
SANDIA REPORT
SAND96-2331 UC-405
Unlimited Release
Printed September 1 996

'4

MPSalsa
A Finite Element Computer Program for
Reacting Flow Problems
Part 2 - User's Guide

A. Salinger, K. Devine, G. Hennigan, H. Moffat, S. Hutchinson, J. Shadid

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
h in ted copy: A08
Microfiche copy: A01

SAND96-2331 Distribution
Unlimited Release Category UC-405

Printed September 1996

MPSalsa

A FINITE ELEMENT COMPUTER PROGRAM FOR REACTING FLOW PROBLEMS

PART 2 - USER’S GUIDE1,2

A. Salinger3, K. Devine4, G. Hennigan3, H. Moffat5, S. Hutchinson3, J. Shadid3

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract Follows

1. This document can be downloaded from: http://www.cs.sandia.gov/CRF/mpsalsa.html
2. This work was partially funded by Department of Energy, Mathematical, Information, and Computational

Sciences Division, and was carried out at Sandia National Laboratories, operated for the US Department of
Energy under contract no. DE-ACO4-94AL85000.

3. Parallel Computational Sciences Department (org. 9221).
4. Parallel Computing Sciences Department (org. 9226).
5. Chemical Processing Science Department (org. 1126).

Acknowledgments

We would like to thank Professor Michael Jensen for preparing a number of the fluid
mechanics examples and for urging the development of the output routines, and Aaron Thomas
for benchmarking an early version of the code. We would also like to thank Ed Boucheron for
identifying many instances of undesirable functionality so that we could remove them from the
code. Finally, we would like to thank Rod Schmidt for his careful reading of this document.

Abstract

This manual describes the use of MPSalsa, an unstructured finite element (FE) code for
solving chemically reacting flow problems on massively parallel computers. MPSalsa has been
written to enable the rigorous modeling of the complex geometry and physics found in
engineering systems that exhibit coupled fluid flow, heat transfer, mass transfer, and detailed
reactions. In addition, considerable effort has been made to ensure that the code makes efficient
use of the computational resources of massively parallel (MP), distributed memory architectures
in a way that is nearly transparent to the user. The result is the ability to simultaneously model
both three-dimensional geometries and flow as well as detailed reaction chemistry in a timely
manner on MP computers, an ability we believe to be unique.

MPSalsa has been designed to allow the experienced researcher considerable flexibility in
modeling a system. Any combination of the momentum equations, energy balance, and an
arbitrary number of species mass balances can be solved. The physical and transport properties
can be specified as constants, as functions, or taken from the Chemkin library and associated
database. Any of the standard set of boundary conditions and source terms can be adapted by
writing user functions, for which templates and examples exist.

The user can choose between a steady-state solution, an accurate transient run, a pseudo-
transient method for relaxing stiff steady-state problems, and a continuation run for analysis of the
system’s steady-state behavior with respect to a parameter.

Through the input file, the user has considerable control over the nonlinear and linear
solution strategies in order to find the fastest and most robust method for solving a given problem.
The nonlinear solver includes an inexact Newton method and a backtracking strategy. For solving
linear systems, a number of Krylov-based iterative methods along with several choices for
preconditioners are available through the Aztec library.

A large set of example problems is included in Appendices to familiarize the user with the
capabilities and choices within MPSalsa. These examples serve to illustrate MPSalsa capabilities
and to provide a variety of input files to use as templates for closely related application problems.
Many of these examples can be run on a single processor or on multiple parallel processors.

iii

Table of Contents

1. Introduction . 1

2. Pre-Processing and Running MPSalsa . 5

2.1. Mesh Generation . 5
2.2. Mesh Partitioning / Load Balancing . 6
2.3. Chemkin Interpreter . 7
2.4. Guacamole . 8
2.5. Serial and Parallel I/O Utilities . 9
2.6. Compiling MPSalsa . 11
2.7. Running MPSalsa . 13

3. The Input File . 14

3.1. General Specifications . 14
3.2. Solution Specifications . 17
3.3. Solver Specifications . 21

3.3.1. Nonlinear Solver Subsection . 22
3.3.2. Linear Solver Subsection . 24

3.4. Chemistry Specifications . 27
3.5. Enclosure Radiation Specifications . 29
3.6. Material Specifications . 29
3.7. Boundary Condition Specifications . 33

3.7.1. Generalized Surfaces . 33
3.7.2. Boundary Conditions . 35

3.7.2.1. Mass Fraction Boundary Conditions . 39
3.7.2.2. Precedence of Boundary Conditions . 40

3.8. Initial Condition/Guess Specifications . 40
3.9. Output Specifications . 42
3.10. Parallel I/O Specifications . 45
3.11. Function Data Specifications . 48

4. User Functions . 50

4.1. Material Properties . 50
4.1.1. Heat Capacity . 50
4.1.2. Thermal Conductivity . 51
4.1.3. Density . 51
4.1.4. Viscosity . 51
4.1.5. Volumetric Source Terms . 51

4.2. Boundary Conditions . 57
4.2.1. Accessing BC_DATA in User Functions . 58

4.3. Generalized Surfaces . 61
4.4. Initial Condition/Guess . 62
4.5. Exact Solutions . 63
4.6. Output . 64
4.7. Continuation . 65
4.8. Function Data . 66

iv

5. Solution Strategies . 70

5.1. Getting to a Steady State . 70
5.2. Picking a Linear Solver and Preconditioner . 71
5.3. Mesh Sequencing . 71
5.4. Continuation . 73

6. Future Development . 76

Appendix A. Included Functions . 77

A.1. Boundary Conditions . 77
A.1.1. Surface Chemistry Boundary Conditions . 77
A.1.2. Danckwerts’ Boundary Conditions . 78
A.1.3. Spinning Disk Boundary Conditions . 80

A.1.3.1. Spinning Disk in thexy-Plane . 80
A.1.3.2. Spinning Tilted Disk . 80

A.1.4. Mass Fraction Dirichlet Boundary Conditions expressed as Mole Fractions 81
A.1.5. Outflow Boundary Condition . 82

A.2. Look-up Tables . 83
A.3. Output . 84

A.3.1. Evolution of the Solution at a Point . 84
A.3.2. The Solution along a Line . 85
A.3.3. Information on a Side Set . 86

A.4. Interprocessor Communication Utilities . 88
A.4.1. Synchronization . 88
A.4.2. Broadcast . 89
A.4.3. Global Sum, Maximum, and Minimum . 90

Appendix B. Mass Transfer Examples . 91

B.1. Diffusion in an Annulus . 91
B.2. The Soret Effect . 94
B.3. Si3N4 Equilibrium . 96
B.4. Surface Reaction . 99

Appendix C. Fluid Mechanics and Heat Transfer Examples . 103

C.1. Navier-Stokes 3D Exact Solution . 103
C.2. Lid-Driven Cavity Problem . 104
C.3. Hydrodynamically Developing Flow in an Infinite Parallel Plate Channel 107
C.4. Thermally Developing Flow in an Infinite Parallel Plate Channel 109
C.5. Vortex Shedding from a Circular Cylinder . 111

Appendix D. CVD Reactor Examples . 118

D.1. SPIN Comparison . 118
D.2. Rotating Disk Reactor . 121
D.3. Tilted Reactor . 126

References . 132

1

1. Introduction

In this report, the practical details and interface for running the suite of computer codes

called MPSalsa are presented, along with a number of example problems. A companion theory

manual provides the equations and solution methodology [42]. Employing unstructured meshes

on massively parallel (MP) computers, MPSalsa is designed to solve two- or three-dimensional

problems that exhibit coupled fluid flow, heat transport, species transport, and chemical reactions.

The equations defined in MPSalsa for fluid flow and mass conservation are the momentum

transport and the total mass continuity equations for incompressible or variable density

Newtonian fluids (Navier-Stokes equations). The heat transport equation and an arbitrary number

of species transport-reaction equations are coupled with each other through chemical reaction

source terms and with the fluid flow equations through property variation and body force terms.

MPSalsa employs unstructured grids, using the ExodusII finite element database for its

input and output files [40]. Therefore, it can be used in conjunction with the CUBIT mesh

generation package [24], as well as other mesh generation packages that support the ExodusII

standard. A number of pre- and post-processing routines for the ExodusII database can be used.

Currently, two- and three-dimensional grids with Cartesian coordinates are supported.

From its inception, MPSalsa has been designed for distributed memory MIMD computers

with thousands of processors. It also runs on traditional serial workstations and networks of serial

workstations. Interprocessor data communication and global synchronization are accomplished

by a small number of message passing routines. These routines have been ported to many

different message passing protocols, including the MPI standard [34] and the native nCUBE and

Intel Paragon protocols. To achieve efficient parallel execution, the unstructured finite element

mesh is partitioned or load-balanced in a pre-processing step. Each processor is assigned nodes

from the mesh such that the computational load is balanced and the total amount of information

communicated between neighboring processors is minimized. A general, automated method for

subdividing an unstructured computational mesh is necessary. An ad-hoc or by-hand method

would prove to be unusable for large meshes, and the resulting parallel communication efficiency

would be difficult to predict, assess and control. In our implementation, we have used a general

graph and mesh partitioning utility, Chaco [22], developed at Sandia National Laboratories.

MPSalsa uses a finite element (FE) method to approximate the solution to the transport

equations for momentum, total mass, thermal energy, and individual gas-phase chemical species.

The approach is designed for low Mach number flows where an algorithm employing an implicit

coupling between the pressure and velocity field is required. The discretization method is a

Petrov-Galerkin finite element method (PGFEM) with pressure stabilization [25]. For more

2

highly-convective flows that are still laminar, a streamwise-upwinding (SUPG) stabilization is

available [3, 48]. Each processor is responsible for calculating updates for all the unknowns at

each of its assigned FE nodes. Each processor also stores and performs operations on the rows in

the fully-summed, distributed matrix associated with these unknowns. Along processor

subdomain boundaries, replicated FE unknowns, called “ghost unknowns,” are stored and

updated through interprocessor communication. These ghost unknowns are quantities needed for

the local residual calculation and matrix-vector multiplication on a processor. Interprocessor

communication occurs for each step of the iterative solution of the linear system as well as for

each outer step in the non-linear and time-transient algorithms. This communication constitutes

the major unstructured interprocessor communication cost in the program, and its algorithm has

been extensively optimized within MPSalsa [43].

MPSalsa includes the option of using the Chemkin library to provide rigorous treatment of

ideal-gas multicomponent transport, including the effects of thermal diffusion [28]. Chemical

reactions occurring in the gas phase and on surfaces are also treated by calls to Chemkin [28] and

Surface Chemkin [5], respectively. Thus, MPSalsa can handle varying numbers and types of

chemical reactions and species in a robust manner. For example, the code can handle the complex

temperature and pressure dependence predicted for unimolecular reactions (using the Troe

parameterization [14]), important for chemical vapor deposition (CVD) systems which typically

run at sub-atmospheric pressures. Surface site fractions and bulk-phase mole fractions are defined

on all reacting surfaces using the Surface Chemkin package. Through this method, complex

Langmuir-Hinshelwood-type [30] and precursor adsorption surface mechanisms, characteristic of

many real CVD and catalysis surface systems, can be incorporated into the reacting flow analysis

code. The capability of modeling simple dilute species transport and reaction, without the need of

linking to Chemkin, is also included in MPSalsa.

Both steady and transient flows may be analyzed. The time integration methods include

true transient, pseudo-transient, and steady implicit solvers. The steady solver can be driven by a

continuation routine for efficient parameter study of a system. A fully-implicit, fully-coupled

Newton routine is implemented for robustness. The Jacobian matrix includes all coupling

between the equations and unknowns, and neglects only terms due to the variation of physical

properties calculated by Chemkin. A full numerical Jacobian that includes all terms is also

available. The nonlinear solver has additional features for speed and robustness, including an

inexact Newton approach and a backtracking algorithm.

After construction of the distributed sparse matrix, the FE application calls the Aztec

library of parallel, preconditioned Krylov solvers [26, 43, 44]. On each processor, the solvers

operate on the local distributed sparse matrix and local solution vector using a combination of

3

global structured communication and unstructured communication to implement the parallel

solver kernels. A substantial set of preconditioners is available, including several versions of ILU

factorization, a domain-decomposition method. Although these advanced preconditioners require

considerable memory, they provide a huge gain in robustness.

Solution output from the program is achieved through several means. Output can be

written to either a standard serial ExodusII file format [40] or a parallel extension of the ExodusII

file format [23]. This extension consists of an individual standard serial ExodusII file for each

processor with extra arrays that map the local numbering scheme on an individual processor to the

global numbering scheme and encode the necessary communication information. The format can

be used on both MP computers, such as the Intel Paragon, and distributed computing systems,

such as groups of workstations. This parallel I/O capability can be used with today’s primitive

parallel I/O facilities with nearly linear speedup. A small but growing number of specialized

output functions that analyze the solution and write solution information in non-ExodusII formats

have been written for specific applications.

This report serves to document the user interfaces within MPSalsa and to provide several

example problems. Chapter 2 describes several important pre-processing steps needed to carry out

numerical simulations in an MP environment and the user interfaces to them. Section 2.1 gives a

general description of mesh generation capabilities for ExodusII meshes. Section 2.2 describes

how to run “exoIIlb,” an ExodusII interface to the Chaco package described above. Section 2.3

describes how to set up and run Chemkin. Section 2.4 describes the pre-processor, “guacamole,”

which is used to set up and manipulate the ExodusII serial output file. Section 2.5 describes the

serial and parallel I/O capabilities of the code. Section 2.6 gives some information on how to

compile the code, and Section 2.7 shows how to run it.

MPSalsa is controlled by a large input file, in which the user can change everything from

the number of processors to the convergence criteria for the linear solver routine. Chapter 3

describes the MPSalsa input file line by line. For instance, the problem type, which indicates

which equations are to be solved, is specified in the General Specifications section, described in

Section 3.1. Material properties and equations of state are described in Section 3.6. MPSalsa has

extensive facilities for incorporating boundary conditions, which are documented in Section 3.7.

The user can extend the models past what has been pre-defined within MPSalsa [42].

Functions can be written to represent variations in physical properties, additional source terms,

and special boundary conditions, any of which can be dependent on the current solution, position,

or time. In addition, functions can be written for specifying an initial guess, for testing the

MPSalsa solution with an analytic solution, and for specifying a continuation parameter. The

interfaces to these routines are described in Chapter 4.

4

Chapter 5 involves a general discussion of some solution strategies that can help the user

tune MPSalsa for a specific application. MPSalsa implements a number of advanced numerical

solution procedures for solving systems of nonlinear PDEs. The optimal choice of these methods

can be difficult and, thus, we include a section to aid in this selection. Section 5.1 describes

strategies for reaching steady-state solutions. There are many choices and parameters in the

MPSalsa input file that control the solution algorithm and can greatly effect speed, convergence

behavior, and robustness. This chapter is intended to introduce the user to some of these options.

Appendix A lists and describes some user functions for application-specific boundary

conditions and output routines (e.g., Danckwerts’ boundary condition and time history output).

The next three appendices contain example problems. Appendix B covers four simple

examples with mass transfer, most of which can be run on a single processor. Appendix C covers

a set of fluid mechanics and heat transfer problems on refined two-dimensional meshes. Appendix

D contains three models for Chemical Vapor Deposition (CVD) reactors which involve flow, heat

transfer, and mass transfer on three-dimensional meshes.

5

2. Pre-Processing and Running MPSalsa

This chapter details the steps needed to run a successful MPSalsa simulation. It is

recommended that the user first try this process with some example problems before starting on a

new problem. There are several preprocessing steps that need to be done for every new mesh

before running the MPSalsa program itself. They reflect the added complexities of conducting

numerical simulations in a massively parallel computing environment. These steps include mesh

generation, load balancing (only for multi-processor problems), and running the “guacamole”

pre-processor for setting up the serial ExodusII output file and checking the input file for errors.

For problems that get information from the Chemkin library, the Chemkin interpreter must also be

run to create input files for the Chemkin suite of subroutines.

2.1. Mesh Generation

MPSalsa uses the ExodusII [40] finite element database format for storing the mesh and

solution information. The FASTQ [1] package can be used to generate two-dimensional meshes,

and either CUBIT [24] or FASTQ with GEN3D [17] can be used to create three-dimensional

meshes. All of the mesh generation is done on workstations.

During mesh generation, parts of the mesh are grouped as separate element blocks and

identified with an integer element block ID. In the Materials Specifications section of the

MPSalsa input file, the element block IDs of the computational domain are associated with a

material, which may have different transport properties and constitutive models than other

materials. Not all element blocks created in the mesh generation and stored in the ExodusII mesh

file need be associated with a material, in which case such element blocks are not included in

MPSalsa’s computational domain. Note, however, that severe load imbalances may result, since

load balancing is currently conducted only over all element blocks defined in an ExodusII file.

All surfaces where boundary conditions will be applied must be identified as node sets or

side sets during mesh generation. The application of boundary conditions is simpler if all surfaces

that share the same boundary conditions for all equations are grouped into the same node set or

side set. A node set is a list of nodes, while a side set contains sides of elements. Node sets can

have Dirichlet conditions applied to them, but cannot support Neumann or Mixed conditions

which require integration over the surface. Side sets may have all types of boundary conditions

applied (Dirichlet, Neumann, or Mixed), since the elemental information is available to compute

surface integrals.

6

2.2. Mesh Partitioning / Load Balancing

When running MPSalsa on more than one processor, the mesh is partitioned into

subdomains so that each processor “owns” a set of nodes. To assure that the work load is balanced

among the processors, an equal number of nodes is assigned to each processor. At the same time,

an optimal partition will minimize the amount of interprocessor communication needed to build

the finite element residuals and Jacobian matrix by grouping neighboring nodes together on one

processor.

The Chaco [22] package, developed at Sandia, is a general graph partitioning program. We

use the application “exoIIlb” to run Chaco to partition the nodes of a finite element mesh stored in

the ExodusII database. The “exoIIlb” program creates partitioning information and writes it in a

load-balance file (with a “.nemI” extension) in the NemesisI format [23]. (Note that this interface

to the load balancer is new as of May, 1996, so many of the example problems have load balance

files with the old naming convention, including the “.exoII” extension.) The load balance file

contains information about the nodes owned by each processor and about “ghost nodes,” which

are owned by another processor but needed for residual calculations. With this information, the

communication pattern for updates of ghost nodes for the mesh may be generated without any

interprocessor communication.

The utility “exoIIlb” is run on a serial workstation and requires either command line

parameters or a small input file to specify the name of the ExodusII mesh, the number of

processors to partition it into, and the partitioning method. There are a variety of options for the

partitioning algorithm, but we generally use the multilevel method [21]. An example of the input

file, often called “input-ldbl,” is shown in Figure 2.1. The only lines that are commonly changed

are the input ExodusII file name and the number of partitions (processors), which is expressed as

a product of two integers on the last line. Although any pair of integers whose product is 32 would

also partition the mesh for 32 processors, the 4x8 designation would minimize communication for

running on a rectangular set of processors that has dimensions 4x8. For hypercube-based

machines, the argument for theMachine Description line may be designated as

HYPERCUBE = n, wheren is the dimension of the hypercube.

Additional options for “exoIIlb” parameters, including how to visualize the resulting mesh

decomposition, may found in the “exoIIlb” manual page, the Chaco User’s Guide [22], and the

Nemesis User’s Guide [23].

To partition the mesh, type the following command:

> exoIIlb -a input-ldbl

7

The load-balance file created from the file in Figure 2.1 will be named “box200-m32-bKL.nemI.”

The root name is the same as the ExodusII mesh file, the “m” signifies a mesh architecture,

followed by the number of processors, while the “bKL” term refers to the multilevel method [21]

with Kernighan-Lin improvement [29]. For information on the partitioning algorithm, see the

Chaco [22] and NemesisI [23] manuals.

2.3. Chemkin Interpreter

Kinetic and transport data, such as the mixture viscosity, mixture thermal conductivity,

multicomponent diffusion coefficients, and reaction rates, can be computed using the Chemkin

library [28]. If Chemkin is to be used, information on the species and reactions for both the gas

and surface phases must be supplied in the Chemkin and Surface Chemkin [5] input files. We use

the convention that these files have “.gas” and “.sur” extensions. For example, the mechanism for

the deposition of silicon nitride fromSiF4 andNH3 in H2 carrier gas is contained in the files

“Si3N4.gas” and “Si3N4.sur.” These input files must be interpreted once to form linking files that

can be efficiently read into MPSalsa. The current version that is installed in MPSalsa, ChemkinII,

creates binary linking files, so the interpretor must be rerun on every new machine.

A utility shell script called “interp” for executing the interpreters on a front-end

workstation or the MP machine itself has been created and resides in the “bin” directory for each

machine and operating system (e.g., “$MPSALSA_HOME/arch/sgi/bin/interp” for an SGI

workstation, and “$MPSALSA_HOME/arch/smos/bin/interp” for SUNMOS, where

$MPSALSA_HOME is the directory in which all MPSalsa libraries and utilities have been

installed). For all machines, interp can be run on the command line followed by the root name of

the Chemkin data files, for instance:

> interp Si3N4

Figure 2.1. Sample input file, usually named “input-ldbl,” for theexoIIlb load balancing command.

INPUT EXODUSII FILE = box200.exoII
GRAPH TYPE = NODAL

DECOMPOSITION METHOD = MULTIKL, NUM_SECTS=1
SOLVER SPECIFICATIONS = TOLERANCE=2.0e-3,USE_RQI,RQI_VMAX=200

MACHINE DESCRIPTION = MESH= 4x8

8

for the silicon nitride mechanism. On the Intel Paragon, it can be run this same way using the

“paragon” executable (for the OSF operating system) or using the “smos” executable (for

SUNMOS).

The “interp” command is a script that runs three separate interpreters: “ckinterp” for the

gas-phase chemistry mechanism, “skinterp” for the surface-phase chemistry mechanism, and

“tranfit” for the dilute multicomponent gas-phase transport properties [5, 27, 28]. Several recent

publications include further details and examples of application programs using the Chemkin

libraries [6, 7, 33].

The “interp” utility creates three linking files needed for MPSalsa execution: “chem.bin,”

“surf.bin,” and “tran.bin.” In addition, two links to databases are created (“tran.dat” and

“therm.dat”). The other files that are created are not needed. The names of the three “*.bin” files

can be changed, but they must be specified in the Chemistry Specifications section of the input file

(see Section 3.4).

When “interp” is run on a workstation, copies of the “*.bin” linking files are also created:

“chem.bin.ws,” “surf.bin.ws,” and “tran.bin.ws.” The “guacamole” pre-processor, described in

Section 2.4, automatically adds the “.ws” extension to the file names given in the input file before

looking for the files. The Chemkin binary files created on a parallel machine will not overwrite

the “.ws” files, so “guacamole” can be run on one processor using the same input file as the

parallel run.

MPSalsa will soon be upgrading to the newest Chemkin version, ChemkinIII, which

allows for the creation of ASCII (and, therefore, machine-independent) linking files, which will

greatly simplify the use of the interpreter.

2.4. Guacamole

 A pre-processing routine called “guacamole” runs on a single processor and has two main

purposes: to error-check the input file and to produce a serial ExodusII output file, creating fields

and header information for user-defined output variables. This utility uses the same I/O routines

as MPSalsa. The command for executing the pre-processor is

> guacamole <input-file>

where<input-file> is the name of the MPSalsa input file, and is, by default, “input-salsa.” The

executable is normally in the “bin” directory for the current workstation, so for an SGI

workstation, the executable is “$MPSALSA_HOME/arch/sgi/bin/guacamole.” The preprocessor

sets up header information in the ExodusII output file, which requires that all variable information

9

be predefined. However, once the variables are defined, time series data of arbitrary size may be

efficiently output to the ExodusII file.

When “guacamole” creates the ExodusII output file, it writes all the mesh information to

the file and creates space for the output of the solution variables.Therefore, whenever the mesh

changes or the number of variables changes, “guacamole” must be rerun. For example, if a user

has been running a fluid-mechanics problem (Problem Typefluid_flow) and decides to add

the energy equation (Problem Typefluid_flow_energy) and request output of the

temperature unknowns, “guacamole” must be rerun. It must also be rerun if the user redefines the

selection of solution components to be included in the output file.

If “guacamole” is not run to generate the output file and scalar output of the results is

requested, then MPSalsa will quickly terminate with the message:
check_output_specs: WARNING, output file “output_file.exoII” does not exist!
[ex_open] Error: failed to open output_file.exoII read only
 exerrval = -1
ERROR returned from ex_open on Processor 0!

2.5. Serial and Parallel I/O Utilities

MPSalsa may be run using either serial (i.e., scalar) or parallel I/O facilities. The least

complicated way to run MPSalsa is by using the scalar input – scalar output mode. A diagram of

what is involved is included in Figure 2.2. As an initial step, “guacamole” is run to create the

serial ExodusII output file. The pre-processor “guacamole” parses the MPSalsa input file to

determine the user’s choice of variables to output. When Chemkin is being used, “guacamole”

also parses the Chemkin linking files to obtain the number of gas-phase species and their

character string names.

The user is now ready to run MPSalsa in scalar I/O mode, either on one or on many

processors. In MPSalsa, processor 0 first reads the MPSalsa input file and, when Chemkin is to be

used, the Chemkin linking files. This information is broadcast to all processors. Then, processor 0

reads the serial load balance file, and its information is broadcast to all nodes and processed in

parallel. Once this step is done, each processor knows which nodes it “owns,” and additionally,

which nodal information it needs from other processors. Processor 0 then reads the ExodusII

mesh file and broadcasts its information to all processors. Each processor searches the messages

for mesh information that it needs. Finally, each processor renumbers elements and nodes

contiguously in its local memory. Local-to-global mapping vectors are retained for output

processing.

Alternatively, MPSalsa can do I/O on the parallel file system using the NemesisI package

[23], as depicted in Figure 2.3. The parallel format is a multiple file format, with the number of

10

files equaling the number of processors. A file name’s suffix denotes which processor owns the

file. The file structure within each parallel file is similar to the serial format, with the addition of

local-to-global mapping information. It includes all load-balancing information contained in the

serial load balance file as well as all information needed to set up the local computing

environment on a processor, including ghost-node and communication information.

The parallel I/O capability is enabled in MPSalsa via compilation flag options. The pre-

processor “guacamole” must be run to include user-defined header information in the output file.

The “ex2pex” utility, part of the NemesisI package [23], is run next on the parallel computer. It

translates the serial ExodusII file into the parallel file format and stores the parallel files on the file

system to be used for MPSalsa’s parallel I/O. It requires exactly the number of processors that

will be used in the subsequent MPSalsa calculation. When MPSalsa is executed, processor 0 reads

the input file and broadcasts its information to all processors as in the serial I/O case. However, in

the parallel I/O case, each processor then reads its own parallel ExodusII file to initialize the

mesh. Parallel solution output occurs in a reverse fashion, with each processor writing its own

portion of the solution vector to its own output file.

For visualization of results, results in a set of parallel ExodusII files must be collected to a

serial ExodusII file. A utility “pex2ex” is currently being developed that will automatically

combine parallel ExodusII files into one ExodusII file. Until it is completed, however, two

Figure 2.2. Scalar Input - Scalar Output mode for I/O. The Broadcast and Fan-in routines have the
potential to create I/O bottlenecks.

input-salsa
chem.bin
surf.bin
tran.bin

input.exoII

ldbl.nemI

guacamole

ErrorCheck
Output file
Setup

output.exoII

SERIAL FRONT END

Reserve Space for Output fields

MPSalsa

Proc 0

PARALLEL COMPUTE NODES

MP
Salsa
Proc 0

MP
Salsa
Proc 1

MP
Salsa
Proc 2

MP
Salsa
Proc 3

Broadcast

Fan-in

MPSalsa

Proc 0

Solution
Output

11

methods of obtaining serial ExodusII files exist. Both serial and parallel output may be specified

for the run (see Section 3.9). This option will produce complete ExodusII files containing results

from all time steps on both the serial and parallel file systems. If only the final result in a set of

parallel ExodusII files is desired, the user can restart MPSalsa using the final result as the initial

condition read from the parallel file system (see Section 3.8), maintaining the same stopping

criteria as were used in the original computation, and specifying serial output. MPSalsa takes one

Newton step to recognize that the stopping criteria are satisfied and writes the result to the serial

file system.

2.6. Compiling MPSalsa

MPSalsa can be compiled on a number of different architectures. The GNU “make”

program should be used to process the two-level Makefile structure. Machine-specific makefiles

Figure 2.3. Parallel I/O capabilities of MPSalsa.

input-salsa
chem.bin
surf.bin
tran.bin

input.exoII

ldbl.nemI

guacamole

ErrorCheck
Output file
Setup

output.exoII

SERIAL FRONT END

ex2pex

Proc 0

PARALLEL COMPUTE NODES

ex2pex

Proc 0

Broadcast

Fan-in

MPSalsa

Proc 0

Solution
Output

Proc 1

ex2pex

Proc 3

ex2pex

Proc 2

ex2pex

file.4.par.0 file.4.par.1 file.4.par.2 file.4.par.3

MP
Salsa
Proc 0 Proc 1

MP
Salsa

Proc 3Proc 2

MP
Salsa

MP
Salsa

Reserve Space
for Output fields

input output input output input output input output

12

have been created since the message-passing routines, compiler names, and compiler options vary

between machines. The source code usually is installed in a directory named “*/Salsa.” This

directory usually has the following files and subdirectories (identified by appending “/”):

> ls
CVS/ Obj_ncube/ Obj_sgi/ Obj_sun/
CVS-CFile-Header Obj_ncube_ps/ Obj_sgim4/ el/
CVS-MFile-Header Obj_paragon/ Obj_smos/ md/
Makefile Obj_paragon_ps/ Obj_smos_ps/ pe/
Obj_alpha/ Obj_puma/ Obj_sol/ ps/
Obj_hp/ Obj_puma_ps/ Obj_sp2/ rf/

The source code for MPSalsa is stored in the last five subdirectories, which have two-character

names. The directories starting with “Obj_*” hold the compiled object files, dependency files, and

the executable (“salsa”) for a specific machine/operating system. All of the parallel machines

have the additional option of compiling for parallel I/O, for which there are the separate

directories with the “_ps” suffix.

To compile for a specific machine/operating system, the GNU make utility “gmake” is

used. The target is the same as the extension on the “Obj_*” directory. For example, to compile

for a Silicon Graphics workstation, a user would type

> gmake sgi

in the “*/Salsa” directory. To compile for the Intel Paragon with the SUNMOS operating system,

a user would type

> gmake smos

on a workstation that has cross-compilers installed.

MPSalsa runs on top of several software packages. Before MPSalsa may be linked, these

packages must be compiled and stored in architecture-dependent directories. For example, the

following directories are used to store libraries, include files, and binaries for SGI computers:

$MPSALSA_HOME/arch/sgi/lib, $MPSALSA_HOME/arch/sgi/include, $MPSALSA_HOME/

arch/sgi/bin, where $MPSALSA_HOME is the directory in which all MPSalsa libraries and

utilities have been installed. Pointers to these directories are included in the top level MPSalsa

Makefile. The first I/O package needed is NetCDF [37], the underlying format of the ExodusII

unstructured finite element package [40]. ExodusII is the next package that needs to be installed.

The other I/O package needed is NemesisI [23], the parallel extension to ExodusII. In addition,

the Chemkin libraries [5, 27, 28] are needed if the user wants to use this database for ideal gas

transport and gas- and surface-phase reactions. The Chaco package is need for load balancing

[22]. MP linear solvers within MPSalsa are implemented in the Aztec package [26], which in turn

13

needs to have the Y12 package of sparse matrix linear solver routines [49]. Aztec, as well as a few

of the other packages, require LAPACK [31] and BLAS [4] as well.

2.7. Running MPSalsa

The successful compilation of MPSalsa results in the creation of an executable in the

machine-dependent subdirectory, “*/Salsa/Obj_xxx/salsa.” MPSalsa can be run on workstations

by executing the program with the input file name as the argument, i.e.,

> salsa <input-file>

The default input file name is “input-salsa.”

On the Intel Paragon with the SUNMOS version of MPSalsa (whose executable is in the

“Obj_smos” subdirectory), MPSalsa can be executed with the following command,

> yod -sz <np> salsa <input-file>

where np is the number of processors. The value ofnp must agree with the number of processors

specified in the input file and the number of processors that the mesh was partitioned for.

Execution of the “yod” command will spawn an MPsalsa job in the compute partition of the

Paragon. As described in Section 2.5, either a serial file or a set of parallel files on the parallel file

system must have been initialized previously for solution output to occur. Best results are

obtained when both the executable and the I/O files are stored on local Paragon disks, rather than

on nfs-mounted disks.

14

3. The Input File

In MPSalsa, problem-specific parameters are specified through an input file, which has the

default name of “input-salsa.” The input file is organized into 11 sections. The inclusion of certain

sections is mandatory (General, Solution, Solver, Material, Boundary Condition and Initial

Condition/Guess Specifications); other sections are optional (Enclosure Radiation, Output,

Parallel I/O and Function Data Specifications). The Chemistry Specifications section is required

only for problem types for which mass balance equations are solved (see Table 3.1). Each section

is identified by MPSalsa by a unique section header, shown between two dashed lines in all of the

examples below. MPSalsa does not parse a section unless it can find the section’s header. If a

required section’s header is not found, MPSalsa generates an error message and exits. If an

optional section’s header is not found, no error message is generated.

Each section is made up of several lines. Each line consists of a keyword followed by an

equals sign and arguments that can be strings, integers, flags, or real numbers. In this chapter,

each line of input is described and the type of acceptable argument is given in italics. When there

are a small number of choices for an argument, such asyes or no , they are represented using the

format {yes | no} . Optional text is listed between square brackets, such as[int] , and input

lines that are optional are completely enclosed in square brackets. For these input parameters,

MPSalsa assigns the default value that is specified in the text.

