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Abstract

Analytical and numerical calculations of the structure and burning rate of a deflagrating porous energetic

material are presented for the limiting case of merged condensed and gas-phase reaction zones. The reac-

tion scheme is modeled by a global two-step mechanism, applicable to certain types of degraded nitramine

propellants and consisting of sequential condensed and gaseous steps. Taking into account important effects

due to multiphase flow and exploiting the limit of large activation energies, a theoretical analysis may be de-

veloped based on activation-energy asymptotic. For steady, planar deflagration, this leads to an eigenvalue

problem for the inner reaction-zone, the solution of which determines the burning rate. Numerical solutions

give a reasonably complete description of the dependence of the structure and burning rate on the various

parameters in the problem, and show excellent agreement with analytical results that are obtained in a more

limited parameter regime in which most of the heat release is produced by the condensed-phase reaction

and the porosity of the solid is small. These calculations indicate the significant influences of two-phase

flow and the multiphase, multi-step chemistry on the deflagration structure and the burning rate, and thus

serve to define an important parameter regime that supports the intrusion of the primary gas flame into the

two-phase condensed decomposition region at the propellant surface.

*Work supported by the U. S. Department of Energy under Contract DE-AC04-94AL85000.
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EIGENVALUE ANALYSIS AND CALCULATIONS FOR THE DEFLAGRATION OF

POROUS ENERGETIC MATERIALS IN THE MERGED-FLAME REGIME

1. Introduction

There is a rapidly growing interest within the fields of propulsion and pyrotechnics in the combustion

behavior of porous energetic materials. In these types of problems, the porous nature of the material arises

from a certain degree of metastability which, after either a prolonged existence and/or exposure to an

abnormal thermal environment, leaves the material in a degraded state that is characterized by changes in

chemical composition and a significant y higher porosity relative to the original pristine propellant. As a

result, the gas-phase species occupying the voids consist of various products of decomposition, and various

two-phase-flow effects associated with different velocities and properties of the condensed and gaseous species

have a significant effect on the structure and propagation velocity of the combustion wave.

Although a number of relatively complete formulations have been proposed for analyzing combustion

phenomena involving multiphase flow, 1 they generally involve one or more constitutive relations that are

required to close the model, and are difficult to analyze, both because of the wide range of physical phenomena

associated with such systems and the highly nonlinear nature of any two-phase-flow combustion problem.

Accordingly, early two-phase work in this area tended to alleviate some of the difficulties by treating the

two-phase medium as a single phase with suitably “averaged” properties. 2~3Unfortunately, such models

effective y require the velocity (and temperature) of each phase to be identical, precluding any analysis of

two-phase flow effects on the combustion process. More recently, however, it has proven possible to analyze

deflagration models for porous energetic materials that explicitly involve multiphase flow.4– 11These studies

have largely been applicable to nitramine propellants, such as HMX and, in some cases, RDX, that are

characterized by a liquid melt region in which extensive bubbling in an exothermic foam layer occurs, In

some cases,4–6 two-phase flow effects were confined to this layer, while in the more recent of these studies,7– 11

the solid material was assumed to be sufficiently porous such that two-phase flow effects were significant

throughout the multiphase preheat region. In order to focus clearly on the effects of two-phase flow in these

problems, chemistry was first generally confined to a single-step overall reaction R(c) + P(g) representing the

dh-ect conversion of the condensed (melted) propellant to gaseous products. Generalizations5~10)11 allowing

for a separate (primary) gas flame following the initial multiphase decomposition region were given by

R(c) + P(g), R(c) _ R(g), R(g) + P(g), where R(g) is a gaseous reactant, and by the sequential scheme

R(c) + I(g), l(g) + P(g), where l(g) distinguishes the intermediate gas-phase products from the final

products P(g). These schemes were applied to the nonporous case to determine both the structure and

propagation velocity of steady, planar nitramine deflagrations, while stability results for these two-phase-

flow models have thus far been confined to the case of a single-step mechanism.6’8’g

The present work seeks to continue with the analysis of the limiting case in which the primary gas flame

intrudes upon the multiphase decomposition region, 10~11 a tendency that is often observed experimentally

as the pressure increases. Thus, the single-step case previously analyzed7 is extended by incorporating both

condensed- and gas-phase reactions in the thin multiphase reaction region previously represented by the

simple one-step mechanism R(c) + P(g). In particular, as indicated above, a global sequential reaction

mechanism is assumed, where the first step consists of an overall condensed-phase reaction that produces

gas-phase intermediates, and the second step consists of the global reaction of these gas-phase intermediates

to produce final gas-phase products. While this simple mechanism is still an extreme approximation to the
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actual chemistry that transpires during nitramine deflagration, MIS it enab]es us to fully incorporate two-

phase-flow effects into the analysis, and to assess the role of such effects on the structure and propagation of

the deflagration in the merged-flame limit just described. The present work complements and extends recent

analytical studies of this merged-flame regime 10111by computing numerical solutions of the inner reaction-

zone eigenvalue problem that may be derived by an asymptotic analysis in the limit of large activation

energies. These numerical computations significantly extend the parameter regime that was considered

previously, and serve to further characterize the merged-flame limit for these types of problems.

2. The Mathematical Model

We consider the case of an unconfined, steady, planar deflagration, propagating from right to left, into

a degraded (porous) energetic solid. Melting of the solid is assumed to occur at a (moving) spatial location

5 = &(;) where the solid temperature is equal to the melting temperature ~~. Subsequent to melting,

gas-phase intermediates are assumed to be produced directly by condensed-phase reactions, and these, in

turn, react to form the final combustion products according to

R(c) + l(g), I(g) 4 P(g), (1)

where R(c) denotes the condensed (melted) reactant material, I(g) stands for the intermediate gas-phase

species, and P(g) represents the final gas-phase products. The pores within the damaged solid are assumed

to be filled with a mixture of the intermediate gasphase species and final gas-phase products, with the mas%

fraction ratio # of the two specified far upstream. The present analysis considers the merged regime in which

both reactions occur within a single reaction zone (necessary conditions for which are to be determined),

in contrast to a previous (nonporous) study5 in which these reactions were spatially separated. Thus, the

deflagration wave consists of a solid/gas preheat region, the melting surface across which the condensed

component of the tw~phase mixture undergoes a phase change, a liquid/gas preheat region, a relatively thin

(due to the realistic assumption of large activation energies) reaction zone in which all of the condensed-phase

material and gas-phase intermediates are converted to gaseous products according to Eq. (1), and finally,

the burned region which, in reality, usually corresponds to a dark zone that separates the primary flame

region from a secondary gas flame downstream that has little effect on the burning rate.

