ar

wr

c.3

SANDIA REPORT

SAND97-0134]
Unlimited Release
Printed January 1997

Final Report for the Tera Computer
TTI CRADA

George S. Davidson, Constantine Pavlakos, Claudio Silva

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Depariment of Energy '
under Contract DE-AC04-34AL85000

e

Approved for public releasa%ﬁ ; jtion is unlimited.

SF2000Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

SAND97-0134
Unlimited Release
Printed January 1997

Final Report for the Tera Computer TTI CRADA

George S. Davidson
Constantine Pavlakos
Claudio Silva
Computer Architectures Departrment

Sandia National Laboratories
Albuquerque, NM 87185-0318

Abstract
Tera Computer and Sandia National Laboratories have completed a CRADA, which examined the
Tera Multi-Threaded Architecture (MTA) for use with large codes of importance to industry and DOE.
The MTA is an innovative architecture that uses parallelism to mask latency between memories and
processors. The physical implementation is a parallel computer with high cross-section bandwidth and
GaAs processors designed by Tera, which support many small computation threads and fast,
lightweight context switches between them. When any thread blocks while waiting for memory
accesses to complete, another thread immediately begins execution so that high CPU utilization is
maintained. The Tera MTA parallel computer has a single, global address space, which is appealing
when porting existing applications to a parallel computer. This ease of porting is further enabled by
compiler technology that helps break computations into parallel threads.

DOE and Sandia National Laboratories were interested in working with Tera to further develop this
computing concept. While Tera Computer would continue the hardware development and compiler
research, Sandia National Laboratories would work with Tera to ensure that their compilers worked
well with important Sandia codes, most particularly CTH, a shock physics code used for weapon
safety computations. In addition to that important code, Sandia National Laboratories would complete
research on a robotic path planning code, SANDROS, which is important in manufacturing
applications, and would evaluate the MTA performance on this code. Finally, Sandia would work
directly with Tera to develop 3D visualization codes, which would be appropriate for use with the
MTA. Each of these tasks has been completed to the extent possible, given that Tera has just
completed the MTA hardware. All of the CRADA work had to be done on simulators. Nevertheless,
the codes developed at Sandia National Laboratories helped Tera improve the performance of their
compilers, and helped identify and fix problems associated with compiling real, large industrial codes.
At the same time, Sandia has carefully examined the MTA machine for graphics applications and has
determined that it is very promising in this area. Jointly, Sandia and Tera expect that the actual
hardware will perform very well on 3D graphics applications.

Introduction

This report describes research in high performance computing jointly performed by Tera
Computer Corporation and Sandia National Laboratories, which was funded by a
Technology Transfer Initiative (TTI) Cooperative Research and Development Agreement
(CRADA). Tera Computer developed a new computer architecture and Sandia National
Laboratories developed and modified existing large scale codes for evaluation with the new
architecture. This report will describe the Tera architecture, discuss the Sandia applications,
and include a detailed discussion of the potential for using the Tera computer for graphics
applications.

The Tera Computer Architecture
Hardware

The Tera computer system is a shared memory multiprocessor. In the shared memory
programming model, the performance of the system does not depend on the placement of
data in memory. Tera implements such a shared memory programming model, given
sufficient parallelism in the tasks being run.

The system can accommodate up to 256 processors. The sizes to be offered for sale will be
16, 32, 64, 128 and 256 processor systems, see Table 1. Availability of a limited number
of systems is expected in the second half of 1996.

The system runs stand-alone and requires no front end. Network connection to work
stations and other computer systems is accomplished via 32 or 64 bit HIPPI channels. All
data path widths are 64 bits including the processor-network interface.

Table 1, System characteristics of the Tera multi-threaded computer.

Processors 16 16 256
Peak Gflops 16 64 256
Memory, Gbyte 16-32 64-128 256-512
HIPPI channels 32 128 512
1/0 Gbyte/s 6.2 25 102

Tera processors are multi-threaded. Each processor switches context every 3 ns cycle
among as many as 128 distinct instruction streams (hardware threads), thereby hiding up
to 128 cycles (384 ns) of memory latency. In addition, each stream can issue as many as
eight memory references without waiting for earlier ones to finish, further augmenting the
memory latency tolerance of the processor.

A stream implements a load/store architecture with three addressing modes and 31 general-
purpose 64-bit registers. The instructions are 64 bits wide and can contain three operations:
a memory reference operation (M-unit operation or simply M-op for short), an arithmetic
or logical operation (A-op), and a branch or simple arithmetic or logical operation (C-op).

