v

SANDIA REPORT

SAND96-2331 « UC—405
Unlimited Release
Printed September 1996

MPSalsa

A Finite Element Computer Program for
Reacting Flow Problems

Part 2 — User’s Guide

A. Salinger, K. Devine, G. Hennigan, H. Moffat, S. Hutchinson, J. Shadid

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited.



Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific cornmercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A08
Microfiche copy: AO1



SAND96-2331 Distribution
Unlimited Release Category UC-405
Printed September 1996

MPSalsa

A FINITE ELEMENT COMPUTER PROGRAM FOR REACTING FLOW PROBLEMS
PART 2 - USER’S GUIDE!?
A. Salinge?, K. Deviné, G. Hennigaf, H. Moffaf®, S. Hutchinsof J. Shadid

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract Follows

=

This document can be downloaded from: http://www.cs.sandia.gov/CRF/mpsalsa.html

2. This work was partially funded by Department of Energy, Mathematical, Information, and Computational
Sciences Division, and was carried out at Sandia National Laboratories, operated for the US Department of
Energy under contract no. DE-AC04-94AL85000.

Parallel Computational Sciences Department (org. 9221).

Parallel Computing Sciences Department (org. 9226).

Chemical Processing Science Department (org. 1126).

akw




Acknowledgments

We would like to thank Professor Michael Jensen for preparing a number of the fluid
mechanics examples and for urging the development of the output routines, and Aaron Thomas
for benchmarking an early version of the code. We would also like to thank Ed Boucheron for
identifying many instances of undesirable functionality so that we could remove them from the
code. Finally, we would like to thank Rod Schmidt for his careful reading of this document.




Abstract

This manual describes the use of MPSalsa, an unstructured finite element (FE) code for
solving chemically reacting flow problems on massively parallel computers. MPSalsa has been
written to enable the rigorous modeling of the complex geometry and physics found in
engineering systems that exhibit coupled fluid flow, heat transfer, mass transfer, and detailed
reactions. In addition, considerable effort has been made to ensure that the code makes efficient
use of the computational resources of massively parallel (MP), distributed memory architectures
in a way that is nearly transparent to the user. The result is the ability to simultaneously model
both three-dimensional geometries and flow as well as detailed reaction chemistry in a timely
manner on MP computers, an ability we believe to be unique.

MPSalsa has been designed to allow the experienced researcher considerable flexibility in
modeling a system. Any combination of the momentum equations, energy balance, and an
arbitrary number of species mass balances can be solved. The physical and transport properties
can be specified as constants, as functions, or taken from the Chemkin library and associated
database. Any of the standard set of boundary conditions and source terms can be adapted by
writing user functions, for which templates and examples exist.

The user can choose between a steady-state solution, an accurate transient run, a pseudo-
transient method for relaxing stiff steady-state problems, and a continuation run for analysis of the
system’s steady-state behavior with respect to a parameter.

Through the input file, the user has considerable control over the nonlinear and linear
solution strategies in order to find the fastest and most robust method for solving a given problem.
The nonlinear solver includes an inexact Newton method and a backtracking strategy. For solving
linear systems, a number of Krylov-based iterative methods along with several choices for
preconditioners are available through the Aztec library.

A large set of example problems is included in Appendices to familiarize the user with the
capabilities and choices within MPSalsa. These examples serve to illustrate MPSalsa capabilities
and to provide a variety of input files to use as templates for closely related application problems.
Many of these examples can be run on a single processor or on multiple parallel processors.







Table of Contents

1.
2.

INtrOdUCHION . . 1
Pre-Processing and Running MPSalsa . . . .. ... ... 5
2.1, Mesh GEeNEeration . .. ... ottt e e 5
2.2. Mesh Partitioning/ Load Balancing ............... ... . i 6
2.3.  Chemkin Interpreter . . ... .. 7
2.4, GUACAMOIE . . . 8
2.5. Serialand Parallel /O Utilities . . ... . 9
2.6. Compiling MPSalsa . . ........ .. 11
2.7. Running MPSalsa . .......... . e 13
The Input File . . ... 14
3.1. General SPecifications . . . ... oot 14
3.2.  Solution Specifications . .......... ... 17
3.3, Solver Specifications . . ... ... . 21
3.3.1. Nonlinear Solver Subsection . .. ......... ... 22
3.3.2. Linear Solver SuUbsection . . ... 24
3.4. Chemistry Specifications . . ... 27
3.5. Enclosure Radiation Specifications . ............ .. .. ... . . 29
3.6.  Material Specifications .. ......... .. e 29
3.7. Boundary Condition Specifications . ............ .. .. . . . 33
3.7.1. Generalized SUIMfaCes .. ... i 33
3.7.2. Boundary Conditions . . ... ... 35
3.7.2.1. Mass Fraction Boundary Conditions ....................... 39
3.7.2.2. Precedence of Boundary Conditions . . . ..................... 40
3.8. Initial Condition/Guess Specifications .............. ... .. . ... 40
3.9.  Output SpecCifications . . . . . .. 42
3.10. Parallel I/O Specifications . . ........... . 45
3.11. Function Data Specifications . . .......... ... . 48
USEr FUNCHIONS . . ..o e e e e e e e e e e e e 50
4.1. Material Properties . . ... e 50
4.1.1. Heat CapacCity . .. ..ot e e 50
4.1.2. Thermal ConductiVity ... ... ... .. e 51
4.0.3. DENSItY . .. 51
414, VISCOSITY ..ot e 51
4.1.5. VolumetriC SOUIrCe TeIMIS . .. ot vttt e e e e e e 51
4.2. Boundary Conditions . . ....... .. 57
4.2.1. Accessing BC_DATA InUser Functions ........................... 58
4.3. Generalized SUMaCES . .. ... e 61
4.4. Initial ConditioN/GUESS . . . ..ottt 62
4.5, EXACt SOIUtIONS .. .. 63
4.6.  OUIPUL .. 64
A4.7.  CoNtiNUALION . . . .ot 65
4.8. FUNCHON Data . .. ... o 66




5. SOIUtION Strategies . . . . . oo 70

5.1. Gettingtoa Steady State .. ... 70
5.2. Picking a Linear Solver and Preconditioner ............ .. ... ... . . ... 71
5.3, MeSh SeqUENCING . . . . ..ot e 71
5.4, ContiNUAtioN . . ..o 73
6. Future Development . . . . ... 76
Appendix A. Included FUNCLIONS . . . ... oo 77
A.l. Boundary Conditions . . ... e 77
A.1.1. Surface Chemistry Boundary Conditions ........................... 77
A.1.2. Danckwerts’ Boundary Conditions . .................... . 78
A.1.3. Spinning Disk Boundary Conditions ... .......... ... ... ... . io.... 80
A.1.3.1. Spinning Disk inthey-Plane . . ........................... 80
A.1.3.2. Spinning Tilted Disk . . .. ... ... ... . . . 80
A.1.4. Mass Fraction Dirichlet Boundary Conditions expressed as Mole Fractions 81
A.1.5. Outflow Boundary Condition . ............ ... . . ... 82
A.2. Look-up Tables . ... .. 83
A3, OUIPUL . e e 84
A.3.1. Evolution of the SolutionataPoint . . ............ .. ... ... ... ...... 84
A.3.2. The Solutionalongaline .......... ... .. . . .. 85
A.3.3. Informationona Side Set . ... .. 86
A.4. Interprocessor Communication Utilities ... .......... .. . . ... 88
A.4. L. Synchronization .. ....... .. 88
A4.2. BroadCast . . ..... ... 89
A.4.3. Global Sum, Maximum, and Minimum . . .. ........... ... 90
Appendix B. Mass Transfer Examples . . ........ . e 91
B.1. Diffusioninan ANNUIUS . . . ... ... 91
B.2. The SoretEffect . ...... ... . 94
B.3. Si3N4 Equilibrium . . .. 96
B.4. Surface Reaction ... ....... ... 99
Appendix C. Fluid Mechanics and Heat Transfer Examples ......................... 103
C.1. Navier-Stokes 3D Exact Solution . ......... ... . 103
C.2. Lid-Driven Cavity Problem .. ... ... ... . 104
C.3. Hydrodynamically Developing Flow in an Infinite Parallel Plate Channel ...... 107
C.4. Thermally Developing Flow in an Infinite Parallel Plate Channel ............. 109
C.5. Vortex Shedding from a Circular Cylinder ........... ... . ... ... ... .... 111
Appendix D. CVD Reactor Examples . ... e 118
D.1.  SPIN CompariSOn . ... ..ot e 118
D.2. Rotating Disk Reactor . ......... .. . 121
D.3. Tilted ReaACIOr . . . . . oo e 126
ReferENCES . . . 132




1. Introduction

In this report, the practical details and interface for running the suite of computer codes
called MPSalsa are presented, along with a number of example problems. A companion theory
manual provides the equations and solution methodology [42]. Employing unstructured meshes
on massively parallel (MP) computers, MPSalsa is designed to solve two- or three-dimensional
problems that exhibit coupled fluid flow, heat transport, species transport, and chemical reactions.
The equations defined in MPSalsa for fluid flow and mass conservation are the momentum
transport and the total mass continuity equations for incompressible or variable density
Newtonian fluids (Navier-Stokes equations). The heat transport equation and an arbitrary number
of species transport-reaction equations are coupled with each other through chemical reaction
source terms and with the fluid flow equations through property variation and body force terms.

MPSalsa employs unstructured grids, using the Exodusll finite element database for its
input and output files [40]. Therefore, it can be used in conjunction with the CUBIT mesh
generation package [24], as well as other mesh generation packages that support the Exodusli
standard. A number of pre- and post-processing routines for the Exodusll database can be used.
Currently, two- and three-dimensional grids with Cartesian coordinates are supported.

From its inception, MPSalsa has been designed for distributed memory MIMD computers
with thousands of processors. It also runs on traditional serial workstations and networks of serial
workstations. Interprocessor data communication and global synchronization are accomplished
by a small number of message passing routines. These routines have been ported to many
different message passing protocols, including the MPI standard [34] and the native nCUBE and
Intel Paragon protocols. To achieve efficient parallel execution, the unstructured finite element
mesh is partitioned or load-balanced in a pre-processing step. Each processor is assigned nodes
from the mesh such that the computational load is balanced and the total amount of information
communicated between neighboring processors is minimized. A general, automated method for
subdividing an unstructured computational mesh is necessary. An ad-hoc or by-hand method
would prove to be unusable for large meshes, and the resulting parallel communication efficiency
would be difficult to predict, assess and control. In our implementation, we have used a general
graph and mesh partitioning utility, Chaco [22], developed at Sandia National Laboratories.

MPSalsa uses a finite element (FE) method to approximate the solution to the transport
equations for momentum, total mass, thermal energy, and individual gas-phase chemical species.
The approach is designed for low Mach number flows where an algorithm employing an implicit
coupling between the pressure and velocity field is required. The discretization method is a
Petrov-Galerkin finite element method (PGFEM) with pressure stabilization [25]. For more




highly-convective flows that are still laminar, a streamwise-upwinding (SUPG) stabilization is
available [3, 48]. Each processor is responsible for calculating updates for all the unknowns at
each of its assigned FE nodes. Each processor also stores and performs operations on the rows in
the fully-summed, distributed matrix associated with these unknowns. Along processor
subdomain boundaries, replicated FE unknowns, called “ghost unknowns,” are stored and
updated through interprocessor communication. These ghost unknowns are quantities needed for
the local residual calculation and matrix-vector multiplication on a processor. Interprocessor
communication occurs for each step of the iterative solution of the linear system as well as for
each outer step in the non-linear and time-transient algorithms. This communication constitutes
the major unstructured interprocessor communication cost in the program, and its algorithm has
been extensively optimized within MPSalsa [43].

MPSalsa includes the option of using the Chemkin library to provide rigorous treatment of
ideal-gas multicomponent transport, including the effects of thermal diffusion [28]. Chemical
reactions occurring in the gas phase and on surfaces are also treated by calls to Chemkin [28] and
Surface Chemkin [5], respectively. Thus, MPSalsa can handle varying numbers and types of
chemical reactions and species in a robust manner. For example, the code can handle the complex
temperature and pressure dependence predicted for unimolecular reactions (using the Troe
parameterization [14]), important for chemical vapor deposition (CVD) systems which typically
run at sub-atmospheric pressures. Surface site fractions and bulk-phase mole fractions are defined
on all reacting surfaces using the Surface Chemkin package. Through this method, complex
Langmuir-Hinshelwood-type [30] and precursor adsorption surface mechanisms, characteristic of
many real CVD and catalysis surface systems, can be incorporated into the reacting flow analysis
code. The capability of modeling simple dilute species transport and reaction, without the need of
linking to Chemkin, is also included in MPSalsa.

Both steady and transient flows may be analyzed. The time integration methods include
true transient, pseudo-transient, and steady implicit solvers. The steady solver can be driven by a
continuation routine for efficient parameter study of a system. A fully-implicit, fully-coupled
Newton routine is implemented for robustness. The Jacobian matrix includes all coupling
between the equations and unknowns, and neglects only terms due to the variation of physical
properties calculated by Chemkin. A full numerical Jacobian that includes all terms is also
available. The nonlinear solver has additional features for speed and robustness, including an
inexact Newton approach and a backtracking algorithm.

After construction of the distributed sparse matrix, the FE application calls the Aztec
library of parallel, preconditioned Krylov solvers [26, 43, 44]. On each processor, the solvers
operate on the local distributed sparse matrix and local solution vector using a combination of




global structured communication and unstructured communication to implement the parallel
solver kernels. A substantial set of preconditioners is available, including several versions of ILU
factorization, a domain-decomposition method. Although these advanced preconditioners require
considerable memory, they provide a huge gain in robustness.

Solution output from the program is achieved through several means. Output can be
written to either a standard serial Exodusll file format [40] or a parallel extension of the Exodusll
file format [23]. This extension consists of an individual standard serial Exodusll file for each
processor with extra arrays that map the local numbering scheme on an individual processor to the
global numbering scheme and encode the necessary communication information. The format can
be used on both MP computers, such as the Intel Paragon, and distributed computing systems,
such as groups of workstations. This parallel 1/0O capability can be used with today’s primitive
parallel 1/O facilities with nearly linear speedup. A small but growing number of specialized
output functions that analyze the solution and write solution information in non-Exodusll formats
have been written for specific applications.

This report serves to document the user interfaces within MPSalsa and to provide several
example problems. Chapter 2 describes several important pre-processing steps needed to carry out
numerical simulations in an MP environment and the user interfaces to them. Section 2.1 gives a
general description of mesh generation capabilities for Exodusll meshes. Section 2.2 describes
how to run “exolllb,” an Exodusll interface to the Chaco package described above. Section 2.3
describes how to set up and run Chemkin. Section 2.4 describes the pre-processor, “guacamole,”
which is used to set up and manipulate the Exodusll serial output file. Section 2.5 describes the
serial and parallel 1/0 capabilities of the code. Section 2.6 gives some information on how to
compile the code, and Section 2.7 shows how to run it.

MPSalsa is controlled by a large input file, in which the user can change everything from
the number of processors to the convergence criteria for the linear solver routine. Chapter 3
describes the MPSalsa input file line by line. For instance, the problem type, which indicates
which equations are to be solved, is specified in the General Specifications section, described in
Section 3.1. Material properties and equations of state are described in Section 3.6. MPSalsa has
extensive facilities for incorporating boundary conditions, which are documented in Section 3.7.

The user can extend the models past what has been pre-defined within MPSalsa [42].
Functions can be written to represent variations in physical properties, additional source terms,
and special boundary conditions, any of which can be dependent on the current solution, position,
or time. In addition, functions can be written for specifying an initial guess, for testing the
MPSalsa solution with an analytic solution, and for specifying a continuation parameter. The
interfaces to these routines are described in Chapter 4.




Chapter 5 involves a general discussion of some solution strategies that can help the user
tune MPSalsa for a specific application. MPSalsa implements a number of advanced numerical
solution procedures for solving systems of nonlinear PDEs. The optimal choice of these methods
can be difficult and, thus, we include a section to aid in this selection. Section 5.1 describes
strategies for reaching steady-state solutions. There are many choices and parameters in the
MPSalsa input file that control the solution algorithm and can greatly effect speed, convergence
behavior, and robustness. This chapter is intended to introduce the user to some of these options.

Appendix A lists and describes some user functions for application-specific boundary
conditions and output routines (e.g., Danckwerts’ boundary condition and time history output).

The next three appendices contain example problems. Appendix B covers four simple
examples with mass transfer, most of which can be run on a single processor. Appendix C covers
a set of fluid mechanics and heat transfer problems on refined two-dimensional meshes. Appendix
D contains three models for Chemical Vapor Deposition (CVD) reactors which involve flow, heat
transfer, and mass transfer on three-dimensional meshes.




2. Pre-Processing and Running MPSalsa

This chapter details the steps needed to run a successful MPSalsa simulation. It is
recommended that the user first try this process with some example problems before starting on a
new problem. There are several preprocessing steps that need to be done for every new mesh
before running the MPSalsa program itself. They reflect the added complexities of conducting
numerical simulations in a massively parallel computing environment. These steps include mesh
generation, load balancing (only for multi-processor problems), and running the “guacamole”
pre-processor for setting up the serial Exodusll output file and checking the input file for errors.
For problems that get information from the Chemkin library, the Chemkin interpreter must also be
run to create input files for the Chemkin suite of subroutines.

2.1. Mesh Generation

MPSalsa uses the Exodusll [40] finite element database format for storing the mesh and
solution information. The FASTQ [1] package can be used to generate two-dimensional meshes,
and either CUBIT [24] or FASTQ with GEN3D [17] can be used to create three-dimensional
meshes. All of the mesh generation is done on workstations.

During mesh generation, parts of the mesh are grouped as separate element blocks and
identified with an integer element block ID. In the Materials Specifications section of the
MPSalsa input file, the element block IDs of the computational domain are associated with a
material, which may have different transport properties and constitutive models than other
materials. Not all element blocks created in the mesh generation and stored in the Exodusll mesh
file need be associated with a material, in which case such element blocks are not included in
MPSalsa’s computational domain. Note, however, that severe load imbalances may result, since
load balancing is currently conducted only over all element blocks defined in an Exodusll file.

All surfaces where boundary conditions will be applied must be identified as node sets or
side sets during mesh generation. The application of boundary conditions is simpler if all surfaces
that share the same boundary conditions for all equations are grouped into the same node set or
side set. A node set is a list of nodes, while a side set contains sides of elements. Node sets can
have Dirichlet conditions applied to them, but cannot support Neumann or Mixed conditions
which require integration over the surface. Side sets may have all types of boundary conditions
applied (Dirichlet, Neumann, or Mixed), since the elemental information is available to compute
surface integrals.




2.2. Mesh Partitioning / Load Balancing

When running MPSalsa on more than one processor, the mesh is partitioned into
subdomains so that each processor “owns” a set of nodes. To assure that the work load is balanced
among the processors, an equal number of nodes is assigned to each processor. At the same time,
an optimal partition will minimize the amount of interprocessor communication needed to build
the finite element residuals and Jacobian matrix by grouping neighboring nodes together on one
processor.

The Chaco [22] package, developed at Sandia, is a general graph partitioning program. We
use the application “exolllb” to run Chaco to partition the nodes of a finite element mesh stored in
the Exodusll database. The “exolllb” program creates partitioning information and writes it in a
load-balance file (with a “.neml” extension) in the Nemesisl format [23]. (Note that this interface
to the load balancer is new as of May, 1996, so many of the example problems have load balance
files with the old naming convention, including the “.exoll” extension.) The load balance file
contains information about the nodes owned by each processor and about “ghost nodes,” which
are owned by another processor but needed for residual calculations. With this information, the
communication pattern for updates of ghost nodes for the mesh may be generated without any
interprocessor communication.

The utility “exolllb” is run on a serial workstation and requires either command line
parameters or a small input file to specify the name of the Exodusll mesh, the number of
processors to partition it into, and the partitioning method. There are a variety of options for the
partitioning algorithm, but we generally use the multilevel method [21]. An example of the input
file, often called “input-Idbl,” is shown in Figure 2.1. The only lines that are commonly changed
are the input Exodusll file name and the number of partitions (processors), which is expressed as
a product of two integers on the last line. Although any pair of integers whose product is 32 would
also partition the mesh for 32 processors, the 4x8 designation would minimize communication for
running on a rectangular set of processors that has dimensions 4x8. For hypercube-based
machines, the argument for thdachine Description line may be designated as
HYPERCUBE n, wheren is the dimension of the hypercube.

Additional options for “exolllb” parameters, including how to visualize the resulting mesh
decomposition, may found in the “exolllb” manual page, the Chaco User’s Guide [22], and the
Nemesis User’s Guide [23].

To partition the mesh, type the following command:
> exolllb -a input-ldbl




INPUT EXODUSII FILE = box200.exoll
GRAPH TYPE = NODAL

DECOMPOSITION METHOD = MULTIKL, NUM_SECTS=1
SOLVER SPECIFICATIONS = TOLERANCE=2.0e-3,USE_RQI,RQI_VMAX=200

MACHINE DESCRIPTION = MESH= 4x8

Figure 2.1. Sample input file, usually named “input-ldbl,” for ex@llIb load balancing command.

The load-balance file created from the file in Figure 2.1 will be named “box200-m32-bKL.neml.”
The root name is the same as the Exodusll mesh file, the “m” signifies a mesh architecture,
followed by the number of processors, while the “bKL” term refers to the multilevel method [21]
with Kernighan-Lin improvement [29]. For information on the partitioning algorithm, see the
Chaco [22] and Nemesisl [23] manuals.

2.3. Chemkin Interpreter

Kinetic and transport data, such as the mixture viscosity, mixture thermal conductivity,
multicomponent diffusion coefficients, and reaction rates, can be computed using the Chemkin
library [28]. If Chemkin is to be used, information on the species and reactions for both the gas
and surface phases must be supplied in the Chemkin and Surface Chemkin [5] input files. We use
the convention that these files have “.gas” and “.sur” extensions. For example, the mechanism for
the deposition of silicon nitride fror8iF, andNH3 in H, carrier gas is contained in the files
“Si3N4.gas” and “Si3N4.sur.” These input files must be interpreted once to form linking files that
can be efficiently read into MPSalsa. The current version that is installed in MPSalsa, Chemkinll,
creates binary linking files, so the interpretor must be rerun on every new machine.

A utility shell script called “interp” for executing the interpreters on a front-end
workstation or the MP machine itself has been created and resides in the “bin” directory for each
machine and operating system (e.g., “SMPSALSA_HOME/arch/sgi/bin/interp” for an SGI
workstation, and “$MPSALSA_HOME/arch/smos/bin/interp” for SUNMOS, where
$MPSALSA_HOME is the directory in which all MPSalsa libraries and utilities have been
installed). For all machines, interp can be run on the command line followed by the root name of
the Chemkin data files, for instance:

> interp Si3N4




for the silicon nitride mechanism. On the Intel Paragon, it can be run this same way using the
“paragon” executable (for the OSF operating system) or using the “smos” executable (for
SUNMOS).

The “interp” command is a script that runs three separate interpreters: “ckinterp” for the
gas-phase chemistry mechanism, “skinterp” for the surface-phase chemistry mechanism, and
“tranfit” for the dilute multicomponent gas-phase transport properties [5, 27, 28]. Several recent
publications include further details and examples of application programs using the Chemkin
libraries [6, 7, 33].

The “interp” utility creates three linking files needed for MPSalsa execution: “chem.bin,”
“surf.bin,” and “tran.bin.” In addition, two links to databases are created (“tran.dat” and
“therm.dat”). The other files that are created are not needed. The names of the three “*.bin” files
can be changed, but they must be specified in the Chemistry Specifications section of the input file
(see Section 3.4).

When “interp” is run on a workstation, copies of the “*.bin” linking files are also created:
“chem.bin.ws,” “surf.bin.ws,” and “tran.bin.ws.” The “guacamole” pre-processor, described in
Section 2.4, automatically adds the “.ws” extension to the file names given in the input file before
looking for the files. The Chemkin binary files created on a parallel machine will not overwrite
the “.ws” files, so “guacamole” can be run on one processor using the same input file as the
parallel run.

MPSalsa will soon be upgrading to the newest Chemkin version, Chemkinlll, which
allows for the creation of ASCII (and, therefore, machine-independent) linking files, which will
greatly simplify the use of the interpreter.

2.4. Guacamole

A pre-processing routine called “guacamole” runs on a single processor and has two main
purposes: to error-check the input file and to produce a serial Exodusll output file, creating fields
and header information for user-defined output variables. This utility uses the same 1/O routines
as MPSalsa. The command for executing the pre-processor is

> guacamole <input-file>
where<input-file> is the name of the MPSalsa input file, and is, by default, “input-salsa.” The
executable is normally in the “bin” directory for the current workstation, so for an SGI
workstation, the executable is “SMPSALSA_HOME/arch/sgi/bin/guacamole.” The preprocessor
sets up header information in the Exodusll output file, which requires that all variable information




be predefined. However, once the variables are defined, time series data of arbitrary size may be
efficiently output to the Exodusll file.

When “guacamole” creates the Exodusll output file, it writes all the mesh information to
the file and creates space for the output of the solution varidllesefore, whenever the mesh
changes or the number of variables changes, “guacamole” must be rerun. For example, if a user
has been running a fluid-mechanics problem (Problem flyjuke flow ) and decides to add
the energy equation (Problem Typkid_flow_energy ) and request output of the
temperature unknowns, “guacamole” must be rerun. It must also be rerun if the user redefines the
selection of solution components to be included in the output file.

If “guacamole” is not run to generate the output file and scalar output of the results is
requested, then MPSalsa will quickly terminate with the message:

check_output_specs: WARNING, output file “output_file.exoll” does not exist!
[ex_open] Error: failed to open output_file.exoll read only

exerrval = -1
ERROR returned from ex_open on Processor 0!

2.5. Serial and Parallel I/O Utilities

MPSalsa may be run using either serial (i.e., scalar) or parallel I/O facilities. The least
complicated way to run MPSalsa is by using the scalar input — scalar output mode. A diagram of
what is involved is included in Figure 2.2. As an initial step, “guacamole” is run to create the
serial Exodusll output file. The pre-processor “guacamole” parses the MPSalsa input file to
determine the user’s choice of variables to output. When Chemkin is being used, “guacamole”
also parses the Chemkin linking files to obtain the number of gas-phase species and their
character string names.

The user is now ready to run MPSalsa in scalar /0 mode, either on one or on many
processors. In MPSalsa, processor O first reads the MPSalsa input file and, when Chemkin is to be
used, the Chemkin linking files. This information is broadcast to all processors. Then, processor 0
reads the serial load balance file, and its information is broadcast to all nodes and processed in
parallel. Once this step is done, each processor knows which nodes it “owns,” and additionally,
which nodal information it needs from other processors. Processor 0 then reads the Exodusll
mesh file and broadcasts its information to all processors. Each processor searches the messages
for mesh information that it needs. Finally, each processor renumbers elements and nodes
contiguously in its local memory. Local-to-global mapping vectors are retained for output
processing.

Alternatively, MPSalsa can do I/O on the parallel file system using the Nemesisl package
[23], as depicted in Figure 2.3. The parallel format is a multiple file format, with the number of




SERIAL FRONT END PARALLEL COMPUTE NODES

I

input-salsa |

chem.bin |
surf.bin I 1

[

tran.bin Idbl.nem| MPSalsa

Proc O
input.exoll >
( )\\\ N

guacamole
MP MP MP MP

T
|
|
|
ErrorCheck| Qutput file | Salsa|HSalsa HSalsa HSalsa
|
|
|
|

Setup
Proc 0 Proc 1 Proc 2 Proc 3

| solution MPSalsa
output.exoll <_| Output — |

Proc 0
I

Reserve Space for Output fields

Figure 2.2. Scalar Input - Scalar Output mode for 1/0. The Broadcast and Fan-in routines have the
potential to create 1/O bottlenecks.

files equaling the number of processors. A file name’s suffix denotes which processor owns the
file. The file structure within each parallel file is similar to the serial format, with the addition of
local-to-global mapping information. It includes all load-balancing information contained in the
serial load balance file as well as all information needed to set up the local computing
environment on a processor, including ghost-node and communication information.

The parallel 1/0 capability is enabled in MPSalsa via compilation flag options. The pre-
processor “guacamole” must be run to include user-defined header information in the output file.
The “ex2pex” utility, part of the Nemesisl package [23], is run next on the parallel computer. It
translates the serial Exodusll file into the parallel file format and stores the parallel files on the file
system to be used for MPSalsa’s parallel I/O. It requires exactly the number of processors that
will be used in the subsequent MPSalsa calculation. When MPSalsa is executed, processor 0 reads
the input file and broadcasts its information to all processors as in the serial /0 case. However, in
the parallel 1/0O case, each processor then reads its own parallel Exodusll file to initialize the
mesh. Parallel solution output occurs in a reverse fashion, with each processor writing its own
portion of the solution vector to its own output file.

For visualization of results, results in a set of parallel Exodusll files must be collected to a
serial Exodusll file. A utility “pex2ex” is currently being developed that will automatically
combine parallel Exodusll files into one Exodusll file. Until it is completed, however, two

10



SERIAL FRONT END PARALLEL COMPUTE NODES

I
I
I
Idbl.neml : exzpex
input.exoll | Proc 0

‘\

guacamole ex2pex _|ex2pex ] ex2pex

Proc O Proc 1 Proc 2 Proc 3

Gle.4.par9 GIeA.para @e.4.par36le.4.par9
inputi‘ output inputiTomput input‘?outpul input¢?output

ErrorCheck ggttggt file

Reserve Space
for Output fields

output.exoll

>'

in%ut—sg[sa MP MP MP MP
“surtbin | Salsa Salsa F— Salsa FH Salsa
tran.bin | Proc 0 Proc 1 Proc 2 Proc 3

[

!

| g

! . MPSalsa

| Solution

| Output Proc O

Figure 2.3. Parallel I/O capabilities of MPSalsa.

methods of obtaining serial Exodusll files exist. Both serial and parallel output may be specified
for the run (see Section 3.9). This option will produce complete Exodusll files containing results
from all time steps on both the serial and parallel file systems. If only the final result in a set of
parallel Exodusll files is desired, the user can restart MPSalsa using the final result as the initial
condition read from the parallel file system (see Section 3.8), maintaining the same stopping
criteria as were used in the original computation, and specifying serial output. MPSalsa takes one
Newton step to recognize that the stopping criteria are satisfied and writes the result to the serial
file system.

2.6. Compiling MPSalsa

MPSalsa can be compiled on a number of different architectures. The GNU “make”
program should be used to process the two-level Makefile structure. Machine-specific makefiles

11



have been created since the message-passing routines, compiler names, and compiler options vary
between machines. The source code usually is installed in a directory named “*/Salsa.” This
directory usually has the following files and subdirectories (identified by appending “/*):

> s
CvVs/ Obj_ncube/ Obj_sqil Obj_sun/
CVS-CFile-Header Obj_ncube_ps/ Obj_sgim4/ el/
CVS-MFile-Header Obj_paragon/ Obj_smos/ md/
Makefile Obj_paragon_ps/ Obj_smos_ps/ pe/
Obj_alpha/ Obj_puma/ Obj_sol/ ps/
Obj_hp/ Obj_puma_ps/ Obj_sp2/ rf/

The source code for MPSalsa is stored in the last five subdirectories, which have two-character
names. The directories starting with “Obj_*" hold the compiled object files, dependency files, and
the executable (“salsa”) for a specific machine/operating system. All of the parallel machines
have the additional option of compiling for parallel I/O, for which there are the separate
directories with the “_ps” suffix.

To compile for a specific machine/operating system, the GNU make utility “gmake” is
used. The target is the same as the extension on the “Obj_*" directory. For example, to compile
for a Silicon Graphics workstation, a user would type

> gmake sgi
in the “*/Salsa” directory. To compile for the Intel Paragon with the SUNMOS operating system,
a user would type

> gmake smos

on a workstation that has cross-compilers installed.

MPSalsa runs on top of several software packages. Before MPSalsa may be linked, these
packages must be compiled and stored in architecture-dependent directories. For example, the
following directories are used to store libraries, include files, and binaries for SGI computers:
$MPSALSA_HOME/arch/sgi/lib, $MPSALSA_ HOME/arch/sgi/include, $MPSALSA HOME/
arch/sgi/bin, where $MPSALSA_ HOME is the directory in which all MPSalsa libraries and
utilities have been installed. Pointers to these directories are included in the top level MPSalsa
Makefile. The first I/O package needed is NetCDF [37], the underlying format of the Exodusll
unstructured finite element package [40]. Exodusll is the next package that needs to be installed.
The other I/O package needed is Nemesisl [23], the parallel extension to Exodusll. In addition,
the Chemkin libraries [5, 27, 28] are needed if the user wants to use this database for ideal gas
transport and gas- and surface-phase reactions. The Chaco package is need for load balancing
[22]. MP linear solvers within MPSalsa are implemented in the Aztec package [26], which in turn

12



needs to have the Y12 package of sparse matrix linear solver routines [49]. Aztec, as well as a few
of the other packages, require LAPACK [31] and BLAS [4] as well.

2.7. Running MPSalsa

The successful compilation of MPSalsa results in the creation of an executable in the
machine-dependent subdirectory, “*/Salsa/Obj_xxx/salsa.” MPSalsa can be run on workstations
by executing the program with the input file name as the argument, i.e.,

> salsa <input-file>

The default input file name is “input-salsa.”

On the Intel Paragon with the SUNMOS version of MPSalsa (whose executable is in the

“Obj_smos” subdirectory), MPSalsa can be executed with the following command,
> yod -sz <np> salsa <input-file>

wherenpis the number of processors. The valuepmust agree with the number of processors
specified in the input file and the number of processors that the mesh was partitioned for.
Execution of the “yod” command will spawn an MPsalsa job in the compute partition of the
Paragon. As described in Section 2.5, either a serial file or a set of parallel files on the parallel file
system must have been initialized previously for solution output to occur. Best results are
obtained when both the executable and the 1/O files are stored on local Paragon disks, rather than
on nfs-mounted disks.

13



3. The Input File

In MPSalsa, problem-specific parameters are specified through an input file, which has the
default name of “input-salsa.” The input file is organized into 11 sections. The inclusion of certain
sections is mandatory (General, Solution, Solver, Material, Boundary Condition and Initial
Condition/Guess Specifications); other sections are optional (Enclosure Radiation, Output,
Parallel I/0O and Function Data Specifications). The Chemistry Specifications section is required
only for problem types for which mass balance equations are solved (see Table 3.1). Each section
is identified by MPSalsa by a unique section header, shown between two dashed lines in all of the
examples below. MPSalsa does not parse a section unless it can find the section’s header. If a
required section’s header is not found, MPSalsa generates an error message and exits. If an
optional section’s header is not found, no error message is generated.

Each section is made up of several lines. Each line consists of a keyword followed by an
equals sign and arguments that can be strings, integers, flags, or real numbers. In this chapter,
each line of input is described and the type of acceptable argument is given in italics. When there
are a small number of choices for an argument, sugasa®r no, they are represented using the
format{yes | no} . Optional text is listed between square brackets, suflas] , and input
lines that are optional are completely enclosed in square brackets. For these input parameters,
MPSalsa assigns the default value that is specified in the text.

3.1. General Specifications

General aspects of an MPSalsa execution are specified in the General Specifications
section of the input file. ltems such as the type of equations to be solved and the number of
processors to be used in obtaining a solution are given in this section. This section is required and
must begin with the General Specifications header, as illustrated in Figure 3.1.

General Specifications

Problem type = whole_enchilada

Input FEM file = cvd-reacl.exoll

LB file = cvd-reacl-m256-bKL.neml
Output FEM file = cvd-reacl-out.exoll

Number of processors =256

Cartesian or Cylindrical when 2D = Cartesian

Stabilization = default

Debug =3

Figure 3.1. General Specifications example section.

14



Problem type = string

The problem type input file line tells MPSalsa which equations are to be solved. MPSalsa
can solve the Navier-Stokes equations in conjunction with the continuity equation, an energy
equation, and an arbitrary number of species mass balance equations. Currently being tested are
equations for flow in porous media and the and equations for modeling turbulent flow, which
will be detailed in future releases of this document. Equations for modeling plasma and
electromagnetism may be incorporated in the future, as may the capability of using a pre-
computed velocity field in the convective terms of the energy and species transport equations (for
decoupled physics).

The current strings recognized by MPSalsa and the equations that they enable are listed in
Table 3.1.

Equation Type- Momentum Total Mass Energy Species Mass
Number of Equations in Type Npim 1 1 Ng
Problem Type
fluid_flow X X
energy_diff X
mass_diff X
fluid_flow_energy X X X
fluid_flow_mass X X X
energy_mass_diff X X
whole_enchilada X X X X

Table 3.1. The seven currently recognized strings foPthblem Type input file line are listed, and the
governing equation types that each flag enables are indicated. The number of equations associated with each type is
shown in the second row, wth;Dim is the number of spatial dimensions in the problb}g and is the number of
species, specified in Section 3.6.

Input FEM file = filename

This line specifies the name of the input Exodusll file containing the FEM geometry
information. This file usually has a “.exoll” extension. It can include a path specification. This file
must exist prior to the run.