A reasonable model, appropriate for describing this type of multiphase deflagration wave, was derived

previously.” 10111Here, we shall simply state its nondimensional version in a local coordinate system attached

to the melting surface ti~, with only a brief explanation of the origin of each equation. For simplicity, we

restrict our attention to the single-temperature limit of this model, in which case the rates of heat transfer

between phases are sufficiently large such that all phases at a given location may be considered to have the

same temperature. Thus, before proceeding, we introduce, in terms of dimensional quantities (denoted by

tildes), the nondimensional variables

(2)

where the (unknown) propagation speed ~ = –d~~ /d; is a convenient characteristic velocity for the problem.

Here, ~, ii and ~ denote density, velocity and temperature, respectively, and the subscripts s, 1and g denote

the phase (solid, liquid, gas) to which a quantity refers. For simplicity, constant values for heat capacities
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(Z) and thermal conductivities (~) are assumed constant for all phases, as are ~s and ~l. In addition, the

nondimensional parameters

are defined, where n is the reaction order of the gas-phase reaction and Le is the Lewis number associated

with the gas phase (having assumed a constant value for X9, we also assume that ~gB is constant as well,

which implies a constant Lewis number). Here, ~ is the mass diffusion coefficient and E, ~ and Q denote

activation energy, pre-exponential rate coefficient and heat release, respectively, where the subscripts indicate

whether these quantities refer to the liquid-phase or the gas-phase reaction. Finally ~ is the gas constant, ~~

is the heat of melting and WI and Wp denote the molecular weights of the intermediate and product species,

respectively. The subscript or superscript u (e.g., j;, ~!) implies that these quantities are evaluated far
. upstream in the unburned region. We note that r and f are density ratios (liquid-to-solid and upstream gas-

to-solid, respectively), 1and ~are thermal conductivity ratios, b and ; are heat capacity ratios, w is the ratio

of molecular weights corresponding to the two gas-phase species, 78 is a heat-of-melting parameter (negative
.

when melting is endothermic), Q1 and Qg are heat-release parameters associated with the condensed and

gas-phase reactions, respectively, NJ and Ng are the corresponding nondimensional activation energies, and

Al and Ag are the nondimensional rate coefficients, or Damkohler numbers. Finally, we remark that either A[

or Ag may be regarded as an appropriate burning-rate eigenvalue, since the determination of either provides

an expression for the propagation speed ~. Indeed, since Ag/A1 = ?(~g/~~ ) (~;)m– leNl ‘Ns, we shall, for

definiteness, regard Al as the burning-rate eigenvalue.

To analyze the case of a steadily propagating deflagration, it is convenient to transform to the moving

coordinate ~ = x + twhose origin is defined to be Xm. In the upstream solid/gas region, the volume fraction

a of gas is assumed constant (a = as), and the solid phase is assumed to have constant density and zero

velocity (with respect to the laboratory frame of reference). Continuity of the gas phase, on the other hand,

is given in the usual fashion by

$[P9(%+1)I=0, C<o, (4)

.

$ [?pgY(ZL, +1)] = ~Le-’~, ~<o, (5)

where the first is an overall continuity equation for the gas phase and the latter is the mass conservation

equation for the mass fraction Y of the intermediate gas-phase species. In the liquid/gas region to the

right of the melting front at ~ = O, overall continuity, continuity of the liquid phase, and continuity of the

intermediate gas-phase species are given as

. $ [T(1 - Q’)(W+ 1) +’?%p,(u, + 1)] = o, ~>o,

~ [(1 – CI)(W+ 1)]= –A~(l – a)exp k+-%)]‘>O

(6)

(7)
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d t Id
~[ ()?04pgY(ug + 1)+ 7-(1– Q)(241+ 1)]= ;Le– — ag

d( @

[ (l-W ‘>09 “)–Ag (apgY)” exp Ng

respectively, where Eq. (7) has been used to eliminate the condensed-phase reaction-rate term that would

have otherwise appeared in Eq. (8). Finally, in the single-temperature limit described above, overall energy

conservation in the solid/gas and liquid/gas regions is given by

[ 1(1 – %)%+A%-$[P,(V,+lD”] = -$0 –as +M~ , [<0, (9)

respectively, where Eqs. (7) and (8) have been used to eliminate the reaction-rate terms that would have

otherwise appeared in the latter. We remark that, owing to the assumed smallness of the Mach number,

which, for an unconfined deflagration, implies a constant pressure, contributions to Eqs. (9) and (10) that

arise from pressure effects are absent.7

The above system of equations is closed by adding an equation of state (assumed to be that of an

ideal gas) and an expression for the liquid velocity ut. As indicated above, an approximate analysis of gas-

phase momentum conservation implies, for an unconfined, small Mach-number deflagration, that pressure is

constant, thereby allowing the equation of state to be expressed as

pgTIY+w(l –Y)]=#+~(l–#) =7, (11)

where 4 is the specified value of Y at ~ = –co. An analysis of condensed-phase momentum and the

assumption of zero velocity for the solid phase, on the other hand, leads to the kinematic approximation

in the limit of small viscous and surface-tension-gradient forces. 4,TEquations (4) – (12) COIIStitIJik a complete

set, which are to be solved subject to the

a=asfor& <O;

a--ii,

where O < @ < 1, and the melting-surface

boundary conditions

Ug-+o, Y++, T+l as~+ --co, (13)

Y+ Cl, TdTbas~-+i-m, (14)

(~= O) conditions

we remark that the final burned temperature Tb is to be determined, as is the burning-rate eigenvalue Al.

