
C. 3

SANDIA REPORT
SAND96-2499 ● UC-705
Unlimited Release
Printed October 1996

*

P

An Intelligent CNC Machine Control
System Architecture

David J. Miller, Clifford S. Loucks

Prepared by
Sandia National Laboratories

SF2900Q0(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO BOX 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA22161

NTIS price codes
Printed copy: A03
Microfiche copy AO1

SAND96-2499
Unlimited Release

Printed October 1996

Distribution
Category UC-705

An Intelligent CNC Machine
Control System Architecture

David J. Miller, Clifford S. Loucks
Intelligent Systems and Robotics Center

Sandia National Laboratories
Albuquerque, NM 87185

Abstract

Intelligent, agile manufacturing relies on automated programming of digitally controlled pro-
cesses. Currently, processes such as Computer Numerically Controlled (CNC) machining are dif-
ficult to automate because of highly restrictive controllers and poor software environments. It is
also difficult to utilize sensors and process models for adaptive control, or to integrate machining
processes with other tasks within a factory floor setting. As part of a Laboratory Directed
Research and Development (LDRD) program, a CNC machine control system architecture based
on object-oriented design and graphical programming has been developed to address some of
these problems and to demonstrate automated agile machining applications using platform-inde-
pendent software.

ii

ACKNOWLEDGEMENTS

This project resulted from the efforts of several people. The design, implementation, and testing
of the VME-based subsystem software was done by Mike Rogers. The design, implementation,
and testing of the graphical programming environment was done by Jim Pinkerton. Machining
expertise was provided by Cliff Loucks. Pro/Engineer and Pro/Manufacture CAD files and tool
paths were generated by Terry Smith.

. . .
111

TABLE OF CONTENTS

Section

*

1.0 INTRODUCTION

,

2.0 CNC HARDWARIYSOFTWARE TECHNOLOGIES

3.0 A GISC-BASED CNC CONTROL SYSTEM ARCHITECTURE

4.0 SYSTEM OPERATION

PaJjg

1

5

9

17

5.0 CONCLUSIONS

6.0 REFERENCES 20

APPENDIX A - EXAMPLE SPECIFICATION OF THE GENERIC CNC LANGUAGE A-1

iv

LIST OF FIGURES

1 Reusable Tool Kits for Building GISC Systems

2 RIPE Class Inheritance Hierarchy

3 Generic Transport Subsystem Commands

4 Sample Code for a Generic Command Method

Pa&g

9

11

14

15

1.0 INTRODUCTION

1.1 Executive Summary

Intelligent, agile manufacturing relies on automated programming of digitally controlled pro-
cesses. Currently, processes such as Computer Numerically Controlled (CNC) machining are
difficult to automate because of highly restrictive controllers and poor software environments. It
is also difficult to utilize sensors and process models for adaptive control, or to integrate machin-
ing processes with other tasks within a factory floor setting. As part of a Laboratory Directed
Research and Development (LDRD) program, a CNC machine control system architecture based
on object-oriented design and graphical programming has been developed to address these prob-
lems and to demonstrate automated agile machining applications using platform-independent
software.

This architecture includes a VME subsystem to control any CNC machine using an object-ori-
ented generic programming language that is EIA-274D compliant. Serial and quadrature encoder
interfaces from the VME subsystem to a Fadal Inc. 5-axis milling machine are used to command
this testbed commercial controller and receive axes position feedback. A workstation-based
graphical programming environment incorporates a menuing system, IGRIP simulation of cine-
matically correct 3D models of the CNC machine, and a supervisory control program for commu-
nication with the subsystem.

A user designs parts and generates initial tool cutting paths using standard CAD/CAM packages
such as Pro/Engineer and Pro/Manufacture. These models and paths are imported into the graph-
ical programming environment to setup a virtual IGRIP-based CNC work cell for interactive tool
path editing and simulated machining. When satisfied with the resulting verified machining
script, the user then calibrates the virtual work cell to the actual setup, downloads the generic
script and calibrated tool paths to the subsystem, and executes the machining operation. This
script can be archived for future production runs.

1.2 Background

Previous Sandia research has shown a very high payoff in productivity and software reliability
resulting from the use of a generic language for the programming of intelligent robot applications.
This is the Robot Independent Programming Environment (RIPE) and Language (lUPL). Use of
RIPE permits application programmers to use a uniform methodology for structuring the software
systems for intelligent robot systems. RIPL is the common language for expressing commands to
intelligent robot systems. Use of RIPL enables wide reuse of code across different applications.
As part of the Laboratory Directed Research and Development (LDRD) program, this concept of
a generic language has been extended for manufacturing processes involving devices other than
robots, including Computer Numerically Controlled (CNC) machining centers.

There are several major features in RIPE which contribute to the success of this technology. RIPE
models an intelligent system as a set of software classes. A class is a complex data structure which
defines all of the attributes and behaviors of whatever entity it logically represents. Classes can
therefore be defined for devices such as robots, machining workstations, and sensors, as well as

2

for “virtual’’concepts such as communication handlers and world models. By defining libraries of
classes for all components of an intelligent system, it is possible to hide low-level device
integration and communication details from end users by encapsulating those details inside each
class, and then providing a uniform interface to the class through a higher-level language. Within
this context, we have defined the Robot Independent Programming Language (RIPL).

RIPE currently divides a manufacturing work cell into three generic classes, WorkPiece, Station,
and Device. This is derived from the concept that devices carry out actions on work pieces, and
stations are locations in the work space for storing these devices or work pieces. When a Station
or WorkPiece object is created in an executing application program (an object is a particular
instance of the class), database information is used to “fill in the slots” with the attributes of the
particular station or work piece being modeled and used by the program. The Device class, on the
other hand, is expanded into a hierarchy of subclasses for the different kinds of devices normally
found in an intelligent manufacturing system. Active devices which have the property of being
able to move or transport a work piece or tool are derived from the Transport subclass. Transport
devices include robots, computer numerically controlled machining centers, conveyors,
translation tables, or autonomous vehicles. Passive devices which are manipulated by the active
devices are derived from the Tool subclass, which is further divided into particular subclasses of
tools, such as a Sensor or Grabber. A generic set of messages or commands are defined for each
of these generic classes, and these messages constitute the Robot Independent Programming
Language (RIPL). Below these generic levels, subclasses are created for the specific devices used
by a particular system. These devices are programmed using the same RIPL commands defined at
the generic level.

Because RIPE is object-oriented, it also shares all of the advantages of object-oriented technology
as applied to intelligent machine systems. Since RIPE is organized around class representations of
the objects in a manufacturing work cell, its structure reflects the physical structure of the system.
This aids system integration because it is possible to build a software application in parallel with
the hardware, therefore allowing software engineers to better communicate with the hardware
system integrators during development. This also controls complexity because each object is
defined and tested independently of the application and is known to be reliable before it is
used. The application simply creates, combines, and manipulates these well-behaved objects
through RIPL commands to perform the specific tasks of the system.

In addition, object-oriented design concepts such as inheritance and polymorphism allow
software reusability, extensibility, reliability, and portability. Inheritance is the mechanism used to
define the hierarchies of objects through subclassing, where a subclass inherits the attributes and
behaviors of its parent class while extending its definition with specialized characteristics. RIPE
defines a generic abstract base class such as Robot, and then extrapolates this by defining
subclasses for specific types of robots. Through this mechanism, the software is extensible and
reusable because RIPE extends the concept of a generic robot to a specific robot while at the same
time reusing all of the sofware already written for the generic robot. Polymorphism is the
mechanism used for implementing RIPL because it allows different objects derived from the same
parent class (i.e. different types of robots) to respond to the same messages in an appropriate
manner. This implies that a standard set of RIPL commands for a generic robot is defined, and

3

then this same set of commands is used to talk to any specific type of robot for which a subclass
has been defined. RIPL commands have also been implemented for other types of classes as well,
such as sensors, programmable tools, and communication handlers.