15



[LB file = filenamé

This line specifies the name of the load-balance file for runs to be performed on more than
one processor. It can include a path specification. The file must be in the Nemesisl format, and
usually has a “.neml” extension. (Older files have the “.exoll” extension.) This input line is read
only for runs performed on multiple processors. Default = none; error if not specified for multi-
processor runs.

[Output FEM file = filenamé

This line specifies the nhame of the Exodusll output file. This file is also used to provide
initial solution data for restarts, which are specified orSetenitial Condition/Guess
input file line in Section 3.8. The file name can include a path specification. This Exodusll file
must exist prior to the run, having been generated by the “guacamole” preprocessor (see Section
2.4). Visualization of the FE solution uses this file. This input line is used only for scalar 1/O; for
runs utilizing parallel 1/0O, special file names are generated (see Section 3.10). Default = none;
error if not specified for restarts or runs with scalar output.

[Number of processors = integel

This line is used to specify the number of processors that will be utilized in solving the
problem. For multiprocessor runs, this number must match the number of processors that the
mesh was partitioned for. Defaultl=

[Cartesian or Cylindrical when 2D = string]

This line specifies what coordinate system to use for 2D problems. Currently the only
valid value is Cartesian . Future choices will includeCylindrical_2 and
Cylindrical_3 for axisymmetric problems with two or three momentum balances to be
solved. Default €artesian

[Interpolation order = string]

This line specifies the interpolation order for all quantities in the finite-element model.
Valid options ardinear andquadratic . Default =linear

[Stabilization = {default | supg}]

There are currently two choices for stabilization of the FE equataefault and
supg . Thedefault  option is a pressure-stabilized Petrov Galerkin method [25, 48], which

16



allows the use of equal-order interpolation of the pressure and velocity primitive variables. The
supg option activates the streamwise-upwinding Petrov-Galerkin stabilization scheme [3] in
addition to the pressure stabilization. Streamwise upwinding improves convergence to highly-
convected solutions (high Reynolds number flows) and reduces the amplitude of oscillations in
the solution. Default default

[Debug = integei

This line specifies how much information should be outpugtdoutduring the run of
MPSalsa, as well as how much summary information the linear solver library should output. The
value ofintegermust lie in the range [0, 10], with 2 being a common value. Examples are:

Debug =0 Minimal info is printed tostdout only a summary of
important flags and entries into important code segments are
printed.

Debug >0 Along with the above information, timing information and

summary information on the global FE model (not the local
processor FE model), node sets, side sets, and boundary
conditions are printed. The solver library prints out residual
summaries as well.

Debug >6 Along with the above information, summary information on
the local processor FE model is printed. Processor-based
vector quantities such as residual, initial guesses, and
solutions are included. Processor-based communication
summaries and local-to-global mapping information are
also printed.

Debug >9 Along with the above information, information on the local
matrix is printed. This can be a significant amount of
information and is really meant to debug smaller problems
in detalil.

Default =2.
3.2. Solution Specifications

The Solution Specifications section of the input file allows the user to choose the desired
solution type, such as steady-state or time-dependent, and to control aspects of the solution

17



procedure, such as the time step size. This section of the input file is mandatory and must begin
with the Solution Specifications header, as shown in Figure 3.2.

Solution Specifications

Solution Type = transient
Order of integration/continuation = 1

Step Control =on
Relative Time Integration Error = 4.0e-3

Initial Parameter Value =100.0

Initial Step Size =1.0e-5
Maximum Number of Steps =75
Maximum Time or Parameter Value =100.0

Figure 3.2. Solution Specifications section example.

In the rest of this section, each line of the Solution Specifications section is described
separately. Since time-dependent and continuation runs both take steps from one solution to the
next, many of the lines have dual meanings depending on the solution type.

Solution Type = string

This line specifies the type of solution desired, which can be one of the following five
strings: steady , transient , pseudo, continuation , and optimization . If the
steady string is specified, the code will attempt to solve the steady-state version of the
governing equations (with no time derivative terms). The rest of this section of the input file is
then ignored.

When the solution type tsansient or pseudo , the time-dependent equations will be
solved. Atransient run attempts to follow the solution in a time-accurate manner by keeping
the integration error under a specified tolerance, whilpskedo option is used to time step to
a steady state (or past uninteresting transient behavior) by aggressively increasing the time step
size regardless of the error in the time integrator. The specifics of the integration and stepping
scheme can be manipulated with the subsequent input file lines.

The continuation solution type is used to solve for a series of steady-state solutions
as a function of a parameter. The steady-state versions of the governing equations are solved, the
continuation parameter is incremented and a new steady-state solution is sought. The subsequent
lines in this section are used to control the run. The user has the flexibility of choosing any
combination of physical properties and boundary condition values as the continuation parameter,
but must do so by programming the routingser_continuation in file
“rf_user_continuation.c” and recompiling (see Section 4.7 and Section 5.4).

18



Theoptimization solution type is not currently a supported feature, but has been used
successfully for one application [8]. This solution type is similar to continuation, but instead of a
single parameter being incremented within MPSalsa, a set of parameters is changed by an
external optimization program. MPSalsa must be modified to calculate and write out an objective
function after every solution for the optimization package to use.

[Order of integration/continuation = integel]

This flag has separate meanings depending on whether the solution type is time-dependent
(transient or pseudo) or continuation . Fortransient or pseudo solutions, this
flag has a value ofl for first-order Forward-Euler/Backward-Euler predictor/corrector
integration, and a value @f for a second-order Adams-Bashforth/Trapezoid-Rule scheme. (The
second-order scheme starts with pair of first-order steps to get started.) Défault =

For continuation runs, this flag can have a valueOofl, or 2. A value of0 turns on
zero-order continuation, where the solution at the previous step is used as an initial guess for the
current step. (This is equivalent to changing the value of the continuation parameter in the input
file and restarting from the previous solution.) A valud aklects first-order (or Euler-Newton)
continuation. In this case, the tangent to the previous solution with respect to the continuation
parameter is calculated numerically, and is used to calculate an initial guess for the current
solution. For problems whose solutions vary linearly with respect to the continuation parameter,
this guess should be the correct solution. A flag valies#lects arc-length continuation, which
is not currently implemented. This option will allow the user to follow steady-state solution
branches that pass through turning points with respect to the continuation parameter. Default =

[Step Control = {on | off}]

The Step Control input line is read fortransient , pseudo, and
continuation solution types, and can have valuesmwfor off . When step control isn, the
step size will be adjusted after successful stepdr&asient runs, the step size is chosen as a
function of the value of thRelative Time Integration Error (described below). For
pseudo and continuation runs, the step size will always be increased following a
successful step, with the increase depending on the ratio of the number of Newton iterations
needed for convergence divided by the maximum number of Newton iterations allowed. If the
value of theStep Control  is off , the step size is never increased. For any of the solution
types and either of the flag values, the step size is cut in half after a failed step (i.e., when a
converged solution is not found in the maximum number of Newton iterations). Detault =

19



[Relative Time Integration Error = floaf]

The Relative Time Integration Error input line is used only faransient
solutions. This line sets the target for the error incurred on each time step. A value of the time
integration error is calculated using the difference between the predicted and corrected value of
the solution by the method of [20]. If this estimated error is twice the value set in the input file, the
time step is rejected and the time step size is cut in half. Otherw&epifControl  ison, the
ratio of the input error value and the estimated error are used to pick the next step size. The value
of the Relative Time Integration Error must be greater than th®olution
Relative Error Tolerance , Which is input in the Solver Specifications section to set the
convergence criterion for the linear solver. DefaultG=>

[Initial Parameter Value = floaf]

The Initial Parameter Value input line is used only for continuation runs. The
number is the initial value of the continuation parameter. See Section 4.7 for details on the
implementation of continuation. Default = none, which is an error for continuation runs.

[Initial Step Size = floaf]

The Initial Step Size input line is used fortransient , pseudo, and
continuation runs. The value is the size of the first time step for time integration runs and the
first continuation parameter step size for continuation runs. \Stegm Control is off , this

step size stays constant throughout the run as long as each step converges. Default = none, which
is an error fotransient  , pseudo , andcontinuation runs.

[Maximum Number of Steps = integel

This input line is used fdransient , pseudo , andcontinuation runs. When this
maximum number of steps is reached, the program will terminate. Default = 1000.

[Maximum Time or Parameter Value = floaf]

This input file line is used fdransient , pseudo , andcontinuation runs. When
this value is exceeded by the time value in time-dependent runs or the continuation parameter in
continuation runs, the program will terminate. Default = none.

20



3.3. Solver Specifications

The Solver Specifications section of the input file controls the nonlinear and linear solver
routines used in MPSalsa. It is a required section of the input file. An example of this section,
including the Solver Specifications header, is found in Figure 3.3. Each line is discussed below.

Solver Specifications

Override Default Linearity Choice = default

-- nonlinear solver subsection:

Number of Newton Iterations =15

Use Modified Newton Iteration =no
Enable backtracking for residual reduction =no
Choice for Inexact Newton Forcing Term =4
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-3
Solution Absolute Error Tolerance =1.0e-8

-- linear solver subsection:

Solution Algorithm = gmres
Convergence Norm =0
Preconditioner =no_overlap_ilu
Polynomial =LS,1

Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace =25
Maximum Linear Solve Iterations =50

Linear Solver Normalized Residual Tolerance = 1.0e-6

Figure 3.3. Solver Specifications section example.

[Override Default Linearity Choice = string]

This input line can be set to three possible stridgfault |, linear , ornonlinear
The code decides whether the set of governing equations are linear or nonlinear depending on the
problem type specified at the top of the input file. For instancenargy_diff problem is
assumed to be linear, whileflaid_flow_energy problem is assumed to be nonlinear. If
users decide to override this default, as would be needed, for example, when using a temperature-
dependent thermal conductivity with an otherwise linear heat equation, they can set the flag to
linear ornonlinear . Default =default

21



3.3.1. Nonlinear Solver Subsection

[Number of Newton Iterations = integel

This line specifies the maximum number of Newton iterations that MPSalsa will allow in a
single nonlinear solve. If this maximum is reached and the convergence criterion has not been
met, the nonlinear solve ends unsuccessfully. For steady-state problems, MPSalsa terminates with
a fatal error. For time-dependent problems, a convergence error is triggered for the current time
step, and control is returned to the time stepping routine. Currently, the time stepping routine
reverts to a Backward Euler method, halves the time step, and tries again. Similarly for
continuation problems, the continuation algorithm cuts the parameter step-size in half and
attempts to resolve the problem. Default = 25.

[Use Modified Newton Iteration = {yes | no}]

A modified Newton iteration uses a previously-computed preconditioning matrix for the
Newton step, instead of recomputing the preconditioner from the Jacobian at the current solution.
This option is not yet supported. Defaulbe.

[Enable backtracking for residual reduction = {yes | no | default}]

When a Newton iteration causes the norm of the residual to increase rather than decrease,
backtracking will not accept the update. Instead, the algorithm looks in the same direction as the
solution update from the Newton iteration. Performing residual calculations along the solution
path given by this direction, it finds the solution that minimizes the residual [9, 10]. Backtracking
has been shown in some cases to help converge to a steady-state when Newton’s method without
backtracking failed. Thdefault flag disables backtracking ftnansient runs but enables
backtracking for all other solution typgsséudo , steady , andcontinuation ). Default =
default

[Choice for Inexact Newton Forcing Term = integel

An inexact Newton’s method uses Newton’s method with an iterative linear solver, where
the linear solver method (e.g., GMRES) is not forced to fully converge at each step. The
reasoning behind this method is that it is a waste of computational time to fully solve the linear
system when the nonlinear system itself is far from a converged solution. Inexact Newton steps
are controlled by a single parametgg_k which is the required drop in the ratio of the norm of
the residual to the initial norm of the residual for a given linear solve. A normal Newton’s method
uses a small, constant value &ta_kso that each linear solve is accurate, as it would be when

22



using a direct solver. This is the case when the inexact Newton forcing term igl setitto the
eta_ktolerance value given by thénear Solver Normalized Residual Tolerance

input line below. Other values for the inexact Newton forcing term, 0-3, allow for larger values of
eta_k so that each Newton iteration takes less time; however, more Newton iterations are often
required for convergence. The possible values for the flag are summarized in Table 3.2. Default =
0.

Flag Value Choice foeta_kin Inexact Newton’s Method
0-1 Eisenstat and Walker, Method 1 [9, 10]
2 Eisenstat and Walker, Method 2a
3 Eisenstat and Walker, Method 2b
4 Linear Solver Normalized Residual Tolerance (“Exact Newton”)

Table 3.2. This table summarizes the choices fanteact Newton forcing ternT.he variable eta_k is the required
drop in the linear residual for a successful linear solve.

[Calculate the Jacobian Numerically = {yes | no}]

A fully numerical Jacobian may be used in MPSalsa for debugging purposes. Instead of
the Jacobian matrix being computed analytically, the residual equations for each element are
recomputed one extra time for each unknown in the element while that unknown is numerically
perturbed. A forward difference formula is used to calculate the Jacobian contributions. For
problems with large numbers of unknowns per node, the numerical Jacobian can be more than an
order of magnitude slower than the analytic Jacobian, in part because rigorous property
evaluations for multicomponent gas equations are very expensive. The numerical Jacobian is a
powerful tool for debugging changes to the governing equations as well as for checking the effect
of physical property variations -- some of which are ignored in the analytic Jacobian but included
in the numerical one -- on the convergence behavior. Defandt =

[Solution Relative Error Tolerance = floaf]
[Solution Absolute Error Tolerance = floaf]

These two flags set the tolerances that are used in calculating the convergence criterion for
the update vector in the nonlinear solver. This criterion is

18]

NZe|x|+£

<1.0, (3.1)

23



wheree, anct, are the relative and absolute tolerances entered in the above in@jt lines,  is the
update for the unknowr , aridl s the total number of unknowns. The quantity on the left side
of this inequality is what is output from the solver as the update norm.

The convergence of the nonlinear solver requires that the above inequality be met and that
the nonlinear residual drop by two orders of magnitude from its original value. (This ratio is
output by the code as the “Ratio of scaled residual_k/residual_0.") Defauit: 10° and
€)= 102,

3.3.2. Linear Solver Subsection

[Solution Algorithm = string]

This flag chooses the linear solution algorithm from the Aztec package. The choices are
listed in Table 3.3. For a description of the different methods, see the Aztec manual [26]. Default
=gmres.

Keyword Linear Solution Algorithm

gmres Restarted General Minimized Residual Method

tfgmr Transpose-Free Quasi Minimum Residual Method

cg Conjugate Gradient Method

cgs Conjugate Gradient Squared Method

cgstab Stabilized Biconjugate Gradient Method

lu Full sparse LU factorization (available only on 1 processor)

Table 3.3. This table enumerates the choices of li@ehartion Algorithmflag. The strings in the left columns are the
keywords recognized by MPSalsa.

[Convergence Norm = integel]

There are five choices for the norm that measures the progress of the linear solver. These
are described in Table 3.4. The most common choice is 0, since this corresponds to the norm in
the GMRES method. DefaultG:

[Preconditioner = string]

This flag chooses the preconditioning method. For many problems, a good preconditioner
is essential if the linear solver is to converge. The more robust preconditioning methods require
more memory. Table 3.5 lists the available options for the preconditioner flag. Default =
no_overlap_ilu

24



Convergence Norm Specified Norm

0 #4219

1 [F2/ 101,

2 ¥/ 1A,

3 I B+ 10,5

4 A
DN £ DegfX| + €500

Table 3.4. The five choices for fienvergence Norrflag are shown. The linear system is Ax=b, for which at each
iterate k (in the linear solution algorithm)‘f £b-AK The toleranceg€, ané are those used by the nonlinear
solver (Eq. (3.1)). For nonlinear problems, an initial guess’eDxs used, so choices 0 and 1 are equivalent.

Keyword Preconditioner

full_overlap_ilu ILU(0) and Block-ILU(0) with one level of overlap between processors
full_overlap_bilu

diag_overlap_ilu ILU(O) and Block-ILU(0) with overlapping of diagonal blocks between
diag_overlap_bilu processors.

no_overlap_ilu ILU(0) and Block-ILU(0) with no overlapping between processors.
no_overlap_bilu

poly Polynomial preconditioner, with the order specified by the next input line.
sgs Domain decomposition, no overlap, symmetric Gauss-Seidel.

jacobi Jacobi preconditioner.

none No preconditioner applied.

Table 3.5. This table enumerates the choices faPtaeonditioner flag. The strings in the left columns are the
keywords recognized by MPSalsa. Bealing file line has more options that can be used in combination with
these.

[Polynomial = {LS | NS}, integet

When a polynomial preconditioner is selected in the previous input line, this line specifies
the type of polynomial and the order. The two choices for the polynomial typeSiréof least-
squares, andNIS’ for Neumann series. The polynomial order is an integer that must be preceded
by a comma. For a least-squares polynomial, the choices for the order are 0-9, while for the
Neumann series the choice is O—infinity. DefauliS;3 .

25



[Scaling = string]

TheScaling option specifies what type of scaling is done by the linear solver at the start
of the linear solve. Scaling is similar to preconditioning but is carried out only once at the
beginning of the linear solve. Each scaling option may be used in conjunction with any choice of
a Preconditioner , although only the symmetric scaling options should be used with the
conjugate gradient preconditioner. The available scaling options are listed in Table 3.6. Block
Jacobi scaling uses Gaussian elimination to invert the diagdhgk N,) blocks of the matrix,
where N, is the number of unknowns per node. The inverted block is then multiplied into the
matrix and right-hand side. Row-sum scaling uses a diagonal matrix as the preconditioner, with
the row sums as the diagonal entries. Defauttve sum.

Keyword Scaling Method

block_jacobi Right hand scaling using the inverted diagonal block.

sym_diag Symmetric (right and left) scaling using the matrix diagonal.

row_sum Right hand scaling with the sum of the absolute values of the column enptries.
none No scaling.

Table 3.6. This table enumerates the choiceSéaling . The strings in the left columns are the keywords
recognized by MPSalsa.

[Orthogonalization = {classical | modified}]

For the GMRES method, the vectors of the Krylov subspace must be made orthonormal.
The two options for the Gram-Schmidt orthogonalization method ctassical and
modified  [18]. While the modified method is more stable numerically, its parallel
implementation is significantly more costly. In our experience, classical orthogonalization has
worked well for the problems we have solved. Defaullassical

[Size of Krylov subspace = integet

For the restarted GMRES meth@&b(ution Algorithm choicegmres ), the Krylov
subspace size is the number of Krylov vectors to store before restarting. With higher values of this
number, convergence of the linear solver is more robust, but more memory is needed. Each
directional vector that is saved requires an amount of memory equivalent to an entire solution
vector. For finding steady states of large problems, this number can often (and should for
maximum efficiency) exceed 100. Defaulé4.

26



[Maximum Linear Solve Iterations = integet

This line specifies the maximum number of iterations allowed in any given linear solve.
When this maximum is reached before the residual has been reduced by the specified amount (as
specified by theChoice for Inexact Newton Forcing Term and Linear Solver
Normalized Residual Tolerance input lines), the linear solver terminates and an error
condition is returned to the calling program. For nonlinear problems, the solution is accepted
nonetheless and the next Newton step is started. For restarted GMRES, this number is usually
picked to be a small integer multiple (2 or 3) of the Krylov subspace size. Def#t.=

[Linear Solver Normalized Residual Tolerance = floaf]

For linear problems and nonlinear problems for which @mice for Inexact
Newton Forcing Term =4, this input line specifies, , the drop in the residual required by
the linear solver before it terminates successfully. The linear residual is checked after every
iteration of the linear solver, so the solver does not do more iterations than necessary. Default:
—4 . —6 .
g, = 10 * for nonlinear problemsg, = 10 for linear problems.

3.4. Chemistry Specifications

The Chemistry Specifications section of the input file allows control over much of the
reaction and diffusion processes for problems with mass transfer. It is a required section of the
input file. A sample section of the input file, including the Chemistry Specifications header, is
shown in Figure 3.4.

Chemistry Specifications

Energy equation source terms =on

Species equation source terms =on

Pressure (atmospheres) =1.0

Thermal Diffusion = off

Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin

Surface chemkin file = surf.bin

Transport chemkin file = tran.bin

Figure 3.4. Chemistry Specifications section example.

[Energy equation source terms = {on | off}]
This flag allows the user to tuon andoff the energy source terms due to chemical
reactions. Default an.

27



[Species equation source terms = {on | off}]

This flag allows the user to tuom andoff the chemical reactions in the interior of the
domain. Surface reactions are controlled separately through the boundary condition section.
Default =on.

[Pressure (atmospheres) = floaf]

For problems with £HEMKINmaterial type (see Section 3.6), the ideal gas equation of
state is used to calculate the reaction rates and physical properties, such as density. This flag sets
the thermodynamic pressure in the domain, which is assumed to be nearly constant. The local
deviation of the pressure due to hydrodynamics, which is captured by the pressure unknown for
fluid flow problems, is assumed to be negligible for the low Mach number applications that
MPSalsa is written for. This input line is not generally relevant for other material types, although
a user could write their own material property functions that use this quantity, which is named
Ptherm in the code. Default = 1.0.

[Thermal Diffusion = {on | off}]

Thermal diffusion -- also called the Soret effect -- can be tuonedr off by this flag.
Thermal diffusion can become a significant contributor to mass transfer when gas species of
greatly varying molecular weights are exposed to a steep thermal gradient. This flag may be
turned off to save computational time when the effect is small, or to simplify the equations for
better convergence behavior. The thermal diffusion term can be responsible for a modest increase
in time for the matrix fill. Currently, the thermal diffusion term is nonzero only foCtHHEMKIN
material type. Default ®n for CHEMKINmaterials.

[Multicomponent Transport = string]

This flag will, in the future, allow the user to switch between different diffusion
formulations for multicomponent transport. Currently, mixture-averaged diffusion is the only
option, and is specified by theixture avg flag. Stefan-Maxwell and Dixon-Lewis
formulations are planned, and will take the flag vagiefan_maxwell  anddixon_lewis
These flags are recognized but not included. Defamlixture_avg

[Chemkin file = chem.bin]
[Surface chemkin file = surf.bin]
[Transport chemkin file = tran.bin]

These three input lines specify the names of the data files for problems that use Chemkin
for the material properties. The Chemkin interpreter program “interp” (see Section 2.3) creates

28



these files with the following names, which are also the defaehsm.bin , surf.bin
tran.bin

3.5. Enclosure Radiation Specifications

Enclosure radiation algorithms that are used in the Coyotell code [16] are being included
in MPSalsa. However, this capability is still under development and is not yet supported. The
input-file section shown in Figure 3.5 may be included; however, it is optional.

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Figure 3.5. Enclosure Radiation Specifications section example.

3.6. Material Specifications

In the Material Specifications section of the input file, the user can set the physical
properties of the system. The computational domain can consist of multiple materials, each with a
unique set of properties; at present, however, the same physics (i.e., governing equations) must be
solved in all materials. A multi-physics capability is under development.

An example of the Materials Specifications section is given in Figure 3.6. This section is
required by MPSalsa. It differs from the previous sections in that it is mostly free-format. Only
the first two lines and the last line are required.

Number of Materials = integer

This line must be the first line of the Materials Properties section. It specifies the number
of materials (usually one) that make up the computational domain. For multiple materials, the
input lines that are described below are repeated multiple times. The materials are assigned to a
block of elements in the mesh using EleEM_BLOCK _IDSine described below.

The first line for each material specifies the material type, material ID, and material name,
and has the format:

Material_Type = integer_id* Material_Namé
The Material_Type string can be one of several keywords. These keywords are listed in
Table 3.7. TheCHEMKINtype is special, in that it tells MPSalsa to get the material properties
from the Chemkin database. Tineger_idis a unique integer identification (ID) number for the
material. The user can supply any string, within quotes, aMéterial Name which is only
echoed back by MPSalsa in place of the integer ID.

29



Material ID Specifications

Number of Materials =1
BOUSSINESQ =0 “3Yk-gas”
ELEM_BLOCK_IDS = 12

NUM_SPECIES =3
SPECIAL_SPECIES_EQN = yes

SPECIES_NAME 1 YK_O
SPECIES_NAME 2 Yk_1
SPECIES_NAME 3 Yk_2

DIFF_COEFF Yk 2 0.4
DIFF_COEFF Yk 0 0.5
DIFF_COEFF Yk_1 0.6

WTSPECIES Yk_ 0 1.0
WTSPECIES Yk_1 1.0
WTSPECIES Yk_2 1.0

DENSITY =10

CP =20

VISCOSITY = 3.0
THERMAL_CONDUCT = 1.0
VOL_EXPNS =50
G_VECTOR =0.0,9.8,0.0

Q_VOLUME_VAR = qg_xx_yy

XMF_0 YK 0 0.2
XMF_0 Yk 1 0.1
XMF_0 YK 2 0.6
U_INIT = 10.0

T_INIT =298.0

END Material ID Specifications

Figure 3.6. Material ID Specifications section example.

The assignment of the physical and transport properties for the current material follow the
Material_Type line until they are terminated by the line:
END Material ID Specifications

Any entries after this line are ignored.

The material properties can follow in almost any order and all have default values. The
only ordering that is required is that the number of spebdled SPECIE$ must be specified
before the species nam&PECIES _NAMIEare given, and that the species names must be given
before the species-dependent properidf  COEFF, WTSPECIESXMF_0 are specified.

30



Material Type

Description

SOLID, NEWTONIAN

Usual equations; isotropic conductivity, body forrepg

BOUSSINESQ Body force term replaced by linear Boussinesq approx. in Temperature.
CHEMKIN All physical and transport properties calculated from Chemkin --ideal gas equation
of state. Properties vary with thermodynamic state.
Table 3.7. List oMaterial_Type  designators recognized by MPSalsa.
Keyword Argument Default Description
ELEM_BLOCK_IDS | integerlist List of element blocks, as specified by the mesh generator,
that compose the current material.
G_VECTOR 3float 0,0,0 Thex-, y-, andz-components of the gravity vector. The
units are arbitrary except f&HEMKINmaterials, where
€gs units are the default.

Table 3.8. General Keywords: first of four tables listing and describing keywords recognized for the specification of
material properties.

%

1]

nce.

Keyword Argument Default Description
DENSITY float or 1.0 A floating-point argument sets a constant densit
VARIABLE_PROP value; theVARIABLE_PROHilag tells MPSalsa to ge
the value from the function “user_density.”
VISCOSITY float or 1.0 A floating-point argument sets a constant viscosi
VARIABLE_PROP value; theVARIABLE_PROPflag tells MPSalsa to
get the value from the function “user_viscosity.”
CP float or 1.0 A floating-point argument sets a constant heat
VARIABLE_PROP capacity; the/ARIABLE_PROFHilag tells MPSalsa to
get the value from the function “user_Cp.”
THERMAL_CONDUQT float or 1.0 A floating-point argument sets a constant thermal
VARIABLE_PROP conductivity; theVARIABLE_PROFHlag tells
MPSalsa to get the value from the function
“user_cond.”
VOL_EXPNS float 0.0 Volumetric expansion coefficient (units are invers
temperature); used only fROUSSINESQnaterials.
T_NAUGHT float 0.0 Reference temperature ®OUSSINESQ
approximations.
Q_VOLUME float Constant volumetric source added to the heat bala
Q_VOLUME_VAR fn_name A volumetric source computed by the function

fn_nameand added to the heat balance.

VISC_DISSP

Causes viscous dissipation terms to be added to

the
d.

heat balance; this flag is not currently implemente

Table 3.9. Fluid and Thermal Properties: second of four tables listing and describing keywords recognized for the
specification of material properties.

31



Keyword Argument Default Description

NUM_SPECIES integer 0 Number of species for problems that include

mass transfer.

SPECIES _NAME integer The integer ID of the species, between 1 and|the

string entry forNUM_SPECIESfollowed by the
name of the species.

WTSPECIES string, float The molecular weight of specising, where

stringis aSPECIES_NAMEnput above.
WTSPECIESshould be given for each species.
DIFF_COEFF string, float 1.0 The diffusion coefficient of specissing,
wherestring is aSPECIES_NAMEnput
above DIFF_COEFFshould be given for each
species.

SPEC_SPECIES EQN {yes |no} yes for When this flag iges , the last species equation
CHEMKIN| is replaced by the requirement that the sum|of
materials; the mass fractions is one. FOHEMKIN

no, material types, the default valueyafs may
otherwise. not be overridden.

Y_VOLUME float A constant volumetric source term that is the

same for all species.

Y_VOLUME_VAR fn_name Volumetric source term for each mass balance

{SINGLE | computed by the user-specified function
MULTIPLE} fn_nameSINGLE or MULTIPLE indicates
whether the function returns one equation’s
source term at a time or the entire vector of
source terms at once.
JACOBIAN_SRC_TERMS VAR fn_name If this string is present, the functiém_namds
used to compute the Jacobian entries due to the
source terms; otherwise, a numerical Jacobjan
is computed.

Table 3.10. Mass Transfer Properties: third of four tables listing and describing keywords recognized for the
specification of material properties.

The recognized strings (or keywords) that can be used to specify material properties are
listed and described in Table 3.8, Table 3.9, Table 3.10, and Table 3.11. The strings are organized
into separate tables only for this document; there are no distinctions in the code.

The ELEMENT_BLOCK IDSine in Table 3.8 is required for each material type. All
element blocks in the computational domain (see discussion in Section 2.1) must be specified in
one and only one material-type section.

For CHEMKINmaterial types, the number of species and their names are specified in the
Chemkin linking files. Additionally, the molecular weights, diffusion coefficients, mixture
viscosity, mixture heat capacity, mixture thermal conductivity, multicomponent diffusion

32



Keyword Argument Description
U_INIT float The initial value for the-component of all the velocity unknowns.
V_INIT float The initial value for thegi-component of all the velocity unknowns.
W_INIT float The initial value for the-component of all the velocity unknowns.
P_INIT float The initial value for all of the pressure unknowns.
T_INIT float The initial value for all of the temperature unknowns.
XMF_0 string, float The initial species mole fractions, which are translated to mass

fractions and assigned to the mass-fraction unknownsstfing is

the name of the species, which comes frorSRECIES_NAME
line or the Chemkin data file.

Table 3.11. Initial Value Specifications: fourth of four tables listing and describing keywords recognized for the
specification of material properties.

coefficients, mixture density, and volume expansion coefficient are all specified or calculated
from Chemkin functions. It is an error to redefine them in f6H&EMKINmMaterial.

3.7. Boundary Condition Specifications

Generalized surface vectors and boundary conditions for a problem are specified in the
Boundary Condition section of the input file. This section is required by MPSalsa. An example for
aWHOLE_ENCHILADproblem is given in Figure 3.7.

3.7.1. Generalized Surfaces

A generalized surface is a side set in the Exodusll file for which the outward normal and
tangential vectors of the corresponding geometric surface are given in the input file. These vectors
may be used to specify side-set boundary conditions in the surface’s normal and tangential
directions. The number of generalized surfaces included in the input file is listed first.

Number of generalized surfaces = integer

The format for specifying each generalized surface follows.

GENERALIZED _SURFACEIde_set_number number_of vectors
TANGENT  {eal real[ real]| function_nampg
[TANGENT {real real[ real]| function_namg
[NORMAL  {real real[ reall]| function_namy

where

side_set_number the side set ID number in Exodusll, and

33



Boundary Condition Specifications

Number of Generalized Surfaces = 2

GENERALIZED_SURFACE 4 2
TANGENT 0.8 0.6 0.
TANGENT -0.6 0.8 0.

GENERALIZED_SURFACE 5 3
NORMAL user_normal
TANGENT user_tangentl
TANGENT 0. 0. 1.

Number of BC = 12

BC =T_BC DIRICHLET SS 1 INDEPENDENT 300. 0

BC =T_BC NEUMANN SS 5 INDEPENDENT f_xx_yy 1
BC_DATA=1.02.00.5

BC =T_BC MIXED SS 4 DEPENDENT jbc_fn0.50.10.2f fn 0

BC = P_BC DIRICHLET NS 9 INDEPENDENT 1. 0

BC = U_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_disk 1
BC_DATA = 100.0 0. 0.

BC = V_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = VEL_TAN2_BC DIRICHLET GS 1 DEPENDENT f_xy_spin_disk 1
BC_DATA = 100.0 0. 0.

BC =W_BC DIRICHLET SS 1 INDEPENDENT -9. 0
BC = VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0

BC = Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraction 1
SPECIES_LIST=2143
BC_DATA = 1.232900e-04 1.095458e-02 9.889221e-01 0.0
BC = Y_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0
SPECIES_LIST = ALL

Figure 3.7. Example of the Boundary Condition Specification section of the input file.

number_of vectors the number of vectors used to describe the surface.

Two orthogonal unit tangent vectors should be given for 3-D problems; one unit tangent vector
suffices for 2-D problems. The unit outward-normal vector is optional; for boundary conditions in
the outward normal direction, MPSalsa uses a vector normal to the mesh geometry if a vector

normal to the surface is not specified.

The outward normal vector and tangent vectors on the surface are described on the

following line(s). Either the coordinates of a vector or the name of a function returning the vector

may be used to specify the vectors (see Section 4.3). The example in Figure 3.7 includes two
generalized surfaces. The first consists of side set 4 with two unit tangent vectors; since a normal
vector is not specified, outward normal vectors on the surface are computed within MPSalsa. The

34



second consists of side set 5 with the outward normal vector returnesebynormal , a
tangent vector returned lwger_tangentl , and a constant tangent vector.

MPSalsa numbers the generalized surfaces (starting from one) in the order they appear in
the input file. Boundary condition statements for generalized surfaces reference the generalized
surface number assigned by MPSalsa as $keeiid(see Section 3.7.2). Alternatively, the number
of the side set for which the generalized surface is described can be specified; MPSalsa associates
the appropriate generalized-surface definition with the side set.

3.7.2. Boundary Conditions

The number of boundary conditions included in the input file is specified before the
boundary conditions are listed:

Number of BC = integer

Each boundary condition has the following format:

BC = bc_name bc_type set type set id dependence flag bc values num_data_lines

where
bc_name= {U_BC|V_BC|W_BJT_BC|P_BC|Y_BC|VEL_NORM_ B¢
VEL_TAN1_BC |VEL_TAN2_BC};
bc_type= {DIRICHLET |NEUMANN]|MIXED};
set_type= {NS |SS |GS}
set_id= side set ID number, node set ID number, or generalized surface number;
dependence_flag {DEPENDENT| INDEPENDENT};
bc_valuess described in Table 3.13; and
num_data_lines integer.

The bc_namendicates the variable to which the boundary condition should be applied.
Possible values fdic_nameare listed in Table 3.12. All velocity boundary conditions on a side
set must be specified in the same coordinate system; normal and tangential velocity boundary
conditions YVEL_NORM_BCVEL_TAN1 BGC VEL_TAN2_BQ may not be used witkh_BGC
V_BC orW_Bn the same side set.

35



bc_name Variable to which the boundary condition is applied.

U BC velocity in thex-direction.
V_BC velocity in they-direction.
W_BC velocity in thez-direction.
T BC temperature.

P_BC pressure.

Y _BC mass fractions.

VEL_NORM_BC| velocity in the direction normal to the surface. Note: only Dirichlet BCs are
valid for VEL_NORM_BC

VEL_TAN1 BC | velocity in the direction of the first tangent vector (given by a generalized
surface) to the surface. Note: only Dirichlet BCs are valid/tek TAN1 BC

VEL_TAN2_BC | velocity in the direction of the second tangent vector (given by a generalized
surface) to the surface. Note: only Dirichlet BCs are valid/tok TAN2_BC

Table 3.12. Boundary condition names and their corresponding variables.

The bc_typeindicates the type of boundary condition to apply. Three types of boundary
conditions are implemented in MPSalsa: Dirichlet, Neumann, and Mixed (Robin). Dirichlet
boundary conditions have the following forms:

y = f(t,x,u, P, T,Y) forU BCV_BCW _BCP_BCT_BCorY_BC (3.2)
neu = f(t,x,u, P, T, Y) for VEL_NORM_BGGnd (3.3)
teu = f(t,x,u, P, T,Y) for VEL_TAN1 BCandVEL_TAN2_ BC (3.4)

wherey = uy, u,, Us, P, T, orY is the unknown whose boundary condition is assigned, t and
are unit outward-normal and tangential vectors specified in a generalized-surface definition or
computed by MPSalsa, aid is a function of time , posiion , and the solution vadalites , ,
T,andY ak .

Neumann boundary conditions take the form
nig. = f(t,x,u, P, T,Y),q., = -AOT, for the temperature equation, (3.5)
ng, = ft,x,u,P, T,Y),j, = pY,V,, for thek™ mass fraction eqguation, and (3.6)

(Tn), = f(t,x,u, P, T, Y) for thel™ momentum equation, (3.7)

where n is the unit outward normal vectar, is the mixture thermal conductpvity, is the
mixture densityV, is the diffusion velocity of specles , dnd is the shear stress tensor.

36



Mixed boundary conditions replace the functibon on the right-hand side of (3.5)-(3.7)
with

h(y-y,) +af(tx,u,P, TY), (3.8)

wherea is a floating-point constant, and= h(t x, u, P, T, Y) P yy(t, x, u, P, T,Y) are
functions of timet , positioxx , and the solution vectox at

In MPSalsaDIRICHLET boundary conditions replace the finite-element equation for an
unknown.NEUMANIMNNdMIXED boundary conditions add a surface integral contribution to the
finite-element equation for an unknown. OMWYRICHLET boundary conditions are currently
implemented foVEL_NORM_BG/EL_TAN1 BC andVEL_TAN2_BC NEUMANMNdMIXED
types will be added for these boundary conditions in the future. Pressure boundary conditions
(P_BQ may also be only of typBIRICHLET. All other boundary conditions may be of any

type.