3.1. General Specifications

General aspects of an MPSalsa execution are specified in the General Specifications

section of the input file. Items such as the type of equations to be solved and the number of

processors to be used in obtaining a solution are given in this section. This section is required and

must begin with the General Specifications header, as illustrated in Figure 3.1.

--
General Specifications
--
Problem type = whole_enchilada
Input FEM file = cvd-reac1.exoII
LB file = cvd-reac1-m256-bKL.nemI
Output FEM file = cvd-reac1-out.exoII
Number of processors = 256
Cartesian or Cylindrical when 2D = Cartesian
Stabilization = default
Debug = 3

Figure 3.1. General Specifications example section.

15

Problem type = string

The problem type input file line tells MPSalsa which equations are to be solved. MPSalsa

can solve the Navier-Stokes equations in conjunction with the continuity equation, an energy

equation, and an arbitrary number of species mass balance equations. Currently being tested are

equations for flow in porous media and the and equations for modeling turbulent flow, which

will be detailed in future releases of this document. Equations for modeling plasma and

electromagnetism may be incorporated in the future, as may the capability of using a pre-

computed velocity field in the convective terms of the energy and species transport equations (for

decoupled physics).

The current strings recognized by MPSalsa and the equations that they enable are listed in

Table 3.1.

Input FEM file = filename

This line specifies the name of the input ExodusII file containing the FEM geometry

information. This file usually has a “.exoII” extension. It can include a path specification. This file

must exist prior to the run.

Equation Type→ Momentum Total Mass Energy Species Mass

Number of Equations in Type→

Problem Type↓

fluid_flow

energy_diff

mass_diff

fluid_flow_energy

fluid_flow_mass

energy_mass_diff

whole_enchilada

Table 3.1. The seven currently recognized strings for theProblem Type input file line are listed, and the
governing equation types that each flag enables are indicated. The number of equations associated with each type is
shown in the second row, where is the number of spatial dimensions in the problem and is the number of

species, specified in Section 3.6.

k ε

NDim 1 1 NS

X X

X

X

X X X

X X X

X X

X X X X

NDim NS

16

[LB file = filename]

This line specifies the name of the load-balance file for runs to be performed on more than

one processor. It can include a path specification. The file must be in the NemesisI format, and

usually has a “.nemI” extension. (Older files have the “.exoII” extension.) This input line is read

only for runs performed on multiple processors. Default = none; error if not specified for multi-

processor runs.

[Output FEM file = filename]

This line specifies the name of the ExodusII output file. This file is also used to provide

initial solution data for restarts, which are specified on theSet Initial Condition/Guess

input file line in Section 3.8. The file name can include a path specification. This ExodusII file

must exist prior to the run, having been generated by the “guacamole” preprocessor (see Section

2.4). Visualization of the FE solution uses this file. This input line is used only for scalar I/O; for

runs utilizing parallel I/O, special file names are generated (see Section 3.10). Default = none;

error if not specified for restarts or runs with scalar output.

[Number of processors = integer]

This line is used to specify the number of processors that will be utilized in solving the

problem. For multiprocessor runs, this number must match the number of processors that the

mesh was partitioned for. Default =1.

[Cartesian or Cylindrical when 2D = string]

This line specifies what coordinate system to use for 2D problems. Currently the only

valid value is Cartesian . Future choices will include Cylindrical_2 and

Cylindrical_3 for axisymmetric problems with two or three momentum balances to be

solved. Default =Cartesian .

[Interpolation order = string]

This line specifies the interpolation order for all quantities in the finite-element model.

Valid options arelinear andquadratic . Default =linear .

[Stabilization = {default | supg}]

There are currently two choices for stabilization of the FE equations:default and

supg . The default option is a pressure-stabilized Petrov Galerkin method [25, 48], which

17

allows the use of equal-order interpolation of the pressure and velocity primitive variables. The

supg option activates the streamwise-upwinding Petrov-Galerkin stabilization scheme [3] in

addition to the pressure stabilization. Streamwise upwinding improves convergence to highly-

convected solutions (high Reynolds number flows) and reduces the amplitude of oscillations in

the solution. Default =default .

[Debug = integer]

This line specifies how much information should be output tostdout during the run of

MPSalsa, as well as how much summary information the linear solver library should output. The

value ofinteger must lie in the range [0, 10], with 2 being a common value. Examples are:

Minimal info is printed tostdout; only a summary of

important flags and entries into important code segments are

printed.

Along with the above information, timing information and

summary information on the global FE model (not the local

processor FE model), node sets, side sets, and boundary

conditions are printed. The solver library prints out residual

summaries as well.

Along with the above information, summary information on

the local processor FE model is printed. Processor-based

vector quantities such as residual, initial guesses, and

solutions are included. Processor-based communication

summaries and local-to-global mapping information are

also printed.

Along with the above information, information on the local

matrix is printed. This can be a significant amount of

information and is really meant to debug smaller problems

in detail.

Default =2.

3.2. Solution Specifications

The Solution Specifications section of the input file allows the user to choose the desired

solution type, such as steady-state or time-dependent, and to control aspects of the solution

Debug 0=

Debug 0>

Debug 6>

Debug 9>

18

procedure, such as the time step size. This section of the input file is mandatory and must begin

with the Solution Specifications header, as shown in Figure 3.2.

In the rest of this section, each line of the Solution Specifications section is described

separately. Since time-dependent and continuation runs both take steps from one solution to the

next, many of the lines have dual meanings depending on the solution type.

Solution Type = string

This line specifies the type of solution desired, which can be one of the following five

strings: steady , transient , pseudo , continuation , and optimization . If the

steady string is specified, the code will attempt to solve the steady-state version of the

governing equations (with no time derivative terms). The rest of this section of the input file is

then ignored.

When the solution type istransient or pseudo , the time-dependent equations will be

solved. Atransient run attempts to follow the solution in a time-accurate manner by keeping

the integration error under a specified tolerance, while thepseudo option is used to time step to

a steady state (or past uninteresting transient behavior) by aggressively increasing the time step

size regardless of the error in the time integrator. The specifics of the integration and stepping

scheme can be manipulated with the subsequent input file lines.

Thecontinuation solution type is used to solve for a series of steady-state solutions

as a function of a parameter. The steady-state versions of the governing equations are solved, the

continuation parameter is incremented and a new steady-state solution is sought. The subsequent

lines in this section are used to control the run. The user has the flexibility of choosing any

combination of physical properties and boundary condition values as the continuation parameter,

but must do so by programming the routineuser_continuation in file

“rf_user_continuation.c” and recompiling (see Section 4.7 and Section 5.4).

--
Solution Specifications
--
Solution Type = transient
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error = 4.0e-3
Initial Parameter Value = 100.0
Initial Step Size = 1.0e-5
Maximum Number of Steps = 75
Maximum Time or Parameter Value = 100.0

Figure 3.2. Solution Specifications section example.

19

Theoptimization solution type is not currently a supported feature, but has been used

successfully for one application [8]. This solution type is similar to continuation, but instead of a

single parameter being incremented within MPSalsa, a set of parameters is changed by an

external optimization program. MPSalsa must be modified to calculate and write out an objective

function after every solution for the optimization package to use.

[Order of integration/continuation = integer]

This flag has separate meanings depending on whether the solution type is time-dependent

(transient or pseudo) or continuation . For transient or pseudo solutions, this

flag has a value of1 for first-order Forward-Euler/Backward-Euler predictor/corrector

integration, and a value of2 for a second-order Adams-Bashforth/Trapezoid-Rule scheme. (The

second-order scheme starts with pair of first-order steps to get started.) Default =1.

For continuation runs, this flag can have a value of0, 1, or 2. A value of0 turns on

zero-order continuation, where the solution at the previous step is used as an initial guess for the

current step. (This is equivalent to changing the value of the continuation parameter in the input

file and restarting from the previous solution.) A value of1 selects first-order (or Euler-Newton)

continuation. In this case, the tangent to the previous solution with respect to the continuation

parameter is calculated numerically, and is used to calculate an initial guess for the current

solution. For problems whose solutions vary linearly with respect to the continuation parameter,

this guess should be the correct solution. A flag value of2 selects arc-length continuation, which

is not currently implemented. This option will allow the user to follow steady-state solution

branches that pass through turning points with respect to the continuation parameter. Default =1.

[Step Control = {on | off}]

The Step Control input line is read for transient , pseudo , and

continuation solution types, and can have values ofon or off . When step control ison , the

step size will be adjusted after successful steps. Fortransient runs, the step size is chosen as a

function of the value of theRelative Time Integration Error (described below). For

pseudo and continuation runs, the step size will always be increased following a

successful step, with the increase depending on the ratio of the number of Newton iterations

needed for convergence divided by the maximum number of Newton iterations allowed. If the

value of theStep Control is off , the step size is never increased. For any of the solution

types and either of the flag values, the step size is cut in half after a failed step (i.e., when a

converged solution is not found in the maximum number of Newton iterations). Default =on .

20

[Relative Time Integration Error = float]

TheRelative Time Integration Error input line is used only fortransient

solutions. This line sets the target for the error incurred on each time step. A value of the time

integration error is calculated using the difference between the predicted and corrected value of

the solution by the method of [20]. If this estimated error is twice the value set in the input file, the

time step is rejected and the time step size is cut in half. Otherwise, ifStep Control is on , the

ratio of the input error value and the estimated error are used to pick the next step size. The value

of the Relative Time Integration Error must be greater than theSolution

Relative Error Tolerance , which is input in the Solver Specifications section to set the

convergence criterion for the linear solver. Default = .

[Initial Parameter Value = float]

The Initial Parameter Value input line is used only for continuation runs. The

number is the initial value of the continuation parameter. See Section 4.7 for details on the

implementation of continuation. Default = none, which is an error for continuation runs.

[Initial Step Size = float]

The Initial Step Size input line is used fortransient , pseudo , and

continuation runs. The value is the size of the first time step for time integration runs and the

first continuation parameter step size for continuation runs. WhenStep Control is off , this

step size stays constant throughout the run as long as each step converges. Default = none, which

is an error fortransient , pseudo , andcontinuation runs.

[Maximum Number of Steps = integer]

This input line is used fortransient , pseudo , andcontinuation runs. When this

maximum number of steps is reached, the program will terminate. Default = 1000.

[Maximum Time or Parameter Value = float]

This input file line is used fortransient , pseudo , andcontinuation runs. When

this value is exceeded by the time value in time-dependent runs or the continuation parameter in

continuation runs, the program will terminate. Default = none.

10
3–

21

3.3. Solver Specifications

The Solver Specifications section of the input file controls the nonlinear and linear solver

routines used in MPSalsa. It is a required section of the input file. An example of this section,

including the Solver Specifications header, is found in Figure 3.3. Each line is discussed below.

[Override Default Linearity Choice = string]

This input line can be set to three possible strings:default , linear , or nonlinear .

The code decides whether the set of governing equations are linear or nonlinear depending on the

problem type specified at the top of the input file. For instance, anenergy_diff problem is

assumed to be linear, while afluid_flow_energy problem is assumed to be nonlinear. If

users decide to override this default, as would be needed, for example, when using a temperature-

dependent thermal conductivity with an otherwise linear heat equation, they can set the flag to

linear or nonlinear . Default =default .

--
 Solver Specifications
--
Override Default Linearity Choice = default

-- nonlinear solver subsection:

Number of Newton Iterations = 15
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term = 4
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

-- linear solver subsection:

Solution Algorithm = gmres
Convergence Norm = 0
Preconditioner = no_overlap_ilu
Polynomial = LS,1
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 25
Maximum Linear Solve Iterations = 50
Linear Solver Normalized Residual Tolerance = 1.0e-6

Figure 3.3. Solver Specifications section example.

22

3.3.1. Nonlinear Solver Subsection

[Number of Newton Iterations = integer]

This line specifies the maximum number of Newton iterations that MPSalsa will allow in a

single nonlinear solve. If this maximum is reached and the convergence criterion has not been

met, the nonlinear solve ends unsuccessfully. For steady-state problems, MPSalsa terminates with

a fatal error. For time-dependent problems, a convergence error is triggered for the current time

step, and control is returned to the time stepping routine. Currently, the time stepping routine

reverts to a Backward Euler method, halves the time step, and tries again. Similarly for

continuation problems, the continuation algorithm cuts the parameter step-size in half and

attempts to resolve the problem. Default = 25.

[Use Modified Newton Iteration = {yes | no}]

A modified Newton iteration uses a previously-computed preconditioning matrix for the

Newton step, instead of recomputing the preconditioner from the Jacobian at the current solution.

This option is not yet supported. Default =no .

[Enable backtracking for residual reduction = {yes | no | default}]

When a Newton iteration causes the norm of the residual to increase rather than decrease,

backtracking will not accept the update. Instead, the algorithm looks in the same direction as the

solution update from the Newton iteration. Performing residual calculations along the solution

path given by this direction, it finds the solution that minimizes the residual [9, 10]. Backtracking

has been shown in some cases to help converge to a steady-state when Newton’s method without

backtracking failed. Thedefault flag disables backtracking fortransient runs but enables

backtracking for all other solution types (pseudo , steady , andcontinuation). Default =

default .

[Choice for Inexact Newton Forcing Term = integer]

An inexact Newton’s method uses Newton’s method with an iterative linear solver, where

the linear solver method (e.g., GMRES) is not forced to fully converge at each step. The

reasoning behind this method is that it is a waste of computational time to fully solve the linear

system when the nonlinear system itself is far from a converged solution. Inexact Newton steps

are controlled by a single parameter,eta_k, which is the required drop in the ratio of the norm of

the residual to the initial norm of the residual for a given linear solve. A normal Newton’s method

uses a small, constant value foreta_k so that each linear solve is accurate, as it would be when

23

using a direct solver. This is the case when the inexact Newton forcing term is set to4, with the

eta_k tolerance value given by theLinear Solver Normalized Residual Tolerance

input line below. Other values for the inexact Newton forcing term, 0–3, allow for larger values of

eta_k, so that each Newton iteration takes less time; however, more Newton iterations are often

required for convergence. The possible values for the flag are summarized in Table 3.2. Default =

0.

[Calculate the Jacobian Numerically = {yes | no}]

A fully numerical Jacobian may be used in MPSalsa for debugging purposes. Instead of

the Jacobian matrix being computed analytically, the residual equations for each element are

recomputed one extra time for each unknown in the element while that unknown is numerically

perturbed. A forward difference formula is used to calculate the Jacobian contributions. For

problems with large numbers of unknowns per node, the numerical Jacobian can be more than an

order of magnitude slower than the analytic Jacobian, in part because rigorous property

evaluations for multicomponent gas equations are very expensive. The numerical Jacobian is a

powerful tool for debugging changes to the governing equations as well as for checking the effect

of physical property variations -- some of which are ignored in the analytic Jacobian but included

in the numerical one -- on the convergence behavior. Default =no .

[Solution Relative Error Tolerance = float]
[Solution Absolute Error Tolerance = float]

These two flags set the tolerances that are used in calculating the convergence criterion for

the update vector in the nonlinear solver. This criterion is

, (3.1)

Flag Value Choice foreta_k in Inexact Newton’s Method

0-1 Eisenstat and Walker, Method 1 [9, 10]

2 Eisenstat and Walker, Method 2a

3 Eisenstat and Walker, Method 2b

4 Linear Solver Normalized Residual Tolerance (“Exact Newton”)

Table 3.2. This table summarizes the choices for theInexact Newton forcing term.The variable eta_k is the required
drop in the linear residual for a successful linear solve.

1
N

δi

εR xi εA+

i 1=

N

∑ 1.0<

24

where and are the relative and absolute tolerances entered in the above input lines, is the

update for the unknown , and is the total number of unknowns. The quantity on the left side

of this inequality is what is output from the solver as the update norm.

The convergence of the nonlinear solver requires that the above inequality be met and that

the nonlinear residual drop by two orders of magnitude from its original value. (This ratio is

output by the code as the “Ratio of scaled residual_k/residual_0.”) Default: and

.

3.3.2. Linear Solver Subsection

[Solution Algorithm = string]

This flag chooses the linear solution algorithm from the Aztec package. The choices are

listed in Table 3.3. For a description of the different methods, see the Aztec manual [26]. Default

= gmres .

[Convergence Norm = integer]

There are five choices for the norm that measures the progress of the linear solver. These

are described in Table 3.4. The most common choice is 0, since this corresponds to the norm in

the GMRES method. Default =0.

[Preconditioner = string]

This flag chooses the preconditioning method. For many problems, a good preconditioner

is essential if the linear solver is to converge. The more robust preconditioning methods require

more memory. Table 3.5 lists the available options for the preconditioner flag. Default =

no_overlap_ilu .

Keyword Linear Solution Algorithm

gmres Restarted General Minimized Residual Method

tfqmr Transpose-Free Quasi Minimum Residual Method

cg Conjugate Gradient Method

cgs Conjugate Gradient Squared Method

cgstab Stabilized Biconjugate Gradient Method

lu Full sparse LU factorization (available only on 1 processor)

Table 3.3. This table enumerates the choices of linearSolution Algorithm flag. The strings in the left columns are the
keywords recognized by MPSalsa.

εR εA δi

xi N

εR 10
3–

=

εA 10
8–

=

25

[Polynomial = {LS | NS}, integer]

When a polynomial preconditioner is selected in the previous input line, this line specifies

the type of polynomial and the order. The two choices for the polynomial type are “LS” for least-

squares, and “NS” for Neumann series. The polynomial order is an integer that must be preceded

by a comma. For a least-squares polynomial, the choices for the order are 0–9, while for the

Neumann series the choice is 0–infinity. Default =LS,3 .

Convergence Norm Specified Norm

0

1

2

3

4

Table 3.4. The five choices for theConvergence Norm flag are shown. The linear system is Ax=b, for which at each
iterate k (in the linear solution algorithm), rk = b - Axk. The tolerances and are those used by the nonlinear

solver (Eq. (3.1)). For nonlinear problems, an initial guess of x0=0 is used, so choices 0 and 1 are equivalent.

Keyword Preconditioner

full_overlap_ilu
full_overlap_bilu

ILU(0) and Block-ILU(0) with one level of overlap between processors.

diag_overlap_ilu
diag_overlap_bilu

ILU(0) and Block-ILU(0) with overlapping of diagonal blocks between
processors.

no_overlap_ilu
no_overlap_bilu

ILU(0) and Block-ILU(0) with no overlapping between processors.

poly Polynomial preconditioner, with the order specified by the next input line.

sgs Domain decomposition, no overlap, symmetric Gauss-Seidel.

jacobi Jacobi preconditioner.

none No preconditioner applied.

Table 3.5. This table enumerates the choices for thePreconditioner flag. The strings in the left columns are the
keywords recognized by MPSalsa. TheScaling file line has more options that can be used in combination with

these.

r
k

2 r
0

2⁄

r
k

2 b 2⁄

r
k

2 A ∞⁄

r
k

∞ A ∞ x
k

1 b ∞+
 ⁄

1
N

r
k
i

εR xi εA+

 2

i 1=

N

∑

 1 2⁄

εR εA

26

[Scaling = string]

TheScaling option specifies what type of scaling is done by the linear solver at the start

of the linear solve. Scaling is similar to preconditioning but is carried out only once at the

beginning of the linear solve. Each scaling option may be used in conjunction with any choice of

a Preconditioner , although only the symmetric scaling options should be used with the

conjugate gradient preconditioner. The available scaling options are listed in Table 3.6. Block

Jacobi scaling uses Gaussian elimination to invert the diagonal blocks of the matrix,

where is the number of unknowns per node. The inverted block is then multiplied into the

matrix and right-hand side. Row-sum scaling uses a diagonal matrix as the preconditioner, with

the row sums as the diagonal entries. Default =row_sum .

[Orthogonalization = {classical | modified}]

For the GMRES method, the vectors of the Krylov subspace must be made orthonormal.

The two options for the Gram-Schmidt orthogonalization method areclassical and

modified [18]. While the modified method is more stable numerically, its parallel

implementation is significantly more costly. In our experience, classical orthogonalization has

worked well for the problems we have solved. Default =classical .

[Size of Krylov subspace = integer]

For the restarted GMRES method (Solution Algorithm choicegmres), the Krylov

subspace size is the number of Krylov vectors to store before restarting. With higher values of this

number, convergence of the linear solver is more robust, but more memory is needed. Each

directional vector that is saved requires an amount of memory equivalent to an entire solution

vector. For finding steady states of large problems, this number can often (and should for

maximum efficiency) exceed 100. Default =64 .

Keyword Scaling Method

block_jacobi Right hand scaling using the inverted diagonal block.

sym_diag Symmetric (right and left) scaling using the matrix diagonal.

row_sum Right hand scaling with the sum of the absolute values of the column entries.

none No scaling.

Table 3.6. This table enumerates the choices forScaling . The strings in the left columns are the keywords
recognized by MPSalsa.

Nu Nu×()
Nu

27

[Maximum Linear Solve Iterations = integer]

This line specifies the maximum number of iterations allowed in any given linear solve.

When this maximum is reached before the residual has been reduced by the specified amount (as

specified by theChoice for Inexact Newton Forcing Term and Linear Solver

Normalized Residual Tolerance input lines), the linear solver terminates and an error

condition is returned to the calling program. For nonlinear problems, the solution is accepted

nonetheless and the next Newton step is started. For restarted GMRES, this number is usually

picked to be a small integer multiple (2 or 3) of the Krylov subspace size. Default =300 .

[Linear Solver Normalized Residual Tolerance = float]

For linear problems and nonlinear problems for which theChoice for Inexact

Newton Forcing Term = 4 , this input line specifies , the drop in the residual required by

the linear solver before it terminates successfully. The linear residual is checked after every

iteration of the linear solver, so the solver does not do more iterations than necessary. Default:

 for nonlinear problems; for linear problems.

3.4. Chemistry Specifications

The Chemistry Specifications section of the input file allows control over much of the

reaction and diffusion processes for problems with mass transfer. It is a required section of the

input file. A sample section of the input file, including the Chemistry Specifications header, is

shown in Figure 3.4.

[Energy equation source terms = {on | off}]

This flag allows the user to turnon andoff the energy source terms due to chemical

reactions. Default =on .

εL

εL 10
4–

= εL 10
6–

=

--
 Chemistry Specifications
--
Energy equation source terms = on
Species equation source terms = on
Pressure (atmospheres) = 1.0
Thermal Diffusion = off
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin

Figure 3.4. Chemistry Specifications section example.

28

[Species equation source terms = {on | off}]

This flag allows the user to turnon andoff the chemical reactions in the interior of the

domain. Surface reactions are controlled separately through the boundary condition section.

Default =on .

[Pressure (atmospheres) = float]

For problems with aCHEMKIN material type (see Section 3.6), the ideal gas equation of

state is used to calculate the reaction rates and physical properties, such as density. This flag sets

the thermodynamic pressure in the domain, which is assumed to be nearly constant. The local

deviation of the pressure due to hydrodynamics, which is captured by the pressure unknown for

fluid flow problems, is assumed to be negligible for the low Mach number applications that

MPSalsa is written for. This input line is not generally relevant for other material types, although

a user could write their own material property functions that use this quantity, which is named

Ptherm in the code. Default = 1.0.

[Thermal Diffusion = {on | off}]

Thermal diffusion -- also called the Soret effect -- can be turnedon or off by this flag.

Thermal diffusion can become a significant contributor to mass transfer when gas species of

greatly varying molecular weights are exposed to a steep thermal gradient. This flag may be

turned off to save computational time when the effect is small, or to simplify the equations for

better convergence behavior. The thermal diffusion term can be responsible for a modest increase

in time for the matrix fill. Currently, the thermal diffusion term is nonzero only for theCHEMKIN

material type. Default =on for CHEMKIN materials.

[Multicomponent Transport = string]

This flag will, in the future, allow the user to switch between different diffusion

formulations for multicomponent transport. Currently, mixture-averaged diffusion is the only

option, and is specified by themixture_avg flag. Stefan-Maxwell and Dixon-Lewis

formulations are planned, and will take the flag valuesstefan_maxwell anddixon_lewis .

These flags are recognized but not included. Default =mixture_avg .

[Chemkin file = chem.bin]
[Surface chemkin file = surf.bin]
[Transport chemkin file = tran.bin]

These three input lines specify the names of the data files for problems that use Chemkin

for the material properties. The Chemkin interpreter program “interp” (see Section 2.3) creates

29

these files with the following names, which are also the defaults:chem.bin , surf.bin ,

tran.bin .

3.5. Enclosure Radiation Specifications

Enclosure radiation algorithms that are used in the CoyoteII code [16] are being included

in MPSalsa. However, this capability is still under development and is not yet supported. The

input-file section shown in Figure 3.5 may be included; however, it is optional.

3.6. Material Specifications

In the Material Specifications section of the input file, the user can set the physical

properties of the system. The computational domain can consist of multiple materials, each with a

unique set of properties; at present, however, the same physics (i.e., governing equations) must be

solved in all materials. A multi-physics capability is under development.

An example of the Materials Specifications section is given in Figure 3.6. This section is

required by MPSalsa. It differs from the previous sections in that it is mostly free-format. Only

the first two lines and the last line are required.

Number of Materials = integer

This line must be the first line of the Materials Properties section. It specifies the number

of materials (usually one) that make up the computational domain. For multiple materials, the

input lines that are described below are repeated multiple times. The materials are assigned to a

block of elements in the mesh using theELEM_BLOCK_IDS line described below.

The first line for each material specifies the material type, material ID, and material name,

and has the format:

Material_Type = integer_id “ Material_Name”

The Material_Type string can be one of several keywords. These keywords are listed in

Table 3.7. TheCHEMKIN type is special, in that it tells MPSalsa to get the material properties

from the Chemkin database. Theinteger_id is a unique integer identification (ID) number for the

material. The user can supply any string, within quotes, as theMaterial_Name, which is only

echoed back by MPSalsa in place of the integer ID.

--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off

Figure 3.5. Enclosure Radiation Specifications section example.

30

The assignment of the physical and transport properties for the current material follow the

Material_Type line until they are terminated by the line:

END Material ID Specifications

Any entries after this line are ignored.

The material properties can follow in almost any order and all have default values. The

only ordering that is required is that the number of species (NUM_SPECIES) must be specified

before the species names (SPECIES_NAME) are given, and that the species names must be given

before the species-dependent properties (DIFF_COEFF, WTSPECIES, XMF_0) are specified.

--
Material ID Specifications

--
Number of Materials = 1
BOUSSINESQ = 0 “3Yk-gas”
ELEM_BLOCK_IDS = 1 2

 NUM_SPECIES = 3
 SPECIAL_SPECIES_EQN = yes

 SPECIES_NAME 1 Yk_0
 SPECIES_NAME 2 Yk_1
 SPECIES_NAME 3 Yk_2

 DIFF_COEFF Yk_2 0.4
 DIFF_COEFF Yk_0 0.5
 DIFF_COEFF Yk_1 0.6

 WTSPECIES Yk_0 1.0
 WTSPECIES Yk_1 1.0
 WTSPECIES Yk_2 1.0

 DENSITY = 1.0
 CP = 2.0
 VISCOSITY = 3.0
 THERMAL_CONDUCT = 1.0
 VOL_EXPNS = 5.0
 G_VECTOR = 0.0, 9.8, 0.0
 Q_VOLUME_VAR = q_xx_yy

 XMF_0 Yk_0 0.2
 XMF_0 Yk_1 0.1
 XMF_0 Yk_2 0.6
 U_INIT = 10.0
 T_INIT = 298.0

END Material ID Specifications

Figure 3.6. Material ID Specifications section example.

31

Material Type Description

SOLID, NEWTONIAN Usual equations; isotropic conductivity, body force .

BOUSSINESQ Body force term replaced by linear Boussinesq approx. in Temperature.

CHEMKIN All physical and transport properties calculated from Chemkin --ideal gas equation
of state. Properties vary with thermodynamic state.

Table 3.7. List ofMaterial_Type designators recognized by MPSalsa.

Keyword Argument Default Description

ELEM_BLOCK_IDS integer list List of element blocks, as specified by the mesh generator,
that compose the current material.

G_VECTOR 3 float 0, 0, 0 Thex-, y-, andz-components of the gravity vector. The
units are arbitrary except forCHEMKIN materials, where

cgs units are the default.

Table 3.8. General Keywords: first of four tables listing and describing keywords recognized for the specification of
material properties.

Keyword Argument Default Description

DENSITY float or
VARIABLE_PROP

1.0 A floating-point argument sets a constant density
value; theVARIABLE_PROP flag tells MPSalsa to get

the value from the function “user_density.”

VISCOSITY float or
VARIABLE_PROP

1.0 A floating-point argument sets a constant viscosity
value; theVARIABLE_PROPflag tells MPSalsa to

get the value from the function “user_viscosity.”

CP float or
VARIABLE_PROP

1.0 A floating-point argument sets a constant heat
capacity; theVARIABLE_PROP flag tells MPSalsa to

get the value from the function “user_Cp.”

THERMAL_CONDUCT float or
VARIABLE_PROP

1.0 A floating-point argument sets a constant thermal
conductivity; theVARIABLE_PROP flag tells

MPSalsa to get the value from the function
“user_cond.”

VOL_EXPNS float 0.0 Volumetric expansion coefficient (units are inverse
temperature); used only forBOUSSINESQ materials.

T_NAUGHT float 0.0 Reference temperature forBOUSSINESQ
approximations.

Q_VOLUME float Constant volumetric source added to the heat balance.

Q_VOLUME_VAR fn_name A volumetric source computed by the function
fn_name and added to the heat balance.

VISC_DISSP Causes viscous dissipation terms to be added to the
heat balance; this flag is not currently implemented.

Table 3.9. Fluid and Thermal Properties: second of four tables listing and describing keywords recognized for the
specification of material properties.

ρg=

32

The recognized strings (or keywords) that can be used to specify material properties are

listed and described in Table 3.8, Table 3.9, Table 3.10, and Table 3.11. The strings are organized

into separate tables only for this document; there are no distinctions in the code.

The ELEMENT_BLOCK_IDS line in Table 3.8 is required for each material type. All

element blocks in the computational domain (see discussion in Section 2.1) must be specified in

one and only one material-type section.

For CHEMKIN material types, the number of species and their names are specified in the

Chemkin linking files. Additionally, the molecular weights, diffusion coefficients, mixture

viscosity, mixture heat capacity, mixture thermal conductivity, multicomponent diffusion

Keyword Argument Default Description

NUM_SPECIES integer 0 Number of species for problems that include
mass transfer.

SPECIES_NAME integer,
string

The integer ID of the species, between 1 and the
entry forNUM_SPECIES, followed by the

name of the species.

WTSPECIES string, float The molecular weight of speciesstring, where
string is aSPECIES_NAME input above.

WTSPECIES should be given for each species.

DIFF_COEFF string, float 1.0 The diffusion coefficient of speciesstring,
wherestring is aSPECIES_NAME input

above.DIFF_COEFF should be given for each
species.

SPEC_SPECIES_EQN { yes | no} yes for
CHEMKIN
materials;

no,
otherwise.

When this flag isyes , the last species equation
is replaced by the requirement that the sum of

the mass fractions is one. ForCHEMKIN
material types, the default value ofyes may

not be overridden.

Y_VOLUME float A constant volumetric source term that is the
same for all species.

Y_VOLUME_VAR fn_name,
{ SINGLE |

MULTIPLE}

Volumetric source term for each mass balance
computed by the user-specified function

fn_name. SINGLE or MULTIPLE indicates
whether the function returns one equation’s
source term at a time or the entire vector of

source terms at once.

JACOBIAN_SRC_TERMS_VAR fn_name If this string is present, the functionfn_name is
used to compute the Jacobian entries due to the
source terms; otherwise, a numerical Jacobian

is computed.

Table 3.10. Mass Transfer Properties: third of four tables listing and describing keywords recognized for the
specification of material properties.

33

coefficients, mixture density, and volume expansion coefficient are all specified or calculated

from Chemkin functions. It is an error to redefine them in for aCHEMKIN material.

3.7. Boundary Condition Specifications

Generalized surface vectors and boundary conditions for a problem are specified in the

Boundary Condition section of the input file. This section is required by MPSalsa. An example for

aWHOLE_ENCHILADA problem is given in Figure 3.7.

3.7.1. Generalized Surfaces

A generalized surface is a side set in the ExodusII file for which the outward normal and

tangential vectors of the corresponding geometric surface are given in the input file. These vectors

may be used to specify side-set boundary conditions in the surface’s normal and tangential

directions. The number of generalized surfaces included in the input file is listed first.

Number of generalized surfaces = integer

The format for specifying each generalized surface follows.

GENERALIZED_SURFACEside_set_number number_of_vectors
TANGENT {real real [real] | function_name}
[TANGENT {real real [real] | function_name}]
[NORMAL {real real [real] | function_name}]

where

side_set_number = the side set ID number in ExodusII, and

Keyword Argument Description

U_INIT float The initial value for thex-component of all the velocity unknowns.

V_INIT float The initial value for they-component of all the velocity unknowns.

W_INIT float The initial value for thez-component of all the velocity unknowns.

P_INIT float The initial value for all of the pressure unknowns.

T_INIT float The initial value for all of the temperature unknowns.

XMF_0 string, float The initial species mole fractions, which are translated to mass
fractions and assigned to the mass-fraction unknowns. Thestring is
the name of the species, which comes from theSPECIES_NAME

line or the Chemkin data file.

Table 3.11. Initial Value Specifications: fourth of four tables listing and describing keywords recognized for the
specification of material properties.

34

number_of_vectors = the number of vectors used to describe the surface.