RIPL provides consistent interfaces and device independence for application code. Therefore, a
device in the work space can be replaced without having to rewrite the application software. Also,
a,n entirely different application can be implemented which will have a similar design structure
and will use the same objects and same RIPL commands, but will perform very different tasks.
All of these factors contribute to the speed, reliability, and cost of developing complex intelligent
systems.

Current RIPE implementations have focused primarily on robots, force sensors, and various
communication facilities and protocols. The work perfomed in this project exploits the RIPE
methodology to develop new software classes and RIPL interfaces for another major component
of a manufacturing work cell, namely the CNC machine. In addition, there is a need to integrate
machining processes with other activities in a manufacturing facility. This integration is
accomplished through the development of a Generic Intelligent System Controller (GISC)
architecture.

The GISC concept was originally developed as part of the U.S. Department of Energy’s Robotic
Technology Development Program to design and implement prototype intelligent systems for
performing hazardous operations. It is now being used for a variety of applications, including
laboratory automation, painting of large structures, and agile machining. GISC is communication
oriented and is based on the premise that sophisticated intelligent system performance is achieved
by coordinating a collection of semi-autonomous subsystems, each with complementary
capabilities. Each subsystem has a well-defined command-and-control interface, and a
supervisory control program coordinates the overall activities of the system through these
subsystem interfaces. Individual subsystems may also possess real-time low-level control
fimctions which can be performed autonomously and asynchronously. With the right combination
of supervisor and subsystem capabilities, such an approach supports the implementation of
model-based control and sensor integration within reusable software structures. This approach
also promotes the use of modularity, distributed multi-processing environments, and standard
commercial interfaces. In order to build a GISC-based system, tools are needed for developing
and integrating the supervisor and subsystems into a complete operational control system. Four
such tool kits have been developed to provide a range of capabilities required at all levels of an
intelligent system.

1.3 Application of the GISC Architecture to a CNC Machine

An application of the GISC architecture in the area of information-driven manufacturing involves
the development of an intelligent CNC machine control system architecture which enables one to
more fully automate the process from CAD design to finished part. The software implementation
consists of a graphical programming environment coupled with a generic transport subsystem
which controls a Fadal Inc. vertical machining center through a RIPL translator. The Fadal
machine encoders are interfaced to the subsystem for real-time position tracking. In addition, a

4

touch probe and structured lighting system are also interfaced to the subsystem for part and fixture
location.

A typical scenario for using the system begins with the operator opening a window onto his
favorite CAD system and designing apart containing features which require machining. When the
design is completed, CAD models for the finished part, raw stock, and fixtures are imported into a
simulation environment such as Deneb’s IGRIP. A cinematically correct model of the milling
machine is available within this environment, and the operator performs the necessa~ setup of the
virtual machine by interactively arranging the CAD models of the parts and fixtures in an optimal
way for machining operations. The operator then imports a tool path from a package such as Pro
Manufacture or interactively generates a tool path by using a space ball to maneuver the machine
tool around the part. The system automatically records the motions which can be played back in a
simulation mode to veri$ that there are no collisions and that an acceptable material removal
sequence is being performed. When the operator has completed the generation of the program, he
can then mount the actual parts and fixtures onto the selected machine bed and use a sensor such
as the touch probe to locate the parts and fixtures with respect to the machine coordinate system.
This information can be uploaded to the graphical programming environment which uses it to
perform its own calibration process to accurately register the model with the real physical world.
Then the tool paths derived fi-om the previous simulation are automatically adjusted based on this
calibration. Finally, the graphically generated program is downloaded to the generic transport
subsystem and executed as a sequence of generic commands to machine the part.

5

2.0 CNC HARDWARE/SOFTWARE TECHNOLOGIES

2.1 General Requirements for Agile Machining

There are numerous requirements to be met in order to provide an agile machining capability.
Although the architecture researched by this project only provides a starting point for meeting
these requirements, one of the project goals was to make industry aware of what is needed for
agile machining in order to encourage evolution toward such a capability. The following sections
briefly enumerate some of these requirements.

2.1.1 Powerful Controller Architectures

- much faster processing of materials with higher speeds and lower forces (milling rates over
10 inches/see and drilling rates over 6 inches/see in aluminum)

- much faster non-machining motions (60 inches/see and up to 4g acceleration)
- highly automated, high-volume production modes
- many axes operating at the same time in the same workspace (two 6-axis machine tools

processing a workpiece mounted on a 3-axis table with access to two 3-axis tool changers,
where 9 axes could be controlling a tool-to-workpiece motion within .0002 inch at a
relative speed of 6 inches/see)

- very accurate (in general, .0004 inch on a 20 cubic inch work space, with variations,
depending upon types of possible errors and requirements)

- very reliable, running unattended overnight and on weekends (5 years mean time between
failures that interrupt production)

- look-ahead processing to generate servo commands based on expected behavior, expected
processing loads, and feedback of deviations from expected behavior and expected loads

- a.3 millisecond servo update rate
- ability to program and select from a range of algorithms for motion control
- fast, reliable communication interfaces to access external networks of computers for

obtaining engineering information, work schedules, task completion status, etc.
- open, distributed, multiprocessing architecture with modularity and upgradeability
- selection of a system language and programming environment which is efficient yet allows

one to develop complex software in a structured way
- standardization of automation interfaces:

- position feedback devices and other sensory inputs
- signals exchanged by servo amplifiers
- communication
- human interfaces

- intelligent software
- based on U.S. leadership in computer hardware, software, and analytical abilities

2.1.2 Ability to Perform Complex Machining Operations without Years of Training

- versatile or flexible (able to perform a variety of operations within a known range on a
family of workpieces, requiring little programming effort specific to each workpiece)

- packaged sets of generic task-level machining operations which can be selected and

6

2.1.3

sequenced easily for a variety of applications

Utilization of Sensor Technologies for Real-Time Tool-Path Generation, Modification,
and Monitoring

- built-in quality assurance to estimate and correct repeatable dynamic errors and slowly
changing operational errors

- health monitoring of controller, tools, and current operations, with interruptibility:
- propagatealarm signals in 0.1 millisecond when failures in the position feedback subsystem or other
critical sections of the control system are detected

- propagate alarm signals in 1 millisecond when other out-of-control conditions are detected
- interrupt power to servo control amplifiers or initiate a feed-hold-mode within 1 millisecond of such alarms
- initiate dynamic braking of all motors immediately after such alarms

- sophisticated position feedback capabilities:
- ability to interfacea controllerto a varietyof positionfeedbackdevices(rotaryencoders,optical scales,
laser interferometers,incrementalas wellas absoluteposition)
- abilityto interfacemultiplepositionfeedbackdevicesper axis (a feedbackdevicefor controland a device
for monitoring)
- muchhigherratio of peakvelocityto measuringresolution(up to 20 million countsper second)
- real-timetool-pathmodificationbasedon positionfeedbacksignals(extractionof meanposition at a given
instantwith vibrationsfilteredout; applyingsmoothingalgorithmsand feedingresultsback into the servo
loop; maintainingtimehistoriesof positionmeasurementsand synchronizingthem with other signals)

- fast acquisition and processing of sensors that measure forces, vibrations, acoustic
emissions, and angular displacements for monitoring and altering equipment, tool, and
process behaviors

2.1.4 Utilization of Solid Modelers, Databases, and Graphical Programming to Realize the
Art-to-Part Concept

- framework in which the kinematic and dynamic models of the system can be created, stored,
and updated