The Exodusll side or node set to which the boundary condition is applied is specified by a
set_typeand theset_id_numTheset_typeis SS for a side setNS for a node set, oGS for a
generalized surface side set. Ba¢ id_nums the number of the side or node set in the Exodusli
file, or the number of the generalized surface defined in the inpuNEHEMANNNd MIXED
boundary conditions may be applied only to side sets or generalized subBéRESHLET
boundary conditions may be applied to node sets, side sets, or generalized surfaces.

Boundary condition functions h , and  in (3.2) - (3.8) may depend on the solution. If
terms resulting from this dependence are to be included in the Jacobian matrix, the
dependence_flaghould be set toEPENDENTotherwise, thelependence_flaghould be set to
INDEPENDENTMixed boundary conditions should be labelHPENDENDnNly if at least one
of the functionsf ,h , ory, depends on the solution. FIDEPENDENTmixed boundary
conditions, the analytic Jacobian contribution

aiy(ha, X) [y = Yolt, )] +af(t,x)) = h(t, %)

is computed by MPSalsa and included in the Jacobian.

Thebc_values/ary depending ohc_typeanddependence_flaghe correct combinations
of arguments are listed in Table 3.13. The values of , ygnd in (3.2) - (3.8) may be given by
a real number or a function. The valueaof in (3.8) is a real number. Analytic Jacobian entries
may be given for DEPENDENT boundary conditions through specification of a
jacobian_function_namea function that returns the partial derivative of the boundary condition

37



with respect to the solution unknowns. If @obian_function_names specified, a numerical
Jacobian is used f@REPENDENTBoundary conditions. Many functions forh, ,apd  and their
analytic Jacobian entries are included in MPSalsa; see Section 4.2 and Appendix A.1.

bc_type dependence_flag bc_values

DIRICHLET INDEPENDENT {f_function_namé¢f_real}

DIRICHLET DEPENDENT [jacobian_function_nanj€f function_name¢f real

NEUMANN INDEPENDENT {f_function_naméf_real}

NEUMANN DEPENDENT [jacobian_function_nan€f_function_name¢f real

MIXED INDEPENDENT {h_function_nam¢h_real { yO_function_nameyQ_rea}
{a_real {f_function_naméef real}

MIXED DEPENDENT [jacobian_function_nanjd h_function_namé¢h_rea}
{yO_function_nam¢y0_rea} { a_real { f_function_namé
f_real}

Table 3.13. Boundary condition specification of bc_values for various bc_types and dependence_flags.

Additional data may be passed to boundary condition functions through the use of
BC_DATAlines. The number of these lines for a boundary condition is given as the last entry,
num_data_linespn theBCline. BC_DATAlines are formatted as follows:

BC_DATA = data_type data_values
where

data_type= {FLOAT|INT |INTEGER|FUNCTION; and

data_values a list of real numbers (fatata_typeFLOAT), integers (fodata_typesNT
andINTEGER), or function names (fadata_typeFUNCTION. These data values are stored in
one-dimensional arrays associated with the boundary conditions and may be accessed by user-
defined functions. See Section 4.2.1 for examples of the use of these values.

Examples of each type of boundary condition are included in Figure 3.7. A few examples
are detailed below.

BC = P_BC DIRICHLET NS 9 INDEPENDENT 1.0
A Dirichlet boundary condition value of 1 is applied to pressure unknowns in node set 9.

BC = VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc O

A Dirichlet outward-normal velocity boundary condition is applied to velocity unknowns
on the first generalized surface listed in the input file. The value of the boundary condition is

38



computed in functionsurface_chemkin_bc (see Appendix A.1.1). Since the boundary
condition isDEPENDENTbut no analytic Jacobian function is specified, numerical Jacobian
entries for the boundary condition are computed.

BC = T_BC NEUMANN SS 5 INDEPENDENT f_xx_yy 1
BC_DATA=1.02.00.5

A Neumann boundary condition is applied to the temperature equations for nodes in side
set 5. The value of the boundary condition is computed in fun€tiex yy . No Jacobian
entries for the boundary condition are generated since the boundary condMiDEERENDENT
BC_DATAvalues of 1.0, 2.0, and 0.5 are passed to funé€tiox yy for use in computing the
boundary condition value.

BC =T_BC MIXED SS 4 DEPENDENT jbc_fn0.50.10.2f fn 0
A Mixed boundary condition of the form

N, = 0.5(T-0.1) +0.2 f_fn(t,x,u, P, T,Y)

is applied to the temperature equations for nodes in side set 4. The boundary condition is
DEPENDENTfunction jboc_fn (t,x,u, P, T, Y) is called to compute analytic Jacobian entries
for the boundary condition terms.

Default: If no boundary condition is specified for an unknown in a node- or side-set, a
natural boundary condition with value O is applied to the equation for the unknown. Thus, the
default boundary condition for temperature, mass fractions or velocities is effettizeIMIANN
with f(t, x,u, P, T, Y) = 0 in (3.5), (3.6), or (3.7), respectively.

3.7.2.1. Mass Fraction Boundary Conditions

A mass fraction boundary conditiol (BO may be applied to one, some or all of the
species unknowns in the node or side set. SRECIES_LIST input line indicates to which
species the boundary condition should be applied. This line must directly folloiGhe
statement.

SPECIES_LIST = {ALL | list of species numbets list of species namgs
The keyword ALL states the boundary condition should be applied to all species in the problem.
Individual species may be listed by number or name, where the name is given either in the
Materials Specifications (see Section 3.6) or the Chemkin files.

39



All ' Y_BCboundary conditions are specified in terms of mass fractions rather than mole
fractions. DIRICHLET boundary conditions may also be specified as mole fractions via the
functionf_mole_fraction included in MPSalsa (see Section A.1.4).

3.7.2.2. Precedence of Boundary Conditions

For unknowns at nodes where two or more side or node sets intersect, Dirichlet boundary
conditions always have precedence over other types of boundary conditions. That is, if a node has
unknowns upon which Dirichlet and, say, Neumann boundary conditions are specified, the
Dirichlet boundary condition is the boundary condition imposed. Moreover, the first Dirichlet
boundary condition in the input file for such an unknown is the one applied. If a node belongs to
more than one node or side set, as Node A does in Figure 3.8, the first Dirichlet boundary
condition for each unknown at that node is the one applied. In Figure 3.8, the Dirichlet boundary
condition for node set 2 would be applied to Node A.

Node Set1 []
Node A Node Set2 @

BC =T_BC DIRICHLET NS 2 INDEPENDENT 300. 0
BC =T_BC DIRICHLET NS 1 INDEPENDENT 100. 0

Figure 3.8. Example demonstrating the precedence of Dirichlet boundary conditions. Node A belongs to
both node set 1 and node set 2. Its temperature would be set to a value of 300 in this example.

3.8. Initial Condition/Guess Specifications

In the Initial Condition/Guess Specifications section of the input file, users can specify
what type of initial guess or initial conditions to use. This section is required by MPSalsa. An
example is shown in Figure 3.9. MPSalsa’s initial guess for the solution vector is established in
several steps. The first step involves preprocessing the solution vector by setting all solution
components to a value of zero. Next et Initial Condition/Guess line described
below is processed. Then, if the solution is not being read from an Exodusll file, all solution
variables are set to their “INIT” values specified in the Material Specifications section of the input
file, if any are specified. (For example, this is where the condition that the sum of the mass

40



fractions must equal one is enforced @HEMKINmaterial types.) Finally, an additional user-
supplied function may be invoked as the last step. The remainder of this section describes each of
the lines in the Initial Condition/Guess Specifications section of MPSalsa’s input file.

Initial Condition/Guess Specifications

Set Initial Condition/Guess = constant 0.0
Apply Function =no
Time Index to Restart From =1

Figure 3.9. Example of Initial Condition/Guess Specifications section of the input file.

[Set Initial Condition/Guess = string[ valud]
This line is used to specify how to initialize the solution vector after the initial default
processing is carried out. Valid options for this line are listed below:

constant[  valug
This option initializes all components of the solution vector that do not have
material defaults to the constant valadue Default:value= 0.

random

This option randomly assigns initial solution vector values in the interval [0,1].

exoll_file
Previously stored solution values in the Output FEM file, named in the General
Specification Section, are used as initial values. This option is used for restarts.

Default =constant O

[Apply function = { function namé no}]
A user-written function can be specified on this line to process the initial guess. This
function is executed after ti8et Initial Condition/Guess input line so the function can

be dependent on a solution read in from an Exodusll file. See Section 4.4 for details on how to
write this function. Default #0.

41



[Time Index to Restart From = integet

This line specifies the index of the time step from which to perform restarts or take the
initial guess. This parameter is only pertinent if 8et Initial Condition/Guess value
is exoll_file . Restarts can be performed from any data on the same geometry for steady or
time-varying problems. Default = 1lifitial Guess =exoll_file ; ignored otherwise.

3.9. Output Specifications

In the Output Specifications section, the user may specify how output is to be performed
to the Exodusll results file. Items such as which variables to output, how often to output these
variables, and whether or not a user-definable subroutine is called are specified in this section. An
example of this section is given in Figure 3.10. This section is optional; if it is absent, no output
will be performed. A detailed description of each of the lines in the Output Specifications section
follows.

Output Specifications

User Defined Output =no
Parallel Output =no
Scalar Output =vyes
Time Index to Output To =1

Nodal variable output times:

every 1 steps
Number of nodal output variables= 1
Nodal variable names:

Temperature
Number of global output variables= 1
Global variable names:

Delta_time

Test Exact Solution Flag =0
Name of Exact Solution Function =f xx_yy

Figure 3.10. Example of Output Specifications section in the input file.

[User Defined Output = {yes | no}]

This flag indicates whether the standard user-defined functsmr, out , should be
called to output information tetdout This routine allows user-customized output to be added
easily. The routine currently distributed in MPSalsa prints out the maximum, minimum, and
average value of each unknown as well as the positions of the maximum and minimum. Default =
yes.

42



[Parallel Output = {yes | no}]

This option allows the user to specify whether or not parallel output should be performed.
It can be used simultaneously with scalar output. See Section 2.5 and Section 3.10 for more
information on parallel 1/0O. Default ro.

[Scalar Output = {yes | no}]

This option allows the user to specify whether or not output to a scalar Exodusll results
file should be performed. The name of the file is specified in the General Problem Specifications
section (see Section 3.1). Defaulhe.

[Time Index to Output To = integet

This line is needed only when (1) the MPSalsa run is a restart, and (2) the user wishes to
control where in the Exodusll output file (which was used as the restart input file) the output is
written. If the line is absent and the run is a restart, new output is appended to the end of the
Exodusll output/restart file. When this line included under these conditions, it specifies at what
time index (in the restart file) the output should start. The restart file will be overwritten at the
time index specified. Note that the initial guess, as read during restarts, is output first. It is
therefore suggested that the valueTohe Index to Output To be set equal to th&ime
Index to Restart From (see Section 3.8) so as to preclude having the same set of values
stored twice in the file. Default = output appended to the end of the Exodusll output file.

[Nodal variable output times:]
string

This line specifies how often during transient runs output of the variables is to be
performed. Valid values fatring are

every nsteps -- wherenis a positive integer
or
every x.xx{seconds|units|mins} -- wherex.xxis a real positive number.

Several things should be noted about this line. (1) The units are currently ignored since there is no
way to specify what these units are for time stepping; (2) the variables to be output are named in
the Nodal variable names line in the Output Specifications section; and (3) outputting
every x {seconds|units|mins} outputs when the time value is the first time value
greater tham*x, for any integen. Similarly, the next time step output will be the first to have a
time value greater than{1)*x. Default = output every time step.

43



[Number of nodal output variables = integel

The number of nodal variables to output is specified here. Default = the total number of
variables.

[Nodal variable names:]
stringl
string2

stringN

The names of the nodal variables to output are given here. The number of nodal variable
namesN is given in theNumber of nodal output variables line. Valid variable names
are

Temperature

Velocity

Pressure

Mass_Fraction

Displacement
where any combination of the above is valid. The keywastl is supported for the variable
nameMass_Fraction . If the name is followed, on the same line, by the woastl , a list of
species names is expected to follow until the keyweodlist  is found. For example:

Mass_Fraction List
SIF4,H2, H
N2, N
SIHF3
endlist
The case of the keywords is not significant. Default: all nodal variables are written in the default

order.

[Number of global output variables = integel]

This line is used to specify the number of global variables that are to be output to the
Exodusll results file. Global variables are single-valued variables that only have the single
dimension of time. They are used to store parameters, timing information, global solution
information, etc. Default = O.

44



[Global variable names:]
stringl
string2

stringN

The names of the global variables to be output to the Exodusll results file is given here.
The number of global variabled to output is specified in the lindumber of global
output variables . Examples of variable names are

Time_index

Delta_time

Matrix_Fill_Time

Matrix_Solve_Time
This line is required only if the number of global variables to output is greater than zero. The
variable names are case-insensitive. In the future, we hope to allow the user to define additional
global variables on this line. The pre-processor “guacamole” will install space for them in the
output file, and the routingser_out will be used to output values for these variables during an

MPSalsa run. Default = none.

[Test Exact Solution Flag = {0 | 1} [SUMMARY]]

This line specifies whether or not the computed solution should be tested against a known
analytic solution; 0 = off, 1 = on. This comparison includés  -norm and max-norm error
computations. Additional information on the location of the maximum error and an estimate of
the largest characteristic length of an element in the FE mesh is provided. The optional keyword
SUMMARY will lead to a separate error analysis for each variable in addition to the entire
solution vector. Default 8.

[Name of Exact Solution Function = string]

This line gives the name of the function that will be called to evaluate the accuracy of the
computed solution. The generic functioger_bc_exact  may be used by programming the
desired exact solution function in the file “rf_user_bc_exact_fn.c.” Default = none.

3.10. Parallel I/0O Specifications

The Parallel 1/0 Section is used to specify characteristics about parallel disk subsystems
connected to specific machines. This section of the input file is optional; if it is absent, no parallel
I/O will be performed. An example is given in Figure 3.11. This section of the input file also

45



contains subsections for different parallel architectures. These subsections can remain in the file
with the user specifying which architecture to use at run time. In this manner the file can be set up
for a number of architectures (currently nCUBE and Intel Paragon) without rewriting the section
each time a run is performed on a different architecture.

Parallel I/O section

Machine = paragon
Staged writes =yes

Number of controllers= 8

Disks per controller=1

Root location = //df
Subdirectory = jns/fireset
Offset numbering from zero= 0

Number of RAID controllers= 48

Root location = /raid/io_
Subdirectory = tmp/jns/fireset
Offset numbering from zero=1

Figure 3.11. Example Parallel /O section.

[Machine =  string]
This line is used to specify the computer architecture. Currently supported architectures
areparagon , andncube . Default =paragon .

[Staged writes = {yes | no}]

This lines specifies whether or not writes to parallel disks should be staged. With staging,
only one processor writes to each disk at a time. Staging avoids problems with temporary file
name conflicts and limits on the number of concurrent open files on a single disk. It is
recommended that staging be segde . Default =yes .

[Number of controllers = integel

This line is specific to the nCUBE subsection and indicates how many controllers should
be used in performing the 1/O. It must be less than or equal to the number of disk controllers that
are actually attached to nCUBE. Default = none; error when not specified for parallel 1/0 on the
nCUBE.

46



[Disks per controller = integet

This line is specific to the nCUBE subsection and indicates how many of the disks
attached to each of the controllers should be used to perform the 1/O. It should be less than or
equal to the number of actual disks attached to each controller. Default = none; error when not
specified for parallel 1/0O on the nCUBE.

[Number of RAID controllers = integel]

This line is specific to the Intel Paragon and indicates how many RAID controllers should
be used to perform the I/O. It must be less than or equal to the actual number of controllers on the
machine. The number of RAID disks is equal to the number of RAID controllers on an Intel
Paragon system. Default = none; error when not specified for parallel I/O on the Paragon.

[Root location = string]

The root location is the root directory where writes to the parallel disk subsystem are to be
performed. Generally, parallel disk subsystems are in directories that begin with a string.
Embedded in the last part of the string is an integer identifying a particular disk. On an nCUBE
system, for example, //df00 would be used to write to the first controller and first disk attached to
that controller. Similarly, for an Intel Paragon, the user could access the first disk by writing to
Ipfsfio_01 and the second disk by writing to /pfs/io_02. The value to be specified Rodhe
Location line of the input file is the full pathname of the disk device excluding the identifying
integer ID. Figure 3.11 shows examples of the valuRoalt Location  for each of these cases.
Default = none; error when not specified for parallel 1/0.

[Subdirectory = string]

The Subdirectory line specifies the subdirectory on the parallel file system in which
MPSalsa should look for parallel output and input files. It should not begin with a “/” character.
Default = none; error when not specified for parallel 1/O.

[Offset numbering from zero = integel

The offset numbering specifies on which parallel disk 1/0 should begin. For example, if
MPSalsa is to be run on an Intel Paragon using 16 RAIDs beginning with /raid/io_08 then the
value of the offset should be set to 8. Default = 1.

47



3.11. Function Data Specifications

Users may pass problem-specific data to functions using the Function Data Specification
section of the input file. The Function Data section is optional; users need not include it in the
input file if they do not need problem-specific data. An example of the Function Data section is
included in Figure 3.12. The functions are used for boundary conditions, material properties,
specialized solution output, volumetric source terms, and testing of the code against exact
solutions. Four types of data may be passed to functions: integers, reals, strings, and tables.

Data Specification for User’'s Functions

Number of functions to pass data to = 2

Function = user_bc_exact 4

FN_DATA =-100. -200. -300. -400.

FN_DATA = FLOAT -500. -600.

FN_DATA = STRING VELOCITY APPLICATIONS CZAR
FN_DATA=INT-1-2-3-4-5

Function = lookup_table_1 2
FN_DATA = STRING TEMPERATURE
FN_DATA = TABLE 6 2

0 32
20 68
40 104
60 140
80 176
100 212

Figure 3.12. An example of the Function Data Specification section of the input file.

The number of functions that use function data is specified first, with default = 0. For each
function, the function name and the numbeFNf DATAIines to be passed to it are listed.

[Number of functions to pass data to = number of functioris
Function = function_name num_data_lines

EachFN_DATAline consists of the type of dat&T , FLOAT, STRING, or TABLE). The default
is FLOAT ForINT, FLOAT andSTRINGdata, the data then follows the type keywordrtLAOAT
is stored as a double-precision number. ERERING may be up to 32 characters long.

FN_DATA = [FLOAT | INT | STRING] list of data

TABLESallow the user to supply tabular data to a function. The dimensions of the table follow
the TABLE keyword:

48



FN_DATA = TABLE #rows_in_table #columns_in_table

The TABLE data are included on the lines following #i¢ DATA= TABLEIline. Only one table
may be specified in each entry for a function.

Several functions that require function data are included in MPSalsa. Examples are

time_history_line , Which writes to a file the solution along a line in the domain,
time_history _points , Which writes to a file the solution at a set of points in the domain,
and look-up table functionkokup_table 1 and lookup_table 2, which interpolate

data using &ABLE from the function data section of the input file. These and other functions that
require user-defined function data are described in Section 4 and Appendix A.

49



4. User Functions

Many features in MPSalsa can be adapted for specific applications through user functions.
These functions provide the greatest flexibility for users to control their own simulations. User
functions are already included in MPSalsa for quantities such as variable material properties,
boundary conditions, and solution measures; users must change only the computations in these
routines to calculate the properties for their problems. For some quantities, such as boundary
conditions and source terms, users can also write their own functions and compile them into
MPSalsa. This process, however, requires more effort and code modification than using the
included user functions. This chapter describes the various user functions available and their
usage in MPSalsa and the input file. For applicable properties, instructions for including new
functions in MPSalsa are also given. For all functions, the units are arbitrary exceidEIKIN
materials for which cgs units are the default.

MPSalsa is written in the “C” programming language. The following discussion of
modifications to MPSalsa’s user functions assumes the user has some knowledge of “C.”

4.1. Material Properties
4.1.1. Heat Capacity

The functionuser_Cp in “rf_user_Cp.c” computes a user-defined specific fﬂgat of a
non-CHEMKIN material. It is called when the following line is included in the Materials
Properties section of the input file:

CP =VARIABLE_PROP

The value of the specific heat is returnedusgr Cp in the argumentcp . Other arguments
passed taser_Cp are listed in Table 4.1.

Argument Description

double temperature Temperature at positiqn, (2).

double X_K]] Vector of mole fractions at positiax ¥, 2) indexed by the species
number.

double Ptherm Thermodynamic pressure.

double x, y, z Coordinates of the current position.

MATSTRUCT_PTR matID_ptr Pointer to the material property structure for the material.

Table 4.1. Arguments passed to user-defined property funasensCp , user_cond , user_density  and
user_visc

50



4.1.2. Thermal Conductivity

The functionuser_cond in “rf_user_cond.c” computes a user-defined value of thermal
conductivity A for a norGHEMKINmaterial. It is called when the following line is included in
the Materials Properties section of the input file:

THERMAL_CONDUCT = VARIABLE_PROP

The value of the thermal conductivity is returned hger cond in the argument
*conductivity . Other arguments passeduser_cond are listed in Table 4.1.

4.1.3. Density

The functionuser_density in “rf_user_density.c’ computes a user-defined value of
densityp for a norEHEMKINmaterial. It is called when the following line is included in the
Materials Properties section of the input file:

DENSITY = VARIABLE_PROP

The value of the density is returned bger_density in the argumentdensity . Other
arguments passed tiser_density are listed in Table 4.1.

4.1.4. Viscosity

The functionuser_visc  in “rf_user_visc.c” computes a user-defined value of the
viscosity i for a noltzHEMKINmaterial. It is called when the following line is included in the
Materials Properties section of the input file:

VISCOSITY = VARIABLE_PROP
The value of the viscosity is returned bger_visc in the argumentviscosity . Other
arguments passeduser_visc  are listed in Table 4.1.

4.1.5. Volumetric Source Terms

Variable volumetric source terms for temperatures and mass fractions are specified in the
input file as

Q_VOLUME_VAR =function_name
and

Y_VOLUME_VAR =function_namgSINGLE | MULTIPLE}.
The related user functions included in MPSalsa @ser_source  for temperatures and
SINGLE mass fraction source terms amgkr_source_multi for MULTIPLE mass fraction
source terms.

51



The user_source function returns the value of the source term for one equation. Its
prototype is
double user_source (SNGLVAR_FUNCTION_ARGLIST)
whereSNGLVAR_FUNCTION_ARGLISBs defined in “rf_salsa.h,” is described in Table 4.2.
For SINGLE source term functions, the boundary condition pointers NULL

Argument Description

double soln[] Solution vector at positiox ¢, 2).
double x, vy, z Coordinates of positiaq Y, 2).
double t Time.

MATSTRUCT_PTR matID_ptr | Pointer to the material property structure for the material being progessed
(defined in “rf_matrl_const.h”).

int var_num Equation for which to compute a value (e.g., TEMPERATURE,
VELOCITY1, MASS_FRACTION) as defined in “rf_fem_const.h.”

int sub_var_num Species for which to compute a value (applicable only when var_num ==
MASS_FRACTION).

int eqn_offset[] Offset into soln[] for each variable; e.g., the temperatuxgya} is
soln[eqgn_offset TEMPERATURE]].

int num_dim Number of dimensions in the element.

BCSTRUCT_PTR bc Pointer to the boundary condition structure (defined in “rf_bc_const.h")

for the current boundary condition being processed. This pointer is NULL
if the SNGLVAR_FUNCTION function is called for a calculation not
involving a boundary condition.

Table 4.2. Arguments includedSNGLVAR_FUNCTION_ARGLIST

An example ofuser_source s included in Figure 4.1. This function is stored in
“rf_user_source_fn.c.” To add new user-defined source functions, users should write the functions
in either “rf_source_fn.c” or “rf_user_source_fn.c,” include prototypes for the new functions in
“rf_source_fn_const.h,” and add pointer assignments for the new functions to the routine
align_single_q_ptr in “rf_source_fn.c.” Users can look at prototypes and pointer
assignments fauser_source as examples for their own functions.

To reduce the number of function calls needed to compute source terms for mass fraction

equationsuser_source_multi may be used. Whilaser_source returns only a single
source term valugyser_source_multi returns a vector of source terms for mass fraction
equations. The prototype faser_source_multi is

void user_source_multi (MULTIVAR_FUNCTION_ARGLIST)
whereMULTIVAR_FUNCTION_ARGLISTs described in Table 4.3.

52



double user_source(SNGLVAR_FUNCTION_ARGLIST)
{

/* Returns the source terms for the coupled linear diffusion equations:
*
0°T-a=0
2
0%Y,+Y,-Y, =0
0%Y,-Y,e = 0
2
0%,-Y,-a= 0
where a = h 1D, ain 2D, and in8D3: 6
USAGE: In Material Properties section...

Q_VOLUME_VAR = user_source
Y_VOLUME_VAR = user_source SINGLE

EE S N I N N

*
~

double return_value;
double spatial_coeff = 2 * num_dim;

if (var_num == TEMPERATURE)
return_value = -spatial_coeff;
else if (var_num == MASS_FRACTION && sub_var_num <= 2)
switch (sub_var_num) {
case 0O:
return_value = soln[eqn_offsetfMASS_FRACTION + 1]]
- soln[egn_offsetfMASS_FRACTION + 2]];

break;
case 1:
return_value = -soln[eqn_offsetftMASS_FRACTION] * exp(-X);
break;
case 2:
return_value = -spatial_coeff -soln[eqn_offset{MASS_FRACTION]];
break;
}
else {
(void) fprintf(stderr, "ERROR in use of user_source.\n");
exit(-1);

}

return (return_value);

Figure 4.1. Example of functiarser_source = computing volumetric source terms for temperature and

mass fraction equations.

An example ofuser_source_multi is included in Figure 4.2. This function

computes the same mass fraction source terms in one function call that fusetiosource

in Figure 4.1 would compute in three separate calls.

The functionuser_source_multi is stored in “rf_user_source_fn.c.” Users may add

their own MULTIPLE source functions to either “rf_source_fn.c” or “rf_user_source_fn.c.”
Prototypes for the new functions should be included in “rf_source_fn_const.h,” and pointer
assignments must be added to the roudiign_multi_qg_ptr

can look at prototypes and pointer assignmentsder_source_multi
own functions.

53

in “rf_source_fn.c.” Users
as examples for their



{

*

void user_source_multiMULTIVAR_FUNCTION_ARGLIST)

/* Returns (in src_vec[]) the source terms for the coupled linear

* diffusion equations:
*
* 0%Yy+Y,=Y, = 0
*
2 —X
* O7Y,-Ye =0
*
2
* o7yY,-Y,-a=0
*
* where a = 2n1D, a 2D, and ine3B 6
*
* USAGE: In Material Properties section...
*

Y_VOLUME_VAR = user_source_multi MULTIPLE

double spatial_coeff = 2 * num_dim;
int eqnY_offset = eqn_offsetfMASS_FRACTION];

src_vec[0] = soln[egnY_offset+1] - soln[egnY_offset+2];
src_vec[1] = -soln[egnY_offset] * exp(-x);
src_vec[2] = -spatial_coeff - soln[egnY_offset];

Figure 4.2. Example of functiarser_source_multi

fraction equations.

computing volumetric source terms for mass

Argument

Description

double src_vec][]

Returned vector of source term values @t7), with one value for each
mass fraction equation.

double soln[] Solution vector at positiox ¥, 2).
double x, vy, z Coordinates of positiaq Y, 2).
double t Time.

MATSTRUCT_PTR matID_ptr

Pointer to the material property structure (defined in “rf_matrl_cons
for the material being processed.

int egn_offset[]

Offset into soln[] for each variable; e.g., the temperatuxg/ @} is
soln[eqn_offset TEMPERATURE]].

int num_dim

Number of dimensions in the element.

t.h")

Table 4.3. Arguments includedMULTIVAR_FUNCTION_ARGLIST

Analytic Jacobian entries for variable volumetric temperature and mass fraction source
terms are specified in the Materials Specifications section of the input file as
JACOBIAN_SRC _TERMS VAR =function_name

wherefunction_namads a function computing a matrix of derivatives of the source terms with

respect to temperature and mass fractions. The user funisgonjac_src

this purpose. The prototype foser_jac_src is
void user_jac_src (JAC_SRC_FUNCTION_ARGLIST)

is provided for

54



whereJAC_SRC_FUNCTION_ARGLISTSs described in Table 4.4. The derivatives of the source

terms are returned in the matjac_vec , wherejac_vec [i][j] is the derivative of the source
.th . . th .

term for thej equation with respect to ithe  variable.

Argument Description

double *jac_vec]] Returned matrix of analytic Jacobian terms of source term values with
respect to temperature and mass fractions; jac_vecli][j] is the derivative
of the source term for thg‘jequation with respect to the variable.

double soln[] Solution vector at positiox ¢, 2).
double x, vy, z Coordinates of positiaq Y, 2).
double t Time.

MATSTRUCT_PTR matID_ptr | Pointer to the material property structure (defined in “rf_matrl_congt.h")
for the material being processed.

int egn_offset[] Offset into soln[] for each variable; e.g., the temperatuxg/a} is
soln[eqn_offset TEMPERATURE]].

int num_dim Number of dimensions in the element.

Table 4.4. Arguments includeddJAC_SRC_FUNCTION_ARGLIST

Figure 4.3 includes an example uder_jac_src that computes the Jacobian entries
for the source terms in functiomser_source in Figure 4.1. This function is stored in
“rf_user_jac_src_fn.c.” To add new user-defined analytic Jacobian functions for source terms,
users should write the functions in either “rf_jac_src_fn.c” or “rf_user_jac_src_fn.c,” include
prototypes for the new functions in “rf_source_fn_const.h,” and add pointer assignments for the
new functions to the routinalign_jac_src_ptr in “rf_jac_src_fn.c.” Users can look at
prototypes and pointer assignmentsuser_jac_src  as examples for their own functions.

The following run-time error messages alert users to incorrect implementation of user
source term and Jacobian entry functions.

> ERROR: Unknown name for volumetric source function: function_name
> ERROR: Unknown name for analytic Jacobian of source vector function:
function_name

The first message indicates an error with a function specifiedQ byOLUME_VARor
Y_VOLUME_VAR the input file; the second indicates an error with a function specified by
JACOBIAN_SRC_TERMS_ VAR both cases, a function name is either misspelled in the input
file or not added correctly to the pointer assignment routines.

55



void user_jac_src (JAC_SRC_FUNCTION_ARGLIST)

{

/* Returns (in jac_vec[]) the analytic Jacobian entries of source terms
* with respect to (w.r.t.) temperature and mass fractions

* for the coupled linear diffusion equations:

* 0*T-a=0
*

2
* O7Yy+Y, =Y, =0
*

2 —X
* a%Y,-Ye =0
*

2
* a%yY,-Y,-a=0
*
* where a = 4n 1D, a in2D, and ina3B 6

* USAGE: In Material Properties section...

* JACOBIAN_SRC_TERMS_VAR = user_jac_src

*

int indxT = egn_offsetf TEMPERATURE], indxY = eqn_offsetfMASS_FRACTION];

/** Derivative of TEMPERATURE source term w.r.t. TEMPERATURE. **/
jac_vec[indxT][indxT] += 0.0;

/** Derivatives of MASS_FRACTION src terms w.r.t. TEMPERATURE.**/
jac_vec[indxT][indxY] +=0.0;

jac_vec[indxT][indxY+1] += 0.0;

jac_vec[indxT][indxY+2] +=0.0;

/** Derivative of TEMPERATURE source term w.r.t. Y_0. **/
jac_vec[indxY][indxT] += 0.0;

/** Derivatives of MASS_FRACTION source terms w.r.t. Y_0. **/
jac_vec[indxY][indxY] +=0.0;

jac_vec[indxY][indxY+1] += -exp(-x);

jac_vec[indxY][indxY+2] += -1.0;

/** Derivative of TEMPERATURE source term w.r.t. Y_1. **/
jac_vec[indxY+1][indxT] += 0.0;

/** Derivatives of MASS_FRACTION source terms w.r.t. Y_1. **/
jac_vec[indxY+1][indxY] +=1.0;

jac_vec[indxY+1][indxY+1] += 0.0;

jac_vec[indxY+1][indxY+2] += 0.0;

[** Derivative of TEMPERATURE source term w.r.t. Y_2. **/
jac_vec[indxY+2][indxT] += 0.0;

[** Derivatives of MASS_FRACTION source terms w.r.t. Y_2. **/
jac_vec[indxY+2][indxY] +=-1.0;
jac_vec[indxY+2][indxY+1] += 0.0;
jac_vec[indxY+2][indxY+2] += 0.0;

Figure 4.3. Example of functiarser_jac_src ~ computing analytic Jacobian entries of source terms with
respect to temperature and mass fractions for the source function in Figure 4.1.

56



4.2. Boundary Conditions

User functions may be used for several parts of the Boundary Condition Specifications
described in Section 3.7.2. The user function designed to compute boundary condition values is
user_bc_exact . The prototype fouser_bc_exact is

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)

where SNGLVAR_FUNCTION_ARGLISTis described in Table 4.2. All arguments of
SNGLVAR_FUNCTION_ARGLISare used for boundary condition functions.

An example demonstrating the usageusér_bc_exact is given in Figure 4.4. This
function is stored in “rf_user _bc_exact _fn.c.” To add new user-defined boundary condition
functions, users should write the functions in either “rf bc_exact fn.c” or
“rf_user_bc_exact_fn.c,” include prototypes for the new functions in “rf_bc_exact_fn_const.h,”
and add pointer assignments for the new functions to the roatige f ptr in
“rf_bc_exact_fn.c.” Users can look at prototypes and pointer assignmentefobc_exact
as examples for their own functions.

Jacobian entries associated with boundary conditions can be specified by the user function
user_jac_bc . The prototype fouser_jac_bc is
double user_jac_bc (JAC_BC_FUNCTION_ARGLIST)

whereJAC_BC_FUNCTION_ARGLISTs described in Table 4.5.

Figure 4.5 contains an exampleusfer_jac_bc  for the boundary conditions specified
by user_bc_exact in Figure 4.4. This function is stored in “rf_user_jac_bc_fn.c.” To add new
user-defined functions for the derivatives of boundary condition functions, users should write the
functions in either “rf_jac_bc_fn.c” or “rf_user_jac_bc_fn.c,” include prototypes for the new
functions in “rf_bc_exact_fn_const.h,” and add pointer assignments for the new functions to the
routine align_jbc_ptr in “rf_jac_bc_fn.c.” The prototypes and pointer assignments for
user_jac_bc serve as examples for new user functions for boundary condition derivatives.

The following run-time error messages alert users to incorrect implementation of user-
defined boundary condition functions.

> ERROR: Unknown SNGLVAR_FUNCTION: function_name
> ERROR: Unknown JAC_BC_FUNCTION: function_name

The first message indicates an error in a boundary condition function name; the second indicates
an error in the function name for Jacobian entries of a boundary condition. In both cases, a
function name was either misspelled in the input file or not added correctly to the appropriate
pointer alignment routine.

57



double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)
{
/* Returns the following Dirichlet boundary conditions for coupled
* linear diffusion equations:
*
. T=24 y2 + A
*
* Yy = a€ where a = th 1D, ain 2D, and in8G 6
*
* Y, =T
*
* Y, = Yot Y,
*
* USAGE: In Boundary Conditions section...
* BC = T_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0
* BC = Y_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0
* SPECIES_LIST =1
* BC = Y_BC DIRICHLET SS 1 DEPENDENT user_bc_exact 0
* SPECIES_LIST=23
*/
double return_value, spatial_coeff;
if (var_num == TEMPERATURE) {
return_value = x*x;
if (num_dim > 1) return_value += y*y;
if (num_dim > 2) return_value += z*z;
else if (var_num == MASS_FRACTION && sub_var_num <= 2) {
switch (sub_var_num) {
case 0O:
spatial_coeff = 2. * num_dim;
return_value = spatial_coeff * exp(x);
break;
case 1:
return_value = soln[eqn_offset TEMPERATURE]];
break;
case 2:
return_value = soln[egn_offsetitMASS_FRACTION]]
+ soln[eqn_offsetfMASS_FRACTION + 1]];
break;
}
}
else {
(void) fprintf(stderr, "ERROR in use of user_bc_exact.\n");
exit(-1);
}
return (return_value);
}

Figure 4.4. Example of functiarser_bc_exact  used as a boundary condition function.

4.2.1. Accessing BC_DATA in User Functions

Each boundary condition in the input file hasBaundary_Condition structure
(defined in “rf_bc_const.h”) associated with it. This structure contains the constant values,
pointers to boundary condition functions (suchuasr_bc_exact and those in Appendix
A.1), andBC_DATAassociated with the boundary condition. Each typ@@fDATAIs stored in
a one-dimensional array of that type. Integer data, specifi@&CbPATAINT, are stored in the

58



double user_jac_bc(JAC_BC_FUNCTION_ARGLIST)
{

/* Returns the derivatives of the following Dirichlet boundary

* conditions for coupled linear diffusion equations:

*

. T=24 y2 + A

*

* Yy = a€ where a = h 1D, ain 2D, and in83 6
*

* Y, =T

*

* Y2 = Yot Y,

*

* USAGE: In Boundary Conditions section...