Two orthogonal unit tangent vectors should be given for 3-D problems; one unit tangent vector

suffices for 2-D problems. The unit outward-normal vector is optional; for boundary conditions in

the outward normal direction, MPSalsa uses a vector normal to the mesh geometry if a vector

normal to the surface is not specified.

The outward normal vector and tangent vectors on the surface are described on the

following line(s). Either the coordinates of a vector or the name of a function returning the vector

may be used to specify the vectors (see Section 4.3). The example in Figure 3.7 includes two

generalized surfaces. The first consists of side set 4 with two unit tangent vectors; since a normal

vector is not specified, outward normal vectors on the surface are computed within MPSalsa. The

--
 Boundary Condition Specifications
--
Number of Generalized Surfaces = 2
GENERALIZED_SURFACE 4 2

TANGENT 0.8 0.6 0.
TANGENT -0.6 0.8 0.

GENERALIZED_SURFACE 5 3
NORMAL user_normal
TANGENT user_tangent1
TANGENT 0. 0. 1.

Number of BC = 12
BC = T_BC DIRICHLET SS 1 INDEPENDENT 300. 0
BC = T_BC NEUMANN SS 5 INDEPENDENT f_xx_yy 1

BC_DATA = 1.0 2.0 0.5
BC = T_BC MIXED SS 4 DEPENDENT jbc_fn 0.5 0.1 0.2 f_fn 0
BC = P_BC DIRICHLET NS 9 INDEPENDENT 1. 0

BC = U_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_disk 1

BC_DATA = 100.0 0. 0.

BC = V_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = VEL_TAN2_BC DIRICHLET GS 1 DEPENDENT f_xy_spin_disk 1

BC_DATA = 100.0 0. 0.

BC = W_BC DIRICHLET SS 1 INDEPENDENT -9. 0
BC = VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0

BC = Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraction 1
SPECIES_LIST = 2 1 4 3
BC_DATA = 1.232900e-04 1.095458e-02 9.889221e-01 0.0

BC = Y_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0
SPECIES_LIST = ALL

Figure 3.7. Example of the Boundary Condition Specification section of the input file.

35

second consists of side set 5 with the outward normal vector returned byuser_normal , a

tangent vector returned byuser_tangent1 , and a constant tangent vector.

MPSalsa numbers the generalized surfaces (starting from one) in the order they appear in

the input file. Boundary condition statements for generalized surfaces reference the generalized

surface number assigned by MPSalsa as theirset_id (see Section 3.7.2). Alternatively, the number

of the side set for which the generalized surface is described can be specified; MPSalsa associates

the appropriate generalized-surface definition with the side set.

3.7.2. Boundary Conditions

The number of boundary conditions included in the input file is specified before the

boundary conditions are listed:

Number of BC = integer

Each boundary condition has the following format:

BC = bc_name bc_type set_type set_id dependence_flag bc_values num_data_lines

where

bc_name = {U_BC | V_BC | W_BC | T_BC | P_BC | Y_BC | VEL_NORM_BC |

VEL_TAN1_BC | VEL_TAN2_BC};

bc_type= {DIRICHLET | NEUMANN| MIXED };

set_type = {NS | SS | GS}

set_id = side set ID number, node set ID number, or generalized surface number;

dependence_flag = {DEPENDENT| INDEPENDENT};

bc_values is described in Table 3.13; and

num_data_lines = integer.

The bc_name indicates the variable to which the boundary condition should be applied.

Possible values forbc_name are listed in Table 3.12. All velocity boundary conditions on a side

set must be specified in the same coordinate system; normal and tangential velocity boundary

conditions (VEL_NORM_BC, VEL_TAN1_BC, VEL_TAN2_BC) may not be used withU_BC,

V_BC, orW_BC on the same side set.

36

The bc_type indicates the type of boundary condition to apply. Three types of boundary

conditions are implemented in MPSalsa: Dirichlet, Neumann, and Mixed (Robin). Dirichlet

boundary conditions have the following forms:

 for U_BC, V_BC, W_BC, P_BC, T_BC or Y_BC, (3.2)

 for VEL_NORM_BC, and (3.3)

 for VEL_TAN1_BC andVEL_TAN2_BC, (3.4)

where is the unknown whose boundary condition is assigned, and

are unit outward-normal and tangential vectors specified in a generalized-surface definition or

computed by MPSalsa, and is a function of time , position , and the solution variables , ,

, and at .

Neumann boundary conditions take the form

, , for the temperature equation, (3.5)

, , for the mass fraction equation, and (3.6)

 for the momentum equation, (3.7)

where is the unit outward normal vector, is the mixture thermal conductivity, is the

mixture density, is the diffusion velocity of species , and is the shear stress tensor.

bc_name Variable to which the boundary condition is applied.

U_BC velocity in thex-direction.

V_BC velocity in they-direction.

W_BC velocity in thez-direction.

T_BC temperature.

P_BC pressure.

Y_BC mass fractions.

VEL_NORM_BC velocity in the direction normal to the surface. Note: only Dirichlet BCs are
valid for VEL_NORM_BC.

VEL_TAN1_BC velocity in the direction of the first tangent vector (given by a generalized
surface) to the surface. Note: only Dirichlet BCs are valid forVEL_TAN1_BC.

VEL_TAN2_BC velocity in the direction of the second tangent vector (given by a generalized
surface) to the surface. Note: only Dirichlet BCs are valid forVEL_TAN2_BC.

Table 3.12. Boundary condition names and their corresponding variables.

y f t x u P T Y, , , , ,()=

n u• f t x u P T Y, , , , ,()=

t u• f t x u P T Y, , , , ,()=

y u1 u2 u3 P T or Y, , , , ,= n t

f t x u P

T Y x

n qc⋅ f t x u P T Y, , , , ,()= qc λ∇T–=

n j k⋅ f t x u P T Y, , , , ,()= j k ρYkVk= k
th

Tn() l f t x u P T Y, , , , ,()= l
th

n λ ρ
Vk k T

37

Mixed boundary conditions replace the function on the right-hand side of (3.5)-(3.7)

with

, (3.8)

where is a floating-point constant, and and are

functions of time , position , and the solution vector at .

In MPSalsa,DIRICHLET boundary conditions replace the finite-element equation for an

unknown.NEUMANN andMIXED boundary conditions add a surface integral contribution to the

finite-element equation for an unknown. OnlyDIRICHLET boundary conditions are currently

implemented forVEL_NORM_BC, VEL_TAN1_BC, andVEL_TAN2_BC. NEUMANN andMIXED

types will be added for these boundary conditions in the future. Pressure boundary conditions

(P_BC) may also be only of typeDIRICHLET. All other boundary conditions may be of any

type.

The ExodusII side or node set to which the boundary condition is applied is specified by a

set_type and theset_id_num. Theset_type is SS for a side set,NS for a node set, orGS for a

generalized surface side set. Theset_id_num is the number of the side or node set in the ExodusII

file, or the number of the generalized surface defined in the input file.NEUMANN andMIXED

boundary conditions may be applied only to side sets or generalized surfaces;DIRICHLET

boundary conditions may be applied to node sets, side sets, or generalized surfaces.

Boundary condition functions , , and in (3.2) - (3.8) may depend on the solution. If

terms resulting from this dependence are to be included in the Jacobian matrix, the

dependence_flag should be set toDEPENDENT; otherwise, thedependence_flag should be set to

INDEPENDENT. Mixed boundary conditions should be labeledDEPENDENT only if at least one

of the functions , , or depends on the solution. ForINDEPENDENT mixed boundary

conditions, the analytic Jacobian contribution

is computed by MPSalsa and included in the Jacobian.

Thebc_values vary depending onbc_type anddependence_flag; the correct combinations

of arguments are listed in Table 3.13. The values of , , and in (3.2) - (3.8) may be given by

a real number or a function. The value of in (3.8) is a real number. Analytic Jacobian entries

may be given for DEPENDENT boundary conditions through specification of a

jacobian_function_name, a function that returns the partial derivative of the boundary condition

f

h y y0–() af t x u P T Y, , , , ,()+

a h h t x u P T Y, , , , ,()= y0 y0 t x u P T Y, , , , ,()=

t x x

f h y0

f h y0

y∂
∂

h t x,() y y0 t x,()–[] af t x,()+() h t x,()=

f h y0

a

38

with respect to the solution unknowns. If nojacobian_function_name is specified, a numerical

Jacobian is used forDEPENDENT boundary conditions. Many functions for , , and and their

analytic Jacobian entries are included in MPSalsa; see Section 4.2 and Appendix A.1.

Additional data may be passed to boundary condition functions through the use of

BC_DATA lines. The number of these lines for a boundary condition is given as the last entry,

num_data_lines, on theBC line.BC_DATA lines are formatted as follows:

BC_DATA = data_type data_values

where

data_type = {FLOAT | INT | INTEGER | FUNCTION}; and

data_values = a list of real numbers (fordata_typeFLOAT), integers (fordata_typesINT

and INTEGER), or function names (fordata_typeFUNCTION). These data values are stored in

one-dimensional arrays associated with the boundary conditions and may be accessed by user-

defined functions. See Section 4.2.1 for examples of the use of these values.

Examples of each type of boundary condition are included in Figure 3.7. A few examples

are detailed below.

BC = P_BC DIRICHLET NS 9 INDEPENDENT 1. 0

A Dirichlet boundary condition value of 1 is applied to pressure unknowns in node set 9.

BC = VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0

A Dirichlet outward-normal velocity boundary condition is applied to velocity unknowns

on the first generalized surface listed in the input file. The value of the boundary condition is

bc_type dependence_flag bc_values

DIRICHLET INDEPENDENT { f_function_name | f_real}

DIRICHLET DEPENDENT [jacobian_function_name] { f_function_name | f_real}

NEUMANN INDEPENDENT { f_function_name | f_real}

NEUMANN DEPENDENT [jacobian_function_name] { f_function_name | f_real}

MIXED INDEPENDENT { h_function_name | h_real} { y0_function_name | y0_real}
{ a_real} { f_function_name | f_real}

MIXED DEPENDENT [jacobian_function_name] { h_function_name | h_real}
{ y0_function_name | y0_real} { a_real} { f_function_name |
f_real}

Table 3.13. Boundary condition specification of bc_values for various bc_types and dependence_flags.

f h y0

39

computed in functionsurface_chemkin_bc (see Appendix A.1.1). Since the boundary

condition isDEPENDENT but no analytic Jacobian function is specified, numerical Jacobian

entries for the boundary condition are computed.

BC = T_BC NEUMANN SS 5 INDEPENDENT f_xx_yy 1
BC_DATA = 1.0 2.0 0.5

A Neumann boundary condition is applied to the temperature equations for nodes in side

set 5. The value of the boundary condition is computed in functionf_xx_yy . No Jacobian

entries for the boundary condition are generated since the boundary condition isINDEPENDENT.

BC_DATA values of 1.0, 2.0, and 0.5 are passed to functionf_xx_yy for use in computing the

boundary condition value.

BC = T_BC MIXED SS 4 DEPENDENT jbc_fn 0.5 0.1 0.2 f_fn 0

A Mixed boundary condition of the form

is applied to the temperature equations for nodes in side set 4. The boundary condition is

DEPENDENT; function is called to compute analytic Jacobian entries

for the boundary condition terms.

Default: If no boundary condition is specified for an unknown in a node- or side-set, a

natural boundary condition with value 0 is applied to the equation for the unknown. Thus, the

default boundary condition for temperature, mass fractions or velocities is effectivelyNEUMANN

with in (3.5), (3.6), or (3.7), respectively.

3.7.2.1. Mass Fraction Boundary Conditions

A mass fraction boundary condition (Y_BC) may be applied to one, some or all of the

species unknowns in the node or side set. TheSPECIES_LIST input line indicates to which

species the boundary condition should be applied. This line must directly follow theBC

statement.

SPECIES_LIST = {ALL | list of species numbers | list of species names}

The keyword ALL states the boundary condition should be applied to all species in the problem.

Individual species may be listed by number or name, where the name is given either in the

Materials Specifications (see Section 3.6) or the Chemkin files.

n qc⋅ 0.5 T 0.1–() 0.2 f_fn t x u P T Y, , , , ,()+=

jbc_fn t x u P T Y, , , , ,()

f t x u P T Y, , , , ,() 0=

40

All Y_BC boundary conditions are specified in terms of mass fractions rather than mole

fractions.DIRICHLET boundary conditions may also be specified as mole fractions via the

functionf_mole_fraction included in MPSalsa (see Section A.1.4).

3.7.2.2. Precedence of Boundary Conditions

For unknowns at nodes where two or more side or node sets intersect, Dirichlet boundary

conditions always have precedence over other types of boundary conditions. That is, if a node has

unknowns upon which Dirichlet and, say, Neumann boundary conditions are specified, the

Dirichlet boundary condition is the boundary condition imposed. Moreover, the first Dirichlet

boundary condition in the input file for such an unknown is the one applied. If a node belongs to

more than one node or side set, as Node A does in Figure 3.8, the first Dirichlet boundary

condition for each unknown at that node is the one applied. In Figure 3.8, the Dirichlet boundary

condition for node set 2 would be applied to Node A.

3.8. Initial Condition/Guess Specifications

In the Initial Condition/Guess Specifications section of the input file, users can specify

what type of initial guess or initial conditions to use. This section is required by MPSalsa. An

example is shown in Figure 3.9. MPSalsa’s initial guess for the solution vector is established in

several steps. The first step involves preprocessing the solution vector by setting all solution

components to a value of zero. Next theSet Initial Condition/Guess line described

below is processed. Then, if the solution is not being read from an ExodusII file, all solution

variables are set to their “INIT” values specified in the Material Specifications section of the input

file, if any are specified. (For example, this is where the condition that the sum of the mass

Node Set 1

Node Set 2Node A

BC = T_BC DIRICHLET NS 2 INDEPENDENT 300. 0
BC = T_BC DIRICHLET NS 1 INDEPENDENT 100. 0

Figure 3.8. Example demonstrating the precedence of Dirichlet boundary conditions. Node A belongs to
both node set 1 and node set 2. Its temperature would be set to a value of 300 in this example.

41

fractions must equal one is enforced forCHEMKIN material types.) Finally, an additional user-

supplied function may be invoked as the last step. The remainder of this section describes each of

the lines in the Initial Condition/Guess Specifications section of MPSalsa’s input file.

[Set Initial Condition/Guess = string [value]]

This line is used to specify how to initialize the solution vector after the initial default

processing is carried out. Valid options for this line are listed below:

= constant [value]

This option initializes all components of the solution vector that do not have

material defaults to the constant valuevalue. Default:value = 0.

= random

This option randomly assigns initial solution vector values in the interval [0,1].

= exoII_file

Previously stored solution values in the Output FEM file, named in the General

Specification Section, are used as initial values. This option is used for restarts.

Default =constant 0 .

[Apply function = { function name | no}]

A user-written function can be specified on this line to process the initial guess. This

function is executed after theSet Initial Condition/Guess input line so the function can

be dependent on a solution read in from an ExodusII file. See Section 4.4 for details on how to

write this function. Default =no .

Initial Condition/Guess Specifications

Set Initial Condition/Guess = constant 0.0
Apply Function = no
Time Index to Restart From = 1

Figure 3.9. Example of Initial Condition/Guess Specifications section of the input file.

42

[Time Index to Restart From = integer]

This line specifies the index of the time step from which to perform restarts or take the

initial guess. This parameter is only pertinent if theSet Initial Condition/Guess value

is exoII_file . Restarts can be performed from any data on the same geometry for steady or

time-varying problems. Default = 1 ifInitial Guess = exoII_file ; ignored otherwise.

3.9. Output Specifications

In the Output Specifications section, the user may specify how output is to be performed

to the ExodusII results file. Items such as which variables to output, how often to output these

variables, and whether or not a user-definable subroutine is called are specified in this section. An

example of this section is given in Figure 3.10. This section is optional; if it is absent, no output

will be performed. A detailed description of each of the lines in the Output Specifications section

follows.

[User Defined Output = {yes | no}]

This flag indicates whether the standard user-defined function,user_out , should be

called to output information tostdout. This routine allows user-customized output to be added

easily. The routine currently distributed in MPSalsa prints out the maximum, minimum, and

average value of each unknown as well as the positions of the maximum and minimum. Default =

yes .

--
 Output Specifications
--
User Defined Output = no
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:

every 1 steps
Number of nodal output variables= 1
Nodal variable names:

Temperature
Number of global output variables= 1
Global variable names:

Delta_time

Test Exact Solution Flag = 0
Name of Exact Solution Function = f_xx_yy

Figure 3.10. Example of Output Specifications section in the input file.

43

[Parallel Output = {yes | no}]

This option allows the user to specify whether or not parallel output should be performed.

It can be used simultaneously with scalar output. See Section 2.5 and Section 3.10 for more

information on parallel I/O. Default =no .

[Scalar Output = {yes | no}]

This option allows the user to specify whether or not output to a scalar ExodusII results

file should be performed. The name of the file is specified in the General Problem Specifications

section (see Section 3.1). Default =no .

[Time Index to Output To = integer]

This line is needed only when (1) the MPSalsa run is a restart, and (2) the user wishes to

control where in the ExodusII output file (which was used as the restart input file) the output is

written. If the line is absent and the run is a restart, new output is appended to the end of the

ExodusII output/restart file. When this line included under these conditions, it specifies at what

time index (in the restart file) the output should start. The restart file will be overwritten at the

time index specified. Note that the initial guess, as read during restarts, is output first. It is

therefore suggested that the value ofTime Index to Output To be set equal to theTime

Index to Restart From (see Section 3.8) so as to preclude having the same set of values

stored twice in the file. Default = output appended to the end of the ExodusII output file.

[Nodal variable output times:]
string

This line specifies how often during transient runs output of the variables is to be

performed. Valid values forstring are

every n steps -- wheren is a positive integer

or

every x.xx{seconds|units|mins} -- wherex.xx is a real positive number.

Several things should be noted about this line. (1) The units are currently ignored since there is no

way to specify what these units are for time stepping; (2) the variables to be output are named in

the Nodal variable names line in the Output Specifications section; and (3) outputting

every x {seconds|units|mins} outputs when the time value is the first time value

greater thann*x, for any integern. Similarly, the next time step output will be the first to have a

time value greater than (n+1)*x. Default = output every time step.

44

[Number of nodal output variables = integer]

The number of nodal variables to output is specified here. Default = the total number of

variables.

[Nodal variable names:]
string1
string2

.

.

.
stringN

The names of the nodal variables to output are given here. The number of nodal variable

namesN is given in theNumber of nodal output variables line. Valid variable names

are

Temperature
Velocity
Pressure
Mass_Fraction
Displacement

where any combination of the above is valid. The keywordList is supported for the variable

nameMass_Fraction . If the name is followed, on the same line, by the wordList , a list of

species names is expected to follow until the keywordendlist is found. For example:

Mass_Fraction List
SIF4, H2, H
N2, N
SIHF3

endlist

The case of the keywords is not significant. Default: all nodal variables are written in the default

order.

[Number of global output variables = integer]

This line is used to specify the number of global variables that are to be output to the

ExodusII results file. Global variables are single-valued variables that only have the single

dimension of time. They are used to store parameters, timing information, global solution

information, etc. Default = 0.

45

[Global variable names:]
string1
string2

.

.

.
stringN

The names of the global variables to be output to the ExodusII results file is given here.

The number of global variablesN to output is specified in the lineNumber of global

output variables . Examples of variable names are

Time_index
Delta_time
Matrix_Fill_Time
Matrix_Solve_Time

This line is required only if the number of global variables to output is greater than zero. The

variable names are case-insensitive. In the future, we hope to allow the user to define additional

global variables on this line. The pre-processor “guacamole” will install space for them in the

output file, and the routineuser_out will be used to output values for these variables during an

MPSalsa run. Default = none.

[Test Exact Solution Flag = {0 | 1} [SUMMARY]]

This line specifies whether or not the computed solution should be tested against a known

analytic solution; 0 = off, 1 = on. This comparison includes -norm and max-norm error

computations. Additional information on the location of the maximum error and an estimate of

the largest characteristic length of an element in the FE mesh is provided. The optional keyword

SUMMARY will lead to a separate error analysis for each variable in addition to the entire

solution vector. Default =0.

[Name of Exact Solution Function = string]

This line gives the name of the function that will be called to evaluate the accuracy of the

computed solution. The generic functionuser_bc_exact may be used by programming the

desired exact solution function in the file “rf_user_bc_exact_fn.c.” Default = none.

3.10. Parallel I/O Specifications

The Parallel I/O Section is used to specify characteristics about parallel disk subsystems

connected to specific machines. This section of the input file is optional; if it is absent, no parallel

I/O will be performed. An example is given in Figure 3.11. This section of the input file also

L
2

46

contains subsections for different parallel architectures. These subsections can remain in the file

with the user specifying which architecture to use at run time. In this manner the file can be set up

for a number of architectures (currently nCUBE and Intel Paragon) without rewriting the section

each time a run is performed on a different architecture.

[Machine = string]

This line is used to specify the computer architecture. Currently supported architectures

areparagon , andncube . Default =paragon .

[Staged writes = {yes | no}]

This lines specifies whether or not writes to parallel disks should be staged. With staging,

only one processor writes to each disk at a time. Staging avoids problems with temporary file

name conflicts and limits on the number of concurrent open files on a single disk. It is

recommended that staging be set toyes . Default =yes .

[Number of controllers = integer]

This line is specific to the nCUBE subsection and indicates how many controllers should

be used in performing the I/O. It must be less than or equal to the number of disk controllers that

are actually attached to nCUBE. Default = none; error when not specified for parallel I/O on the

nCUBE.

--
Parallel I/O section

--
Machine = paragon
Staged writes = yes

ncube subsection

Number of controllers= 8
Disks per controller= 1
Root location = //df
Subdirectory = jns/fireset
Offset numbering from zero= 0

paragon subsection

Number of RAID controllers= 48
Root location = /raid/io_
Subdirectory = tmp/jns/fireset
Offset numbering from zero= 1

Figure 3.11. Example Parallel I/O section.

47

[Disks per controller = integer]

This line is specific to the nCUBE subsection and indicates how many of the disks

attached to each of the controllers should be used to perform the I/O. It should be less than or

equal to the number of actual disks attached to each controller. Default = none; error when not

specified for parallel I/O on the nCUBE.

[Number of RAID controllers = integer]

This line is specific to the Intel Paragon and indicates how many RAID controllers should

be used to perform the I/O. It must be less than or equal to the actual number of controllers on the

machine. The number of RAID disks is equal to the number of RAID controllers on an Intel

Paragon system. Default = none; error when not specified for parallel I/O on the Paragon.

[Root location = string]

The root location is the root directory where writes to the parallel disk subsystem are to be

performed. Generally, parallel disk subsystems are in directories that begin with a string.

Embedded in the last part of the string is an integer identifying a particular disk. On an nCUBE

system, for example, //df00 would be used to write to the first controller and first disk attached to

that controller. Similarly, for an Intel Paragon, the user could access the first disk by writing to

/pfs/io_01 and the second disk by writing to /pfs/io_02. The value to be specified on theRoot

Location line of the input file is the full pathname of the disk device excluding the identifying

integer ID. Figure 3.11 shows examples of the value ofRoot Location for each of these cases.

Default = none; error when not specified for parallel I/O.

[Subdirectory = string]

TheSubdirectory line specifies the subdirectory on the parallel file system in which

MPSalsa should look for parallel output and input files. It should not begin with a “/” character.

Default = none; error when not specified for parallel I/O.

[Offset numbering from zero = integer]

The offset numbering specifies on which parallel disk I/O should begin. For example, if

MPSalsa is to be run on an Intel Paragon using 16 RAIDs beginning with /raid/io_08 then the

value of the offset should be set to 8. Default = 1.

48

3.11. Function Data Specifications

Users may pass problem-specific data to functions using the Function Data Specification

section of the input file. The Function Data section is optional; users need not include it in the

input file if they do not need problem-specific data. An example of the Function Data section is

included in Figure 3.12. The functions are used for boundary conditions, material properties,

specialized solution output, volumetric source terms, and testing of the code against exact

solutions. Four types of data may be passed to functions: integers, reals, strings, and tables.

The number of functions that use function data is specified first, with default = 0. For each

function, the function name and the number ofFN_DATA lines to be passed to it are listed.

[Number of functions to pass data to = number of functions]
Function = function_name num_data_lines

EachFN_DATA line consists of the type of data (INT , FLOAT, STRING, or TABLE). The default

is FLOAT. ForINT , FLOAT, andSTRING data, the data then follows the type keyword. AFLOAT

is stored as a double-precision number. EachSTRING may be up to 32 characters long.

FN_DATA = [FLOAT | INT | STRING] list of data

TABLES allow the user to supply tabular data to a function. The dimensions of the table follow

theTABLE keyword:

--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 2

Function = user_bc_exact 4
FN_DATA = -100. -200. -300. -400.
FN_DATA = FLOAT -500. -600.
FN_DATA = STRING VELOCITY APPLICATIONS CZAR
FN_DATA = INT -1 -2 -3 -4 -5

Function = lookup_table_1 2
FN_DATA = STRING TEMPERATURE
FN_DATA = TABLE 6 2

0 32
20 68
40 104
60 140
80 176
100 212

Figure 3.12. An example of the Function Data Specification section of the input file.

49

FN_DATA = TABLE #rows_in_table #columns_in_table

TheTABLE data are included on the lines following theFN_DATA = TABLE line. Only one table

may be specified in each entry for a function.

Several functions that require function data are included in MPSalsa. Examples are

time_history_line , which writes to a file the solution along a line in the domain,

time_history_points , which writes to a file the solution at a set of points in the domain,

and look-up table functionslookup_table_1 and lookup_table_2 , which interpolate

data using aTABLE from the function data section of the input file. These and other functions that

require user-defined function data are described in Section 4 and Appendix A.

50

4. User Functions

Many features in MPSalsa can be adapted for specific applications through user functions.

These functions provide the greatest flexibility for users to control their own simulations. User

functions are already included in MPSalsa for quantities such as variable material properties,

boundary conditions, and solution measures; users must change only the computations in these

routines to calculate the properties for their problems. For some quantities, such as boundary

conditions and source terms, users can also write their own functions and compile them into

MPSalsa. This process, however, requires more effort and code modification than using the

included user functions. This chapter describes the various user functions available and their

usage in MPSalsa and the input file. For applicable properties, instructions for including new

functions in MPSalsa are also given. For all functions, the units are arbitrary except forCHEMKIN

materials for which cgs units are the default.

MPSalsa is written in the “C” programming language. The following discussion of

modifications to MPSalsa’s user functions assumes the user has some knowledge of “C.”

4.1. Material Properties

4.1.1. Heat Capacity

The functionuser_Cp in “rf_user_Cp.c” computes a user-defined specific heat of a

non-CHEMKIN material. It is called when the following line is included in the Materials

Properties section of the input file:

CP = VARIABLE_PROP

The value of the specific heat is returned byuser_Cp in the argument*cp . Other arguments

passed touser_Cp are listed in Table 4.1.

Argument Description

double temperature Temperature at position (x, y, z).

double X_k[] Vector of mole fractions at position (x, y, z) indexed by the species
number.

double Ptherm Thermodynamic pressure.

double x, y, z Coordinates of the current position.

MATSTRUCT_PTR matID_ptr Pointer to the material property structure for the material.

Table 4.1. Arguments passed to user-defined property functionsuser_Cp , user_cond , user_density and
user_visc .

Ĉp

51

4.1.2. Thermal Conductivity

The functionuser_cond in “rf_user_cond.c” computes a user-defined value of thermal

conductivity for a non-CHEMKIN material. It is called when the following line is included in

the Materials Properties section of the input file:

THERMAL_CONDUCT = VARIABLE_PROP

The value of the thermal conductivity is returned byuser_cond in the argument

*conductivity . Other arguments passed touser_cond are listed in Table 4.1.

4.1.3. Density

The functionuser_density in “rf_user_density.c” computes a user-defined value of

density for a non-CHEMKIN material. It is called when the following line is included in the

Materials Properties section of the input file:

DENSITY = VARIABLE_PROP

The value of the density is returned byuser_density in the argument*density . Other

arguments passed touser_density are listed in Table 4.1.

4.1.4. Viscosity

The functionuser_visc in “rf_user_visc.c” computes a user-defined value of the

viscosity for a non-CHEMKIN material. It is called when the following line is included in the

Materials Properties section of the input file:

VISCOSITY = VARIABLE_PROP

The value of the viscosity is returned byuser_visc in the argument*viscosity . Other

arguments passed touser_visc are listed in Table 4.1.

4.1.5. Volumetric Source Terms

Variable volumetric source terms for temperatures and mass fractions are specified in the

input file as

Q_VOLUME_VAR =function_name

and

Y_VOLUME_VAR =function_name {SINGLE | MULTIPLE}.

The related user functions included in MPSalsa areuser_source for temperatures and

SINGLE mass fraction source terms anduser_source_multi for MULTIPLE mass fraction

source terms.

λ

ρ

µ

52

The user_source function returns the value of the source term for one equation. Its

prototype is

double user_source (SNGLVAR_FUNCTION_ARGLIST)

whereSNGLVAR_FUNCTION_ARGLIST, as defined in “rf_salsa.h,” is described in Table 4.2.

For SINGLE source term functions, the boundary condition pointerbc is NULL.

An example ofuser_source is included in Figure 4.1. This function is stored in

“rf_user_source_fn.c.” To add new user-defined source functions, users should write the functions

in either “rf_source_fn.c” or “rf_user_source_fn.c,” include prototypes for the new functions in

“rf_source_fn_const.h,” and add pointer assignments for the new functions to the routine

align_single_q_ptr in “rf_source_fn.c.” Users can look at prototypes and pointer

assignments foruser_source as examples for their own functions.

To reduce the number of function calls needed to compute source terms for mass fraction

equations,user_source_multi may be used. Whileuser_source returns only a single

source term value,user_source_multi returns a vector of source terms for mass fraction

equations. The prototype foruser_source_multi is

void user_source_multi (MULTIVAR_FUNCTION_ARGLIST)

whereMULTIVAR_FUNCTION_ARGLIST is described in Table 4.3.

Argument Description

double soln[] Solution vector at position (x, y, z).

double x, y, z Coordinates of position (x, y, z).

double t Time.

MATSTRUCT_PTR matID_ptr Pointer to the material property structure for the material being processed
(defined in “rf_matrl_const.h”).

int var_num Equation for which to compute a value (e.g., TEMPERATURE,
VELOCITY1, MASS_FRACTION) as defined in “rf_fem_const.h.”

int sub_var_num Species for which to compute a value (applicable only when var_num ==
MASS_FRACTION).

int eqn_offset[] Offset into soln[] for each variable; e.g., the temperature at (x,y,z) is
soln[eqn_offset[TEMPERATURE]].

int num_dim Number of dimensions in the element.

BCSTRUCT_PTR bc Pointer to the boundary condition structure (defined in “rf_bc_const.h”)
for the current boundary condition being processed. This pointer is NULL
if the SNGLVAR_FUNCTION function is called for a calculation not
involving a boundary condition.

Table 4.2. Arguments included inSNGLVAR_FUNCTION_ARGLIST.

53

An example of user_source_multi is included in Figure 4.2. This function

computes the same mass fraction source terms in one function call that functionuser_source

in Figure 4.1 would compute in three separate calls.

The functionuser_source_multi is stored in “rf_user_source_fn.c.” Users may add

their own MULTIPLE source functions to either “rf_source_fn.c” or “rf_user_source_fn.c.”

Prototypes for the new functions should be included in “rf_source_fn_const.h,” and pointer

assignments must be added to the routinealign_multi_q_ptr in “rf_source_fn.c.” Users

can look at prototypes and pointer assignments foruser_source_multi as examples for their

own functions.

double user_source(SNGLVAR_FUNCTION_ARGLIST)
{
/* Returns the source terms for the coupled linear diffusion equations:
 *
 *
 *
 *
 *
 *
 *
 *
 *
 * where in 1D, in 2D, and in 3D.
 *
 * USAGE: In Material Properties section...
 * Q_VOLUME_VAR = user_source
 * Y_VOLUME_VAR = user_source SINGLE
 */

double return_value;
double spatial_coeff = 2 * num_dim;

if (var_num == TEMPERATURE)
return_value = -spatial_coeff;

else if (var_num == MASS_FRACTION && sub_var_num <= 2)
switch (sub_var_num) {

case 0:
return_value = soln[eqn_offset[MASS_FRACTION + 1]]

- soln[eqn_offset[MASS_FRACTION + 2]];
break;

case 1:
return_value = -soln[eqn_offset[MASS_FRACTION] * exp(-x);
break;

case 2:
return_value = -spatial_coeff -soln[eqn_offset[MASS_FRACTION]];
break;

}
else {

(void) fprintf(stderr, "ERROR in use of user_source.\n");
exit(-1);

}
return (return_value);

}

∇2
T a– 0=

∇2
Y0 Y1 Y2–+ 0=

∇2
Y1 Y0e

x–
– 0=

∇2
Y2 Y0– a– 0=

a 2= a 4= a 6=

Figure 4.1. Example of functionuser_source computing volumetric source terms for temperature and
mass fraction equations.

54

Analytic Jacobian entries for variable volumetric temperature and mass fraction source

terms are specified in the Materials Specifications section of the input file as

JACOBIAN_SRC_TERMS_VAR =function_name

wherefunction_name is a function computing a matrix of derivatives of the source terms with

respect to temperature and mass fractions. The user functionuser_jac_src is provided for

this purpose. The prototype foruser_jac_src is

void user_jac_src (JAC_SRC_FUNCTION_ARGLIST)

Argument Description

double src_vec[] Returned vector of source term values at (x, y, z), with one value for each
mass fraction equation.

double soln[] Solution vector at position (x, y, z).

double x, y, z Coordinates of position (x, y, z).

double t Time.