The latter then determines the propagation velocity of the deflagration according to its definition given in

Eq. (3), and is the main result to be determined from the analysis that follows.
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3. Determination of Tb and Ug,m

9

The solution in the region ~ <0, where chemical activity has been assumed to be absent, as well as

expressions for Tb and ug,~ ~ ug ~=w~ are obtained from the above model as follows. From Eqs. (4) and
. (13), we have

Pg(%+l)=l, f<o, (17)

while an integration of Eq. (5) gives, upon use of Eq. (17), the integral

1 ~dY

‘–+=z=e-~’ ‘<0” (18)

Similarly, integrating Eq. (6) implies

(1 – cl) + i%pg(ug + 1) = FP;(ug,m + 1) , &>0, (19)

where pi = (wTb) – 1 is the burned gas density. Thus, evaluating Eq. (19) at ~ = O using Eq. (17) and the
-

fact that all variables are continuous there, an expression for the burned gas velocity ug,~ is obtained as

(20)

Turning attention to the overall energy equations (9) and (10), we may readily perform a single inte-

gration on each using the preceding results to obtain

(1 –a. +f&)(T- 1) = (1 -a~+fa~):, (<0 (21)

and

(b(l -a) +t(a-a.+a.?)l T+(a-CY.+CY.?)QgY
L

[(=11-

Thusj subtracting

surface conditions

J

1

dT ~ dY
(22)

ci)+k —+ Q9t Le
%

‘lCW—— – (1 – CY)(Q1+ Q9) -+ @ – as + %~)Tb ,
d~

f>o,

Eq. (21) evaluated at ~ = 0- from Eq. (22) evaluated at &= 0+ and using the melting-

(15) and (16), we derive for Tb the expression

Tb = (1-c4(Qt+Q,+l+Ys)+M#Qg+h
t[l +CY.(? – 1)]

(23)

We note that this identical result can be derived from a more general two:temperature modell” and is

independent of the particular form of the equation of state for the gas. In the limit Q9 -+ O, Eq. (23)

collapses to the result obtained for the corresponding single-step model analyzed previously.7 Equations

(18), (21) and (22), which are first integrals of Eqs. (5), (9) and (10), now take the place of the latter in our

model.

We note that there are significant variations of the final burned temperature and gas velocity with pres-

sure, since these quantities depend on the upstream gas-te-solid density ratio ?, which in turn is proportional

to the pressure ~ according to ? E j5:/~, = WI~/~~&O~U$. As discussed previously,7 this important effect

arises from the thermal expansion of the gas and the two-phase nature of the flow in the solid/gas and

9
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liquid/gas regions, where significant gas-phase convective transport of enthalpy relative to the condensed

phase occurs. In the limit ~ ~ O (i. e., ~ ~ O), we see that ug,~ -+ m and Tb ~ T: = 8–1(Q1 +Qg +I+y.).

Since there is effectively no gas-phase enthalpy content in this limit, T: is also the value of Tb in the limit

of zero porosity (as ~ O). For nonzero values of both pressure and porosity, some of the heat released by

combustion must be used to help raise the temperature of the gasphase intermediates within the porous solid

from unity to Tb. Consequently, both Tb and the final gas velocity Ug,m are typically decreasing functions

of the nondimensional gas-phase density ?, which increases with pressure according to the above relation.

An additional effect that is revealed by the two-step reaction mechanism is that Tb does not depend just on

the total heat release QL+ Qg - Q associated with the complete conversion of the energetic solid to final

gas products, but also on the heat release Qg specifically associated with the gas-phase reaction. This, too,

is a two-phase-flow effect that arises from the fact that the reactive intermediate gas-phase species occupy

the voids in the porous solid, and the heat released by these pre-existing intermediates affects the final

burned temperature. In particular, for a given total heat release Q, the burned temperature increases as the

fractional heat release associated with the gas-phase reaction increases.

4. The Asymptotic Limit and the Outer Solution

Further analytical development, leading to the determination of the burning-rate eigenvalue AL,requires

an analysis of the reactive liquid/gas region & >0. Equations (7), (8) and (22) constitute three equations for

Y, T and a in this region, with U9then determined from Eq. (19) along with the equation of state (11), and

the eigenvalue Al determined by the boundary conditions. In order to handle the Arrhenius nordinearities in

Eqs- (7) and (8), we exploit the largeness of the nondimensional activation energies Ng and Nl, and consider

the formal asymptotic limit N9, N1 >>1 such that

N~=v
NL ‘

/3s(1 –Tb-l)N1 >>1, (24)

where v is an 0(1) parameter and the Zel’dovich number ~ is the large activation-energy parameter that

naturally emerges in the analysis that follows. For simplicity, we shall eventually assume v x 1, in which

case Eq. (24) implies that we are considering the regime in which the two large activation energies differ by

an approximately O(1) amount. The relation (24), along with a corresponding order relation for the ratio

Ag/Al to be introduced shortly, helps to insure that both the condensed and gas-phase reactions are active

in a single thin reaction zone. Departures from Eq. (24) allow for separated reaction zones,5 but in the

present work we shall focus on the merged case just described.

In the limit ~ + co, the Arrhenius terms are exponentially small unless T is within 0(1/,8) of Tb.

Consequently, all chemical activity is concentrated in a very thin reaction zone whose thickness is 0(1/~).

On the scale of the (outer) coordinate f, this thin region is a sheet whose location is denoted by $. = x. – z~,

where Z, > Z~. Hence, the semi-infinite liquid/gas region is comprised of a preheat zone (O < & < ~.) where

chemical activity is exponentially small, the thin reaction zone where the two chemical reactions are active

and go to completion, and a burned region $> &. Denoting the outer solutions on either side of the reaction

zone by a zero superscript, we conclude from Eq. (7) that

~o _

{

%, ‘f< ET,.
1, (>!$,

and from Eqs. (11), (17), (19) and (20),

Ug+l= 0- ;a;‘as[Y +w(I - Y)]T

(25)

(26)
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for all ~. We observe that there is a jump in a“, and hence also in u:, across the reaction zone. Similarly,

* in obtaining the complete outer solution for Y and T, it is necessary to connect the solutions on either

side of the reaction zone by deriving appropriate jump conditions across ~= &. This will ultimately entail

the introduction of a stretched coordinate (see below) appropriate for analyzing the inner structure within
.

the reaction zone, whereupon an asymptotic matching of the inner and outer solutions will yield not only

the aforementioned jump conditions, but also the burning-rate eigenvalue as well. In connection with this

procedure, it is convenient, and physically appealing, to attempt a representation of the reaction-rate terms

in Eqs. (7) and (8) as delta-function distributions with respect to the outer spatial variable ~.10’11As a

result, using the results (25) and (26), the governing system of equations for the outer solution variables YO

and To become

1 da”
–—=P@(f -&), f>o,
TG

(27)

(28)

(29)

(1 -cts+&zs)(TO - 1)=(1 - as+ias)~::, ~<o, (30)

and

where P1 and P9 are the source strengths of the reaction-rate distributions placed at ~ = & and ~ = & + H,

respectively. These quantities, along with the separation constant H, are to be determined, where the ability

to do so validates the delta-function representation of the reaction rates, at least to the order of analysis

considered here. We note that the O (1/fl) width of the merged reaction zone implies that H is of this order

(or smaller) as well, and in fact we will eventually seek H as an expansion in inverse powers of P.