* BC = T_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0

* BC = Y_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0

* SPECIES_LIST =1

* BC = Y_BC DIRICHLET SS 1 DEPENDENT user_jac_bc user_bc_exact 0
*

SPECIES_LIST=23
*/
double return_value = 0.0;

/* TEMPERATURE BC does not depend on other variables.
* Y_0 BC does not depend on other variables.

Y_1 BC does not depend on other mass fractions.

Y_2 BC does not depend on temperature.

return_value is already set to zero for these entries.

if (var_num == MASS_FRACTION && sub_var_num <= 2) {
switch (sub_var_num) {
case 1:
if (wrt_var_num == TEMPERATURE)
/* Derivative of Y_1 BC w.r.t. TEMPERATURE is 1.0. */
return_value = 1.0;
break;
case 2:
if (wrt_var_num == MASS_FRACTION)
if (wrt_sub_var_num == 0 || wrt_sub_var_num == 1)
/* Derivative of Y_2BCw.r.t. Y_OorY_1is 1.0.*
return_value = 1.0;
break;
}
}
else if (var_num != TEMPERATURE) {
(void) fprintf(stderr, "ERROR in use of user_jac_bc.\n");
exit(-1);
}

return (return_value);

}

Figure 4.5. Example of user functiaeer_jac_bc  that computes derivatives of the boundary conditions
inuser_bc_exact  in Figure 4.4.

integer arrayBC_Data _Int in the Boundary Condition structure; floating point data,
specified byBC_DATAFLOAT are stored in the double arrBZ Data Float ; and function
pointer data, specified I¥C_DATAFUNCTION are stored in thBC_Data_User_Fn_Ptr

array. The data are stored in the order they appear in the input file, starting from array index 0O in
each array.

59



Argument Description

double soln[] Solution vector at positiox ¥, 2).
double x, vy, z Coordinates of positioq Y, 2).
double t Time.

MATSTRUCT_PTR matID_ptr | Pointer to the material property structure (defined in “rf_matrl_const.h”)
for the material being processed.

int var_num Dependent variable of the partial derivative (e.g., TEMPERATURE,
VELOCITY1, MASS FRACTION) as defined in “rf_fem_const.h.”

int sub_var_num Species number for the dependent variable of the partial derivative
(applicable only when var_num == MASS_FRACTION).

int wrt_var_num Independent variable of the partial derivative to be taken (e.g.,
TEMPERATURE, VELOCITY1, MASS_FRACTION) as defined in
“rf_fem_const.h”

intwrt_sub_var_num Species number for the independent variable of the partial derivative
(applicable only when wrt_var_num == MASS FRACTION).

int egn_offset[] Offset into soln[] for each variable; e.g., the temperatuxg/a} is
soln[eqn_offset TEMPERATURE]].

int num_dim Number of dimensions in the element.

BCSTRUCT_PTR bc Pointer to the boundary condition structure (defined in “rf_bc_const.h”)

corresponding to the current boundary condition being processed.

Table 4.5. Arguments includedJAC_BC_FUNCTION_ARGLIST

The argument bc in SNGLVAR_FUNCTION_ARGLIST and
JAC_BC_FUNCTION_ARGLISTis a pointer to theBoundary_Condition structure
associated with the boundary conditi&@C_DATAcan be accessed by following this pointer. For
example, the firsBC_DATAINT value entered in the input file would be accessed in boundary
condition functions byc->BC_Data_Int[0] . An example boundary condition function using
BC_DATA:Is included in Figure 4.6. In this example, the rotation rate and center of rotation of a
two-dimensional disk are given IBC_ DATAFLOATVvalues in the input file.

Functions listed inBC_DATAFUNCTION lines must also be boundary condition
functions as described in Section 4.2. They must have the same prototypes &s_exact
and be called with thENGLVAR_FUNCTION_ARGLISargument list in Table 4.2. As with all
user boundary condition functions, they must be included in the pointer assignment routine
align_f_ptr and compiled into MPSalsa. The syntax for calling, say, the second
BC_DATAFUNCTIONIisted for a boundary condition is shown below:

val = bc->BC_Data_User_Fn_Ptr[1](soln, x, y, z, t,
matlD_ptr, var_num, sub_var_num, eqn_offset,
num_dim, bc);

60



double f_xy_spin_disk (SNGLVAR_FUNCTION_ARGLIST)

{

/* Function to return value of the x,y velocity on a rotating disk.

* This function takes 3 arguments:

* BC_Data_Float[0] = rotation rate in rpm, counter clockwise
BC_Data_Float[1] =x_0
BC_Data_Float[2] =y _0

*
*
* Usage: e.g. Disk spinning at 50rpm around x=0, y=0

* U_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
* BC_DATA =50.00.0 0.0

* V_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
* BC_DATA =50.00.0 0.0

*/

double omega = 0.0, x_0 =0.0, y_0 = 0.0; /* default values */
double x_offset, y_offset, result;

[* Use BC_DATA values if any are specified in the input file. */

if (bc->BC_Data_Float != NULL) {
[* Conversion from rpm to radians/sec done once in bc_input_pre_process */
/* omega = (bc->BC_Data_Float[0] * 2.0 * pi)/60.0; */
omega = bc->BC_Data_Float[0];
x_0 = bc->BC_Data_Float[1];
y_0 = bc->BC_Data_Float[2];
}

x_offset = (x - x_0);
y_offset = (y -y_0);

if ~ (var_num == VELOCITY1) result = (-omega *y_offset);
else if (var_num == VELOCITY2) result = ( omega * x_offset);
else if (var_num == TANGENT_VELOCITY1)

/* Assumes t1 = [0.8, 0.6, 0.0] */

result = 0.8 * (-omega * y_offset) + 0.6 * (omega * x_offset);
else if (var_num == TANGENT_VELOCITY2)

/* Assumes t2 = [-0.6, 0.8, 0.0] */

result = -0.6 * (-omega * y_offset) + 0.8 * (omega * x_offset);

return (result);

Figure 4.6. Example demonstrating the usB@f DATAN boundary condition functions.

4.3. Generalized Surfaces

User-defined outward normal and tangent vectors may be specified through the use of
generalized surfaces as described in Section 3.7.1. The functisas normal
user_tangentl , and user_tangent2 are provided for this purpose. They return the
appropriate surface vector as a function of position on the surface. The prototypes for these

functions are

void user_normal (SURF_VECTOR_FUNCTION_ARGLIST)
void user_tangentl (SURF_VECTOR_FUNCTION_ARGLIST)
void user_tangent2 (SURF_VECTOR_FUNCTION_ARGLIST)

61



whereSURF_VECTOR_FUNCTION_ARGLIS% defined in “rf_bc_const.h” and described in
Table 4.6.

Argument Description

double surf_vec]] Returned vector containing xhe/-, andz-components of a surface
vector.

double x, vy, z Coordinates of positioq Y, 2).

Table 4.6. Arguments included$YRF_VECTOR_FUNCTION_ARGLIST

Examples of the generalized surface functions are given in Figure 4.7. The functions are
stored in “rf_user_tangent_fn.c.” To add new user-defined functions for describing generalized
surfaces, users should write the functions in either “rf_tangent_fn.c” or “rf_user_tangent_fn.c,”
include prototypes for the new functions in “rf_tangent_fn.c,” and add pointer assignments for the
new functions to the routirdign_surf_vector_ptr in “rf_tangent_fn.c.” The prototypes
and pointer assignments foser_normal serve as examples for newly written user functions
for outward normal and tangent vectors.

The following run-time error message alerts users to incorrect implementation of user-
defined normal and tangent functions:
> ERROR - unknown surface vector function: function_name

A function name was either misspelled in the input file or not added correctly to the
align_surf_vector_ptr routine.

4.4. Initial Condition/Guess

Initial guesses may be specified throughuker_init_cond function. The prototype

for user_init_cond is
double user_init_cond (SNGLVAR_FUNCTION_ARGLIST)

whereSNGLVAR_FUNCTION_ARGLISIE described in Table 4.2. The argumengID_ptr
andbc in SNGLVAR_FUNCTION_ARGLIS@re NULL when a function is used as an initial
condition function. The functionser_init_cond is in file “rf_user_init_cond_fn.c.” New
initial condition functions should be added to this file or to “rf_bc_exact fn.c.” Prototypes for
new functions should be added to “rf_bc_exact fn_const.h,” and function pointers must be added
toalign_f ptr in “rf_bc_exact_fn.c.”

62



void user_normal(SURF_VECTOR_FUNCTION_ARGLIST)
{
/*
* Outward normal vector (along circle of radius one) of cylinder aligned
* in z-direction.
*
* USAGE: in Generalized Surfaces section ...
* NORMAL = user_normal
*
/
surf_vec[0] = x;
surf_vec[1] = y;
surf_vec[2] = 0.0;
}

void user_tangentl(SURF_VECTOR_FUNCTION_ARGLIST)
{
/*
* Tangent vector (along circle of radius one) of cylinder aligned
* in z-direction.
*
* USAGE: in Generalized Surfaces section ...
* TANGENT = user_tangentl
*/
surf_vecl[0] = -y;
surf_vec[1] = x;
surf_vec[2] = 0.0;
}

void user_tangent2(SURF_VECTOR_FUNCTION_ARGLIST)
{
/*
* Tangent vector (along height of cylinder) of cylinder aligned in z-direction.
* USAGE: in Generalized Surfaces section ...
* TANGENT = user_tangent2
*/
surf_vec[0] = 0.0;
surf_vec[1] = 0.0;
surf_vec[2] = 1.0;

Figure 4.7. Example of functiomser_normal ,user_tangentl , anduser_tangent2  for
generalized surfaces.

4. 5. Exact Solutions

For problems having analytic solutions, MPSalsa can compare the computed solution with
the analytic solution. The user functiaser_bc_exact in “rf_user_bc_exact_fn.c” may be
used to specify the exact solution function. The prototypader_bc_exact is

double user_bc_exact (SNGLVAR_FUNCTION_ARGLIST)
whereSNGLVAR_FUNCTION_ARGLISIE described in Table 4.2. Since exact solutions depend
only on position and time, the argumentsatlD ptr , bc, and eqn_offset [] in
SNGLVAR_FUNCTION_ARGLIS&re NULL when they are arguments to an exact solution
function. An example ofiser_bc_exact used as an exact solution function is given in Figure

63



4.8. The procedures for adding new exact solution functions to MPSalsa are the same as those
described in Section 4.2 for adding new boundary condition functions.

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)
{
/* Returns the exact solution values for the coupled linear diffusion equations:
*
N T=24 yz + A
*
* Yo = a€where a = in 1D, air 2D, and inaD= 6
*
. Y, = n y2 + A
*
* Y, = ad +x’+y’ +7
*
* USAGE: in Output Specification section...
* Test Exact Solution Flag = 1
* Name of Exact Solution Function = user_bc_exact
*
/
double return_value, spatial_coeff, sum;
spatial_coeff = 2 * num_dim;
sum = x*x;
if (num_dim > 1) sum += y*y;
if (num_dim > 2) sum += z*z;
if (var_num == TEMPERATURE) {
return_value = sum;
else if (var_num == MASS_FRACTION && sub_var_num <= 2) {
switch (sub_var_num) {
case 0:
return_value = spatial_coeff * exp(x);
break;
case 1:
return_value = sum;
break;
case 2:
return_value = spatial_coeff * exp(x) + sum;
break;
}
}
else {
(void) fprintf(stderr, "ERROR in use of user_bc_exact.\n");
exit(-1);
}
return (return_value);
}
Figure 4.8. Example of functiarser_bc_exact  used as an exact solution function.
4.6. Output

Functions can be written to compute specific output from the solution. At the initial
conditions, after every time step, and after calculating a steady-state solution, the function
user_out in the file “rf_user_out.c” is called. The default functioger_out computes the
maximum, minimum, and average value of each variable as well as the position of the maximum

64



and minimum. (Little investment has been made in providing output options for MPSalsa since
commercial visualization packages that read in the FE mesh and solutions from the Exodusli
database have satisfied most of our post-processing needs.)

Writing additional output routines should be done usinguder_out function, either
by replacing it with an alternate function or by calling another function from within it. The second
option was chosen for implementing routines suctinas_history_points (See Section
A.3.1).

The status integer flag passed taser_out contains information on whether the
solution is an initial guess, an intermediate time step, a failed time step, or a final solution. The
values of the flag are shown in Figure 4.9.

Values for status variable:

< = Some sort of error condition has occurred.

*
*
* 0

* 0 = Initial conditions

* 1 = Final conditions, i.e., a successful run has completed
* 2 = A successful intermediate time step has occurred.

Figure 4.9. Values of ttretatus flag as passed taser_out

To write new output functions, it is best to modify the defagltr_out or one of the
output functions listed in Appendix A. Many quantities that might be useful in output routines --
such as the values of physical properties at the nodes and useful bookkeeping arrays -- are
unfortunately not readily available to the output routines. These quantities are stored in memory
only during the matrix-fill section of the calculation; after the matrix-fill, their memory is freed to
provide as much memory as possible for the matrix-solve.

4.7. Continuation

The functionuser_continuation in the file “rf_user_continuation.c” is where the
continuation parameter is defined. The continuation parameter can be equated to any boundary
condition, physical property, or a combination of these quantities. The function takes as input the
pointer to the continuation parameter, and updates the appropriate physical quantity or boundary
condition. For instance, if the user would like to continue with respect to the viscosity of the first
material, stored globally aMatiD_Prop->viscosity , user_continuation would
simply contain the appropriate assignment statement as shown in Figure 4.10.

Similarly, if the user would like to continue with respect to the value of the sixth boundary
condition listed in the file, stored globally a®8C _Types[5].BC_Fn Value ,
user_continuation would contain just the following assignment statement:

65



function void user_continuation(double *con_par);
/* con_par is a pointer to the continuation parameter */
/* *con_par is the value of the continuation parameter */

{
}

MatID_Prop->viscosity = *con_par;

Figure 4.10. Example of the functioser_continuation for assigning the continuation parameter
to a physical quantity (in this case the fluid viscosity).

BC_Types[5].BC_Fn_Value = *con_par;
(Since “C” numbering begins with zero, the sixth boundary condition in the input file is stored in
array entry five.)

Another common continuation parameter with boundary conditions is an entry in the
BC_DATAstatement. To continue with respect to the third constant (“C” array entry 2) of the
BC_DATA FLOATarray of the twenty-third boundary condition (“C” array entry 22), the
assignment would be

BC_Types[22].BC_Data_Float[2] = *con_par;

All parts of the boundary condition structure, not only tB€ Fn Value and
BC_ Data_Float[] examples shown here, can be referenced for use in continuation. The entire
structure is listed in the file “rf_bc_const.h.” Similarly, the entire materials structure of physical
properties can be referenced in the same way the viscosity was above. The structure is defined in
the file “rf_matrl_const.h.”

The continuation parameter can represent other quantities by more complicated
assignment statements. For instance, to continue with respect to the Reynolds number, where the
inlet velocity is entered as the fourth BC and the characteristic length is 2.0, the assignment
statement would be

BC_Types[3].BC_Fn_Value = *con_par * MatID_Prop->viscosity

/ (2.0 * MatiD_Prop->density);
In this example, the inlet velocity is manipulated at constant viscosity and density so that the
continuation parameter equals the Reynolds number, and other dimensionless numbers stay
constant.

4.8. Function Data

User data specified in the Function Data section of the input file (see Section 3.11) may be
accessed by any of the above user functions. The user function must first locate its particular
function data. In the simplest case, the location is found by calling the function
fn_data_location

66



FNDATA_PTR fn_data_location (char yo[], int data_required)

whereyo[] is a character string containing the function name associated with the data in the input
file, and data_required indicates whether the function data is mandatory or optional. If
data_required is TRUEand no function data was included in the input file, MPSalsa will quit
with an error condition. Whedata_required is FALSE, either default values for the data
should be supplied or the user function should return immediately without an error.

The functionfn_data_location returns a pointer to Bunction_Data  structure
(defined in “rf_fn_data_const.h”). Within thEunction_Data  structure,Fn_Data_Int ,
Fn_Data Float , andFn_Data_String  are arrays ofNT, STRING andFLOAT function
data, respectively, from the input file. The numbers of entries in each array are given by
Num_Fn_Data_Int , Num_Fn_Data_String andNum_Fn_Data Float . The arrays are
used in a manner analogous to B@ DATAarrays for boundary conditions (see Section 4.2.1).
Data values are stored in the order they are read from the input file, starting from index 0 in the
arrays. For example, the fifth string entered as function data would be addressed by
current_fn  ->Fn_Data_String[4] . An example of a boundary condition function that
uses optional function data is given in Figure 4.11.

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)
{
/*
* Function that returns (X=%5) 2y (yvh%ez and xpay be y,
* specified by the user in the function data section of the input file.
*
* USAGE: in Function Data Specification section ...
* Function Name = user_bc_exact 1
* FN_DATA = FLOAT 3.0 2.0
*
/
FNDATA_PTR current_fn;

/* Get the pointer to the function data for this function. */
[* This function is optional; if no function data is found, */
¥ xzand  ygre zero. */

current_fn = fn_data_location(“user_bc_exact”, FALSE);

if (current_fn != NULL)
if (current_fn->Num_Fn_Data_Float > 0)
X = (X - current_fn->Fn_Data_Float[0]);
if (current_fn->Num_Fn_Data_Float > 1)
y = (y - current_fn->Fn_Data_Float[1]);
}

return (X * X +y *y);

Figure 4.11. Example usage of function data within a user function.

A table supplied by thEN_DATA-TABLE mechanism is stored in tR&inction_Data
structure agn_Data_Table , a two-dimensional array of double precision numbers. Each row

67



of the table in the input file is stored as a row of the array; that ijst,hthe entry dhthe  row of
the input table is stored fn_Data_Table [i][j]. The numbers of rows and columns in the table
are stored irFn_Data_Table_Dim[0] andFn_Data_Table Dim[1] , respectively. The
functionlookup_table 1 in “rf_fn_data.c” provides a good example of the usage of function
data tables (see Appendix A.2).

User functions that operate on several sets of function data are often useful. The function
time_history_line , for example, prints the solution along a line that is described by a
function data table. To print time histories along several lines, a function data entry is included in
the input file for each line. Such user functions must loop over all the function data and operate on
each instance of their function data. The funcfiordata_next location is provided to
allow processing of two or more sets of function data by a single function. The prototype for
fn_data_next_location is

FNDATA PTR fn_data_next_location(char yo[],

int data_required, int start_ifd, int *found_ifd)
whereyo[] is the function name specified in the input fdeta_required indicates whether
the function data are required or optiorstart_ifd is the first function data entry to be
checked for a match wityo [], and the index of the function data entry matchiogj is returned
in found_ifd . The value offound_ifd +1 should be used astart_ifd in subsequent
searches for more function data yar[]. A pointer to the function data indexed fmund_ifd
is returned byfn_data_next_location . An example demonstrating the usage of
fn_data_next_location in a loop over function data is given in Figure 4.12.

68



void function_name()

{

/*

* USAGE: in Function Data Specification section ...
* Function Name = function_name 1

* FN_DATA = STRING data set one

* Function Name = function_name 1

* FN_DATA = STRING data set two

*

char yo[] = "function_name";

FNDATA_PTR current_fn = NULL;

int ifd = -1;

extern int Num_Fn_Data; /* Number of function data entries in the input file */

while (ifd < Num_Fn_Data) {

/* Get the pointer to the function data for this function */
current_fn = fn_data_next_location(yo, FALSE, ifd+1, &ifd);

if (current_fn == NULL) {
printf("No additional Function Data found for %s\n", yo);

break;

}

else {
/*
* Process the data pointed to by current_fn.
*/

}

}
}
Figure 4.12. Example usagefaf data_next_location to process more than one set of function data

within a function.

69



5. Solution Strategies

5.1. Getting to a Steady State

Sometimes a steady-state solution to a non-linear problem is desired but MPSalsa will not
converge to it for a given input file and a simple initial guess. The following is a list of some input
file options and techniques that can help. Some of the options are discussed in more detail later in
this chapter.

() Increase the maximum numbergwton iterations. (See Section 3.3.1.)

(2) Choose a more robuspreconditioner, such aso_overlap_bilu or
real_overlap_ilu . If the program runs out of memory, use a larger number of processors.

(See Section 3.3.2.)

3) Increase the number Kfylov subspace vectors for GMRES. If the program runs
out of memory, use a larger number of processors. For problems of a few hundred thousand
unknowns, a Krylov subspace size over 100 is desirable. (See Section 3.3.2.)

4) Switch theEnable  backtracking for residual reduction flag
fromon to off , or fromoff toon. We have seen examples where the problem converges only
with backtrackingon, and we have seen cases that converge only with backtraafkingSee
Section 3.3.1.)

If none of the easy solutions above works, the following options may.

(5) Usepseudo time-stepping as th8olution Type to relax the system. If the
initial time step is small an@lime Step Control is on, pseudo time stepping increases the
time step for any step that converges, regardless of integration error. After 5-20 successful time
steps have been taken, one can often restart from the last time step and converge to the steady-
state. (See Section 3.2.)

(6) Use therestart capability to step to the solution by first solving the problem at
simpler conditions, such as at a reduced density or thermodynamic pressure, an elevated viscosity,
or with reactions turned off using tt&pecies equation source terms and Energy
eguation source terms flags. Then, use this intermediate solution as an initial guess for
the desired solution. (See Section 3.8.)

(7 Usecontinuation to automatically step through a series of steady states as a single
parameter is incremented until reaching the desired conditions. (See Section 5.4.)

70



(8) Domesh sequencing to first solve the problem on a coarse mesh, and work toward
a fine mesh. Convergence is often better on coarse meshes because the preconditioners span more
of the domain. (See Section 5.3.)

(9) Write aninitial guess function with an educated guess of what the solution will
look like as a function af, y, andz. (See Section 3.8 and Section 4.4.)

5.2. Picking a Linear Solver and Preconditioner

The choices for the linear solver, the preconditioner, and the scaling method are listed in
Table 3.3, Table 3.5, and Table 3.6, respectively, and lead to hundreds of possible combinations.
In Table 5.1 below, we list the three combinations that we use most often. The most common
combination is #1, which does well for getting to a steady-state (i.estefady , pseudo , or
continuation solution types as listed in Section 3.2). With the GMRES method, the Krylov
subspace dimension can be increased to be as big as will fit on the machine without running out of
memory (or causing excess swapping on some machines), up to a value of a few hundred. The
total number of linear solver iterations should usually be two or three times the Krylov subspace
size, since GMRES tends to make little progress after restarting three times.

If a steady state is desired but the job runs out of memory at low values of the Krylov
subspace, there are two options: (1) use a larger number of processors, and (2) switch to a
different solver such as the tfgmr solver (combination #2).

For transient runs where speed is more important than robustness, the scheme #3 is
often used. This scheme uses only about half the memory of scheme #1 and the calculation of the
scaling matrix is much quicker than an ILU-type preconditioner.

Scheme, in decreasing order af Linear Preconditioner Scaling Krylov
robustness and memory use Solver subspace

1. Robust; good for Steady-Stgte gmres no_overlap_ilu row_sum large (>100)
2. Robust; uses less Memory tfgmr no_overlap_ilu row_sum

3. Fast; Good for Transient gmres none block_Jacobi  moderate

Table 5.1. Three common linear solution schemes.
5.3. Mesh Sequencing

Mesh sequencing is a strategy for more easily obtaining steady-state solutions on fine
meshes. In mesh sequencing, a solution is first computed on a coarse mesh. This solution is
interpolated to a finer mesh and used as the initial guess for the solution on the fine mesh.

71



Sequences of successively finer meshes can be used until a solution with the desired resolution is
obtained.

Using Merlinll [15] to interpolate the solution from coarse meshes to fine ones, we have
run some experiments with mesh sequencing in MPSalsa. In Table 5.2, we show results for the
Lid-Driven Cavity problem (see Appendix C.2) with an upper-wall velocityuof 1500
Steady-state solutions were obtained with an initial guess of zero for all unknowns and with initial
guesses interpolated from coarser meshes. The linear solver was GMRES with an ILU
preconditioner. The number of Newton iterations and the solution times on the Intel Paragon are

compared.
Mesh Size| Number of Initial Guess Number of Execution Merlinll’s
Processors Newton Time Execution Time
Iterations (seconds) (seconds)
16x16 1 0.0 13 59.2
32x32 4 0.0 10 73.1
Sol'n from 16x16 6 46.3 1.0
64x64 16 0.0 11 220.0
Sol'n from 16x16 8 165.5 2.7
Sol’n from 32x32 6 122.5 5.2
128x128 64 0.0 39 1406.1
Sol'n from 16x16 29 1025.3 9.1
Sol’n from 32x32 23 820.3 17.6
Sol'n from 64x64 17 610.8 52.4

Table 5.2. Performance of the non-linear solver for the Lid-Driven Cavity example using initial guesses of zero and
initial guesses obtained from coarse-mesh solutions.

Merlinll is included in the SEACAS distribution of utilities for Exodusll. If the SEACAS
utilities are installed in directory $ACCESS, the path $ACCESS/etc must be included in the
user’s path. The command line for Merlinll to interpolate the solution from a coarse mesh to a fine
mesh is shown below:

> merlin2 -input merlin.inp -output merlin.out -plot coarse_soln.exoll -mesh
fine_mesh.exoll -interpolate merlin.exoll

where “coarse_soln.exoll” is the Exodusll file containing the coarse-mesh solution,
“fine_mesh.exoll” is the Exodusll file containing the fine mesh, “merlin.exoll” is the resulting
Exodusll file containing the fine-mesh solution interpolated from the coarse-mesh solution,

“merlin.out” is a text file containing error messages, if any, and “merlin.inp” is an input file

72



containing processing instructions for Merlinll. The Merlinll input file for the Lid-Driven Cavity
example above is shown in Figure 5.1; see [15] for more details.

$ INPUT FILE FOR THE LID-DRIVEN CAVITY EXAMPLE
$ Declare that the files to interpolate both from and to are EXODUS files.
MESH-A, EXODUS

MESH-B, EXODUS

$ List the variables to be interpolated.

VARIABLES

VX

VY

Pres

END

$ List the time planes to be interpolated.

TIMEPLANE

ALL

END

$ Perform the interpolation and quit.

EXECUTE

STOP

Figure 5.1. Merlinll input file for mesh sequencing in the Lid-Driven Cavity example.

5.4. Continuation

Continuation methods are used to solve for a series of steady-state solutions as a function
of a parameter. These methods are commonly used for analysis to study trends in performance or
behavior, as we have studied the effect of the disk spin rate on the CVD reactor performance in
Section D.3. Continuation can also be an efficient way of reaching a steady-state solution at
conditions where a trivial initial guess is not close enough for Newton’s method to converge. For
instance, a flow problem can be solved easily at low density, and then the density can be
incremented over several steps until reaching the desired conditions.

To implement continuation, the user must edit the funati®er continuation in
the file “rf_user_continuation.c” to associate the continuation parameter with a specific boundary
condition or a physical, transport, or kinetic property. This can usually be done by editing only
one line of code. For details, see Section 4.7.

Users control the continuation routine through the Solution Specifications section of the
input file. An example of this section configured for a continuation run is shown in Figure 5.2.
The seven lines in this section specify that (1) we are solving a continuation problem; (2) first-
order (a.k.a. Euler-Newton) continuation is to be used; (3) a constant step size is to be used as
long as a steady-state solution is reached within the maximum number of Newton iterations; (4)
the first solution is for a parameter value of 100.0; (5) the first parameter step is of size 100.0;

73



(6,7) the run will stop when either 20 continuation steps have been taken or when the parameter
value exceeds 1300.0.

Solution Specifications

Solution Type = continuation
Order of integration/continuation = 1

Step Control = off

Initial Parameter Value =100.0

Initial Step Size =100.0
Maximum Number of Steps =20
Maximum Time or Parameter Value = 1300.0

Figure 5.2. Sample Solution Specifications section for a continuation run.

TheOrder of integration/continuation flag can have values of 0, 1, or 2. A
value of zero indicates zeroth order continuation, where the solution atisteped as an initial
guess for solution+1 at the next parameter value. This type of continuation is just an automation
of doing a series of steady-state calculations where, for each calculation, the parameter is changed
in the input file between each run and the initial solution value is taken from the previous solution.

First-order continuation (when this flag equals one) requires one additional matrix solve to
calculate the derivative of the solution with respect to the parameter at, st@pol uses this
tangent to predict an initial guess at the parameter value fonstedhe resulting improvement
in the initial guess using first-order continuation usually saves at least one Newton iteration in
converging to the solution at stegl, which makes up for the additional cost of the tangent
calculation.

A value of two for this flag indicates pseudo arc-length continuation, a capability that is
not currently implemented. This method is a powerful tool in bifurcation analysis as it can track
solutions around turning points in the solution branch. In pseudo arc-length continuation, the
distance along the solution branch (not the change in the parameter) is chosen, so the parameter
value is free to increase or decrease. With our block matrix storage format, we have decided not to
implement pseudo arc-length continuation by augmenting the system of equations by one, as is
commonly done [38], but to use the method described in the Ph.D. dissertation of Shadid [41]. In
this method, the continuation step takes two matrix solves to form the initial guess fotktep
although the same preconditioner can be used for both solves.

The other input file choice that deserves additional mention iStéeControl  flag.
WhenTime Step Control is off , the step size is held constant for successful steps (where
convergence of the nonlinear solver is reached within the maximum number of allowed Newton

74



iterations) and cut in half when a step is unsuccessful. WWimea Step Control ison, the

step size is increased after each successful step. The increase in step size is larger when the ratio
of the number of Newton iterations needed for convergence to the total number of Newton
iterations allowed is small. Failed steps cut the step size in half.

75



6. Future Development

The following is a list of development work for the MPSalsa code that is already planned

or underway.

Multicomponent Diffusion: A full multicomponent diffusion option will be added, which
will be more accurate than the current mixture-average model, yet much more costly to
compute.

Cylindrical coordinates: For 2D meshes, the capability to solve for axisymmetric solutions
will be added, with the option of two or three components of the velocity for problems
with fluid flow.

Multi-Physics: This work will add the ability to solve for different physics, and different
numbers of unknowns, in distinct “realms” of the computational domain. For instance,
heat transfer can be modeled in the solid walls of a reactor together with the reacting gas
flows on the inside.

Turbulence: Implementation ofka-e model for time-averaged turbulence is underway,
and an LES (Large Eddy Simulation) model for transient turbulence will follow.

Adaptive Mesh Refinement and Dynamic Load Balancing: The ability to automatically
refine a mesh to reduce a measure of the discretization error below a given tolerance will
be added. As elements are created and destroyed nonuniformly, the work load will be
redistributed over the processors.

Stability Analysis: A pseudo arc-length continuation routine will be added to track steady-
state solution branches, even if they lose stability through a turning point. To check the
stability of steady solutions, the ability to calculate eigenvalues of the Jacobian matrix will
be added through ARPACK [47], which we will access through the Aztec library.

Radiation: The ability to include the radiant energy exchange due to enclosure radiation
using the methods in COYOTE Il [16] is mostly implemented in MPSalsa. Work is also
underway to implement a participating media radiation model.

Porous Media: The ability to model multiphase flow in porous media has been
implemented in a previous version of MPSalsa [32], and will be integrated into the current
version in the future. The Brinkman equation, which just requires the addition of drag
terms to the Navier-Stokes equations, will also be included.

Plasma Physics: The ability to model dense, partially ionized plasma/gas mixtures using
self-consistent charged species transport models will be added.

76



Appendix A. Included Functions

A.1. Boundary Conditions
A.1.1. Surface Chemistry Boundary Conditions

Effects due to surface reactions are included through the use of surface chemistry
boundary conditions. The functiosurface_chemkin_bc computes the temperature and
mass fractiorNEUMANNoundary conditions, and Stefan fl@WRICHLET velocity boundary
conditions below:

nly, = g SW.h,, (A.1)
k=1
nQj, = -SW, - (npYu), and (A.2)
1
nlu = 5 Z S W, (A.3)

wheres, = S (P, T,Y,Z) isthe production rate of gas- or surface-phase species due to surface
reaction,Z is the vector of surface site fractions, is the molecular weight of sketies , s
the enthalpy of specids Ng is the number of gas-phase specied, and is the total number of
gas-, surface-, and bulk-phase species (see [5, 42] for more details of these surface reaction
boundary conditions). Examples using thaface chemkin_bc function for (A.1) - (A.3)

are included in Figure A.1. The Stefan velocity boundary condition (A.3) may be implemented as
either aVEL_NORM_BGr as dJ_ BC V_BC orW_BGwvhen the normal vector is parallel to the

X-, Y-, Or z-axis, respectively. In the latter case, the sign of the normal vector will be taken into
account automatically.

The initial surface site fractions and bulk species mass fractions may be specified in the
input file by including SURF_SPECIES LIST and BC_DATA lines with the
surface_chemkin_bc mass fraction boundary condition. The format for these lines follows:

SURF_SPECIES_LIST ={ALL | list of species numbetfs list of species namgs
BC_DATA = FLOAT list of surface site fractions or mass fractions

The arguments oSEURF_SPECIES LIST are analogous to those of tiPECIES_LIST
described in Section 3.7.2.1, with the exception that the numbers or names must correspond to
surface or bulk species. These two lines together count as one data lineumtheata_lines

77



# Temperature BC of equation (A.1).
BC = T_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 0

# Mass fraction BC of equation (A.2).

BC = Y_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 2
SPECIES_LIST = ALL
SURF_SPECIES_LIST = GaMe(S) Ga(S) GaH(S) AsH(S) AsMe(S) As(S)
BC_DATA =1.0e-6 0.5 1.0e-6 1.0e-6 1.0e-6 0.5
SURF_SPECIES_LIST = Ga-GaAs(D) As-GaAs(D)
BC_DATA=1.01.0

# Tangential velocity BC with value 0.0.

BC = U_BC DIRICHLET SS 4 INDEPENDENT 0. 0

BC = V_BC DIRICHLET SS 4 INDEPENDENT 0. 0

# Normal velocity BC of equation (A.3) (Stefan flow).

BC =Z_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0

Figure A.1. Example usage of surface_chemkin_bc for surface reaction boundary conditions on temperature,
mass fractions and velocity (where the normal to side set 4 is parallel to the z-axis).
argument of theBC line (see Section 3.7.2). The example in Figure A.1 uses
SURF_SPECIES_LIST to initialize both surface site fractions and bulk mass fractions.

A.1.2. Danckwerts’ Boundary Conditions

Danckwerts’ boundary condition can be applied using the included functions
f Danckwerts andf _Danckwerts X0 . Danckwerts’ boundary condition is used as an inlet
boundary condition when the user wants to specify the total flux of each species into the system,
rather than the mole or mass fraction of species at the edge of the domain. This is particularly
important in low pressure reacting systems, where the diffusive component of the inlet flux of a
specied is significant compared to the convective contribution:

i i i
Jtotal - Jdiffusive-'-Jconvective (A'4)
This boundary condition is also important for matching experimental results, where it is generally

the total flux of a specias that is known, not the mole fractions at the edge of the computational
domain.

It is assumed that the user knows the total flux of each species into the system in terms of
the upstream velocity, , the normal flow velocity into the domgirr —n -« u, , the upstream
densityp, , and the relative species mole fracti¥ys . The weak form of the FE discretization
yields a surface integral of the diffusive flux over the inlet boundary. Using (A.4) to solve for the
diffusive flux, we have

i _ O . U _ i j
ne Jdiffusive =ne Dtotal _Jconvectivﬂ - _pOVOVO + pVV ! (A'5)

78



whereY';) is the mass fraction of species computed from the given mole fra)égohé , Isthe
unknown mass fraction of species at the inlet boundary,—n e« u is the unknown normal
velocity into the domain at the inlet boundary, gnd  ppd are the densities calculated for
andY , . By conservation of mass, the total mass flux of species at the inlet boundary must be
equal to the given mass flux into the system,

PV = Py, (A.6)

which leads to a Dirichlet condition on the inlet velocity:

V = PoVy/P- (A.7)

Using (A.7) to simplify (A.5), we get BIIXED boundary condition for each species,

ne j::iiffusive = PoVo (Y—Yp) - (A.8)

With MPSalsa, (A.7) and (A.8) are applied with the following lines in the Boundary
Condition section of the input file (assuming that the boundary is side set 1 and has a normal in
they-direction):

BC =V_BC DIRICHLET SS 1 DEPENDENT f_Danckwerts_X0 1
BC_DATA =FLOAT S_0 X1 X2 X3 .. XN

BC =Y_BC MIXED SS 1 INDEPENDENT f_Danckwerts f _Danckwerts X0 0.0 0.0 1
SPECIES_LIST = ALL
BC_DATA =FLOAT S_0 X1 X2 X3 .. XN

The BC_DATAstatements following th¥ BC and Y_BC statements must be the same, and
consist of an upstream velociBy 0 followed by the list of molar flux fractions. The expression
for S_0 varies depending on the type of velocity boundary condition in which it is used. For
Dirichlet boundary conditions on one componegt of the velagity ({eBG V_BC or
W_BgG,

S 0=vy(-n-e), (A.9)

wheree, is the unit vector in tHé"  -coordinate direction. For Dirichlet boundary conditions on
the normal velocityn» u (i.eVEL_NORM_BC

SO0=neu, = -v,. (A.10)
0 0

In both of these caseS, 0 is the velocity value that would be used if regular Dirichlet boundary
conditions on velocity were being imposed instead of Danckwerts’ boundary condition.

