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1. Introduction. We consider the simulation of fluid flow governed by the steady transport

equations for moment urn, heat, and mass transfer. Discretization of these equations gives rise to

a system of nonlinear algebraic equations, the numerical solution of which can be very challenging.

In most nontrivial calculations, the solution process is computationally intensive and requires so-

phisticated algorithms to cope with high nonlinearity, strong PDE coupling, and a large degree of

nonsymmetry.

Newton’s method is a potentially attractive nonlinear solution method because of its ability

to address fully the coupling of the variables. In addition, it enjoys rapid (typically q-quadratic)

convergence near a solution that is not hindered by bad scaling of the variables. However, the

implementation of Newton’s method in the context of interest here involves special considerations.

Determining steps of Newton’s method requires the solution of linear systems, and iterative linear

algebra methods are typically preferred for this. Consequently, obtaining exact solutions of these

systems is infeasible, and the appropriate method is an inexact Newton method [2]. (See $2 below for

a precise description.)

Our primary interest is in evaluating the effectiveness of a proposed inexact Newton method on

these difficult fluid flow problems. In formulating this method, we have given particular consideration

to implementation issues that aiTect robustness and efficiency. The primary mechanism for enhancing

robustness is a backtracking ( lines earch, damping) technique that shortens steps as necessary to ensure

adequate decrease in the residual of the nonlinear system. A feature that is critical to efficiency and

which can improve robustness as well is the use of nonlinear residual information in determining the

accuracy with which the linear subproblems are solved. That is, the accuracy required in solving

the linear subproblems varies as the nonlinear algorithm proceeds, and this accuracy requirement is

based on how well the residual of the linear system reflects the behavior of the nonlinear residual. We

demonstrate in this paper that this scheme often drastically improves computational time and in some

cases can help improve robustness. In addition, we have experimented with several other optimization

techniques (e.g., trust regions, steepest-descent directions) in conjunction with the inexact Newton

scheme. While these algorithmic enhancements may offer advantages over the basic inexact Newton

scheme in some specific situations, we have not observed a general improvement of the algorithm over

a broad range of problems.

To evaluate the proposed method, a number of different fluid problems are considered. All of

these problems use a particular spatial discretization baaed on a pressure stabilized Petrov–Galerkin

finite element formulation of the low Mach number Navier–Stokes equations with heat and mass

transport. Computational results are presented for several challenging CFD benchmark problems as

well as two large scale 3D flow simulations.

A major goal of this work is to study robustness and efficiency issues related to inexact Newton

schemes and to explore the limits of effectiveness of these methods. There are alternate approaches

to solving difficult nonlinear problems starting from poor initial guesses, such as false time stepping

and continuation schemes, but these are not considered here.

2. The inexact Newton method. We write the system of nonlinear algebraic equations that

results from dlscretization of the fluid flow equations as

F(u) = o, F: R”+ R”. (1)

We assume throughout that F is continuously differentiable and denote its Jacobian (matrix) by

F’ E R“x”. Given an initial approximate solution U. of (1), classical Newton’s method determines

a sequence of approximate solutions by ‘Uk+~= uk -1-.Sk, where the step Sk k characterized by the

3 For definitions of the various types of convergence referred to in this paper, see [3].
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Newton equation

~’(uk).5’k= ‘~(~k). (2)

In an inexact Newton method [2], the Newton equation is relaxed to an inexact Newton condition

for some ~h 6 [0, 1), where [\. II is a norm of choice. This formulation naturally allows the use of an

iterative linear algebra method One fist chooses qk and then applies the iterative solver to (2) until

an sh is determined for which the residual norm satisfies (3). In this context, ~h is often called a

forcing term, since its role is to force the residual of (2) to be suitably small.

Note that ~(~k ) +~’(~k) sk is both the residual of the (2) and the local linear model of ~(~h +sh)

given by the first-order terms of the Taylor series of F at Uk. Thus in reducing the linear residual to

satisfy (3), one will also make progress in reducing the nonlinear residual as long as there is sufficiently

good agreement between F and its the local linear model at the step $h.

It is shown in [2] that, near a solution of (1) at which F’ is invertible, the local convergence

of an inexact Newton method is controlled by the forcing terms. In particular, one can obtain local

convergence that is as fast as desired, up to the (typically q-quadratic) convergence of Newton’s

method, by choosing the qh’s to be sufficiently small. For example, if qh + O, then the convergence is

typically q-superlinear, and if qh = o(ll~(~h)ll), then the convergence is typically q-quadratic [2].

2.1. The backtracking globalization. To be practically effective, a Newton-like method re-

quires globalization, i.e., augmentation with procedures that enhance the likelihood of convergence

when U. is not near a solution. Various globalization procedures have been developed, primarily

within the context of optimization (see, e.g., [3]), and some of these are discussed in $5. We focus

primarily on backtracking, also known as lines eavch or damping, in which steps are shortened as nec-

essaxy until satisfactory steps are found. The specific backtracking algorithm that we consider here is

the following from [4], which has also served as the basis of a general-purpose inexact Newton solver

in [13].

Algorithm INB: Inexact Newton Backtracking Method [4]

LET UO, ~mu G [0,1), tc (0,1), AND O < Omin< .!?~~ <1 BE GIVEN.

FORk=O, l,... (UNTILCONVERGENCE)DO:

CHOOSE INITIALqk e [0,q~~] AND Sk SUCH THAT

[l~(uk)+ F’(?.Lk)Skll < ~kll~(’Uk)[].

WHILE llF(Uk+ Sk)ll> [1- t(l- q~)]l\F(uk)l\DO:

CHOOSE 0 c [Ominjfk=].

UPDATE Sk t 6Sk AND qk t 1 – 0(1 – ??k).

SET Uk+l = Uk + Sk.

Note that, for a given initial qk, a satisfactory initial .Shexists if the Newton equation (2) is

consistent, in particular if F’ (Uk) is invertible. If a satisfactory initizd sk can be found, then we have

from remarks in [4, $6] that Algorithm INB does not break down in the while-loop, i.e., an acceptable

sk is determined after at most a finite number of step reductions. Furthermore, it is easy to see

that an inexact Newton condition (3) holds for each Sk and 9h determined in the whk-loop and, in

particular, for the final .Shand ~h. Thus each final step sh determined by the algorithm satisfies both

(3) and

\lF(uk + Sk)ll~ [1 - t(l - qh)] l[F(uk)ll, (4)
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which can be viewed as a sufficient decrease condition on ]/F I]. To shed light on this condition, we

denote the actual reduction in l]Fl\ by aredk s 1[~(’Uk)]] – ]l.F’(uk + Sk)ll and define the predicted

reduction given by the local linear model to be predk s \lF’(u~)II- 11~(’Uk)+ F’(w) SkII. Then (3)

and (4) are equivalent, respectively, to predk ~ (1 – ~~) llF(U,k)II and Uredk > t(l – qk) ll~(tf.k)ll.

In particular, if the inexact Newton condition (3) requires the predicted reduction to be at least

(1 – qk)lIF(IQ ) 11,then the sufficient decrease condition (4) requires the actual reduction to be at least

the fraction t of that amount.

Algorithm INB offers strong global convergence properties combined with potentially fast local

convergence. We have the following theoretical result from [4].

THEOREM2.1 ([4] ). Assume that F is continuously differentiable. If {Uk} produced by Algorithm

INB has a limit point u. such that F’ (u. ) is invertible, then F(u. ) = O and Uk - U*. Furthermore,

the initial Sk and ~k are accepted without modification in the while-loop for all sufficiently large k.

Note in particular that if the iteration sequence has any limit point at which F’ is invertible,

then that point must be a solution of (1) and the iterates must converge to it. Furthermore, the

asymptotic convergence is governed by the initial qk’s aa in the local convergence analysis of [2], and

desirably fast convergence can be obtained by taking them to be suitably small.

2.2. The forcing terms. The forcing terms ~& not only determine the asymptotic speed of

convergence to a solution of (1) but also affect the efficiency and robustness of the algorithm away from

a solution. Indeed, away from a solution, choosing a very small qk and solving (2) with corresponding

accuracy may result in a step .Skso long that F (?-Q+ .Sk) disagrees significantly with the local linear

model F(uk ) + F’ (uk) .$k, an outcome termed oversokzng in [5]. Oversolving may resuk in little or

no decrease in [[F[ I and, consequently, may necessitate backtracking to obtain an acceptable step; see

$4.3.2 for an illustration. Even if an acceptable decrease in IIFII is obtained, it may be undesirably

small relative to the expense of obtaining such an accurate solution of (2). A less accurate solution

of (2), in addition to costing less, might give more reduction in IIFI I and place less burden on the

backtracking.