The solution of Eqs. (27) – (31) subject to the melting conditions at ~ = Oand the boundary conditions

at ~ = +CO is straightforward and given by

Ye(f) =

P1 = ;(1 –a.), Pg=l–a. +?a,q5,

{

~+ (l–@)(l –Qs)_l–as+fas@exp
l–a’. +;cl, I–cl, +?a.

[-(1 - as+ Fa~)~LeH/~]

(32)



where

[

1 +(Tm – I)exp [’=:~~’lq
B + (Tm – B) exp

[

b(l – a.) + ?%.

1(1 – a.) +lcl. 1tTo(f) = l-.

1 – %)(1 +’ys) -FAAB=( ~1 ~ (1 – ~s)(Q/ + 1 +-Y.) +iik
/)(1– a’.) + Ma. ‘ 8(1– a!. +i$cl.) “

(34)

(35)

The location ~r of the reaction zone, which appears as a sheet on the scale of the outer variable ~, is thus

determined by Eq. (34)from continuity of T at ~ = H as

1(1– a’.) + & ~n

{

B1 - B + (Tb - Bl) exp [-&(l - as + ta~)H/f]
& =

13(1– a,) + & Ti n-B
1

(36)

A sketch of the outer solution is shown in Figure 1 for @ = 1 and typical values of the remaining parameters.

We remark that since H ~ O (1/~) in magnitude, the interval & < ~ < H lies within the merged

reaction zone, which, on the scale of the outer coordinate ~, is a sheet at ~ = (r. Consequently, that portion

of 13qs. (33) and (34) that actually represents the outer solution is the solution for ( < ~~ = min(~r, ~. + H)

and & > &r+ H = @, where (small) H may be either positive or negative. Thus, Eqs. (33) and (34)

imply an 0(1/@) jump in the outer solutions YO and To across the reaction zone. This can be motivated

directly by noting that for H small, an expansion of the delta-function 6(C – ~. – H) in Eq. (28) about

H = O introduces the derivative of the delta-function, 6’(C – ~.), 14, 15 where the latter implies a higher

order singularity (discontinuities in the variables YO and To themselves) at ~ = ~. than that which occurs

when H is identically zero. The actual values of these discontinuities, as determined here by the value of

the separation constant H, as well as the burning-rate eigenvalue Al, are calculated by mat thing the above

outer solution to the inner solution of the reaction-zone problem, which we now consider.

5. The Reaction-Zone Problem

To analyze the chemical boundary layer that lies in the vicinity of ~., we introduce a stretched inner

variable q and a normalized temperature variable @ defined by

where the Zel’dovich number /3 >> 1 was defined by the second of Eqs.

form of the expansions

(37)

(24). We then seek solutions in the

(2’-.’cl13~cq+c3+/3-22+’2+.. . , ‘u-+ uo+ p-l ul+~–%z+...,

Y’-/lzl+p/ %J2+J, +..., e’-l+fl-lol+~-zoz+...,

AI N/3( AO+@-lAl +~-2A2 -I-...), H-p-l~l+p-2~2 +... ,

12



where the coefficients in the expansion of Ug are calculated in terms of the ai, yi and 13ifrom Eq. (26), which

. is also valid in the reaction zone. At this point, we also order the nondimensional rate-coefficient rat io A9/A1

as

where v is the activation-energy ratio defined by the first of Eqs. (24) and A is an analogous 0(1) parameter

that defines the scaled value of the rate-coefficient ratio. The scaling embodied in Eq. (38b) is required,

given Eq. (24), to construct an inner solution that corresponds to a merged reaction zone. As discussed

below Eq. (24), different scalings are permissible, but would generally correspond to separated reaction

zones for the condensed and gas-phase reactions.s

Substituting the above inner expansions into Eqs. (7), (8) and (22), the governing equations for the

leading-order inner variables ao, yl and 61 are given by

da.—=
dq

TAO(l – ao) ee* , (39)

(40)

(41)

Solutions to these inner equations as q ~ +CO must match with the outer solution (25), (33) and (34) as

$ T C; and ~ C 1 (6T+ H)+, respectively. This leads to the matching conditions

where the coefficients El and E2 in the second of Eqs. (43) are defined as

Tb – B b(l – ct.) +?;a~
El=—. E2=–

Tb–Bl 6

Tb–1 /(1 – a=) +ta. ‘
~F. #-a. +fa.). (44)

Solution of the complete inner problem given by Eqs. (39) – (44) will only be possible for certain values

of hl and A., where the latter is the scaled leading-order coefficient, in the expansion of the burning rate

eigenvalue. We note that Eqs. (39) – (41) may be simplified somewhat by employing CYoas the independent

variable. Thus, using Eq. (39), Eqs. (40) and (41) may be written as

f _l d
TAo~ Le —

b dao [ ‘%l=-l+:(&”)n(::!:e(”-’)elcro(l – ao)e 1

(45)

(46)

Although a closed-form solution to this system is not readily apparent, further analytical development may

proceed through a perturbation analysis of Eqs. (45) and (46) in the limit that Q9 is small relative to

Q1,lOT11which, to leading order, decouples Eq. (46) from Eq. (45). This limit corresponds to the assumption

that most of the heat release occurs in the first stage of the two-step reaction process, which realistically
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implies that at least some of the initial exotherrnic gas-phase decomposition reactions should be lumped

with the overall reaction (la), regarding the resulting decomposition products as the gas-phase intermediates

l(g). This analysis is summarized in the Appendix. Here, we avoid any further approximations by seeking

numerical solutions of the double eigenvalue problem (39) – (43), thereby greatly expanding the parameter

regime to which our previous analytical analysis was restricted.