- models of motion error and those induced by temperature distribution, tooling, and loads
- knowledge of how to automatically calibrate and characterize the behavior of the system
- knowledge of equipment capacity, degradation models, life expectancy models
- libraries of form features to be machined
- libraries of cutting operations (cycles or macros) and ranges of feeds and speeds to machine

these form features
- models of process loads for machining these form features which can be used to plan

precompensated motion commands
- models of tool degradation and life expectancy
- libraries of geometric, structural, and parametric models of cutting tools, fixtures, and

families of parts, including tolerances, and the sequence of operations to produce them
(relating them to the form features and cutting operations above)

- having a common, efficient, easy-to-use, easy-to-learn programming environment for
defining the sequence control logic, continuous motion control, other servo controls,
monitoring functions, generating visual indicators of status, generating alarms, etc.,

- software toolkits for:
- programgenerationwhichcombinesknowledge.and dataof the machine,its controller,processes,

7

-a

and products
- emulationof variousparts of the controlsystem
- animatedsimulationof operations
- &agnOsiS/&OubleshOOt~g

user interface which provides access to any level of the control system, access to
external computer systems, color graphic displays of system state and flow of
of operations

2.1.5 Integrated environment incorporating all of the above technologies

2.2 Agile Machining Advantages

The following is a list of some of the advantages of agile machining:

1) Automated programming (CAD design to finished part)
2) Short cycles (speed development, minimize programming errors, cut costs)
3) Small learning curve (reduce skilled shop floor labor)
4) Process control (increased accuracy)
5) On-line verification (fewer reworked or scrapped parts)
6) Concurrent design (reduce design change time and eliminate dry runs)
7) Responsiveness, scalability (increased part complexity, variety, variable lot sizes)
8) Standards (tooling, fixtures, softiare interfaces)
9) Rapid reconfiguration (cost-effective prototyping, smooth transition to production)

2.3 Future Integrated Technologies

While significant advances have been realized in recent years in areas such as metal part fabrica-
tion Wd inspection, integration of these recent technologies into a single processing cell has been
limited. The use of separate forging, measuring, and machining centers remains the norm. This
situation is not lost on industrial suppliers of machining and inspection systems, yet they face a
conservative market which is painfidly slow to accept technological advances, thus limiting their
resources directed toward advanced system integration. A single machining/inspection cell incor-
porating recent, proven technological advances would provide an efficient, productive means to
realize waste minimization. Such a system would also provide the capability of performing
machining operations on cast parts which, due to variances associated with casting and forging
processes, are not compatible with today’s highly structured machine tool programming and oper-
ating environments.

The development of such an integrated system requires the marriage of sensing, data interpreta-
tion, and real-time control into a package understandable and acceptable to an “average machine
tool operator.” Currently available on-machine inspection techniques are limited to collecting a
single data point at a time. These processes are based on contact probe or simple laser triangul-
ationtechniques which can only resolve a single data point per machine axis motion. The use of
current structured light techniques enables data collection rates much more suitable to the contin-
ually advancing processing power of today’s computers.

Process control, a technique employing feedback control of the input versus the desired output of

8

a system, has yet to find significant inroads into the machine tool industry. As advanced as today’s
CNC machining centers appear, only a few offer anything in the way of process control. Refen-ed
to as adaptive machining, these controllers provide automatic modulation of feedrates based on
sensed spindle torque. This technique provides some benefit in compensating for process vari-
ables associated with tool wear and casting uniqueness, but is of limited use since it provides a
scalar measurement of what is truly a 3-dimensional process. The application of real-time sens-
ing/control of tool contact force into a machining center would allow the accepted use of non-tra-
ditional tooling (shaped cutters designed to create radii, chamfers, and simple edge breaks) as
well as providing a means of process control and early (salvageable) error detection (and waste
minimization).

Another area of development necessary for the acceptance of productive process control and
inspection techniques into a single machining center lies in the system’s operator interface. Cur-
rent CNC controllers rely on “G Code” programming which is adequate for 2D and 2.5D features,
resulting in a small percentage of in-production machines producing parts with complex 3D con-
tours, which are programmed only by those few capable of generating “true 5-axis” tool traj ecto-
ries. Providing the NC programmer with the utility of speci~ing real-time parameters like
desired tool contact force would require an enhanced machine tool programming environment.

9

3.0 A GISC-BASED CNC CONTROL SYSTEM ARCHITECTURE

3.1 Toolkits For Building a GISC-Based System

As mentioned in the introduction, in order to build a GISC-based system, tools are needed for
developing and integrating the supervisor and subsystems into a complete operational control sys-
tem. Four such tool kits have been developed to provide a range of capabilities required at all lev-
els of an intelligent system. These include:

1) the GENISAS tool kit which provides the communication facilities needed for the dis-
tributed supervisor/subsystem paradigm;

2) the RIPEiRIPL tool kit which enables development of generic subsystems by providing
object-oriented interfaces to intelligent system devices;

3) the SMART tool kit which enables development of underlying control systems that pro-
vide the performance and flexibility for sensor-based control and teleoperation;

4) the Sancho tool kit which provides for easily reconfigurable menu-based operator inter-
faces and a dynamic simulation environment.

Figure 1. conceptually illustrates how a GISC-based system is organized with respect to these tool
kits.

GISC-based System ,P%YSu~ervisorv Control
,/ Sancho

I I

Subsystem

(_)% -4-C!3
#&/

Subs stem Control

\v
RIPE, SM+T

Figure 1. Reusable Tool Kits for Building GISC Systems

3.1.1 GENISAS

One of the key elements of any distributed intelligent system architecture is a powerfil communi-
cation mechanism. The General Interface for Supervisor and Subsystems (GENISAS) is a client/
server-based tool kit which provides general communication software interfaces between a super-
visory control program and semi-autonomous subsystems, such as those which would be defined
in a GISC-based system. There are four main components comprising the tool kit. The first com-
ponent consists of low-level communication and utilities libraries which are provided to support

10

reliable transmission of atomic messages and virtual multi-channels for commands, data, status,
and exceptions. The next two components include supervisor (client-based) and subsystem
(server-based) command and event processing libraries. Finally, there are facilities for message
construction, parsing, and conversion. All of these libraries provide capabilities which allow the
user to define command sets for table-driven command processing between supervisor and sub-
system, data transfer requirements based on single point of control, events for asynchronous pro-
cessing, and symbol manipulation.

The tool kit uses an object-oriented approach to define standard client and server base classes
implemented in the C++ programming language. Through inheritance, application-specific sub-
classes can be derived. The base classes supply all of the supervisor-to-subsystem communication
facilities. The subclasses, which are normally defined by the user, provide the specific command
sets and command implementations for control of a particular subsystem, such as for a manipula-
tor or sensor subsystem.

3.1.2 RIPE/RIPL

Another tool kit, the Robot Independent Programming Environment and Robot Independent Pro-
gramming Language (RIPE/RIPL) , is the culmination of one of the earliest efforts to apply
object-oriented technologies to building robotic software architectures. RIPE models the major
components of a system as a set of C++ software classes. It consists of two main class inheritance
hierarchies, Device and CommunicationHandler. The Device hierarchy contains subclasses for
different kinds of devices normally found in an intelligent system. Active devices which have the
property of being able to move or transport a tool or work piece are derived from the Transport
subclass. Transport devices include robots, CNC machines, conveyors, translation tables, or
autonomous vehicles. Passive devices, which are manipulated by the active devices, are derived
from the Tool subclass, and Tool is fin-ther partitioned into particular types of tools such as Sensor
or Grabber. The CommunicationHandler class hierarchy defines different ways of communicat-
ing with these devices, including serial, parallel, or network-based message passing. A clear sepa-
ration is maintained between device class implementations and communication interfaces. Figure
2. illustrates the inheritance hierarchy for Device.

