatory body_ If the regulatory body 
is extremely risk averse, then the only solution may be to remediate the entire site. The cost 
curves present an effective way to display the relationship between cost and probability ofreme-
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Figure 13. Representative number of realization (RNR) calculations for the concentrations at 
four locations. These graphs were constructed using the one-hundred simulations created 
with the random deposition conceptual model. 

dial failure. These curves can also provide a focal point for discussion between the site owners, 
regulators and stakeholders concerning action levels and costs associated with various future land
use scenarios . 

The probability maps shown in Figures 15 and 16 for the three action levels are used to 
develop cost curves for Release Block D. A key assumption made in calculating these cost curves 
is that the distribution and variograms of the sample data describe the spatial distribution of the 
Pu-238 for 10' x 10' by 0.5' remediation panels across the site. This assumption is that of com
posite sampling in the remediation panel at each sample location. The remediation cost is 
assumed to be $500.00/yd3. This cost figure is based on remediation costs documented at other 
locations within the Mound facility (EG&G, 1996). The resulting cost curves for Release Block 
D are shown in Figure 18. 

For probabilities of failure less than 0.45, Figure 18 shows that the continuous deposition 
model is always the model with the lower remediation cost. The differences between the two 
models of deposition are greatest for the 50 pCi/g action level at low « 0.05) probabilities of fail
ure. This is expected due to the proximity of the 50 pCi/g action level to the tail of the data distri
bution. The cost curves in Figure 18 point out the tremendous difference in cost for the various 
action levels considered. At a five percent probability of failure, the differences in cost between 
the 25 pCi/g and the 50 pCi/g action levels are approximately 10.5 million dollars for the random . 
deposition model results and 12.5 million dollars for the continuous deposition model results. 
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Figure 14. Representative number of realization (RNR) calculations for the concentrations at 
four locations. These graphs were constructed using the one-hundred simulations created 
with the continuous deposition conceptual model. 

Follow-Up Sampling 

Prior to finalizing a remediation plan, it is often prudent to acquire additional samples to aug
ment the existing data. The placement of these samples should be optimized such that the infor
mation concerning a remediation decision is maximized. A number of techniques that have been 
proposeq for optimal location of future samples (Burgess, et aI., 1981; Englund and Heravi, 1994; 
Kyriakidis, 1996) with reduction of kriging variance being the most popular (see Barnes, 1989 
and Olea, 1984 for a review of kriging variances as a means of sample optimization). In the past 
few years, decision-based sample optimization has proven to be superior to kriging variance for 
locating in-fill samples. This result is not surprising given that kriging variance is based solely on 
the data locations, not on the data values. By incorporating the data values of the initial sampling 
into the optimization through consideration of the action level, the amount of information gained 
by the additional samples can be maximized. 

Several techniques have been proposed for incorporating the actio)1level into optimizing the 
placement of additional samples. The first technique is an intuitive approach suggested by Raut
man et aI. (1994) that is simply targeting the locations with median probability of exceeding the 
action level (probabilities near 0.5). This approach is termed the "median probability" (MP) tech
nique. The second approach involves targeting the locations with median probability of 
exceedence and also accounting for the variability between simulations at those locations. One 
variant of this approach is implemented in the OPTMAS program (Knowlton, et aI., 1995) where 
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Figure 15. Probability of exceeding the action level (in percent) based on 100 realizations 
created with the random deposition conceptual model. The images correspond to action lev-
els of 10 (top), 25 (center) and 50 (bottom) pei/g. 

a single additional sample is 'located along the median probability of exceedence contour line at 
the location of the highest simulation standard deviation. An extension of this approach is sug
gested here and is denoted as the "weighted standard deviation" (WSD) technique. The siinula
tion standard deviation at any location is multiplied by a weight between 0.0 and 1.0. The weight 
is a function of the probability of exceeding the action level. For locations with a probability of 
exceedence equal to 0.5, the weight is 1.0. The value of the weight tails off to 0.0 as the probabil
ity of failure approaches both 0.0 and 1.0. The weighting function is shown schematically in Fig-
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Figure 16. Probability of exceeding the action level (in percent) based on 100 realizations 
created with the continuous deposition conceptual model. The images correspond to action 
levels of 10 (top), 25 (center) and 50 (bottom) pCi/g. 

ure 19. The parabolic function shown diagrammatically in Figure 19 is used in the WSD 
technique to determine the optimal additional locations in this study. The WSD technique could 
also be accomplished with other types of functions (ie., linear, exponential). 

The third, decision-based technique employed in this study is the "reference uncertainty" 
(RU) technique, written as: 

R(x) 
CO.75 - CO.25 

1 + ICo.5 - CA.d· 
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Figure 17. Two example remediation maps for the random depositional model (upper image) 
and the continuous deposition model (lower image). The red areas require remediation at an 
action level of 25 pCi/g and an acceptable pfail of 0.05. 

The reference uncertainty at location x, R(x), is the interquartile range (CO.7S - CO.2S) of all the 
concentrations simulated at location x, divided by one plus the absolute value of the difference 
between the median concentration Co.s and the action level concentration C A.L. Similar to the 
weighted standard deviation technique, the reference uncertainty value will increase both as the 
variability of the simulated concentrations at a location increases and as the difference between 
the simulated values and the action level decreases. The idea behind a reference uncertainty is 
presented in Kyriakidis (1996), where it was used to determine the remediation panels with the 
greatest uncertainty of exceeding the action level. Here, the reference uncertainty is used to eval
uate the uncertainty about the action level of potential sample locations across the simulated area. 
These three techniques all incorporate the action level into determining the locations of the addi
tional samples. For comparison purposes, the conventional (unweighted) simulation standard 
deviation (SD) is also examined as a means of locating additional samples. The calculations are 
performed for the 25 pCi/g action level only. 