MATSTRUCT_PTR matID_ptr Pointer to the material property structure (defined in “rf_matrl_const.h”)
for the material being processed.

int eqn_offset[] Offset into soln[] for each variable; e.g., the temperature at (x,y,z) is
soln[eqn_offset[TEMPERATURE]].

int num_dim Number of dimensions in the element.

Table 4.3. Arguments included inMULTIVAR_FUNCTION_ARGLIST.

void user_source_multi(MULTIVAR_FUNCTION_ARGLIST)
{
/* Returns (in src_vec[]) the source terms for the coupled linear
 * diffusion equations:
 *
 *
 *
 *
 *
 *
 *
 * where in 1D, in 2D, and in 3D
 *
 * USAGE: In Material Properties section...
 * Y_VOLUME_VAR = user_source_multi MULTIPLE
 */

double spatial_coeff = 2 * num_dim;
int eqnY_offset = eqn_offset[MASS_FRACTION];

src_vec[0] = soln[eqnY_offset+1] - soln[eqnY_offset+2];
src_vec[1] = -soln[eqnY_offset] * exp(-x);
src_vec[2] = -spatial_coeff - soln[eqnY_offset];

}

∇2
Y0 Y1 Y2–+ 0=

∇2
Y1 Y0e

x–
– 0=

∇2
Y2 Y0– a– 0=

a 2= a 4= a 6=

Figure 4.2. Example of functionuser_source_multi computing volumetric source terms for mass
fraction equations.

55

whereJAC_SRC_FUNCTION_ARGLIST is described in Table 4.4. The derivatives of the source

terms are returned in the matrixjac_vec , wherejac_vec [i][j] is the derivative of the source

term for the equation with respect to the variable.

Figure 4.3 includes an example ofuser_jac_src that computes the Jacobian entries

for the source terms in functionuser_source in Figure 4.1. This function is stored in

“rf_user_jac_src_fn.c.” To add new user-defined analytic Jacobian functions for source terms,

users should write the functions in either “rf_jac_src_fn.c” or “rf_user_jac_src_fn.c,” include

prototypes for the new functions in “rf_source_fn_const.h,” and add pointer assignments for the

new functions to the routinealign_jac_src_ptr in “rf_jac_src_fn.c.” Users can look at

prototypes and pointer assignments foruser_jac_src as examples for their own functions.

The following run-time error messages alert users to incorrect implementation of user

source term and Jacobian entry functions.

> ERROR: Unknown name for volumetric source function: function_name
> ERROR: Unknown name for analytic Jacobian of source vector function:

function_name

The first message indicates an error with a function specified byQ_VOLUME_VAR or

Y_VOLUME_VAR in the input file; the second indicates an error with a function specified by

JACOBIAN_SRC_TERMS_VAR. In both cases, a function name is either misspelled in the input

file or not added correctly to the pointer assignment routines.

Argument Description

double *jac_vec[] Returned matrix of analytic Jacobian terms of source term values with
respect to temperature and mass fractions; jac_vec[i][j] is the derivative
of the source term for the jth equation with respect to the ith variable.

double soln[] Solution vector at position (x, y, z).

double x, y, z Coordinates of position (x, y, z).

double t Time.

MATSTRUCT_PTR matID_ptr Pointer to the material property structure (defined in “rf_matrl_const.h”)
for the material being processed.

int eqn_offset[] Offset into soln[] for each variable; e.g., the temperature at (x,y,z) is
soln[eqn_offset[TEMPERATURE]].

int num_dim Number of dimensions in the element.

Table 4.4. Arguments included inJAC_SRC_FUNCTION_ARGLIST.

j
th

i
th

56

void user_jac_src (JAC_SRC_FUNCTION_ARGLIST)
{
/* Returns (in jac_vec[]) the analytic Jacobian entries of source terms
 * with respect to (w.r.t.) temperature and mass fractions
 * for the coupled linear diffusion equations:
 *
 *
 *
 *
 *
 *
 *
 *
 *
 * where in 1D, in 2D, and in 3D
 *
 * USAGE: In Material Properties section...
 * JACOBIAN_SRC_TERMS_VAR = user_jac_src
 */
int indxT = eqn_offset[TEMPERATURE], indxY = eqn_offset[MASS_FRACTION];

/** Derivative of TEMPERATURE source term w.r.t. TEMPERATURE. **/
jac_vec[indxT][indxT] += 0.0;

/** Derivatives of MASS_FRACTION src terms w.r.t. TEMPERATURE.**/
jac_vec[indxT][indxY] += 0.0;
jac_vec[indxT][indxY+1] += 0.0;
jac_vec[indxT][indxY+2] += 0.0;

/** Derivative of TEMPERATURE source term w.r.t. Y_0. **/
jac_vec[indxY][indxT] += 0.0;

/** Derivatives of MASS_FRACTION source terms w.r.t. Y_0. **/
jac_vec[indxY][indxY] += 0.0;
jac_vec[indxY][indxY+1] += -exp(-x);
jac_vec[indxY][indxY+2] += -1.0;

/** Derivative of TEMPERATURE source term w.r.t. Y_1. **/
jac_vec[indxY+1][indxT] += 0.0;

/** Derivatives of MASS_FRACTION source terms w.r.t. Y_1. **/
jac_vec[indxY+1][indxY] += 1.0;
jac_vec[indxY+1][indxY+1] += 0.0;
jac_vec[indxY+1][indxY+2] += 0.0;

/** Derivative of TEMPERATURE source term w.r.t. Y_2. **/
jac_vec[indxY+2][indxT] += 0.0;

/** Derivatives of MASS_FRACTION source terms w.r.t. Y_2. **/
jac_vec[indxY+2][indxY] += -1.0;
jac_vec[indxY+2][indxY+1] += 0.0;
jac_vec[indxY+2][indxY+2] += 0.0;

}

∇2
T a– 0=

∇2
Y0 Y1 Y2–+ 0=

∇2
Y1 Y0e

x–
– 0=

∇2
Y2 Y0– a– 0=

a 2= a 4= a 6=

Figure 4.3. Example of functionuser_jac_src computing analytic Jacobian entries of source terms with
respect to temperature and mass fractions for the source function in Figure 4.1.

57

4.2. Boundary Conditions

User functions may be used for several parts of the Boundary Condition Specifications

described in Section 3.7.2. The user function designed to compute boundary condition values is

user_bc_exact . The prototype foruser_bc_exact is

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)

where SNGLVAR_FUNCTION_ARGLIST is described in Table 4.2. All arguments of

SNGLVAR_FUNCTION_ARGLIST are used for boundary condition functions.

An example demonstrating the usage ofuser_bc_exact is given in Figure 4.4. This

function is stored in “rf_user_bc_exact_fn.c.” To add new user-defined boundary condition

functions, users should write the functions in either “rf_bc_exact_fn.c” or

“rf_user_bc_exact_fn.c,” include prototypes for the new functions in “rf_bc_exact_fn_const.h,”

and add pointer assignments for the new functions to the routinealign_f_ptr in

“rf_bc_exact_fn.c.” Users can look at prototypes and pointer assignments foruser_bc_exact

as examples for their own functions.

Jacobian entries associated with boundary conditions can be specified by the user function

user_jac_bc . The prototype foruser_jac_bc is

double user_jac_bc (JAC_BC_FUNCTION_ARGLIST)

whereJAC_BC_FUNCTION_ARGLIST is described in Table 4.5.

Figure 4.5 contains an example ofuser_jac_bc for the boundary conditions specified

by user_bc_exact in Figure 4.4. This function is stored in “rf_user_jac_bc_fn.c.” To add new

user-defined functions for the derivatives of boundary condition functions, users should write the

functions in either “rf_jac_bc_fn.c” or “rf_user_jac_bc_fn.c,” include prototypes for the new

functions in “rf_bc_exact_fn_const.h,” and add pointer assignments for the new functions to the

routine align_jbc_ptr in “rf_jac_bc_fn.c.” The prototypes and pointer assignments for

user_jac_bc serve as examples for new user functions for boundary condition derivatives.

The following run-time error messages alert users to incorrect implementation of user-

defined boundary condition functions.

> ERROR: Unknown SNGLVAR_FUNCTION: function_name
> ERROR: Unknown JAC_BC_FUNCTION: function_name

The first message indicates an error in a boundary condition function name; the second indicates

an error in the function name for Jacobian entries of a boundary condition. In both cases, a

function name was either misspelled in the input file or not added correctly to the appropriate

pointer alignment routine.

58

4.2.1. Accessing BC_DATA in User Functions

Each boundary condition in the input file has aBoundary_Condition structure

(defined in “rf_bc_const.h”) associated with it. This structure contains the constant values,

pointers to boundary condition functions (such asuser_bc_exact and those in Appendix

A.1), andBC_DATA associated with the boundary condition. Each type ofBC_DATA is stored in

a one-dimensional array of that type. Integer data, specified byBC_DATA=INT , are stored in the

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)
{
/* Returns the following Dirichlet boundary conditions for coupled
 * linear diffusion equations:
 *
 *
 *
 * where in 1D, in 2D, and in 3D
 *
 *
 *
 *
 *
 * USAGE: In Boundary Conditions section...
 * BC = T_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0
 * BC = Y_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0
 * SPECIES_LIST = 1
 * BC = Y_BC DIRICHLET SS 1 DEPENDENT user_bc_exact 0
 * SPECIES_LIST = 2 3
 */

double return_value, spatial_coeff;

if (var_num == TEMPERATURE) {
return_value = x*x;
if (num_dim > 1) return_value += y*y;
if (num_dim > 2) return_value += z*z;

}
else if (var_num == MASS_FRACTION && sub_var_num <= 2) {

switch (sub_var_num) {
case 0:

spatial_coeff = 2. * num_dim;
return_value = spatial_coeff * exp(x);
break;

case 1:
return_value = soln[eqn_offset[TEMPERATURE]];
break;

case 2:
return_value = soln[eqn_offset[MASS_FRACTION]]

+ soln[eqn_offset[MASS_FRACTION + 1]];
break;

}
}
else {

(void) fprintf(stderr, "ERROR in use of user_bc_exact.\n");
exit(-1);

}
return (return_value);

}

T x
2

y
2

z
2

+ +=

Y0 ae
x

= a 2= a 4= a 6=

Y1 T=

Y2 Y0 Y1+=

Figure 4.4. Example of functionuser_bc_exact used as a boundary condition function.

59

integer arrayBC_Data_Int in the Boundary_Condition structure; floating point data,

specified byBC_DATA=FLOAT, are stored in the double arrayBC_Data_Float ; and function

pointer data, specified byBC_DATA=FUNCTION, are stored in theBC_Data_User_Fn_Ptr

array. The data are stored in the order they appear in the input file, starting from array index 0 in

each array.

double user_jac_bc(JAC_BC_FUNCTION_ARGLIST)
{
/* Returns the derivatives of the following Dirichlet boundary
 * conditions for coupled linear diffusion equations:
 *
 *
 *
 * where in 1D, in 2D, and in 3D
 *
 *
 *
 *
 *
 * USAGE: In Boundary Conditions section...
 * BC = T_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0
 * BC = Y_BC DIRICHLET SS 1 INDEPENDENT user_bc_exact 0
 * SPECIES_LIST = 1
 * BC = Y_BC DIRICHLET SS 1 DEPENDENT user_jac_bc user_bc_exact 0
 * SPECIES_LIST = 2 3
 */
double return_value = 0.0;

/* TEMPERATURE BC does not depend on other variables.
 * Y_0 BC does not depend on other variables.
 * Y_1 BC does not depend on other mass fractions.
 * Y_2 BC does not depend on temperature.
 * return_value is already set to zero for these entries.
 */

if (var_num == MASS_FRACTION && sub_var_num <= 2) {
switch (sub_var_num) {

case 1:
if (wrt_var_num == TEMPERATURE)

/* Derivative of Y_1 BC w.r.t. TEMPERATURE is 1.0. */
return_value = 1.0;

break;
case 2:

if (wrt_var_num == MASS_FRACTION)
if (wrt_sub_var_num == 0 || wrt_sub_var_num == 1)

/* Derivative of Y_2 BC w.r.t. Y_0 or Y_1 is 1.0. */
return_value = 1.0;

break;
}

}
else if (var_num != TEMPERATURE) {

(void) fprintf(stderr, "ERROR in use of user_jac_bc.\n");
exit(-1);

}
return (return_value);

}

T x
2

y
2

z
2

+ +=

Y0 ae
x

= a 2= a 4= a 6=

Y1 T=

Y2 Y0 Y1+=

Figure 4.5. Example of user functionuser_jac_bc that computes derivatives of the boundary conditions
in user_bc_exact in Figure 4.4.

60

The argument bc in SNGLVAR_FUNCTION_ARGLIST and

JAC_BC_FUNCTION_ARGLIST is a pointer to theBoundary_Condition structure

associated with the boundary condition.BC_DATA can be accessed by following this pointer. For

example, the firstBC_DATA=INT value entered in the input file would be accessed in boundary

condition functions bybc ->BC_Data_Int[0] . An example boundary condition function using

BC_DATA is included in Figure 4.6. In this example, the rotation rate and center of rotation of a

two-dimensional disk are given byBC_DATA=FLOAT values in the input file.

Functions listed inBC_DATA=FUNCTION lines must also be boundary condition

functions as described in Section 4.2. They must have the same prototypes asuser_bc_exact

and be called with theSNGLVAR_FUNCTION_ARGLIST argument list in Table 4.2. As with all

user boundary condition functions, they must be included in the pointer assignment routine

align_f_ptr and compiled into MPSalsa. The syntax for calling, say, the second

BC_DATA=FUNCTION listed for a boundary condition is shown below:

val = bc->BC_Data_User_Fn_Ptr[1](soln, x, y, z, t,
matID_ptr, var_num, sub_var_num, eqn_offset,
num_dim, bc);

Argument Description

double soln[] Solution vector at position (x, y, z).

double x, y, z Coordinates of position (x, y, z).

double t Time.

MATSTRUCT_PTR matID_ptr Pointer to the material property structure (defined in “rf_matrl_const.h”)
for the material being processed.

int var_num Dependent variable of the partial derivative (e.g., TEMPERATURE,
VELOCITY1, MASS_FRACTION) as defined in “rf_fem_const.h.”

int sub_var_num Species number for the dependent variable of the partial derivative
(applicable only when var_num == MASS_FRACTION).

int wrt_var_num Independent variable of the partial derivative to be taken (e.g.,
TEMPERATURE, VELOCITY1, MASS_FRACTION) as defined in
“rf_fem_const.h”

int wrt_sub_var_num Species number for the independent variable of the partial derivative
(applicable only when wrt_var_num == MASS_FRACTION).

int eqn_offset[] Offset into soln[] for each variable; e.g., the temperature at (x,y,z) is
soln[eqn_offset[TEMPERATURE]].

int num_dim Number of dimensions in the element.

BCSTRUCT_PTR bc Pointer to the boundary condition structure (defined in “rf_bc_const.h”)
corresponding to the current boundary condition being processed.

Table 4.5. Arguments included inJAC_BC_FUNCTION_ARGLIST.

61

4.3. Generalized Surfaces

User-defined outward normal and tangent vectors may be specified through the use of

generalized surfaces as described in Section 3.7.1. The functionsuser_normal ,

user_tangent1 , and user_tangent2 are provided for this purpose. They return the

appropriate surface vector as a function of position on the surface. The prototypes for these

functions are

void user_normal (SURF_VECTOR_FUNCTION_ARGLIST)
void user_tangent1 (SURF_VECTOR_FUNCTION_ARGLIST)
void user_tangent2 (SURF_VECTOR_FUNCTION_ARGLIST)

double f_xy_spin_disk (SNGLVAR_FUNCTION_ARGLIST)
{
/* Function to return value of the x,y velocity on a rotating disk.
 * This function takes 3 arguments:
 * BC_Data_Float[0] = rotation rate in rpm, counter clockwise
 * BC_Data_Float[1] = x_0
 * BC_Data_Float[2] = y_0
 *
 * Usage: e.g. Disk spinning at 50rpm around x=0, y=0
 * U_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
 * BC_DATA = 50.0 0.0 0.0
 * V_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
 * BC_DATA = 50.0 0.0 0.0
 */
double omega = 0.0, x_0 = 0.0, y_0 = 0.0; /* default values */
double x_offset, y_offset, result;

/* Use BC_DATA values if any are specified in the input file. */

if (bc->BC_Data_Float != NULL) {
/* Conversion from rpm to radians/sec done once in bc_input_pre_process */
/* omega = (bc->BC_Data_Float[0] * 2.0 * pi)/60.0; */
omega = bc->BC_Data_Float[0];
x_0 = bc->BC_Data_Float[1];
y_0 = bc->BC_Data_Float[2];

}

x_offset = (x - x_0);
y_offset = (y - y_0);

if (var_num == VELOCITY1) result = (-omega * y_offset);
else if (var_num == VELOCITY2) result = (omega * x_offset);
else if (var_num == TANGENT_VELOCITY1)

/* Assumes t1 = [0.8, 0.6, 0.0] */
result = 0.8 * (-omega * y_offset) + 0.6 * (omega * x_offset);

else if (var_num == TANGENT_VELOCITY2)
/* Assumes t2 = [-0.6, 0.8, 0.0] */
result = -0.6 * (-omega * y_offset) + 0.8 * (omega * x_offset);

return (result);
}

Figure 4.6. Example demonstrating the use ofBC_DATA in boundary condition functions.

62

whereSURF_VECTOR_FUNCTION_ARGLIST is defined in “rf_bc_const.h” and described in

Table 4.6.

Examples of the generalized surface functions are given in Figure 4.7. The functions are

stored in “rf_user_tangent_fn.c.” To add new user-defined functions for describing generalized

surfaces, users should write the functions in either “rf_tangent_fn.c” or “rf_user_tangent_fn.c,”

include prototypes for the new functions in “rf_tangent_fn.c,” and add pointer assignments for the

new functions to the routinealign_surf_vector_ptr in “rf_tangent_fn.c.” The prototypes

and pointer assignments foruser_normal serve as examples for newly written user functions

for outward normal and tangent vectors.

The following run-time error message alerts users to incorrect implementation of user-

defined normal and tangent functions:

> ERROR - unknown surface vector function: function_name

A function name was either misspelled in the input file or not added correctly to the

align_surf_vector_ptr routine.

4.4. Initial Condition/Guess

Initial guesses may be specified through theuser_init_cond function. The prototype

for user_init_cond is

double user_init_cond (SNGLVAR_FUNCTION_ARGLIST)

whereSNGLVAR_FUNCTION_ARGLIST is described in Table 4.2. The argumentsmatID_ptr

and bc in SNGLVAR_FUNCTION_ARGLIST are NULL when a function is used as an initial

condition function. The functionuser_init_cond is in file “rf_user_init_cond_fn.c.” New

initial condition functions should be added to this file or to “rf_bc_exact_fn.c.” Prototypes for

new functions should be added to “rf_bc_exact_fn_const.h,” and function pointers must be added

to align_f_ptr in “rf_bc_exact_fn.c.”

Argument Description

double surf_vec[] Returned vector containing thex-, y-, andz-components of a surface
vector.

double x, y, z Coordinates of position (x, y, z).

Table 4.6. Arguments included inSURF_VECTOR_FUNCTION_ARGLIST.

63

4.5. Exact Solutions

For problems having analytic solutions, MPSalsa can compare the computed solution with

the analytic solution. The user functionuser_bc_exact in “rf_user_bc_exact_fn.c” may be

used to specify the exact solution function. The prototype foruser_bc_exact is

double user_bc_exact (SNGLVAR_FUNCTION_ARGLIST)

whereSNGLVAR_FUNCTION_ARGLIST is described in Table 4.2. Since exact solutions depend

only on position and time, the argumentsmatID_ptr , bc , and eqn_offset [] in

SNGLVAR_FUNCTION_ARGLIST are NULL when they are arguments to an exact solution

function. An example ofuser_bc_exact used as an exact solution function is given in Figure

void user_normal(SURF_VECTOR_FUNCTION_ARGLIST)
{
/*
 * Outward normal vector (along circle of radius one) of cylinder aligned
 * in z-direction.
 *
 * USAGE: in Generalized Surfaces section ...
 * NORMAL = user_normal
 */

surf_vec[0] = x;
surf_vec[1] = y;
surf_vec[2] = 0.0;

}

void user_tangent1(SURF_VECTOR_FUNCTION_ARGLIST)
{
/*
 * Tangent vector (along circle of radius one) of cylinder aligned
 * in z-direction.
 *
 * USAGE: in Generalized Surfaces section ...
 * TANGENT = user_tangent1
 */

surf_vec[0] = -y;
surf_vec[1] = x;
surf_vec[2] = 0.0;

}

void user_tangent2(SURF_VECTOR_FUNCTION_ARGLIST)
{
/*
 * Tangent vector (along height of cylinder) of cylinder aligned in z-direction.
 *
 * USAGE: in Generalized Surfaces section ...
 * TANGENT = user_tangent2
 */

surf_vec[0] = 0.0;
surf_vec[1] = 0.0;
surf_vec[2] = 1.0;

}

Figure 4.7. Example of functionsuser_normal , user_tangent1 , anduser_tangent2 for
generalized surfaces.

64

4.8. The procedures for adding new exact solution functions to MPSalsa are the same as those

described in Section 4.2 for adding new boundary condition functions.

4.6. Output

Functions can be written to compute specific output from the solution. At the initial

conditions, after every time step, and after calculating a steady-state solution, the function

user_out in the file “rf_user_out.c” is called. The default functionuser_out computes the

maximum, minimum, and average value of each variable as well as the position of the maximum

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)
{
/* Returns the exact solution values for the coupled linear diffusion equations:
 *
 *
 *
 * where in 1D, in 2D, and in 3D
 *
 *
 *
 *
 *
 * USAGE: in Output Specification section...
 * Test Exact Solution Flag = 1
 * Name of Exact Solution Function = user_bc_exact
 */

double return_value, spatial_coeff, sum;

spatial_coeff = 2 * num_dim;
sum = x*x;
if (num_dim > 1) sum += y*y;
if (num_dim > 2) sum += z*z;

if (var_num == TEMPERATURE) {
return_value = sum;

}
else if (var_num == MASS_FRACTION && sub_var_num <= 2) {

switch (sub_var_num) {
case 0:

return_value = spatial_coeff * exp(x);
break;

case 1:
return_value = sum;
break;

case 2:
return_value = spatial_coeff * exp(x) + sum;
break;

}
}
else {

(void) fprintf(stderr, "ERROR in use of user_bc_exact.\n");
exit(-1);

}
return (return_value);

}

T x
2

y
2

z
2

+ +=

Y0 ae
x

= a 2= a 4= a 6=

Y1 x
2

y
2

z
2

+ +=

Y2 ae
x

x
2

y
2

z
2

+ + +=

Figure 4.8. Example of functionuser_bc_exact used as an exact solution function.

65

and minimum. (Little investment has been made in providing output options for MPSalsa since

commercial visualization packages that read in the FE mesh and solutions from the ExodusII

database have satisfied most of our post-processing needs.)

Writing additional output routines should be done using theuser_out function, either

by replacing it with an alternate function or by calling another function from within it. The second

option was chosen for implementing routines such astime_history_points (See Section

A.3.1).

The status integer flag passed touser_out contains information on whether the

solution is an initial guess, an intermediate time step, a failed time step, or a final solution. The

values of the flag are shown in Figure 4.9.

To write new output functions, it is best to modify the defaultuser_out or one of the

output functions listed in Appendix A. Many quantities that might be useful in output routines --

such as the values of physical properties at the nodes and useful bookkeeping arrays -- are

unfortunately not readily available to the output routines. These quantities are stored in memory

only during the matrix-fill section of the calculation; after the matrix-fill, their memory is freed to

provide as much memory as possible for the matrix-solve.

4.7. Continuation

The functionuser_continuation in the file “rf_user_continuation.c” is where the

continuation parameter is defined. The continuation parameter can be equated to any boundary

condition, physical property, or a combination of these quantities. The function takes as input the

pointer to the continuation parameter, and updates the appropriate physical quantity or boundary

condition. For instance, if the user would like to continue with respect to the viscosity of the first

material, stored globally asMatID_Prop->viscosity , user_continuation would

simply contain the appropriate assignment statement as shown in Figure 4.10.

Similarly, if the user would like to continue with respect to the value of the sixth boundary

condition listed in the file, stored globally asBC_Types[5].BC_Fn_Value ,

user_continuation would contain just the following assignment statement:

* Values for status variable:
* -------------------------------
* <0 = Some sort of error condition has occurred.
* 0 = Initial conditions
* 1 = Final conditions, i.e., a successful run has completed
* 2 = A successful intermediate time step has occurred.

Figure 4.9. Values of thestatus flag as passed touser_out .

66

BC_Types[5].BC_Fn_Value = *con_par;

(Since “C” numbering begins with zero, the sixth boundary condition in the input file is stored in

array entry five.)

Another common continuation parameter with boundary conditions is an entry in the

BC_DATA statement. To continue with respect to the third constant (“C” array entry 2) of the

BC_DATA FLOAT array of the twenty-third boundary condition (“C” array entry 22), the

assignment would be

BC_Types[22].BC_Data_Float[2] = *con_par;

All parts of the boundary condition structure, not only theBC_Fn_Value and

BC_Data_Float[] examples shown here, can be referenced for use in continuation. The entire

structure is listed in the file “rf_bc_const.h.” Similarly, the entire materials structure of physical

properties can be referenced in the same way the viscosity was above. The structure is defined in

the file “rf_matrl_const.h.”

The continuation parameter can represent other quantities by more complicated

assignment statements. For instance, to continue with respect to the Reynolds number, where the

inlet velocity is entered as the fourth BC and the characteristic length is 2.0, the assignment

statement would be

BC_Types[3].BC_Fn_Value = *con_par * MatID_Prop->viscosity
/ (2.0 * MatID_Prop->density);

In this example, the inlet velocity is manipulated at constant viscosity and density so that the

continuation parameter equals the Reynolds number, and other dimensionless numbers stay

constant.

4.8. Function Data

User data specified in the Function Data section of the input file (see Section 3.11) may be

accessed by any of the above user functions. The user function must first locate its particular

function data. In the simplest case, the location is found by calling the function

fn_data_location :

function void user_continuation(double *con_par);
/* con_par is a pointer to the continuation parameter */
/* *con_par is the value of the continuation parameter */
{

MatID_Prop->viscosity = *con_par;
}

Figure 4.10. Example of the functionuser_continuation for assigning the continuation parameter
to a physical quantity (in this case the fluid viscosity).

67

FNDATA_PTR fn_data_location (char yo[], int data_required)

whereyo [] is a character string containing the function name associated with the data in the input

file, and data_required indicates whether the function data is mandatory or optional. If

data_required is TRUE and no function data was included in the input file, MPSalsa will quit

with an error condition. Whendata_required is FALSE, either default values for the data

should be supplied or the user function should return immediately without an error.

The functionfn_data_location returns a pointer to aFunction_Data structure

(defined in “rf_fn_data_const.h”). Within theFunction_Data structure,Fn_Data_Int ,

Fn_Data_Float , andFn_Data_String are arrays ofINT , STRING, andFLOAT function

data, respectively, from the input file. The numbers of entries in each array are given by

Num_Fn_Data_Int , Num_Fn_Data_String andNum_Fn_Data_Float . The arrays are

used in a manner analogous to theBC_DATA arrays for boundary conditions (see Section 4.2.1).

Data values are stored in the order they are read from the input file, starting from index 0 in the

arrays. For example, the fifth string entered as function data would be addressed by

current_fn ->Fn_Data_String[4] . An example of a boundary condition function that

uses optional function data is given in Figure 4.11.

A table supplied by theFN_DATA=TABLE mechanism is stored in theFunction_Data

structure asFn_Data_Table , a two-dimensional array of double precision numbers. Each row

double user_bc_exact(SNGLVAR_FUNCTION_ARGLIST)
{
/*
 * Function that returns where and may be
 * specified by the user in the function data section of the input file.
 *
 * USAGE: in Function Data Specification section ...
 * Function Name = user_bc_exact 1
 * FN_DATA = FLOAT 3.0 2.0
 */
FNDATA_PTR current_fn;

/* Get the pointer to the function data for this function. */
/* This function is optional; if no function data is found, */
/* and are zero. */

current_fn = fn_data_location(“user_bc_exact”, FALSE);

if (current_fn != NULL)
if (current_fn->Num_Fn_Data_Float > 0)

x = (x - current_fn->Fn_Data_Float[0]);
if (current_fn->Num_Fn_Data_Float > 1)

y = (y - current_fn->Fn_Data_Float[1]);
}
return (x * x + y * y);

}

x x0–() 2
y y0–() 2

+ x0 y0

x0 y0

Figure 4.11. Example usage of function data within a user function.

68

of the table in the input file is stored as a row of the array; that is, the entry on the row of

the input table is stored inFn_Data_Table [i][j]. The numbers of rows and columns in the table

are stored inFn_Data_Table_Dim[0] andFn_Data_Table_Dim[1] , respectively. The

function lookup_table_1 in “rf_fn_data.c” provides a good example of the usage of function

data tables (see Appendix A.2).

User functions that operate on several sets of function data are often useful. The function

time_history_line , for example, prints the solution along a line that is described by a

function data table. To print time histories along several lines, a function data entry is included in

the input file for each line. Such user functions must loop over all the function data and operate on

each instance of their function data. The functionfn_data_next_location is provided to

allow processing of two or more sets of function data by a single function. The prototype for

fn_data_next_location is

FNDATA_PTR fn_data_next_location(char yo[],
int data_required, int start_ifd, int *found_ifd)

whereyo [] is the function name specified in the input file,data_required indicates whether

the function data are required or optional,start_ifd is the first function data entry to be

checked for a match withyo [], and the index of the function data entry matchingyo [] is returned

in found_ifd . The value offound_ifd +1 should be used asstart_ifd in subsequent

searches for more function data foryo []. A pointer to the function data indexed byfound_ifd

is returned by fn_data_next_location . An example demonstrating the usage of

fn_data_next_location in a loop over function data is given in Figure 4.12.

j
th

i
th

69

void function_name()
{
/*
 * USAGE: in Function Data Specification section ...
 * Function Name = function_name 1
 * FN_DATA = STRING data set one
 * Function Name = function_name 1
 * FN_DATA = STRING data set two
 */
char yo[] = "function_name";
FNDATA_PTR current_fn = NULL;
int ifd = -1;
extern int Num_Fn_Data; /* Number of function data entries in the input file */

while (ifd < Num_Fn_Data) {

/* Get the pointer to the function data for this function */
current_fn = fn_data_next_location(yo, FALSE, ifd+1, &ifd);

if (current_fn == NULL) {
printf("No additional Function Data found for %s\n", yo);
break;

}
else {

/*
 * Process the data pointed to by current_fn.
 */

}
}

}

Figure 4.12. Example usage offn_data_next_location to process more than one set of function data
within a function.

70

5. Solution Strategies

5.1. Getting to a Steady State

Sometimes a steady-state solution to a non-linear problem is desired but MPSalsa will not

converge to it for a given input file and a simple initial guess. The following is a list of some input

file options and techniques that can help. Some of the options are discussed in more detail later in

this chapter.

(1) Increase the maximum number ofNewton iterations. (See Section 3.3.1.)

(2) Choose a more robustpreconditioner, such asno_overlap_bilu or

real_overlap_ilu . If the program runs out of memory, use a larger number of processors.

(See Section 3.3.2.)

(3) Increase the number ofKrylov subspace vectors for GMRES. If the program runs

out of memory, use a larger number of processors. For problems of a few hundred thousand

unknowns, a Krylov subspace size over 100 is desirable. (See Section 3.3.2.)

(4) Switch theEnable backtracking for residual reduction flag

from on to off , or fromoff to on . We have seen examples where the problem converges only

with backtrackingon , and we have seen cases that converge only with backtrackingoff . (See

Section 3.3.1.)

If none of the easy solutions above works, the following options may.

(5) Usepseudo time-stepping as theSolution Type to relax the system. If the

initial time step is small andTime Step Control is on , pseudo time stepping increases the

time step for any step that converges, regardless of integration error. After 5-20 successful time

steps have been taken, one can often restart from the last time step and converge to the steady-

state. (See Section 3.2.)

(6) Use therestart capability to step to the solution by first solving the problem at

simpler conditions, such as at a reduced density or thermodynamic pressure, an elevated viscosity,

or with reactions turned off using theSpecies equation source terms and Energy

equation source terms flags. Then, use this intermediate solution as an initial guess for

the desired solution. (See Section 3.8.)

(7) Usecontinuation to automatically step through a series of steady states as a single

parameter is incremented until reaching the desired conditions. (See Section 5.4.)

71

(8) Do mesh sequencing to first solve the problem on a coarse mesh, and work toward

a fine mesh. Convergence is often better on coarse meshes because the preconditioners span more

of the domain. (See Section 5.3.)

(9) Write aninitial guess function with an educated guess of what the solution will

look like as a function ofx, y, andz. (See Section 3.8 and Section 4.4.)

5.2. Picking a Linear Solver and Preconditioner

The choices for the linear solver, the preconditioner, and the scaling method are listed in

Table 3.3, Table 3.5, and Table 3.6, respectively, and lead to hundreds of possible combinations.

In Table 5.1 below, we list the three combinations that we use most often. The most common

combination is #1, which does well for getting to a steady-state (i.e., forsteady , pseudo , or

continuation solution types as listed in Section 3.2). With the GMRES method, the Krylov

subspace dimension can be increased to be as big as will fit on the machine without running out of

memory (or causing excess swapping on some machines), up to a value of a few hundred. The

total number of linear solver iterations should usually be two or three times the Krylov subspace

size, since GMRES tends to make little progress after restarting three times.