79



The functionf _Danckwerts X0 , when used as a velocity boundary condition,
calculates the ratio of the densities in (A.7) and multiplies B by. When used as BC this
function returns the appropriate mass fraction calculated from the mole fraxtioKs ..., X
The functionf_Danckwerts  returns the quantitp,v, = p,/S_0| , which is analogous to the
heat transfer coefficient in the typiddIXED boundary condition. It calculatgg ~ assuming that
the temperature and pressure upstream of the boundary are equal to those values used at the
boundary. Thus, only the mass fractions and the normal velocity are allowed to have a jump
discontinuity between the upstream and the domain. This limits effective usage of this boundary
condition to cases where there is a Dirichlet condition on the temperature on the same boundary.

If the inlet fluxes are known in terms of mass fractions instead of mole fractions, the
functionf_Danckwerts_YO can be used in place of thebanckwerts_ X0 above, and the
list of mass fractions must follo® 0 in theBC DATAstatements.

A.1.3. Spinning Disk Boundary Conditions
A.1.3.1. Spinning Disk in thexy-Plane

The boundary condition functidnxy_spin_disk is used to apply Dirichlet boundary
conditions on velocities on a spinning disk in Kyeglane. This function returns non-zero values
only for boundary condition types_BC and V_BC It should be called as an independent
Dirichlet condition on either side sets or node sets, and requiB€s BATAstatement. The
BC_DATAline must include three floating point numbers, the first being the disk rotation rate in
rpms (revolutions per minute) in the counterclockwise direction. The next two entries are the
coordinates of the rotation center.

For example, boundary conditions for a disk rotating at 80 rpm that is centered at the point
(x,y) = (2—3) would be imposed using the following lines in the input file:

U_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
BC_DATA =80.0 2.0 -3.0

V_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
BC_DATA =80.0 2.0 -3.0

The rotation rate is translated from rpm to radians/sec in a pre-processing step in the file
“rf_input_bc.c.”

A.1.3.2. Spinning Tilted Disk
The boundary conditiofi xy spin_tilt9 disk was written for the Tilted CVD

reactor (see the example in Appendix D.3). In this reactor, the rotating substrate is on a tilted
plane whose tangent vectors drg 0, 0) difdcosh, sing) , it 9 degrees. Since the

80



velocity normal to the disk can be non-zero due to the Stefan velocity, the rotation boundary
conditions are imposed in the two tangential directions using the Generalized Surface
functionality.

As with the spinning disk boundary condition in Appendix A.1.3.1, this independent
Dirichlet condition requires BC_DATAstatement with the rotation rate, followed by the center
of rotation. An example using this boundary condition, including the specification of the
generalized surface along side set 5, is shown in Figure A.2. This specification is for a disk
centered af(0, 0, 1.504¢ that is rotating at 80 rpm.

Number of Generalized Surfaces = 1

GENERALIZED_SURFACE 5 2
TANGENT 1.0 0.0 0.0
TANGENT 0.0 0.9876 0.1564

Number of BC = 33

BC = VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_tilt9_disk 1
BC_DATA = FLOAT 80.0 0.0 0.0 1.5046

BC = VEL_TAN2_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_tilt9_disk 1
BC_DATA = FLOAT 80.0 0.0 0.0 1.5046

Figure A.2. Example usagefoky spin_tilt9 disk to specify Dirichlet boundary conditions for
velocities on a spinning, tilted disk.

A.1.4. Mass Fraction Dirichlet Boundary Conditions expressed as Mole Fractions

In MPSalsa, the primitive variables for mass transfer are mass fractions, but for many
applications, it is the mole fractions that are known. MPSalsa includes the function
f _mole_fraction which allows the user to specify the mole fractions as a Dirichlet condition
along a side set or node set. An example of this boundary condition is in Figure A.3. The mole
fractions for all species are listed on tBE DATAIline in the order of th&PECIES_LIST
arguments above it. FE@PECIES_LIST = ALL, the mole fractions should be listed in order
from the first species to the last species. The mole fractions can be spread across more than one
BC_DATAstatement, each preceded byRECIES_LIST statement.

BC = Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraction 1
SPECIES_LIST=2143
BC_DATA = 1.232900e-04 1.095458e-02 9.889221e-01 0.0

Figure A.3. Example usagefoimole_fraction to specify Dirichlet boundary conditions for mass
fractions in terms of mole fractions.

81



The conversion from mole fractions to mass fractions is done once in a preprocessing step,
with the resulting mass fractions being stored inBi& Data_Float array where the mole
fractions originally were. Error checking makes sure that each species is assigned a mole fraction
and that the sum of mole fractions is near unity.

A.1.5. Outflow Boundary Condition

The included functionf_pressure returns the hydrodynamic pressure unknown
weighted by a constant. This value can be used as an outflow boundary condition by imposing this
function as a Neumann condition on the normal component of the momentum equation. The
usage of the function in the case of outflow from the computational domain on side set 3, with a
normal in they-direction, is

BC = V_BC NEUMANN SS 3 DEPENDENT f_pressure 1
BC_DATA =FLOAT 1.0

The single floating point data statement required with theessure  boundary condition is a
multiplicative factor, which will be discussed later.

A reasonable outflow boundary condition on the normal component of the momentum
balance is that the normal velocity is not changing as it leaves the domahy ¥eln = O
wheren represents the direction normal to the boundaryiand  is the normal velocity. The weak
form of the FE residual equation in the direction normal to the surface with respect to test function
Wj renders the following surface integral for the normal component of the stress tensor:

E—F> 2,0 2du“El4Jdr A.11
1[5 TaHEtu T g g (A.11)

From the continuity equation, the middle term is identically zero for incompressible flows
and is often negligible for variable-density flows. A natural condition that sets the entire integral
to zero works for many cases as an outflow boundary condition and has the added feature of
setting the pressure datum to near zero along the outflow surface. Thus, no boundary condition for
pressure is needed for open flows while the pressure must be set at one node for closed flows.

This natural condition does not work for cases where the pressure is not constant along the
outflow surface, such as a vertical outflow plane in systems with gravity and swirling flows such
as the Rotating Disk Reactor configuration in Appendix D.2. It is for these systems that we
impose the simplé pressure  Neumann boundary condition

82



k1[ (~P) Wdr . (A.12)

In (A.12), k is the multiplicative floating point number input in tBE_DATAstatement.
Whenk = 1.0 and the divergence of the velocity is negligible, this boundary condition weakly
imposes the desired outflow boundary condition. However, this results in an arbitrary pressure
datum again. We have found empirically that setting the multiplicative constant in the range of
k[ [0.9 0.99 gives smooth outflow profiles while still setting the average pressure on the
outflow boundary to zero.

The FIDAP package [13] also integrates the pressure as an outflow boundary condition,
but does not include the derivatives of the boundary condition in the Jacobian matrix. The
pressure from the previous Newton iteration sets the pressure at the current step, removing the
need for a value ok other than unity to set the pressure datum. However, this omission can
greatly degrade convergence of Newton’s method. The user can try this method by changing the
boundary condition to typeNDEPENDENTso that no Jacobian entries are computed for this
boundary condition. Other outflow boundary conditions are under development.

A.2. Look-up Tables

Values of properties and boundary conditions may be interpolated from tables of data
specified in the Function Data section of the input file (see Section 3.11). Two of these look-up
tables,lookup_table 1 andlookup_table 2 | are included in MPSalsa. Other look-up
tables can be easily added by following the exampleakup table 1 in “rf_fn_data.c”
(actual code for the function), “rf fill_const.h” (prototype for the function), and
“rf_bc_exact_fn.c” and “rf_source_fn.c” (pointer assignment routines for the function).

Look-up tables can be used anywhe8NGLVAR_FUNCTIONan be used (see Table
4.2). For example, to use a look-up table to compute the volumetric source term as a function of
temperature for the mass fraction equations, a variable mass fraction source term is specified in
the Material Properties section of the input file (see Section 3.6):

Y_VOLUME_VAR = lookup_table_1 single

The data fodookup_table 1 is included as &ABLE in the Function Data section of the
input file:

83



Function = lookup_table_1 2
FN_DATA = STRING TEMPERATURE
FN_DATA=TABLE n2

t,

L, q,

tn qn
wheret,, t,, ...,t_ are the values of the temperatures (in increasing ordeq) angl ..., d are
corresponding mass fraction source term values. FNeDATA STRING indicates the
independent variable to use in the table. The look-up function uses linear interpolation to compute

the source term using the values of the independent variable paksaidio table 1
A.3. Output

The following functions have been written to provide some useful output from MPSalsa
for the analysis of solutions. Still, the majority of post-processing is left to graphics packages that
can read Exodusll files.

None of the following functions are called automatically from MPSalsa, but must be
explicitly called from the functiomser_out in the file “rf_user_out.c.” The function calls and
argument lists are described in comments at the top of each function.

The status  variable, described in Figure 4.9, can be used to restrict the output. For
instance, the function call can be preceded by the following condition if output is not desired for
failed time steps:

if (status >=0).

A.3.1. Evolution of the Solution at a Point

The evolution of the solution at a point (or points) in the domain can be output from
MPSalsa using thiégme_history_points output function. Two things must be done to use
this function. First, the function call

time_history_points(time, time_step_num, soln);
must be added to the functiarser out in the file “rf_user_out.c” and the code must be
recompiled. Second, data must be input for this function in the Function Data Specifications
section of the input file (see Section 3.11). This function needs only a list of points at which the
solution output is desired. For instance, the following section of input file

84



Function Name = time_history_points 1
FN_DATA =TABLE 2 3

0.00.010.5

0.00.990.5

would cause the entire solution 40, 0.01, 0.5 to be printed at each time step to the file
“time_his.0,” and the solution(0, 0.99 0.5 to be printed to the file “time_his.1.” The two
integers following thelf ABLE keyword specify the dimensions of the table to be read, with the
first number (2) representing the number of points at which to print data and the second number
(3) specifying the dimension of the system.

Each line of the output file contains the following information: time step number,xime,
y, z (for 3D problems), and the entire solution at the point (with mass fractions translated to mole
fractions), in the following ordeu P T X, X,, ..., Xy . This output format allows for easy
plotting with a package such as “gnuplot,” where plotting column 7 versus column 3 gives a plot
of y-velocity u, versus time.

A.3.2. The Solution along a Line

The time_history_line output function gives the ability to analyze the solution
along a line through the computational domain. This function has been used to generate many of
the plots in the example problems shown in subsequent appendices.

The implementation of this function is almost identicatinwe history points A
call to the function

time_history_line(time, time_step_num, soln);
must be included ioser_out and the code must be recompiled. $tegus flag can be used
to restrict some output, as described in Figure 4.9.

In the Function Data Specifications section of the input file (see Section 3.11), data must
be entered for this function. Two data lines are required: an integer that tells how many points on
the line are desired, and a table with two rows that gives the beginning and ending points of the
line. Solutions along more than one line can be output by supplying more than one set of data to
the function. The input lines in Figure A.4 show how this is done for a 2D problem. One line
gives a slice through the domain as a functiox ahd the other is a slice in thelirection. Each
line is written to a separate file and, unlike tinee_history _points function, the data at
each time step is written to a separate file. For instance, with the input data in Figure A.4, the
solution at the 80 points equally spaced on the line bet{@&én (1gmd afhtltienéélstep
will be in the file “time_his_line.0.14,” and the 50 points equally spaced bet{®egn10.0 and
(0.510.0 atthe ' time step will be in the file “time_his_line.1.7.”

85



Function Name = time_history_line 2
FN_DATA = INT 80
FN_DATA = TABLE 22

0.00.0

1.00.0
# Second line for time history output:
Function Name = time_history_line 2
FN_DATA = INT 50
FN_DATA = TABLE 22

0.5-10.0

0.510.0

Figure A.4. Example function data lines fome_history_line

As with thetime_history_points function, each line of the output file contains the
following information: time step number, time)y, z (for 3D problems), and the entire solution at
the point (with mass fractions translated to mole fractions), in the following andelP. T, ,
) CTD SRS N

A.3.3. Information on a Side Set

The functionf_ss_centroid gives the user the ability to print many useful pieces of
information along a side set. Information from this function can be used to get such information
as the average temperature on a surface, the total heat flux into a wall, and the drag coefficient
over a body. The function calculates positions, solution values, normal gradients, and other
information at the centroid of the surface elements in one or more side sets.

The implementation of this routine requires that the following function call be added as
one of the first executable statements of funatieer out

f _ss_centroid(time, time_step_num, soln);
The code then must be recompiled. Also, data must be given to this function in the Function Data
Specifications section of the input file (see Section 3.11). An example is given here.

Function Name =f_ss_centroid 2
FN_DATA=INT123
FN_DATA = STRING x T Area

The required integer data is a list of side set IDs for which information is to be printed. In this
case, information will be output for side sets 1, 2, and 3 all to the same output file. If it is desired
that the data be separated into different files for each side set, multiple sets of data can be supplied
to this function (with repeatdeéunction Name lines), each with a single integer for the side set

list.

86



The STRING data specifies the quantities to be output. In this examplg;dberdinate,
the temperature, and the area (length) of the surface element are output. Table A.1 lists the strings
currently recognized by this function and the quantity that each string refers to. In the future, we
hope to add physical quantities such as the local density or viscosity to the list of recognized

strings.

STRING OUTPUT

t, time Time value

X x-coordinate of position

y y-coordinate of position

z z-coordinate of position

U Velocity in thex direction

\ Velocity in they direction

W Velocity in thez direction

P Hydrodynamic pressure

T Temperature

Y Array of mass fractions

A, Area Area (length) of the element
n, normal Outward pointing normal vector
t1, tangent Tangent vector

t2, tangent2

Second tangent vector (for 3D problems)

Vn, Un Velocity in the normal direction

n_grad_U Normal component of the gradient of theomponent of velocity

n_grad_V Normal component of the gradient of faeomponent of velcocity
n_grad W Normal component of the gradient of theomponent of velocity

n_grad_P Normal component of the gradient®f

n grad T Normal component of the gradientdf

n_grad_Y Normal component of the gradientgf for all i

tau_n Traction vector / viscosity, no pressure contribution

Table A.1. List of Strings currently recognized byfthes centroid output function. The bold strings lead to
more than one column of output.

The output from this function is written to files of the form “ss_datd. where the
integern identifies the set of function data € 0  for the first occurrendessf centroid ,

87



n = 1 for the second occurrence, etc.), ame the time step number. Each file has one line for
each element in the side set(s), and each line has at least one column for each quantity specified in
the STRING data statement.

Integrated quantities over the side set can be calculated using the element area
information. For instance, the total conductive heat flux through the side set can be calculated by
summing over all surfaces in the side set the products of the/Ajre& éach surface with the
normal gradient of the temperature grad_T ) and the thermal conductivity. Averages can be
computed by summing over all surfaces the product of a quantity with the surface’s area, and
dividing the sum by the total area.

Thetau_n string leads to an array of output that includes the components of the viscous
traction vector along the surface:

2 du,
tau_n = —§D-u +2% . (A.13)

Note thatau_n does not include the pressure term, which can be output independently, and does
not include the multiplication by the viscosity. The total drag force over an object i the
direction is the sum of the first componentaaf n (tau_x ) multiplied by the viscosity and the
element aread).

A.4. Interprocessor Communication Utilities

This section details some machine-independent communication functions callable within
MPSalsa that are useful when programming new functions for parallel applications, especially
when I/O is involved. The code for these functions is in “rf_comm.c.”

A.4.1. Synchronization

Certain operations require that all processors are at the same part of the code at the same
time. A call to thesync function causes each processor to wait until all processors have reached
the statement. The syntax is

sync(Proc, Num_Proc);
whereNum_Proc is the total number of processors running the problemPerd is the unique
processor ID with a value between 0 amtufh_Proc - 1) of the current processor. Both
Num_Proc andProc are defined as global integer variables in MPSalsa and are initialized at the
beginning of MPSalsa’s execution. If any processor fails to reaclsythe statement, the
computation will idle indefinitely.

88



When each processor must write to a common output file, the print statement should be
surrounded by theprint_sync_start and print_sync_end function calls. These
functions synchronize the processors so that only one processor at a time executes the statements
between the calls. There can be no communication calls between these statements; such calls
would cause the program to reach a deadlocked state.

The code fragment in Figure A.5 demonstrates the ugwimif sync_start and
print_sync_end . The resulting output file would contain the processor ID numbers printed in
order from O tdNum_Proc - 1.

print_sync_start(Proc, Num_Proc,1);
if (Proc==0) ifp = fopen(“filename”,"w");
else ifp = fopen(“filename”,"a”);
fprintf(ifp,"%d \n",Proc);
fclose(ifp);

print_sync_end(Proc, Num_Proc);

Figure A.5. Code fragment demonstrating the ugwiof_sync_start andprint_sync_end

A.4.2. Broadcast

A machine-independent broadcast routine cabiedtst has been written for use in
MPSalsa. Information on one processor (usually processor zero) is sent to all other processors
using this routine. There are five arguments for this function; the first tw®rae and
Num_Proc; the third is the pointer to the memory location where the information is stored or to
be stored; the fourth is the message size; and the last is the number of the processor that is
initiating the broadcast (usually processor zero).

The code fragment in Figure A.6 illustrates the use of this routine, by broadcasting an
array of length two from processor zero to all other processors. The message size is the array
length (two) times the size of a double variable (computed usirgjzibef  function).

double x[2];

if (Proc==0) {
x[0] = 10.5;
X[1] = 0.123;
}

brdcst(Proc, Num_Proc, (char *) x, 2*sizeof(double), 0);

Figure A.6. Code fragment demonstrating the udmadst . Upon return fronbrdcst , x=[10.5, 0.123]
on all processors.

89



A.4.3. Global Sum, Maximum, and Minimum

Several functions that compute the sum, maximum or minimum of some value over all
processors are included in MPSalsa. Several of these functions are listed in Figure A.7. The
functionsgsum_int , gmax_int , andgmin_int compute the sum, maximum and minimum,
respectively, of an integer value. The functiogsum_double , gmax_double , and
gmin_double , perform the same operations on double precision variables. In all cases, the first
argument is the quantity that is to be summed or compared.

intij;
double x,y;

j=gsum_int (i, Proc, Num_Proc);
j=gmax_int (i, Proc, Num_Proc);
j=gmin_int (i, Proc, Num_Proc);
y = gsum_double (x, Proc, Num_Proc);
y = gmax_double (x, Proc, Num_Proc);
y = gmin_double (x, Proc, Num_Proc);

Figure A.7. Functions for computing the sum, maximum and minimum of a value over all processors. The
functionsgsum_int , gmax_int andgmin_int operate on integers; the functiogsum_double |,
gmax_double , andgmin_double operate on double precision variables.

90



Appendix B. Mass Transfer Examples

B.1. Diffusion in an Annulus

This simple example problem consists of a single species diffusing in an annular region,
and is designed to illustrate the use of the three different boundary condition types: Dirichlet,
Neumann, and Mixed. The domain has inner radiuR of 1 and an outer radiys-of
The domain is discretized with the 2048 element mesh shown Figure B.1, with the inner circle
designated Side Set 1 and the outer circle designated Side Set 2.

Side Set 2

Side Set 1

Figure B.1. Finite element mesh for #fusion in an Annulugxample problem. The mesh contains 2048
elements and 2112 nodes and is stored in thevéiEher.exoll.

A volumetric mass source of magnitude one generates mass uniformly over the domain,
and the diffusion coefficient is also set equal to unity, leading to the following governing
equation:

n’c+1=0, (B.1)

where C is a dimensionless concentration. At the inner circle of the annulus, we set a Dirichlet
condition of

91



C=1forr = A/x2+y2 =R. (B.2)

To illustrate the three different standard boundary condition types available in MPSalsa, we pose
three options for the boundary condition at the outer circle (Side Set 2):

either Dirichlet:

C=1/4forr = R;; (B.3)
or Neumann:
nC=1forr = R,; (B.4)
or Mixed (Robin):
n[MC=4(C-0) forr = R,. (B.5)

Any of these three boundary conditions leads to the same analytic solution:

_ 5—x2—y2

c 4

(B.6)

This function has been programmed into a function cdll@hnulus_exact to test the
computed solution.

The MPSalsa input file for solving this problem is given in Figure B.2. It shows that we
are solving a diffusion-only problem to a steady-state solution using the GMRES method with
preconditioning. The number of species and the volumetric source term are set in the Materials
Specifications section. At the end of the Output Specifications section, it is specified that the final
solution be tested against the analytic solution programmedumulus_exact . As can be
seen in the Boundary Conditions section, this file applies the Dirichlet condition (B.3) on Side Set
2. The options of applying the Neumann condition (B.4) or Mixed condition (B.5) are commented
out by the pound sign (#).

Table B.1 compares the solutions for the three boundary condition types, by showing the
L2 -error of the computed solution with respect to the analytic solution, the CPU time on an SGI
workstation needed to reach the solution, and the number of GMRES linear solve iterations
needed to reach the solution. Since the problem is linear, each solution required only one Newton
iteration. There is no significant difference between the three solutions, except the Neumann case
required a few more linear iterations.

92



General Problem Specifications

Problem type = mass_diff

Input FEM file = Meshes/washer.exoll
LB file =none

Output FEM file = run_out.exoll
Number of processors =1

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear

Stabilization = default

Debug =2

Solution Specifications

Solution Type = steady

Order of integration/continuation =1

Step Control = off

Relative Time Integration Error = 1.0e-3
Initial Parameter Value =300.0

Initial Step Size =2.0e-1
Maximum Number of Steps =1000
Maximum Time or Parameter Value = 250.

Solver Specifications

Override Default Linearity Choice = default

-- nonlinear solver subsection:

Number of Newton Iterations =15

Use Modified Newton Iteration =no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term =4
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-3
Solution Absolute Error Tolerance =1.0e-8

-- linear solver subsection:

Solution Algorithm =gmres
Convergence Norm =1
Preconditioner = no_overlap_ilu
Polynomial =LS,1

Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace =25
Maximum Linear Solve lterations =50

Linear Solver Normalized Residual Tolerance = 1.0e-6

Chemistry Specifications

Energy equation source terms = off

Species equation source terms = off

Pressure (atmospheres) =1.0

Thermal Diffusion = off

Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin

Surface chemkin file = surf.bin

Transport chemkin file = tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials =1

SOLID =0 “Graphite”
ELEM_BLOCK_IDS =1
NUM_SPECIES =1

SPECIES_NAME 1 YK1
DIFF_COEFF YK_11.0
WTSPECIES YK_11.0
XMF_0 YK _11.0

# Source Term:
Y_VOLUME = 1.0

END Material ID Specifications

Boundary Condition Specifications

Number of Generalized Surfaces = 0

Number of BC =2

# BC on inner radius, r=1

BC = Y_BC DIRICHLET SS 1 INDEPENDENT 1.0 0
SPECIES_LIST = ALL

#

# BC on outer radius, r=2

#Dirichlet

BC = Y_BC DIRICHLET SS 2 INDEPENDENT 0.25 0

#Neumann

#BC = Y_BC NEUMANN SS 2 INDEPENDENT 1.0 0

#Mixed

#BC = Y_BC MIXED SS 2 INDEPENDENT 4.0 0.00.00.0 0

SPECIES_LIST = ALL

Initial Guess/Condition Specifications

Set Initial Condition/Guess = constant 0.0
Apply function =no
Time Index to Restart From =1

Output Specifications

User Defined Output =yes
Parallel Output =no
Scalar Output =yes

Time Index to Output To =
Nodal variable output times:
every 1 steps

Number of nodal output variables =1
Nodal variable names:
Mass_fraction

Number of global output variables =0
Global variable names:

Test Exact Solution Flag =1
Name of Exact Solution Function =f_annulus_exact

Parallel I/O section

Machine = paragon
Staged writes =yes

Number of controllers =8
Disks per controller =1

Root location = /ldf
Subdirectory = jnsl/testa
Offset numbering from zero =0

Number of RAID controllers =26
Root location = Ipfslio_
Subdirectory = tmp/kdd/ti43
Offset numbering from zero =23

Data Specification for User’s Functions

Number of functions to pass datato = 0

Figure B.2. Input file for th®iffusion in an Annulusxample problem.

93



BC Type on Side Set 2 L2-Error CPU Time (seconds Number of GMRES Iteraticl)ns
Dirichlet 2.20e-4 1.16 16

Neumann 1.75e-4 1.34 23

Mixed 2.12e-4 1.19 17

Table B.1. Comparison of the three boundary condition types f@iffusion in an Annulusxample problem.

B.2. The Soret Effect

This simple example of thermal diffusion (the Soret effect) illustrates the use of a
CHEMKINmaterial type. The problem is solved on a 2D mesh but is essentially 1D. Hydrogen
(H2 -- molecular weight 2.016) and Trimethylgalliu@gMe3 -- molecular weight 114.83) are
allowed to interdiffuse along a steep thermal gradient. The 100-element mesh and boundary
conditions are shown in Figure B.3.

T=300

T=1000

Y came3=-01

Fluxgame3=0

YH2:'99

Fluxy,=0

—>

X-axis

Figure B.3. 100 element mesh and boundary conditions f@dhet Effectexample problem.

The input file for this example problem is shown in Figure B.4, and shows that this is an
energy and mass transfer problem, being solved directly to the steady-state using GMRES and a
preconditioner. Because the material iI€CAEMKINmaterial, the number of species, species
names, molecular weights, and transport properties are not specified in the Materials
Specifications section. This information is read into MPSalsa from the file “chem.bin,” which is

94



General Problem Specifications

Problem type = energy_mass_diff
Input FEM file = Meshes/box100.exoll
LB file =none

Output FEM file = run-out.exoll
Number of processors =1

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear

Stabilization = default

Debug =2

Solution Specifications

Solution Type = steady

Order of integration/continuation =1

Step Control =on

Relative Time Integration Error = 4.0e-3
Initial Parameter Value =300.0

Initial Step Size =1.0e-3

Maximum Number of Steps =10
Maximum Time or Parameter Value = 1.0e+9

Solver Specifications

Override Default Linearity Choice = default

Number of Newton Iterations =25

Use Modified Newton Iteration =no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term =4
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-3
Solution Absolute Error Tolerance =1.0e-8

Solution Algorithm =gmres
Convergence Norm =1
Preconditioner = no_overlap_ilu
Polynomial =LS,1

Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace =100
Maximum Linear Solve lterations =200

Linear Solver Normalized Residual Tolerance = 1.0e-6

Chemistry Specifications

Energy equation source terms = off

Species equation source terms = off

Pressure (atmospheres) =01

Thermal Diffusion =on

Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin

Surface chemkin file = surf.bin

Transport chemkin file = tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials =1

CHEMKIN =0 “gaas_block”
ELEM_BLOCK_IDS =1
T_INIT =500.

XMF_0 GaMe3  0.01
XMF_0 H2 0.99

END Material ID Specifications

Boundary Condition Specifications

Number of Generalized Surfaces = 0
Number of BC =3

BC =T_BCDIRICHLET SS 4 INDEPENDENT 300.0 0
BC =T_BC DIRICHLET SS 2 INDEPENDENT 1000.0 0
BC =Y_BC DIRICHLET SS 4 INDEPENDENT f_mole_fraction 1

SPECIES_LIST = H2 GaMe3 AsH3 CH4
BC_DATA = FLOAT 0.99 0.01 0.0 0.0

Initial Guess/Condition Specifications

Set Initial Condition/Guess = constant 0.0
Apply function =no
Time Index to Restart From =1

Output Specifications

User Defined Output =yes
Parallel Output =no
Scalar Output =yes
Time Index to Output To =1

Nodal variable output times:
every 2 steps

Number of nodal output variables =2
Nodal variable names:

Temperature

Mass_fraction

Number of global output variables =0
Global variable names:

Test Exact Solution Flag =0
Name of Exact Solution Function =none

Parallel I/O section

Machine = paragon
Staged writes =yes

Number of controllers =8
Disks per controller =1

Root location = //df
Subdirectory = jnsl/testa
Offset numbering from zero =0

Number of RAID controllers =19
Root location = Ipfslio_
Subdirectory = tmp/ags/em
Offset numbering from zero =2

Data Specification for User's Functions

Number of functions to pass datato = 1

Function Name = time_history_line 2
#
FN_DATA =INT 25
FN_DATA = TABLE 2 2
0.00.5
1.00.5

Figure B.4. Input file for th8oret Effeciexample problem.

95



generated using the “interp” utility acting on the Chemkin input file for gas-phase species and
reactions, “gaas_b.gas” (Figure B.5). This file contains four species used in the deposition of
Gallium Arsenide crystalsAsH3, GaMe3, CH4, andH2; the first and third have zero mole
fractions in this problem.

ELEMENTS

GaAsHC

END

1

SPECIES

AsH3

GaMe3

CH4

H2

END

1

THERMO ALL

300. 1000. 3000.

! Default temperature ranges for thermo files:

300. 1000. 3000.

1

CH4 121286C 1H 4 G 0300.00 5000.00 1000.00 1

1.68347883E+00 1.02372356E-02-3.87512864E-06 6.78558487E-10-4.50342312E-14 2
-1.00807871E+04 9.62339497E+00 7.78741479E-01 1.74766835E-02-2.78340904E-05 3
3.04970804E-08-1.22393068E-11-9.82522852E+03 1.37221947E+01 4

H2 121286H 2 G 0300.00 5000.00 1000.00 1

2.99142337E+00 7.00064411E-04-5.63382869E-08-9.23157818E-12 1.58275179E-15 2
-8.35033997E+02-1.35511017E+00 3.29812431E+00 8.24944174E-04-8.14301529E-07 3
-9.47543433E-11 4.13487224E-13-1.01252087E+03-3.29409409E+00 4

AsH3 92090As 1H 3 0 0G 300.000 3000.000 1000.00 01
0.48852077E+01 0.38298892E-02-0.36824741E-06-0.38365741E-09 0.87018486E-13 2
0.81936514E+04-0.28651702E+01 0.27935255E+01 0.63927420E-02 0.77386630E-06 3
-0.19897164E-08 0.79792984E-13 0.90261641E+04 0.89869089E+01 4
GaMe3 92090Ga 1C 3H 9 0G 300.000 3000.0001000.00 01
0.12968908E+02 0.15346088E-01-0.12010402E-05-0.15080676E-08 0.32630482E-12 2
-0.87401934E+04-0.36943115E+02 0.47962584E+01 0.30363396E-01-0.34483364E-06 3
-0.15581833E-07 0.66991998E-11-0.61177363E+04 0.71641846E+01 4

END

Figure B.5. Chemkin input filgaas_b.gas , which contains the four species and their thermodynamic
data. No reactions are included.

The solution of this problem requires only 2.16 seconds on an SGI workstation, 5 Newton
iterations, and a total of 68 linear solve iterations. The solution across the domain @b is
output using theime_history_line included function, as can be seen on the last lines of
the input file. By plotting the output with “gnuplot,” the temperature and mole fractiGaMe3
across the width of the domain can analyzed, as in Figure B.6.

B.3. Si3N4 Equilibrium

This example differs from the previous examples in that it is run on multiple processors,
there are chemical reactions, and the steady-state solution is reached through time integration.
The example uses a large gas-phase reaction mechanism for the formation of Silicon Nitride
involving 17 species and 33 reactions. The species list and reaction mechanism are contained in
the Chemkin input file “si3n4.gas,” which is not shown here. An initial mixture of three reactants
is set in a 2D domain at a high temperature and allowed to react until equilibrium. No spatial

96



1200 T T T T 0.01 T T T T
"run_time_history" —<— 0.009 - "run_time_history" —<— -
1000 @ 0.008 | .
= L _
o 800 8 0.007
2 9 0.006 |- -
o 600 2 0.005 .
g 8 0.004
(] II . - -
= 400 @ 0003
200 | 1 = o002} -
0.001 -
0 1 1 1 1 O 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
X-axis X-axis

Figure B.6. Profiles of temperature and GaMe3 mole fraction irstivet Effecexample problem. The
temperature is fixed at both ends, and the mole fraction is fixed at the left side. The drop in the mole fraction as
X increases is due solely to thermal diffusion.

gradients are given in the problem, either as initial conditions or boundary conditions, so the
solution is essentially OD.

The input file for this problem can be seen in Figure B.7. An accurate transient solution of
the problem is not desired; rather, only the solution at the final equilibrium state is of interest.
Thus, thepseudo time integration option is used with a stopping point of 100 seconds. The use
of only block-Jacobi scaling for preconditioning the matrix is adequate for many time-dependent
problems, since the matrix is better conditioned than with the steady-state formulation.

The input file is set up for running on 8 processors, and requires that a load balance file
“Meshes/testa-8-bKL.exoll” has been created. To run this problem in parallel on the Intel
Paragon, the file “chem.bin” must first be created on this machine from the Chemkin input file by
the following command:

> interp si3n4
To then solve the problem with MPSalsa, with an executable “salsa-smos” and the input file
“input-si3n4,” the user must type:

> vyod -sz 8 salsa-smos input-si3n4

This run took 23 time steps to reach 100 seconds, and required 376 seconds.

Figure B.8 shows how the mole fractions of many species evolve with time. The data for
these plots was output using ttiee_history points function, which is called within
functionuser_out and has data supplied to it at the bottom of the input file. The plots were
made directly from this output using “gnuplot.”

97



General Problem Specifications

Problem type = mass_diff

Input FEM file = Meshes/testa.exoll

LB file = Meshes/testa-8-bKL.exoll
Output FEM file = run-out.exoll
Number of processors =8

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear

Stabilization = default

Debug =2

Solution Specifications

Solution Type = pseudo

Order of integration/continuation =1

Step Control =on

Relative Time Integration Error = 4.0e-3
Initial Parameter Value =300.0

Initial Step Size =1.0e-5
Maximum Number of Steps =75
Maximum Time or Parameter Value =100.0

Solver Specifications

Override Default Linearity Choice = nonlinear

Number of Newton Iterations =10

Use Modified Newton Iteration =no

Enable backtracking for residual reduction = default
Choice for Inexact Newton Forcing Term =4
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-3
Solution Absolute Error Tolerance =1.0e-8

Solution Algorithm =gmres
Convergence Norm =1
Preconditioner =none
Polynomial =LS,1
Scaling = block_jacobi
Orthogonalization = classical
Size of Krylov subspace =100
Maximum Linear Solve lterations =300

Linear Solver Normalized Residual Tolerance = 1.0e-4

Chemistry Specifications

Energy equation source terms ~ =on

Species equation source terms =on

Pressure (atmospheres) =1.0

Thermal Diffusion = off

Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin

Surface chemkin file = surf.bin

Transport chemkin file = tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials =1
CHEMKIN =0 “Graphite”
ELEM_BLOCK_IDS =1 2

XMF_0 H2 05
XMF_0 NH3 03
XMF_0 SIF4 0.2

T_INIT =1700.
END Material ID Specifications

Boundary Condition Specifications

Number of Generalized Surfaces = 0
Number of BC =0
#

Initial Guess/Condition Specifications

Set Initial Condition/Guess = constant 0.0
Apply function =no
Time Index to Restart From =1

Output Specifications

User Defined Output =yes
Parallel Output =no
Scalar Output =no
Time Index to Output To =2

Nodal variable output times:
every 2 steps

Number of nodal output variables =1
Nodal variable names:
Mass_fraction

Number of global output variables =2
Global variable names:

Delta_time

Time_index

Test Exact Solution Flag =0
Name of Exact Solution Function =f_xx_yy

Parallel I/O section

Machine = paragon
Staged writes =vyes

Number of controllers =8
Disks per controller =1

Root location = //df
Subdirectory = jns/testa
Offset numbering from zero =0

Number of RAID controllers =8
Root location = Ipfslio_
Subdirectory = tmpl/ags
Offset numbering from zero =1

Data Specification for User’s Functions

Number of functions to pass datato = 1

Function Name = time_history_points 1
#
FN_DATA =TABLE 1 2
A1 .11
@

Figure B.7. Input file for th&i3N4 Equilibriumexample problem.

98



1 T T T T " 0.12 T T T T
" H2 — | B
= 08 L SiF4 ---- ]l S 0.1 .
g : NH3 ----- ° N2 —
o = 008 A
@ 06 1 = ' SIF3NH2 ----
5 ' = SIHF3 -
< 5 0.06 .
g 04 F 4 &
© 5 0.04 .
L &
() . T [
3 0.2 4 = .~~~ eI
[} N~ ___ . -
e ] % 0.02

= U —
0 1 -------- i--- ... il | O |
0 20 40 60 80 100 80 100

Figure B.8. Evolution in time of mole fractions of major species i®iB4 Equilibriumproblem. The first
plot shows the three reactants, while the second shows the major products of the reactions. Since the pseudo
time integration scheme was used, these histories are not time accurate.

B.4. Surface Reaction

This simple reaction-diffusion problem illustrates the ussusface _chemkin_bc
the function used to impose surface reactions as boundary conditions by interfacing with the
Surface Chemkin library (see Appendix A.1.1). Just as Chemkin is used for information on gas-
phase species, reactions, and properties, Surface Chemkin is used to access this information about
the surface and underlying bulk solid.