We have implemented two forcing term choices from [5] that tend to minimize oversolving while

giving desirably fast asymptotic convergence to a solution of (1). These are as follows

Choice 1: Select any qO E [0,1) and choose

ll~(uk)ll - l\F(uk-,) + F’(uk-l) S&~ll
qk =

l]F(uk_,)l/ > / $ =1,2,....

Choice 2: Given -y E [0, I] and a E (1, 2], select any q. c [0, 1) and choose

‘k=w%wa‘=’2-

(5)

(6)

In our implementation, we use the initial value To = 10-2 with the above choices. Also, to ensure

that ~k ~ q~~ in Algorithm INB, we follow (5) and (6) with the safeguard

vk +- XIIin{nk,T7max}. (7)

It is observed in [13] that local convergence results in [5, Tbs. 2.2, 2.3] can be combined with

Theorem 2.1 above to obtain the following convergence theorems for Algorithm INB when the initial

qk’s are determined by (5) or (6) subject to (7).

THEOREM2.2 ([13] ). Assume that F is continuously differentiable and that each ?/kin Algorithm

INB is given by (5) followed by (7). If {Uk} produced by Algorithm INB has a lzmit point u. such that
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F’(u. ) isinvertibJe, then F(u*)= O anduk +u*. Furthermo~e, ifF’ is Lipschitz continuous at u.,

then

\lUk+, – U*II < ,611?.Q– U*l[llUk-1– U.11, k=l,2,..., (8)

for a constant ~ independent of k.

Remark. As noted in [5], it follows from (8) that the convergence is q-superlinear, two-step

q-qua~atic, ad of ~-order (1+ fi)/2.
THEOREM2.3 ([13] ). Assume that F is continuously differentiable and that each qk in Algorithm

INB is given by (6) followed by (7). If {Uk} produced by Algorithm INB has a limit point u. such that

F’ (u*) is invertible, then F(u* ) = O and uk + u.. Furthermore, if F’ is Lipschitz continuous at u.,

then the following hold: If v <1, then the convergence is of q-order CY;if y = 1, then the convergence

is of r-order CYand of q-order p for evey p G [1, a).

In keeping with [5] and [13], we also implement the following safeguards, which are applied after

qk has been determined by (5) or (6) and before applying (7).

(l+fi)/2} if q~_~fi)/2 >0.1.Choice 1 safeguard: Modify qk by qk G IIIi3X{71k,qk_ ~

Choice 2 safeguard: Modify qk by qk + max{qk, yq~_l } if ~q~_l >0.1.

The purpose of these is to prevent the initial qk’s from becoming too small far away from a solution.

This can happen coincidentally with either (5) or (6); it ca also happen with (5) when backtracking

forces a very short step that results in very good agreement between F and its local linear model.

Note that if {’Uk} converges to a solution of (1) at which F’ is invertible and Lipschitz continuous,

then we have q,$ + Owith either (5) or (6). It follows that these safeguards eventually become inactive

and do not affect the asymptotic convergence given in Theorems 2.2 and 2.3.

2.3. Other details of the implementation. Various remaining details of our implementation

of Algorithm INB are as follows: We use q~~ = 0.9; thk fairly large value allows the qk’s to become

correspondingly large if necessary to reduce oversolving. We use t= 10-4; this very small value results

in accepting almost any step that gives a reduction in IIFl 1. The use of 6min and &U in Algorithm

INB to determine minimal and maximal steplength reduction is known as safeguarded backtracking in

the optimization community. In keeping with common practice, we use 0~~ = 1/2 and Oxni.= 1/10

and determine 6 ~ [Omi.,O~ax] to minimize a quadratic p(t) that satisfies p(0) = ~ llF(uk ) 112,p(1) =

~llF(u& + Sk)ll’,and P’(0) = ~~llF(u~ + h’k)112,=O. The norm is a weighted Euclidean norm with

weights that reflect problem scaling.

Successful termination is declared if llF(uk) II< 6F IIF(uo) l], where EF = 10-2 in the experiments

in $4 below, and the following steplength criterion is also satisfied:

ill%kll,<1,
where n is the total number of unknowns and W is a diagonal weighting matrix with entries

.

in which U!) is the ith component of ‘Ukand ET = 10-3 and S. = 10-s in the experiments in ~4. In

our experience, this second criterion is typically more stringent and is necessary to ensure that finer

physical details of the flow and transport are adequately resolved. Essentially, it requires that each

variable of the Newton correction be small relative to its current value. Thk assures that all variables

(even variables with small magnitude) are considered appropriately in determining when to halt the

Newton iteration. This weight matrix definition is similar to a criterion used to dynamically control

time step sizes and is standard in general purpose ODE packages such as LSODE [9].
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3. The discretized equations. The governing PDEs used in our experiments are given below.

In these equations the unknown quantities axe u, P, T, and yk; these are, respectively, the fluid

velocity vector, the hydrodynamic pressure, the temperature, and the mass fraction for species k.

Momentum Transport:

pu. Vu– V. T–pg=O (1)

Total Mass Conservatiorc

V.u=o (2)

Energy Transport:

pCPu. VT+ V.q=O

Species Mass Transport:

Pu.vyk+v.jk=()

(3)

(4)

In these equations, p, g, and CP are, respectively, the density, the gravity vector, and the specific

heat at constant pressure. The necessary constitutive equations for T, q,and jk se given b (5)-(7)

below.

Stress Tensor:

T = –PI + p{Vu + VuT}

Heat Flux:

q = –tcVT

(5)

(6)

Species Mass Flux:

jk = ‘@kvyk, k=l,.., N–l (7)

Here p, ~, and Dk are, respectively, the dynamic viscosity, the thermal conductivity, and the diffusion

coefficient of species k in the mixture.

The above equations are derived by assuming a constant property, multicomponent dilute Newto-

nian fluid mixture with no chemical reactions. Additionally, the Mach number is assumed low so that

effects of viscous dissipation can be neglected in the energy transport equation (3). More information

on this system of equations can be found in [19].

Finally, to complete the system, bounday conditions are imposed on (l)–(4) by taking combi-

nations of Dirichlet conditions on u, P, T, and yk and specified flux conditions on T, q, and jk. In

$4.2, we discuss the specific boundary conditions for each test problem in more detail.

To obtain an algebraic system of equations (1), a Petrov–Galerkin weighted residual formulation

of (1)–(4) is used. This scheme utilizes a pressure stabilized Petrov-Galerkin (PSPG) formulat ion to

allow equal order interpolation of velocity and pressure, along with streamline upwinding (SUPG) to

limit oscillations due to high grid Reynolds and Peclet numbers. This formulation follows the work

of Hughes et al. [1O] and Tezduyar [21]. Specifically, the discrete equations are obtained from the

following equations.



Momentum:

Total Mass:

Energy:

/
FP = [V. U]@ dfl + r,.,g

/
V@. [u. Vu– VT-pg]d Q

$-1 $-F

FT =
I

[pCPU . VT + V . c@dQ
rl

Species Maas:

(8)

(9)

(lo)

(11)

In these, the stability parameters (the +s) are functions of the fluid velocity, u, and are given in [10],

[21], [19].

To form the Jacobian F’ of the system (l), we Iirst linearize all terms of (8)–(11) except those

containing the stability parameters. The discrete form of these linearized terms is determined by

expanding the unknowns u, P, T, and yk and the weighting function @ in terms of a linear finite

element basis. The contribution to F’ resulting from these terms is then computed by analytic

evaluation. Finally, the contribution to F’ of the terms containing the stability parameters is computed

by numerical differentiation and added to the analytically evaluated terms. The resulting Newton

equation (2) is a fully-coupled nonsymmetric linear system.

4. Numerical experiments.

4.1. The testing environment. The inexact Newton method outlined in $2 was tested by

incorporating it in a parallel finite element reacting flow code called MPSalsa [15]. This code imple-

ments the Petrov–Galerkin formulation described in $3 in a distributed data setting through a process

outlined briefly as follows The underlying finite element grid is subdivided over processors using the

graph partitioning package CHACO [8], so that the number of finite element nodes in each subdomain

is balanced and the communication cost (essentially proportional to the surface area or perimeter of

each subdomain) is minimized. Using this decomposition, MPSalsa sets up the finite element dis-

cretization, with each processor producing a subset of the discretized equations and Jacobian entries

corresponding to its assigned subdomain. At each inexact Newton iteration, the Newton equation (2)

is approximately solved using the parallel iterative solver package Aztec [11], which provides a number

of solver and preconditioned options.