A generic set of object messages or “commands” are defined for each of the abstract base classes,
and these messages constitute RIPL. For example, a generic set of RIPL calls is defined for the
Robot class, and these commands are used for all robots. IUPL object messages are implemented
as methods of the robot subclasses defined for each robot type. These subclass implementations
serve as “translators” from the generic language to the robot-specific control environment. Imple-
mentations are obviously different for different vendors, but the interface is the same. Inheritance
and polymorphism are used to associate these generic messages with each subclass defined for a
particular robot type, thereby providing a mechanism for generically programming any robot for
which a RIPE subclass has been implemented. The entire RIPE/RIPL tool kit is packaged as a set
of class libraries.

11

FDEVICE

Figure 2. RIPE Class Inheritance Hierarchy

3.1.3 SMART

For low-level control of actuators and sensors, a third tool kit called SMART (Sequential Modular
Architecture for Robotics and Teleoperation) provides the capabilities required for stable autono-
mous and teleoperated closed loop feedback control. This tool kit can be used with any robot that
is capable of accepting external position set points, and it can be used with any sensor that has a
VME-based interface. The tool kit consists of a collection of C language libraries, each of which
defines an interface to a distinct system “module” such as a sensor, actuator, input device, or kine-
matic/dynamic element. These “modules” can be asynchronously distributed across multiple
CPUS and can execute in parallel with individual fixed-rate servo loops ranging fkom 10OHZto
lKHZ.

SMART is based on 2-port network theory in which each module has a network equivalent. For
example, inductors represent inertia, resistors represent damping, capacitors represent stiffness,
and transformers represent Jacobians. Modules are connected to create a complete circuit which
represents a control system. Tjq?ical modules include trajectory modules, kinematic modules,
robot joint modules, sensor modules for force control and compliance, and input modules for
space ball teleoperation or force reflection. To use the tool kit, an application must define descrip-
tion files which indicate the number and types of modules to be used, how they are distributed,
how information
stants.

3.1.4 Sancho

is passed between them, their period of operation, and appropriate filter con-

Sancho, a workstation-based tool kit, provides a GISC supervisory control program coupled with
interface libraries which connect this supervisor to a graphical programming environment. This
environment includes a menuing system based on X-Windows. Through these menus, an operator
can command tasks and control the state of the system. Multiple active menu palettes allow for
operations to be initiated in parallel. Communication objects from the GENISAS tool kit are used

12

internally by the supervisory control program to connect it with an appropriate GISC subsystem
such as a manipulator subsystem.

The functions performed by the menus are recon.figurable through ASCII file definitions, thereby
allowing the supervisory control program to be reused for controlling different subsystems. A
simulation interface library also provides facilities for the operator to execute a commercial simu-
lation package such as Deneb’s IGRIP. The operator can then interact with the work cell models
that are loaded into this environment in conjunction with the menuing system and supervisor. The
simulation environment is also linked through GENISAS to the real-time control system, provid-
ing for dynamic model updating and position tracking.

3.2 Generic Tool Kit Interfaces

Each of these tool kits, aside from the supervisory control program, can be used completely inde-
pendently of each other. This implies that they can be used and reused to implement robotic sys-
tems based on paradigms which are different from the GISC concept. On the other hand, by
integrating them, a very powerful environment can be created for building intelligent system
applications which are based on GISC.

This requires the development of interfaces between the tool kits which allow them to maintain
their autonomy and, at the same time, allow them to interact with each other according to the
GISC philosophy. Such interfaces have been developed, and complete intelligent control systems
have been implemented. These systems utilize the tool kits to perform tasks related to problems in
such diverse areas as waste remediation and information-driven manufacturing.

3.2.1 Sancho to GENISAS Interface

Beginning at the operator interface level, the supervisory control program provided with Sancho
automatically supplies an interface to the GENISAS tool kit because its function is to control the
subsystems required for a particular application. This interface includes menu callback routines
which use GENISAS client obj ects and their associated messages to communicate appropriate
commands to the available subsystems. The set of commands, as reflected by the menuing system,
may be application-specific. However, as mentioned previously, the command set can be easily
changed through ASCII configuration data files. Similarly, the menuing system can be interac-
tively redesigned in order to meet customer specifications. Both of these tailoring operations can
be performed with minimal programming effort.

The other tools in Sancho provide an interface to Deneb’s IGRIP simulation package which is
simply treated as another GISC subsystem. If a different simulation package is selected for an
application, then a new interface library must be implemented. However, the application program-
mer’s interface between the supervisory control program, menuing system, and the simulation
environment should remain the same. Only the underlying simulation interface library implemen-
tation must reflect the requirements of the particular simulation package used.

13

3.2.2 GENISAS to RIPE/RIPL Interface

The next required interface is between GENISAS and RIPER.IPL. This interface occurs at the

subsystem level and is relatively straightforward since both tool kits are object-oriented and
implemented as C++ class libraries. A GISC subsystem is normally controlled by a server process
which is defined as a subclass of the GENISAS StdServerProcess base class. It therefore inherits
all of the communication facilities required by any server. This subclass also defines the methods
which implement the command set associated with the subsystem it services. These methods, in
turn, are implemented by using RIPL methods defined for the device or devices controlled by the
subsystem. The integrated use of RIPE with GENISAS allows for distribution of RIPE objects
across multiple CPUS and environments, and provides an ASCII-based script file interface which
translates into C++-based RIPL methods.

3.2.3 RIPE/RIPL to SMART Interface

The interface between RIPE/R.IPL and SMART is somewhat complex due to the asynchronous,
distributed nature of the underlying SMART modules. This interface has two primary compo-
nents, one associated with the server subclass and one associated with the RIPL methods used by
the server. Normally when a subsystem is booted which uses SMART, the desired SMART mod-
ules are automatically downloaded as part of a startup script, and numerous tasks associated with
them are spawned. The number, type, and distribution of modules are determined by configuration
files which are currently compiled with the subsystem initialization code. If multiple CPUS are
utilized by SMART, an exact copy of the server code is downloaded to each CPU. These servers
are started after SMART module initialization is completed. They also use configuration files to
build a “roadmap” which indicates where the SMART modules are located. Through data-driven
logic, the server on the first CPU behaves as a “traffic cop” by directing commands received from
the supervisor to either itself or to the other servers according to where the SMART modules are
located and according to which modules are required to carry out each command. Note that the
server code does not have to be modified for different SMART configurations. Only the ASCII
configuration files need to be changed. This essentially comprises the first interface to SMART.

The second interface is simpler. The RIPL methods used by the server to carry out commands call
routines fkom the SMART tool kit. These routines, in turn, cause the asynchronous control tasks
to change state and thereby affect the state of the devices being controlled by the subsystem. How-
ever, a problem with this approach is that RIPL methods now appear to be directly tied to the
SMART tool kit rather than remaining autonomous. This can be prevented by defining a SMART-
Robot class in RIPE which isolates the RIPL methods that must be implemented in terms of the
SMART tool kit. Then subclasses can be derived from SMARTRobot for particular robot types.
These subclasses can inherit either a standard robot interface or the SMART robot interface.
Therefore, only the SMARTRobot class is dependent upon the SMART tool kit.

3.3 Generic Subsystem for Transport Devices

Using the interface templates just described, a generic server subsystem has been implemented
which can be reused with minor modifications to control any transport device that has a RIPL
translator. A generic command set has been defined for this transport subsystem, thereby eliminat-

14

ing the need to reconfigure the Sancho interface whenever a different manipulator is required for a
new intelligent system application. Brief descriptions of the generic commands are given in Fig-
ure3.