The clock speed is nominally 333 Mhz, giving each processor a data path bandwidth of a
billion 64-bit results per second and a peak performance of one gigaflops. The peak
memory bandwidth is 2.67 gigabytes per second, and the processor sustains well over
95% of that rate. See Table 2 for performance estimates on various common kernels.

The processors implement IEEE Standard 754 arithmetic using the 64-bit double basic
format. Hardware support for infinity arithmetic and denormalized operands is provided.
Addition, subtraction, multiplication and division and conversion to and from both signed
and unsigned integer formats are supported directly. The type of integer rounding can be
selected independent of the rounding mode. There are floating point multiply-add,
multiply-subtract and multiply-subtract reverse operations. These operations round only
once. Division and square root are accomplished with the help of Newton’s method
iterations but nevertheless always yield the required 1/2-ulp accuracy. Floating point
maximum and minimum operations are also provided.

Support for fast, 128-bit “doubled precision” arithmetic is incorporated. In doubled
precision two floating point numbers are used to represent a single value, yielding
approximately twice the precision of ordinary floating point. There are instructions that help
compute the doubled precision sum, difference, product quotient, and square root in a few
instructions.

Every processor has a clock register that is synchronized exactly with its counterparts in the
other processors and counts up once per cycle. In addition, the processor counts the total
number of unused instruction issue slots (measuring the degree of under-utilization of the
processor) and the time-integral of the number of instruction streams ready to issue
(measuring the degree of over-utilization of the processor). All three counters are user-
readable in a single unprivileged operation.

Eight counters are implemented in each of the protection domains of the processor. All are
user-readable in a single unprivileged operation. Four of these counters accumulate the
number of instructions issued, the number of memory references, the time-integral of the
number of instruction streams and time-integral of the number of messages in the network.
These counters are also used for job accounting. The other four counters are configurable to
accumulate events from any four of a large set of additional sources within the processor
including memory operations, jumps, traps and so on.

Table 2, Performance estimates for typical kernels on a 64 processor machine.

Kernel Estimated time
Matrix multiply,1K x 1K 50 ms
3D FFT,256 x 256 x 256 63 ms
Sparse matrix-vector, 400M NZ 50 ms
Integer sort,100M 36 ms

Interconnection Network

The interconnection network is a three-dimensional packet switched network nominally
containing p3/2 nodes, where p is the number of processors. These nodes are toroidally
connected in three dimensions to form a p1/2 -ary three-cube, and processor and memory
resources are attached to some of the nodes. The latency of a node is three cycles: a
message spends two cycles in the node logic proper and one on the wire that connects the
node to its neighbors. A p-processor system has worst-case one-way latency of 4.5p1/2
cycles and an average latency of half that. A node has not six ports but four (five if a
resource is attached), so x and y connections are alternately omitted in the cube depending
on the parity of the z coordinate.

Each port simultaneously transmits and receives an entire 164-bit packet every 3 ns clock
cycle. Of the 164 bits, 64 are data, so the data bandwidth per port is 2.67 GB/s in each
direction. The network bisection bandwidth is p times this value. The network routing
nodes contain no buffers other than those required for the pipeline. Instead, all messages
are immediately routed to an output port. Messages are assigned random priorities and then
routed in priority order. Under heavy load, some messages are derouted by this process.
The randomization at each node ensures that each packet eventually reaches its destination.

The network has both parity checking and SECDED error correction. It will automatically
correct any one bit error in the network, even a transient error, and will pinpoint the
particular wire responsible for the error even if an intermittent connection is the cause. The
interconnection network can be configured to bypass any portion of itself on a port-by-port
basis, including the attached processor and memory resources.

Memor

The memory system is implemented as either 2p or 4p memory units distributed around
the network, where (once again) p is the number of processors. Memory is implemented
using 16 megabit DRAM chips. The memory units are interleaved 64 ways. Memory
references by the processors are randomly scattered among all of the banks of all of the
memory units except for instruction fetches that access two nearby memory units via a
dedicated data path. Memory latency is independent of stride thanks to this randomization
of memory addresses by the hardware.

The memory units can be addressed by 8-bit byte, 16-bit quarterword, 32-bit halfword or
64-bit word. A fetch-and-add operation is provided on words. In addition, every word has
associated with it four additional bits of access state which, among other things, help
implement lightweight synchronization operations. Waiting for synchronization is initially
busy, but turns into non-busy waiting after a programmable number of attempts. At this
time a trap occurs and the stream state is saved and enqueued at the target memory word.
Subsequent references to that word are made to trap by another access state bit. Traps do
not change instruction stream privilege in the processor.