The problem is defined in a 2D box and uses the mechanism for the deposition of Gallium
Arsenide semiconductor crystals. This mechanism contains 17 gas-phase species, 24 gas-phase
reactions, 6 surface species, 38 surface reactions, and 2 bulk species. The surface reactions occur
on the left side of the box, and Dirichlet conditions for the main reactants and carrier gas are set
on the right side, as shown in Figure B.9. The system is assumed isothermal (at 913K); no-slip
velocities are imposed on all walls and no penetration is assumed on the top and bottom. At the
reacting surface, the normal velocity is not zero, but is set equal to the total mass flux per unit area
into the surface, divided by the density. This term is often called the Stefan velocity (see equation
(A.3)). At the right side, the normal momentum balance has a natural condition applied that sets
the normal component of the normal stress to zero. This boundary condition allows for a non-zero
velocity at this surface.

The surface site fractions of surface species and the bulk fractions are also unknowns in
this problem. To specify their values, we use a quasi-steady state assumption that these species are
always in equilibrium with the gas phase. This approximation adds no error for a steady-state

99



Flux,=0 U=0 V=0

Yasnz=-01
Y Games=-0001
Flux, =Wy Y H2=.9899
U=(ZsWy)/p Stress, = 0
v=0 V=0

Flux,=0 u=0 V=0

Figure B.9. 200-element mesh and boundary conditions f@uhface Reactioaxample problens, is the
molar production rate of species k due to the surface readligris the molecular weight os species k, and
is the density. The nonzero velocity due to surface reaction is called the Stefan velocity.

solution and is a good approximation in transient problems because of the relative speed of
surface reactions. Using the requirement that the generation rate of any surface species is equal to
its consumption rate, and given the gas-phase species mole fractions, these unknowns can be
solved for implicitly and removed from the problem.

The input file for this problem is shown in Figure B.10. There are 20 unknowns per node
in this problem: 2 velocities, 1 pressure, and 17 species. The steady solution is solved for directly
using a preconditioned GMRES method, starting from an initial guess where 3 species have
nonzero mole fractions (see théMF_O lines in the Materials Specifications section). The
surface_chemkin_bc boundary condition function is used for reacting surfaces. The Stefan
velocity is set as a dependent Dirichlet condition where the value comes from the
surface_chemkin_bc function. (The DEPENDENTkeyword in this boundary condition
specifies that Jacobian entries are included for this term.) The same function is used for the
species balance equations, though in this case it is a Neumann boundary condition since it is a
specification on the flux.

There is an option with theurface_chemkin_bc to input initial guesses for the
surface site and bulk fractions. Since the equations for these species can be highly nonlinear, there

100



General Problem Specifications Boundary Condition Specifications

Problem type = fluid_flow_mass Number of Generalized Surfaces = 0
Input FEM file = Meshes/box200.exoll
LB file = bKL.exoll Number of BC =9
Output FEM file = run_out.exoll #
Number of processors =1 BC =U_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0
Cartesian or Cylindrical when 2D = Cartesian BC =U_BC DIRICHLET SS 1 INDEPENDENT 0. 0
Interpolation Order = linear BC =U_BC DIRICHLET SS 3 INDEPENDENT 0. 0
Stabilization = default #
Debug =2 BC =V_BCDIRICHLET SS 1 INDEPENDENT 0. 0
BC =V_BC DIRICHLET SS 2 INDEPENDENT 0. 0
Solution Specifications BC =V_BCDIRICHLET SS 3 INDEPENDENT 0. 0
BC =V_BC DIRICHLET SS 4 INDEPENDENT 0. 0
Solution Type = steady #
Order of integration/continuation =1 BC =Y_BC DIRICHLET SS 2 INDEPENDENT f_mole_fraction 1
Step Control =on SPECIES_LIST = ALL
Relative Time Integration Error = 5.0e-3 BC_DATA=.001.0.0.0.0.0.0.0.0.0001.0.0.0.0
Initial Parameter Value =300.0 .0.0.9989
Initial Step Size =1.0e-7 BC =Y_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 2
Maximum Number of Steps =4 SPECIES_LIST = ALL
Maximum Time or Parameter Value =10 SURF_SPECIES_LIST = GaMe(S) Ga(S) GaH(S) AsH(S) AsMe(S)
As(S)
Solver Specifications BC_DATA = FLOAT 1.0e-5 0.5 1.0e-5 1.0e-5 1.0e-5 0.5
SURF_SPECIES_LIST = Ga-GaAs(D) As-GaAs(D)
Override Default Linearity Choice = default BC_DATA = FLOAT 1.0 1.0
-- nonlinear solver subsection: Initial Guess/Condition Specifications
Number of Newton Iterations =12 Set Initial Condition/Guess = constant 0.0
Use Modified Newton Iteration =no Apply function =no
Enable backtracking for residual reduction = no Time Index to Restart From =1
Choice for Inexact Newton Forcing Term =4
Calculate the Jacobian Numerically =no Output Specifications
Solution Relative Error Tolerance =1.0e-3
Solution Absolute Error Tolerance =1.0e-8 User Defined Output =yes
Parallel Output =no
-- linear solver subsection: Scalar Output =yes
Time Index to Output To =
Solution Algorithm =gmres Nodal variable output times:
Convergence Norm =0 every 1 steps
Preconditioner = no_overlap_ilu
Polynomial =LS,1 Number of nodal output variables =3
Scaling = row_sum Nodal variable names:
Orthogonalization = classical Velocity
Size of Krylov subspace =50 Pressure
Maximum Linear Solve Iterations =100 Mass_Fraction
Linear Solver Normalized Residual Tolerance = 3.0e-3
Number of global output variables =0
Chemistry Specifications Global variable names:
Energy equation source terms =on Test Exact Solution Flag =0
Species equation source terms =on Name of Exact Solution Function =f_xx_yy
Pressure (atmospheres) =01
Thermal Diffusion = off Parallel I/O section
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin Machine = paragon
Surface chemkin file = surf.bin Staged writes =yes
Transport chemkin file = tran.bin
Enclosure Radiation Specifications paragon subsection
Enclosure Radiation source terms = off
Number of RAID controllers =8
Material ID Specifications Root location = Ipfslio_
Subdirectory = tmp/kdd/ti3
Number of Materials =1 Offset numbering from zero =23
CHEMKIN =0 “gaas”
ELEM_BLOCK_IDS =1 Data Specification for User’s Functions
# T_INIT set the Temperature for this isothermal problem Number of functions to pass datato = 0
T_INIT =913.0
U INIT =00
V_INIT =0.0
P_INIT =0.0

XMF_0 AsH3  0.001
XMF_0 GaMe3  0.0001
XMF_0 H2  0.9989

END Material ID Specifications

Figure B.10. Input file for thBurface Reactioaxample problem.

101



are initial guesses that do not lead to a converged solution, and sometimes there are multiple
solutions. The initial guesses are input using$kRF_SPECIES_LIST keyword, as can be

seen in the input file. The default initial guess is equal fractions of all species within a given
surface or bulk phase. For the mechanism in this example, the surface reaction calculations fail
with the default initial guess. The initial guess is used only the first time the surface reaction
calculations are computed; for subsequent Newton iterations and time steps, the previous
calculation of surface site and bulk fractions are used as the initial guess.

The steady-state solution for the 4620 unknowns in this problem required 4 Newton
iterations and 89 seconds on an SGI workstation. A visualization of the solution is presented in
Figure B.11. The weak flow driven by the Stefan velocity is shown with velocity vectors, as are
contours of one of the species generated by the surface reactions and consumed in gas-phase
reactions. The vertical contours show that the flow is too weak for convection to distort the 1D
diffusion-reaction problem.

TEST TEST
[ [ Ic I I

T A R & 0.30 H u

R e DR R IR X 3

[ R A e

0B0 ke e oo 0.60 H mi

= e —

e e

0.30 M e e 0.30 H —

[ e et |

Heror e ¢ ¢ « ¢« « ¢ ¢« ¢« ¢« « ¢« « « <« 4

Figure B.11. Visualization of the solution for tRerface Reactioexample problem. The deposition on the

left wall drives a velocity to the left, as shown in the plot on the left. The velocity is nearly uniform near the

wall, but is more parabolic at the source on the right side. Shown on the right are mole fraction contours of
theH atom, which is produced at the surface.

102



Appendix C. Fluid Mechanics and Heat Transfer Examples

The example problems in Section C.3 through Section C.5 were developed, run, and
written up by Professor Michael Jensen of the Mechanical Engineering Department of Rensselaer
Polytechnic Institute during a sabbatical at Sandia National Laboratories in Spring 1996.
Exhaustive mesh independence studies were not done for any of the examples in Section C.3
through Section C.5, but the meshes were refined to adequately show agreement with data from
the literature. For these examples, the mks unit system was used; that is, the units used on all the
guantities are length (m); velocity (m/s); temperature (K); pressure (N/m”2); heat flux (W/m"2);
density (kg/m”3); specific heat (J/kgK); thermal conductivity (W/mK); and dynamic viscosity
(Ns/m”2).

C.1. Navier-Stokes 3D Exact Solution

An analytic solution to the Navier-Stokes equations for a three-dimensional time-
dependent problem is known for a generalized Beltrami-type flow [11]. We use this problem to
demonstrate the solution of a transient fluid mechanics system and to document the convergence
properties of our implementation of the finite element method.

In MPSalsa, the functioh 3d_navier_stokes provides the exact solution for this
flow in a cube of unit length when these same functions, evaluated at all boundaries, are imposed
as boundary conditions:

2
u=—ae’ t%eaxsin(ay+ d2 + eazcos(ax+ d»%

2.
v=_ag’ tEeaysin(az+ dy + e cos(ax+ dz)%

2
w=—ae’ tEﬁazsin(ax+ dy) +eaycos(az+ d&%

1 2 —2dtl 2ax 2ay = 2az

p=--ae e +e "+e +
2 (C.1)
2sin (ax+ dy) cos(az+ dy e +
2sin(ay+ d2 cos(ax+ dy) SR
2sin(az+ dX cos(ay+ d2 e+ Y E
a = 0.25m
d = 0.5m

The MPSalsa input file for this test problem is shown in Figure C.1. The first line specifies
that a fluid mechanics problem is to be solved. A linear spatial approximation is to be used. A

103



time-accurate transient solution method with a second-order time integration scheme and variable
time step is selected. The run is set to terminate at a time of 0.1 seconds. As can be seen in the
Boundary Condition Specifications section, Dirichlet boundary conditions computed by the
functionf _3d_navier_stokes are prescribed for all velocity and pressure unknowns on all
domain boundaries. This same function used to specify the initial conditions. In addition, the
exact solution is compared with the computed solution for convergence analyses by setting

f 3d_navier_stokes in the input file as the exact solution.

The input Exodusll mesh is an 8x8x8-element mesh with 729 nodes and 2916 total
unknowns. The same problem was solved using discretizations of 4x4x4, 16x16x16, and

32x32x32 elements. Details of the four runs are show in Table C.1. All runs required 27 time steps
to reach 0.1 seconds.

Number of Total # of Intel CPU seconds L2-error L2 -error of
elements in | Numberof | Paragon of Velocity in thex- | Pressure at 0.1 sgc
1D Elements | Processors direction at 0.1 sec.
4 64 1 305 1.008e-03 1.904e-02
8 512 16 308 2.781e-04 1.183e-02
16 4096 64 452 6.512e-05 1.643e-03
32 32,768 128 1543 1.381e-05 5.090e-04

Table C.1. Details of the mesh convergence calculations fdtakier-Stokes 3D Exact Solutiguroblem.

The error in the computed solution as compared to the exact solution is presented in Table
C.1 and shown graphically in Figure C.2. Titfenorms of the error in the-component of the
velocity and in the pressure unknown are plotted versus the element size. The slopes of the lines
connecting the results for the coarsest mesh and the finest mesh on the log-log plot are near 2, the
expected value for the linear discretization scheme.

C.2. Lid-Driven Cavity Problem

The lid-driven cavity problem is a two-dimensional fluid mechanics problem on a square
domain that has often been used as a benchmark problem [19]. The fluid is confined in the square,

but the top surface is pulled horizontally, driving clockwise flow. The geometry, boundary
conditions, and 64x64-element mesh are shown in Figure C.3.

The input file for this example is shown in Figure C.4. The viscosity and density are set to
one, so that the velocity is equal to the Reynolds number. This problem is increasingly difficult to
solve as the Reynolds number is increased. SUPG stabilization is turned on (in the General

104



General Problem Specifications

Problem type = fluid_flow

Input FEM file = ../Meshes/box_3d_8.exoll
LB file = ../Meshes/box_3d_8-m16-
bKL.neml

Output FEM file = box_3d_out.exoll
Number of processors =16

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear

Stabilization = default

Debug =1

Solution Specifications

Solution Type = transient
Order of integration/continuation =2

Step Control =on

Relative Time Integration Error = 1.0e-5
Initial Parameter Value =10.0

Initial Step Size =1.0e-5
Maximum Number of Steps =2000
Maximum Time or Parameter Value =0.1

Solver Specifications

Override Default Linearity Choice = default

Number of Newton lterations =25

Use Modified Newton Iteration =no

Enable backtracking for residual reduction = default
Choice for Inexact Newton Forcing Term =0
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-6
Solution Absolute Error Tolerance =1.0e-8

Solution Algorithm =gmres
Convergence Norm =0
Preconditioner =none
Polynomial =LS,1
Scaling = block_jacobi
Orthogonalization = classical
Size of Krylov subspace =64
Maximum Linear Solve Iterations =200

Linear Solver Normalized Residual Tolerance =1.0e-8

Chemistry Specifications

Energy equation source terms = off

Species equation source terms = off

Pressure (atmospheres) =0.09210526
Thermal Diffusion =on

Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin

Surface chemkin file = surf.bin

Transport chemkin file = tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials =1
NEWTONIAN =0 “Air
ELEM_BLOCK_IDS =1
VISCOSITY =1.0
DENSITY =1.0

END Material ID Specifications

Boundary Condition Specifications

Number of Generalized Surfaces =0
Number of BC =24
# Prescribed Dirichlet conditions on all boundaries

BC
BC
BC
BC
#

BC
BC
BC
BC
#

BC
BC
BC
BC
#

BC
BC
BC
BC
#

BC
BC
BC
BC
#

BC
BC
BC
BC

=U_BC DIRICHLET SS 1 INDEPENDENT f_3d_navier_stokes 0
=V_BC DIRICHLET SS 1 INDEPENDENT f_3d_navier_stokes 0
=W_BC DIRICHLET SS 1 INDEPENDENT f_3d_navier_stokes 0
=P_BC DIRICHLET SS 1 INDEPENDENT f_3d_navier_stokes 0

=U_BC DIRICHLET SS 2 INDEPENDENT f_3d_navier_stokes 0
=V_BC DIRICHLET SS 2 INDEPENDENT f_3d_navier_stokes 0
=W_BC DIRICHLET SS 2 INDEPENDENT f_3d_navier_stokes 0
=P_BC DIRICHLET SS 2 INDEPENDENT f_3d_navier_stokes 0

= U_BC DIRICHLET SS 3 INDEPENDENT f_3d_navier_stokes 0
=V_BC DIRICHLET SS 3 INDEPENDENT f_3d_navier_stokes 0
=W_BC DIRICHLET SS 3 INDEPENDENT f_3d_navier_stokes 0
= P_BC DIRICHLET SS 3 INDEPENDENT f_3d_navier_stokes 0

= U_BC DIRICHLET SS 4 INDEPENDENT f_3d_navier_stokes 0
=V_BC DIRICHLET SS 4 INDEPENDENT f_3d_navier_stokes 0
=W_BC DIRICHLET SS 4 INDEPENDENT f_3d_navier_stokes 0
=P_BC DIRICHLET SS 4 INDEPENDENT f_3d_navier_stokes 0

= U_BC DIRICHLET SS 5 INDEPENDENT f_3d_navier_stokes 0
=V_BC DIRICHLET SS 5 INDEPENDENT f_3d_navier_stokes 0
=W_BC DIRICHLET SS 5 INDEPENDENT f_3d_navier_stokes 0
=P_BC DIRICHLET SS 5 INDEPENDENT f_3d_navier_stokes 0

=U_BC DIRICHLET SS 6 INDEPENDENT f_3d_navier_stokes 0
=V_BC DIRICHLET SS 6 INDEPENDENT f_3d_navier_stokes 0
= W_BC DIRICHLET SS 6 INDEPENDENT f_3d_navier_stokes 0
=P_BC DIRICHLET SS 6 INDEPENDENT f_3d_navier_stokes 0

Initial Guess/Condition Specifications

Set Initial Condition/Guess = constant 0.0
Apply function =f_3d_navier_stokes
Time Index to Restart From =0

Output Specifications

User Defined Output =yes
Parallel Output =no
Scalar Output =no
Time Index to Output To =0
Nodal variable output times:

every 2 steps

Number of nodal output variables =2
Nodal variable names:

Velocity

Pressure
Number of global output variables =0

Global variable names:

Test Exact Solution Flag =1 SUMMARY
Name of Exact Solution Function = f_3d_navier_stokes

Parallel I/O section

Machine = paragon
Staged writes =vyes

ncube subsection

Number of controllers =8

Disks per controller =1

Root location = //df
Subdirectory = jns/testa
Offset numbering from zero =0

Number of RAID controllers =26
Root location = Ipfslio_
Subdirectory = tmp/ags/ti43
Offset numbering from zero =23

Data Specification for User's Functions

Number of functions to pass datato = 0

Figure C.1. Input file for thd&lavier-Stokes 3D Exact Soluti@xample problem.

105



0.1

0.01

0.001

L2 Error

0.0001

0.00001 =

0.1
Element width

Figure C.2. Log-log plot of theterror in the solution versus the element width forNawier-Stokes 3D
Exact Solutiorproblem. Second-order convergence with respect to the mesh spacing is observed.

Problem Specifications section of the input file), which reduces the oscillations in highly-
convective flows and greatly improves convergence.

The backtracking algorithm in the nonlinear solver is also turned on. For this calculation,
which starts from a trivial initial guess and attempts to reach a steady state at a Reynolds number
of 1500, Newton’s method without backtracking diverges. With backtracking, this calculation
converged to a steady state in 11 Newton iterations, which took 229 seconds on 16 processors of
the Intel Paragon.

In Section 5.3, this example problem was used to demonstrate the method of mesh
sequencing for obtaining a converged solution to a difficult problem. For large problems that are
spread across many processors, the ILU (domain decomposition) preconditioners are not as
robust. In many cases, the same problem on a coarser mesh and spread across fewer processors
will converge more readily. Mesh sequencing is a method to capitalize on this phenomena by first
solving the problem on a coarse mesh, interpolating the converged solution to a finer mesh, and
then using this solution as an initial guess on the fine, accurate mesh. See Table 5.2 in Section 5.3
for an example of the benefit of this approach.

106



U=1500 V=0

U=0 U=0
V=0 V=0
/V

P=0 U=0 V=0

Figure C.3. 4096-element mesh and boundary conditions faridhBriven Cavityexample problem.

C.3. Hydrodynamically Developing Flow in an Infinite Parallel Plate Channel

Developing steady laminar flow in the entrance region of a straight parallel plate channel
is demonstrated in this example. To resolve the flow near the inlet, a mesh that was finer near the
inlet than at the outlet was used. The mesh was also refined near the lower wall boundary. The
entire mesh had 500x60 elements. A small section of the domain in the entrance region is shown
in Figure C.5 to show the expanding mesh. Advantage is taken of the line of symmetry through
the channel centerline. An expanding grid is used from the wall to the centerline and from the
entrance along the channel. The upper plate is located 0.5 units from the channel centerline, and
the channel has a length of 10. The upper plate is designated Side Set 1; the outflow boundary is
Side Set 2; the channel centerline is Side Set 3; and the inlet boundary is Side Set 4.

107



General Problem Specifications

Problem type = fluid_flow

Input FEM file = Meshes/box_0064.exoll

LB file = Meshes/box_0064-m16-bKL.neml
Output FEM file = run_out.exoll

Number of processors =16

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear

Stabilization = supg

Debug =2

Solution Specifications

Solution Type = steady

Order of integration/continuation =1

Step Control =on

Relative Time Integration Error = 1.0e-3
Initial Parameter Value =10.0

Initial Step Size =1.0e-2

Maximum Number of Steps =80
Maximum Time or Parameter Value = 1.0e+2

Solver Specifications

Override Default Linearity Choice = default

Number of Newton Iterations =50

Use Modified Newton Iteration =no
Enable backtracking for residual reduction =yes
Choice for Inexact Newton Forcing Term =4
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-2
Solution Absolute Error Tolerance =1.0e-5

Solution Algorithm =gmres
Convergence Norm =0
Preconditioner = no_overlap_ilu
Polynomial =LS,1

Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace =200
Maximum Linear Solve lterations =500

Linear Solver Normalized Residual Tolerance = 1.0e-4

Chemistry Specifications

Energy equation source terms = off

Species equation source terms = off

Pressure (atmospheres) =0.09210526
Thermal Diffusion =on

Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin

Surface chemkin file = surf.bin

Transport chemkin file = tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials =1
SOLID =0 “Air"
ELEM_BLOCK_IDS =1
VISCOSITY  =1.0
DENSITY =1.0

END Material ID Specifications

Boundary Condition Specifications

Number of Generalized Surfaces =0

Number of BC =9

# Upper moving wall

BC = U_BC DIRICHLET NS 3 INDEPENDENT 1500.0 0
BC =V_BC DIRICHLET NS 3 INDEPENDENT 0.0 0

# No slip boundary conditions on all surfaces

BC = U_BC DIRICHLET NS 1 INDEPENDENT 0.0 0
BC =V_BC DIRICHLET NS 1 INDEPENDENT 0.0 0
BC = U_BC DIRICHLET NS 2 INDEPENDENT 0.0 0
BC =V_BC DIRICHLET NS 2 INDEPENDENT 0.0 0
BC = U_BC DIRICHLET NS 4 INDEPENDENT 0.0 0
BC =V_BC DIRICHLET NS 4 INDEPENDENT 0.0 0

# PRESSURE DATUM SET AT A SINGLE NODE FOR PROBLEM WITH

# NO NATURAL OR SPECIFIED STRESS BOUDNARY
BC = P_BC DIRICHLET NS 5 INDEPENDENT 0.0 0

Initial Guess/Condition Specifications

Set Initial Condition/Guess = constant 0.0
Apply function =no
Time Index to Restart From =1

Output Specifications

User Defined Output =yes

Parallel Output =no

Scalar Output =yes

Time Index to Output To =

Nodal variable output times:
every 2 steps

Number of nodal output variables =2
Nodal variable names:

Velocity

Pressure

Number of global output variables =0
Global variable names:

Test Exact Solution Flag =0
Name of Exact Solution Function =f_xx_yy

Parallel I/O section

Machine = paragon
Staged writes =yes

Number of controllers =8
Disks per controller =1

Root location = //df
Subdirectory = jns/testa
Offset numbering from zero =0

Number of RAID controllers =26
Root location = Ipfslio_
Subdirectory = tmp/ags/ti43
Offset numbering from zero =23

Data Specification for User’s Functions

Number of functions to pass datato = 0

Figure C.4. Input file for theid-Driven Cavityexample problem.

108



g0

75 -

60 [ 4

)

(x10"-3-

30 =

\ \ \ \ \ \
0 15 30 45 60 75 90

X- (x107-3-)
Figure C.5. Expanding mesh of the entrance region for developing flow between parallel plates.

A uniform velocity profile is provided at the entrance to the channel. No slip is imposed at
the solid wall, and no shear is set at both the channel centerline and the outflow boundary;
transverse velocities are set to zero on all side sets. The MPSalsa input file is listed in Figure C.6.

Shown in Figure C.7 is the developing velocity profile along the channel; comparison is
made against results from a similar calculation using the finite difference algorithm SIMPLER
[36] on a coarser grid. (The characteristic overshoot in velocity at locations near the entrance is
physically possible and can be obtained numerically using the appropriate entrance and boundary
conditions, as discussed in Shah and London [45].) The analytic solution for fully-developed flow
in a channel predicts that the product of the friction factor and the Reynolds number is 24.0. The
value of 23.97 calculated by MPSalsa at the exit of the channel compares well with the analytic
result.

C.4. Thermally Developing Flow in an Infinite Parallel Plate Channel

A variation of the example in Appendix C.3 is to impose a hydrodynamically fully-
developed flow (parabolic velocity profile) at the entrance of the channel and to heat the wall at a
constant heat flux. The mesh used in Appendix C.3 is also used for this example (Figure C.5). The

109



General Problem Specifications

Problem type = fluid_flow

Input FEM file = rect.exoll

LB file = rect-32-bKL.exoll
Output FEM file = rectFM-out.exoll
Number of processors =32

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = supg

Debug =2

Solution Specifications

Solution Type = steady

Order of integration/continuation =1

Step Control =on

Relative Time Integration Error = 1.0e-3
Initial Parameter Value =10.0

Initial Step Size =30.0

Maximum Number of Steps =8
Maximum Time or Parameter Value = 1.0e+2

Solver Specifications

Override Default Linearity Choice = default

Number of Newton Iterations =80

Use Modified Newton Iteration =no

Enable backtracking for residual reduction = default
Choice for Inexact Newton Forcing Term =0
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-3
Solution Absolute Error Tolerance =1.0e-8

Solution Algorithm =gmres
Convergence Norm =0
Preconditioner = no_overlap_ilu
Polynomial =LS,1

Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace =92
Maximum Linear Solve lterations =500

Linear Solver Normalized Residual Tolerance = 1.0e-6

Chemistry Specifications

Energy equation source terms = off

Species equation source terms = off

Pressure (atmospheres) =0.09210526
Thermal Diffusion =on

Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin

Surface chemkin file = surf.bin

Transport chemkin file = tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials =1
NEWTONIAN =0 “Air"
ELEM_BLOCK_IDS =1
VISCOSITY  =1.0
DENSITY =1.0
U_INIT =50.0

END Material ID Specifications

Boundary Condition Specifications

Number of Generalized Surfaces =0
Number of BC =6

#Inlet boundary condition - uniform velocity
BC = U_BC DIRICHLET SS 4 INDEPENDENT 50. 0
BC = V_BC DIRICHLET SS 4 INDEPENDENT 0.0 0

# Upper solid plate - No slip
BC = U_BC DIRICHLET SS 1 INDEPENDENT 0.0 0
BC =V_BC DIRICHLET SS 1 INDEPENDENT 0.0 0

# Outflow boundary condition (no normal stress on x
# component of the momentum equation)
BC =V_BC DIRICHLET SS 2 INDEPENDENT 0.0 0

# Lower boundary is on the channel centerline
# Set zero V velocity, no shear stress for U velo
BC = V_BC DIRICHLET SS 3 INDEPENDENT 0.0 0

Initial Guess/Condition Specifications

Set Initial Condition/Guess = EXOII_FILE
Apply function =no
Time Index to Restart From =1

Output Specifications

User Defined Output =yes
Parallel Output =no
Scalar Output =yes

Time Index to Output To =
Nodal variable output times:
every 2 steps

Number of nodal output variables =2
Nodal variable names:

Velocity

Pressure
Number of global output variables =0

Global variable names:

Test Exact Solution Flag =0
Name of Exact Solution Function =f_xx_yy

Parallel I/O section

Data Specification for User’s Functions

Number of functions to pass datato = 8

#Call to output data along the wall (note: tau_n is printed out
as tau_x tau_y)

Function Name = f_ss_centroid 2

FN_DATA=INT 1

FN_DATA = STRING x Area P n_grad_U tau_n

#Call for time history output at channel inlet
#The data output are: time step, time, X, y, U, V, P
Function Name = time_history_line 2
FN_DATA = INT 10
FN_DATA=TABLE 22
0.0 0.0
0.0 0.5

#Call for time history output at various locations along the
channel
Function Name = time_history_line 2
FN_DATA = INT 60
FN_DATA = TABLE 2 2
0.025 0.0
0.025 0.5

Function Name = time_history_line 2
FN_DATA = INT 60
FN_DATA = TABLE 2 2

0.1 0.0

0.1 05

<< 4 more time_history_line data statements follow for
increasing values of x >>

Figure C.6. Input file for thelydrodynamically Developing Flow in an Infinite Parallel Plate Channel

example problem.




1.6

14}F

Finite Difference Results 0.000125
0.0005 -
0.00125 =
0.0025 «
0.005 a
Fully Developed =
MPSalsa Results 0.000125
0.0005—
0.00125
0.0025
0.005
0.05 —

Non-dimensional velocity)/Uavg

0 0.2 0.4 0.6 0.8 1
Non-dimensional distance from walL

Figure C.7. Developing velocity profiles for flow entering parallel plates for a variety of non-dimensional
lengths down the channel, as the flow transitions from plug flow to a parabolic profile.

MPSalsa input file is given in Figure C.8. The hydrodynamic boundary conditions are the same as
in Appendix C.3 except for the inlet velocity boundary condition. For this condition, the function
user_bc_exact s called. The user must program an expression for a parabolic velocity profile
and place it in “rf_user_bc_exact_fn.c.” For this example, the profile fok-tteanponent of
velocity Was6y—6y2 at the inlet. For the energy equation, the Neumann boundary condition is
used to set the heat flux on the solid plate; a Dirichlet boundary condition is used to set the inlet
temperature level.

Reducing the temperature field data to calculate the local Nusselt numbers, the data are
shown on Figure C.9 whefdu = hD, /k  amd= x/D,RePr  for heat transfer coeffitient
thermal conductivityk , and half-distance between the plafes . Comparison with the three part
correlation of Shah and Bhatti [46] generally were within 2% over the entire range, except where
their correlation is discontinuous.

C.5. Vortex Shedding from a Circular Cylinder

Slow flow over a cylinder yields steady solutions; however, as the Reynolds number is
increased above 60, the character of laminar flow across a cylinder changes. A steady flow can no
longer be maintained; rather, the flow takes on a time varying behavior with a periodic shedding

111



General Problem Specifications

Problem type = fluid_flow_energy
Input FEM file = rect.exoll

LB file = rect-32-bKL.exoll
Output FEM file = rectHT-out.exoll
Number of processors =32

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = supg

Debug =2

Solution Specifications

Solution Type = steady

Order of integration/continuation =1

Step Control =on

Relative Time Integration Error = 1.0e-3
Initial Parameter Value =10.0

Initial Step Size =30.0

Maximum Number of Steps =8
Maximum Time or Parameter Value = 1.0e+2

Solver Specifications

Override Default Linearity Choice = default

Number of Newton Iterations =80

Use Modified Newton Iteration =no

Enable backtracking for residual reduction = default
Choice for Inexact Newton Forcing Term =0
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-3
Solution Absolute Error Tolerance =1.0e-8

Solution Algorithm =gmres
Convergence Norm =0
Preconditioner = no_overlap_ilu
Polynomial =LS,1

Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace =92
Maximum Linear Solve lterations =500

Linear Solver Normalized Residual Tolerance = 1.0e-6

Chemistry Specifications

Energy equation source terms = off

Species equation source terms = off

Pressure (atmospheres) =0.09210526
Thermal Diffusion =on

Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin

Surface chemkin file = surf.bin

Transport chemkin file = tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials =1
NEWTONIAN =0 “Air"
ELEM_BLOCK_IDS =1
VISCOSITY  =0.02
DENSITY =1.0
THERMAL_CONDUCT = 0.02
CP =10.0
T_INIT =0.0

END Material ID Specifications

Figure C.8. Input file for th&hermally Developing Flow in an Infinite Parallel Plate Chaexaimple

probl

Boundary Condition Specifications

Number of Generalized Surfaces =0
Number of BC =8

# Lower solid plate - No slip, heat flux set at -10.0

BC = U_BC DIRICHLET SS 1 INDEPENDENT 0.0 0
BC = V_BC DIRICHLET SS 1 INDEPENDENT 0.0 0
BC = T_BC NEUMANN SS 1 INDEPENDENT -10.0 0

#Inlet boundary condition - uniform velocity

#Note: average velocity set in rf_user_bc_exact_fn.c is 1.0

with parabolic velocity profile

BC = U_BC DIRICHLET SS 4 INDEPENDENT user_bc_exact 0

BC = V_BC DIRICHLET SS 4 INDEPENDENT 0.0 0

# Inlet boundary condition - temperature
BC =T_BC DIRICHLET SS 4 INDEPENDENT 0.0 0

# Outflow boundary condition (no normal stress on x
# component of the momentum equation)
BC =V_BC DIRICHLET SS 2 INDEPENDENT 0.0 0

# Upper boundary is on the channel centerline

# Set zero V velocity, no shear stress for U velo,

# and no heat flux for temp

BC =V_BC DIRICHLET SS 3 INDEPENDENT 0.0 0

Initial Guess/Condition Specifications

Set Initial Condition/Guess = constant 0.0
Apply function =no
Time Index to Restart From =1

Output Specifications

User Defined Output =yes
Parallel Output =no
Scalar Output =yes
Time Index to Output To =1

Nodal variable output times:
every 2 steps

Number of nodal output variables =3
Nodal variable names:

Velocity

Pressure

Temperature

Number of global output variables =0
Global variable names:

Test Exact Solution Flag =0
Name of Exact Solution Function =f xx_yy

Parallel I/O section

Machine = paragon
Staged writes =vyes

Number of RAID controllers =26
Root location = Ipfslio_
Subdirectory = tmp/ags/ti43
Offset numbering from zero =23

Data Specification for User’s Functions

Number of functions to pass datato = 2

#Call to output data along the wall

Function Name = f_ss_centroid 2
FN_DATA=INT 1

FN_DATA = STRING x Area T n_grad_T n_grad_U

#Call for time history output at channel inlet
#The data output are: time step, time, X,y, U, V, P, T
Function Name = time_history_line 2
FN_DATA = INT 10
FN_DATA=TABLE 2 2
0.0 0.0
0.0 0.5

em.

112



Local Nusselt Number for Thermally Developing Flow in Infinite Parallel Plate Channel

100
MPSalsa—
Shah and Bhatti correlation

@

o

§

z T

2 10} —

[2)

>

Z

©

Q

o

-

1 2
0.0001 0.001 0.01

Non-dimensional Length (x/DhRePr)

Figure C.9. Comparison of the MPSalsa calculation and an established correlation for the Nusselt number
for thermally-developing flow in a parallel plate channel

of vortices [19]. This transient behavior is illustrated in this example. The 2D mesh consists of
4300 elements -- 80 elements around the circumference and 50 expanding away from the
cylinder. The domain is shown in Figure C.10, with a channel width of 30 diameters. The
circumference of the cylinder is designated Side Set 1; the two channel walls are Side Set 2; the
inlet is Side Set 3; and the outflow boundary is Side Set 4.

A uniform velocity profile is provided at the inlet to the channel. The channel walls’
boundary conditions are no shear and impervious. The cylinder’s boundary conditions are no slip
and impervious. No shear is set at the outflow boundary. Experiments with Reynolds numbers
Re = 60, 100, 200, and 600 were done. The input fileRer= 600 is given in Figure C.11.

To indicate the transient nature of the flow, the time varying variables were recorded at a
location a distance 4.0 downstream from the cylinder and 0.5 from the line of symmetry using the
time_history_point function. The calculation foRe = 60 was started from an initial
guess of zero. For higher Reynolds numbers, the calculations were started using the restart option;
the solution for the next lower Reynolds number was used as the starting point. At all times, the
automatic time step control was sebto. Care must be used in setting the initial time step size,
Relative Time Integration Error , andSolution Relative Error Tolerance ;
values that are too large can result in the transient being missed.

113



15 5 -

10 NN

[ I 7 7
1 7 7
177

7 7 77
I N N WY
| I W WA N\
T\ \

177
I W W WA ¥

-
| L A Y
| LW Y
v\

AN W W
AN W W
A\ W
y -
A -
A .|
] 7 717
7 7 17

AN N W
YA |

N N
/] 1]

_10 -

_ | \ |
15 | | | | |

-15 -10 -5 0 5 10 15 20 25
X —_
Figure C.10. The finite element mesh of 4300 elements fabitex Shedding from a Circular Cylinder
example problem.

Shown in Figure C.12(b) is thecomponent of velocity as a function of time for the flow
with Re = 600. (Density was set to 1.0 and viscosity was set to 0.1 in this example, so for
Re = 600, the average-component of velocity was 60.) Figure C.12(a) shows a similar trace
for Re = 60. The von Karman vortex street behind the cylinder vidin= 600 is shown in
Figure C.13. In Figure C.12(a) and (b), the transient behavior before the steady periodic nature of
the flow is fully established depends upon the grid geometry, convergence criteria, and initial
condition. For the fully-developed, steady, periodic flow, the frequency of vortex shedding can be
characterized by the non-dimensional Strouhal nun®er, fD/ V , Where is the frequency of
shedding,D is the cylinder diameter, aid is the fluid approach vel&tdity. is a function of
Reynolds number. For the flows calculated with MPSalsa, the results are shown in Table C.2.
Comparison is made against experimental data presented in Schlichting [39].