6. Computational Procedure

The numerical solution of Eqs. (39) – (43) is facilitated by rewriting Eqs. (39) – (41) as a first-order

system and introducing trivial equations for the eigenvalues AO and hl. We thus obtain the equivalent

problem
dao—.
d~

TAO(l – ao) e“l ,

d%l 1

[

(d)~,+Qt+Q, (l_a:)- fQg dyl

~= 1+ (1– l)CW Tb–l ;Le(Tb – 1) 1ao~‘

dAo dhl

dq = dq
—=0,

subject to Eq. (42) as q + +CO and

(47)

(48)

(49)

(50)

(51)

(52)

where the boundary (matching) conditions as q --i –cc have been reformulated so as to make the problem

invariant with respect to the choice of origin for the independent variable q. Equations (47) – (51) constitute

a system of six first-order equations, subject to the six boundary conditions embodied in Eqs. (47) and (52),

for the six unknowns Qo, 01, yl, z, A. and hl. Thus, solution of this well-posed problem will determine the

eigenvalues A. and hl.

The above problem represents a nonlinear coupled boundary-value problem on a doubly infinite domain.

Accurate numerical solutions may be obtained on an approximate finite domain provided internal boundary

conditions are imposed on one of the variables to ensure that the reaction zone will be positioned well into

the interior of the domain. Since Eqs. (47) – (51) and the boundary conditions (42) and (52)are independent

of the choice of origin, this can be achieved without loss of generality by specifying a value of one of the

variables (e.g., the volume fraction a) at q = O. Then, the computational domain may be divided in half

and a new set of variables introduced for one half of the domain. That part of the domain is then mapped

onto the other half and additional continuity conditions specified for the two corresponding sets of variables

at q = 0.16

The numerical code used in our computations was the routine TWPBVP, 17–20which handles an arbi-

trary system of first-order equations provided all boundary conditions are imposed at the external boundaries

of the computational domain. Partitioning the domain as described above, we thus end up with a system
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of twelve first-order equations for the two sets of six variables in each of the two subdomains that are now

●
mapped onto one another. The numerical method itself is an iterative deferred-correction scheme based on

mono-implicit Runge-Kutt a formulas with adaptive mesh refinement,. In order to achieve convergence, a

nontrivial initial guess was required. The solutions obtained from the perturbation analysis summarized in
. the Appendix proved to be adequate in almost all cases. In those instances when the initial guess obtained

from the perturbation analysis was not sufficient, a continuation approach based on the previous iterated

solution for a nearby set of parameter values was used. The computational domain was approximated by

–4o ~ ~ ~ 40, where the endpoints were determined to correspond to the points at which double precision

resolution breaks down for this problem [e.g., cto (q = 40) = 1 to double-precision accuracy on a Sun 10

workstation]. The initial grid was composed of 500 equidistant points,

convergence given an absolute tolerance of 10–6 on all variables.

7. Discussion of Results

which was usually sufficient to obtain

The solution structure of the dependent variables as a function of q, and the numerical values of the

eigenvalues A. and hl, are exhibited in Figure 2 for a set of parameter values consistent with the analytical

solution obtained previously]o’11 (see Appendix). It is thus seen that there is reasonably good agreement

between the numerical and analytical solutions in the parameter regime where the latter is valid. The only

modest differences are in the profiles for VI and hl, which stem from the fact that the analytical expressions

for these quantities are not calculated to the same order of accuracy as CVo,01 and A. (one-term versus

two-term expansions), as indicated in the Appendix. We have also observed that the numerical value of

hi is a relatively sensitive function of the system parameters, which may also account for the relatively

minor discrepancies evident in Figure 2. The main computational results are given in Figures 3 – 11, where

Figures 3a -1 la show the behavior of the burning-rate eigenvalue AO, which is related to the dimensional

propagation speed ~ according to the penultimate of Eqs. (3) [see Eqs. (38a) and (24)], and the separation

eigenvalue hl as a function of cr~. Figures 3b - llb show plots of the corresponding unscaled dimensional

quantities ~ and E = (~~/~~Z~~)hl/~, where the latter follows from the dimensional version of H and the

last of Eqs. (38a). A set of base values for the parameters was adopted, and each figure shows the effect of

varying one of these parameters (as a function of a,), while keeping the remaining parameters fixed. The

numerical computations were performed for values of a, ranging from 0.01 to 0.9.

It is readily seen that A. and hl are generally decreasing functions of the porosity as of the solid.

We note, however, that although the dimensional propagation speed ~ is inversely proportional to l/&

according to the definition of A., it is also proportional to e–Nl, “which decreases with increasing porosity due

to a decrease in the burned temperature Tb. The exponential sensitivity of ~ to the latter implies that this

thermodynamic effect usually will dominate, and hence ~ will generally be a decreasing function of a, as

well. In a similar vein, we observe that although hl is a monotonically decreasing function of as, its unscaled

dimensional counterpart ~ is also inversely proportional to ~ and the Zel’dovich number ~, both of which

are decreasing functions of cr~as noted above. Consequently, H frequently exhibits a local maximum due to

changes in the relative rates of decrease of hl and ~~ as as increases. In particular, we note that the slope

of hl tends to be relatively large in magnitude for small and large a. and relatively small for intermediate

values of as. Hence, R tends to be a decreasing function in the former regions, and an increasing function in

the latter, where the increasing behavior of I/flfi causes B to increase with a, as well. We remark that as

o. approaches either zero or unity, the absolute value of hl often becomes large, indicating a breakdown of
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the merged-flame solution due to increasing separation between the effective location of the condensed and

gas-phase reactions.

The behavior of hl (a, ) is especially sensitive to the value of the upstream gas-to-solid density ratio

? as Y decreases (Figure 3a). In the limit of small a,, only increasingly larger values of ? are consistent

with a merged-flame solution, since otherwise there is a tendency for the gas-phase reaction to either occur

increasingly downstream of the gas-phase reaction, corresponding to blow-off (hl ~ m), or for gas-phase

reaction of the intermediates initially present within the porous solid to occur upstream within the two-phase

region (hl A – m). The former result is consistent with the analytical analysis for small Qg and as (as

discussed in the last paragraph of the Appendix), but both trends are attributable to the sensitivity of the

merged-flame structure to the amount of gas-phase convective transport relative to the condensed material

(since smaller values of? result in larger gas-phase velocities [c$. Eq. (20)]. We note that for fixed a., the

dimensional burning rate ~ increases with decreases in the parameter ~, and that for small values of?, the

value of ~ can, in spite of the argument given above, actually increase with a. until as becomes sufficiently

large (Figure 3b). This behavior is due to the fact that the decrease in Tb with increasing O, is diminished

for decreasing values of F, so that Tb, and thus ~, vary little with as in the limit of small gas-phase density

until as approaches unity. Consequently, as a. increases from zero, the behavior of ~z is approximately

inversely proportional to A. until changes in Tb due to increasing values of the porosity become sufficiently

large to counteract this trend, as discussed above.