Memory units are equipped with a single error correcting, double error detectmg code. The
access state is protected with its own error correcting code.

Input/QGutput

The maximum bandwidth in a p processor system is 200p megabytes per second

in each direction via p duplex HIPPI channels. This does not represent a significant load on
the interconnection network. The latency tolerant I/O processors that attach the HIPPI
channels to the network can access data anywhere in the system, but typically data are
transferred to or from operating system buffers located in memory which are then mapped
into the address space of the user.

Maximum Strategy Gen5-XL RAIDs are used, with a sustained bandwidth of about 130
megabytes per second each. At least p/16 disk arrays must be configured in a p processor
system. The maximum capacity per disk array is about 360 gigabytes, so system disk
capacity can approach 300p gigabytes.

The file system has the ability to distribute a single file across as many disk arrays as are
attached to the system. Transfers take place between the disk arrays and buffers in I/O
memory, and these buffers are then directly mapped into the address space of user
application programs. In this way, copying is avoided. Since the buffers are held in shared
memory, every processor can easily access them. Concurrent I/O arising from within
parallel loops or elsewhere will be automatically parallelized by the Tera compilers and
libraries by letting each thread access the buffers for data.

The Tera MTA supports HIPPI-PH, -FP, -LE, and -SC, and provides a complete set of
HIPPI-based TCP/IP capabilities including sockets, telnet, the r-commands, and NFS.
Other networking and remote file access capabilities such as DCE and archival storage
facilities such as tape libraries and NSL-Unitree will be implemented as customer needs
dictate.

Software

Operating System

The Tera operating system is a fully symmetric, distributed parallel version of the UNIX
operating system, based on Berkeley sources and modified to use a highly concurrent
microkemel developed by Tera. Checkpointing is provided and conforms with Posix
P1003.1a draft 12. Each processor has multiple protection domains, allowing it to support
as many as 15 distinct address spaces (and 15 tasks). Thus the whole system can run as
many as 15p tasks truly in parallel. Each protection domain can contain a dynamically
varying number of instruction streams, from one up to the maximum permitted on the
processor (about 100). An instruction stream acquires more addressability as its privilege
increases within a protection domain.

An instruction stream is dynamically created or destroyed using a single instruction,
generated either by compiled code or by the run-time environment. If a protection domain
needs more instruction streams it can acquire them from the processor in competition with
- other protection domains. The operating system is not involved at all in instruction stream
acquisition or release.

The run-time environment normally multiplexes instruction streams among an unbounded
number of threads as described below. If the run-time environment encounters insufficient
parallelism to fully occupy its processor resources, it will surrender some of its protection
domains to the operating system for allocation to other tasks. Conversely, as the run-time
parallelism increases, additional protection domains can be acquired.

The Tera operating system is a first-class multi-user implementation of Unix in all
respects. There is no front-end processor, and even modest versions of the hardware will
service hundreds of users at one time. Large and small tasks will be run concurrently
without needing to partition the system or manually intervene in any way. A two-tier
scheduler is incorporated into the Tera microkernel; it provides better resource allocation to
large tasks (those currently running on more than a single processor) via a bin-packing
scheme, and schedules the smaller tasks using a traditional Unix approach.

Programming Model

Tera provides a thread-based programming model that permits a mixture of implicit and
explicit parallelism in the same program. The virtual machine has an unbounded number of
processors with uniform access to all memory locations. The programmer may specify an
unbounded number of threads interacting via shared data structures. The runtime system
will acquire physical resources from the operating system and use these resources to
implement the virtual machine.

Besides providing a high level of classical single-thread optimization, Tera’s compilers
perform automatic parallelization of Fortran, C, and C++ source programs. Loop nests are
restructured to enhance parallelism, with scalar expansion and array privatization used
where beneficial. Whole program analysis and optimization are performed, including inline
expansion and parallelization of loops containing function calls and /O. A broad spectrum
of linear recurrences and reductions are parallelized automatically, including even those
reductions with unknown dependencies (histogramming causes dependencies of this kind).

The programmer can insert pragmas and directives into the program to help the compiler in
automatic parallelization. The parallelism that the compiler discovers and exploits
supplements whatever is explicitly generated by the user. Inner-loop parallelism is easy for
the compilers to discover and manage, whereas outer-loop parallelism may only be evident
to the programmer.

Tera’s shared memory model is release consistent, which means the memory behaves the
same as a sequentially consistent memory model, as long as data access is properly
synchronized (the program is data-race-free) and the synchronization is performed only
using full/empty bits or volatile variables.