If a steady state is desired but the job runs out of memory at low values of the Krylov

subspace, there are two options: (1) use a larger number of processors, and (2) switch to a

different solver such as the tfqmr solver (combination #2).

For transient runs where speed is more important than robustness, the scheme #3 is

often used. This scheme uses only about half the memory of scheme #1 and the calculation of the

scaling matrix is much quicker than an ILU-type preconditioner.

5.3. Mesh Sequencing

Mesh sequencing is a strategy for more easily obtaining steady-state solutions on fine

meshes. In mesh sequencing, a solution is first computed on a coarse mesh. This solution is

interpolated to a finer mesh and used as the initial guess for the solution on the fine mesh.

Scheme, in decreasing order of
robustness and memory use

Linear
Solver

Preconditioner Scaling Krylov
subspace

1. Robust; good for Steady-State gmres no_overlap_ilu row_sum large (>100)

2. Robust; uses less Memory tfqmr no_overlap_ilu row_sum

3. Fast; Good for Transient gmres none block_Jacobi moderate

Table 5.1. Three common linear solution schemes.

72

Sequences of successively finer meshes can be used until a solution with the desired resolution is

obtained.

Using MerlinII [15] to interpolate the solution from coarse meshes to fine ones, we have

run some experiments with mesh sequencing in MPSalsa. In Table 5.2, we show results for the

Lid-Driven Cavity problem (see Appendix C.2) with an upper-wall velocity of .

Steady-state solutions were obtained with an initial guess of zero for all unknowns and with initial

guesses interpolated from coarser meshes. The linear solver was GMRES with an ILU

preconditioner. The number of Newton iterations and the solution times on the Intel Paragon are

compared.

MerlinII is included in the SEACAS distribution of utilities for ExodusII. If the SEACAS

utilities are installed in directory $ACCESS, the path $ACCESS/etc must be included in the

user’s path. The command line for MerlinII to interpolate the solution from a coarse mesh to a fine

mesh is shown below:

> merlin2 -input merlin.inp -output merlin.out -plot coarse_soln.exoII -mesh
fine_mesh.exoII -interpolate merlin.exoII

where “coarse_soln.exoII” is the ExodusII file containing the coarse-mesh solution,

“fine_mesh.exoII” is the ExodusII file containing the fine mesh, “merlin.exoII” is the resulting

ExodusII file containing the fine-mesh solution interpolated from the coarse-mesh solution,

“merlin.out” is a text file containing error messages, if any, and “merlin.inp” is an input file

Mesh Size Number of
Processors

Initial Guess Number of
Newton

Iterations

Execution
Time

(seconds)

MerlinII’s
Execution Time

(seconds)

16x16 1 0.0 13 59.2

32x32 4 0.0 10 73.1

Sol’n from 16x16 6 46.3 1.0

64x64 16 0.0 11 220.0

Sol’n from 16x16 8 165.5 2.7

Sol’n from 32x32 6 122.5 5.2

128x128 64 0.0 39 1406.1

Sol’n from 16x16 29 1025.3 9.1

Sol’n from 32x32 23 820.3 17.6

Sol’n from 64x64 17 610.8 52.4

Table 5.2. Performance of the non-linear solver for the Lid-Driven Cavity example using initial guesses of zero and
initial guesses obtained from coarse-mesh solutions.

u 1500=

73

containing processing instructions for MerlinII. The MerlinII input file for the Lid-Driven Cavity

example above is shown in Figure 5.1; see [15] for more details.

5.4. Continuation

Continuation methods are used to solve for a series of steady-state solutions as a function

of a parameter. These methods are commonly used for analysis to study trends in performance or

behavior, as we have studied the effect of the disk spin rate on the CVD reactor performance in

Section D.3. Continuation can also be an efficient way of reaching a steady-state solution at

conditions where a trivial initial guess is not close enough for Newton’s method to converge. For

instance, a flow problem can be solved easily at low density, and then the density can be

incremented over several steps until reaching the desired conditions.

To implement continuation, the user must edit the functionuser_continuation in

the file “rf_user_continuation.c” to associate the continuation parameter with a specific boundary

condition or a physical, transport, or kinetic property. This can usually be done by editing only

one line of code. For details, see Section 4.7.

Users control the continuation routine through the Solution Specifications section of the

input file. An example of this section configured for a continuation run is shown in Figure 5.2.

The seven lines in this section specify that (1) we are solving a continuation problem; (2) first-

order (a.k.a. Euler-Newton) continuation is to be used; (3) a constant step size is to be used as

long as a steady-state solution is reached within the maximum number of Newton iterations; (4)

the first solution is for a parameter value of 100.0; (5) the first parameter step is of size 100.0;

Figure 5.1. MerlinII input file for mesh sequencing in the Lid-Driven Cavity example.

$ INPUT FILE FOR THE LID-DRIVEN CAVITY EXAMPLE
$ Declare that the files to interpolate both from and to are EXODUS files.
MESH-A, EXODUS
MESH-B, EXODUS
$ List the variables to be interpolated.
VARIABLES
VX
VY
Pres
END
$ List the time planes to be interpolated.
TIMEPLANE
ALL
END
$ Perform the interpolation and quit.
EXECUTE
STOP

74

(6,7) the run will stop when either 20 continuation steps have been taken or when the parameter

value exceeds 1300.0.

TheOrder of integration/continuation flag can have values of 0, 1, or 2. A

value of zero indicates zeroth order continuation, where the solution at stepn is used as an initial

guess for solutionn+1 at the next parameter value. This type of continuation is just an automation

of doing a series of steady-state calculations where, for each calculation, the parameter is changed

in the input file between each run and the initial solution value is taken from the previous solution.

First-order continuation (when this flag equals one) requires one additional matrix solve to

calculate the derivative of the solution with respect to the parameter at stepn, and uses this

tangent to predict an initial guess at the parameter value for stepn+1. The resulting improvement

in the initial guess using first-order continuation usually saves at least one Newton iteration in

converging to the solution at stepn+1, which makes up for the additional cost of the tangent

calculation.

A value of two for this flag indicates pseudo arc-length continuation, a capability that is

not currently implemented. This method is a powerful tool in bifurcation analysis as it can track

solutions around turning points in the solution branch. In pseudo arc-length continuation, the

distance along the solution branch (not the change in the parameter) is chosen, so the parameter

value is free to increase or decrease. With our block matrix storage format, we have decided not to

implement pseudo arc-length continuation by augmenting the system of equations by one, as is

commonly done [38], but to use the method described in the Ph.D. dissertation of Shadid [41]. In

this method, the continuation step takes two matrix solves to form the initial guess for stepn+1,

although the same preconditioner can be used for both solves.

The other input file choice that deserves additional mention is theStep Control flag.

WhenTime Step Control is off , the step size is held constant for successful steps (where

convergence of the nonlinear solver is reached within the maximum number of allowed Newton

--
Solution Specifications
--
Solution Type = continuation
Order of integration/continuation = 1
Step Control = off
Initial Parameter Value = 100.0
Initial Step Size = 100.0
Maximum Number of Steps = 20
Maximum Time or Parameter Value = 1300.0

Figure 5.2. Sample Solution Specifications section for a continuation run.

75

iterations) and cut in half when a step is unsuccessful. WhenTime Step Control is on , the

step size is increased after each successful step. The increase in step size is larger when the ratio

of the number of Newton iterations needed for convergence to the total number of Newton

iterations allowed is small. Failed steps cut the step size in half.

76

6. Future Development

The following is a list of development work for the MPSalsa code that is already planned

or underway.

• Multicomponent Diffusion: A full multicomponent diffusion option will be added, which

will be more accurate than the current mixture-average model, yet much more costly to

compute.

• Cylindrical coordinates: For 2D meshes, the capability to solve for axisymmetric solutions

will be added, with the option of two or three components of the velocity for problems

with fluid flow.

• Multi-Physics: This work will add the ability to solve for different physics, and different

numbers of unknowns, in distinct “realms” of the computational domain. For instance,

heat transfer can be modeled in the solid walls of a reactor together with the reacting gas

flows on the inside.

• Turbulence: Implementation of a model for time-averaged turbulence is underway,

and an LES (Large Eddy Simulation) model for transient turbulence will follow.

• Adaptive Mesh Refinement and Dynamic Load Balancing: The ability to automatically

refine a mesh to reduce a measure of the discretization error below a given tolerance will

be added. As elements are created and destroyed nonuniformly, the work load will be

redistributed over the processors.

• Stability Analysis: A pseudo arc-length continuation routine will be added to track steady-

state solution branches, even if they lose stability through a turning point. To check the

stability of steady solutions, the ability to calculate eigenvalues of the Jacobian matrix will

be added through ARPACK [47], which we will access through the Aztec library.

• Radiation: The ability to include the radiant energy exchange due to enclosure radiation

using the methods in COYOTE II [16] is mostly implemented in MPSalsa. Work is also

underway to implement a participating media radiation model.

• Porous Media: The ability to model multiphase flow in porous media has been

implemented in a previous version of MPSalsa [32], and will be integrated into the current

version in the future. The Brinkman equation, which just requires the addition of drag

terms to the Navier-Stokes equations, will also be included.

• Plasma Physics: The ability to model dense, partially ionized plasma/gas mixtures using

self-consistent charged species transport models will be added.

k ε–

77

Appendix A. Included Functions

A.1. Boundary Conditions

A.1.1. Surface Chemistry Boundary Conditions

Effects due to surface reactions are included through the use of surface chemistry

boundary conditions. The functionsurface_chemkin_bc computes the temperature and

mass fractionNEUMANN boundary conditions, and Stefan flowDIRICHLET velocity boundary

conditions below:

, (A.1)

, and (A.2)

, (A.3)

where is the production rate of gas- or surface-phase species due to surface

reaction, is the vector of surface site fractions, is the molecular weight of species , is

the enthalpy of species , is the number of gas-phase species, and is the total number of

gas-, surface-, and bulk-phase species (see [5, 42] for more details of these surface reaction

boundary conditions). Examples using thesurface_chemkin_bc function for (A.1) - (A.3)

are included in Figure A.1. The Stefan velocity boundary condition (A.3) may be implemented as

either aVEL_NORM_BC or as aU_BC, V_BC, or W_BC when the normal vector is parallel to the

x-, y-, or z-axis, respectively. In the latter case, the sign of the normal vector will be taken into

account automatically.

The initial surface site fractions and bulk species mass fractions may be specified in the

input file by including SURF_SPECIES_LIST and BC_DATA lines with the

surface_chemkin_bc mass fraction boundary condition. The format for these lines follows:

SURF_SPECIES_LIST = {ALL | list of species numbers | list of species names}
BC_DATA = FLOAT list of surface site fractions or mass fractions

The arguments ofSURF_SPECIES_LIST are analogous to those of theSPECIES_LIST

described in Section 3.7.2.1, with the exception that the numbers or names must correspond to

surface or bulk species. These two lines together count as one data line in thenum_data_lines

n qc⋅ ṡkWkhk
k 1=

N

∑=

n j k⋅ ṡkWk– n ρYku⋅()–=

n u⋅ 1
ρ
---– ṡkWk

k 1=

Ng

∑=

ṡk ṡk P T Y Z, , ,()= k

Z Wk k hk

k Ng N

78

argument of the BC line (see Section 3.7.2). The example in Figure A.1 uses

SURF_SPECIES_LIST to initialize both surface site fractions and bulk mass fractions.

A.1.2. Danckwerts’ Boundary Conditions

Danckwerts’ boundary condition can be applied using the included functions

f_Danckwerts andf_Danckwerts_X0 . Danckwerts’ boundary condition is used as an inlet

boundary condition when the user wants to specify the total flux of each species into the system,

rather than the mole or mass fraction of species at the edge of the domain. This is particularly

important in low pressure reacting systems, where the diffusive component of the inlet flux of a

species is significant compared to the convective contribution:

(A.4)

This boundary condition is also important for matching experimental results, where it is generally

the total flux of a species that is known, not the mole fractions at the edge of the computational

domain.

It is assumed that the user knows the total flux of each species into the system in terms of

the upstream velocity , the normal flow velocity into the domain , the upstream

density , and the relative species mole fractions . The weak form of the FE discretization

yields a surface integral of the diffusive flux over the inlet boundary. Using (A.4) to solve for the

diffusive flux, we have

, (A.5)

Temperature BC of equation (A.1).
BC = T_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 0

Mass fraction BC of equation (A.2).
BC = Y_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 2

SPECIES_LIST = ALL
SURF_SPECIES_LIST = GaMe(S) Ga(S) GaH(S) AsH(S) AsMe(S) As(S)
BC_DATA = 1.0e-6 0.5 1.0e-6 1.0e-6 1.0e-6 0.5
SURF_SPECIES_LIST = Ga-GaAs(D) As-GaAs(D)
BC_DATA = 1.0 1.0

Tangential velocity BC with value 0.0.
BC = U_BC DIRICHLET SS 4 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 4 INDEPENDENT 0. 0

Normal velocity BC of equation (A.3) (Stefan flow).
BC = Z_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0

Figure A.1. Example usage of surface_chemkin_bc for surface reaction boundary conditions on temperature,
mass fractions and velocity (where the normal to side set 4 is parallel to the z-axis).

i

j total
i

j diffusive
i

j convective
i

+=

i

u0 v0 n u0•–=

ρ0 X0

n j diffusive
i• n j total

i
j convective
i

–
 • ρ– 0v0Y0

i ρvY
i

+= =

79

where is the mass fraction of species computed from the given mole fractions , is the

unknown mass fraction of species at the inlet boundary, is the unknown normal

velocity into the domain at the inlet boundary, and and are the densities calculated for

and . By conservation of mass, the total mass flux of species at the inlet boundary must be

equal to the given mass flux into the system,

, (A.6)

which leads to a Dirichlet condition on the inlet velocity:

. (A.7)

Using (A.7) to simplify (A.5), we get aMIXED boundary condition for each species,

. (A.8)

With MPSalsa, (A.7) and (A.8) are applied with the following lines in the Boundary

Condition section of the input file (assuming that the boundary is side set 1 and has a normal in

they-direction):
BC = V_BC DIRICHLET SS 1 DEPENDENT f_Danckwerts_X0 1

BC_DATA = FLOAT S_0 X1 X2 X3 .. XN
BC = Y_BC MIXED SS 1 INDEPENDENT f_Danckwerts f_Danckwerts_X0 0.0 0.0 1

SPECIES_LIST = ALL
BC_DATA = FLOAT S_0 X1 X2 X3 .. XN

The BC_DATA statements following theV_BC and Y_BC statements must be the same, and

consist of an upstream velocityS_0 followed by the list of molar flux fractions. The expression

for S_0 varies depending on the type of velocity boundary condition in which it is used. For

Dirichlet boundary conditions on one component of the velocity (i.e.,U_BC, V_BC, or

W_BC),

, (A.9)

where is the unit vector in the -coordinate direction. For Dirichlet boundary conditions on

the normal velocity (i.e.,VEL_NORM_BC),

. (A.10)

In both of these cases,S_0 is the velocity value that would be used if regular Dirichlet boundary

conditions on velocity were being imposed instead of Danckwerts’ boundary condition.

Y0
i

i X0 Y
i

i v n u•–=

ρ ρ0 Y

Y0 i

ρv ρ0v0=

v ρ0v0 ρ⁄=

n j diffusive
i• ρ0v0 Y Y0–()=

uk u

S_0 v0 n ek•–()=

ek k
th

n u•

S_0 n u0• v0–= =

80

The function f_Danckwerts_X0 , when used as a velocity boundary condition,

calculates the ratio of the densities in (A.7) and multiplies it byS_0. When used as aY_BC, this

function returns the appropriate mass fraction calculated from the mole fractions .

The functionf_Danckwerts returns the quantity , which is analogous to the

heat transfer coefficient in the typicalMIXED boundary condition. It calculates assuming that

the temperature and pressure upstream of the boundary are equal to those values used at the

boundary. Thus, only the mass fractions and the normal velocity are allowed to have a jump

discontinuity between the upstream and the domain. This limits effective usage of this boundary

condition to cases where there is a Dirichlet condition on the temperature on the same boundary.

If the inlet fluxes are known in terms of mass fractions instead of mole fractions, the

function f_Danckwerts_Y0 can be used in place of thef_Danckwerts_X0 above, and the

list of mass fractions must followS_0 in theBC_DATA statements.

A.1.3. Spinning Disk Boundary Conditions

A.1.3.1. Spinning Disk in thexy-Plane

The boundary condition functionf_xy_spin_disk is used to apply Dirichlet boundary

conditions on velocities on a spinning disk in thexy-plane. This function returns non-zero values

only for boundary condition typesU_BC and V_BC. It should be called as an independent

Dirichlet condition on either side sets or node sets, and requires aBC_DATA statement. The

BC_DATA line must include three floating point numbers, the first being the disk rotation rate in

rpms (revolutions per minute) in the counterclockwise direction. The next two entries are the

coordinates of the rotation center.

For example, boundary conditions for a disk rotating at 80 rpm that is centered at the point

 would be imposed using the following lines in the input file:

U_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
BC_DATA = 80.0 2.0 -3.0

V_BC DIRICHLET NS 1 INDEPENDENT f_xy_spin_disk 1
BC_DATA = 80.0 2.0 -3.0

The rotation rate is translated from rpm to radians/sec in a pre-processing step in the file

“rf_input_bc.c.”

A.1.3.2. Spinning Tilted Disk

The boundary conditionf_xy_spin_tilt9_disk was written for the Tilted CVD

reactor (see the example in Appendix D.3). In this reactor, the rotating substrate is on a tilted

plane whose tangent vectors are and , with degrees. Since the

X1 X2 … XN, , ,
ρ0v0 ρ0 S_0=

ρ0

x y(,) 2 3–(,)=

1 0 0, ,() 0 ϕ ϕsin,cos,() ϕ 9=

81

velocity normal to the disk can be non-zero due to the Stefan velocity, the rotation boundary

conditions are imposed in the two tangential directions using the Generalized Surface

functionality.

As with the spinning disk boundary condition in Appendix A.1.3.1, this independent

Dirichlet condition requires aBC_DATA statement with the rotation rate, followed by the center

of rotation. An example using this boundary condition, including the specification of the

generalized surface along side set 5, is shown in Figure A.2. This specification is for a disk

centered at that is rotating at 80 rpm.

A.1.4. Mass Fraction Dirichlet Boundary Conditions expressed as Mole Fractions

In MPSalsa, the primitive variables for mass transfer are mass fractions, but for many

applications, it is the mole fractions that are known. MPSalsa includes the function

f_mole_fraction which allows the user to specify the mole fractions as a Dirichlet condition

along a side set or node set. An example of this boundary condition is in Figure A.3. The mole

fractions for all species are listed on theBC_DATA line in the order of theSPECIES_LIST

arguments above it. ForSPECIES_LIST = ALL , the mole fractions should be listed in order

from the first species to the last species. The mole fractions can be spread across more than one

BC_DATA statement, each preceded by aSPECIES_LIST statement.

0 0 1.5046, ,()

Figure A.2. Example usage off_xy_spin_tilt9_disk to specify Dirichlet boundary conditions for
velocities on a spinning, tilted disk.

Number of Generalized Surfaces = 1
GENERALIZED_SURFACE 5 2

TANGENT 1.0 0.0 0.0
TANGENT 0.0 0.9876 0.1564

Number of BC = 33
BC = VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_tilt9_disk 1

BC_DATA = FLOAT 80.0 0.0 0.0 1.5046
BC = VEL_TAN2_BC DIRICHLET GS 1 INDEPENDENT f_xy_spin_tilt9_disk 1

BC_DATA = FLOAT 80.0 0.0 0.0 1.5046
...

Figure A.3. Example usage off_mole_fraction to specify Dirichlet boundary conditions for mass
fractions in terms of mole fractions.

BC = Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraction 1
SPECIES_LIST = 2 1 4 3
BC_DATA = 1.232900e-04 1.095458e-02 9.889221e-01 0.0

82

The conversion from mole fractions to mass fractions is done once in a preprocessing step,

with the resulting mass fractions being stored in theBC_Data_Float array where the mole

fractions originally were. Error checking makes sure that each species is assigned a mole fraction

and that the sum of mole fractions is near unity.

A.1.5. Outflow Boundary Condition

The included functionf_pressure returns the hydrodynamic pressure unknown

weighted by a constant. This value can be used as an outflow boundary condition by imposing this

function as a Neumann condition on the normal component of the momentum equation. The

usage of the function in the case of outflow from the computational domain on side set 3, with a

normal in they-direction, is

BC = V_BC NEUMANN SS 3 DEPENDENT f_pressure 1
BC_DATA = FLOAT 1.0

The single floating point data statement required with thef_pressure boundary condition is a

multiplicative factor, which will be discussed later.

A reasonable outflow boundary condition on the normal component of the momentum

balance is that the normal velocity is not changing as it leaves the domain, i.e.

where represents the direction normal to the boundary and is the normal velocity. The weak

form of the FE residual equation in the direction normal to the surface with respect to test function

 renders the following surface integral for the normal component of the stress tensor:

. (A.11)

From the continuity equation, the middle term is identically zero for incompressible flows

and is often negligible for variable-density flows. A natural condition that sets the entire integral

to zero works for many cases as an outflow boundary condition and has the added feature of

setting the pressure datum to near zero along the outflow surface. Thus, no boundary condition for

pressure is needed for open flows while the pressure must be set at one node for closed flows.

This natural condition does not work for cases where the pressure is not constant along the

outflow surface, such as a vertical outflow plane in systems with gravity and swirling flows such

as the Rotating Disk Reactor configuration in Appendix D.2. It is for these systems that we

impose the simplef_pressure Neumann boundary condition

dun dn⁄ 0=

n un

Ψj

P–
2
3
---µ u∇•– 2+ µ

nd

dun

Ψj Γd
Γ
∫

83

. (A.12)

In (A.12), k is the multiplicative floating point number input in theBC_DATA statement.

When and the divergence of the velocity is negligible, this boundary condition weakly

imposes the desired outflow boundary condition. However, this results in an arbitrary pressure

datum again. We have found empirically that setting the multiplicative constant in the range of

 gives smooth outflow profiles while still setting the average pressure on the

outflow boundary to zero.

The FIDAP package [13] also integrates the pressure as an outflow boundary condition,

but does not include the derivatives of the boundary condition in the Jacobian matrix. The

pressure from the previous Newton iteration sets the pressure at the current step, removing the

need for a value ofk other than unity to set the pressure datum. However, this omission can

greatly degrade convergence of Newton’s method. The user can try this method by changing the

boundary condition to typeINDEPENDENT so that no Jacobian entries are computed for this

boundary condition. Other outflow boundary conditions are under development.

A.2. Look-up Tables

Values of properties and boundary conditions may be interpolated from tables of data

specified in the Function Data section of the input file (see Section 3.11). Two of these look-up

tables,lookup_table_1 and lookup_table_2 , are included in MPSalsa. Other look-up

tables can be easily added by following the example oflookup_table_1 in “rf_fn_data.c”

(actual code for the function), “rf_fill_const.h” (prototype for the function), and

“rf_bc_exact_fn.c” and “rf_source_fn.c” (pointer assignment routines for the function).

Look-up tables can be used anywhere aSNGLVAR_FUNCTION can be used (see Table

4.2). For example, to use a look-up table to compute the volumetric source term as a function of

temperature for the mass fraction equations, a variable mass fraction source term is specified in

the Material Properties section of the input file (see Section 3.6):

Y_VOLUME_VAR = lookup_table_1 single

The data forlookup_table_1 is included as aTABLE in the Function Data section of the

input file:

k P–() Ψj Γd
Γ
∫

k 1.0=

k 0.9 0.99,[]∈

84

Function = lookup_table_1 2
FN_DATA = STRING TEMPERATURE
FN_DATA = TABLE n 2

 ...

where are the values of the temperatures (in increasing order) and are

corresponding mass fraction source term values. TheFN_DATA STRING indicates the

independent variable to use in the table. The look-up function uses linear interpolation to compute

the source term using the values of the independent variable passed tolookup_table_1 .

A.3. Output

The following functions have been written to provide some useful output from MPSalsa

for the analysis of solutions. Still, the majority of post-processing is left to graphics packages that

can read ExodusII files.

None of the following functions are called automatically from MPSalsa, but must be

explicitly called from the functionuser_out in the file “rf_user_out.c.” The function calls and

argument lists are described in comments at the top of each function.

The status variable, described in Figure 4.9, can be used to restrict the output. For

instance, the function call can be preceded by the following condition if output is not desired for

failed time steps:

if (status >=0).

A.3.1. Evolution of the Solution at a Point

The evolution of the solution at a point (or points) in the domain can be output from

MPSalsa using thetime_history_points output function. Two things must be done to use

this function. First, the function call

time_history_points(time, time_step_num, soln);

must be added to the functionuser_out in the file “rf_user_out.c” and the code must be

recompiled. Second, data must be input for this function in the Function Data Specifications

section of the input file (see Section 3.11). This function needs only a list of points at which the

solution output is desired. For instance, the following section of input file

t1 q1
t2 q2

tn qn

t1 t2 … tn, , , q1 q2 … qn, , ,

85

Function Name = time_history_points 1
FN_DATA = TABLE 2 3
 0.0 0.01 0.5
 0.0 0.99 0.5

would cause the entire solution at to be printed at each time step to the file

“time_his.0,” and the solution to be printed to the file “time_his.1.” The two

integers following theTABLE keyword specify the dimensions of the table to be read, with the

first number (2) representing the number of points at which to print data and the second number

(3) specifying the dimension of the system.

Each line of the output file contains the following information: time step number, time,x,

y, z (for 3D problems), and the entire solution at the point (with mass fractions translated to mole

fractions), in the following order: , , , . This output format allows for easy

plotting with a package such as “gnuplot,” where plotting column 7 versus column 3 gives a plot

of -velocity versus time.

A.3.2. The Solution along a Line

The time_history_line output function gives the ability to analyze the solution

along a line through the computational domain. This function has been used to generate many of

the plots in the example problems shown in subsequent appendices.

The implementation of this function is almost identical totime_history_points . A

call to the function

time_history_line(time, time_step_num, soln);

must be included inuser_out and the code must be recompiled. Thestatus flag can be used

to restrict some output, as described in Figure 4.9.

In the Function Data Specifications section of the input file (see Section 3.11), data must

be entered for this function. Two data lines are required: an integer that tells how many points on

the line are desired, and a table with two rows that gives the beginning and ending points of the

line. Solutions along more than one line can be output by supplying more than one set of data to

the function. The input lines in Figure A.4 show how this is done for a 2D problem. One line

gives a slice through the domain as a function ofx, and the other is a slice in they-direction. Each

line is written to a separate file and, unlike thetime_history_points function, the data at

each time step is written to a separate file. For instance, with the input data in Figure A.4, the

solution at the 80 points equally spaced on the line between and at the 14th time step

will be in the file “time_his_line.0.14,” and the 50 points equally spaced between and

 at the 7th time step will be in the file “time_his_line.1.7.”

0 0.01 0.5, ,()
0 0.99 0.5, ,()

u P T X1 X2 … XN, , ,

y u2

0 0(,) 1 0(,)

0.5 10.0–(,)

0.5 10.0(,)

86

As with thetime_history_points function, each line of the output file contains the

following information: time step number, time,x, y, z (for 3D problems), and the entire solution at

the point (with mass fractions translated to mole fractions), in the following order: , , ,

.

A.3.3. Information on a Side Set

The functionf_ss_centroid gives the user the ability to print many useful pieces of

information along a side set. Information from this function can be used to get such information

as the average temperature on a surface, the total heat flux into a wall, and the drag coefficient

over a body. The function calculates positions, solution values, normal gradients, and other

information at the centroid of the surface elements in one or more side sets.

The implementation of this routine requires that the following function call be added as

one of the first executable statements of functionuser_out :

f_ss_centroid(time, time_step_num, soln);

The code then must be recompiled. Also, data must be given to this function in the Function Data

Specifications section of the input file (see Section 3.11). An example is given here.

Function Name = f_ss_centroid 2
FN_DATA = INT 1 2 3
FN_DATA = STRING x T Area

The required integer data is a list of side set IDs for which information is to be printed. In this

case, information will be output for side sets 1, 2, and 3 all to the same output file. If it is desired

that the data be separated into different files for each side set, multiple sets of data can be supplied

to this function (with repeatedFunction Name lines), each with a single integer for the side set

list.

Function Name = time_history_line 2
FN_DATA = INT 80
FN_DATA = TABLE 2 2

0.0 0.0
1.0 0.0

Second line for time history output:
Function Name = time_history_line 2
FN_DATA = INT 50
FN_DATA = TABLE 2 2

0.5 -10.0
0.5 10.0

Figure A.4. Example function data lines fortime_history_line .

u P T

X1 X2 … XN, , ,

87

TheSTRING data specifies the quantities to be output. In this example, thex-coordinate,

the temperature, and the area (length) of the surface element are output. Table A.1 lists the strings

currently recognized by this function and the quantity that each string refers to. In the future, we

hope to add physical quantities such as the local density or viscosity to the list of recognized

strings.

The output from this function is written to files of the form “ss_data.n.m” where the

integern identifies the set of function data (for the first occurrence off_ss_centroid ,

STRING OUTPUT

t, time Time value

x x-coordinate of position

y y-coordinate of position

z z-coordinate of position

U Velocity in thex direction

V Velocity in they direction

W Velocity in thez direction

P Hydrodynamic pressure

T Temperature

Y Array of mass fractions

A, Area Area (length) of the element

n, normal Outward pointing normal vector

t1, tangent Tangent vector

t2, tangent2 Second tangent vector (for 3D problems)

Vn, Un Velocity in the normal direction

n_grad_U Normal component of the gradient of thex-component of velocity

n_grad_V Normal component of the gradient of they-component of velcocity

n_grad_W Normal component of the gradient of thez-component of velocity

n_grad_P Normal component of the gradient ofP

n_grad_T Normal component of the gradient ofT

n_grad_Y Normal component of the gradient ofYi, for all i

tau_n Traction vector / viscosity, no pressure contribution

Table A.1. List of Strings currently recognized by the f_ss_centroid output function. The bold strings lead to
more than one column of output.

n 0=

88

 for the second occurrence, etc.), andm is the time step number. Each file has one line for

each element in the side set(s), and each line has at least one column for each quantity specified in

theSTRING data statement.

 Integrated quantities over the side set can be calculated using the element area

information. For instance, the total conductive heat flux through the side set can be calculated by

summing over all surfaces in the side set the products of the area (A) of each surface with the

normal gradient of the temperature (n_grad_T) and the thermal conductivity. Averages can be

computed by summing over all surfaces the product of a quantity with the surface’s area, and

dividing the sum by the total area.

The tau_n string leads to an array of output that includes the components of the viscous

traction vector along the surface:

. (A.13)

Note thattau_n does not include the pressure term, which can be output independently, and does

not include the multiplication by the viscosity. The total drag force over an object in thex-

direction is the sum of the first component oftau_n (tau_x) multiplied by the viscosity and the

element area (A).

A.4. Interprocessor Communication Utilities

This section details some machine-independent communication functions callable within

MPSalsa that are useful when programming new functions for parallel applications, especially

when I/O is involved. The code for these functions is in “rf_comm.c.”

A.4.1. Synchronization

Certain operations require that all processors are at the same part of the code at the same

time. A call to thesync function causes each processor to wait until all processors have reached

the statement. The syntax is

sync(Proc, Num_Proc);

whereNum_Proc is the total number of processors running the problem, andProc is the unique

processor ID with a value between 0 and (Num_Proc - 1) of the current processor. Both

Num_Proc andProc are defined as global integer variables in MPSalsa and are initialized at the

beginning of MPSalsa’s execution. If any processor fails to reach thesync statement, the

computation will idle indefinitely.

n 1=

tau_n
2
3
---– u∇• 2

nd

dun+=

89

When each processor must write to a common output file, the print statement should be

surrounded by theprint_sync_start and print_sync_end function calls. These

functions synchronize the processors so that only one processor at a time executes the statements

between the calls. There can be no communication calls between these statements; such calls

would cause the program to reach a deadlocked state.

The code fragment in Figure A.5 demonstrates the use ofprint_sync_start and

print_sync_end . The resulting output file would contain the processor ID numbers printed in

order from 0 toNum_Proc - 1.

A.4.2. Broadcast

A machine-independent broadcast routine calledbrdcst has been written for use in

MPSalsa. Information on one processor (usually processor zero) is sent to all other processors

using this routine. There are five arguments for this function; the first two areProc and

Num_Proc; the third is the pointer to the memory location where the information is stored or to

be stored; the fourth is the message size; and the last is the number of the processor that is

initiating the broadcast (usually processor zero).

The code fragment in Figure A.6 illustrates the use of this routine, by broadcasting an

array of length two from processor zero to all other processors. The message size is the array

length (two) times the size of a double variable (computed using thesizeof function).

print_sync_start(Proc, Num_Proc,1);
if (Proc==0) ifp = fopen(“filename”,”w”);
else ifp = fopen(“filename”,”a”);
fprintf(ifp,”%d \n”,Proc);
fclose(ifp);

print_sync_end(Proc, Num_Proc);

Figure A.5. Code fragment demonstrating the use ofprint_sync_start andprint_sync_end .

double x[2];

if (Proc==0) {
x[0] = 10.5;
x[1] = 0.123;

}
brdcst(Proc, Num_Proc, (char *) x, 2*sizeof(double), 0);

Figure A.6. Code fragment demonstrating the use ofbrdcst . Upon return frombrdcst , x=[10.5, 0.123]
on all processors.