During a graphical programming session using Sancho, these commands are sent to the generic
server subsystem by a GENISAS client which is contained within the supervisory control pro-
gram. They are sent as ASCII strings with variable numbers of arguments and argument formats.
GENISAS internally handles the parsing of the commands and their arguments to determine
which method in the server subsystem should be invoked to carry out the command.

The generic transport subsystem is defined as a RobotServer subclass of the GENISAS StdServer-
Proce.ss base class. It therefore inherits all of the communication facilities required by any server.
The RobotServer subclass itself contains the methods which implement the generic command set.
These methods, in turn, are implemented by using RIPL methods defined for the appropriate
RIPE device driver subclass. This is accomplished by defining a generic pointer @r_robo~) to the
RIPE subclass inside RobotServer and establishing a containment relationship between them.
Whenever a RobotServer object is created during subsystem initialization, the RobotServer con-

structor will create the appropriate RIPE object or objects for the transport device in use. This, in
turn, provides the initialization for the device so that it is ready to be controlled through the
generic commands.

Lock:
Release:
Activate:
Deactivate:
Configure:
SetUnits:
SetSpeed:
SetAcceleration:
SetToo[Length:
ReportState:
MoveTo:
MovebyJoint:
MoveReact:
MoveComply:
ManualControl:
Load Path:
MoveAlongPath:
ClearPath:
StopMotion:
GetTool:
PutTool :
OpenGripper:
CloseGripper:
lnitRecordFile:
CloseRecordFile:

give supervisor exclusive REMOTE control
give subsystem exclusive LOCAL control
place transport device in an active state
place transport device in an inactive state
configure subsystem for subsequent cmds
set the linear and/or angular units
set the absolute speed
set the absolute acceleration
set the tool length for the current tool
return the current device state
perform a motion in world space
perform a motion in joint space
move until a sensor threshold is exceeded
move while complying to a surface
move under control of a teleoperated device
download a path segment to a motion queue
perform a path move using current queue
clear path motion queue
stop current motion gracefully
get specified tool
put specified tool
enact motion for current tool (open jaws)
enact motion for current tool (close jaws)
record a log of subsequent trajectories
stop recording trajectories

Figure 3. Generic Transport Subsystem Commands

The RobotServer generic command implementations are identical for any transport device
because all RIPE transport device subclasses use the same RIPL calls to program their associated
hardware. An example of a simple template for the RobotServer method which implements the

15

.

Activate command is shown in Figure 4. In this code, the server first determines which CPU the
command should be executed on if the control system is distributed across multiple CPUS. If this
particular copy of the server resides on CPU O, which is by convention the CPU that the supervi-
sor communicates with, then message routing must be handled correctly. RobotServer on CPU O
uses an internal GENISAS client to ship the command to another copy of RobotServer on a differ-
ent CPU if the command must be executed somewhere other than CPU O.

The command is actually executed by calling RIPL method change_state. This method will some-
how interact with the device to place it in an active state. For a SMART-based controller, this
involves calling SMART library routines for activating the SMART control system. As long as
each RIPE subclass required by the server has the standard RIPL calls, such as change_state for
activating the transport device, the same implementation can be used by any server for any trans-
port device. Note in Figure 6. how the change_state method is called using the generic ptr_robot.
Therefore, for each different transport server implementation, the only code modifications
required are redefinition of this pointer for the desired RIPE device object contained in Robot-
Server and substitution of the correct RIPE constructor call used to initialize that device. In other
words, for a subsystem that controls a Puma robot, RobotServer will define a contaimnent rela-
tionship with the RIPE class PRobot, and the generic ptr_robot will be initialized to point to a
PRobot object. Likewise, for a subsystem that controls a CNC machine, RobotServer will define a
containment relationship with RIPE class CNCMachine, and the generic ptr_robot will be initial-
ized to point to a CNCMachine object. All of the RobotServer command methods will remain
unchanged fi-om subsystem to subsystem, producing a high degree of software reuse.

Application-specific information is maintained in ASCII configuration files which are accessed by
the RobotServer constructor. Such information includes network configuration information, tool
and sensor tables, and SMART configuration information if the SMART tool kit is being used for
low-level control. The SMART conllguration includes which SMART modules are required,
which CPUS they are resident on, and which modules are accessed for each generic command
implementation.

int RobotSetven:Activate(int argc, void ** argv.char *e_msg) {
int ret= OK;
static char tlmme[]= “Actiwte”;
int location ;
char cntlCmdMsgCopy[100] ;

entering(fnamek

// Determine where the command should be executed
location = WhichCPU(fname);

//If this is the main server and the command is to be executed
// somewhere else, send the consrnandto the appropriate CPU.
//If the transmission is successful. also execute the command
//on the main server to update state variables
if ((location> my_cpu_number)&& (my_cpu_number== O))
{

sprintf(cntlCmdMsgCopy.‘<06”.fname):
ret = clientP[location]-XendCommand(cntlCmdMsgCopy, e_msg);
if(ret == OK)

ret = ptr_robot->change_state(ACTIVATE);

//If this is the correct CPU.execute the command
else if (location == my_cpu_number)

ret = ptr_robot->change_state(ACTIVATE);

16

// This server is not suppposed to execute tJ1ecommand
else

ret = ERROR;

Figure 4. Sample Code for a Generic Command Method

Currently this generic server is used to control several different manipulators and a CNC milling
machine. Extension of the generic tool kits to support other devices is a straightforward, methodi-
cal process because existing detailed designs can be reused. For example, to support a new manip-
ulator, a RIPE subclass must be implemented which provides the translation from RIPL
commands to corresponding hardware signals that produce motion. Because the RIPL interface
design is already well-defined, the process basically involves implementing each of the methods
associated with the RIPL command interface. Then a new version of the generic transport sub-
system can be cloned which utilizes this new RIPE object to control the new manipulator. A simi-
lar scenario can be followed for extending the SMART tool kit. Development effort may still be
significant since different devices have different interfaces with varying degrees of complexity.
However, the amount of reuse and resultant savings in time and cost are also significant.

3.4 Applications

Complete intelligent control systems have been implemented which utilize all four tool kits and
their interfaces to perform several prototype applications for environmental remediation and
information-driven manufacturing. The resulting systems are based on the interactive menuing
interface and simulation environment from the Sancho tool kit for automated planning and pro-
gramming. The supervisory control programs use the set of generic commands described previ-
ously to control a transport device required by a given subsystem. This command set is easily
extended or modified through Sancho ASCII configuration files and new RobotServer methods to
reflect changing requirements. The generic transport server subsystem defined by subclass Robot-
Server is used to control either a manipulator or CNC machine. This subsystem connects to the
supervisor through GENISAS and executes the generic commands for any manipulator or CNC
machine that is supported by the RIPE/RIPL and/or SMART tool kits. Currently this includes a
Schilling Titan2 manipulator, a Schilling ESM long reach manipulator, various models of the
Puma robot, and a Fadal vertical machining center. By starting out with this base system, task-
level programming can be accomplished by generating scripts containing sequences of generic
commands that perform usefi.d operations.