For this study, we restricted the iterative solver to the restarted GMRES method [14] and the

preconditioned to a domain decomposition scheme using an incomplete factorization, ILU(0) [12] [20],

withk sub domains. For the two 3D problems described in 54.4, this precondltioner corresponds to

extracting a block diagonal matrix from the original matrix (where each block is associated with the

local unknowns on a particular processor) and producing an ILU(0) factorization of this matrix. For
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the three benchmark problems described in ~4.2} the preconditioned is similar, However, each block

or local processor baaed matrix is augmented by the set of equations associated with its neighboring

unknowns (points updated by neighboring processors but connected by an edge in the finite element

stencil connectivity graph to an unknown on this processor). Connections to unknowns outside of the

processor’s assigned unknowns or neighboring unknowns are discarded. Thus, equations appearing

in one processor’s matrix may also appear in another processor’s matrix. An ILU(0) factorization

is produced on each local augmented matrix and is essentially applied to each processor’s assigned

unknowns4. This procedure corresponds to overlapping the subdomain preconditioning matrices.

Though this preconditioned requires additional storage compared to the unaugmented systems, it can

significantly improve the overall convergence. More details on Aztec, GMRES, and these parallel

preconditioners can be found in [20].

At each inexact Newton iteration, MPSalsa generates the Jacobian of the dkcretized system by

a combination of analytic evaluation and numerical differentiation as described in $j3 above. The

Jacobian is then used in Aztec for the matrix-vector products required by GMRES. In the present

context, these products are very computationally efficient, and this approach is considerably more

economical for the test problems considered here than a ‘(matrix free” approach in which these products

are approximated by finite-differences of F-values. The ILU(0) precondltioner factors are computed

from the new Jacobian at each inexact Newton step, and this computation entailed considerable

expense in our tests. A strategy that would allow re-use of preconditioned factors over a number of

inexact Newton steps might reduce this expense considerably, but we have not pursued such strategies

in this study.

All tests reported here were run on Intel Paragons operated by Sandia National Laboratories.

4.2. Three standnrd benchmark problems. The three test problems described below are

standard benchmark problems used for verification of fluid flow codes and solution algorithms. In all

cases, the GMRES restart value was 200, which was sufficiently large that GMRES stagnation did

not become an issue for even the most difficult of the linear subproblems generated by the inexact

Newton algorithm. We also allowed a maximum of 600 GMRES iterations at each inexact Newton

step, after which the GMRES iterations were terminated and a new inexact Newton step started even

if the condition (3) did not hold. In all cases, the initial approximate solution was the zero vector.

4.2.1. The thermal convection problem. This standard benchmark problem [1] consists of

the thermal convection (or buoyancy driven) flow of a fluid in a differentially heated square box in the

presence of gravity. It requires the solution of the momentum transport, energy transport, and total

mass conservation equations defined in $3 on the unit square in the plane with the following Dirichlet

and Neumann boundary condkions.

T= Tcold, u=v=O atx=O.

T = Thot, ‘U=V=(I atx=l.

8T
—=0, u=v=O aty=O.
ay

(1)

(2)

(3)

(4)

4 The ILU precondltioner is applied to both assigned unknowns and neighbor unknowns. However,
values from neighbor unknowns are discarded as different values for these unknowns are computed on
neighboring processors.



When equations (l)-(3) and the boundary conditions (I)–(4) are suitably nondimensionalized, two

parameters appear, the Prandtl number Pr and the Rayleigh number Ra. In our study we took

Pr = 1 and varied the magnitude of the Rayleigh number. As the magnitude of Ra is increased the

nonlinear effects of the convection terms increase and the solution becomes more difficult to obtain. A

typical solution for this problem is shown in Figure 4.1. All solutions for this problem were computed

on a 100 x 100 equally spaced mesh, which resulted in 40,624 unknowns for the dkcretized problems.

Twenty Paragon processors were used for all runs.

FIG. 4.1. Thermal convection in a square cavity at Ra = 1,000,000: Contour plot of temperature
shows a thermal boundary layer along hot and cold walls.

4.2.2. The lid driven cavity problem. This is a standard benchmark problem [7], [17] con-

sisting of a confined flow in a square box driven by a moving boundary on the upper wall. This

problem requires the solution of equations (1)-(2) defined in 33 on the unit square with the following

Dirichlet boundary conditions.

U=7J =() atz=O. (5)

~=~=() atz=l. (6)

U= ?-)=() aty=O. (7)

U=ul), v=o aty=l. (8)

When equations (l)–(2) and the boundary conditions (5)-(8) are suitably nondlmensionalized, one

parameter, the Reynolds number Re, appears. As Re is increased the nonlinear inertial terms in the

momentum equation (1) become more dominant and the solution becomes more difficult to obtain. A

typical solution for this problem is shown in Figure 4.2. As in $4.2.1, all solutions were computed using

a 100 x 100 equally spaced mesh, which resulted in 30,486 unknowns for the dkcretized problems.

Twenty Paragon processors were used for all runs.

4.2.3. The backward facing step problem. Thk is a standard benchmark problem [6] con-

sisting of a rectangular channel with a 1 x 30 aspect ratio in which a reentrant backward facing step

is simulated by introducing a fully developed psrabolic velocity profile in the upper half of the inlet

boundary and imposing zero velocity on the lower half. As the fluid flows downstream it produces a

recirculation zone on the lower channel wall, and for sufficiently high Re it also produces a recircula-

tion zone farther downstream on the upper wall. This test problem requires the solution of the same

nondimensional equations as in the lid driven cavity problem. The boundary conditions are given by

9
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FIG. 4.2. Lid driven cavity at Re = 10,000: Contour plot of the stream function shows a main vortex
and existence of corner vortices.

u(y) = 24Y(0.5 -y), v = O at z = O, 0 S Y S 0.5,

~=7J=() atz=O, –0.5~y <0,

Ta==O, T=V=O atz =30,

U=v=o at y = –0.5,

U=v=o at y = 0.5.

(9)

(lo)

(11)

(12)

(13)

As Re is increased the nonlinear inertial terms in the momentum equation (1) become more

dominant and the solution becomes more difficult to obtain. A typical solution for this problem is

shown in Figure 4.3. All solutions for this problem were computed on a 20 x 400 unequally spaced

mesh (not shown), which resulted in 25,623 unknowns for the discretized problems. Sixteen Paragon

processors were used for all runs.

FIG.4.3.Backward facing step solution at Re = 800: Contour plot of the z-velocity shows recirculation
on lower and upper walk.

4.3. Experiments with the benchmark problems. In thk section we report on experiments

aimed at showing the effects of backtracking and of various choices of the forcing terms qk in (3). We

have used the problems introduced in $4.2 for these experiments because they are well-understood

benchmark problems. Illustrative results for these problems are shown in the tables and figures in

this section. The full set of test results for these problems is given in the AppendIx.

4.3.1. An illustration of backtracking. Backtracking or other forms of globalization are of-

ten omitted in engineering codes. While an unglobalized inexact Newton method can be effective in

special situations, e.g., when the initial guess is close to the final solution or the problem is almost
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linear, it will often fail to converge in more general circumstances. To illustrate the effects of back-

tracking, we show in Figure 4A convergence histories with and without backtracking over the first

200 GMRES iterations (spanning a number of inexact Newton steps) for the backward facing step

problem with Reynolds number 600. In particular, denoting the approximate solution of the Newton

equation at each GMRES iteration by 5, we plot log IIF (W + 3)II, where ‘Ukis the approximate solu-

tion of the nonlinear system at the current Newton step. The solid curve shows log [l~(~k + S)IIwhen

backtrackhg is enabled while the dashed curve shows these values when backtracking is not used. The

vertical intervals in the solid curve indicate the occurrence of backtracking. Note that these curves are

identical at the first inexact Newton step through the Erst 76 GMRES iterations (the apparent plateau

is actually a period of very slow increase in log llF(uk +3) [[); however, they diverge at the end of that

step as a result of backtracking and continue to diverge increasingly thereafter. Safeguarded Choice 1

forcing terms were used, with qo = 10- 2; this fairly small q. accounts for the relatively large number

of GMRES iterations at the first step. The dotted and dash-dotted curves in Figure 4.4 correspond to

the linear model norm, i.e., log IIF(W ) + F’ (Uk)511,for the nonbacktracking and backtracking cases,

respectively. Note that there is considerable divergence of log II~(’Uk + .3)][ and log ll~(~k ) + ~’ (~k)311

at each inexact Newton step, both with and without backtracking. Thus the safeguarded Choice 1

forcing terms failed to maintain good agreement between the nonlinear residual and the local linear

model during the first 200 GMRES iterations, and backtrackhg was necessary to ensure a decrease in

the nonlinear residual norm. For perspective, we show in Figure 4.5 the entire convergence history for

the backtracking case. From this, one sees that, after the first 200 GMRES iterations, backtrackhg

was necessary during occasional periods of difficulty, but eventually good agreement was maintained

between the nonlinear residual and the local linear model and convergence was ultimately obtained

without further backtracking.