90

A.4.3. Global Sum, Maximum, and Minimum

Several functions that compute the sum, maximum or minimum of some value over all

processors are included in MPSalsa. Several of these functions are listed in Figure A.7. The

functionsgsum_int , gmax_int , andgmin_int compute the sum, maximum and minimum,

respectively, of an integer value. The functionsgsum_double , gmax_double , and

gmin_double , perform the same operations on double precision variables. In all cases, the first

argument is the quantity that is to be summed or compared.

int i,j;
double x,y;

...
j = gsum_int (i, Proc, Num_Proc);
j = gmax_int (i, Proc, Num_Proc);
j = gmin_int (i, Proc, Num_Proc);
y = gsum_double (x, Proc, Num_Proc);
y = gmax_double (x, Proc, Num_Proc);
y = gmin_double (x, Proc, Num_Proc);

Figure A.7. Functions for computing the sum, maximum and minimum of a value over all processors. The
functionsgsum_int , gmax_int andgmin_int operate on integers; the functionsgsum_double ,

gmax_double , andgmin_double operate on double precision variables.

91

Appendix B. Mass Transfer Examples

B.1. Diffusion in an Annulus

This simple example problem consists of a single species diffusing in an annular region,

and is designed to illustrate the use of the three different boundary condition types: Dirichlet,

Neumann, and Mixed. The domain has inner radius of and an outer radius of .

The domain is discretized with the 2048 element mesh shown Figure B.1, with the inner circle

designated Side Set 1 and the outer circle designated Side Set 2.

A volumetric mass source of magnitude one generates mass uniformly over the domain,

and the diffusion coefficient is also set equal to unity, leading to the following governing

equation:

, (B.1)

where C is a dimensionless concentration. At the inner circle of the annulus, we set a Dirichlet

condition of

Ri 1= Ro 2=

Figure B.1. Finite element mesh for theDiffusion in an Annulusexample problem. The mesh contains 2048
elements and 2112 nodes and is stored in the file washer.exoII.

Side Set 2

Side Set 1

∇2
C 1 0=+

92

 for . (B.2)

To illustrate the three different standard boundary condition types available in MPSalsa, we pose

three options for the boundary condition at the outer circle (Side Set 2):

either Dirichlet:

 for ; (B.3)

or Neumann:

 for ; (B.4)

or Mixed (Robin):

 for . (B.5)

Any of these three boundary conditions leads to the same analytic solution:

. (B.6)

This function has been programmed into a function calledf_annulus_exact to test the

computed solution.

The MPSalsa input file for solving this problem is given in Figure B.2. It shows that we

are solving a diffusion-only problem to a steady-state solution using the GMRES method with

preconditioning. The number of species and the volumetric source term are set in the Materials

Specifications section. At the end of the Output Specifications section, it is specified that the final

solution be tested against the analytic solution programmed inf_annulus_exact . As can be

seen in the Boundary Conditions section, this file applies the Dirichlet condition (B.3) on Side Set

2. The options of applying the Neumann condition (B.4) or Mixed condition (B.5) are commented

out by the pound sign (#).

Table B.1 compares the solutions for the three boundary condition types, by showing the

-error of the computed solution with respect to the analytic solution, the CPU time on an SGI

workstation needed to reach the solution, and the number of GMRES linear solve iterations

needed to reach the solution. Since the problem is linear, each solution required only one Newton

iteration. There is no significant difference between the three solutions, except the Neumann case

required a few more linear iterations.

C 1= r x
2

y
2

+ Ri= =

C 1 4⁄= r Ro=

n C 1=∇⋅ r Ro=

n C 4 C 0–()=∇⋅ r Ro=

C
5 x

2
– y

2
–

4
-------------------------=

L
2

93

--
 General Problem Specifications
--
Problem type = mass_diff
Input FEM file = Meshes/washer.exoII
LB file = none
Output FEM file = run_out.exoII
Number of processors = 1
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = default
Debug = 2
--
 Solution Specifications
--
Solution Type = steady
Order of integration/continuation = 1
Step Control = off
Relative Time Integration Error = 1.0e-3
Initial Parameter Value = 300.0
Initial Step Size = 2.0e-1
Maximum Number of Steps = 1000
Maximum Time or Parameter Value = 250.
--
 Solver Specifications
--
Override Default Linearity Choice = default

-- nonlinear solver subsection:

Number of Newton Iterations = 15
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term = 4
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

-- linear solver subsection:

Solution Algorithm = gmres
Convergence Norm = 1
Preconditioner = no_overlap_ilu
Polynomial = LS,1
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 25
Maximum Linear Solve Iterations = 50
Linear Solver Normalized Residual Tolerance = 1.0e-6
--
 Chemistry Specifications
--
Energy equation source terms = off
Species equation source terms = off
Pressure (atmospheres) = 1.0
Thermal Diffusion = off
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off
--
 Material ID Specifications
--
Number of Materials = 1
SOLID = 0 “Graphite”
 ELEM_BLOCK_IDS = 1
 NUM_SPECIES = 1
 SPECIES_NAME 1 YK_1
 DIFF_COEFF YK_1 1.0
 WTSPECIES YK_1 1.0
 XMF_0 YK_1 1.0
Source Term:
 Y_VOLUME = 1.0
END Material ID Specifications

--
 Boundary Condition Specifications
--
Number of Generalized Surfaces = 0
Number of BC = 2
BC on inner radius, r=1
BC = Y_BC DIRICHLET SS 1 INDEPENDENT 1.0 0
 SPECIES_LIST = ALL
#
BC on outer radius, r=2
#Dirichlet
BC = Y_BC DIRICHLET SS 2 INDEPENDENT 0.25 0
#Neumann
#BC = Y_BC NEUMANN SS 2 INDEPENDENT 1.0 0
#Mixed
#BC = Y_BC MIXED SS 2 INDEPENDENT 4.0 0.0 0.0 0.0 0
 SPECIES_LIST = ALL
--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = constant 0.0
Apply function = no
Time Index to Restart From = 1
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:
 every 1 steps

Number of nodal output variables = 1
Nodal variable names:
 Mass_fraction

Number of global output variables = 0
Global variable names:

Test Exact Solution Flag = 1
Name of Exact Solution Function = f_annulus_exact
--
 Parallel I/O section
--
Machine = paragon
Staged writes = yes

ncube subsection

Number of controllers = 8
Disks per controller = 1
Root location = //df
Subdirectory = jns/testa
Offset numbering from zero = 0

paragon subsection

Number of RAID controllers = 26
Root location = /pfs/io_
Subdirectory = tmp/kdd/ti43
Offset numbering from zero = 23
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 0

Figure B.2. Input file for theDiffusion in an Annulus example problem.

94

B.2. The Soret Effect

This simple example of thermal diffusion (the Soret effect) illustrates the use of a

CHEMKIN material type. The problem is solved on a 2D mesh but is essentially 1D. Hydrogen

(H2 -- molecular weight 2.016) and Trimethylgallium (GaMe3 -- molecular weight 114.83) are

allowed to interdiffuse along a steep thermal gradient. The 100-element mesh and boundary

conditions are shown in Figure B.3.

The input file for this example problem is shown in Figure B.4, and shows that this is an

energy and mass transfer problem, being solved directly to the steady-state using GMRES and a

preconditioner. Because the material is aCHEMKIN material, the number of species, species

names, molecular weights, and transport properties are not specified in the Materials

Specifications section. This information is read into MPSalsa from the file “chem.bin,” which is

BC Type on Side Set 2 L2 -Error CPU Time (seconds) Number of GMRES Iterations

Dirichlet 2.20e-4 1.16 16

Neumann 1.75e-4 1.34 23

Mixed 2.12e-4 1.19 17

Table B.1. Comparison of the three boundary condition types for theDiffusion in an Annulus example problem.

Figure B.3. 100 element mesh and boundary conditions for theSoret Effect example problem.

T=300

YGaMe3=.01

T=1000

FluxGaMe3=0

x-axis

YH2=.99 FluxH2=0

95

--
 General Problem Specifications
--
Problem type = energy_mass_diff
Input FEM file = Meshes/box100.exoII
LB file = none
Output FEM file = run-out.exoII
Number of processors = 1
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = default
Debug = 2
--
 Solution Specifications
--
Solution Type = steady
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error = 4.0e-3
Initial Parameter Value = 300.0
Initial Step Size = 1.0e-3
Maximum Number of Steps = 10
Maximum Time or Parameter Value = 1.0e+9
--
 Solver Specifications
--
Override Default Linearity Choice = default

---------------- nonlinear solver subsection: --------------

Number of Newton Iterations = 25
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term = 4
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

---------------- linear solver subsection: -----------------

Solution Algorithm = gmres
Convergence Norm = 1
Preconditioner = no_overlap_ilu
Polynomial = LS,1
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 100
Maximum Linear Solve Iterations = 200
Linear Solver Normalized Residual Tolerance = 1.0e-6
--
 Chemistry Specifications
--
Energy equation source terms = off
Species equation source terms = off
Pressure (atmospheres) = 0.1
Thermal Diffusion = on
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off
--
 Material ID Specifications
--
Number of Materials = 1
CHEMKIN = 0 “gaas_block”

ELEM_BLOCK_IDS = 1
T_INIT = 500.

XMF_0 GaMe3 0.01
XMF_0 H2 0.99

END Material ID Specifications

--
 Boundary Condition Specifications
--
Number of Generalized Surfaces = 0
Number of BC = 3
BC = T_BC DIRICHLET SS 4 INDEPENDENT 300.0 0
BC = T_BC DIRICHLET SS 2 INDEPENDENT 1000.0 0
BC = Y_BC DIRICHLET SS 4 INDEPENDENT f_mole_fraction 1
 SPECIES_LIST = H2 GaMe3 AsH3 CH4
 BC_DATA = FLOAT 0.99 0.01 0.0 0.0
--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = constant 0.0
Apply function = no
Time Index to Restart From = 1
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:
 every 2 steps

Number of nodal output variables = 2
Nodal variable names:
 Temperature
 Mass_fraction

Number of global output variables = 0
Global variable names:

Test Exact Solution Flag = 0
Name of Exact Solution Function = none
--
 Parallel I/O section
--
Machine = paragon
Staged writes = yes

ncube subsection

Number of controllers = 8
Disks per controller = 1
Root location = //df
Subdirectory = jns/testa
Offset numbering from zero = 0

paragon subsection

Number of RAID controllers = 19
Root location = /pfs/io_
Subdirectory = tmp/ags/em
Offset numbering from zero = 2
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 1

Function Name = time_history_line 2
#
FN_DATA = INT 25
FN_DATA = TABLE 2 2
 0.0 0.5
 1.0 0.5

Figure B.4. Input file for theSoret Effect example problem.

96

generated using the “interp” utility acting on the Chemkin input file for gas-phase species and

reactions, “gaas_b.gas” (Figure B.5). This file contains four species used in the deposition of

Gallium Arsenide crystals:AsH3, GaMe3, CH4, andH2; the first and third have zero mole

fractions in this problem.

The solution of this problem requires only 2.16 seconds on an SGI workstation, 5 Newton

iterations, and a total of 68 linear solve iterations. The solution across the domain at is

output using thetime_history_line included function, as can be seen on the last lines of

the input file. By plotting the output with “gnuplot,” the temperature and mole fraction ofGaMe3

across the width of the domain can analyzed, as in Figure B.6.

B.3. Si3N4 Equilibrium

This example differs from the previous examples in that it is run on multiple processors,

there are chemical reactions, and the steady-state solution is reached through time integration.

The example uses a large gas-phase reaction mechanism for the formation of Silicon Nitride

involving 17 species and 33 reactions. The species list and reaction mechanism are contained in

the Chemkin input file “si3n4.gas,” which is not shown here. An initial mixture of three reactants

is set in a 2D domain at a high temperature and allowed to react until equilibrium. No spatial

ELEMENTS
Ga As H C
END
!
SPECIES
 AsH3
 GaMe3
 CH4
 H2
END
!
THERMO ALL
300. 1000. 3000.
! Default temperature ranges for thermo files:
300. 1000. 3000.
!
CH4 121286C 1H 4 G 0300.00 5000.00 1000.00 1
 1.68347883E+00 1.02372356E-02-3.87512864E-06 6.78558487E-10-4.50342312E-14 2
-1.00807871E+04 9.62339497E+00 7.78741479E-01 1.74766835E-02-2.78340904E-05 3
 3.04970804E-08-1.22393068E-11-9.82522852E+03 1.37221947E+01 4
H2 121286H 2 G 0300.00 5000.00 1000.00 1
 2.99142337E+00 7.00064411E-04-5.63382869E-08-9.23157818E-12 1.58275179E-15 2
-8.35033997E+02-1.35511017E+00 3.29812431E+00 8.24944174E-04-8.14301529E-07 3
-9.47543433E-11 4.13487224E-13-1.01252087E+03-3.29409409E+00 4
AsH3 92090As 1H 3 0 0G 300.000 3000.000 1000.00 0 1
 0.48852077E+01 0.38298892E-02-0.36824741E-06-0.38365741E-09 0.87018486E-13 2
 0.81936514E+04-0.28651702E+01 0.27935255E+01 0.63927420E-02 0.77386630E-06 3
-0.19897164E-08 0.79792984E-13 0.90261641E+04 0.89869089E+01 4
GaMe3 92090Ga 1C 3H 9 0G 300.000 3000.000 1000.00 0 1
 0.12968908E+02 0.15346088E-01-0.12010402E-05-0.15080676E-08 0.32630482E-12 2
-0.87401934E+04-0.36943115E+02 0.47962584E+01 0.30363396E-01-0.34483364E-06 3
-0.15581833E-07 0.66991998E-11-0.61177363E+04 0.71641846E+01 4
END

Figure B.5. Chemkin input filegaas_b.gas , which contains the four species and their thermodynamic
data. No reactions are included.

y 0.5=

97

gradients are given in the problem, either as initial conditions or boundary conditions, so the

solution is essentially 0D.

The input file for this problem can be seen in Figure B.7. An accurate transient solution of

the problem is not desired; rather, only the solution at the final equilibrium state is of interest.

Thus, thepseudo time integration option is used with a stopping point of 100 seconds. The use

of only block-Jacobi scaling for preconditioning the matrix is adequate for many time-dependent

problems, since the matrix is better conditioned than with the steady-state formulation.

The input file is set up for running on 8 processors, and requires that a load balance file

“Meshes/testa-8-bKL.exoII” has been created. To run this problem in parallel on the Intel

Paragon, the file “chem.bin” must first be created on this machine from the Chemkin input file by

the following command:

> interp si3n4

To then solve the problem with MPSalsa, with an executable “salsa-smos” and the input file

“input-si3n4,” the user must type:

> yod -sz 8 salsa-smos input-si3n4

This run took 23 time steps to reach 100 seconds, and required 376 seconds.

Figure B.8 shows how the mole fractions of many species evolve with time. The data for

these plots was output using thetime_history_points function, which is called within

function user_out and has data supplied to it at the bottom of the input file. The plots were

made directly from this output using “gnuplot.”

Figure B.6. Profiles of temperature and GaMe3 mole fraction in the Soret Effect example problem. The
temperature is fixed at both ends, and the mole fraction is fixed at the left side. The drop in the mole fraction as

x increases is due solely to thermal diffusion.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 0.2 0.4 0.6 0.8 1

M
ol

e
F

ra
ct

io
n

G
aM

e3

X-axis

"run_time_history"

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

T
em

pe
ra

tu
re

X-axis

"run_time_history"

98

--
 General Problem Specifications
--
Problem type = mass_diff
Input FEM file = Meshes/testa.exoII
LB file = Meshes/testa-8-bKL.exoII
Output FEM file = run-out.exoII
Number of processors = 8
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = default
Debug = 2
--
 Solution Specifications
--
Solution Type = pseudo
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error = 4.0e-3
Initial Parameter Value = 300.0
Initial Step Size = 1.0e-5
Maximum Number of Steps = 75
Maximum Time or Parameter Value = 100.0
--
 Solver Specifications
--
Override Default Linearity Choice = nonlinear

---------------- nonlinear solver subsection: --------------

Number of Newton Iterations = 10
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = default
Choice for Inexact Newton Forcing Term = 4
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

---------------- linear solver subsection: -----------------

Solution Algorithm = gmres
Convergence Norm = 1
Preconditioner = none
Polynomial = LS,1
Scaling = block_jacobi
Orthogonalization = classical
Size of Krylov subspace = 100
Maximum Linear Solve Iterations = 300
Linear Solver Normalized Residual Tolerance = 1.0e-4
--
 Chemistry Specifications
--
Energy equation source terms = on
Species equation source terms = on
Pressure (atmospheres) = 1.0
Thermal Diffusion = off
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off
--
 Material ID Specifications
--
Number of Materials = 1
CHEMKIN = 0 “Graphite”
 ELEM_BLOCK_IDS = 1 2

 XMF_0 H2 0.5
 XMF_0 NH3 0.3
 XMF_0 SIF4 0.2

 T_INIT = 1700.
END Material ID Specifications

--
 Boundary Condition Specifications
--
Number of Generalized Surfaces = 0
Number of BC = 0
#
--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = constant 0.0
Apply function = no
Time Index to Restart From = 1
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = no
Time Index to Output To = 2
Nodal variable output times:
 every 2 steps

Number of nodal output variables = 1
Nodal variable names:
 Mass_fraction

Number of global output variables = 2
Global variable names:
 Delta_time
 Time_index

Test Exact Solution Flag = 0
Name of Exact Solution Function = f_xx_yy
--
 Parallel I/O section
--
Machine = paragon
Staged writes = yes

ncube subsection

Number of controllers = 8
Disks per controller = 1
Root location = //df
Subdirectory = jns/testa
Offset numbering from zero = 0

paragon subsection

Number of RAID controllers = 8
Root location = /pfs/io_
Subdirectory = tmp/ags
Offset numbering from zero = 1
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 1

Function Name = time_history_points 1
#
FN_DATA = TABLE 1 2
 .11 .11
@

Figure B.7. Input file for theSi3N4 Equilibriumexample problem.

99

B.4. Surface Reaction

This simple reaction-diffusion problem illustrates the use ofsurface_chemkin_bc ,

the function used to impose surface reactions as boundary conditions by interfacing with the

Surface Chemkin library (see Appendix A.1.1). Just as Chemkin is used for information on gas-

phase species, reactions, and properties, Surface Chemkin is used to access this information about

the surface and underlying bulk solid.

The problem is defined in a 2D box and uses the mechanism for the deposition of Gallium

Arsenide semiconductor crystals. This mechanism contains 17 gas-phase species, 24 gas-phase

reactions, 6 surface species, 38 surface reactions, and 2 bulk species. The surface reactions occur

on the left side of the box, and Dirichlet conditions for the main reactants and carrier gas are set

on the right side, as shown in Figure B.9. The system is assumed isothermal (at 913K); no-slip

velocities are imposed on all walls and no penetration is assumed on the top and bottom. At the

reacting surface, the normal velocity is not zero, but is set equal to the total mass flux per unit area

into the surface, divided by the density. This term is often called the Stefan velocity (see equation

(A.3)). At the right side, the normal momentum balance has a natural condition applied that sets

the normal component of the normal stress to zero. This boundary condition allows for a non-zero

velocity at this surface.

The surface site fractions of surface species and the bulk fractions are also unknowns in

this problem. To specify their values, we use a quasi-steady state assumption that these species are

always in equilibrium with the gas phase. This approximation adds no error for a steady-state

Figure B.8. Evolution in time of mole fractions of major species in theSi3N4 Equilibrium problem. The first
plot shows the three reactants, while the second shows the major products of the reactions. Since the pseudo

time integration scheme was used, these histories are not time accurate.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100

M
ol

e
F

ra
ct

io
n

of
 M

ai
n

P
ro

du
ct

s

Time

N2
HF

SiF3NH2
SiHF3

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

M
ol

e
F

ra
ct

io
n

of
 R

ea
ct

an
ts

Time

H2
SiF4
NH3

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

M
ol

e
F

ra
ct

io
n

of
 R

ea
ct

an
ts

Time

H2
SiF4
NH3

100

solution and is a good approximation in transient problems because of the relative speed of

surface reactions. Using the requirement that the generation rate of any surface species is equal to

its consumption rate, and given the gas-phase species mole fractions, these unknowns can be

solved for implicitly and removed from the problem.

The input file for this problem is shown in Figure B.10. There are 20 unknowns per node

in this problem: 2 velocities, 1 pressure, and 17 species. The steady solution is solved for directly

using a preconditioned GMRES method, starting from an initial guess where 3 species have

nonzero mole fractions (see theXMF_0 lines in the Materials Specifications section). The

surface_chemkin_bc boundary condition function is used for reacting surfaces. The Stefan

velocity is set as a dependent Dirichlet condition where the value comes from the

surface_chemkin_bc function. (TheDEPENDENT keyword in this boundary condition

specifies that Jacobian entries are included for this term.) The same function is used for the

species balance equations, though in this case it is a Neumann boundary condition since it is a

specification on the flux.

There is an option with thesurface_chemkin_bc to input initial guesses for the

surface site and bulk fractions. Since the equations for these species can be highly nonlinear, there

Figure B.9. 200-element mesh and boundary conditions for theSurface Reactionexample problem.sk is the
molar production rate of species k due to the surface reaction,Wk is the molecular weight os species k, andρ

is the density. The nonzero velocity due to surface reaction is called the Stefan velocity.

YAsH3=.01

YH2=.9899

YGaMe3=.0001

U=0 V=0

V=0

U=(ΣskWk)/ρ

Fluxk=skWk

Fluxk=0

U=0 V=0Fluxk=0

V=0

Stressxx = 0

101

--
 General Problem Specifications
--
Problem type = fluid_flow_mass
Input FEM file = Meshes/box200.exoII
LB file = bKL.exoII
Output FEM file = run_out.exoII
Number of processors = 1
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = default
Debug = 2
--
 Solution Specifications
--
Solution Type = steady
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error = 5.0e-3
Initial Parameter Value = 300.0
Initial Step Size = 1.0e-7
Maximum Number of Steps = 4
Maximum Time or Parameter Value = 10
--
 Solver Specifications
--
Override Default Linearity Choice = default

-- nonlinear solver subsection:

Number of Newton Iterations = 12
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term = 4
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

-- linear solver subsection:

Solution Algorithm = gmres
Convergence Norm = 0
Preconditioner = no_overlap_ilu
Polynomial = LS,1
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 50
Maximum Linear Solve Iterations = 100
Linear Solver Normalized Residual Tolerance = 3.0e-3
--
 Chemistry Specifications
--
Energy equation source terms = on
Species equation source terms = on
Pressure (atmospheres) = 0.1
Thermal Diffusion = off
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off
--
 Material ID Specifications
--
Number of Materials = 1
CHEMKIN = 0 “gaas”
 ELEM_BLOCK_IDS = 1

T_INIT set the Temperature for this isothermal problem
 T_INIT = 913.0

 U_INIT = 0.0
 V_INIT = 0.0
 P_INIT = 0.0
 XMF_0 AsH3 0.001
 XMF_0 GaMe3 0.0001
 XMF_0 H2 0.9989

END Material ID Specifications

--
 Boundary Condition Specifications
--
Number of Generalized Surfaces = 0

Number of BC = 9
#
BC = U_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0
BC = U_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = U_BC DIRICHLET SS 3 INDEPENDENT 0. 0
#
BC = V_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 2 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 3 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 4 INDEPENDENT 0. 0
#
BC = Y_BC DIRICHLET SS 2 INDEPENDENT f_mole_fraction 1
 SPECIES_LIST = ALL
 BC_DATA = .001 .0 .0 .0 .0 .0 .0 .0 .0 .0001 .0 .0 .0 .0
.0 .0 .9989
BC = Y_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 2
 SPECIES_LIST = ALL
 SURF_SPECIES_LIST = GaMe(S) Ga(S) GaH(S) AsH(S) AsMe(S)
As(S)
 BC_DATA = FLOAT 1.0e-5 0.5 1.0e-5 1.0e-5 1.0e-5 0.5
 SURF_SPECIES_LIST = Ga-GaAs(D) As-GaAs(D)
 BC_DATA = FLOAT 1.0 1.0
--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = constant 0.0
Apply function = no
Time Index to Restart From = 1
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:
 every 1 steps

Number of nodal output variables = 3
Nodal variable names:
 Velocity
 Pressure
 Mass_Fraction

Number of global output variables = 0
Global variable names:

Test Exact Solution Flag = 0
Name of Exact Solution Function = f_xx_yy
--
 Parallel I/O section
--
Machine = paragon
Staged writes = yes

paragon subsection

Number of RAID controllers = 8
Root location = /pfs/io_
Subdirectory = tmp/kdd/ti3
Offset numbering from zero = 23
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 0

Figure B.10. Input file for theSurface Reactionexample problem.

102

are initial guesses that do not lead to a converged solution, and sometimes there are multiple

solutions. The initial guesses are input using theSURF_SPECIES_LIST keyword, as can be

seen in the input file. The default initial guess is equal fractions of all species within a given

surface or bulk phase. For the mechanism in this example, the surface reaction calculations fail

with the default initial guess. The initial guess is used only the first time the surface reaction

calculations are computed; for subsequent Newton iterations and time steps, the previous

calculation of surface site and bulk fractions are used as the initial guess.

The steady-state solution for the 4620 unknowns in this problem required 4 Newton

iterations and 89 seconds on an SGI workstation. A visualization of the solution is presented in

Figure B.11. The weak flow driven by the Stefan velocity is shown with velocity vectors, as are

contours of one of the species generated by the surface reactions and consumed in gas-phase

reactions. The vertical contours show that the flow is too weak for convection to distort the 1D

diffusion-reaction problem.

Figure B.11. Visualization of the solution for theSurface Reaction example problem. The deposition on the
left wall drives a velocity to the left, as shown in the plot on the left. The velocity is nearly uniform near the
wall, but is more parabolic at the source on the right side. Shown on the right are mole fraction contours of

theH atom, which is produced at the surface.

103

Appendix C. Fluid Mechanics and Heat Transfer Examples

The example problems in Section C.3 through Section C.5 were developed, run, and

written up by Professor Michael Jensen of the Mechanical Engineering Department of Rensselaer

Polytechnic Institute during a sabbatical at Sandia National Laboratories in Spring 1996.

Exhaustive mesh independence studies were not done for any of the examples in Section C.3

through Section C.5, but the meshes were refined to adequately show agreement with data from

the literature. For these examples, the mks unit system was used; that is, the units used on all the

quantities are length (m); velocity (m/s); temperature (K); pressure (N/m^2); heat flux (W/m^2);

density (kg/m^3); specific heat (J/kgK); thermal conductivity (W/mK); and dynamic viscosity

(Ns/m^2).

C.1. Navier-Stokes 3D Exact Solution

 An analytic solution to the Navier-Stokes equations for a three-dimensional time-

dependent problem is known for a generalized Beltrami-type flow [11]. We use this problem to

demonstrate the solution of a transient fluid mechanics system and to document the convergence

properties of our implementation of the finite element method.

In MPSalsa, the functionf_3d_navier_stokes provides the exact solution for this

flow in a cube of unit length when these same functions, evaluated at all boundaries, are imposed

as boundary conditions:

(C.1)

The MPSalsa input file for this test problem is shown in Figure C.1. The first line specifies

that a fluid mechanics problem is to be solved. A linear spatial approximation is to be used. A

u a– e
d

2
t–

e
ax

ay dz+()sin e
az

ax dy+()cos+

=

v ae
d

2
t–

– e
ay

az dx+()sin e
ax

ax dz+()cos+

=

w a– e
d

2
t–

e
az

ax dy+()sin e
ay

az dx+()cos+

=

p
1
2
---a

2
e

2d
2
t–

– e
2ax

e
2ay

e
2az

+ + +

=

2 ax dy+()sin az dx+()cos e
a y z+()

+

2 ay dz+()sin ax dy+()cos e
a x z+()

+

2 az dx+()sin ay dz+()cos e
a x y+()

a 0.25π=

d 0.5π=

104

time-accurate transient solution method with a second-order time integration scheme and variable

time step is selected. The run is set to terminate at a time of 0.1 seconds. As can be seen in the

Boundary Condition Specifications section, Dirichlet boundary conditions computed by the

function f_3d_navier_stokes are prescribed for all velocity and pressure unknowns on all

domain boundaries. This same function used to specify the initial conditions. In addition, the

exact solution is compared with the computed solution for convergence analyses by setting

f_3d_navier_stokes in the input file as the exact solution.

The input ExodusII mesh is an 8x8x8-element mesh with 729 nodes and 2916 total

unknowns. The same problem was solved using discretizations of 4x4x4, 16x16x16, and

32x32x32 elements. Details of the four runs are show in Table C.1. All runs required 27 time steps

to reach 0.1 seconds.

The error in the computed solution as compared to the exact solution is presented in Table

C.1 and shown graphically in Figure C.2. TheL2-norms of the error in thex-component of the

velocity and in the pressure unknown are plotted versus the element size. The slopes of the lines

connecting the results for the coarsest mesh and the finest mesh on the log-log plot are near 2, the

expected value for the linear discretization scheme.

C.2. Lid-Driven Cavity Problem

The lid-driven cavity problem is a two-dimensional fluid mechanics problem on a square

domain that has often been used as a benchmark problem [19]. The fluid is confined in the square,

but the top surface is pulled horizontally, driving clockwise flow. The geometry, boundary

conditions, and 64x64-element mesh are shown in Figure C.3.

The input file for this example is shown in Figure C.4. The viscosity and density are set to

one, so that the velocity is equal to the Reynolds number. This problem is increasingly difficult to

solve as the Reynolds number is increased. SUPG stabilization is turned on (in the General

Number of
elements in

1D

Total
Number of
Elements

of Intel
Paragon

Processors

CPU seconds L2-error
of Velocity in thex-
direction at 0.1 sec.

L2 -error of
Pressure at 0.1 sec

4 64 1 305 1.008e-03 1.904e-02

8 512 16 308 2.781e-04 1.183e-02

16 4096 64 452 6.512e-05 1.643e-03

32 32,768 128 1543 1.381e-05 5.090e-04

Table C.1. Details of the mesh convergence calculations for theNavier-Stokes 3D Exact Solution problem.

105

--
 General Problem Specifications
--
Problem type = fluid_flow
Input FEM file = ../Meshes/box_3d_8.exoII
LB file = ../Meshes/box_3d_8-m16-
bKL.nemI
Output FEM file = box_3d_out.exoII
Number of processors = 16
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = default
Debug = 1
--
 Solution Specifications
--
Solution Type = transient
Order of integration/continuation = 2
Step Control = on
Relative Time Integration Error = 1.0e-5
Initial Parameter Value = 10.0
Initial Step Size = 1.0e-5
Maximum Number of Steps = 2000
Maximum Time or Parameter Value = 0.1
--
 Solver Specifications
--
Override Default Linearity Choice = default

---------------- nonlinear solver subsection: --------------

Number of Newton Iterations = 25
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = default
Choice for Inexact Newton Forcing Term = 0
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-6
Solution Absolute Error Tolerance = 1.0e-8

---------------- linear solver subsection: -----------------

Solution Algorithm = gmres
Convergence Norm = 0
Preconditioner = none
Polynomial = LS,1
Scaling = block_jacobi
Orthogonalization = classical
Size of Krylov subspace = 64
Maximum Linear Solve Iterations = 200
Linear Solver Normalized Residual Tolerance = 1.0e-8
--
 Chemistry Specifications
--
Energy equation source terms = off
Species equation source terms = off
Pressure (atmospheres) = 0.09210526
Thermal Diffusion = on
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off

--
Material ID Specifications

--
Number of Materials = 1
NEWTONIAN = 0 “Air”
 ELEM_BLOCK_IDS = 1

 VISCOSITY = 1.0
 DENSITY = 1.0

END Material ID Specifications

--
Boundary Condition Specifications

--
Number of Generalized Surfaces = 0
Number of BC = 24
Prescribed Dirichlet conditions on all boundaries
BC = U_BC DIRICHLET SS 1 INDEPENDENT f_3d_navier_stokes 0
BC = V_BC DIRICHLET SS 1 INDEPENDENT f_3d_navier_stokes 0
BC = W_BC DIRICHLET SS 1 INDEPENDENT f_3d_navier_stokes 0
BC = P_BC DIRICHLET SS 1 INDEPENDENT f_3d_navier_stokes 0
#
BC = U_BC DIRICHLET SS 2 INDEPENDENT f_3d_navier_stokes 0
BC = V_BC DIRICHLET SS 2 INDEPENDENT f_3d_navier_stokes 0
BC = W_BC DIRICHLET SS 2 INDEPENDENT f_3d_navier_stokes 0
BC = P_BC DIRICHLET SS 2 INDEPENDENT f_3d_navier_stokes 0
#
BC = U_BC DIRICHLET SS 3 INDEPENDENT f_3d_navier_stokes 0
BC = V_BC DIRICHLET SS 3 INDEPENDENT f_3d_navier_stokes 0
BC = W_BC DIRICHLET SS 3 INDEPENDENT f_3d_navier_stokes 0
BC = P_BC DIRICHLET SS 3 INDEPENDENT f_3d_navier_stokes 0
#
BC = U_BC DIRICHLET SS 4 INDEPENDENT f_3d_navier_stokes 0
BC = V_BC DIRICHLET SS 4 INDEPENDENT f_3d_navier_stokes 0
BC = W_BC DIRICHLET SS 4 INDEPENDENT f_3d_navier_stokes 0
BC = P_BC DIRICHLET SS 4 INDEPENDENT f_3d_navier_stokes 0
#
BC = U_BC DIRICHLET SS 5 INDEPENDENT f_3d_navier_stokes 0
BC = V_BC DIRICHLET SS 5 INDEPENDENT f_3d_navier_stokes 0
BC = W_BC DIRICHLET SS 5 INDEPENDENT f_3d_navier_stokes 0
BC = P_BC DIRICHLET SS 5 INDEPENDENT f_3d_navier_stokes 0
#
BC = U_BC DIRICHLET SS 6 INDEPENDENT f_3d_navier_stokes 0
BC = V_BC DIRICHLET SS 6 INDEPENDENT f_3d_navier_stokes 0
BC = W_BC DIRICHLET SS 6 INDEPENDENT f_3d_navier_stokes 0
BC = P_BC DIRICHLET SS 6 INDEPENDENT f_3d_navier_stokes 0
--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = constant 0.0
Apply function = f_3d_navier_stokes
Time Index to Restart From = 0
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = no
Time Index to Output To = 0
Nodal variable output times:
 every 2 steps

Number of nodal output variables = 2
Nodal variable names:
 Velocity
 Pressure

Number of global output variables = 0
Global variable names:

Test Exact Solution Flag = 1 SUMMARY
Name of Exact Solution Function = f_3d_navier_stokes
--
 Parallel I/O section
--
Machine = paragon
Staged writes = yes

ncube subsection

Number of controllers = 8
Disks per controller = 1
Root location = //df
Subdirectory = jns/testa
Offset numbering from zero = 0

paragon subsection

Number of RAID controllers = 26
Root location = /pfs/io_
Subdirectory = tmp/ags/ti43
Offset numbering from zero = 23
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 0

Figure C.1. Input file for theNavier-Stokes 3D Exact Solutionexample problem.