The overhead involved in instruction stream creation and termination as generated by the
compilers to exploit parallel loops is around four instructions plus two per created thread,
not counting additional instructions to load the new thread’s registers with useful data.
Stack space is shared by these threads. Explicit user threads incur higher creation and
termination overhead, 50 to 100 instructions, but allow unrestricted procedure calls that
precludes stack sharing. Any of these varieties of thread can synchronize and can pass data
as often as once per instruction.

Languages and Compilers

Fortran 77 is supported, with a high degree of Cray compatibility. The MIL-STD intrinsics
and a set of parallel directives are also provided. C is ANSI compliant, and except for
templates and exceptions, C++ conforms to the ARM. Both C and C++ include pragmas
for parallelism. All three languages may call each other freely. The compilers are
implemented with a front-end for each language driving a common back-end.

Tera’s language implementations incorporate extensions to allow parallel programming
and access to the hardware full/empty bits. A new statement type is added as an extension
that creates a new thread of control and binds it to a block of statements. The runtime
environment allows an unbounded number of threads and performs all necessary resource
management. Two type-qualifiers (similar to “volatile”) are added to describe how a
particular memory access interacts with the full/empty bit. These provide complete access
to the hardware’s synchronization capabilities.

A macro-assembler is provided with built-in support for high-level language calling
conventions and data types. The assembler uses a Scheme interpreter (Scheme is a dialect
of Lisp) as its core and the macro language is essentially Scheme extended with primitives
typical of two-pass assemblers.

Development Tools

Tera’s debugger, tdb, can manipulate multiple threads of control. Traditional source-level
thread-by-thread debugging similar to gdb is provided; tdb also has the ability to organize
threads into groups and apply scheduling operations to those groups. The debugger
provides an unlimited number of very inexpensive data breakpoints (watchpoints) as well
as the traditional program breakpoints. Conditional breakpoints are evaluated by the thread
which triggers the break, and other threads are not affected unless the program is stopped.
The duel command in tdb allows the selective display of data including nonlinear data
structures and data distributed across stack frames of multiple threads, whether blocked,
runnable, or running.

Tera provides a trace-based performance analysis system. The compilers can automatically
provide instrumentation points, e.g. at function boundaries, and the programmer can insert
additional ones. The time, the processor utilization and the average dynamic concurrency
level are all immediately available from the hardware counters.

Like the compilers, the system development tools execute on the Tera system. Both
“make” and the compiler are parallel applications. The compiler automatically collects
interprocedural summary information and performs data dependence analysis to
implement incremental compilation and linkage based on the semantic content of program
changes rather than mere timestamps. The edit-compile-debug development cycle is
accelerated by these features. The interprocedural dependence data are stored in a database;
Tera plans to make this information available to the programmer via a source level browser
at a future date.

Essentially all machine operations are available via intrinsic functions which are compiled
into single machine operations and scheduled with the rest of the generated code. These
functions, and the high level of compiler optimization, all but eliminate the need for
assembly language programming.

Facilities and Maintenance

The system power dissipation will be approximately 6KW per processor. Disk arrays will
add another 4 KW each. The system is water cooled, with one cooling distribution unit
(CDU) for every 32 processors.

A 16 or 32 processor system will occupy a 6' by 5' footprint, and a 64 processor system
will occupy a 6' by 10 footprint. CDUs are 3' by 7' and can be placed along a wall. The
Uninterruptible Power unit footprint is 3' by 6' and the RAID footprint is approximately 3'
by 3'.20

The interconnection network hardware allows reconfiguration to bypass faulty
components. This capability can be used to allow scheduled hardware maintenance at the
convenience of the customer. The system is completely scannable, i.e. every logic flip-flop
is readable and writable. Test vectors for the system will allow rapid problem identification
and correction. In the field, the scan system and its test vectors will support a level of
automatic diagnosis that will let the system be reconfigured and brought back into
operation with a minimum of delay, which will provide exceptional availability.

Software Research

Sandia identified three areas where cooperative research with Tera could benefit our
programs. Three tasks were specified covering the work Sandia National Laboratories
would undertake. Each of these tasks required collaboration with Tera for completion. The
first task was to transform CTH, a shock physics code used at Sandia for weapon safety
calculations, to perform optimally on the Tera architecture. The second task was to develop
a manufacturing application that required the kind of performance the Tera machine would
offer. This application was a robot path planning code, which would need to be further
developed and then parallelized for the Tera computer. The third task was to jointly explore
how well the Tera computer could provide high performance scientific visualizations. A
common thread between all of these tasks was to provide the compiler writers at Tera early
access to significant application codes, which could be used to test the robustness of the
compilers.