E
— F(u)withbacktracking

-- F(u)wthout backtracking

-- linearmodelwithbacktracking

linearmcdslwithoutbacktracking
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FIG. 4.4.Convergence history, jirst 200 GMRES iterations.

4.3.2. An illustration of oversolving. To illustrate the issue of oversolving, we show in

Figures 4.6 and 4.7 convergence histories for two different forcing term choices, Choice 1 and qh = 10-4,
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FIG. 4.5.Entire convergence history

both with backtracking, for the lid driven cavity problem at Reynolds number 1000. For each forcing

term choice, the plots show the nonlinezm residual norms and linear model norms versus the number

of GMRES iterations as in the previous figures. Oversolving is indicated by the gaps between these

curves, in which GMRES continues to reduce the linear model norm while the nonlinear residual

norm typically stagnates or even increases. Oversolving is associated with significant disagreement

between the linear model and the nonlinear residual; once it begins, subsequent GMRES iterations are

usually wasted effort and may even be counterproductive. With the Choice 1 forcing terms, modest

oversolving is evident until just beyond 700 GMRES iterations but is subsequently too small to be

visible in the plots. With q~ = 10-4, oversolving is much more pronounced and continues for many

more GMRES iterations; convergence is ultimately obtained but much less efficiently than with the

Choice 1 forcing terms.

4.3.3. A robustness study. We conducted a comprehensive study involving the benchmark

problems with the goal of assessing the general robustness of an inexact Newton method with and

without backtracking and with various choices of the forcing terms. In this study, the parameters that

determine the difficulty of the benchmark problems were varied over wide ranges.

The forcing term choices included in the study were safeguarded Choices 1 and 2 and two constant

choices. For Choice 2, we used ~ = 0.9 and allowed a = 1.5, which gives asymptotic convergence of

q-order 1.5 (about the same as the r-order (1 + W) /2 convergence of Choice 1), and CY= 2, which

gives asymptotic q-quadratic convergence. The two constant choices have occasionally been used by

others and represent somewhat different approaches. The first, qk = 10– 1, requires only moderate

accuracy in solving the Newton equation (2) at each inexact Newton step and gives only moderately

fast asymptotic q-linear convergence near a solution. The second, ~~ = 10– 4, requires considerable

accuracy and results in a step that should usually give about the same performance as the exact

Newton step, with very fast asymptotic q-linear convergence near a solution.

The results of the study are shown in Table 4.1, which shows numbers of failures for these
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forcing term choices with and without backtracking. To help show where failures occurred, we have

somewhat arbitrarily divided cases into “easier” and “harder” parameter ranges for each problem.

(However, some of the “easier” problems may not be easy in any absolute sense.) For the thermal

convection problem, the ‘~easier” problems are with Ra = 103, 104, and 105; the “harder” problem is

with Ra = 106. For the lid driven cavity problem, the “easier” problems are with Re = 1,000, 2,000,

3,000, 4,000, and 5,000; the “harder” problems are with Re =6, 000, 7,000, 8,000, 9,000, and 10,000.

For the backward facing step problem, the “easier” problems are with Re = 100, 200, 300, 400, and

500; the “harder” problems are with Re = 600, 700, 750, and 800.

Forcing Thermal Lid Driven Backward

Term Convection Cavity Facing Step

Vk Easier Harder Easier Harder Easier Harder

o 0 0
Choice 1

0 0 1

0 1 0 5 0 4

Choice 2 0 0 1 1 0 3

Q = 1.5 0 1 1 4 0 4

Choice 2 0. 0 0 0 0 2

Cy=z
o 1 1 5 1 4

0 0 4 5 1 41o-1

0 1 5 5 1 2

0 0 3 4 2 410-4

0 1 5 5 3 4

TABLE 4.1
Distribution of failures: For each choice of ~h, the upper and lower lines are the number o~ ~ailures
with and without backtracking, respectively.

Table 4.1 shows that backtracking generally improves robustness for every choice of the forcing

terms considered here. Indeed, in only one case above (qk = 10– 1, backward facing step, “harder”

problems) did backtracking result in more failures than no backtrackhg; we have no explanation for

this case and regard it as anomalous. Table 4.1 also shows that the Choice 1 and 2 forcing terms

generally give greater robustness than the constant choices, with or without backtracking. However,

the table also shows that neither backtracking nor an effective forcing term choice alone is sufficient;

both are necessary for good robustness. The best combination seen in Table 4.1 is Choice 1 with

backtracking, followed closely by Choice 2, a = 2, with backtracking.

4.3.4. An efficiency comparison of Choice 1 and Choice 2 forcing terms. We follow

the robustness study above with a study aimed at aasessing the relative efficiency of the Choice 1 and

Choice 2 forcing terms on the benchmark problems when backtracking is used. The constant forcing

term choices used above are not included here because their high failure rates precluded obtaining a

sufficiently broad set of test problems. However, we note that in caaes in which these constant choices

succeeded, they often resulted in much less efficiency than the Choice 1 or Choice 2 forcing terms; see,

in particular, the results in the Appendix for the backward facing step and lid driven cavity problems,
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in which the constant choice qk = 10-4 is notably less efficient than the Choice 1 or Choice 2 forcing

terms.

As in 54.3.3 above, in Choice 2, we took -y = .9 and used a = 1.5 and a = 2 in this study. The

test cases considered were those in which all three of these forcing term choices resulted in success, as

follows: Ra = 103, 104, 105, and 106 for the thermal convection problem; Re = 1,000, 3,000, 4,000,

5,000, 7,000, 8,000, 9,000, and 10,000 for the lid drhen cavity problem; and Re = 100, 200, 300,

400, and 500 for the backward facing step problem.

The results of the study are shown in Table 4.2, which, for the different forcing term choices,

gives mean numbers of inexact Newton steps, backtracks, and GMRES iterations, and mean run

times (in seconds). All are geometric means except in the case of backtracks, in which they are

arithmetic means. (There were no backtracks in some cases, and so geometric means were not defined

for backtracks.)

Inexact
Newton Back- GMRES Time

Forcing Term ok Steps tracks Iterations (Seconds)

Choice 1 36.5 41.4 4054.1 792.1

Choice 2, a = 1.5 II 36.3 I 49.8 I 4189.6 \ 824.2 II

Choice 2, a = 2 II 32.8 I 48.5 I 3951.6 I 779.4 II

TABLE 4.2
Forcing term comparison: “Backtracks” gives arithmetic means; all other columns give geometric
means.

Overall, Choice 1 and Choice 2, a = 2, performed slightly better than Choice 2, a = 1.5, which

finished last in every category except inexact Newton steps, in which it essentially tied Choice 1.

In comparing Choice 1 to Choice 2, a = 2, it is notable that the former required fewer backtracks

while the latter required fewer inexact Newton steps. This is not surprising Choice 1 is aimed

directly at maintaining good agreement between the nonlinear residual and the local linear model

and, consequently, should relieve the backtracking of much of its burden; Choice 2, a = 2, is more

“aggressive” and gives asymptotic q-quadratic convergence, which may result in more backtracking

away from the solution but reduce the number of inexact Newton steps in the end.

We also carried out a similar comparison involving only Choice 1 and Choice 2, a = 2, on a

somewhat larger test set on which both of these choices gave success. The results are similar to those

in Table 4.2, and so they are not included here.

4.4. Experiments with two 3D problems. In 34.2 and 34.3, we have shown the effects on

method performance of backtracking and various forcing term choices through illustrative examples

and statistical studies involving three well-known 2D benchmark problems. These studies show, in

particular, that backtracking coupled with an effective forcing term choice can lead to very significant

overall improvement in robustness and efficiency over a range of problems. However, in our testing,

we also observed considerable variations in the performance of different method options on individual

problems; it was by no means true that a particular set of options always worked best.

In this section, in order to illustrate variations in method behavior as well as to show performance

on particular realistic problems, we outline specific case studies of two large-scale 3D flow simulations.