106

Problem Specifications section of the input file), which reduces the oscillations in highly-

convective flows and greatly improves convergence.

The backtracking algorithm in the nonlinear solver is also turned on. For this calculation,

which starts from a trivial initial guess and attempts to reach a steady state at a Reynolds number

of 1500, Newton’s method without backtracking diverges. With backtracking, this calculation

converged to a steady state in 11 Newton iterations, which took 229 seconds on 16 processors of

the Intel Paragon.

In Section 5.3, this example problem was used to demonstrate the method of mesh

sequencing for obtaining a converged solution to a difficult problem. For large problems that are

spread across many processors, the ILU (domain decomposition) preconditioners are not as

robust. In many cases, the same problem on a coarser mesh and spread across fewer processors

will converge more readily. Mesh sequencing is a method to capitalize on this phenomena by first

solving the problem on a coarse mesh, interpolating the converged solution to a finer mesh, and

then using this solution as an initial guess on the fine, accurate mesh. See Table 5.2 in Section 5.3

for an example of the benefit of this approach.

Figure C.2. Log-log plot of the L2-error in the solution versus the element width for theNavier-Stokes 3D
Exact Solution problem. Second-order convergence with respect to the mesh spacing is observed.

107

C.3. Hydrodynamically Developing Flow in an Infinite Parallel Plate Channel

Developing steady laminar flow in the entrance region of a straight parallel plate channel

is demonstrated in this example. To resolve the flow near the inlet, a mesh that was finer near the

inlet than at the outlet was used. The mesh was also refined near the lower wall boundary. The

entire mesh had 500x60 elements. A small section of the domain in the entrance region is shown

in Figure C.5 to show the expanding mesh. Advantage is taken of the line of symmetry through

the channel centerline. An expanding grid is used from the wall to the centerline and from the

entrance along the channel. The upper plate is located 0.5 units from the channel centerline, and

the channel has a length of 10. The upper plate is designated Side Set 1; the outflow boundary is

Side Set 2; the channel centerline is Side Set 3; and the inlet boundary is Side Set 4.

Figure C.3. 4096-element mesh and boundary conditions for theLid-Driven Cavity example problem.

U=1500 V=0

U=0 V=0

U=0

V=0

U=0

V=0

P=0

108

--
 General Problem Specifications
--
Problem type = fluid_flow
Input FEM file = Meshes/box_0064.exoII
LB file = Meshes/box_0064-m16-bKL.nemI
Output FEM file = run_out.exoII
Number of processors = 16
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = supg
Debug = 2
--
 Solution Specifications
--
Solution Type = steady
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error = 1.0e-3
Initial Parameter Value = 10.0
Initial Step Size = 1.0e-2
Maximum Number of Steps = 80
Maximum Time or Parameter Value = 1.0e+2
--
 Solver Specifications
--
Override Default Linearity Choice = default

---------------- nonlinear solver subsection: --------------

Number of Newton Iterations = 50
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = yes
Choice for Inexact Newton Forcing Term = 4
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-2
Solution Absolute Error Tolerance = 1.0e-5

---------------- linear solver subsection: -----------------

Solution Algorithm = gmres
Convergence Norm = 0
Preconditioner = no_overlap_ilu
Polynomial = LS,1
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 200
Maximum Linear Solve Iterations = 500
Linear Solver Normalized Residual Tolerance = 1.0e-4
--
 Chemistry Specifications
--
Energy equation source terms = off
Species equation source terms = off
Pressure (atmospheres) = 0.09210526
Thermal Diffusion = on
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off

--
Material ID Specifications

--
Number of Materials = 1
SOLID = 0 “Air”
 ELEM_BLOCK_IDS = 1

 VISCOSITY = 1.0
 DENSITY = 1.0

END Material ID Specifications

--
Boundary Condition Specifications

--
Number of Generalized Surfaces = 0
Number of BC = 9
Upper moving wall
BC = U_BC DIRICHLET NS 3 INDEPENDENT 1500.0 0
BC = V_BC DIRICHLET NS 3 INDEPENDENT 0.0 0

No slip boundary conditions on all surfaces
BC = U_BC DIRICHLET NS 1 INDEPENDENT 0.0 0
BC = V_BC DIRICHLET NS 1 INDEPENDENT 0.0 0
BC = U_BC DIRICHLET NS 2 INDEPENDENT 0.0 0
BC = V_BC DIRICHLET NS 2 INDEPENDENT 0.0 0
BC = U_BC DIRICHLET NS 4 INDEPENDENT 0.0 0
BC = V_BC DIRICHLET NS 4 INDEPENDENT 0.0 0

PRESSURE DATUM SET AT A SINGLE NODE FOR PROBLEM WITH
NO NATURAL OR SPECIFIED STRESS BOUDNARY
BC = P_BC DIRICHLET NS 5 INDEPENDENT 0.0 0
--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = constant 0.0
Apply function = no
Time Index to Restart From = 1
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:
 every 2 steps

Number of nodal output variables = 2
Nodal variable names:
 Velocity
 Pressure

Number of global output variables = 0
Global variable names:

Test Exact Solution Flag = 0
Name of Exact Solution Function = f_xx_yy
--
 Parallel I/O section
--
Machine = paragon
Staged writes = yes

ncube subsection

Number of controllers = 8
Disks per controller = 1
Root location = //df
Subdirectory = jns/testa
Offset numbering from zero = 0

paragon subsection

Number of RAID controllers = 26
Root location = /pfs/io_
Subdirectory = tmp/ags/ti43
Offset numbering from zero = 23
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 0

Figure C.4. Input file for theLid-Driven Cavityexample problem.

109

A uniform velocity profile is provided at the entrance to the channel. No slip is imposed at

the solid wall, and no shear is set at both the channel centerline and the outflow boundary;

transverse velocities are set to zero on all side sets. The MPSalsa input file is listed in Figure C.6.

Shown in Figure C.7 is the developing velocity profile along the channel; comparison is

made against results from a similar calculation using the finite difference algorithm SIMPLER

[36] on a coarser grid. (The characteristic overshoot in velocity at locations near the entrance is

physically possible and can be obtained numerically using the appropriate entrance and boundary

conditions, as discussed in Shah and London [45].) The analytic solution for fully-developed flow

in a channel predicts that the product of the friction factor and the Reynolds number is 24.0. The

value of 23.97 calculated by MPSalsa at the exit of the channel compares well with the analytic

result.

C.4. Thermally Developing Flow in an Infinite Parallel Plate Channel

A variation of the example in Appendix C.3 is to impose a hydrodynamically fully-

developed flow (parabolic velocity profile) at the entrance of the channel and to heat the wall at a

constant heat flux. The mesh used in Appendix C.3 is also used for this example (Figure C.5). The

Figure C.5. Expanding mesh of the entrance region for developing flow between parallel plates.

110

--
 General Problem Specifications
--
Problem type = fluid_flow
Input FEM file = rect.exoII
LB file = rect-32-bKL.exoII
Output FEM file = rectFM-out.exoII
Number of processors = 32
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = supg
Debug = 2
--
 Solution Specifications
--
Solution Type = steady
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error = 1.0e-3
Initial Parameter Value = 10.0
Initial Step Size = 30.0
Maximum Number of Steps = 8
Maximum Time or Parameter Value = 1.0e+2
--
 Solver Specifications
--
Override Default Linearity Choice = default

---------------- nonlinear solver subsection: --------------

Number of Newton Iterations = 80
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = default
Choice for Inexact Newton Forcing Term = 0
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

---------------- linear solver subsection: -----------------

Solution Algorithm = gmres
Convergence Norm = 0
Preconditioner = no_overlap_ilu
Polynomial = LS,1
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 92
Maximum Linear Solve Iterations = 500
Linear Solver Normalized Residual Tolerance = 1.0e-6
--
 Chemistry Specifications
--
Energy equation source terms = off
Species equation source terms = off
Pressure (atmospheres) = 0.09210526
Thermal Diffusion = on
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off

--
Material ID Specifications

--
Number of Materials = 1
NEWTONIAN = 0 “Air”
 ELEM_BLOCK_IDS = 1

 VISCOSITY = 1.0
 DENSITY = 1.0

 U_INIT = 50.0

END Material ID Specifications

--
Boundary Condition Specifications

--
Number of Generalized Surfaces = 0
Number of BC = 6

#Inlet boundary condition - uniform velocity
BC = U_BC DIRICHLET SS 4 INDEPENDENT 50. 0
BC = V_BC DIRICHLET SS 4 INDEPENDENT 0.0 0

Upper solid plate - No slip
BC = U_BC DIRICHLET SS 1 INDEPENDENT 0.0 0
BC = V_BC DIRICHLET SS 1 INDEPENDENT 0.0 0

Outflow boundary condition (no normal stress on x
component of the momentum equation)
BC = V_BC DIRICHLET SS 2 INDEPENDENT 0.0 0

Lower boundary is on the channel centerline
Set zero V velocity, no shear stress for U velo
BC = V_BC DIRICHLET SS 3 INDEPENDENT 0.0 0

--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = EXOII_FILE
Apply function = no
Time Index to Restart From = 1
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:
 every 2 steps

Number of nodal output variables = 2
Nodal variable names:
 Velocity
 Pressure

Number of global output variables = 0
Global variable names:

Test Exact Solution Flag = 0
Name of Exact Solution Function = f_xx_yy
--
 Parallel I/O section
--
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 8

#Call to output data along the wall (note: tau_n is printed out
as tau_x tau_y)
Function Name = f_ss_centroid 2
FN_DATA = INT 1
FN_DATA = STRING x Area P n_grad_U tau_n

#Call for time history output at channel inlet
#The data output are: time step, time, x, y, U, V, P
Function Name = time_history_line 2
FN_DATA = INT 10
FN_DATA = TABLE 2 2
 0.0 0.0
 0.0 0.5

#Call for time history output at various locations along the
channel
Function Name = time_history_line 2
FN_DATA = INT 60
FN_DATA = TABLE 2 2
 0.025 0.0
 0.025 0.5

Function Name = time_history_line 2
FN_DATA = INT 60
FN_DATA = TABLE 2 2
 0.1 0.0
 0.1 0.5

<< 4 more time_history_line data statements follow for
increasing values of x >>

Figure C.6. Input file for theHydrodynamically Developing Flow in an Infinite Parallel Plate Channel
example problem.

111

MPSalsa input file is given in Figure C.8. The hydrodynamic boundary conditions are the same as

in Appendix C.3 except for the inlet velocity boundary condition. For this condition, the function

user_bc_exact is called. The user must program an expression for a parabolic velocity profile

and place it in “rf_user_bc_exact_fn.c.” For this example, the profile for thex-component of

velocity was at the inlet. For the energy equation, the Neumann boundary condition is

used to set the heat flux on the solid plate; a Dirichlet boundary condition is used to set the inlet

temperature level.

Reducing the temperature field data to calculate the local Nusselt numbers, the data are

shown on Figure C.9 where and for heat transfer coefficient ,

thermal conductivity , and half-distance between the plates . Comparison with the three part

correlation of Shah and Bhatti [46] generally were within 2% over the entire range, except where

their correlation is discontinuous.

C.5. Vortex Shedding from a Circular Cylinder

Slow flow over a cylinder yields steady solutions; however, as the Reynolds number is

increased above 60, the character of laminar flow across a cylinder changes. A steady flow can no

longer be maintained; rather, the flow takes on a time varying behavior with a periodic shedding

Figure C.7. Developing velocity profiles for flow entering parallel plates for a variety of non-dimensional
lengths down the channel, as the flow transitions from plug flow to a parabolic profile.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

N
on

-d
im

en
si

on
al

 v
el

oc
ity

,U
/U

a
vg

Non-dimensional distance from wall,y/L

0.0005
0.00125
0.0025
0.005

Fully Developed
MPSalsa Results 0.000125

0.0005
0.00125
0.0025
0.005
0.05

Finite Difference Results 0.000125

6y 6y
2

–

Nu hDh k⁄= x̂ = x DhRePr⁄ h

k Dh

112

--
 General Problem Specifications
--
Problem type = fluid_flow_energy
Input FEM file = rect.exoII
LB file = rect-32-bKL.exoII
Output FEM file = rectHT-out.exoII
Number of processors = 32
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = supg
Debug = 2
--
 Solution Specifications
--
Solution Type = steady
Order of integration/continuation = 1
Step Control = on
Relative Time Integration Error = 1.0e-3
Initial Parameter Value = 10.0
Initial Step Size = 30.0
Maximum Number of Steps = 8
Maximum Time or Parameter Value = 1.0e+2
--
 Solver Specifications
--
Override Default Linearity Choice = default

---------------- nonlinear solver subsection: --------------

Number of Newton Iterations = 80
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = default
Choice for Inexact Newton Forcing Term = 0
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

---------------- linear solver subsection: -----------------

Solution Algorithm = gmres
Convergence Norm = 0
Preconditioner = no_overlap_ilu
Polynomial = LS,1
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 92
Maximum Linear Solve Iterations = 500
Linear Solver Normalized Residual Tolerance = 1.0e-6
--
 Chemistry Specifications
--
Energy equation source terms = off
Species equation source terms = off
Pressure (atmospheres) = 0.09210526
Thermal Diffusion = on
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off

--
Material ID Specifications

--
Number of Materials = 1
NEWTONIAN = 0 “Air”
 ELEM_BLOCK_IDS = 1

 VISCOSITY = 0.02
 DENSITY = 1.0
 THERMAL_CONDUCT = 0.02
 CP = 10.0
 T_INIT = 0.0

END Material ID Specifications

--
Boundary Condition Specifications

--
Number of Generalized Surfaces = 0
Number of BC = 8

Lower solid plate - No slip, heat flux set at -10.0
BC = U_BC DIRICHLET SS 1 INDEPENDENT 0.0 0
BC = V_BC DIRICHLET SS 1 INDEPENDENT 0.0 0
BC = T_BC NEUMANN SS 1 INDEPENDENT -10.0 0

#Inlet boundary condition - uniform velocity
#Note: average velocity set in rf_user_bc_exact_fn.c is 1.0
with parabolic velocity profile
BC = U_BC DIRICHLET SS 4 INDEPENDENT user_bc_exact 0
BC = V_BC DIRICHLET SS 4 INDEPENDENT 0.0 0

Inlet boundary condition - temperature
BC = T_BC DIRICHLET SS 4 INDEPENDENT 0.0 0

Outflow boundary condition (no normal stress on x
component of the momentum equation)
BC = V_BC DIRICHLET SS 2 INDEPENDENT 0.0 0

Upper boundary is on the channel centerline
Set zero V velocity, no shear stress for U velo,
and no heat flux for temp
BC = V_BC DIRICHLET SS 3 INDEPENDENT 0.0 0

--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = constant 0.0
Apply function = no
Time Index to Restart From = 1
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:
 every 2 steps

Number of nodal output variables = 3
Nodal variable names:
 Velocity
 Pressure
 Temperature

Number of global output variables = 0
Global variable names:

Test Exact Solution Flag = 0
Name of Exact Solution Function = f_xx_yy
--
 Parallel I/O section
--
Machine = paragon
Staged writes = yes

paragon subsection

Number of RAID controllers = 26
Root location = /pfs/io_
Subdirectory = tmp/ags/ti43
Offset numbering from zero = 23
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 2

#Call to output data along the wall
Function Name = f_ss_centroid 2
FN_DATA = INT 1
FN_DATA = STRING x Area T n_grad_T n_grad_U

#Call for time history output at channel inlet
#The data output are: time step, time, x, y, U, V, P, T
Function Name = time_history_line 2
FN_DATA = INT 10
FN_DATA = TABLE 2 2
 0.0 0.0
 0.0 0.5

Figure C.8. Input file for theThermally Developing Flow in an Infinite Parallel Plate Channelexample
problem.

113

of vortices [19]. This transient behavior is illustrated in this example. The 2D mesh consists of

4300 elements -- 80 elements around the circumference and 50 expanding away from the

cylinder. The domain is shown in Figure C.10, with a channel width of 30 diameters. The

circumference of the cylinder is designated Side Set 1; the two channel walls are Side Set 2; the

inlet is Side Set 3; and the outflow boundary is Side Set 4.

A uniform velocity profile is provided at the inlet to the channel. The channel walls’

boundary conditions are no shear and impervious. The cylinder’s boundary conditions are no slip

and impervious. No shear is set at the outflow boundary. Experiments with Reynolds numbers

, 100, 200, and 600 were done. The input file for is given in Figure C.11.

To indicate the transient nature of the flow, the time varying variables were recorded at a

location a distance 4.0 downstream from the cylinder and 0.5 from the line of symmetry using the

time_history_point function. The calculation for was started from an initial

guess of zero. For higher Reynolds numbers, the calculations were started using the restart option;

the solution for the next lower Reynolds number was used as the starting point. At all times, the

automatic time step control was set toon . Care must be used in setting the initial time step size,

Relative Time Integration Error , andSolution Relative Error Tolerance ;

values that are too large can result in the transient being missed.

Figure C.9. Comparison of the MPSalsa calculation and an established correlation for the Nusselt number
for thermally-developing flow in a parallel plate channel

1

10

100

0.0001 0.001 0.01

Lo
ca

l N
us

se
lt

N
um

be
r

Non-dimensional Length (x/DhRePr)

Local Nusselt Number for Thermally Developing Flow in Infinite Parallel Plate Channel

MPSalsa
Shah and Bhatti correlation

Re 60= Re 600=

Re 60=

114

Shown in Figure C.12(b) is they-component of velocity as a function of time for the flow

with . (Density was set to 1.0 and viscosity was set to 0.1 in this example, so for

, the averagex-component of velocity was 60.) Figure C.12(a) shows a similar trace

for . The von Karman vortex street behind the cylinder with is shown in

Figure C.13. In Figure C.12(a) and (b), the transient behavior before the steady periodic nature of

the flow is fully established depends upon the grid geometry, convergence criteria, and initial

condition. For the fully-developed, steady, periodic flow, the frequency of vortex shedding can be

characterized by the non-dimensional Strouhal number, , where is the frequency of

shedding, is the cylinder diameter, and is the fluid approach velocity. is a function of

Reynolds number. For the flows calculated with MPSalsa, the results are shown in Table C.2.

Comparison is made against experimental data presented in Schlichting [39].

Figure C.10. The finite element mesh of 4300 elements for theVortex Shedding from a Circular Cylinder
example problem.

Re 600=

Re 600=

Re 60= Re 600=

St fD V⁄= f

D V St

115

--
 General Problem Specifications
--
Problem type = fluid_flow
Input FEM file = cyl.exoII
LB file = cyl-8-bKL.exoII
Output FEM file = cyl-Re600-out.exoII
Number of processors = 8
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = supg
Debug = 2
--
 Solution Specifications
--
Solution Type = transient
Order of integration/continuation = 2
Step Control = on
Relative Time Integration Error = 1.0e-4
Initial Parameter Value = 10.0
Initial Step Size = 0.05
Maximum Number of Steps = 1000
Maximum Time or Parameter Value = 500.0
--
 Solver Specifications
--
Override Default Linearity Choice = default

---------------- nonlinear solver subsection: --------------

Number of Newton Iterations = 15
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term = 4
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-4
Solution Absolute Error Tolerance = 1.0e-8

---------------- linear solver subsection: -----------------

Solution Algorithm = gmres
Convergence Norm = 0
Preconditioner = no_overlap_ilu
Polynomial = LS,7
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 80
Maximum Linear Solve Iterations = 200
Linear Solver Normalized Residual Tolerance = 5.0e-4
--
 Chemistry Specifications
--
Energy equation source terms = off
Species equation source terms = off
Pressure (atmospheres) = 0.09210526
Thermal Diffusion = on
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off

--
Material ID Specifications

--
Number of Materials = 1
NEWTONIAN = 0 “Air”
 ELEM_BLOCK_IDS = 1

 VISCOSITY = 0.1
 DENSITY = 1.0

 U_INIT = 60.0
 P_INIT = 0.0

END Material ID Specifications

--
Boundary Condition Specifications

--
Number of Generalized Surfaces = 0
Number of BC = 5

Inlet boundary condition - uniform velocity
BC = U_BC DIRICHLET NS 3 INDEPENDENT 60.0 0
BC = V_BC DIRICHLET NS 3 INDEPENDENT 0.0 0

Cylinder - No slip
BC = U_BC DIRICHLET NS 1 INDEPENDENT 0.0 0
BC = V_BC DIRICHLET NS 1 INDEPENDENT 0.0 0

Outflow boundary condition (no normal stress on x
component of the momentum equation)

Solid plates - No shear
BC = V_BC DIRICHLET NS 2 INDEPENDENT 0.0 0

--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = EXOII_FILE
Apply function = no
Time Index to Restart From = 805
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:
 every 1 steps

Number of nodal output variables = 2
Nodal variable names:
 Velocity
 Pressure

Number of global output variables = 0
Global variable names:

Test Exact Solution Flag = 0
Name of Exact Solution Function = f_xx_yy
--
 Parallel I/O section
--
Machine = paragon
Staged writes = yes

ncube subsection

Number of controllers = 8
Disks per controller = 1
Root location = //df
Subdirectory = jns/testa
Offset numbering from zero = 0

paragon subsection
------------------]
Number of RAID controllers = 26
Root location = /pfs/io_
Subdirectory = tmp/ags/ti43
Offset numbering from zero = 23
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 1

Function Name = time_history_points 1
#
FN_DATA = TABLE 1 2
 4.0 0.5

Figure C.11. Input file for theVortex Shedding from a Circular Cylinderexample problem,Re=600.

116

Figure C.12. Time history plots for vortex shedding behind a cylinder: (a)Re=60, (b)Re=600.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200

V
el

oc
ity

 in
 th

ey
-D

ire
ct

io
n

(m
/s

)

Time (sec)

Steady Periodic Velocity in they-Direction Due to Vortex Shedding Downstream of Cylinder with Re=60

Location: x=4.0, y=0.5

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

32.4 32.6 32.8 33 33.2 33.4 33.6 33.8 34 34.2

V
el

oc
ity

 in
 th

ey
-D

ire
ct

io
n

(m
/s

)

Time (sec)

Steady Periodic Velocity in they-Direction Due to Vortex Shedding Downstream of Cylinder with Re=600

Location: x=4.0, y=0.5

117

Re St
(MPSalsa)

St
(Schlichting)

 60 0.132 0.133

 100 0.163 0.166

 200 0.189 0.190

 600 0.218 0.210

Table C.2. Comparison of Strouhal numbers as a function of Reynolds number for MPSalsa and the experimental
data of Schlichting [39].

Figure C.13. Contour plot showing the shedding vortices behind a cylinder atRe=600.

118

Appendix D. CVD Reactor Examples

D.1. SPIN Comparison

This example problem was used to benchmark many of the capabilities of MPSalsa by

comparing results with another code, SPIN [6]. SPIN solves for reacting flows in the idealized

geometry of uniform flow impinging on a rotating disk of infinite radius, by using the von

Karman similarity solution that reduces the 3D problem to 1D. We solve a full 3D problem using

MPSalsa of flow impinging on a rotating disk with large radius, and compare the solutions near

the center of the disk with SPIN. The excellent agreement between the two solutions verifies our

implementation of the fluid mechanics, heat and mass transfer, gas-phase reactions, surface

reactions, and the Danckwerts’ boundary conditions.

Our computational domain for the MPSalsa calculation is cylindrical, with an inlet at

10cm above a reactive rotating disk with a radius of 7cm. The surface of the 12,660-element mesh

used in this calculation, generated using CUBIT [24], is shown in Figure D.1.

The reaction mechanism used in this calculation is for the deposition of Silicon, and has 8

gas-phase species, 10 gas-phase reactions, 2 surface species, 8 surface reactions, and 1 bulk

component (solid silicon). A schematic diagram of the system is shown in Figure D.2.

Figure D.1. Surface of 12,660-element mesh forSPIN Comparison example problem.

119

Since the system is operating at a low pressure of 0.002 atmospheres, the diffusive flux of

species at the inlet boundary of the computational domain is non-negligible. In experiments, it is

the total flux of each species into the domain that is known, but setting Dirichlet conditions for the

species mole fractions and inlet velocity sets only the convective flux while ignoring the diffusive

contribution. Danckwerts’ boundary condition allows for the specification of the total flux at the

inlet boundary of the computational domain, and functions are included in MPSalsa to implement

this condition (see Section A.1.2).

The input file for this example problem is shown in Figure D.3. The problem is run on 256

processors, and can reach the steady-state directly using thetfqmr linear solver with

no_overlap_bilu preconditioning. Danckwerts’ boundary condition on the velocity and

species mole fractions is specified at the inlet (side set 1), and surface reactions and spinning

conditions are specified on the disk surface (side set 2). The output function

time_history_line is used to print information along a vertical line at radius 1cm, as

specified at the bottom of the input file.

The 3D steady state was reached in 10 minutes on 256 Processors of the Intel Paragon,

and required 7 Newton iterations and 1149 total iterations of the linear solver. Solving the

analogous infinite disk problem with SPIN required only 20 seconds on a workstation. The

Figure D.2. Schematic diagram ofSPIN Comparison example problem. Plug flow enters the low
pressure reactor 10 cm above a heated disk with radius 7cm that is rotating at 10 rpm. Gas-

phase reactions and surface reactions proceed as a function of concentrations and temperature.

10 rpm

98.455%H2, 1.545%SiH4
T=600K, V0=3cm/sec

10cm

7cm
surface
reactions

gas-phase
reactions

Inlet:

P = 0.002 atm

T=1700K

120

--
 General Problem Specifications
--
Problem type = whole_enchilada
Input FEM file = Meshes/si_13k.exoII
LB file = Meshes/si_13k-256-bKL.exoII
Output FEM file = run_out.exoII
Number of processors = 256
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = default
Debug = 2
--
 Solution Specifications
--
Solution Type = steady
Order of integration/continuation = 1
Step Control = off
Relative Time Integration Error = 4.0e-3
Initial Parameter Value = 10.0
Initial Step Size = 30.0
Maximum Number of Steps = 8
Maximum Time or Parameter Value = 1.0e+2
--
 Solver Specifications
--
Override Default Linearity Choice = default

---------------- nonlinear solver subsection: --------------

Number of Newton Iterations = 15
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term = 4
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

---------------- linear solver subsection: -----------------

Solution Algorithm = tfqmr
Convergence Norm = 1
Preconditioner = no_overlap_bilu
Polynomial = LS,1
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 200
Maximum Linear Solve Iterations = 600
Linear Solver Normalized Residual Tolerance = 1.0e-4
--
 Chemistry Specifications
--
Energy equation source terms = on
Species equation source terms = on
Pressure (atmospheres) = 0.002
Thermal Diffusion = on
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off
--
 Material ID Specifications
--
Number of Materials = 1
CHEMKIN = 0 “silicon”
 ELEM_BLOCK_IDS = 7 9
 T_INIT = 600.
Change from U1, U2, U3
 U_INIT = 0.0
 V_INIT = 0.0
 W_INIT = -2.0

 XMF_0 H2 0.9995
 XMF_0 SIH4 0.0005
END Material ID Specifications

--
 Boundary Condition Specifications
--
Number of Generalized Surfaces = 0

Number of BC = 10
BC = T_BC DIRICHLET SS 1 INDEPENDENT 600.0 0
BC = T_BC DIRICHLET SS 2 INDEPENDENT 1700.0 0
#
BC = U_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = U_BC DIRICHLET SS 2 INDEPENDENT f_xy_spin_disk 1
 BC_DATA = 10.0 0.0 0.0
#
BC = V_BC DIRICHLET SS 1 INDEPENDENT 0.0 0
BC = V_BC DIRICHLET SS 2 INDEPENDENT f_xy_spin_disk 1
 BC_DATA = 10.0 0.0 0.0
#
BC = W_BC DIRICHLET SS 1 DEPENDENT f_Danckwerts_X0 1
 BC_DATA = -3.0 0.01545 0.0 0.0 0.0 0.0 0.0 0.0 0.98455
BC = W_BC DIRICHLET SS 2 DEPENDENT surface_chemkin_bc 0
#
BC = Y_BC MIXED SS 1 INDEPENDENT f_Danckwerts
f_Danckwerts_X0 0 0 1
 SPECIES_LIST = ALL
 BC_DATA = -3.0 0.01545 0.0 0.0 0.0 0.0 0.0 0.0 0.98455
BC = Y_BC NEUMANN SS 2 DEPENDENT surface_chemkin_bc 0
 SPECIES_LIST = ALL
#
--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = constant 0.0
Apply function = no
Time Index to Restart From = 1
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:
 every 2 steps

Number of nodal output variables = 4
Nodal variable names:
 Temperature
 Velocity
 Pressure
 Mass_fraction

Number of global output variables = 0
Global variable names:

Test Exact Solution Flag = 0
Name of Exact Solution Function = f_xx_yy
--
 Parallel I/O section
--
Machine = paragon
Staged writes = yes

paragon subsection

Number of RAID controllers = 26
Root location = /pfs/io_
Subdirectory = tmp/ags/ti43
Offset numbering from zero = 23
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 1

Function Name = time_history_line 2
#
FN_DATA = INT 100
FN_DATA = TABLE 2 3
 0.6 0.8 10.0
 0.6 0.8 0.0

Figure D.3. Input file for theSPIN Comparisonexample problem.

121

adaptive gridding strategy placed 171 nodes in the 1D mesh, as compared to the 30 elements in

the axial direction of the 3D MPSalsa mesh.

Comparisons between MPSalsa and SPIN can be seen in Figure D.4. Excellent agreement

can be seen for all quantities except the axial velocity, for which the differences reflect the fact

that SPIN is solving the problem on an infinite domain while MPSalsa uses a finite domain. The

axial velocity in the MPSalsa calculation is strongly effected by the boundaries of the

computational domain at finite radius. The discrepancy diminishes at higher flow rates. The

Stefan velocity into the disk does agree between the calculations, and is uncommonly large

because of the huge difference in molecular weights betweenSi andH2 and the low operating

pressure.

D.2. Rotating Disk Reactor

A real reactor used for the growth of Gallium Arsenide single crystals is the rotating disk

reactor [2, 12]. The reactor is designed to capitalize on the perfect uniformity of deposition of the

infinite disk configuration, with the plug flow of reactants impinging on a rotating disk. The

reactor geometry, shown in Figure D.5, consists of a vertical cylinder sitting concentrically inside

a larger cylindrical reaction vessel. Flow enters uniformly through the circular cross-section of the

reactor and the inner cylinder is rotated, with the reaction occurring on the top heated surface.

Flow exits through the annular region between the cylinders. Very uniform growth has been

observed in this reactor over a large central section of the disk where the effects of a finite radius

system are small.

The reaction mechanism used in this system for chemical vapor deposition of Gallium

Arsenide (from Moffat et al. [35]) consists of 4 gas-phase species, 3 surface species, and 2 bulk

species, and can be found in the Chemkin input files “gaas_block.gas” and “gaas_block.sur.”

There are no gas-phase reactions, and 3 surface reactions.

In this example problem, we demonstrate the restarting capability in MPSalsa by solving

for three different steady states of the reactor at three different sets of operating parameters, as

presented in Table D.1. The solution at the first set of conditions is used as the initial guess for

finding the steady state at the second set, since it is closer to the solution than a trivial initial

guess. Similarly, the third solution uses the second solution as an initial guess. Being able to

restart from a previous solution is necessary for reactor analysis, where many sets of operating

conditions need to be explored. Also, using a series of steady-state jumps can be an efficient way

of reaching a solution at conditions that are too complicated to allow convergence from a trivial

initial guess.

122

The input file used to solve for the steady-state at the second set of conditions in Table D.1

(using the solution at the first set of conditions in as the initial guess) can be seen in Figure D.6. In

the Initial Guess/Condition Specifications section, the lines

Figure D.4. Comparisons between MPSalsa and SPIN for reacting flow impinging on an infinite rotating
disk. Axial profiles of several quantities are plotted: Temperature, Axial Velocity, and Mole Fractions of

SiH4, SiH2, H2SiSiH2, andH3SiSiH.