Various other effects that are readily apparent are the decrease in hl and A. (and the corresponding

increase in U) with increasing values of the gas-to-solid rate-ratio parameter A (Figure 4), with a similar

trend observed for the changes in these quantities as the Lewis number increases (Figure 5). The behavior

with respect to changes in A corresponds to an increasing rate for the gas-phase reaction relative to the

condensed step, so it is clear that the separation constant should decrease as A increases, and that for fixed

values of the condensed reaction rate, the propagation speed should increase. In a similar vein, increasing

the Lewis number by decreasing the mass diffusivity of the gas relative to its thermal diffusivity results in

a higher concentration of the reactive intermediate gas species in the reaction zone, resulting in a faster

burning rate.

The effect of varying the relative heat release attributable to each of the two reactions is shown in Figure

6, where variations in the nondimensional gas-phase heat release Qg are accompanied by variations in the

corresponding liquid-phase parameter Q1 such that the total heat release Q - Qg + Q~ remains constant.

Nonetheless, according to Eq. (23), the burned temperature Tb continues to increase with increasing Qg,

resulting in a critical value of as above (below) which the burning rate ~ increases (decreases) with increasing

Q9. A plausible explanation for this effect is that the accompanying decrease in Ql tends to slow the rate of

the condensed reaction, which essentially defines the burning rate, but the resulting increase in overall burned

temperature tends to compensate for this effect. As ~~ increases from small values, the decreasing scaled

separation hl between the condensed and gas-phase reactions can thus produce a corresponding increase in

temperature in the vicinity of the condensed reaction, At the critical value of as, this overall thermal effect

completely compensates for the effect of decreasing Ql. Hence, for as above this value, the latter effect
dominates and the burning rate thus increases with increasing Q9.

Another interesting effect is associated with increases in the upstream intermediate-to-product ma.ss-

fraction ratio @ (Figure 7). In particular, although a decrease in the upstream mass fraction of intermediates

produces relatively little effect on the burning rate, the separation distance between the condensed and

gas-phase reactions is highly sensitive to changes in this parameter, especially for larger values of as. As #

decreases, larger values of as are increasingly inconsistent with a merged-flame solution, since it requires the
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gas-phase reaction topreheat thecondensed material to'compensate forthedecreasein Tb with decreasing

& As~s continues todecreme, there areless andless unburned intermediates intheupstream region to

accomplish this preheating, and the gas-phase reaction must therefore shift further and further upstream

relative to the condensed reaction to compensate for the reduced amount of preheating. This preheating

effect also explains the decrease in burning rate for decreasing values of the gas-to-solid thermal conductivity

ratio ~ (Figure 8). This reduces the amount of gas-phase diffusive heat transport from the burned to the

unburned regions, and the compensating necessity of having the gaseous reaction move closer, and ultimately

upstream, of the condensed reaction (as a= increases) so as to produce a sufficient amount of condensed-phase

preheating. This latter result is also consistent with the analytical predictions for small Qg and a,. 10’11
Finally, we note that the burning rate increases with decreasing values of the gas-to-solid heat capacity

ratio ~ (Figure 9), since larger gas-phase heat capacities require a greater proportion of the heat released

by chemical reaction to warm the pre-existing burned products in the upstream region to the final burned

temperature. We also observe that the scaled separation of the condensed and gas-phase reactions is sensitive

to variations in the ratio v of activation energies (Figure 10). In particular, as the activation energy of

the gas-phase reaction increases relative to that of the condensed reaction, its reaction rate decreases and

consequently, the separation of the two reactions increases and the burning rate decreases, consistent with

the behavior obtained for decreasing A, as described above. A similar effect is observed with respect to

increases in the gas-phase reaction order ~ (Figure 11).

In summary, it is clear that although not all parameter values are consistent with a merged-flame

structure, there is a well-defined regime that supports this type of deflagration in which condensed-phase

decomposition and the primary gas flame merge in a single multiphase reaction zone. In particular, consistent

with experiments involving nitramine propellants such as HMX and IRDX that generally show the primary

gas flame approaching the propellant surface as the pressure (and hence density) increases, we find that

O(1) values of the gas-to-solid density ratio and/or the porosity support such a structure for reasonable

combinations of values for the remaining parameters. This particular parameter regime is thus one in which

convective gas-phase transport, as reflected by the expression for u; given in Eq. (12), relative to the

condensed material is sufficiently reduced to permit both types of reactions to occur in the same spatial

zone. As ? and/or cY~decrease, u: increases to the point that the gas-phase reaction is pushed downstream,

leading to separated reaction zones.

Appendix. Perturbation Solutions for Small Qg

As indicated below Eq. (46), an analytical solution of the reaction-zone problem may be obtained

as a perturbation expansion for small values of Qg. lo!11 Since this solution is useful as an initial guess in

obtaining the numerical solutions described in Sections 6 and 7, we summarize these results here. Thus,

we formally introduce a small bookkeeping parameter e, where 0(8– 1) << c << 0(1), and write Qg = ~Qj,
where Q; N 0(1). We may now seek solutions to the leading-order inner problem in the form

Substituting these latest expansions into Eqs. (45) and (46), it is readily seen that a subproblem for

a: and f?! decouples from the full leading-order problem (with respect to c), and that it is identical in form
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to that obtained for the single-step analysis corresponding to the global reaction scheme

particular, we obtain from Eqs, (39) and (45)

R(c) -+ P(g).7 In

(A.2)

(A.3)

where E? is given by the first of Eqs. (44) with Tb replaced by its leading-order approximation B1. The first

of Eqs. (A.2) is readily integrated from a: = as (at q = –co) to any cY~s 1 (at q = +co) to give

(A.4)

Evaluating Eq. (A.4) at cY~= 1 (at which 6$’ = O) thus determines the leading-order coefficient A: in the

expansion of the burning-rate eigenvalue as

{

@ -@I+ Q,

(B, - I)?-(i- 1)A:= ~ ln[l+(LfJ ‘+’
‘b;:)y;;lQ~(1– cl.), [=1.