4.4.1. A CVD reactor transport problem. This example problem involves computing the

3D solution for fluid flow, heat transfer and the mass transfer of three chemical species in a horizontal
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Outlet

FIG 4.8. Unstructured Fiuite Element Mesh of CVD Reactor.

FIG 4.9. Flow Streamlines and Contour Plot of GaMe3 Mass Fraction in CVD Reactor.
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tilted chemical vapor deposition (CVD) reactor. The problem haa three fluid velocities, the hydrody-

namic pressure, temperature and three chemical species as unknowns at each finite element node. The

CVD reactor has a rectangular cross section with a tilted lower surface with an embedded spinning

disk which cannot be accurately represented with a structured mesh (see Figure 4.8). Fluid enters

in the larger cross sectional area inlet and accelerates up the inclined surface with the inset rotating

heated disk. At the elevated dkk temperature, chemical reactions are initiated to deposit gallium ar-

senide (GaAs). In this example, we only transport the precursors for this reaction (tri-methylgallium,

Gakles, arsine, AsHs) and a carrier gas (hydrogen, Hz) and do not allow chemical reactions. In our

example calculation, the inlet velocity is 60 cm/s, the inlet temperature is 600 degrees K, and the

disk rotates at 200 rpm and is heated to 900 degrees K. To simulate the deposition process, we use a

Dirichlet condition on the reactants that introduces significant diffusion gradients and boundary layers

that approximate the average behavior of the full reacting system depositing GaAs on the rotating

disk. (Results for the full reacting CVD system can be found in [18], [16]). In practice CVD reactors

are run at low pressures and fluid velocities, and thus the Reynolds numbers are small (Re % 1.0).

Therefore, SUPG stabilization was not needed. In addition, for gasses at these temperatures and

pressures, the Prandtl number and the Schmidt number (analogous to the Prandtl number) for mass

transport are approximately one aa well. A typical flow solution is shown in Figure 4.9, where the

streamlines show the effect of the counter clockwise rotation of the disk. Included is a contour plot

of the concentration of tri-methylgallium at the heated surface. This contour plot is from the full

reacting flow solution ([16]).

I?or these experiments, the number of unknowns for the discretized problem was 384,200. The

number of Paragon processors used was 220. The GMRES restart value was 100, with a maximum

of 600 GMRES iterations allowed at each inexact Newton step. Since these experiments are intended

to be illustrative, we considered only three representative forcing term choices, viz., Choice 1 and

the two constant choices qk = 10-1 and q~ = 10-4. Results for these forcing term choices, with

and without backtracking, are shown in Tables 4.3 and 4.4. It is notable that, for this problem,

performance was worse with backtracking than without for every forcing term choice. Furthermore,

the best performances (at least in terms of time) were from the constant choices without backtracking.

In fact, the choice q~ = 10-4 , which was the clear winner in terms of time, took far fewer inexact

Newton steps than the other two choices and never invoked backtracking even when it was allowed,

i.e., initial inexact Newton steps were always acceptable.

Inexact
Newton Back- GMRES Time

Forcing Term ~~ Steps tracks Iterations (Seconds)

~
TABLE 4.3

Results for the CVD reactor problem with backtracking.

4.4.2. A 3D duct flow problem with contamination transport. This 3D problem models

the steady flow of air through an expanding cross section duct. On the lower surface of the duct a

recirculation region forms as in the backward facing step example. The physical problem of interest

is to solve for the flow field and for the downstream transport of ionized air molecules produced from
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Inexact
Newton Back- GMRES Time

Forcing Term qk Steps tracks Iterations (Seconds)

Choice 1 20 0 1052 707.9

10-’ II 12 I o I 1051 I 511.5

10-4 11 5 I o I 1531 I 445.5 II

TABLE 4.4

Results for the CVD reactor problem without backtracking,

a small source of nuclear ionizing radiation located on the lower wall behind the step. The goal of the

simulation is to computationally predict the presence of the nuclear contamination in concentrations

high enough to detect experimentally by special sensors. This information is to be used to aid in the

economical decommissioning of old nuclear facilities.

The numerical computation requires the solution of the momentum transport, total mass and

cent aminant species conservation equations defined in $3. The domain is a duct of width .2 meters

by 8 meters long, with an inlet height of .1 meters and outlet of .2 meters. The mesh is finer near

the solid walls and the step expansion location. The Reynolds number based on the outlet height is

400 and the Schmidt number is 1.0. A typical solution for this problem is shown in Figure 4.10. This

figure shows a contour plot of the x-velocity on the center-plane of the duct, an isosurface plot of an

accelerated flow region in the upper duct, and a lower 3D recirculation region with negative velocities

located behind the step. For these experiments, the number of unknowns for the discretized problem

was 477,855. The GMRES restart value was 160, and a maximum of 640 GMRES iterations was

allowed at each inexact Newton step. The number of Paragon processors used was 256.The forcing

terms considered here are Choice 1 and the two constant choices qk = 10– 1 and qk = 10-4.

Backtracking was necessary for success on this problem; the method diverged without backtrack-

ing. Results with backtracking are given in Table 4.5. Notice that while Choice 1 required the most

inexact Newton steps, it also took the fewests number of GMRES iterations and, consequently, the

leaat amount of CPU time, in spite of the time required to create new Jacobians and preconditioners

at the additional inexact Newton steps, We should note that the run time advantage of Choice 1 over

Tk = 10–4 would have been even larger had the maximum number of GMRES steps been set higher.

Indeed, the linear solver frequently took the maximum number of steps (640) without achieving con-

vergence when qk = 10-4 , and thus a larger maximum number of GMRES steps would have resulted

in an even greater difference between the Choice 1 run times and the q~ = 10–4 run times.

In the true physical problem of interest here, there is also a volumetric ion reaction source term.

Results for these solutions are very similar to those of Table 4,5. In a later manuscript, we will

consider the inclusion of the reaction terms in the transport equations and study the convergence of

the inexact Newton methods.

5. A comment on trust region methods. In additional testing not reported here, we also

experimented with several variations of the backtracking algorithm that employed techniques associ-

ated with trust region methods. In a trust region method, steps are constrained to lie within spherical

or ellipsoidal neighborhoods in which the linear model is “trusted” to represent the nonlinear residual

well. Within each such neighborhood, a step is chosen to minimize approximately the norm of the

local linear model; the size of the neighborhood is then adjusted for the next step to reflect agreement

of the local linear model and the nonlinear residual. A popular trust region implementation is the

18



FIG. 4.10. The duct flow problem (top view) showing a center-plane plot of x-velocity contours.
Isosurfaces show an accelerated flow region on the upper portion of the duct and a lower recirculation
region.

dogleg method, in which a step is chosen to minimize the local linear model norm within the trust

region along the dogleg curve, which joins the current point, the steepest descent point (the minimizer

of the local linear model norm in the steepest descent direction), and the point determined by the

Newton step. We omit further details and refer the reader to [3].

We carried out a number of experiments with a straightforward extension of the dogleg schema

to the inexact Newton context, in which the inexact Newton step played the role of the Newton

step. 5 In these tests, we experimented with several different norms (to properly capture the different

physical scales of the variables) in defining trust region neighborhoods. For the most part our results

indicate that, in the present context, such a trust-region method can be fairly competitive with back-

tracking. However, we noticed no particular improvement in overall robustness, although occasionally

one method converged when another would not and vice-versa. 6 Moreover, the trust region method

usually required slightly more CPU time than the backtracking method: There were fewer function

5 The MPSalsa testing environment was modified to allow the computation of products of the
transpose of the Jacobian with vectors, which in turn allowed the computation of steepest descent
steps.

6 Only with the constant choice qk = 10- 1 dld we observe that the trust region method was more
robust than backtracking. However, usually the CPU times for this choice were longer than for either
Choice 1 or Choice 2 with backtracking.
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I
IINewton Back- GMRES Time

Forcing Term qk Steps tracks Iterations (Seconds)

Choice 1 28 6 13,450 3554.5
11 , , II

1o-1 25 7 15,477 3953.9
u

10-4 24 6 15,360 3915.1
1

TABLE 4.5
Results for the duct flow problem.

evaluations due to less backtracking, but this savings was outweighed by the cost of more inexact

Newton steps due to the scaling back of steps.

In addition to this dogleg implementation, we also conducted some experiments involving the

following (1) imposing a trust region-type steplength constraint on initial inexact Newton steps used

in backtracking; (2) backtracking from initial inexact Newton steps along the dogleg curve, rather

than simply scaling back the steps as in straightforward backtracking; (3) modifying GMRES so that

the fist iterate is the steepest descent step. 7 In no case did we observe any overall advantage over

the straightforward backtracking method.