Much of the software work could be started on workstations at Sandia. However, actual
performance could only be evaluated on the prototype parallel computer at Tera. Because
the actual hardware was just being completed as this CRADA ended, the tasks could not be
fully completed. However, good progress was made by using simulators and by
extrapolating performance measured on other parallel computers.

CTH

The main objective of the research involving our shock physics code, CTH, and the Tera
computer was to evaluate how well the native compilers could parallelize the code, without
hand tuning. We wished to compare that performance to what we were able to do on our
Paragon computer using considerable hand tuning. We intended to aggressively tune the
code for parallel performance on the Tera MTA. Again, this particular aspect of the
research depended on access to MTA hardware, and was thus never completed (CTH is so
large that it was useless to attempt to use the simulator instead of waiting for real
hardware). However, several benefits came from this research, even if the main objective
was never achieved.

Tera has licensed the CTH code from SNL and used it to tune the Tera Fortran compiler
for high performance. This was important to Tera because CTH is typical of several
important hydrocodes in use at the national laboratories. In the course of this compiler
work, several problems were discovered and fixed, which resulted in a more reliable and
robust compiler.

SANDROS

The serial version of the robot path planning code was completed in the first year. In the
second year it was parallelized for a shared memory multiprocessor. That implementation
on a four processor SGI Skywriter did not precisely duplicate the conditions of the Tera
MTA computer, however it showed that SANDROS could be parallelized effectively using
a shared memory paradigm. From this preliminary parallelization, we were able to
postulate that it would successfully parallelize on the Tera computer, and would have
significantly better performance than the SGI version.

Execution profiles of SANDROS execution indicated that the pairwise distance calculation
accounted for about 80% of the cpu time in a typical problem. This routine is particularly
amenable to parallelization, since each pair of objects can be assigned to a processor.
Although a domain decomposition of this type is not particularly scalable, it works well for
small multi-processor machines. Additional parallelism is expected to be available on the
MTA by taking advantage of its ability to parallelize inner loops (the SGI can parallelize
outer loops only).

The SGI implementation used parallelizing functions provided by the SGI C compiler to
parallelize the pairwise distance calculations. On the 4 processor Skywriter and a problem
with 16 pairs of objects, we were able to achieve a parallel efficiency of 92%. This
efficiency should increase for larger problems. The efficiency should also be better using
the faster MTA interconnection network on the Tera computer.

In additon to the SGI implementation, we also developed a version of the code for a
network of workstations. This PVM based implementation did not work particularly well
on our network. Apparently, the overhead associated with passing large amounts of data
over a thin-wire ethernet is too great for a tightly-coupled application such as SANDROS.
Using 8 processors on a problem with 16 pairs of objects produced only a 10% speed
increase.

Further work on SANDROS was deferred until actual MTA hardware was available, so
final performance results could not be measured in the period of this CRADA.

Volume Rendering

In the first year we identified and evaluated visualization codes suitable for the

Tera machine. We were especially interested in parallel volume visualization

codes because no existing machine had sufficient performance to meet our need

for real-time volume renderings. We decided to work closely with the researchers who
had helped us develop a Parallel Volume Rendering (PVR) code for the Paragon. Claudio
Silva modified the PVR code that was developed for the Paragon and ran several tests
using the MTA simulator supplied by Tera. In the course of these tests several compiler
problems were corrected and we learned a great deal about generating parallel code for the
MTA. Additionally, Tera personnel got involved to help produce meaningful results from
the MTA simulator runs. Claudio’s report, together with the results produced by Tera
personnel, constitute the next and final section of this CRADA report.

Evaluation of the MTA for Parallel Volume Rendering

The overall goal of our work was to study the suitability of the Tera supercomputer
architecture for real-time graphics applications. Our primary interest lay in volume
rendering applications. In volume rendering, a scalar field, such as the densities of an MR
scan of a human head, or the pressure of a computational fluid dynamics simulation are
rendered by mapping the properties of the field to optical properties of clouds. Volume
rendering consists of rendering these clouds by using simplifications of the equations that
describe light scattering inside and on the surface of the cloud.

The choice of initially concentrating our efforts on volume rendering, instead of surface
graphics, was based on several factors. First, the geometry of volumes makes them very
large, on the order of several megabytes to gigabytes. Second, even with the
simplifications, the light scattering simulations are very expensive, and the color mapping
of volumes is a time consuming and nontrivial process that needs to be performed
interactively to be effective. Third, several datasets of interest have “soft boundaries”, with
no abrupt changes in density that could be used to create a “hard surface” representation
(e.g., basically an iso-surface). In these cases, effective visualization can only be performed
with the use of motion in a highly interactive process. Finally, surface graphics hardware
acceleration is well developed, with several effective commercial products, and can be
performed in real-time for relatively large polygonal models. Hardware-accelerated volume
rendering is still in its infancy with no suitable commercial hardware currently available.