(A.5)

Substituting this result into Eq. (A.4) for arbitrary a. and performing the indicated integration, we thus

obtain

e;(a:) =

In

[
in ()a: —cz~

l–a. ‘

1+1I

(A.6)

The determination of a:(q), and hence O:(q), then follows directly from the second of Eqs. (A.2). For

example, when ~= 1 (equal gas and liquid thermal conductivities), we obtain

a, +exp {i-l [(b – ~)Bl + Ql](I – Q5)q/(Bl – 1)}
0: (q) =

1 +exp {l-l [(b - &)Bl + QI](I - a.)q/(BI - 1)} ‘
(A.7)

where the matching condition at q = —cc has been used to evaluate the constant of integration.

The first approximation, Eq. (A.5), for the burning-rate eigenvalue is independent of the effects of the

second reaction (lb), which has been assumed to ~ave a relatively small thermal effect. Consequent] y, the

first effects of the two-step mechanism on the burning rate appear at O(e), which requires the calculation of

the next-order coefficient A;. We thus proceed by first calculating the leading-order mass fraction variable

Y?, which is determined from the leading-order version of Eq. (46). For additional simplicity, we restrict

further consideration to the parameter regime

as = Ct’; c% i=l+cil, v=l+ev~, (A.8)
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corresponding to O(c) values of the initial porosity, O(e) differences in the conductivities of the condensed

and gaseous phases, and O(@3) differences in the activation energies of the two reaction steps. In addition,

we consider only the case of a first-order gas-phase reaction (i. e., n = 1), and assume that

(A.9)

where Tf’ = (Qt + 1+ 7~)/& is the leading-order approximation to Tb with respect to c in the above parameter

regime. The parameter group on the left-hand side of Eq. (A.9) is a gas-to-liquid ratio of diffusion-weighted

reaction ratei, where the latter may be interpreted as characteristic measures of the rate of depletion of

the reacting species, taking into account both chemical reaction and, for the gas phase, species diffusion.

Such quantities appear to arise naturally in the malysis of multi-step flames, and, based on the above

interpretation, have been referred to as consumption rates. 14’15The fact that larger gas-phase Lewis numbers

are associated with higher rates of depletion of the gaseous reactant stems from the higher concentration of

this species in the reaction zone that results from smaller values of the gas-phase mass diffusivity.

In the parameter regime just outlined, the expressions (A.5) and (A.6) for O? and A: simplify to

where, for cx~- O(e), Eq. (A.7) implies

exp (TA~q) 1
cl:(q) =

()
—ln A .

I + exp (rA~q) ‘ ‘r q = rA~ l–a:

Consequently, the leading-order version of Eq. (46) for y! as a function of a$j is given by

(A.1O)

(All)

(A.12)

subject to y? d Oas a: d 1 and an appropriate matching condition as cr~* O. The latter, however, cannot

be obtained directly from Eq. (43) because that equation was derived under the assumption that a, # O,

whereas to leading order in q a$ is equal to zero. Indeed, at this order, the outer solution (33) for YO has

no meaning for < < 0, since there is no gaseous phase in this region at this order of approximation. To

derive the appropriate matching conditions on the inner mass fraction variables ~~ and, for later use, y;, it is

appropriate to consider a new variable Z, defined as the mass fraction of the intermediate gas-phase species

with respect to the total mass of all species, gaseous and condensed, at a given point. 10 Thus, Z, which is

physically unambiguous in the limit a 40 (where it must vanish), is defined in terms of the variables already

introduced as Z = ?apgY/[Fapg + r(l – ~)] = ;&Y/{?~a + r(l – a)[Y + w(1 – Y)] T}. From the outer

solution written in terms of the inner variable, it is thus seen that the required behavior of Z as q ~ —cmis

Z ~ .@- 1(?&j &Le/rwT$’t) (–t@~ + h!). Hence, substituting the inner expansions into the above definition

of Z, and imposing this asymptotic behavior, leads to the matching conditions

(A.13)

where we have used Eq. (A. 11) to write these conditions in terms of a: as a~ tends to zero, and have used

the fact that cY~-+ a: in this limit.
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Solutions to Eq. (A. 12) can be expressed formally in terms of hypergeometric functions, but since we

desire explicit representations for use in the next-order problem, we focus instead on such solutions that may

be obtained for particular values of AO. In particular, the solutions for ~0 = 1 and Ao = 4 that satisfy the

above matching conditions are given byl”~ll

I ()Pa:ln l–a: in a:
l+— Ao=l,— + a:(l –a:) ‘~Le CY: CY:

— . (A.14)
‘: = – 2rlA: 3–a: 2 In c$

A(J=4,
l–~:+(l–cl:)”

which completes our analysis of the leading-order reaction-zone problem. We observe that although a~y~

approaches zero in the limit that c$ becomes small, as required by the first of Eqs. (A.13), the variable y!

itself is unbounded in that limit, exhibiting the behavior

as c2~-+ 0.

The reaction-zone problem at the next order (with respect to c) is obtained by collecting terms of order

e when the expansions (A. 1), (A .8) and (A.9) are substituted into Eqs. (39) - (43). This results in a problem

for the next-order quantities a:, y: and 9~ and AA, as well as the leading-order coefficient h?, which is still

to be determined. As before, the equations for a; and O; decouple from the equation for y;. These are given

by
dcx~—.
dq

r [A~(l – a~)O~ + Aj(l – a:) – A~a~] e“~ , (A.16)

(A.17)

subject to the matching conditions

where, from the last of Eqs. (34) and (35) and the first of Eqs. (A.8), the coefficients Co, C’l and El are

given by

(A.19)

(A.20)

(A.21)

We observe that T;, and hence Cl and Et, all depend on a:, reflecting, to this order of approximation,

a linearly decreasing dependence of the burned temperature on the initial porosity for small values of the

latter.

20



,

.

It is again convenient to use the volume-fraction variable a: as the independent variable, which trans-

forms Eqs. (A.16) and (A.17) into a somewhat simpler form. In particular, using the transformation rule

d/dq = rA~a~ (1 – c$d/da~ according to Eq. (39), we obtain

(A.22)

subject to the matching conditions (A.18). Upon substitution of the expressions for y! given by Eq. (A.14),

this subproblem maybe solved for a~ and O: as follows. First, we rewrite Eq. (A.22) as (d/da~) [a~/(1 –a:)] =

(O; + A~/A~)/(1 – a:). Then, dividing Eq. (A.23) by 1 – O: and differentiating with respect to afj, a single

second-order equation for 13~is obtained as

where we have used the fact that Co = rlA~.