17

4.0 SYSTEM OPERATION

4.1 Desired Scenario: CAD Design to Finished Part

The following is a 5-step scenario for machining a part with the graphical-programming-based
CNC architecture:

4.1.1 Part Design -CAD System

a) design desired part using standard CAD package (Pro Engineer)
b) design any required fixtures and raw stock models which do not already exist in a library
c) maintain a library of modular standard fixture and raw stock models to reuse

4.1.2 Interactive Setup of Simulated Machine Work Cell

a) import and position models of fixtures, raw stock, and finished part into the
simulation environment

b) other information to include in the modeled environment:
tool selection (based on material, cut length, # flutes, diameter, cost, sharpness)
material selection (based on hardness, strength)
part features (geometry, topology, tolerances, surface finish, top of stock,

final cut depth, dimensions)
machine tool selection (based on suitability, limitations, power)
fixture selection (based on rigidity, orientation, type)
part quantities
speeds, feeds, incremental cut values, coolant
roughing and finishing operations
ordering of tasks: setup, approach and entry, cutting methods, intermediate motions,

exit/withdrawal
economics, safety

4.1.3 Tool Path Planning

a) let the CAD system (Pro Manufacture) do the initial planning and import it into the
simulation environment

b) simulate the tool path for verification, and interactively edit it as needed
c) automatically generate the “program” or “script” which consist of generic

commands that will actually implement the machining task on the subsystem
d) playback the script in simulation mode for verification with fill-body collision detection

and material removal monitoring

4.1.4 Model Registration and Calibration

a) mount actual fixtures and raw stock onto machine
b) use sensors (probe or structured lighting) to locate them with respect to the machine

coordinate system and upload this information to the simulation system

18

c) perform calibration to register the graphical work cell with the actual one
d) automatically adjust the program tool path to reflect the calibration

4.1.5 Execution of the Program to Machine the Part

4.2 Using the Architecture to Machine a Turbine Blade

In the first step of the turbine blade machining process, the fixture which holds the blade has to be
aligned with the machine axes. The fixture consists of an adaptive plate attached to the CNC table
and another fixture attached to the plate which actually holds the blade. When mounted, the fix-
ture is automatically centered with respect to the default coordinate frame (fixture or part frame)
whose origin is located at the top center of the CNC table. However, there is slop in the rotation,
so a touch probe is used to determine the rotary angle (A) and the tilt angle (B) for the fixture
which are used as part of the new Home location (machine coordinate system made to coincide
with the new fixture frame). This is done by touching the fixture with the probe on corner cubes
which have been precisely machined onto the fixture. Eight points are generated by touching each
end of the 4 sides of the fixture. These 8 points are stored in a file on the workstation as X, Y data
which are tool positions with respect to the fixture or part coordinate system. This file is used as
input to the next step for calibrating the sensor with respect to the located fixture.

In the second step, a structured lighting sensor has to be calibrated. The sensor is mounted manu-
ally in the tool holder. There will be slop in its orientation with respect to the tool holder. There-
fore, the sensor coordinate system needs to be computed relative to the current machine
coordinate frame which is the fixture or part coordinate system. The touch probe points deter-
mined in step one are used to compute locations around the fixture to which the sensor is moved,
and readings are taken which are used to calibrate the sensor’s position with respect to the fixture
frame. It generates 24 locations (3 at each of the 8 fixture points from step 1 but with different ori-
entations). The sensor readings consist of Y and Z values in the sensor’s coordinate system. These
values are used to compute the calibration parameters for the sensor.

Now the turbine blade has to be scanned to determine how much material needs to be removed
from its tip. The blade is mounted in the fixture. The sensor is moved around with a fixed tool path
to scan the blade. This path is based on what an ideal blade should look like (engineering draw-
ings stored in a Unigraphics CAD file). Normally 120 readings are taken around the circumfer-
ence of the blade to generate Y and Z values. The results of the blade scan are used to generate a
CAD representation of the actual blade. It consists of 120 points along cubic spline representa-
tions of the blade tip. This CAD representation is then used to compute a tool path which repre-
sents the path which should be followed by a cutting tool to remove excess material from the
blade tip in order to get it to match the ideal blade configuration as closely as possible. When gen-
erating this data, it is possible to select the number of points to be generated between sensor scan
nodes.

Now the blade can be machined. The sensor is removed from the tool holder, the necessary setup
functions are performed, and the cutting tool is inserted in preparation for machining the blade tip.
The generated tool path is then used to allow the cutting tool to remove the correct amount of
material from the blade tip.

19

5.0 CONCLUSIONS

,

Developing software for complex systems continues to be a difficult problem in many areas of
industry and government. One of the reasons why progress in the automation of manufacturing
processes has been slow is because of the difficulty in programming and integrating diverse
devices to interact intelligently together and with their environment. The advanced CNC machine
architecture provides a uniform, integrated environment for all steps in the process from CAD
design to finished part. This includes interactive tool path generation based on the entire work
cell, automatic post-processing, and program verification using fill-body collision detection.
This results in reduced time and cost for programming, reduction in design change time, and
smoother transition from prototype to production.

The GISC-based architecture also provides for virtual collaborative environments which enable
design and machining to occur at different locations using the same integrated environment. The
real-time subsystem can also be transparently interfaced to low-level open architecture controllers
such as NEST’SEnhanced Machine Controller for sensor-based adaptive machining and in-process
monitoring. These benefits can be applied to the modernization of the Defense Production Com-
plex and to increasing economic competitiveness of U.S. manufacturers.

20

6.0 REFERENCES

Achi, P. B. U., “The Software Aspects of Computer Control of a Semi-Autonomous Interface to a
Milling Machine~’ Modelling, Simulation and Control, VO1. 27, No. 2, 1990, pp.31 -45.

Allcock, A., “A New ‘Strata’ of Off-Line Programming,” Machinery and Production Engineer-
ing, Vol. 147, No. 3769, October 1989, pp. 86-88.

Aramanda, Gregg, “CAM Software Gets Expert Advice;’ Machine Design, June 20, 1991, pp. 42-
45.

Bahns, C. H., Barash, D. D., Cescato, D. J., Schneider, M. L., “Intelligent Machining Workstation
Initiative;’ WRDC-TR-90-80.31, January 1991.

Bakanau, F., “Modeling the Manufacturing Process:’ The Bri~ish Libra~ Document SuppZy Cen-
ter, March 1990.

Beckert, Beverly A., “NC Programming Moves to Micros,” Computer-Aided Engineering, June
1990, pp. 40-49.

Ben-Arieh, D. and Miron, I., “Modeling Advanced Manufacturing Systems Using Concurrent
Logic Programming;’ Artzjicial Intelligence in Engineering, Vol. 5, No. 1, January 1990, pp. 43-
49.

Buckley, C. P., “DNC: The First Step Towards Factory Floor Data Communications;’ AUTO-
FACT’89, Pp. 27-7 to 27-16.

Bullen, George N., “Selective Programming’ Production and Inventory Management Journal,
Vol. 30, No. 4, 1989, Pp. 49-51.

Callihan, H. D. and Loyacona, P. J., “From Form-Featured Solids Modeling to Production,”
AUTOFACT’ 89, Pp. 5-1 to 5-11.

“Consider Controls and Software~’ Machinery and Production Engineering, Vol. 147, No. 3764,
July 1989, pp. 48-52.

Cook, R., “CAD Animation Makes Big Strides in Motion Control~’ Managing Automation, Vol. 6,
No. 9, September 1991, pp. 58-59.

“FANUC Series 15-TA/TF/TTWTTF, 150-TA Operator’s Manual;’ B-6121 #E/02, FANUC LTD,
July 1990.

Finster, Douglas P. and Carrier, T., “On the Direct Programming of CNC Milling Equipment;’
Computers and Industrial Engineering, Vol. 17, Nos. 1-4, 1989, pp. 252-257.

21

Fuller, J. E., “Vertical EDM Using Modular Programming;’ CONF-891O214, September 1989.

Haicheng, Y. and Zhenya, Z., “The GNCES System for Turbine Parts,” CAD and CG ’89, Proc.
International Conference on Computer-Aided Design and Computer Graphics, Beijing, China,
August 10-12, 1989, pp. 456-8.