In developing the Cube4 hardware architecture for volume rendering, Pfister and Kaufman
[Cube4 ‘96] point out the necessary computational requirements of a real-time volume
rendering machine. They emphasize the need for balance between computational power
and memory bandwidth in order to achieve high rendering rates. They point out that the
raw memory bandwidth is a major bottleneck, because each voxel needs to be fetched,
classified and shaded at several frames per second. Note that traditional architectures,
which use large caches, are not well suited for volume rendering because high bandwidth is
only achieved between the CPU and the cache, but in general each voxel is only touched
once (or at most a few times with high temporal locality), thus minimizing cache
efficiency. With its multiple pipelined memory modules and multi-threaded architecture
(specially designed to hide the memory latency), the Tera machine seems like the ideal
computer for volume rendering.

Overview of the Conducted Research and Accomplishments

Our initial plan was to port a pre-existing volume rendering code to the Tera machine and
study its performance, possibly optimizing the code to achieve optimal performance.

The original schedule consisted of first porting the code to the Tera simulator (called
“Zebra”) at Sandia while the final assembly of the actual machine was being performed.
Then, we would perform a detailed performance analysis on the actual machine.

We ported the volume rendering code to the Tera simulator, instrumented it for
performance analysis, and hand parallelized it with the addition of “future” variables and
statements in the code. Several runs on Zebra have been performed. Unfortunately, our
resource and time constraints, combined with the unavailability of an actual system, made
it very difficult for us to make a complete assessment of the actual performance of our
code on the Tera architecture. A variety of problems were encountered in trying to use the
MTA simulator, including very slow turnaround on simulator jobs, somewhat due to
inexperience with how best to make use of the simulator. This inexperience, together with
unknown simulator quirks pertaining to what systems it can or cannot run on properly,
resulted in a large number of inneffective simulator runs (as discussed below), before truly
meaningful results were produced.

Problems Encountered

Documentation

One of the major problems throughout our work has been the extremely precarious
documentation on the simulator system. Tera was notified that the Zebra simulator had no
documentation, in the software distribution (even though the distribution takes over 100M
of disk space).

The available documentation consists of a small set of conference papers and draft internal
papers, and a couple of unfinished manuals. With the direct help of TERA’s research and
development personnel, we were able to procede. '

Compiler bug

Our volume rendering code (the first real application we tried to run on the simulator)
made a compiler bug surface. The compiler gave no warning or sign of trouble during
compilation, but the Zebra simulator would stop the execution of the renderer after just a
few minutes.

The problem turned out to be the lack of initialization of a static int double array inside a
function. Without proper initialization, garbage was placed in a floating point register.
Moving the array definition outside the function solved the problem.

10

Debugger availability

In trying to discover the source of the simulation crash described above, the issue of the
availability of a debugger surfaced. The technical staff at Tera was extremely helpful and
tried to send us their debugger, which is based on the public domain GNU debugger.
Unfortunately, our CRADA contract says nothing about the debugger; so concerns by the
Tera lawyers prevented sharing their version of gdb with Sandia.

Speed and accuracy of the Zebra simulations

Zebra is an instruction-level simulator. It is supposed to accurately simulate all the facets of
the Tera machine, including the multi-threading schedule, memory latencies, multiple
processors, etc. It should be the ideal development environment; unfortunately, instruction-
level simulation is extremely slow.

Because Zebra is so slow, only very small renderings can be done. This in turn generates a
technical problem: because Zebra tries to accurately simulate the scheduling overhead
(which is supposed to be around 200 instructions), and our problem size is so small, this
overhead actually seems to interfere with our problem, making it impossible to generate
accurate timings. This was ultimately overcome with help from Tera personnel who helped
isolate certain sections of our code for analysis.

Another problem is that Zebra only runs on the Sparc. The fastest Sparc at our disposal
was a Sun Ultra-Sparc1, which is fast enough for most purposes, but it took over a week
to render our small 32-by-32-by-32 sphere at 64-by-64 resolution, with 64 streams in
Zebra’s “fast” mode. Again, we were able to improve on this turnaround in the latter
stages of our work by isolating our analysis to smaller sections of our code, per guidance
from Tera.