6. Summary discussion: We have proposed an inexact Newton method with a backtracking

globalization for the solution of the steady transport equations for momentum, heat, and mass transfer

in flowing fluids. The algorithm offers choices of the forcing terms (the criteria that determine the

accuracy of solutions of the linear subproblems) that are intended to enhance the robustness and

efficiency of the method by maintaining good agreement between the nonlinear residual and its local

linear model at each inexact Newton step. Theoretical support for the algorithm shows that it has

strong global convergence properties together with desirably fast (up to q-quadratic) local convergence.

Extensive testing on three standard 2D benchmark problems has shown that both backtracking

and an effective forcing term choice can greatly improve robustness. However, neither alone is suffi-

cient; both are necessary for the best overall performance. In our tests on the benchmark problems,

the greatest overall robustness was obtained with backtracking in combination with the Choice 1

forcing terms, followed closely by the Choice 2 forcing terms with a = 2. (See $2.2 for these forcing

term formulations). Compared to Choice 1, Choice 2 with a = 2 tended to require more backtracks

but to take fewer inexact Newton steps in our experiments.

Tests on two 3D problems have shown the effectiveness of the algorithm on realistic large-scale

flow simulations. Results for the second problem, a duct flow problem, reflect the overall results

on the 2D benchmark problems: Backtracking was necessary for success, and, with backtracking,

Choice 1 forcing terms resulted in considerably greater efficiency than either of two constant choices

considered. In contrast, for the first problem, a CVD reactor problem, all three of these choices gave

better performance without backtracking, and the best performance was obtained with the very small

constant choice qk = 10-4. Thk demonstrates that no single strategy is best for all problems; the

best course is to have a number of options available.

7. Acknowledgments. The authors would like to thank Andrew Salinger for the use of the

3D CVD mesh and for helpful suggestions and debugging related to the MPSalsa analytic Jacobian

entries.

7 This simple modification requires an initial product F’ (ok )~F’(zk ), followed by an additional dot
product and “saxpy” at each iteration.
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Appendix. On the following pages, we give the full set of test results for the experiments

on the benchmark problems described in $$4.2–4.3. For each problem, the first column of results

gives values of the appropriate parameter, viz., the Rayleigh number Ra for the backward facing step

and thermal convection problems and the Reynolds number Re for the lid driven cavity problem.

The second column (S/F) shows a success/failure flag ‘O” indicates success; “-l” indicates either

failure to succeed within the maximum allowable number of inexact Newton steps (either 100 or

200 steps in each case) or stagnation, as determined by failure to achieve sufficient reduction in the

nonlinear residual norm for fifteen consecutive steps; “- 2“ indicates backtracking failure, i.e., failure to

determine a successful step within the maximum allowable number of backtracks (eight). The third

through eighth columns show, respectively, numbers of inexact Newton steps (Newt), numbers of

function evaluations (#fo), numbers of backtracks (Bkt), numbers of GMRES iterations (GMRES),

final residual norms (1IT[[), and total run times in seconds (time). In some cases, test runs were

terminated because of exceeding the allowable run time, machine failure, or other reasons. In these

cases, if ultimate failure was clear, the runs were not repeate~ these runs are indicated by “terminated

but clearly failing” in the tables.
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Backward Facing Step problem without backtracking

Choice 1 forcing terms

S/F Newt #fo
o 12 24
0 12 24
0 15 30
0 27 54
0 40 80

–1 200 400
-1 200 400
–1 200 400
-1 200 400

Bkt
o
0
0
0
0
0
0
0
0

GMRES
696
741
925

1123
1107

56120
57134
56041
65592

61J;~~_11

5:316e–10
4.657e-10
2.430e-10
2.002e-07
2.950e+04
8.542e+03
1.586e+04
1.379ei-04

time
1.355e+02
1.449e+02
1.779e+02
2.461e+02
3.033e+02
9.096e+03
9.215e+03
9.070e+03
1.055e+04

Re_l 00
Re_2 00
Re_3 00
Re_4 00
Re_500
Re_6 00
Re_7 00
Re_75 O
Re_8 00

Choice 2 forcing terms, gamma . .9, alpha . 1.5

S/F Newt #fo Bkt GMRES Ilr]]
o 11 22 0 695 3.951e–10
o 13 26 0 816 2.906e–11
o 16 32 0 970 3.715e–10
o 24 48 0 1054 3.460e-09
o 44 88 0 1436 1.776e–08

–1 200 400 0 60995 2.378e+03
–1 200 400 0 57442 1.145e+04
–1 100 200 0 28814 3.524e+03
-1 100 200 0 28805 2.772e+03

time
1.308e+02
1.582e+02
1.845e+02
2.249e+02
3.498e+02
9.850e+03
9.308e+03
4.675e+03
4.671e+03

Re_l 00
Re_2 00
Re_3 00
Re_4 00
Re_5 00
Re_6 00
Re_7 00
Re_75 O
Re_8 00

Choice 2 forcing terms, gamma = .9, alpha . 2

S/F Newt #fo Bkt GMRES
“o 10 20 0 732
0 11 22 0 733
0 14 28 0 817
0 24 48 0 1115

–1 200 400 0 56808

p~J_12

1.135e-11
4.458e–11
1.316e–10
1.652e.+04

time
1.375e+02
1.470e+02
1.718e+02
2.419e+02
9.320e+03

Re_l 00
Re_2 00
Re_3 00
Re_4 00
Re_5 00
Re_6 00
Re_7 00
Re_75 O
Re_8 00

-1 127 ... (terminated but
-1 100 200 0

clearly failing)
1.772e+03
3.997e+03
4.213e+03

4.?77e+03
4.296e+03
4.217e+03

28936
26319
26044

GMRES
906

1378
84412
38874
39932
35472
36867
41772
25773

GMRES
657
887
871

1024
61845

–1 100 200 0
-1 100 200 0

Eta = 1.Oe-4 forcing terms

S/F
Re_l 00 0
Re_2 00 0
Re_300 –1
Re_400 –1
Re_500 -1
Re_600 -1
Re_700 –1
Re_750 –1
Re_800 –1

Newt #fo Bkt
6 12 0
8 16 0

200 400 0
100 200 0
100 200 0
100 200 0
100 200 0
100 200 0
100 200 0

[rll
063e-10
367e–10
362e+04
057e+03
660e+03

time
1.501e+02
2.363e+02
1.363e+04
6.325e+03
6.389e+03
5.689e+03
5.892e+03
6.678e+03
4.160e+03

3
2
2
7
1.
3.013e+03
1.702e+03
1.467e+03
4.706e+03

Eta . l.Oe-l fOrcing terms

S/F Newt #fo Bkt
Re_l 00 0 9 18 0
Re_2 00 0 11 22 0
Re_3 00 0 11 22 0
Re_4 00 0 13 26 0
Re_500 –1 200 400 0

Ilrll
4.448e–08
6.528e–09
7.445e–08
5.929e-08
1.293e+04

time
1.138e+02
1.488e+02
1.462e+02
1.759e+02
1.003e+04

Re_600 –1 134 .. . (terminated but clearly failing)
Re_700 o 23 46 0 1405 2.939e-07 2.496e+02
Re_75 O 0 30 60 0 2098 2.820e-08 3.658e+02
Re_800 -1 100 200 0 36931 2.014e+03 5.974e+03

22



Backward Facing Step problem with backtracking

Choice 1 forcing terms

s/F Newt #fo Bkt GMRES I[rl]
o 10 21 1 799 6.673e-12
o 14 32 4 937 2.651e-11
o 17 41 7 1024 3.046e-10
o 36 89 17 1440 6.626e-10
o 57 166 52 2045 5.616e-06
o 90 293 113 3709 2.504e-06
o 135 500 230 6889 1.911e-08

time
1.376e+02
1.755e+02
2.059e+02
3.252e+02
4.838e+02
8.307e+02
1.435e+03
5.024e+02
1.667e+03

Re_l 00
Re_2 00
Re_3 00
Re_4 00
Re_5 00
Re_6 00
Re_7 00
Re_75 O
Re_8 00

-1 50 284 184 1511 1.231e-01
o 146 484 192 8766 2

forcing terms, gamma = .9, alpha

S/F Newt #fo Bkt GMRES
o 10 21 1 794 2
0 15 34 4 951 2

572e-08

= 1.5

J:+J_lo

392e-10

Choice 2

time
1.403e+02
1.880e+02
2.150e+02
3.262e+02
6.099e+02
4.370e+02
4.383e+02
1.339e+03
2.911e+02