Haynes, T. L., “The Infrastructure of Third Party VARS: A New Era of Manufacturing Controls;’
*

WC 92, Detroit, MI, April 6-9, 1992.

Hudson, C. A., “Low End Controller (LEC) Project~’ WC 92, Detroit, MI, April 6-9, 1992.

Kapustin, N. M. and Korotaev, M. Y., “Preparation of Control Programs for a Group of NC
Machine Tools Under the Conditions of Combined Automation of Component Design and Manu-
facture;’ VestnikA4ashinostroeniya, Vol. 69, No. 4, 1989, pp. 37-41.

Karjalainen, J. A. and Ollila, A., “Towards Automated Thermal Cutting;’ Computer Applications
in Production and Engineering, Proc. 3rd International IFIP Conference CAPE ’89, North-Hol-
land: Amsterdam, 1989, pp. 427-434.

Knutton, P., “Total Control in Any Language: Machinery and Production Engineering, Vol. 147,
No. 3766, August 1989, pp. 53-54.

Koelsch, James R., “NC Programming: Obstacle or Asset;’ Manufacturing Engineering, July
1991, pp. 49-52.

Koncewicz, D., “Numerical Control Programming System - NCS~’ Prace Naukowe lnstytutu
Cybernetyki Tech. Pol. Wroclawskiej, Seria:Konferencje, Vol. 39, 1991, pp. 13-19.

Mahieddine, F. and Webb, D. C., “An Evaluation of Postprocessors in Generalized CAM Sys-
tems,” Advances in Manufacturing Technolo@, Proc. 5th National Conference on Production
Research, Kogan Page: London, UK, September 1989, pp. 312-316.

Martin, J. M., “Picking a CNC~’ Manufacturing Engineering, May 1989, pp. 59-62.

Mayer, R. J., SU, C., and Keen, A. K., “An Integrated Manufacturing Planning Assistant - IMPA~’
Journal of Intelligent Manufacturing, VO1.3, 1992, pp. 109-22.

Mayr, H. and Stifter, S., “Off-line Generation of Error-Free Robot/NC Code Using Simulation
and Automatic Programming Techniques~’ Robotic Systems and AMT. Proc. IFIP TC.5/WG 5.3
International Conference, Jerusalem, December 1989, pp. 126-136.

Miller, David J. and Lennox, R. C., “An Object-Oriented Environment for Robot System
Architectures,” Proceedings of 1990 IEEE International Conference on Robotics and Automation,
Vol. 1, pp. 352-361..

Neelamkavil, J. and Graefe, U., “Automatic Generation of Manufacturing Control Instructions -

22

An Expert Systems Approach;’ Information Control Problems in Manufacturing Technology,
selected papers from the 6th IFAC/IFIP/IFORS/IMACS Symposium, Madrid, Spain, 1989, pp.
431-436.

Norrie, D., Roy, G., Fauvel, R., and Guo, D., “Microcomputer Simulation of a CNC Machining
Center and its Application;’ Computer Modeling and Simzdation of Manufacturing Processes,
1990, Pp. 217-223.

Prun, J., “Maneuvering in the NC Minefield: Here are the questions to ask yourself before buy-
ing NC software,” Machine Design, January 11, 1990, pp. 107-13.

Quinlan, J. C., “Getting into DNC~’ Tooling and Production, February 1989, pp. 43-46.

Richardson, C., Copeland, L., and Wheeler, B., “Obstacles to Shop-Floor CNC Programming in
the United States,” I Ith Triennial World Congress of Int. Fed. of Automatic Control, Tallinn,
USSR, August 13-17, 1990, pp. 487-91.

Roth, S. G., “Early Applications of NGC: Evolving an Open Architecture Control Solution;’ IPC
92, Detroit, MI, April 6-9, 1992.

Saito, T. and Takahashi, T., “NC Machining with G-buffer Method;’ Computer Graphics, Vol. 25,
No. 4, July 1991, pp. 207-16.

Sprow, E., “Maybe you CAM, maybe you CANC~’ Tooling and Production, March 1990, pp.
117-122.

Stevens, L., “In Small Packages: PC-based NC Programming Gets Serious;’ Manufacturing Sys-
tems, Vol. 8, No. 7, July 1990, pp. 20-23.

“Tapping Advanced Technology: Today’s leading-edge hardware and software become tomor-
row’s everyday tools,” Machine Design, Vol. 61, July 1989, pp. 30-40.

“Unsnarl your shop - with DNC~’ Tooling and Production, Vol. 56, No. 2, May 1990, pp. 73-75.

Vukobratovic, M. and Stokich, D., “Software Support of the Dynamic Approach to the Control of
Flexible Manufacturing Modules~’ Soviet Journal of Computer and Systems Science, Vol. 23,
1990, pp. 18-25.

Wakabayashi, N., Honda, N., and Mimaki, T., “A Supporting System for Making NC Programs by
way of Knowledge Engineering Approach,” Skill Based Automated Production, selected papers
from IFAC/IFIP/IMACS Symposium, Vienna, Austria, November 15-17, 1989, pp. 213-218.

A-1

APPENDIX A - EXAMPLE SPECIFICATION OF A GENERIC CNC COMMAND

.

,

CNCMachine Class/Subclass Method point_ to_point_positioning (GOO)
Software Requirements Specification and Design

1. General Description

Point-to-Point Positioning method

1.1 Overall Perspective

The following describes a method which belongs to the generic CNCMachine class and its derived
subclasses. The CNCkfachine class is a C++ class which is part of the RIPE/RIPL Device class
hierarchy. It is a subclass of the Transport class and resides at the same level in the hierarchy (third tier)
as the generic Robot class. They both model generic transport devices. The CNCkfachine class logically
models a Computer Numerically Controlled machining workstation. Applications which create objects
from the CNCMachine class or its derived subclasses use them to control the operations of a CNC
machine through a generic programming language as defined by the class methods. The following is a
specification for one of those methods.

1.2 Functions

Method point_to_point_positioning is a motion command which, when executed, moves a tool attached
to the CNC machine from one location to another. How the motion is carried out is determined by
parameters passed into the method when it is called. Any combination of the axes available to the
machine can be controlled by this positioning command. The final destination of the tool can be
specified in absolute or relative (incremental) coordinates. The coordinate system used to specify the
destination can be selected according to the capabilities of the machine. Most machines provide for at
least 3 coordinate systems: a machine or tooling coordinate system (MCS, TCS, G28, G53), a work or
program coordinate system (WCS, PCS, G92, G54-59), and a local coordinate system (G52). The units
for the coordinate system are also machine-dependent and are usually specified in inches or millimeters.

The motion is always carried out at the maximum traverse rate of the machine which is usually set for
each axis independently by the machine tool builder. Therefore, the traverse rate cannot be controlled by
this method. During motion, the tool is accelerated to the predetermined speed by the controller and
decelerated as the tool approaches its final destination. On some machines, “in-position” checking is
performed at the completion of the move to verify that the feed motor is within a specified range of the
destination location.

This type of motion is normally used when moving in free space between operations performed on a
workpiece because it is the fastest and most efficient type of machine tool motion.

1.3 User Characteristics

Users of this method include software developers of CNC machine subclasses and possibly applications
programmers. It can be used by any developer of CNC machine applications.

1.4 General Constraints

Current implementations of this method require that the CNC machine have a communication interface
which allows a host computer executing this method to transmit the appropriate positioning command to
the CNC controller. The controller then activates the machine axes to perform the motion. Hopefully
sometime in the future, CNC machine controllers will be directly programmable in the “high-level
language” defined by these methods.

The number and types of axes controllable by this command are machine-dependent.

A-2

This command cannot control the speed of the motion.