Another problem with the slow speed of the simulations was that the long run times
exposed our simulations to possible interruptions (machine reboots and/or crashes).

Finally, the usual compile, run, analyze, improve programming cycle was severally
handicapped by the slow Zebra speed.

Tera simulator code portability

The Tera simulator code only works on Sparcs, and seems to be selective about which
version and which operating system it can use. At Sandia and Stony Brook, we have
access to a large number of multiprocessor Sparcs (4-processor Sparc20’s and
Sparc1000), but we were unable to run the simulator on most of these. The only machine
we were able to use consistently for running the simulator was an Ultra-Sparcl, running at
167MHz (with Solaris 2.5). Unfortunately, this Solaris machine would not produce
anything but erroneous results. It was only last ditch efforts to run on a SunOS machine at
Stony Brook which finally produced meaningful results which corroborated results.

11

Code development and modification

Overall, only minor code development and modification had to be performed. One was the
introduction of instrumentation function calls at select locations, for example we placed the
Tera runtime “read counters” routines in the rendering code.

In order to test the Tera parallel execution and the use of “futures”, we changed our
rendering code. The low-level rendering functions consist of several nested loops, which
perform ray casting along rays emanating from each pixel on the screen. Each ray can be
handled independently, but the overhead in initiating a thread for each ray seemed too high.
Instead, a thread was created for each scan-line. As far as the output images are concerned,
the output of the new code with futures is exactly the same as the old, sequential code.

Some other minor modifications, like using a zero-order interpolation for improving the
simulator run times, were also performed.

In the latest stage of our efforts, Preston Briggs of Tera modified the code slightly, by
reducing the computations to a single frame and isolating the timing computations to the
actual rendering portion of the code, all in order to improve simulation turnaround. This
version of the code was ultimately used to produce our most meaningful results.

Initial Results

All the performance numbers presented here are for rendering a 32-by-32-by-32
volumetric sphere at 64-by-64 resolution. This problem size was too small to be realistic,
but was at the extreme limit of what we could simulate with Zebra. Initial results were
obtained using Zebra release 12, running on an Ultra-Sparc1 with Solaris.

Although only our latest sets of results were meaningful, we include all results here for
completeness, to document the entire process.

Three different versions of the volume rendering code were used. One version was a plain
sequential version (i.e., the parallelization is completely left to the Tera compiler -- see
Table 3.). The second version was hand parallelized (using “futures”) to make a different
stream for every scan-line (see Table 4.). The third version was the version produced by
Preston Briggs of Tera, which was a perturbation of the second version.

Initial timing tables generated for the sequential and hand parallelized versions are shown
below:

Streams 1 4 16 64
Time 8.5M 23.5M 91.5M 366M
Phantoms 2.8M 10896 11903 14744
Ready 0 60M 1.3B 22B
Total Time 45M 120M 481M 1.9B

Table 3. Run times, using Zebra release 12, for one, four, sixteen and sixty-four streams
with no hand tuning, using only the parallelism found by the compiler.

12

Streams 1 4 16 64
Time I9M 16M 56.5M 220M
Phantoms 3.2M 11337 11903 14744
Ready 0 41M 820M 14B
Total Time 47M 85.7M 306M 1.1B

Table 4. Run times, using Zebra release 12, for one, four, sixteen and sixty-four streams
with hand coded “futures” for each image scan line and including parallelism
found by the compiler.

For these simulations, the following details should be noted:

1) Zebra was forced to use a different number of streams by using the option
“streams X”.

2) The code calculates 5 images, from different angles, but, since the dataset is a
sphere, all the images are the same and each takes approximately the same amount
of time. In the tables, the Time, Phantoms and Ready columns contain the
instruction counts for each image. The Total Time column shows the time for the
complete run, including reading the dataset, etc.

The codes were also run with Zebra’s “auto-growth”. The run times were very close to
those obtained using “-streams 17

More “Accurate’” Results

The performance numbers in the previous section were sent to Tera for consultation. We
received several suggestions from their technical staff. In particular, it was pointed out that
in “fast” mode, Zebra might not output realistic scaling performance. Instead, runs in
“accurate” mode are necessary. Unfortunately, each run in accurate mode could take
several weeks to complete, because the simulator runs much slower in accurate mode (for
comparison, the runs presented in the previous section took two weeks to complete).
However, we were able to obtain some “accurate” simulation results in the final weeks of
the CRADA. The “accurate” mode TERA simulation results using 1, 8, and 16 streams in
accurate mode for the hand parallelized code are presented in the following table.