Re_l 00
Re_2 00
Re_3 00
Re_4 00
Re_5 00
Re_6 00
Re_7 00
Re_75 O
Re_8 00

0 16 38 6 1049 9.707e-11
o 35 87 17 1412 2.965e-09
o 65 3.97 67 2556 4.443e-09

–1 37 228 154 1658 9.957e-02
–1 42 257 173 1322 1.353e-01
o 125 440 190 6591 3.441e-08

-1 31 182 120 666 1.742e-01

Choice 2 forcing terms, gamma = .9, alpha . 2

Irl[
126e-14
090e-12
456e-11
562e-10

GMRES
799
882

1009
1290
1947
3687
8160
1203
1601

GMRES
1064
1600
2357
6419
1850
5619
4402

12090
18797

GMRES
900
988

1173
1194
676

10987
1022
5086
2274

S/F Newt #fo Bkt
o 9 19 1
0 13 31 5
0 14 35 7
0 30 76 16
0 49 136 38
0 86 283 111
0 139 593 315

-1 40 215 135
-1 43 237 151

time
1.422e+02
1.840e+02
1.972e+02
2.974e+02
4.555e+02
8.777e+02
1.660e+03
3.905e+02
4.528e+02

Re_l 00
Re_2 00
Re_3 00
Re_4 00
Re_5 00
Re_6 00
Re_7 00
Re_75 O
Re_800

9
7
1
2.
7.029e-09
7.603e-08
1.814e–08
1.346e-01
1.106e-01

Eta = 1.Oe-4 forcing terms

yllll

582e–11
338e-11
180e-01

Re_100
Re_2 00
Re_3 00
Re_4 00
Re_5 00
Re_6 00
Re_7 00
Re_75 O
Re_800

S/F Newt #fo Bkt
o 7 15 1
0 9 22 4
0 11 30 8

-2 23 146 101
–2 7 47 34
–2 17 101 68
–2 14 92 65
-2 29 207 150
-2 34 282 23.5

time
1.802e+02
2.763e+02
4.031e+02
1.llle+03
3.255e+02
9.338e+02
7.430e+02
2.016e+03
3.151e+03

2
6
7
1
3.836e-01
1.437e-01
2.939e-01
2.309e-01
3.417e-01

Eta = l.Oe-l forcing terms

lr\l
528e-09
199e-08
388e–08
819e-01
542e-07
592e-01

Re_l 00
Re_2 00
Re_3 00
Re_4 00
Re_5 00
Re_600
Re_7 00
Re_75 O
Re_800

S/F Newt #fo Bkt
o 10 21 1
0 12 29 5
0 13 35 9

-2 13 101 76
0 19 55 17

-1 67 571 437
–2 12 92 69
–2 39 330 253
-1 25 215 165

time
1.459e+02
1.680e+02
2.000e+02
2.510e+02
2.854e+02
2.129e+03
2.179e+02
1.017e+03
4.831e+02

8
2
9
2
1
1.
4.108e-01
3.271e–01
4.127e-01
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Lid Driven Cavity problem without backtracking

Choice 1

Re_l 000
Re_2 000
Re_3 000
Re_4 000
Re_5 000
Re_600 O
Re_7 000
Re_8 000
Re_9 000
Re_10000

forcing terms

S/F
o
0
0
0
0

–1
–1
-1
–1
-1

Newt
30
41
51
71
83

200
200
200
200
131

#fo Bkt GMRES
60 0 2122
82 0 3565

102 0 6164
142 0 5647
166 0 6527
400 0 67183
400 0 81214
400 0 74175
400 0 86770

(terminated but

]Irll time
2.630e-15 4.541e+02
5.205e-15 7.446e+02
8.029e-12 1.208e+03
3.389e-12 1.219e+03
1.844e–11 1.417e+03
6.207e+03 1.174e+04
1.002e+03 1.411e+04
5.448e+03 1.289e+04
3.853e+03 1.500e+04
clearly failing)

Choice 2 forcing terms, gamma = .9, alpha = 1.5

Re_l 000
Re_2 000
Re_3 000
Re_4 000
Re_5 000
Re_600 O
Re_7 000
Re_8 000
Re_9 000
Re_10000

Choice 2

Re_l 000
Re_2 000
Re_3 000
Re_4 000
Re_5 000
Re_600 O
Re_7 000
Re_8 000
Re_9 000
Re_10000

S/F
o
0
0

-1
0
0

-1
–1
-1
–1

Newt
23
34
56

200
83

115
200
100
100
100

#fo Bkt
46 0
68 0

112 0
400 0
3.66 0
230 0
400 0
200 0
200 0
200 0

GMRES
2565
3347
5248

78050
5366
7170

84788
36641
38108
32570

]Irll
2.270e–15
3.583e–14
5.928e-12
3.680e+03
3.389e-11
1.072e-12
1.215e+03
5.696e+03
2.879e+03
7.362e+03

forcing terms, gamma = .9, alpha . 2

S/F
o
0
0
0

–1
–1
-1
-1
-1
–1

Newt
40
29
47
61

200
200
100
100
100
50

#fo
80
58
94

122
400
400
200
200
200
100

Bkt
o
0
0
0
0
0
0
0
0
0

GMRES
2662
3509
5577
6750

76219
80877
31671
40775
35977
18857

l\r]l
2.968e-15
1.181e-12
7.942e-12
8.215e-12
2.659e+03
8.966e+03
1.940e+03
2.628e+03
4.576e+03
2.963e+03

time
5.l16e+02
6.811e+02
1.081e+03
1.357e+04
1.239e+03
1.687e+03
1.467e+04
6.427e+03
7.307e+03
5.744e+03

time
6.010e+02
6.907e+02
1.l13e+03
1.375e+03
1.330e+04
1.404e+04
5.634e+03
7.736e+03
6.265e+03
3.266e+03

Eta = 1.Oe-4 forcing terms

S/F Newt #fo Bkt GMRES Ilrll
Re_l 000 -1 200 400” 0 96406 ‘‘-’9.679&+03
Re_2 000 –1 80 ... (terminated but clearly failing)

time
1.662e+04

Re_3 000 -1
Re_4 000 -1
Re_5 000 -1
Re_6 000 –1
Re_7 000 -1
Re_8 000 -1
Re_9 000 –1.
Re_10000 -1

100
100
50
50
50
50
50
50

200 0
200 0
100 0
100 0
100 0
100 0
100 0
100 0

Eta = l.Oe–l forcing terms

Re_l 000
Re_2 000
Re_3 000
Re_4 000
Re_5 000
Re_6 000
Re_7 000
Re_8 000
Re_900 O
Re_10000

49811
43776
25476
24458
25907
22716
26342
26485

S/F Newt #fo Bkt GMRES
–1 189 ... (terminated but
-1 84 ... (terminated but
–1 100 200 0 50882
-1 100 200 0 47878
-1 100 200 0 42786
–1 100 200 0 54918
–1 100 200 0 53013
-1 100 200 0 47922
–1 100 200 0 50902
-1 100 200 0 42473

2.827e+03
1.725e+04
5.325e+03
5.393e+03
3.471e+03
5.028e+03
6.895e+03
2.946e+03

9.~76e+03
7.565e+03
4.374e+03
4.194e+03
4.457e+03
3.908e+03
4.519e+03
4.551e+03

11X11 time
clearly failing)
clearly failing)
2.334e+03 8.753e+03
3.394e+03 8.248e+03
6.101e+03 7.388e+03
3.909e+03 9.428e+03
4.337e+03 9.121e+03
5.469e+03 8.227e+03
2.043e+03 8.741e+03
8.496e+04 7.319e+03
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Lid Driven Cavity problem with backtracking

Choice 1 forcing terms

Re_l 000
Re_2 000
Re_3 000
Re_4 000
Re_5000
Re_6000
Re_7 000
Re_8 000
Re_900 O
Re_10000

S/F Newt #fo
o 21 45
0 36 87
0 57 145
0 69 174
0 74 193
0 86 232
0 102 289
0 120 330
0 149 432
0 183 547

Bkt
3

15
31
36
45
60
85
90

134
181

GMRES
2790
4275
6987
7484
8124
9864

11148
16110
22112
26519

Ilrl[
2.567e-15
6.235e-14
1.630e-13
4.426e-12
2.479e-11
5.201e–12
1.207e–11
1.355e-11
2.249e–11
1.306e–10

time
5.152e+02
8.062e+02
1.299e+03
1.426e+03
1.523e+03
1.836e+03
2.109e+03
2.977e+03
4.099e+03
4.886e+03