114



General Problem Specifications

Problem type = fluid_flow

Input FEM file = cyl.exoll

LB file = cyl-8-bKL.exoll

Output FEM file = cyl-Re600-out.exoll
Number of processors =8

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear

Stabilization = supg

Debug =2

Solution Specifications

Solution Type = transient

Order of integration/continuation =2

Step Control =on

Relative Time Integration Error = 1.0e-4
Initial Parameter Value =10.0

Initial Step Size =0.05

Maximum Number of Steps =1000
Maximum Time or Parameter Value =500.0

Solver Specifications

Override Default Linearity Choice = default

Number of Newton Iterations =15

Use Modified Newton Iteration =no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term =4
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-4
Solution Absolute Error Tolerance =1.0e-8

Solution Algorithm =gmres
Convergence Norm =0
Preconditioner = no_overlap_ilu
Polynomial =LS,7

Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace =80
Maximum Linear Solve lterations =200

Linear Solver Normalized Residual Tolerance = 5.0e-4

Chemistry Specifications

Energy equation source terms = off

Species equation source terms = off

Pressure (atmospheres) =0.09210526
Thermal Diffusion =on

Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin

Surface chemkin file = surf.bin

Transport chemkin file = tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials =1
NEWTONIAN =0 “Air"
ELEM_BLOCK_IDS =1
VISCOSITY  =0.1
DENSITY =1.0
U_INIT =60.0
P_INIT =0.0

END Material ID Specifications

Figure C.11. Input file for theortex Shedding from a Circular Cylindexample problenRe=600

Boundary Condition Specifications

Number of Generalized Surfaces =0
Number of BC =5

# Inlet boundary condition - uniform velocity
BC = U_BC DIRICHLET NS 3 INDEPENDENT 60.0 0
BC = V_BC DIRICHLET NS 3 INDEPENDENT 0.0 0

# Cylinder - No slip
BC = U_BC DIRICHLET NS 1 INDEPENDENT 0.0 0
BC =V_BC DIRICHLET NS 1 INDEPENDENT 0.0 0

# Outflow boundary condition (no normal stress on x
# component of the momentum equation)

# Solid plates - No shear
BC =V_BC DIRICHLET NS 2 INDEPENDENT 0.0 0

Initial Guess/Condition Specifications

Set Initial Condition/Guess = EXOII_FILE
Apply function =no
Time Index to Restart From =805

Output Specifications

User Defined Output =yes
Parallel Output =no
Scalar Output =yes
Time Index to Output To =1

Nodal variable output times:
every 1 steps

Number of nodal output variables =2
Nodal variable names:

Velocity

Pressure
Number of global output variables =0

Global variable names:

Test Exact Solution Flag =0
Name of Exact Solution Function =f_xx_yy

Parallel I/O section

Machine = paragon
Staged writes =yes

Number of controllers =8
Disks per controller =1

Root location = //df
Subdirectory = jns/testa
Offset numbering from zero =0

paragon subsection

Number of RAID controllers =26

Root location = /pfslio_
Subdirectory = tmp/ags/ti43
Offset numbering from zero =23

Data Specification for User’s Functions

Number of functions to pass datato = 1

Function Name = time_history_points 1
#
FN_DATA = TABLE 12

4.0 0.5

115



Velocity in they-Direction (m/s)

Velocity in they-Direction (m/s)

Steady Periodic Velocity in theDirection Due to Vortex Shedding Downstream of Cylinder with Re=60

2

15¢

05f

o
o1

Location: x=4.0, y=0.5—

Steady Periodic Velocity in theDirection Due to Vortex Shedding Downstream of Cylinder with Re=600

60

50

100

Time (sec)

150 200

50

40 ¢+

30

20}

10

(o} &

-10 ¢

20

-30 ¢+

40k

Location: x=4.0, y=0.5—

-50
32.4

32.6

32.8

33

33.2

33.4

Time (sec)

33.6

33.8 34 34.2

Figure C.12. Time history plots for vortex shedding behind a cylindeRéa$Q (b) Re=600

116



Figure C.13.

Contour plot showing the shedding vortices behind a cyliné&e=800

Re St St
(MPSalsa) (Schlichting)
60 0.132 0.133
100 0.163 0.166
200 0.189 0.190
600 0.218 0.210

Table C.2. Comparison of Strouhal numbers as a function of Reynolds number for MPSalsa and the experimental

data of Schlichting39].

117




Appendix D. CVD Reactor Examples

D.1. SPIN Comparison

This example problem was used to benchmark many of the capabilities of MPSalsa by
comparing results with another code, SPIN [6]. SPIN solves for reacting flows in the idealized
geometry of uniform flow impinging on a rotating disk of infinite radius, by using the von
Karman similarity solution that reduces the 3D problem to 1D. We solve a full 3D problem using
MPSalsa of flow impinging on a rotating disk with large radius, and compare the solutions near
the center of the disk with SPIN. The excellent agreement between the two solutions verifies our
implementation of the fluid mechanics, heat and mass transfer, gas-phase reactions, surface
reactions, and the Danckwerts’ boundary conditions.

Our computational domain for the MPSalsa calculation is cylindrical, with an inlet at
10cm above a reactive rotating disk with a radius of 7cm. The surface of the 12,660-element mesh
used in this calculation, generated using CUBIT [24], is shown in Figure D.1.

AN

Figure D.1. Surface of 12,660-element mesISfeiN Comparisoexample problem.

The reaction mechanism used in this calculation is for the deposition of Silicon, and has 8
gas-phase species, 10 gas-phase reactions, 2 surface species, 8 surface reactions, and 1 bulk
component (solid silicon). A schematic diagram of the system is shown in Figure D.2.

118



Inlet:
98.455%H,, 1.545%SiH,

T=600K, Vy=3cm/sec

RN,

A
gas-phase
reactions
10cm
P =0.002 atm
surface 1=1700K v

reactions 7cm
-=="10rpm

Figure D.2. Schematic diagram8PIN Comparisoexample problem. Plug flow enters the low
pressure reactor 10 cm above a heated disk with radius 7cm that is rotating at 10 rpm. Gas-
phase reactions and surface reactions proceed as a function of concentrations and temperature.

Since the system is operating at a low pressure of 0.002 atmospheres, the diffusive flux of
species at the inlet boundary of the computational domain is non-negligible. In experiments, it is
the total flux of each species into the domain that is known, but setting Dirichlet conditions for the
species mole fractions and inlet velocity sets only the convective flux while ignoring the diffusive
contribution. Danckwerts’ boundary condition allows for the specification of the total flux at the
inlet boundary of the computational domain, and functions are included in MPSalsa to implement
this condition (see Section A.1.2).

The input file for this example problem is shown in Figure D.3. The problem is run on 256
processors, and can reach the steady-state directly usingfgthe linear solver with
no_overlap_bilu preconditioning. Danckwerts’ boundary condition on the velocity and
species mole fractions is specified at the inlet (side set 1), and surface reactions and spinning
conditions are specified on the disk surface (side set 2). The output function
time_history_line is used to print information along a vertical line at radius 1cm, as
specified at the bottom of the input file.

The 3D steady state was reached in 10 minutes on 256 Processors of the Intel Paragon,
and required 7 Newton iterations and 1149 total iterations of the linear solver. Solving the
analogous infinite disk problem with SPIN required only 20 seconds on a workstation. The

119



General Problem Specifications Boundary Condition Specifications

Problem type = whole_enchilada Number of Generalized Surfaces = 0
Input FEM file = Meshes/si_13k.exoll
LB file = Meshes/si_13k-256-bKL.exoll Number of BC =10
Output FEM file = run_out.exoll BC =T_BC DIRICHLET SS 1 INDEPENDENT 600.0 0
Number of processors =256 BC =T_BC DIRICHLET SS 2 INDEPENDENT 1700.0 0
Cartesian or Cylindrical when 2D = Cartesian #
Interpolation Order = linear BC =U_BC DIRICHLET SS 1 INDEPENDENT 0. 0
Stabilization = default BC =U_BC DIRICHLET SS 2 INDEPENDENT f_xy_spin_disk 1
Debug =2 BC_DATA =10.00.00.0

#

Solution Specifications BC =V_BCDIRICHLET SS 1 INDEPENDENT 0.0 0

BC =V_BC DIRICHLET SS 2 INDEPENDENT f_xy_spin_disk 1
Solution Type = steady BC_DATA =10.00.0 0.0
Order of integration/continuation =1 #
Step Control = off BC =W_BC DIRICHLET SS 1 DEPENDENT f_Danckwerts_X0 1
Relative Time Integration Error = 4.0e-3 BC_DATA = -3.00.01545 0.0 0.0 0.0 0.0 0.0 0.0 0.98455
Initial Parameter Value =10.0 BC =W_BC DIRICHLET SS 2 DEPENDENT surface_chemkin_bc 0
Initial Step Size =30.0 #
Maximum Number of Steps =8 BC =Y_BC MIXED SS 1 INDEPENDENT f_Danckwerts
Maximum Time or Parameter Value = 1.0e+2 f_Danckwerts_X000 1

SPECIES_LIST = ALL
Solver Specifications BC_DATA = -3.0 0.01545 0.0 0.0 0.0 0.0 0.0 0.0 0.98455

BC =Y_BC NEUMANN SS 2 DEPENDENT surface_chemkin_bc 0
Override Default Linearity Choice = default SPECIES_LIST = ALL

#

Initial Guess/Condition Specifications

Number of Newton Iterations =15
Use Modified Newton Iteration =no Set Initial Condition/Guess = constant 0.0
Enable backtracking for residual reduction = no Apply function =no
Choice for Inexact Newton Forcing Term =4 Time Index to Restart From =1
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-3 Output Specifications
Solution Absolute Error Tolerance =1.0e-8
User Defined Output =yes
---------------- linear solver subsection: ----------------- Parallel Output =no
Scalar Output =yes
Solution Algorithm = tfgmr Time Index to Output To =
Convergence Norm =1 Nodal variable output times:
Preconditioner = no_overlap_bilu every 2 steps
Polynomial =LS,1
Scaling = row_sum Number of nodal output variables =4
Orthogonalization = classical Nodal variable names:
Size of Krylov subspace =200 Temperature
Maximum Linear Solve lterations =600 Velocity
Linear Solver Normalized Residual Tolerance = 1.0e-4 Pressure

Mass_fraction
Chemistry Specifications

Number of global output variables =0
Energy equation source terms =on Global variable names:
Species equation source terms =on
Pressure (atmospheres) =0.002 Test Exact Solution Flag =0
Thermal Diffusion =on Name of Exact Solution Function =f_xx_yy
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin Parallel I/O section
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin Machine = paragon
Staged writes =vyes
Enclosure Radiation Specifications
Enclosure Radiation source terms = off paragon subsection
Material ID Specifications Number of RAID controllers =26
Root location = Ipfslio_
Number of Materials =1 Subdirectory = tmp/ags/ti43
CHEMKIN =0 “silicon” Offset numbering from zero =23
ELEM_BLOCK_IDS =79
T_INIT =600. Data Specification for User's Functions
# Change from U1, U2, U3
U_INIT =0.0 Number of functions to pass datato = 1
V_INIT =0.0
W_INIT =-2.0 Function Name = time_history_line 2
#
XMF_0 H2 0.9995 FN_DATA = INT 100
XMF_0 SIH4 0.0005 FN_DATA=TABLE 23
END Material ID Specifications 0.60.810.0
0.6 0.8 0.0

Figure D.3. Input file for th&PIN Comparisoexample problem.

120



adaptive gridding strategy placed 171 nodes in the 1D mesh, as compared to the 30 elements in
the axial direction of the 3D MPSalsa mesh.

Comparisons between MPSalsa and SPIN can be seen in Figure D.4. Excellent agreement
can be seen for all quantities except the axial velocity, for which the differences reflect the fact
that SPIN is solving the problem on an infinite domain while MPSalsa uses a finite domain. The
axial velocity in the MPSalsa calculation is strongly effected by the boundaries of the
computational domain at finite radius. The discrepancy diminishes at higher flow rates. The
Stefan velocity into the disk does agree between the calculations, and is uncommonly large
because of the huge difference in molecular weights bet®eandH, and the low operating
pressure.

D.2. Rotating Disk Reactor

A real reactor used for the growth of Gallium Arsenide single crystals is the rotating disk
reactor [2, 12]. The reactor is designed to capitalize on the perfect uniformity of deposition of the
infinite disk configuration, with the plug flow of reactants impinging on a rotating disk. The
reactor geometry, shown in Figure D.5, consists of a vertical cylinder sitting concentrically inside
a larger cylindrical reaction vessel. Flow enters uniformly through the circular cross-section of the
reactor and the inner cylinder is rotated, with the reaction occurring on the top heated surface.
Flow exits through the annular region between the cylinders. Very uniform growth has been
observed in this reactor over a large central section of the disk where the effects of a finite radius
system are small.

The reaction mechanism used in this system for chemical vapor deposition of Gallium
Arsenide (from Moffat et al. [35]) consists of 4 gas-phase species, 3 surface species, and 2 bulk
species, and can be found in the Chemkin input files “gaas_block.gas” and “gaas_block.sur.”
There are no gas-phase reactions, and 3 surface reactions.

In this example problem, we demonstrate the restarting capability in MPSalsa by solving
for three different steady states of the reactor at three different sets of operating parameters, as
presented in Table D.1. The solution at the first set of conditions is used as the initial guess for
finding the steady state at the second set, since it is closer to the solution than a trivial initial
guess. Similarly, the third solution uses the second solution as an initial guess. Being able to
restart from a previous solution is necessary for reactor analysis, where many sets of operating
conditions need to be explored. Also, using a series of steady-state jumps can be an efficient way
of reaching a solution at conditions that are too complicated to allow convergence from a trivial
initial guess.

121



1800

1600

1400

1200

Temperature

1000

800

600

0.00045
0.0004
0.00035
0.0003
0.00025
0.0002
0.00015
0.0001
5e-05

0

SiH4 Mole Fraction

9e-07
8e-07
7e-07
6e-07
5e-07
4e-07
3e-07
2e-07
le-07

H2SiSiH2 Mole Fraction

Distance from Disk

T T T T
i MPSalsa —
- SPIN o A
1 1 1 1 )
0 2 4 6 8 10
Distance from Disk
T T T T h
L MPSalsa — A
SPIN O
i 1 1 1 1
0 2 4 6 8 10
Distance from Disk
T
L= 1 1 1
0 2 4 6 8 10

Axial Velocity

SiH2 Mole Fraction

H3SiSiH Mole Fraction

MPSalsa —
SPIN O

1.2e-05

le-05

8e-06

6e-06

3e-09

2 4 6 8
Distance from Disk

10

2.5e-09

2e-09

1.5e-09

le-09

5e-10

MPSalsa —
N ©

2 4 6 8
Distance from Disk

10

Figure D.4. Comparisons between MPSalsa and SPIN for reacting flow impinging on an infinite rotating
disk. Axial profiles of several quantities are plotted: Temperature, Axial Velocity, and Mole Fractions of
SiH4, Sin, HzSISIHz, and HgsISIH

The input file used to solve for the steady-state at the second set of conditions in Table D.1
(using the solution at the first set of conditions in as the initial guess) can be seen in Figure D.6. In
the Initial Guess/Condition Specifications section, the lines

122



Inlet Cross Section

/

il Top View

1

T\
Seuuiigpatt

O
R

S
\\\\\\

3!

NS

san\

o

S
R
S\

1

S
%
X

7 0;\\\\\\

3%
s
WA

H
EEEE

1\
P

B = ==
|
I
I

Reacting|
Surface |
|
Axis of
Rotation

| |
| I Reacting Surface!
Reactor Inlet

Outlet Outlet

Figure D.5. A cross section and top view of the geometry fétdlegting Disk Reactagxample problem,

showing a refined mesh. The design consists of one cylinder inside a larger one, with the reacting surface

on the top of the inner cylinder, which is usually rotating. The flow enters uniformly within the entire top
circle, flows over the disk, and flows out through an annular region.

Solution Disk Spin Rate Inlet Flow Inlet Mole Fraction
Number (rpm) Velocity (cm/sec) of GaMej

1 50 5 0.00013

2 100 15 0.00013

3 100 15 0.00065

Table D.1. Three sets of conditions for three runs oRitating Disk Reactagxample problem.

Set Initial Condition/Guess = EXOIl_FILE
Time Index to Restart From =1

control the restarting. The keywoEKOIl_FILE tells MPSalsa to get the initial guess from the
output file, which in this case is named “run-out.exoll.” Since this file can store many solutions

123



for this mesh, the second line tells MPSalsa to use the first solution. The inpUitriiedsadex

to Output To andNodal variable output times control the solution output to the
Exodusll file. When a solution is being written, the time index is echoed to the standard output so
the user can keep track of which solution is stored in which location of the output file.

The boundary conditions in the input file are imposed over 6 different side sets, with SS#1
being the top circular inlet, SS#2 the annular outlet region, SS#3 being the cooled outer walls,
SS#4 the heated, reactive, rotating disk, and SS#5 and SS#6 being the outside of the inner,
rotating cylinder. Thef xy_spin_disk function is used to specify velocity boundary
conditions for the rotation of the inner cylinder, with tBE€ DATAstatement following it
supplying the rotation rate (in rpm) and thdx,y) center of rotation. The
surface_chemkin_bc boundary condition uses the surface reaction information to specify
the mass flux of each species to the surface as well as the velocity into it (see Appendix A.1.1).
Thef_mole_fraction boundary condition is used to specify the mole fractions of species at
the inlet, as opposed to the mass fractions that are the primitive variables (see Appendix A.1.4).
The SPECIES_LIST information is used to match up the input with the order that the species
are in the Chemkin input file. (Since tBRECIES_LIST has “1” as the first entry, 0.0044 is the
specified mole fraction for the first species in the Chemkin input file, whissHs in this case.

The SPECIES_LIST can be listed as species names instead of integers to reduce possible
confusion.) Thef_pressure boundary condition is an outflow boundary condition that
matches the normal component of the normal stress with the local pressure (see Appendix A.1.5).

With fluid mechanics and heat transfer, there are a total of 9 unknowns per node. For the
coarse mesh of 7472 elements and 8499 nodes used in this example problem, this corresponds to
76,491 total unknowns. (Published results for this reactor use a much finer mesh of around 40,000
elements [2, 12].) The problem is solved on 64 processors of the Intel Paragon.

Table D.2 shows some solution statistics for the three solutions. The number of Newton
iterations and the solution time for the second and third solutions were less than those of the first
solution -- even though they were at more difficult parameter values -- because the initial guess
from a previous solution was used.

Solution Initial Guess # of Newton # of GMRES Execution Time on
Number Iterations Iterations 64 Processors
1 Trivial 10 863 510 sec
2 Solution 1 8 904 459 sec
3 Solution 2 6 637 336 sec

Table D.2. Solution statistics for the three solutions folRbtating Disk Reactaexample problem. The parameter
values are shown in Table D.1. Restarting from the previous solution decreased the execution time.

124



General Problem Specifications

Problem type = whole_enchilada

Input FEM file = run-out.exoll

LB file = Meshes/em_7k-64-bKL.exoll
Output FEM file = run-out.exoll

Number of processors =64

Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear

Stabilization = default

Debug =2

Solution Specifications

Solution Type = steady

Order of integration/continuation =1

Step Control = off

Relative Time Integration Error = 4.0e-3
Initial Parameter Value =10.0

Initial Step Size =30.0

Maximum Number of Steps =4
Maximum Time or Parameter Value = 1.0e+2

Solver Specifications

Override Default Linearity Choice = default

Number of Newton Iterations =15

Use Modified Newton Iteration =no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term =4
Calculate the Jacobian Numerically =no
Solution Relative Error Tolerance =1.0e-3
Solution Absolute Error Tolerance =1.0e-8

Solution Algorithm =gmres
Convergence Norm =1
Preconditioner = no_overlap_ilu
Polynomial =LS,1

Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace =150
Maximum Linear Solve lterations =300

Linear Solver Normalized Residual Tolerance = 1.0e-5

Chemistry Specifications

Energy equation source terms ~ =on

Species equation source terms =on

Pressure (atmospheres) =0.09210526
Thermal Diffusion =on

Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin

Surface chemkin file = surf.bin

Transport chemkin file = tran.bin

Enclosure Radiation Specifications

Enclosure Radiation source terms = off

Material ID Specifications

Number of Materials =1
CHEMKIN =0 “gaas_new”
ELEM_BLOCK_IDS =1
T_INIT =500.
# Change from U1, U2, U3
W_INIT =5.0
XMF_0 AsH3 0.0044
XMF_0 GaMe3 0.00013
XMF_0 H2  0.99547
G_VECTOR 0.0 0.0 -980.0
END Material ID Specifications

Boundary Condition Specifications

Number of Generalized Surfaces = 0

Number of BC =23

BC =T_BC DIRICHLET SS 1 INDEPENDENT 303.15 0

BC =T_BC DIRICHLET SS 3 INDEPENDENT 293.15 0

BC =T_BC DIRICHLET SS 4 INDEPENDENT 913.15 0

BC =T_BC DIRICHLET SS 5 INDEPENDENT 913.15 0

#

BC =U_BC DIRICHLET SS 1 INDEPENDENT 0. 0

BC =U_BC DIRICHLET SS 3 INDEPENDENT 0. 0

BC =U_BC DIRICHLET SS 4 INDEPENDENT f_xy_spin_disk 1
BC_DATA =100.0 0. 0.

BC =U_BC DIRICHLET SS 5 INDEPENDENT f_xy_spin_disk 1
BC_DATA =100.0 0. 0.

BC =U_BC DIRICHLET SS 6 INDEPENDENT f_xy_spin_disk 1
BC_DATA =100.0 0. 0.

#

BC =V_BC DIRICHLET SS 1 INDEPENDENT 0. 0

BC =V_BC DIRICHLET SS 3 INDEPENDENT 0. 0

BC =V_BC DIRICHLET SS 4 INDEPENDENT f_xy_spin_disk 1
BC_DATA =100.0 0. 0.

BC =V_BC DIRICHLET SS 5 INDEPENDENT f_xy_spin_disk 1
BC_DATA =100.00. 0.

BC =V_BC DIRICHLET SS 6 INDEPENDENT f_xy_spin_disk 1
BC_DATA =100.0 0. 0.

#

BC =W_BC DIRICHLET SS 1 INDEPENDENT -15.0 0

BC =W_BC DIRICHLET SS 3 INDEPENDENT 0. 0

BC =W_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0

BC =W_BC DIRICHLET SS 5 INDEPENDENT 0. 0

BC =W_BC DIRICHLET SS 6 INDEPENDENT 0. 0

BC =W_BC NEUMANN SS 2 DEPENDENT f_pressure 1
BC_DATA = FLOAT -.95

##t

BC =Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraction 1
SPECIES_LIST=1234
BC_DATA = 0.0044 0.00013 0.0 0.99547

BC =Y_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 0

BC

SPECIES_LIST = ALL

=Y_BC NEUMANN SS 5 DEPENDENT surface_chemkin_bc 0

SPECIES_LIST = ALL

Initial Guess/Condition Specifications

Set Initial Condition/Guess = EXOII_FILE
Apply function =no
Time Index to Restart From =1

Output Specifications

User Defined Output =yes
Parallel Output =no
Scalar Output =yes
Time Index to Output To =2

Nodal variable output times:

every 2 steps

Number of nodal output variables =4
Nodal variable names:

Temperature
Velocity
Pressure
Mass_fraction

Number of global output variables =0
Global variable names:

Test Exact Solution Flag =0
Name of Exact Solution Function =f_xx_yy

Parallel I/O section

Machine = paragon
Staged writes =yes

Number of RAID controllers =26
Root location = Ipfslio_
Subdirectory = tmp/ags/ti43
Offset numbering from zero =23

Data Specification for User’s Functions

Number of functions to pass datato = 0

Figure D.6. MPSalsa input file for tHotating Disk Reactoexample problem.

125



The three steady-state solutions computed here are axisymmetric. The deposition rate of
Gallium Arsenide on the reacting surface as a function of the radial position is shown in Figure
D.7. An increase in velocity increases the deposition rate between solutions 1 and 2, and the
increase in the reactant concentration increases the deposition rate between solutions 2 and 3. The
large deposition rate at large radii is due to the rapid flow rate passing by the corner of the disk on
its way out the annular exit region. Crystal is harvested only in the center 2.5 cm region where the
deposition rate is more uniform.

50 T T T T T T T

30 | —

20 | Sol. #3 n

10 —

I Sol. 2 14,/// 1

0 : . : : . “Sol. #1
0 1 2 3 4

Deposition Rate [A/sec]

Radius [cm]

Figure D.7. Deposition profiles of GaAs crystal in Batating Disk Reactdior three
different sets of conditions (see Table D.1) as a function of the radial position on the disk.

D.3. Tilted Reactor

The horizontal CVD reactor with tilted susceptor and rotating substrate admits only three-
dimensional solutions. This configuration is an alternative to the rotating disk reactor for growing
Gallium Arsenide semiconductor crystals. We have used the same mechanism as in Appendix
D.2, which includes four gas-phase species.

The reactor configuration is shown in Figure D.8. Surface reaction (deposition) occurs
over the entire rectangular susceptor region, though the crystal is harvested only from the inset
rotating disk. The tilted bottom of the reactor causes the flow to accelerate down the reactor

126



length which decreases the boundary layer thickness. The increase in mass transfer to the surface

due to the thinning boundary layer is in part counterbalanced by the decrease in available reactant.

N
WA

0

55?/////00
\

A
I
ROl
OB
AR A
RAOAREITHHIAORY
{ .......s...‘.?,ﬂ..«............n..."....“..
AL
.o.:.z} XY
b R
IR %“ﬁ\&.:.:.
\\\
\\\

IO
E?%/,o ooo.
NN
LN

RO

RRRLN
R

R RS TEXNS 0

R R R .
R a&«%&&%&%&&‘ .

RPN
TGRS 000““ %
s e

Wav 7.7
A%

X XA
e

Figure D.8. Surface mesh for thdted Reactoexample problem. The hexahedral mesh consists of 43,568

elements, 48,025 nodes, and 432,225 total unknowns. A steady-state solution requires 20 minutes on 256

processors of the Intel Paragon.

the continuation solution type is demonstrated. The details can

In this example problem
be seen in the Solution Specifications section of the input file (Figure D.

here.

which is reproduced

9)

continuation

Solution Type

=1

Order of integration/continuation

off

Step Control

0.0
100.0

Initial Parameter Value
Initial Step Size

=3

Maximum Number of Steps

The above six lines tell the program, respectively, that a continuation run is to take place, that

first-order continuation is to be used, that the parameter step size between solutions is to remain

127



constant, that the initial parameter value is 0.0, that the step size is 100, and that the run will stop
after three steps.

The continuation parameter itself is assigned in the file “rf_user_continuation.c,” and in
this case is assigned to the disk spin rate. Since the disk spin rate is supplied in the first two
boundary conditions (numbered 0 and 1), and is entered as the first component (indexed 0) of the
BC_DATA = FLOATata array, the assignment of the continuation parameter to the disk spin rate
requires only this line:

BC_Types[0].BC_Data_Float[0] = BC_Types[1].BC_Data_Float[0] = *con_par;

Also of note in the input file are the use of generalized surfaces and boundary condition
functions. Since the disk has both velocity boundary conditions due to disk rotation in each of the
tangential directions and reaction-induced flow (the Stefan velocity) in the normal direction, and
since these directions do not line up with the Cartesian coordinates, generalized surfaces are
needed. The functioh xy_spin_tilt9_disk (see Appendix A.1.3.2) is a special function
to calculate the tangential velocities of the rotating disk as a function of the position. This
function requires four arguments: the disk rotation rate (in rpm) and the coordinates of the center
of the disk. The Stefan velocity is imposed using shdace _chemkin_bc as a Dirichlet
condition on the normal velocity (see Appendix A.1.1).

At the end of the boundary condition section, sheace_chemkin_bc is also used
to capture the effects of the surface reactions on the mass balances. In this case, we have exercised
the option of providing initial guesses for the surface site and bulk fractions by use of the
SURFACE_SPECIES LISTand associateBC DATAstatements.

The GMRES linear solver was used with a Krylov subspace size of 140, which, for this
problem, is the largest subspace that fits on 256 processors of the Intel Paragon at Sandia National
Laboratories. Theno_overlap_bilu preconditioner (incomplete block-LU decomposition
without overlap between processors) was used along meith sum scaling. A standard
Newton’s method was used, with backtracking turned off and a forcing term flag value of 4 to turn
off the inexact Newton algorithms.

The problem was run on 256 processors of the Intel paragon. MPSalsa required 62
minutes to complete the continuation run on a mesh with 43,568 elements, 48,025 nodes, and
432,225 total unknowns. The four solutions at disk spin rates of 0, 100, 200, and 300 rpms
required 12, 9, 8, and 9 Newton iterations, respectively. The first solution required more iterations
because it used a trivial initial guess. The first-order continuation algorithm requires one
additional matrix fill and solve after each step to calculate the tangent to the solution branch,
which is used to predict an initial guess for the next step.

128



# Continuation routine will overwrite the disk spin rate on the

General Problem Specifications # next 2 lines, which is currently set at 00 rpm.
BC =VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT
Problem type = whole_enchilada f_xy_spin_tilt9_disk 1
Input FEM file = Meshes/ti_43k.exoll BC_DATA = 00.0 0. 0. 1.504652
LB file = Meshes/ti_43k-256-bKL.exoll BC =VEL_TAN2_BC DIRICHLET GS 1 INDEPENDENT
Output FEM file = run-out.exoll f_xy_spin_tilt9_disk 1
Number of processors =256 BC_DATA = 00.0 0. 0. 1.504652
Cartesian or Cylindrical when 2D = Cartesian BC =VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0
Interpolation Order = linear BC =VEL_TAN1_BC DIRICHLET GS 2 INDEPENDENT 0.0 0
Stabilization = default BC =VEL_TAN2_BC DIRICHLET GS 2 INDEPENDENT 0.0 0
Debug =2 BC =VEL_NORM_BC DIRICHLET GS 2 DEPENDENT surface_chemkin_bc 0
#
Solution Specifications BC =T_BC DIRICHLET SS 1 INDEPENDENT 298. 0
BC =T_BC DIRICHLET SS 4 INDEPENDENT 913. 0
Solution Type = continuation BC =T_BC DIRICHLET SS 5 INDEPENDENT 913. 0
Order of integration/continuation =1 BC =T_BC DIRICHLET SS 7 INDEPENDENT 675. 0
Step Control = off #
Relative Time Integration Error = 0.0 BC =U_BC DIRICHLET SS 1 INDEPENDENT 0. 0
Initial Parameter Value =0.0 BC =U_BC DIRICHLET SS 2 INDEPENDENT 0. 0
Initial Step Size =100.0 BC =U_BC DIRICHLET SS 3 INDEPENDENT 0. 0
Maximum Number of Steps =3 BC =U_BC DIRICHLET SS 6 INDEPENDENT 0. 0
Maximum Time or Parameter Value = 1.0e+5 BC =U_BC DIRICHLET SS 7 INDEPENDENT 0. 0
BC =U_BC DIRICHLET SS 8 INDEPENDENT 0. 0
Solver Specifications BC =U_BC DIRICHLET SS 9 INDEPENDENT 0. 0
#
Override Default Linearity Choice = default BC =V_BCDIRICHLET SS 3 INDEPENDENT 0.0
BC =V_BC DIRICHLET SS 6 INDEPENDENT 0. 0
---------------- nonlinear solver subsection: -------------- BC =V_BC DIRICHLET SS 7 INDEPENDENT 0. 0
BC =V_BC DIRICHLET SS 8 INDEPENDENT 0. 0
Number of Newton Iterations =15 BC =V_BC DIRICHLET SS 9 INDEPENDENT 0.0
Use Modified Newton Iteration =no #Set inlet flow rate here
Enable backtracking for residual reduction = no BC =V_BCDIRICHLET SS 1 INDEPENDENT 30.0 0
Choice for Inexact Newton Forcing Term =4 #
Calculate the Jacobian Numerically =no BC =W_BC DIRICHLET SS 1 INDEPENDENT 0. 0
Solution Relative Error Tolerance =1.0e-3 BC =W_BC DIRICHLET SS 2 INDEPENDENT 0. 0
Solution Absolute Error Tolerance =1.0e-8 BC =W_BC DIRICHLET SS 3 INDEPENDENT 0. 0
BC =W_BC DIRICHLET SS 6 INDEPENDENT 0. 0
---------------- linear solver subsection: ---------=------- BC =W_BC DIRICHLET SS 7 INDEPENDENT 0. 0
BC =W_BC DIRICHLET SS 8 INDEPENDENT 0. 0
Solution Algorithm = gmres BC =W_BC DIRICHLET SS 9 INDEPENDENT 0. 0
Convergence Norm =1 #
Preconditioner = no_overlap_bilu BC =Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraction 1
Polynomial =LS1 SPECIES_LIST=1234
Scaling = row_sum BC_DATA = 0.0044 0.00013 0.0 0.99547
Orthogonalization = classical BC =Y_BC NEUMANN SS5 DEPENDENT surface_chemkin_bc 1
Size of Krylov subspace =140 SPECIES_LIST = ALL
Maximum Linear Solve Iterations =280 SURF_SPECIES_LIST = GaMe(S) AsH2(S) BLOCK Ga-GaAs(D) As-
Linear Solver Normalized Residual Tolerance = 1.0e-3 GaAs(D)
BC_DATA=FLOAT0.20.40.41.01.0
Chemistry Specifications BC =Y_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 3
SPECIES_LIST = ALL
Energy equation source terms =on SURF_SPECIES_LIST = GaMe(S) AsH2(S) BLOCK
Species equation source terms =on BC_DATA =FLOAT 0.20.40.4
Pressure (atmospheres) =0.09210526 SURF_SPECIES_LIST = Ga-GaAs(D)
Thermal Diffusion =on BC_DATA = FLOAT 1.0
Multicomponent Transport = stefan_maxwell SURF_SPECIES_LIST = As-GaAs(D)
Chemkin file = chem.bin BC_DATA = FLOAT 1.0
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin Initial Guess/Condition Specifications
Material ID Specifications Set Initial Condition/Guess = constant 0.0
Apply function =no
Number of Materials =1 Time Index to Restart From =1
CHEMKIN =0 “gaas_new”
ELEM_BLOCK_IDS =1 Output Specifications
T_INIT =500.
U_INIT =0.0 User Defined Output =vyes
V_INIT =30.0 Parallel Output =no
W_INIT =0.0 Scalar Output =yes
XMF_0 AsH3  0.0044 Time Index to Output To =
XMF_0 GaMe3  0.00013 Nodal variable output times:
XMF_0 H2 0.99547 every 1 steps
G_VECTOR 0.0 0.0 -980.0
END Material ID Specifications Number of nodal output variables =4
Nodal variable names:
Boundary Condition Specifications Temperature
Velocity
Number of Generalized Surfaces = 2 Pressure
GENERALIZED_SURFACE 5 3 Mass_fraction
NORMAL 0.0 0.15643447 -0.98768834
TANGENT 1.0 0.0 0.0 Data Specification for User’s Functions
TANGENT 0.0 0.98768834 0.15643447
GENERALIZED_SURFACE 4 3 Number of functions to pass datato = 1
NORMAL 0.0 0.15643447 -0.98768834 Function Name = f_xy_spin_average 2
TANGENT 1.0 0.0 0.0 #
TANGENT 0.0 0.98768834 0.15643447 FN_DATA=INT55
# FN_DATA = FLOAT 0. 0. 1.504652
Number of BC =33
#

Figure D.9. MPSalsa input file for tHélted Reactoexample problem.

129



A typical solution is shown in Figure D.10, which includes the streamlines through the
domain and the contours of the reactaBaNle3) on the surface. The effect of the counter-
clockwise rotating disk on the flow and surface concentrations can be seen.

Outlet:
GaMe3
AsH3

H2
CH4

Streamlines

Contours of GaMe3
on Reacting Surface

Figure D.10. Streamlines and surface concentrations for a solution fGltbé Reactoexample problem.

Figure D.11 shows the time-averaged (spin-averaged) deposition profiles over the disk for
the four different spin rates calculated in the one continuation run. (The profiles are calculated
using a non-standard post-processing roufing;,_spin_average , Which expands the radial
variation in the deposition as a series of orthonormal polynomials.) The disk rotation rate is seen
to be a minor factor in the non-uniformity of the deposition, but it can be seen that rotation
degrades uniformity.

130



o
o

Disk Spin Rate

—— 300 rpm
— — 200 rpm
——— 100 rpm
fffff 0 rpm

GaAs Deposition Rate [A/sec]
()]
N

ot
0
|

0 1 2 3

Radius [cm]

Figure D.11. Plot of the spin-averaged deposition rate on the rotating disk Tilté& Reactoexample
problem for the 4 different spin rates.

131



References

1.

10.

11.

12.

13.
14.

T.D. Blacker. “FASTQ Users Manual, Version 2.1,” Sandia National Laboratories Tech. Rep.
SAND88-1326, Albuquerque, NM (1988).

W.G. Breiland and G.H. Evans. “Design and Verification of Nearly Ideal Flow and Heat
Transfer in a Rotating Disk CVD Reactod,”Electrochem Spd386) (1991).

A.N. Brooks and T.J.R. Hughes. “Strealmine Upwind/Petrov-Galerkin Formulations for
Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes
Equations,"Computer Methods in Applied Mechanics and E8g(1982) 199-259.

S. Carney, M. Heroux and G. Li. “A proposal for a sparse BLAS toolkit,” SPARKER
Working Note #2, Cray Research, Inc., Eagen, MN (1993).