All of the techniques discussed for determining the optimal locations of additional samples 
produce a continuous distribution of values from 1 to N, where N is equal to the number of ele
ments in the simulation. The locations within the simulation can then be ranked from the maxi-
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Figure 18. Cost curves for Release Block D. These curves are calculated from the probability 
maps in Figures 15 and 16. It is assumed that the distribution of concentration in the samples 
applies to lOxlOxO.5 foot remediation units and that the reme<;iiation cost is $500/yd3. 

1.0 

0.0 

0.0 0.5 1.0 
Probability of Exceedence 

Figure 19. Conceptualization of the parabolic weighting function used in the weighted 
varaince technique for locating additional samples. 

mum (1) to the minimum (N) value of the uncertainty measure (i.e., proximity to the median 
probability of failure, highest weighted variance, and highest reference uncertainty). It is still 
necessary to determine the number of additional samples to be taken in the follow-up sampling 
campaign. This number may be set by budgetary constraints, or by some other means, but it will 
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almost always be between 1 and the number of samples in the initial sampling campaign. Results 
reported by Englund and Heravi (1994) suggest that the best results are obtained when 75 to 80 
percent of the total values acquired at the site are in the initial sampling. Following this conven
tion and considering the initial 127 data locations to represent 77 percent of the eventual total 
data, another 39 samples should be acquired. 

The results of determining the optimum locations for the 39 follow-up samples for each of the 
four techniques considered are shown in Figures 20 and 21 for the random and continuous deposi
tion models respectively (refer to the probability maps for the 25pCi/g action level in Figures 15 
and 16 to gain a better understanding of the follow-up sampling locations in Figures 19 and 20). 
Although not calculated here, the areas of maximum kriging variance occur in the locations with
out any nearby data. However, the large gap in the center of the sampling grid between easting 
coordinates -900 and -1200 feet has only a few locations targeted for a further sampling by the 
various techniques. The reason additional samples are not deemed necessary in this region is 
because the data points surrounding the gap in the grid are all associated with relatively low con
centrations. This result highlights the need for considering the data values and the action level in 
planning any follow-up sampling campaign. 

Figure 20. Locations of 39 follow-up samples as determined by each of the four techniques: 
median probability of failure (MP), weighted standard deviation (WSD), reference uncerta
tinty (RU) and simulation standard deviation (SD). The results are for the random deposition 
model. The existing data are shown for reference. 

The three techniques for determining the locations of follow-up samples that consider the 
action level (MP, WSD and RU) provide relatively similar locations for these follow-up samples. 
In general these three techniques target the areas of greatest uncertainty with respect to the action 
level. These areas correspond to the median probability of exceedence areas (green colored areas 
of Figures 15 and 16). Understanding the subtle differences between the techniques and develop
ing a technique that will use the best features of all techniques is a current research topic at SNL. 
The simulation standard deviation (SD) technique places all additional samples in two small 
areas. The SD technique does not consider the action level, but only areas of high variability. If 
the variability at a location is high, but all values within the distribution are stilI above, or below, 
the action level, then locating additional samples at that location is not effective in defining the 
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Figure 21. Locations of 39 follow-up samples as detennined by each of the four techniques: 
median probability of failure (MP), weighted standard deviation (WSD), reference uncerta
tinty (RU) and simulation standard deviation (SD). The results are for the continuous deposi
tion model. The existing data are shown for reference. 

extent of contamination. An example of this situation is the area along the south edge of the 
domain at an easting coordinate of -300. The probability maps (Figures 15 and 16) show the 
probability of exceeding 25pCi/g to be near 100 percent at this location, yet the variability is stilI 
high and the SD technique suggests further sampling in this area. 

It is noted that the follow-up locations for each technique are detennined strictly on the rank 
of each uncertainty measure at a location; the techniques do not consider the proximity of another 
potential follow-up sample when detennining the location. If the locations of other potential fol
low-up samples are considered in the ranking process, then the locations with the highest ranks 
will be more evenly spread across the domain. As an example, if three locations with the three 
highest ranks for locating additional samples are all next to each other, then obtaining a sample at 
the location with the highest rank will also provide infonnation on the other two potential sample 
locations. This additional infonnation will most likely decrease the uncertainty at those locations 
and lower the rank of each location for taking another sample. 

Summary 

Geostatistical simulation provides a useful tool for examining the uncertainty inherent in 
remediation planning and in further sampling. Uncertainties in remediation and sampling plans 
and the costs associated with them are due to uncertainty in the spatial distribution of the contam
inant across the site. Know ledge of the conceptual model of the contaminant deposition is essen
tial to completing an accurate sampling and remediation plan at a site. Large differences in the 
estimates of remediation costs are noted at Release Block D for the random and continuous con
ceptual models of deposition. Work with exhaustive data sets (e.g., Englund and Heravi, 1994) 
has shown that techniques for locating follow-up samples that incorporate the action level are 
superior to other techniques (kriging variance, simulation variance) that only measure variability 
of the concentration at a location. The comparison of techniques done on Release Block D sup-
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port this conclusion; however, it is necessary to collect the follow-up samples within Release 
Block D to actually determine the improvement in remediation efficiency. 
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