1.5 Assumptions and Dependencies

This method assumes that point-to-point positioning for a generic CNC machine is implemented using
the standard GOOcode.

2. Specific Requirements

The following sections describe all of the details of the point_to<oint<ositioning method which are
needed to generate an actual implementation. This includes the method name, its parameters and their
interpretation, and the processing sequence required to accomplish the specified function of this method.

2.1 Functional Requirements

Project Name: Generic Programming Languages for Manufacturing Processes

Class Name: CNC34achine

Method Name: point_to>oint~ositioning

Form of Call: return_code = point_to_point_positioning(destination, attributes) ;

Return Type: Integer status code

2.1.1 Introduction

Method point_to~oint~ositioning is a motion command which, when executed, causes the axes of a
CNC machine to move from one point to another at the maximum traverse rate of the machine tool. How
the motion is carried out is determined by the destination and attributes parameters.

2.1.2 Inputs

Parameter destination - This is a vector object which specifies the point or location to which the machine
moves. It contains the coordinate values of each machine tool axis. The number and type of axes are
machine-dependent. For example, a 5-axis machine would require that the vector contain 5 coordinates
for X, Y, and Z (translation axes), and A and B (rotational axes). The units and ranges of these
coordinate values are also machine-dependent.

Parameter attributes - This is a bit mask whose fields specify what coordinate system to use and whether
the destination is in absolute or relative coordinates.

2.1.3 Processing

The input parameters must first be validated. If an invalid attribute is passed in (unrecognizable bit
pattern), the method will simply return an error code without moving the machine tool. If the attributes
parameter makes sense, it is parsed to determine the coordinate system and mode (absolute vs relative).
Based on this information, the destination vector can be examined to determine if the values make sense
(within range, correct dimension). If the destination is unreachable, the method will return an error code
without moving the machine tool. If the parameters are valid, the appropriate command(s) will be
encoded in an ASCII message and sent to the controller for execution.

A group of commands at each step in the sequence of a typical CNC machine controller program is
called a block. The encoded ASCII message sent to the controller will comprise one block. A block
typically has the following generic configuration:

NOOOOOGOOXOO. OYOO.OZOO.OAOO. OBOO.OCOO. OMOOSOOTOO<CR>

The N field contains the sequence number. This is optional when the block is sent from a remote host.
The G field contains the G code associated with the particular action to be performed. For this type of

A-3

*

move, the code is GOO.The X, Y, Z, A, B, and C fields contain the destination coordinate values for each
machine axis. The M field contains a code for miscellaneous functions. It is not used in this method. The
S field contains a value for spindle speed. It is not used in this method. The T field contains a tool
function code. It is not used in this method.

Multiple G and M fields maybe placed within a single block to specify several actions which must occur
to complete the desired function. For this method, depending upon the attributes specified, it may be
necessary to encode several G commands within the block. If the CNC machine is not currently in
absolute mode and an absolute move is specified, G90 is used. If the CNC machine is not currently in
incremental mode and a relative or incremental move is specified, G91 is used. If the desired coordinate
system for the move is not the current coordinate system setting, then one of the following codes will
have to be specified, assuming that origin locations for these coordinate systems have already been
defined and saved internally by the CiVCMachine class: G52, G53, G54-G59, or G92 (see the
specifications for the commands which set up coordinate systems in order to learn how to build the
appropriate forms of the message for these particular G codes). A typical message format for an absolute
point-to-point positioning move of the X and Z axes in the current coordinate system would be:

G90GOOX25.0Z10. O<CR>

This message is sent over a serial port using a communication object defined internally by the
CNCA4achine class or its derived subclass. If the CNC controller has the capability of returning a status
message after the command has been executed, the point_to~oint_positioning method will wait until it
receives that message before returning control to the caller of the method.

2.1.4 outputs

An ASCII message as described above is output to the CNC machine being controlled. The resulting side
effect is the motion of the machine tool axes as specified by the commands embedded within this
message. The status message (if possible) returned by the machine controller is converted into a status
code which is the return type of the method call. This will be O if the command executed correctly.
Otherwise it will be a value which is normally less than zero.

2.2 External Interface Requirement

2.2.1 User Interface Requirements

This method must be called within a C++ program which has created a CNCMaclzzneobject or a derived
subclass object. A graphical user interface built on top of the C++ environment allows the operator to
graphically program a machining application using this command.

2.2.2 Hardware Interface Requirements

As stated above, a communication handler object serves as the logical interface between this method
which is executing on a host computer and the CNC machine controller which performs the actual
motion. This communication object has generic send_msg and receive_msg methods which can be used
to send the message block defined above to the controller and receive back status. These methods hide
the actual communication mechanism from the point_to+oint<ositioning method, thereby providing
device independence and a measure of portability and reusability. Currently, most CNC machines are
interfaced to an external computer through a serial port. One possible protocol used is DNC (Distributed
or Direct Numerical Control). Currently there are serial classes available in RIPE/RIPL which are used
to provide this interface.

A-4

2.2.3 Software Interface Requirements

The methods of the CNCMachine class and its derived subclasses interface to RIPE/RIPL and the CNC machine
controller software environment.

2.2.4 Communication Interface Requirements

The communication interface to the CNC machine controller has already been discussed in the hardware interface
requirements. More specific details will depend upon the particular CNC machine controller used to implement the
software. This will therefore fall under the purview of the subclass derived from the generic CNC’J4achine class for
a particular CNC machine.

2.3 Performance Requirements

There are none for this method. However, if the controller is capable of sending back status after executing the
motion, and if this status fails to arrive within a certain time frame, then the communication handler will timeout and
inform this method that something has gone wrong. This method will then give up and return a timeout status to the
caller. The length of the time fiarne is dependent upon the CNC machine.

2.4 Design Constraints

The number and types of axes controllable by this method are machine-dependent.

This method cannot control the speed of the motion.

2.4.1 Standards Compliance

EIA, “Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning
Numerically Controlled Machines: ANSI/EIA Standard RS-274D’, Electronic Industries Association.

EIA, “32 Bit Binary Exchange (BCL) Input Format for Numerically Controlled Machines: EIA RS-494 standard”,
Electronic Industries Association.

2.4.2 Hardware Limitations

This method should be capable of running on any host computer which can compile and execute C++ code and which
can be physically interfaced to a CNC machine controller, using the necessary interface sofiware (communication
handler) to send and receive messages.

3. Class Elements Dependencies

The following describes those elements of the CNCMachine class and its subclasses which the
point_to_point_p ositioning method depends upon for its implementation.

3.1 Data Structures

Data structures are defined to model the following components required by this method:

- number of axes available (degrees of freedom),

- symbolic constants to reference or index the individual axes in a vector object (X, Y, Z, A, B, C),

- coordinate systems (transformation matrices or origin references),

- symbolic constants to define the various bit mask fields for the attributes parameter,

- templates for encoding CNC program blocks,

- hooks to communication objects,

- status messages and status codes.

A-5

.

3.2 Other Information

The following information is maintained by an object created as an instance of the CNCA4aclzine class:

- the current mode of the CNC controller (absolute or relative),

- the current coordinate system in use,

- the current units used by the CNC controller (inches or millimeters),

- the minimum and maximum travel ranges for each axis,

- the types of status messages returned and their corresponding integer codes,

- the type of communication protocol used between the host and CNC controller (DNC),

- timeout parameters.

Distribution:

2 MS 1436 Donna L. Chavez, LDRD Office, 4523

2 1006 Clifford S. Loucks, 9671
A

2 1138 David J. Miller, 6532

1 9018 Central Technical Files, 8523-2

5 0899> Technical Library, 4414

2 0619 Review & Approval Desk, 12630
For DOE/OSTI