M.E. Coltrin, R.J. Kee, F.M. Rupley, and E. Meeks. “Surface Chemkin-IIll: A FORTRAN
package for analyzing heterogeneous chemical kinetics at a solid-surface-gas-phase
interface,” Sandia National Laboratories Tech. Rep. SAND96-8217, Albuquerque, NM
(1996).

M.E. Coltrin, R.J. Kee, G.H. Evans, E. Meeks, F.M. Rupley, and J.F. Grcar. “SPIN: A Fortran
Program for Modeling One-Dimensional Rotating-Disk/Stagnation-Flow Chemical Vapor
Deposition Reactors,” Sandia National Laboratories Tech. Rep. SAND87-8248,
Albuquergue, NM (1987).

M.E. Coltrin and H.K. Moffat. “Surftherm: A Program to Analyze Thermochemical and
Kinetic Data in Gas-Phase and Surface Chemical Reaction Mechanisms,” Sandia National
Laboratories Tech. Rep. SAND94-0219, Albuquerque, NM (1996).

M.S. Eldred, W.E. Hart, W.J. Bohnhoff, V.J. Romero, S.A. Hutchinson, and A.G. Salinger.
“Utilizing Object-Oriented Design to Build Advanced Optimization Strategies with Generic
Implementation,’Proceedings of the 6th AIAA/NASA/ISSMO Symposium on
Multidisciplinary Analysis and OptimizatioAJAA-96-4164-CP, Bellevue, WA, (1996)
1568-1582.

S.C. Eisenstat and H.F. Walker. “Choosing the forcing terms in an inexact Newton method,”
SIAM J. Sci. Compytl7 (1996) 16-32.

S.C. Eisenstat and H.F. Walker. “Globally convergent inexact Newton metBoals]").
Optimization 4 (1994) 393-422.

C.R. Ethier and D.A. Steinman. “Exact fully 3D Navier-Stokes solutions for benchmarking,”
Int J. Num. Meth. Fluidsl9 (1994) 369-375.

G. Evans and R. Greif. “A Numerical Model of the Flow and Heat Transfer in a Rotating
Disk CVD Reactor,’J. Heat Transferl09 (197).

FIDAP 7.0 Theory Manual. Fluid Dynamic International, Inc. (1984) Chapter 6, 14-15.

W.C. Gardiner and and J. Troe. “Rate coefficients of thermal dissociation, isomerization and
recombination reactions,” i@ombustion Chemistred. W.C. Gardiner, Springer-Verlag,
New York (1984).

132



15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

D.K. Gartling. “Merlin Il - A computer program to transfer solution data between finite
element meshes,” Sandia National Laboratories Tech. Rep. SAND89-2989, Albuquerque,
NM, (1991).

D.K. Gartling and R.E. Hogan. “Coyote II -- A finite element computer program for
nonlinear heat conduction problems, Part 1 -- Theoretical development,” Sandia National
Laboratories Tech. Rep. SAND94-1173, Albuquerque, NM (1994).

A.P. Gilkey and G.D. Sjaardema. “GEN3D: A GENESIS Database 2D to 3D Transformation
Program,” Sandia National Laboratories Tech. Rep. SAND89-0485, Albuquerque, NM
(1989).

G.H. Golub and C.F. Van Loaxlatrix ComputationsThe Johns Hopkins University Press,
Baltimore, MD (1983) 150-153.

P.M. Gresho, S.T. Chan, R.L. Lee, and C.D. Upson. “A modified finite element method for
solving the time-dependent, incompressible Navier-Stokes equations: part 2: applications,”
Int J Numer Meth Fluidst (1984) 619-640.

P.M. Gresho, R.L. Lee, and R.L. Sani. “On the time-dependent solution of the incompressible
Navier-Stokes equations in two and three dimensiongReirent Advances in Numerical
Methods in FluidsC. Taylor and K. Morgan, eds., Pineridge Press Ltd., Swansea, UK (1980)
27-81.

B. Hendrickson and R. Leland. “An improved spectral graph partitioning algorithm for
mapping parallel computations,” Sandia National Laboratories Tech. Rep. SAND92-1460,
Sandia National Laboratories, Albuquerque, NM (1992).

B. Hendrickson and R. Leland. “The Chaco User’s Guide, Version 2.0,” Sandia National
Laboratories Tech. Rep. SAND94-2692, Albuquerque, NM (1995).

G.L. Hennigan and J.N. Shadid. “Nemesisl : A set of functions for describing unstructured
finite-element data on parallel computers,” Sandia National Laboratories Tech. Rep. in
preparation, Albuquerque, NM.

J.R. Hipp, R.R. Lober, S.A. Mitchell, G.D. Sjaardema, M.K. Smith, T.J. Tautges, T.J. Wilson,
W.R. Oakes, et al. “CUBIT Mesh Generation Environment Volume 1: User’s Manual,”
Sandia National Laboratories Tech. Rep. SAND94-1100, Albuguerque, NM (1996).

T.J.R. Hughes, L.P. Franca, and M. Balestra. “A New Finite Element Formulation for
Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A Stable
Petrov-Galerkin Formulation of the Stokes Problem Accommodating Equal-order
Interpolations,"Computer Methods in Applied Mechanics and EBg(1986) 85-99.

S.A. Hutchinson, J.N. Shadid, and R.S. Tuminaro. “Aztec User’s Guide: Version 1.0,” Sandia
National Laboratories Tech. Rep. SAND95-1559, Albuquerque, NM (1995).

R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, and J.A. Miller. “A FORTRAN
Computer Code Package for the Evaluation of Gas-Phase, Multicomponent Transport
Properties,” Sandia National Laboratories Tech. Rep. SAND86-8246, Albuquerque, NM
(1986).

133



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

R.J. Kee, F.M. Rupley, E. Meeks, and J.A. Miller. “Chemkin-I1II: A Fortran Chemical
Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,” Sandia National
Laboratories Tech. Rep. SAND96-8215, Albuquerque, NM (1996).

B. Kernighan and S. Lin. “An efficient heuristic procedure for partitioning graped,”
System Technical Journ@9 (1970) 291-307.

K.J. LaidlerChemical KineticsHarper & Row, New York (1987).
LAPACK User’s Guidehttp://www.netlib.org/lapack/lug/lapack_lug.html
M.J. Martinez and P.L. Hopkins, private communication.

E. Meeks, H.K. Moffat, J.F. Grcar, and R.J. Kee. “AURORA: A FORTRAN Program for
Modeling Well Stirred Plasma and Thermal Reactors with Gas and Surface Reactions,”
Sandia National Laboratories Tech. Rep. SAND96-8218, Albuquerque, NM (1996).

Message Passing Interface Forum. “MPI: A Message-Passing Interface Standard,”
University of Tennessee, Knoxville, TN (1995).

H.K. Moffat, K.P. Killeen, and K.C. Baucom. “Group V Inhibition@&As andAIAs
MOCVD Growth Rates,” submitted (1995).

S.V. PatankeNumerical heat tranfer and fluid flolemisphere Publishing Corp., London
(1980).

R. Rew, G. Davis, and S. Emerson, “NetCDF User’s Guide: an interface for data access,
version 2.3,” UCAR (1993).

A.G. Salinger, S. Brandon, R. Aris, and J.J. Derby. “Buoyancy-Driven Flows of a Radiatively
Particilating Fluid in a Vertical Cylinder Heated from BeloRrbc Royal Soc Londof 442
(1993).

H. SchlichtingBoundary Layer Theoyy'th Ed., McGraw-Hill, New York (1979).

L.A. Schoof and V.R. Yarberry. “Exodusll: A Finite Eelement Data Model,” Sandia National
Laboratories Tech. Rep. SAND94-2137, Albuquerque, NM, (1994).

J.N. Shadid. “Experimental and Computational Study of the Stability of Natural Convection
Flow in an Inclined Enclosure,” Ph.D. Dissertation, University of Minnesota (1989).

J.N. Shadid, H.K. Moffat, S.A. Hutchinson, G.L. Hennigan, K.D. Devine, and A.G. Salinger.
“MPSalsa: A Finite Element Computer Program for Reacting Flow Problems, Part 1 —
Theoretical Development,” Sandia National Laboratories Tech. Rep. SAND95-2752,
Albuquergque, NM (1996).

J.N. Shadid and R.S. Tuminaro. “Sparse iterative algorithm software for large-scale MIMD
machines: an initial discussion and implementati@uoiicurrency: Practice and Experience,
4 (1992) 481-497.

J.N. Shadid and R.S. Tuminaro. “A comparison of preconditioned nonsymmetric Krylov
methods on a large-scale MIMD machin8JAM J. Sci. Stat. Compul5 (1994) 440-459.

R.K. Shah and A.L. Londohaminar Flow Forced Convection in Duct&cademic Press,
New York (1978).

134



46.

47.

48.

49.

R.K. Shah and M.S. Bhatti. “Laminar Convective Heat Transfer in Ductsldmabook of
Single-Phase Convective Heat TransferKakac, R.K. Shah, and W. Aung (eds.), Wiley &
Sons (1987).

D.C. Sorensen and R.B. Lehoucq, Department of Computational and Applied Mathematics,
Rice University, Houston, Texas.

T.E. Tezduyar, S. Mittal, S.E. Ray, and R. Shih. “Incompressible Flow Computations with
Stabilized Bilinear and Linear Equal-order-interpolation Velocity-Pressure Elements,”
Computer Methods in Appl. Mechanics and E8§.(1992) 221-242.

Z. Zlatev, V.A. Barker, and P.G. Thomsen. “SSLEST--a FORTRAN IV subroutine for solving
sparse systems of linear equations: User’s guide,” Technical Report, Institute for Numerical
Analysis, Technical University of Denmark, Lyngby, Denmark (1978).

135



Index CUBIT mesh generator ................. , 118
cylindrical coordinates . .. ................. (5]
adaptive mesh refinement ..................... 7Danckwerts'BC .. ... ... ,. 7B
axisymmetry . ... ,./B  depositionrate ........ ... L » 126
AZtec . ... ,122  dragforce ... .. 88
dynamic load balancing . ...................... 76
backtracking ....................... . A2 106
bifurcationanalysis .......................... 7elementblocks ................... , 2% 31, 32
BLAS ... L eX2PEX v 10
block jacobi ............. ... .. ... ... .. 7exactsolutions ......................... ., 635
boundary conditions example problems
BC DATA ... , 58 Diffusioninan Annulus ................... 91
Danckwerts’ ....................... , 89 FlowinaChannel ....................... 107
default ......... ... ... ... ... .. .. ..., 3¢ Lid-Driven Cavity Problem ............... 104
dependence ....................... , 397 Navier-Stokes 3D Exact Solution ... ........ 103
Dirichlet ................ , 36, 37, 38, 91, 93 Rotating Disk Reactor ................... 121
inputfile ........................ . 35, 38 Si3N4 Equilibrium . ... ... o 96
Jacobianentries ............. ... ... . ... 3 SPINComparison . ...................... 118
mass fractions ................ ... .. . ... 3 Surface Reaction . . ....................... 99
Mixed ..................... ,.57, 39, 91, 93 The SoretEffect ......................... 94
mole fractions .............. ... ......... 81  Thermally Developing Flow in a Channel . ... 109
NAMES . .ttt ettt e e 3 TitedReactor ............ ... .. . ... 126
Neumann .............. , 36, 37, 39, 91, 93 Vortex Shedding from a Cylinder .......... 111
normal and tangential velocity ... ....... , 3% Exodusll .............. B, 10, 12, 15, 16, 42, 72
on generalized surfaces ................... 3exolllb load balancing utility . ................... 6
onnodesets ............. .., 3
onsidesets .......... ... i 3f_3d_navier_stokes ____________________ , 103
outflow . ... 82f annUIUS_XACt . . ..\t 92
Precedence . ......... i 4 Danckwerts . . ... , 78 80
Robin. See mixed. f Danckwerts X0 .................... ,. 78, 80
spinning disk ............ oo 8(f Danckwerts YO . ..........ooeiiiiiiiiiii.. 80
spinning tilted disk . . . .................... 80f mole_fraction ..................... ,.8%, 124
surfacereactions .................... ,.997 fPressure . ........ouiii.. .182
user-defined functions .................... 5% ss centroid .. ... ... ... , 186
broadcast .............. ... .. . & xy spin_disk . .......... B
f xy_spin_tilt9 disk .................... , 208
Chaco ......... ... . , 1,82 FASTQ meshgenerator ........................ 5
chem.bin ...... ... ... ... fn_data_location ....................... , 666
Chemistry Specifications. See input file, chemistry specfn_data_next location ........................ 68
ifications. functiondata ............ ... ... .. . ... .. , 648
Chemkin ............ ... .. ... . ... ... .12 32 accessing functiondata . ........... , 66 68
Chemkinlll ....... ... .. ... .. ... .. ....... 8 FLOAT .. i 48
Chemkin interpreter. Also see interp. ......... 7 FN_DATA .. 48
inputfile . ... .. 96 inputfile ... ... ... . . 48
coarsemesh . ............ . . k INT 48
communication utilities . . .. ... . o L 8€  look-up tables. Also see look-up tables. ... .... 49
compiling . ... .. 17 STRING ... . 48
continuation .. .......... 189, 20, 65, 70, 73, 127 TABLE ... ... .49
arc-length . ............ ... ... . L. . e time_history_line. See time_history_line.
firstorder ....... ... ... .. ... ... , 128 time_history_points. See time_history_points.
zeroorder .. ... 7
convergence criteria . ................. .. 2283 GENBD ..ot 5

136



General Specifications. See input file, general specifica

Number of global output variables ... ,4%

tions. Number of nodal output variables ... ... .. 44
generalized surfaces ................. , 33361 ParallelOutput . . . .......... ... .. ..... 43
NORMAL . ... e 33 ScalarOutput . . ....... ... .. ... 43
TANGENT ... . .. 33 Test Exact SolutionFlag ............... 45
global sum, max,andmin ..................... 9 Time Indexto Output To . . ............. 43
gmake ....... ... , 121 User Defined Output . ................. 42
GMRES .......... ... ... ...... .28, 27, 70, 71 parallel I/O specification .................. 45
governing equations . ............. ... 1 Disks per controller . .................. a7
gravity . ... 3 Machine .................. ... .. ..... 46
guacamole pre-processor ......... , 8,9, 10, 16 Number of controllers . ................ 46
Number of RAID controllers .. .......... 47
horizontal CVD reactor .. .................... 12¢ Offset numbering from zero ............ 47
Rootlocation ........................ 47
inexact Newton’s method . ................ 2% Staged writes .. ... 46
initial conditions. Also see initial guess. . ......... 40 Subdirectory ... 47
iNitial QUESS .« .. e ,.620 solution specifications ................ 18
function . . ..o .82, 71 Initial Parameter Value ................ 20
FeStarting . ......ouveeeeei 12 Initial Step Size ... 20
variable specific . ........... ... ... ... 3z Maximum Number of Steps ............ 20
input file Maximum Time or Parameter_VaIue ...... 20
boundary condition specifications. See boundary Order of integration/continuation ........ 19
conditions. Relative Time Integration Error ......... 20
chemistry specifications . .. ................ 21 Solution Type .................ooene. 18
Chemkin file . ....................... 28 Step Control ... 19
Energy equation source terms ... ....... o= solver specifications . . SRR EEREEREREEE 21
Multicomponent Transport . . . .......... 28 Calc_ulate the Jacobian Numenc_ally ...... 23
Pressure (atmospheres) . ............... 2 Choice for Inexact Newton Forcing Term . 22
Species equation source terms . ......... 2 Convergence Norm . ... .. R 24
Surface chemkin file . . . . . ... ... ... ... 28 Enable backtracking for residual reduction . 22
Thermal Diffusion . . . . ... ... ... 28 Linear Solver Normalized Residual Tol .. .27
Transport chemkinfile ................ 28 Maximum Linear Solve lterations . ... .. .. 27
function data specification. See function data. Number of Newton Iterations ........... 22
general specifications .. ................... 1- Orthogonalization ......... R 26
Cartesian or Cylindrical when 2D .. . .. .. 16 Overnde_ l_)efault Linearity Choice ....... 21
DEDUG v oo 17 Prec_ondltloner ....................... 24
INPUt FEM file .. ..o 15 S_calmg ............................. 26
Interpolation order ................... 16 Size of Krylov subspace ............... 26
LBfile . ..o 16 Solution Absolute Error Tolerance ... .... 23
Number of processors .. ............... 1€ Solution Algorithm ................... 24
Output FEMfile ... .o 16 Solution R_elatwe Error Tole_rance ........ 23
Problem type . ..o oo 15 Use Modified Newton Iteration . ......... 22
Stabilization .. ......... ... 16|nput-ldbl ................................... 6
initial condition/guess specifications . .. ... ... golnput-salsa ... »1314
Apply fUNCHON . oo oo 41 interp . ... , 8,B7
Set Initial Condition/Guess . ............ 41
Time Index to Restart From ............ 42JAC_BC_FUNCT|ON_ARGL|ST .............. 57
material ID specifications. See material properties JAC_SRC_FUNCTION_ARGLIST ............. 55
output specifications . .................... 4ZJacobian
Global variablenames . ............... AE analytic ............................ y 22
Name of Exact Solution Function . ...... 45 analytic entries for sourceterms . ............ 55
Nodal variable names .. ............... 44 entries for boundary conditions ............. 37
Nodal variable output times ............ 43 numerical ........... . . ... . , 22

137



Krylov subspace .................. 2B, 70,71  optimization ......... ... .. . .o , 1B
outputfile . ... 8
LAPACK . ottt e 1zoutput functions . ... , BB
linear sOIVEr . . ... ,.724 inffoonasideset ...................... ... 86
CONVErgenCe NOMS . ..o v v i e e e e e 2 solution along aline ........... .. ... ... 85
table of choices .. ....... ... 2. timehistory . ........ ... .. . 84
load balancing . .............c.ooiiiiiiiiii... Output Specification. See input file, output specifica-
look-uptables . ......................... ,.829 tions.
makefile . ........ ... ... ... et Paragon ... , 13,46, 97, 119
material properties . ......................... 2parallel /O . ................ » %0, 11, 12, 43, 45
density ... 31 Also see input file, parallel I/O specifications.
diffusion coefficients ..................... 32partitioning . .. ... 6
QUAVY oo 3iphysical properties. See material properties.
heat Capacity _______________________ ,.581 plasma .................................... 76
heat sourceterm .......... ... ... . ... , 531 porous media ............. i 76
mass source term . ... ... .., , 532 preconditioner ......................... , 740
material BYPES « oo 3 tableofchoices .......................... 25
molecular weight .. ...................... 3zprint_sync_end ... ... 89
multiple materials . ...................... 2gprint_sync_start ... 89
number of Species _______________________ BProC .. 88
reference temperature .................... 3pseudo ... » 18 20, 70, 97
source term Jacobian entries .......... , 532
special species equation .. ................. radiation . ... , 789
SPECIES NAMES . . ... ..ottt ,330 restarting ......... 116, 41, 43, 70, 121, 123 124
table of keywords . ................ , 32, 33 timeindex ......... .. .. 42
table of material types . ................... 3iaf_user_continuation.c ................ ,.18 128
thermal conductivity ................. .31 rObUSINESS ... .. 71
VISCOSItY © v vo oo .31 rotatingdiskreactor .............. ... ........ 121
volume expansion coefficient .............. 3lrunningMPSalsa ............. ... . . . .. 13
volumetricsource . .. ....... .. .. 5]
Material Specifications. See material properties. salsaexecutable ........................ ,132
MEMOTY o ettt e e e e e s 710 scalar /O ... ... , 19 16, 43
Merlin ... 7iSCaliNg .« oo 71
inputfile ........... . 72 tableof chOICES ... .....ooviiiiii 26
mesh generation ............ ..., side set . ... , 35 35, 37, 40
mesh partitioning ... SIMPLER ...ttt e 109
mesh sequencing . ..................... 2108 smos ... 8,12
MPSALSA HOME ...................... ,. 12 SNGLVAR_FUNCTION_ARGLIST ...... 5257, 63
multicomponent diffusion . ................ » 28 Solution Specifications. See input file, solution specifi-
muIti—physics ............................... 7¢ cations.
MULTIVAR_FUNCTION_ARGLIST .......... 54 Solver Specifications. See input file, solver specifica-
tions.
Navier-Stokes exact solution ................. 10Soreteffect . ........ ... .. ., 928
Nemesisl .................... ,.7169,10,12,16 sourcecode ........... .. 12
NetCDF . ... e ISPECIES LIST ....... it ,.88 124
Newton iterations . ...................... W22 SPIN ... N8, 121
nodeset ......... ... ... , 37540  stabilityanalysis .. ....... ... 76
normalvector ............ ... ... . . .. .... ,.633 stabilization ........ .. 16
NUmM_Proc ....... ... .. 8statusflag . .......... . . 84
Nusseltnumber .......... ... .. ... .. ... .. .. llsteady-state ............ ... ... ,. A8
Stefan velocity . . . ... 709, 100, 101, 102, 121, 128

138



StepControl ... ... ... . . . 7

SteP SIZe . .o i
Strouhalnumber ......... ... .. ... ... ... , 114
SUNMOS ... ... . +17, 13
surfbin ... .. |
SURF_SPECIES LIST .......... , 7B, 101, 102
SURF_VECTOR_FUNCTION_ARGLIST ....... 62
surfacechemistry ............. ... ... ... .. ... 7
Surface Chemkin . ......... ... ... ... .. ... , 997
surface_chemkin_bc .. ... 799, 100, 101, 124, 128
SURFACE_SPECIES LIST ................. 12¢
synchronization . ................. ... ... ..... 8
tangentvector .......... ... .. ... , 633
tfgmr ... ,. 24
time dependent ................ ,.18, 19, 20, 96
time_history line ......... 488, 85, 86, 110, 119
time_history_points ........ 465, 84, 85, 97, 115
tran.bin ... .
turbulence ........ ... . 7
UNIES .« ot ,.551 103
userfunctions .......... ... ... 5
boundary conditions . .. .............. . ..., 51
continuation .......... ..., 6t
density ......... ... ... 5:
exactsolutions .......... ... ... . . . . ... 6.
functiondata ................ ... ... ... .. 6¢
heatcapacity ........................... 5i
initial condition/guess . ................... 62
normat and tangentvectors ................ 6
OULPUL . . ot 6+
SOuUrceterms ............ i 5
thermal conductivity ..................... 51
VISCOSItY .« .o v vt 5]
user_ bc exact ............. , 89, 58, 63, 64, 111
user_continuation ......................, ,.785
USEr OUt . ... ot , 48) 64, 84
variable properties . .. ... .. 5
Also see material properties.
visualization ........... ... . . . . ... e 1
von Karman vortex street . ................... 11
Y A2 1
YOO .« . 913

139



Distribution

EXTERNAL DISTRIBUTION:

Steve Ashby

Lawrence Livermore Nat. Lab.
M/S L-316

PO Box 808

Livermore, CA 94551-0808

Rob Bisseling

Department of Mathematics
Budapestlaan 6, De Uithof, Utrecht
PO Box 80.010, 3508 TA Utrecht
The Netherlands

Petter Bjorstad
University of Bergen
Institutt for Informatikk
Thomohlengst 55
N-5008 Bergen, Norway

Randall Bramley
Dept. of CSci.

Indiana University
Bloomington IN 47405

Rich A. Cairncross

Mechanical Engineering Department
University of Delaware

313 Spencer Laboratory

Newark, DE 19716-3140

G. F. Carey

ASE/EM Dept., WRW 305
University of Texas
Austin, TX, 78712

Steven P. Castillo

Klipsch School of Electrical & Computer Eng.

New Mexico State University
Box 30001
Las Cruces, NM 88003-0001

J. M. Cavallini

US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

T. Chan

UCLA

405 Hilgard Ave.

Los Angeles, CA 90024-7009

Warren Chernock
Scientific Advisor DP-1
US Department of Energy
Forestal Bldg. 4A-045
Washington, DC 20585

Doug Cline

The University of Texas System

Center for High Performance Computing
%Balcones Research Center

10100 Burnett Road, CMS 1.154
Austin, Texas 78758

Vernon Cole

Equipment Simulation Group, APRDL
3501 Ed Bluestein Boulevard, MD: K-10
Austin, TX 78721

Tom Coleman

Dept. of Computer Science
Upson Hall

Cornell University

Ithaca, NY 14853

Prof. D. S. Dandy

Colorado State Univ.

Dept. Agriculture and Chem. Eng.
Fort Collins, CO 80523

Prof. J. J. Derby

Dept. of Chemical Eng. and Materials Science

University of Minnesota
421 Washington Ave. S.E.
Minneapolis, MN 55455

140



J. J. Dongarra

Computer Science Dept.
104 Ayres Hall

University of Tennessee
Knoxville, TN 37996-1301

I. S. Duff

CSS Division

Harwell Laboratory
Oxfordshire, OX11 ORA
United Kingdom

Erik Egan

Equipment Simulation Group, APRDL
3501 Ed Bluestein Boulevard, MD: K-10
Austin, TX 78721

Alan Edelman

Dept. of Mathematics
MIT

Cambridge, MA 02139
%edelman@math.mit.edu

Steve Elbert

US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

H. Elman

Computer Science Dept.
University of Maryland
College Park, MD 20842

R. E. Ewing

Mathematics Dept.

University of Wyoming

PO Box 3036 University Station
Laramie, WY 82071

Charbel Farhat

Dept. Aerospace Engineering
UC Boulder

Boulder, CO 80309--0429

J. E. Flaherty

Computer Science Dept.
Rensselaer Polytechnic Inst.
Troy, NY 12180

G. C. Fox

Northeast Parallel Archit. Cntr.
111 College Place

Syracuse, NY 13244

R. F. Freund
NRaD- Code 423
San Diego, CA 99152-5000

D. B. Gannon

Computer Science Dept.
Indiana University
Bloomington, IN 47401

Horst Gietl

nCUBE Deutschland
Hanauer Str. 85
8000 Munchen 50
Germany

Paul Giguere

Group TSA-8

MS K575

Los Alamos National Laboratory
Los Alamos, NM 87545

John Gilbert

Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

R. J. Goldstein

Mechanical Engineering Department

University of Minnesota
111 Church St.
Minneapolis, MN 55455

G. H. Golub

Computer Science Dept.
Stanford University
Stanford, CA 94305

Anne Greenbaum

New York University
Courant Institute

251 Mercer Street

New York, NY 10012-1185

141



Satya Gupta

Intel SSD

Bldg. CO6-09, Zone 8

14924 NW Greenbrier Parkway
Beaverton, OR, 97006

J. Gustafson

Computer Science Dept.
236 Wilhelm Hall

lowa State University
Ames, IA 50011

Doug Harless

NCUBE

2221 East Lamar Blvd., Suite 360
Arlington, TX 76006

Michael Heath

Univ. of lll., Nat. CSA
4157 Bechman Institute
405 North Matthews Ave.
Urbana, IL 61801-2300

Mike Heroux

Cray Research Park
655F Lone Oak Drive
Eagan, MN 55121

Dan Hitchcock

US Department of Energy
SCS, ER-30 GTN
Washington, DC 20585

Fred Howes

US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

Prof. Marylin C. Huff

Department of Chemical Engineering
University of Delaware

Newark, DE 19716

Prof. Michael K. Jensen
Rensselaer Polytechnic Institute
Troy, NY 12180-3590

Prof. K. J. Jensen

Massachusetts Institute of Technology
Dept. Chem. Eng. MIT 66-566
Cambridge, Mass. 02139-4307

Christopher R. Johnson
Department of Computer Science
3484 MEB

University of Utah

Salt Lake City, UT 84112

David Keyes

NASA Langley Research Center
ICASE

M/S 132C

Hampton, VA 23681-0001

David Kincaid

Center for Numerical Analysis
RLM 13.150

University of Texas

Austin, TX 78713-8510

T. A. Kitchens

US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

Vipin Kumar

Computer Science Department
Institute of Technology

200 Union Street S.E.
Minneapolis, MN 55455

Joanna Lees

Intel Corp.

Scalable Systems Division
CO1-15

15201 NW Greenbrier Parkway
Beaverton, OR 97006

John Lewis

Boeing Corp.

M/S 7L-21

P.O. box 24346

Seattle, WA 98124-0346

142



T. A. Manteuffel
Department of Mathematics
University of Co. at Denver
Denver, CO 80202

S. F. McCormick

Univ. of Colorado

Program in Applied Mathematics
Campus Box 526

Boulder, CO 80309-0526

Computer Mathematics Group
University of CO at Denver
1200 Larimer St.

Denver, CO 80204

Robert McLay

University of Texas at Austin
Dept. ASE-EM

Austin, TX 78712
%mclay@cfdlab.ae.utexas.edu

P. C. Messina

158-79

Mathematics & Comp. Sci. Dept.
Caltech

Pasadena, CA 91125

C. Moler

The Mathworks

24 Prime Park Way
Natick, MA 01760

Gary Montry

Southwest Software
11812 Persimmon, NE
Albuquerque, NM 87111

D. B. Nelson

US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

Kwong T. Ng

Klipsch School of Electrical & Computer Eng.

New Mexico State University
Box 30001
Las Cruces, NM 88003-0001

S. V. Patankar

Mechanical Engineering Department
University of Minnesota

111 Church St.

Minneapolis, MN 55455

Linda Petzold

L-316

Lawrence Livermore Natl. Lab.
Livermore, CA 94550

Barry Peyton

Mathematical Sciences Section
Oak Ridge National Laboratory
PO. Box 2008, Bldg. 6012

Oak Ridge, TN 37831-6367

Paul Plassman

Math and Computer Science Division
Argonne National Lab

Argonne, IL 60439

Claude Pommerell

AT&T Bell Labs

600 Mountain Ave., Room 2C-548A
Murray Hill, NJ 07974--0636

Alex Pothen

Department of Computer Science
Old Dominion University

Norfolk, VA 23529-0162

J. Rattner

Intel Scientific Computers
15201 NW Greenbriar Pkwy.
Beaverton, OR 97006

Patrick Riley

Intel-SSD

600 S. Cherry St., Suite 700
Denver, CO 80222

Ed Rothberg

Silicon Graphics, Inc.

MS 7L-580

2011 N. Shoreline Blvd.
Mountain View, CA 94043

143



Y. Saad

University of Minnesota
4-192 EE/CSci Bldg.

200 Union St.

Minneapolis, MN 55455-0159

Joel Saltz

Computer Science Department
A.V. Williams Building
University of Maryland

College Park, MD 20742

A. H. Sameh

CSRD, University of lllinois
305 Talbot Laboratory

104 S. Wright St.

Urbana, IL 61801

P. E. Saylor

Dept. of Comp. Science

222 Digital Computation Lab
University of Illinois

Urbana, IL 61801

Carl Scarbnick

San Diego Supercomputer Center
P.O. Box 85608

San Diego, CA 92186-9784

Rob Schreiber

RIACS

NASA Ames Research Center
Mail Stop T045-1

Moffett Field, CA 94035-1000

M. H. Schultz

Department of Computer Science
Yale University

PO Box 2158

New Haven, CT 06520

Mark Seager

LLNL, L-80

PO box 803
Livermore, CA 94550

T. W. Simon

Mechanical Engineering Department

University of Minnesota
111 Church St.
Minneapolis, MN 55455

Richard Sincovec
Mathematical Sciences Section
Oak Ridge Nat. Lab.

P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Vineet Singh

HP Labs, Bldg. 1U, MS 14
1501 Page Mill Road

Palo Alto, CA 94304

Anthony Skjellum
Mississippi State University
Computer Science

PO Drawer CS

Mississippi State, MS 39762

L. Smarr

Director, Supercomputer Apps.
152 Supercomputer Applications
Bldg. 605 E. Springfield
Champaign, IL 61801

Burton Smith

Tera Computer Co

400 N. 34th St., Suite 300
Seattle, WA 98103

Harold Trease

Los Alamos National Lab
PO Box 1666, MS F663
Los Alamos, NM 87545

C. VanLoan

Department of Computer Science
Cornell University, Rm. 5146
Ithaca, NY 14853

John VanRosendale

ICASE, NASA Langley Research Center

MS 132C
Hampton, VA 23665

144



Steve Vavasis

Department of Computer Science / ACRI
722 Engineering and Theory Center

Cornell University
Ithaca, NY 14853

R. G. Voigt
MS 132-C

NASA Langley Resch Cntr, ICASE

Hampton, VA 36665

Phuong Vu

Cray Research, Inc.
19607 Franz Road
Houston, TX 77084

Steven J. Wallach

Convex Computer Corp.
3000 Waterview Parkway
PO Box 83385l

Richardson, TX 75083-3851

G. W. Weigand

U.S. DOE

1000 Independence Ave., SW
Room 4A-043 (DP1.1)
Washington, DC 20585

Olof B. Widlund

Dept. Computer Science
Courant Inst., NYU

251 Mercer St.

New York, NY 10012

INTERNAL DISTRIBUTION:

1 MSO0151 Gerold Yonas, 9000

1 MSO0321 William Camp, 9200

1 MS1427 P. Mattern, 1100

1 MS0601 P. Esherick, 1126

10 MS 0601 Harry K. Moffat, 1126
MS0601 M. E. Coltrin, 1126

1 MS 0827 J. S. Rottler, 5600

1 MS1111 Sudip Dosanjh, 9221

10 MS 1111 Scott Hutchinson, 9221

30 MS 1111 John N. Shadid, 9221

30 MS 1111 Andrew G. Salinger, 9221

10 MS 1111 Gary L. Hennigan, 9221

10 MS 1111 Rod C. Schmidt 9221

1 MS1111 Daniel Barnette, 9221

1 MS1111 Steven J. Plimpton, 9221

1 MS1111 David R. Gardner, 9221

1 MS1111 Matt St. John, 9921

1 MS 1110 Richard C. Allen, 9222

1 MS 1110 David E. Womble, 9222

1 MS1110 Ray S. Tuminaro, 9222

1 MS 1110 Lydie Prevost, 9222

1 MS 1109 Art Hale, 9224

1 MS 1109 Ted Barragy, 9224

1 MS 1109 Bob Benner, 9224

1 MS 1109 James Tomkins, 9224

1 MS1111 Mark P. Sears, 9225

10 MS 1111 Karen Devine, 9226

1 MS1111 Robert W. Leland, 9226

1 MS1111 Bruce A. Hendrickson, 9226

1 MS1111 Courtenay Vaughn, 9226

1 MS0441 S. W. Attawy, 9226

1 MS0441 L. A. Schoof, 9215

1 MS0441 T. J. Tauges, 9226

1 MS0819 J. Michael McGlaun, 9231

1 MSO0819 James S. Perry, 9231

1 MSO0819 Allem C. Robinson, 9231

1 MS 0439 David R. Martinez, 9234

1 MS0841 P. L. Hommert, 9100

1 MS 0833 Johnny H. Biffle, 9103

1 MS0841 E. D. Gorham, 9104

1 MS 0843 A. C. Ratzel, 9112

1 MS0834 M. R. Baer, 9112

1 MS0834 A. S. Geller, 9112

1 MS0834 R. R. Torczynski, 9112

145



PR RPRPRRPRRPRPRRPRPRRPRPRPRRPRPRPRRREPRPRRREPRPRRERRER

(62 o

MS 0826 W. L. Hermina, 1553

MS 0826 T. J. Bartel, 9153

MS 0825 C. C. Wong, 9154

MS 0825 Basil Hassan, 9155

MS 0437 G. D. Sjaardema

MS 0827 Dave K. Gartling, 9111
MS 0827 Randy Schunk, 9111
MS 0827 Phil Sackinger, 9111
MS 0827 Mario Martinez, 9111
MS 0827 Mike Glass, 9111

MS 0827 Bob McGrath, 9111

MS 0827 Polly Hopkins, 9111

MS 0827 Jim Schutt, 9111

MS 0827 Melinda Sirmar, 9111
MS 0827 Steve Kempka, 9111
MS 0834 Robert B. Campbell, 9112
MS 0835 Roy E. Hogan Jr., 9111
MS 0835 Mark A. Christon, 9111
MS 0826 Robert J. Cochran, 9114
MS 0750 Greg A. Newman, 6116
MS 0750 David L. Alumbaugh, 6116
MS 9214 Juan Meza, 8117

MS 9042 Joseph F. Grcar, 8745
MS 9042 Chris Moen, 8745

MS 9042 Fran Rupley, 8745

MS 9042 S. K. Griffiths, 8745

MS 9042 Greg Evans, 8745

MS 9051 W. T. Ashurst, 8351

MS 9051 Alan Kerstein, 8351

MS 9051 Jackie Chen, 8351

MS 9051 H. Najm, 8351

MS 9018 Central Technical Files, 8523-2

MS 0899 Technical Library, 4414

MS 0619 Review & Approval Desk, 12630
For DOE/OSTI

146



	MPSalsa A Finite Element Computer Program for Reacting Flow Problems Part 2 - User's Guide
	Acknowledgments
	Abstract
	Table of Contents
	1. Introduction
	2. Pre-Processing and Running MPSalsa
	3. The Input File
	4. User Functions
	5. Solution Strategies
	6. Future Development
	Appendix A. Included Functions
	Appendix B. Mass Transfer Examples
	Appendix C. Fluid Mechanics and Heat Transfer Examples
	Appendix D. CVD Reactor Examples
	References
	Distribution