Accurate mode for hand parallelized code

Streams 1 8 16
Time 115M 115M 125M
Phantoms 110M 100M 80M

Ready 14M 18M 34M

Total Time 640M 683M 662M

Table 5. This table shows a constant rendering time, independent of the number of

streams simulated. These simulations used hand tuned code and automatically
detected parallelism as found by the compiler.

13

All of these results (initial and more accurate), unfortunately, indicated poor performance.
Following these results, an effort was undertaken at Tera to understand why we were
getting such strange numbers.

A test was made to see what parallelism the compiler could find automatically (using the
compiler option “-trace:PAR”). However, it was decided that this approach was not worth
pursuing.

Our code was slightly reorganized and timing calls were moved around to isolate the
rendering code in order to enable faster simulations. Using the command line “zebra -
AllowModeSwitch -fast -r a.out”, the following results were produced:

Streams Ticks Speedup Phantoms Utilization
1 113,362,463 1.0 110,238,489 3%

2 57,303,771 2.0 54,187,424 5%

4 28,977,071 3.9 25,859,866 11%

8 14,905,571 7.6 11,786,579 21%

16 7,651,708 14.8 4,528,369 41%

32 . 4,635,393 24.5 1,503,090 68%

64 3,699,487 30.6 545,545 85%

Table 6. Results produced at Tera for a slightly-modified, hand-parallelized version of the
volume rendering code. “Ticks” indicates the total number of clock ticks to
- render one frame. “Phantoms’ indicates the number of wasted ticks, when the
processor is idle.

These results are still for a single processor, using a different number of streams. Note the
steady improvement in processor utilization as streams are added, with an overall 30 times
improvement in performance when using 64 streams (versus 1). This indicates that, for
this code, the system is able to do a very effective job of hiding latencies and maximizing
use of processor resources.

Once these results were generated, Claudio turned to trying to reproduce the results.
Strangely enough, even after getting a fresh copy of the simulator and using the identical
code, which was run at Tera, Claudio continued to see erroneous results (much to our
consternation). It was only then that a final attempt was made to run the simulator on a
SunOS machine, which gave the following results:

14

Streams Ticks Speedup Phantoms | Utilization
1 57,946,985 1.0 55,606,905 4%

2 27,635,238 12.0 25,493,064 8%

4 13,936,191 4.2 11,793,147 16%

8 7,139,218 8.1 4,994,410 29%

16 3,609,639 16.0 1,460,248 59%

32 2,567,374 22.6 408,732 84%

64 2,410,404 24.14 230,122 90%

Table 7. Results produced at Stony Brook using Zebra Release 15 on a SunOS Sparc
system, with the slightly modified volume rendering code produced by Tera.

While these results vary some from the results produced at Tera, the trend is similar, and
the overall processor utilization at 64 streams is better -- indeed, the results on the whole
are a little better. It has been hypothesized that the differences are due to the fact that
Claudio’s final runs were generated with an even newer release of Tera’s compilers, etc.,
than had been used by Preston Briggs at Tera.

A major portion of the proposed work has been completed. The code has been ported and
hand optimized, and several runs have been performed. In this process, considerable
knowledge about the TERA architecture has been acquired, and, more than ever, we
believe its performance on real-time graphics applications should be superb.

However, we have been unable to “prove” the architecture performs well, due to the fact
that an actual system was still unavailable to us when this work was completed.

Conclusion

We have completed the period of work covered by the TTT CRADA and have addressed
each of the tasks specified in that CRADA. The joint research has helped Tera have a more
robust compiler and has given confidence that the compiler will correctly handle large
codes of interest to Sandia National Laboratories, other national laboratories and similar
engineering organizations in industry and at universities. The most current and complete
research indicates that the Tera machine may be a superb real-time graphics computer
when it is manufactured and is available for real applications.

Acknowledgments

We have received major help in all the phases of the project from Gail Alverson, Simon
Kahan, and Preston Briggs (from Tera). Help from Gary Montry, of Southwest Software,
is also greatly appreciated.

15

DISTRIBUTION:

2 Tera Computer Company
Attn: Simon Kahan
Attn: C. L. Schiaff
2815 Eastlake Avenue East
Seattle WA 98102

MS-0188 C. E. Meyers, 4523

MS-0318 G. S. Davidson, 9215

MS-1110 C. Pavlakos, 9215

MS-1110 C. Silva, 9215

MS-1380 D. Lambert, 4213

MS-9018 Central Technical Files, 8940-2

MS-0899 Technical Library, 4414

MS-0619 Review & Approval Desk, 12690
For DOE/OSTI

DO N b= bt pd pemd et et

16