Choice 2 forcing terms, gamma = .9, alpha = 1.5

S/F Newt #fo
o 21 43

-1 60 252
0 51 135
0 66 171
0 70 188

-1 37 152
0 98 292
0 125 389
0 144 442
0 185 599

Bkt
1

132
33
39
48
78
96

139
154
229

Ilrll
2.594e-15
4.030e–02
7.310e-13
2.624e-12
1.479e-11
1.503e-01
6.132e-11
3.047e–11
9.513e-11
7.OIOe-11

time
4.996e+02
7.916e+02
1.287e+03
1.569e+03
1.451e+03
5.144e+02
2.095e+03
3.109e+03
3.337e+03
4.861e+03

Re_l 000
Re_2 000
Re_3 000
Re_4 000
Re_5 000
Re_6 000
Re_7 000
Re_8 000
Re_9 000
Re_10000

2613
3757
6941
8410
7717
2500

11195
16777
17824
26288

Choice 2 forcing terms, gamma = .9, alpha = 2

S/F Newt
o 20
0 34
0 50
0 62
0 70
0 85
0 102
0 116
0 139
0 180

#fo
44
88

136
184
199
251
314
341
421
580

Bkt
4

20
36
60
59
81

110
109
143
220

GMRES
2826
4195
5952
7836
7326
9601

11214
15326
19517
27252

Ilrll
2.509e-15
5.246e–15
2.237e–12
1.013e-11
1.525e-10
8.992e-12
5.275e-11
2.773e-11
6.589e-11
9.041e-11

time
5.395e+02
8.062e+02
1.139e+03
1.478e+03
1.409e+03
1.847e+03
2.171e+03
2.844e+03
3.635e+03
5.011e+03

Re_l 000
Re_2 000
Re_3 000
Re_4 000
Re_5 000
Re_6 000
Re_7 000
Re_8 000
Re_9 000
Re_10000

Eta = 1.Oe-4 forcing terms

Ilrll
2.865e-15
1.309e-14

Re_l 000
Re_2 000
Re_3 000
Re_4 000
Re_5 000
Re_6 000
Re_7 000
Re_8 000
Re_9 000
Re_10000

S/l?
o
0

-2
-1
–2
-1
-2
-2
-1
0

Newt
23
21
26
22
42
25
11
6

33
30

#fo
84

Bkt
38
33
82
78

128
84
37
21

time
1.802e+03
1.769e+03
2.589e+03
1.977e+03
4.241e+03
2.521e+03
9.010e+02
5.153e+02
3.336e+03
2.962e+03

10267
10140
14715
11201
24085
14294
5061
2912

18953
17138

75
133 1.836e-01

6.310e-01
l.llOe-01
5.188e–01
7.978e-01
8.558e-01
5.298e-01
3.374e-11

122
211
134
58
32

1.61
74

95
14

Eta = l.Oe-l forcing terms

S/F Newt
Re_l 000 0 22
Re_2 000 -2 30
Re_3 000 -2 27
Re_4 000 –1 36
Re_5 000 -1 26
Re_6 000 –2 27
Re_7 000 –2 14
Re_800 O -2 18
Re_9000 -1 42
Re_10000 -2 22

#fo
51

146
144
181
128
126
63

2;:
100

Bkt
7

87
91

109
76
73
36
44

142
57

GNRES
2798
3331
3725
4927
3273
3221
1900
2068
6247
2889

Ilrll
3.840e–14

time
5.230e+02
6.415e*02
7.173e+02
9.482e+02
6.321e+02
6.l14e+02
3.630e+02
3.925e+02
1.237e+03
5.576e+02

9.722e-02
2.845e–01
1.794e-01
7.602e-02
4.894e-02
7.791e-02
8.373e-02
3.365e-02
1.450e-01
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Thermal Convection in the Square problem without backtracking

Choice 1 forcing terms

S/3? Newt #fo Bkt
Ra_l.0e03 o 6 12 0
Ra_l.0e04 o 15 30 0
Ra_l.0e05 o 29 58 0
Ra_l.0e06 –1 200 400 0

Choice 2 forcing terms, gamma =

S/F Newt #fo Bkt
Ra_l.0e03 o 6 12 0
Ra_l.0e04 o 11 22 0
Ra_l.0e05 o 30 60 0
Ra_l.0e06 –1 200 400 0

Choice 2 forcing terms, gamma =

S/F Newt #fo Bkt
Ra_l.0e03 o 5 10 0
Ra_l.0e04 o 9 18 0
Ra_l.0e05 o 20 40 0
Ra_l.0e06 -1 200 400 0

GMRES *]~:;J_15
2255 .
3370 1.786e–10
4667 2.258e-11

64430 8.015e+03

.9, alpha = 1.5

GMRES 3]~;~&_13
2482 .
3855 2.848e-12
4265 1.031e-10

59388 4.135e+03

.9, alpha = 2

GMRES Ilrll
2151 7.304e-13
3506 2.677e-12
3651 4.434e-11

57746 6.610e+03

Eta = 1.Oe-4 forcing terms

S/F Newt #fo Bkt GNRES
Ra_l.0e03 o 5 10 0 2101 7
Ra_l.0e04 o 8 16 0 4004 3

lr[]
060e-13
651e-13

Ra_l.0e05 o 12 24 0 6619 2.909e–12

time
4.303e+02
6.811e+02
1.011e+03
1.281e+04

time
4.740e+02
7.460e+02
9.367e+02
1.185e+04

time
4.146e+02
6.777e+02
7.630e+02
1.156e+04

time
4.009e+02
7.750e+02
1.258e+03

Ra_l.0e06 -1 137 ... (terminated but clearly failing)

Eta = l.Oe–l forcing terms

S/F Newt #fo Bkt GMRES [\rl/ time
Ra_l.0e03 o 9 18 0 1877 2.518e-10 3.693e+02
Ra_l.0e04 o 12 24 0 3033 6.074e–11 5.753e+02
Ra_l.0e05 o 16 32 0 5154 2.747e–11 1.005e+03
Ra_l.0e06 –1 156 ... (terminated but clearly failing)
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Thermal Convection in the

Choice 1 forcing terms

S/F Newt #fo
Ra_l.0e03 o 6 12
Ra_l.0e04 o 12 25
Ra_l.0e05 o 22 52
Ra_l.0e06 o 23 54

Square problem with backtracking

Bkt
o
1
8
8

Choice 2 forcing terms, ganuna .

S/F Newt #fo Bkt
Ra_l.0e03 o 6 12 0
Ra_l.0e04 o 11 22 0
Ra_l.0e05 o 21 47 5
Ra_l.0e06 o 27 61 7

Choice 2 forcing terms, gamma =

S/F Newt #fo Bkt
Ra_l.0e03 o 5 10 0
Ra_l.0e04 o 9 18 0
Ra_l.0e05 o 18 42 6
Ra_l.0e06 o 24 59 11

Eta = 1.Oe-4 forcing terms

S/F Newt #fo Bkt
Ra_l.0e03 o 5 10 0
Ra_l.0e04 o 8 16 0
Ra_l.0e05 o 11 23 1
Ra_l.0e06 o 22 83 39

Eta = l.Oe-l forcing terms

S/F Newt #fo Bkt
Ra_l.0e03 o 9 18 0
Ra_l.0e04 o 12 24 0
Ra_l.0e05 o 15 37 7
Ra_l.0e06 o 16 38 6

GMRES 81J:J~_15
2255 .
3399 3.050e-11
3804 8.665e-13
2628 2.263e-10

.9, alpha = 1.5

GNRES I!rll
2482 3.385e-13
3855 2.848e-12
4561 4.043e-11
2921 8.741e-11

.9, alpha = 2

GNRES
2151
3506
3925
2993

GNRES
2101
4004
5830

10856

GNRES
1877
3033
3267
2366

Ilrll
7.304e-13
2.677e-12
6.098e-12
8.966e-12

Ilrll
7.060e–13
3.651e–13
1.919e–12
3.414e-11

]Irll
2.518e-10
6.074e-11
7.188e-11
4.164e-10

time
4.261e+02
6.632e+02
7.937e+02
5.931e+02

time
4.730e+02
7.477e+02
9.340e+02
6.485e+02

time
4.130e+02
6.756e+02
7.894e+02
6.526e+02

time
4.012e+02
7.729e+02
1.126e+03
2.143e+03

time
3.671e+02
5.711e+02
6.502e+02
4.946e+02
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