Homogeneous solutions of Eq. (A.24) are 1– c$ and (1 – a:) in [a: (1 – cz~)‘1]+ 1, and thus construction

of the general solution for e! may be achieved by reduction of order, and substituted into the first-order Eq.

(A.22) to determine a~. In this way, we obtain, for example, the general solution corresponding to ~0 = 4 as

[(s8 )”]o: = c3(1 – ~~) + (1 – a:) cla~ln + C2C4 + ~ (a: Ina: – a:)

Qj(l – a:)

{ 1 t+-)-[;::$)-(:+$)”’lln”(A.26)
+ rlA~(7’} – 1) 2(1 – a:)

13 ~

}
– ~aoln(l – a:) + 2a~Liz(o~)lnc$ – 2Liz(l – a:) – 4~~Lis(a~) – 2a~Lis(l – al) ,

where c1, C2and C3are constants of integration, and where we have introduced the polylogarithm functions

Lln (a), n >2.21 These are defined recursively for all complex a by

/

w ~~.ln(l–a)fi=~mj

/

~Lin_~(@)~=~~,
Li2(a) = – Lin>2(a) = (A.27)

o E J o aj= 1 j=~ J

where the latter form of the representation is convergent for lal s :1. In the real domain of interest here

(OS a s 1), Liz(a) and Lis(a) are monotonic functions that range from Liz(O)= Lis(0) = Oto Liz(l) = 7r2/6

and Li3(l) = 1.20205690, respectively. We also note the identity Li2(a)+ Li2(l – cx) = 7r2/6 – in a ln(l – a),

which was used in obtaining Eqs. (A.25) and (A.26). Application of the matching conditions (A.8) then

determines A;, c1, C2and C3as

(A.28)
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Q: () E; As+; +__;, (A.29)
c1 = ‘TlA~(7’: – 1) rA~

Q;

[ 11–~+2Li3(l) –
Q:

h;, (A.30)
C2 = rlA~(T~ – 1) 1(T: – 1)

Q: T2 1

()
c3=a:+r@(ql-1) _ii_-~ ‘ (A.31)

where E; was defined by Eq. (A.20), and we note that C2is given in terms of h:.

An expression for h: may be determined by continuing with the analysis, 10but its value can be deduced

directly from the second of the matching conditions (A.13) as follows. Substituting the second line of Eq.

(A.15) into Eq. (A.13) leads to the condition that

(A.31)

as a~ ~ O. Since l/cr~ m exp(–rA~q) as the inner variable q -+ –m, Eq. (A.31) implies that y~ grows expo-

nentially as q ~ –co unless the right-hand side of Eq. (A.13) is identically zero. Since only algebraic growth

of the inner solution is compatible with an asymptotic matching with the outer solution, as indicated in Eq.

(43), we conclude from Eq. (A.13) that?@= 1+ O(e) and that h! = (–3/2)/(rA~). This required restriction

of ? to values that are relatively close to I/# z 1 corresponds to the assumption of high upstream gas-phase

densities, or pressures, and may be interpreted as a compatibility condition, required for the existence of a

merged-flame solution, that accompanies our ordering oft he activation energies and consumption rates when

gas-phase heat release is small. According to the expression (26) for the gas-phase velocity, it essentially

limits the two-phase-flow effect (the rate of gas-phase convective transport relative to the condensed phase)

to that associated with thermal expansion of the gas. Larger rates of gas-phase transport with respect to

that in the condensed phase would cause the gas-phase reaction to occur increasingly downstream of the

condensed reaction, leading to a breakdown in the merged flame structure analyzed here, but the numerical

results presented in the main body of the paper suggest, since hl is a decreasing function of A, that larger

gas-phase consumption rates allow for larger gas-phase convective transport arising from smaller upstream

gas densities, A similar calculation can be performed for A. = 1, which leads to h! = O and an expression

for A+ identical to Eq. (A28) except for the factor 7/2 – 7r2/3, which is replaced by the factor m2/6 – 1.10

Profiles of the two-term perturbation solution (one term in the case of yl and hl ) are exhibited in Figure 2

for A. = 1, in which case the second-order terms e: and a: are given by

(A.33)
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where

Q:x2 El il
+—

Q; 7r2 1

C1= 6TJA:(T:–1) –z’ [ 1–-Li3(l) – rA~h~ , (A.34)
TA: C2= ~~A:(T: – 1) ~ -2

(A.35)
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FIGURE CAPTIONS

Figure 1. Outer structure of a leftward-propagating deflagration wave. The solid/gas region lies to

the left of ~ = O, and the liquid/gas region to the right. The shaded area denotes the

region & < C < & + H, which, despite the explicit representation afforded by the outer

delta-function formulation, actually lies within the inner reaction zone. The region to the

right of the reaction zone consists of purely gaseous products. Parameter values used were

b=r=Le= 1=$=1, ~=?=~= .8, a~=.25, Ql=5, Qg=H=.5, ~~=–.2, T~=2.

Figure 2. Comparison of the asymptotic numerical and analytical solutions for the inner structure and

eigenvalues of a leftward-propagating deflagration wave for parameter values consistent with

the latter, as described in the Appendix.

Figures 3–11. Plots of (a) the eigenvalues hl and A. as a function of as for several different values of one

additional parameter, where the arrows denote the appropriate vertical axis for each family

of curves. Base values for the parameters were taken to be r = .75, 1 = b = ~ = $ = A =

Le = ~ = u = n = 1,? = .6,w = 61/6P = 1.157,Qg = 1.159,QL = 3.413,~~= .7429and

N~ = 64.59/Tb. Also shown are (b) corresponding plots of ~ = (&&/~~&.~Ao) lt2 e–N[12

and H = (~~/~~Z~~)hl /fl as a function of CYS,where ~1 and ~ are the nonscaled dimensional

separation constant and propagation speed, respectively. Dimensional values used to evaluate

Nl and@= (1 – Tb-l )Nl include ~U = 360”K and El = 46.0 kcal/mole, and other dimensional

values used in the evaluation of ~ and ~ include ~. = 5 x 10–4 cal/°K/cm/see, ~S =

1.9 g/cm3, ~, = 0.35 cal/g ‘K, and Al = 1 x 101l/see, where the above solid properties were

kept fixed as the gas-to-solid ratios ratios ~, ? and &were varied.
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