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10

T
em

pe
ra

tu
re

Distance from Disk

MPSalsa
SPIN

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

0 2 4 6 8 10

A
xi

al
 V

el
oc

ity

Distance from Disk

MPSalsa
SPIN

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0 2 4 6 8 10

S
iH

4
M

ol
e

F
ra

ct
io

n

Distance from Disk

MPSalsa
SPIN

0

2e-06

4e-06

6e-06

8e-06

1e-05

1.2e-05

0 2 4 6 8 10

S
iH

2
M

ol
e

F
ra

ct
io

n

Distance from Disk

MPSalsa
SPIN

0

1e-07

2e-07

3e-07

4e-07

5e-07

6e-07

7e-07

8e-07

9e-07

0 2 4 6 8 10

H
2S

iS
iH

2
M

ol
e

F
ra

ct
io

n

Distance from Disk

MPSalsa
SPIN

0

5e-10

1e-09

1.5e-09

2e-09

2.5e-09

3e-09

0 2 4 6 8 10

H
3S

iS
iH

 M
ol

e
F

ra
ct

io
n

Distance from Disk

MPSalsa
SPIN

123

Set Initial Condition/Guess = EXOII_FILE
Time Index to Restart From = 1

control the restarting. The keywordEXOII_FILE tells MPSalsa to get the initial guess from the

output file, which in this case is named “run-out.exoII.” Since this file can store many solutions

Solution
Number

Disk Spin Rate
(rpm)

Inlet Flow
Velocity (cm/sec)

Inlet Mole Fraction
of GaMe3

1 50 5 0.00013

2 100 15 0.00013

3 100 15 0.00065

Table D.1. Three sets of conditions for three runs of theRotating Disk Reactor example problem.

Axis of
Rotation

Reacting
Surface

Cross Section

Top View

Reactor Inlet
Reacting Surface

Inlet

OutletOutlet

Figure D.5. A cross section and top view of the geometry for theRotating Disk Reactor example problem,
showing a refined mesh. The design consists of one cylinder inside a larger one, with the reacting surface
on the top of the inner cylinder, which is usually rotating. The flow enters uniformly within the entire top

circle, flows over the disk, and flows out through an annular region.

124

for this mesh, the second line tells MPSalsa to use the first solution. The input linesTime Index

to Output To and Nodal variable output times control the solution output to the

ExodusII file. When a solution is being written, the time index is echoed to the standard output so

the user can keep track of which solution is stored in which location of the output file.

The boundary conditions in the input file are imposed over 6 different side sets, with SS#1

being the top circular inlet, SS#2 the annular outlet region, SS#3 being the cooled outer walls,

SS#4 the heated, reactive, rotating disk, and SS#5 and SS#6 being the outside of the inner,

rotating cylinder. Thef_xy_spin_disk function is used to specify velocity boundary

conditions for the rotation of the inner cylinder, with theBC_DATA statement following it

supplying the rotation rate (in rpm) and the center of rotation. The

surface_chemkin_bc boundary condition uses the surface reaction information to specify

the mass flux of each species to the surface as well as the velocity into it (see Appendix A.1.1).

The f_mole_fraction boundary condition is used to specify the mole fractions of species at

the inlet, as opposed to the mass fractions that are the primitive variables (see Appendix A.1.4).

The SPECIES_LIST information is used to match up the input with the order that the species

are in the Chemkin input file. (Since theSPECIES_LIST has “1” as the first entry, 0.0044 is the

specified mole fraction for the first species in the Chemkin input file, which isAsH3 in this case.

The SPECIES_LIST can be listed as species names instead of integers to reduce possible

confusion.) Thef_pressure boundary condition is an outflow boundary condition that

matches the normal component of the normal stress with the local pressure (see Appendix A.1.5).

With fluid mechanics and heat transfer, there are a total of 9 unknowns per node. For the

coarse mesh of 7472 elements and 8499 nodes used in this example problem, this corresponds to

76,491 total unknowns. (Published results for this reactor use a much finer mesh of around 40,000

elements [2, 12].) The problem is solved on 64 processors of the Intel Paragon.

Table D.2 shows some solution statistics for the three solutions. The number of Newton

iterations and the solution time for the second and third solutions were less than those of the first

solution -- even though they were at more difficult parameter values -- because the initial guess

from a previous solution was used.

Solution
Number

Initial Guess # of Newton
Iterations

of GMRES
Iterations

Execution Time on
64 Processors

1 Trivial 10 863 510 sec

2 Solution 1 8 904 459 sec

3 Solution 2 6 637 336 sec

Table D.2. Solution statistics for the three solutions for theRotating Disk Reactor example problem. The parameter
values are shown in Table D.1. Restarting from the previous solution decreased the execution time.

x y,()

125

--
 General Problem Specifications
--
Problem type = whole_enchilada
Input FEM file = run-out.exoII
LB file = Meshes/em_7k-64-bKL.exoII
Output FEM file = run-out.exoII
Number of processors = 64
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = default
Debug = 2
--
 Solution Specifications
--
Solution Type = steady
Order of integration/continuation = 1
Step Control = off
Relative Time Integration Error = 4.0e-3
Initial Parameter Value = 10.0
Initial Step Size = 30.0
Maximum Number of Steps = 4
Maximum Time or Parameter Value = 1.0e+2
--
 Solver Specifications
--
Override Default Linearity Choice = default

---------------- nonlinear solver subsection: --------------

Number of Newton Iterations = 15
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term = 4
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

---------------- linear solver subsection: -----------------

Solution Algorithm = gmres
Convergence Norm = 1
Preconditioner = no_overlap_ilu
Polynomial = LS,1
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 150
Maximum Linear Solve Iterations = 300
Linear Solver Normalized Residual Tolerance = 1.0e-5
--
 Chemistry Specifications
--
Energy equation source terms = on
Species equation source terms = on
Pressure (atmospheres) = 0.09210526
Thermal Diffusion = on
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Enclosure Radiation Specifications
--
Enclosure Radiation source terms = off
--
 Material ID Specifications
--
Number of Materials = 1
CHEMKIN = 0 “gaas_new”
 ELEM_BLOCK_IDS = 1
 T_INIT = 500.
Change from U1, U2, U3

W_INIT =-5.0
 XMF_0 AsH3 0.0044
 XMF_0 GaMe3 0.00013
 XMF_0 H2 0.99547
 G_VECTOR 0.0 0.0 -980.0
END Material ID Specifications

--
 Boundary Condition Specifications
--
Number of Generalized Surfaces = 0
Number of BC = 23
BC = T_BC DIRICHLET SS 1 INDEPENDENT 303.15 0
BC = T_BC DIRICHLET SS 3 INDEPENDENT 293.15 0
BC = T_BC DIRICHLET SS 4 INDEPENDENT 913.15 0
BC = T_BC DIRICHLET SS 5 INDEPENDENT 913.15 0
#
BC = U_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = U_BC DIRICHLET SS 3 INDEPENDENT 0. 0
BC = U_BC DIRICHLET SS 4 INDEPENDENT f_xy_spin_disk 1
 BC_DATA = 100.0 0. 0.
BC = U_BC DIRICHLET SS 5 INDEPENDENT f_xy_spin_disk 1
 BC_DATA = 100.0 0. 0.
BC = U_BC DIRICHLET SS 6 INDEPENDENT f_xy_spin_disk 1
 BC_DATA = 100.0 0. 0.
#
BC = V_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 3 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 4 INDEPENDENT f_xy_spin_disk 1
 BC_DATA = 100.0 0. 0.
BC = V_BC DIRICHLET SS 5 INDEPENDENT f_xy_spin_disk 1
 BC_DATA = 100.0 0. 0.
BC = V_BC DIRICHLET SS 6 INDEPENDENT f_xy_spin_disk 1
 BC_DATA = 100.0 0. 0.
#
BC = W_BC DIRICHLET SS 1 INDEPENDENT -15.0 0
BC = W_BC DIRICHLET SS 3 INDEPENDENT 0. 0
BC = W_BC DIRICHLET SS 4 DEPENDENT surface_chemkin_bc 0
BC = W_BC DIRICHLET SS 5 INDEPENDENT 0. 0
BC = W_BC DIRICHLET SS 6 INDEPENDENT 0. 0
BC = W_BC NEUMANN SS 2 DEPENDENT f_pressure 1
 BC_DATA = FLOAT -.95
##
BC = Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraction 1
 SPECIES_LIST = 1 2 3 4
 BC_DATA = 0.0044 0.00013 0.0 0.99547
BC = Y_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 0
 SPECIES_LIST = ALL
BC = Y_BC NEUMANN SS 5 DEPENDENT surface_chemkin_bc 0
 SPECIES_LIST = ALL
--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = EXOII_FILE
Apply function = no
Time Index to Restart From = 1
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 2
Nodal variable output times:
 every 2 steps

Number of nodal output variables = 4
Nodal variable names:
 Temperature
 Velocity
 Pressure
 Mass_fraction

Number of global output variables = 0
Global variable names:

Test Exact Solution Flag = 0
Name of Exact Solution Function = f_xx_yy
--
 Parallel I/O section
--
Machine = paragon
Staged writes = yes

paragon subsection

Number of RAID controllers = 26
Root location = /pfs/io_
Subdirectory = tmp/ags/ti43
Offset numbering from zero = 23
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 0

Figure D.6. MPSalsa input file for theRotating Disk Reactor example problem.

126

The three steady-state solutions computed here are axisymmetric. The deposition rate of

Gallium Arsenide on the reacting surface as a function of the radial position is shown in Figure

D.7. An increase in velocity increases the deposition rate between solutions 1 and 2, and the

increase in the reactant concentration increases the deposition rate between solutions 2 and 3. The

large deposition rate at large radii is due to the rapid flow rate passing by the corner of the disk on

its way out the annular exit region. Crystal is harvested only in the center 2.5 cm region where the

deposition rate is more uniform.

D.3. Tilted Reactor

The horizontal CVD reactor with tilted susceptor and rotating substrate admits only three-

dimensional solutions. This configuration is an alternative to the rotating disk reactor for growing

Gallium Arsenide semiconductor crystals. We have used the same mechanism as in Appendix

D.2, which includes four gas-phase species.

The reactor configuration is shown in Figure D.8. Surface reaction (deposition) occurs

over the entire rectangular susceptor region, though the crystal is harvested only from the inset

rotating disk. The tilted bottom of the reactor causes the flow to accelerate down the reactor

Figure D.7. Deposition profiles of GaAs crystal in theRotating Disk Reactor for three
different sets of conditions (see Table D.1) as a function of the radial position on the disk.

127

length which decreases the boundary layer thickness. The increase in mass transfer to the surface

due to the thinning boundary layer is in part counterbalanced by the decrease in available reactant.

In this example problem, the continuation solution type is demonstrated. The details can

be seen in the Solution Specifications section of the input file (Figure D.9), which is reproduced

here.

The above six lines tell the program, respectively, that a continuation run is to take place, that

first-order continuation is to be used, that the parameter step size between solutions is to remain

Figure D.8. Surface mesh for theTilted Reactorexample problem. The hexahedral mesh consists of 43,568
elements, 48,025 nodes, and 432,225 total unknowns. A steady-state solution requires 20 minutes on 256

processors of the Intel Paragon.

9 Degree Tilt

Heated S
usc

eptor

with
 In

se
t D

isk

Inlet

Outlet

Solution Type = continuation
Order of integration/continuation = 1
Step Control = off
Initial Parameter Value = 0.0
Initial Step Size = 100.0
Maximum Number of Steps = 3

128

constant, that the initial parameter value is 0.0, that the step size is 100, and that the run will stop

after three steps.

The continuation parameter itself is assigned in the file “rf_user_continuation.c,” and in

this case is assigned to the disk spin rate. Since the disk spin rate is supplied in the first two

boundary conditions (numbered 0 and 1), and is entered as the first component (indexed 0) of the

BC_DATA = FLOAT data array, the assignment of the continuation parameter to the disk spin rate

requires only this line:
BC_Types[0].BC_Data_Float[0] = BC_Types[1].BC_Data_Float[0] = *con_par;

Also of note in the input file are the use of generalized surfaces and boundary condition

functions. Since the disk has both velocity boundary conditions due to disk rotation in each of the

tangential directions and reaction-induced flow (the Stefan velocity) in the normal direction, and

since these directions do not line up with the Cartesian coordinates, generalized surfaces are

needed. The functionf_xy_spin_tilt9_disk (see Appendix A.1.3.2) is a special function

to calculate the tangential velocities of the rotating disk as a function of the position. This

function requires four arguments: the disk rotation rate (in rpm) and the coordinates of the center

of the disk. The Stefan velocity is imposed using thesurface_chemkin_bc as a Dirichlet

condition on the normal velocity (see Appendix A.1.1).

At the end of the boundary condition section, thesurface_chemkin_bc is also used

to capture the effects of the surface reactions on the mass balances. In this case, we have exercised

the option of providing initial guesses for the surface site and bulk fractions by use of the

SURFACE_SPECIES_LIST and associatedBC_DATA statements.

The GMRES linear solver was used with a Krylov subspace size of 140, which, for this

problem, is the largest subspace that fits on 256 processors of the Intel Paragon at Sandia National

Laboratories. Theno_overlap_bilu preconditioner (incomplete block-LU decomposition

without overlap between processors) was used along withrow_sum scaling. A standard

Newton’s method was used, with backtracking turned off and a forcing term flag value of 4 to turn

off the inexact Newton algorithms.

The problem was run on 256 processors of the Intel paragon. MPSalsa required 62

minutes to complete the continuation run on a mesh with 43,568 elements, 48,025 nodes, and

432,225 total unknowns. The four solutions at disk spin rates of 0, 100, 200, and 300 rpms

required 12, 9, 8, and 9 Newton iterations, respectively. The first solution required more iterations

because it used a trivial initial guess. The first-order continuation algorithm requires one

additional matrix fill and solve after each step to calculate the tangent to the solution branch,

which is used to predict an initial guess for the next step.

129

--
 General Problem Specifications
--
Problem type = whole_enchilada
Input FEM file = Meshes/ti_43k.exoII
LB file = Meshes/ti_43k-256-bKL.exoII
Output FEM file = run-out.exoII
Number of processors = 256
Cartesian or Cylindrical when 2D = Cartesian
Interpolation Order = linear
Stabilization = default
Debug = 2
--
 Solution Specifications
--
Solution Type = continuation
Order of integration/continuation = 1
Step Control = off
Relative Time Integration Error = 0.0
Initial Parameter Value = 0.0
Initial Step Size = 100.0
Maximum Number of Steps = 3
Maximum Time or Parameter Value = 1.0e+5
--
 Solver Specifications
--
Override Default Linearity Choice = default

---------------- nonlinear solver subsection: --------------

Number of Newton Iterations = 15
Use Modified Newton Iteration = no
Enable backtracking for residual reduction = no
Choice for Inexact Newton Forcing Term = 4
Calculate the Jacobian Numerically = no
Solution Relative Error Tolerance = 1.0e-3
Solution Absolute Error Tolerance = 1.0e-8

---------------- linear solver subsection: -----------------

Solution Algorithm = gmres
Convergence Norm = 1
Preconditioner = no_overlap_bilu
Polynomial = LS,1
Scaling = row_sum
Orthogonalization = classical
Size of Krylov subspace = 140
Maximum Linear Solve Iterations = 280
Linear Solver Normalized Residual Tolerance = 1.0e-3
--
 Chemistry Specifications
--
Energy equation source terms = on
Species equation source terms = on
Pressure (atmospheres) = 0.09210526
Thermal Diffusion = on
Multicomponent Transport = stefan_maxwell
Chemkin file = chem.bin
Surface chemkin file = surf.bin
Transport chemkin file = tran.bin
--
 Material ID Specifications
--
Number of Materials = 1
CHEMKIN = 0 “gaas_new”
 ELEM_BLOCK_IDS = 1
 T_INIT = 500.
 U_INIT = 0.0
 V_INIT = 30.0
 W_INIT = 0.0
 XMF_0 AsH3 0.0044
 XMF_0 GaMe3 0.00013
 XMF_0 H2 0.99547
 G_VECTOR 0.0 0.0 -980.0
END Material ID Specifications
--
 Boundary Condition Specifications
--
Number of Generalized Surfaces = 2
GENERALIZED_SURFACE 5 3
NORMAL 0.0 0.15643447 -0.98768834
TANGENT 1.0 0.0 0.0
TANGENT 0.0 0.98768834 0.15643447
GENERALIZED_SURFACE 4 3
NORMAL 0.0 0.15643447 -0.98768834
TANGENT 1.0 0.0 0.0
TANGENT 0.0 0.98768834 0.15643447
#
Number of BC = 33
#

Continuation routine will overwrite the disk spin rate on the
next 2 lines, which is currently set at 00 rpm.
BC = VEL_TAN1_BC DIRICHLET GS 1 INDEPENDENT
f_xy_spin_tilt9_disk 1
 BC_DATA = 00.0 0. 0. 1.504652
BC = VEL_TAN2_BC DIRICHLET GS 1 INDEPENDENT
f_xy_spin_tilt9_disk 1
 BC_DATA = 00.0 0. 0. 1.504652
BC = VEL_NORM_BC DIRICHLET GS 1 DEPENDENT surface_chemkin_bc 0
BC = VEL_TAN1_BC DIRICHLET GS 2 INDEPENDENT 0.0 0
BC = VEL_TAN2_BC DIRICHLET GS 2 INDEPENDENT 0.0 0
BC = VEL_NORM_BC DIRICHLET GS 2 DEPENDENT surface_chemkin_bc 0
#
BC = T_BC DIRICHLET SS 1 INDEPENDENT 298. 0
BC = T_BC DIRICHLET SS 4 INDEPENDENT 913. 0
BC = T_BC DIRICHLET SS 5 INDEPENDENT 913. 0
BC = T_BC DIRICHLET SS 7 INDEPENDENT 675. 0
#
BC = U_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = U_BC DIRICHLET SS 2 INDEPENDENT 0. 0
BC = U_BC DIRICHLET SS 3 INDEPENDENT 0. 0
BC = U_BC DIRICHLET SS 6 INDEPENDENT 0. 0
BC = U_BC DIRICHLET SS 7 INDEPENDENT 0. 0
BC = U_BC DIRICHLET SS 8 INDEPENDENT 0. 0
BC = U_BC DIRICHLET SS 9 INDEPENDENT 0. 0
#
BC = V_BC DIRICHLET SS 3 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 6 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 7 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 8 INDEPENDENT 0. 0
BC = V_BC DIRICHLET SS 9 INDEPENDENT 0. 0
#Set inlet flow rate here
BC = V_BC DIRICHLET SS 1 INDEPENDENT 30.0 0
#
BC = W_BC DIRICHLET SS 1 INDEPENDENT 0. 0
BC = W_BC DIRICHLET SS 2 INDEPENDENT 0. 0
BC = W_BC DIRICHLET SS 3 INDEPENDENT 0. 0
BC = W_BC DIRICHLET SS 6 INDEPENDENT 0. 0
BC = W_BC DIRICHLET SS 7 INDEPENDENT 0. 0
BC = W_BC DIRICHLET SS 8 INDEPENDENT 0. 0
BC = W_BC DIRICHLET SS 9 INDEPENDENT 0. 0
#
BC = Y_BC DIRICHLET SS 1 INDEPENDENT f_mole_fraction 1
 SPECIES_LIST = 1 2 3 4
 BC_DATA = 0.0044 0.00013 0.0 0.99547
BC = Y_BC NEUMANN SS 5 DEPENDENT surface_chemkin_bc 1
 SPECIES_LIST = ALL
 SURF_SPECIES_LIST = GaMe(S) AsH2(S) BLOCK Ga-GaAs(D) As-
GaAs(D)
 BC_DATA = FLOAT 0.2 0.4 0.4 1.0 1.0
BC = Y_BC NEUMANN SS 4 DEPENDENT surface_chemkin_bc 3
 SPECIES_LIST = ALL
 SURF_SPECIES_LIST = GaMe(S) AsH2(S) BLOCK
 BC_DATA = FLOAT 0.2 0.4 0.4
 SURF_SPECIES_LIST = Ga-GaAs(D)
 BC_DATA = FLOAT 1.0
 SURF_SPECIES_LIST = As-GaAs(D)
 BC_DATA = FLOAT 1.0
--
 Initial Guess/Condition Specifications
--
Set Initial Condition/Guess = constant 0.0
Apply function = no
Time Index to Restart From = 1
--
 Output Specifications
--
User Defined Output = yes
Parallel Output = no
Scalar Output = yes
Time Index to Output To = 1
Nodal variable output times:
 every 1 steps

Number of nodal output variables = 4
Nodal variable names:
 Temperature
 Velocity
 Pressure
 Mass_fraction
--
 Data Specification for User’s Functions
--
Number of functions to pass data to = 1
Function Name = f_xy_spin_average 2
#
FN_DATA = INT 5 5
FN_DATA = FLOAT 0. 0. 1.504652

Figure D.9. MPSalsa input file for theTilted Reactorexample problem.

130

A typical solution is shown in Figure D.10, which includes the streamlines through the

domain and the contours of the reactant (GaMe3) on the surface. The effect of the counter-

clockwise rotating disk on the flow and surface concentrations can be seen.

Figure D.11 shows the time-averaged (spin-averaged) deposition profiles over the disk for

the four different spin rates calculated in the one continuation run. (The profiles are calculated

using a non-standard post-processing routine,f_xy_spin_average , which expands the radial

variation in the deposition as a series of orthonormal polynomials.) The disk rotation rate is seen

to be a minor factor in the non-uniformity of the deposition, but it can be seen that rotation

degrades uniformity.

Figure D.10. Streamlines and surface concentrations for a solution to theTilted Reactor example problem.

Inlet :

Outlet:

Contours of GaMe3
on Reacting Surface

Streamlines

 GaMe3
 AsH3
 H2

 GaMe3
 AsH3
 H2
 CH4

131

Figure D.11. Plot of the spin-averaged deposition rate on the rotating disk in theTilted Reactor example
problem for the 4 different spin rates.

132

References

1. T.D. Blacker. “FASTQ Users Manual, Version 2.1,” Sandia National Laboratories Tech. Rep.
SAND88-1326, Albuquerque, NM (1988).

2. W.G. Breiland and G.H. Evans. “Design and Verification of Nearly Ideal Flow and Heat
Transfer in a Rotating Disk CVD Reactor,”J. Electrochem Soc, 138(6) (1991).

3. A.N. Brooks and T.J.R. Hughes. “Strealmine Upwind/Petrov-Galerkin Formulations for
Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes
Equations,”Computer Methods in Applied Mechanics and Eng.,32 (1982) 199–259.

4. S. Carney, M. Heroux and G. Li. “A proposal for a sparse BLAS toolkit,” SPARKER
Working Note #2, Cray Research, Inc., Eagen, MN (1993).

5. M.E. Coltrin, R.J. Kee, F.M. Rupley, and E. Meeks. “Surface Chemkin-III: A FORTRAN
package for analyzing heterogeneous chemical kinetics at a solid-surface-gas-phase
interface,” Sandia National Laboratories Tech. Rep. SAND96-8217, Albuquerque, NM
(1996).

6. M.E. Coltrin, R.J. Kee, G.H. Evans, E. Meeks, F.M. Rupley, and J.F. Grcar. “SPIN: A Fortran
Program for Modeling One-Dimensional Rotating-Disk/Stagnation-Flow Chemical Vapor
Deposition Reactors,” Sandia National Laboratories Tech. Rep. SAND87–8248,
Albuquerque, NM (1987).

7. M.E. Coltrin and H.K. Moffat. “Surftherm: A Program to Analyze Thermochemical and
Kinetic Data in Gas-Phase and Surface Chemical Reaction Mechanisms,” Sandia National
Laboratories Tech. Rep. SAND94–0219, Albuquerque, NM (1996).

8. M.S. Eldred, W.E. Hart, W.J. Bohnhoff, V.J. Romero, S.A. Hutchinson, and A.G. Salinger.
“Utilizing Object-Oriented Design to Build Advanced Optimization Strategies with Generic
Implementation,”Proceedings of the 6th AIAA/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization,AIAA-96-4164-CP, Bellevue, WA, (1996)
1568-1582.

9. S.C. Eisenstat and H.F. Walker. “Choosing the forcing terms in an inexact Newton method,”
SIAM J. Sci. Comput., 17 (1996) 16-32.

10. S.C. Eisenstat and H.F. Walker. “Globally convergent inexact Newton methods,”SIAM j.
Optimization,4 (1994) 393-422.

11. C.R. Ethier and D.A. Steinman. “Exact fully 3D Navier-Stokes solutions for benchmarking,”
Int J. Num. Meth. Fluids, 19 (1994) 369-375.

12. G. Evans and R. Greif. “A Numerical Model of the Flow and Heat Transfer in a Rotating
Disk CVD Reactor,”J. Heat Transfer, 109 (197).

13. FIDAP 7.0 Theory Manual. Fluid Dynamic International, Inc. (1984) Chapter 6, 14-15.

14. W.C. Gardiner and and J. Troe. “Rate coefficients of thermal dissociation, isomerization and
recombination reactions,” inCombustion Chemistry, Ed. W.C. Gardiner, Springer-Verlag,
New York (1984).

133

15. D.K. Gartling. “Merlin II - A computer program to transfer solution data between finite
element meshes,” Sandia National Laboratories Tech. Rep. SAND89-2989, Albuquerque,
NM, (1991).

16. D.K. Gartling and R.E. Hogan. “Coyote II -- A finite element computer program for
nonlinear heat conduction problems, Part 1 -- Theoretical development,” Sandia National
Laboratories Tech. Rep. SAND94-1173, Albuquerque, NM (1994).

17. A.P. Gilkey and G.D. Sjaardema. “GEN3D: A GENESIS Database 2D to 3D Transformation
Program,” Sandia National Laboratories Tech. Rep. SAND89-0485, Albuquerque, NM
(1989).

18. G.H. Golub and C.F. Van Loan.Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD (1983) 150-153.

19. P.M. Gresho, S.T. Chan, R.L. Lee, and C.D. Upson. “A modified finite element method for
solving the time-dependent, incompressible Navier-Stokes equations: part 2: applications,”
Int J Numer Meth Fluids, 4 (1984) 619-640.

20. P.M. Gresho, R.L. Lee, and R.L. Sani. “On the time-dependent solution of the incompressible
Navier-Stokes equations in two and three dimensions,” inRecent Advances in Numerical
Methods in Fluids, C. Taylor and K. Morgan, eds., Pineridge Press Ltd., Swansea, UK (1980)
27-81.

21. B. Hendrickson and R. Leland. “An improved spectral graph partitioning algorithm for
mapping parallel computations,” Sandia National Laboratories Tech. Rep. SAND92–1460,
Sandia National Laboratories, Albuquerque, NM (1992).

22. B. Hendrickson and R. Leland. “The Chaco User’s Guide, Version 2.0,” Sandia National
Laboratories Tech. Rep. SAND94-2692, Albuquerque, NM (1995).

23. G.L. Hennigan and J.N. Shadid. “NemesisI : A set of functions for describing unstructured
finite-element data on parallel computers,” Sandia National Laboratories Tech. Rep. in
preparation, Albuquerque, NM.

24. J.R. Hipp, R.R. Lober, S.A. Mitchell, G.D. Sjaardema, M.K. Smith, T.J. Tautges, T.J. Wilson,
W.R. Oakes, et al. “CUBIT Mesh Generation Environment Volume 1: User’s Manual,”
Sandia National Laboratories Tech. Rep. SAND94–1100, Albuquerque, NM (1996).

25. T.J.R. Hughes, L.P. Franca, and M. Balestra. “A New Finite Element Formulation for
Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A Stable
Petrov-Galerkin Formulation of the Stokes Problem Accommodating Equal-order
Interpolations,”Computer Methods in Applied Mechanics and Eng.,59 (1986) 85–99.

26. S.A. Hutchinson, J.N. Shadid, and R.S. Tuminaro. “Aztec User’s Guide: Version 1.0,” Sandia
National Laboratories Tech. Rep. SAND95–1559, Albuquerque, NM (1995).

27. R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, and J.A. Miller. “A FORTRAN
Computer Code Package for the Evaluation of Gas-Phase, Multicomponent Transport
Properties,” Sandia National Laboratories Tech. Rep. SAND86–8246, Albuquerque, NM
(1986).

134

28. R.J. Kee, F.M. Rupley, E. Meeks, and J.A. Miller. “Chemkin-III: A Fortran Chemical
Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,” Sandia National
Laboratories Tech. Rep. SAND96–8215, Albuquerque, NM (1996).

29. B. Kernighan and S. Lin. “An efficient heuristic procedure for partitioning graphs,”Bell
System Technical Journal,29 (1970) 291–307.

30. K.J. Laidler.Chemical Kinetics, Harper & Row, New York (1987).

31. LAPACK User’s Guide, http://www.netlib.org/lapack/lug/lapack_lug.html

32. M.J. Martinez and P.L. Hopkins, private communication.

33. E. Meeks, H.K. Moffat, J.F. Grcar, and R.J. Kee. “AURORA: A FORTRAN Program for
Modeling Well Stirred Plasma and Thermal Reactors with Gas and Surface Reactions,”
Sandia National Laboratories Tech. Rep. SAND96–8218, Albuquerque, NM (1996).

34. Message Passing Interface Forum. “MPI: A Message-Passing Interface Standard,”
University of Tennessee, Knoxville, TN (1995).

35. H.K. Moffat, K.P. Killeen, and K.C. Baucom. “Group V Inhibition ofGaAs andAlAs
MOCVD Growth Rates,” submitted (1995).

36. S.V. Patanker.Numerical heat tranfer and fluid flow, Hemisphere Publishing Corp., London
(1980).

37. R. Rew, G. Davis, and S. Emerson, “NetCDF User’s Guide: an interface for data access,
version 2.3,” UCAR (1993).

38. A.G. Salinger, S. Brandon, R. Aris, and J.J. Derby. “Buoyancy-Driven Flows of a Radiatively
Particilating Fluid in a Vertical Cylinder Heated from Below,”Proc Royal Soc London A 442
(1993).

39. H. Schlichting.Boundary Layer Theory, 7th Ed., McGraw-Hill, New York (1979).

40. L.A. Schoof and V.R. Yarberry. “ExodusII: A Finite Eelement Data Model,” Sandia National
Laboratories Tech. Rep. SAND94-2137, Albuquerque, NM, (1994).

41. J.N. Shadid. “Experimental and Computational Study of the Stability of Natural Convection
Flow in an Inclined Enclosure,” Ph.D. Dissertation, University of Minnesota (1989).

42. J.N. Shadid, H.K. Moffat, S.A. Hutchinson, G.L. Hennigan, K.D. Devine, and A.G. Salinger.
“MPSalsa: A Finite Element Computer Program for Reacting Flow Problems, Part 1 –
Theoretical Development,” Sandia National Laboratories Tech. Rep. SAND95–2752,
Albuquerque, NM (1996).

43. J.N. Shadid and R.S. Tuminaro. “Sparse iterative algorithm software for large-scale MIMD
machines: an initial discussion and implementation,”Concurrency: Practice and Experience,
4 (1992) 481-497.

44. J.N. Shadid and R.S. Tuminaro. “A comparison of preconditioned nonsymmetric Krylov
methods on a large-scale MIMD machine,”SIAM J. Sci. Stat. Comput., 15 (1994) 440-459.

45. R.K. Shah and A.L. London.Laminar Flow Forced Convection in Ducts, Academic Press,
New York (1978).

135

46. R.K. Shah and M.S. Bhatti. “Laminar Convective Heat Transfer in Ducts,” inHandbook of
Single-Phase Convective Heat Transfer, S. Kakac, R.K. Shah, and W. Aung (eds.), Wiley &
Sons (1987).

47. D.C. Sorensen and R.B. Lehoucq, Department of Computational and Applied Mathematics,
Rice University, Houston, Texas.

48. T.E. Tezduyar, S. Mittal, S.E. Ray, and R. Shih. “Incompressible Flow Computations with
Stabilized Bilinear and Linear Equal-order-interpolation Velocity-Pressure Elements,”
Computer Methods in Appl. Mechanics and Eng.,95 (1992) 221–242.

49. Z. Zlatev, V.A. Barker, and P.G. Thomsen. “SSLEST--a FORTRAN IV subroutine for solving
sparse systems of linear equations: User’s guide,” Technical Report, Institute for Numerical
Analysis, Technical University of Denmark, Lyngby, Denmark (1978).

136

Index

adaptive mesh refinement . 76
axisymmetry . 16, 76
Aztec . 2, 12

backtracking . 22, 70, 106
bifurcation analysis . 74
BLAS . 13
block_jacobi . 71
boundary conditions

BC_DATA . 38, 58
Danckwerts’ . 78, 119
default . 39
dependence . 37, 39
Dirichlet 5, 36, 37, 38, 91, 93
input file . 33, 35, 38
Jacobian entries . 37
mass fractions . 39
Mixed .5, 37, 39, 91, 93
mole fractions . 81
names . 36
Neumann 5, 36, 37, 39, 91, 93
normal and tangential velocity 35, 37
on generalized surfaces 37
on node sets . 37
on side sets . 37
outflow . 82
precedence . 40
Robin. See mixed.
spinning disk . 80
spinning tilted disk . 80
surface reactions . 77, 99
user-defined functions . 57

broadcast . 89

Chaco . 6, 7, 12
chem.bin . 8
Chemistry Specifications. See input file, chemistry spec-

ifications.
Chemkin . 7, 12, 32

Chemkin III . 8
Chemkin interpreter. Also see interp. 7
input file . 96

coarse mesh . 71
communication utilities . 88
compiling . 11
continuation 18, 19, 20, 65, 70, 73, 127

arc-length . 74, 76
first order . 74, 128
zero order . 74

convergence criteria . 23, 24

CUBIT mesh generator . 5, 118
cylindrical coordinates . 16, 76

Danckwerts’ BC . 78, 119
deposition rate . 126, 130
drag force . 88
dynamic load balancing . 76

element blocks . 5, 29, 31, 32
ex2pex . 10
exact solutions . 45, 63
example problems

Diffusion in an Annulus 91
Flow in a Channel . 107
Lid-Driven Cavity Problem 104
Navier-Stokes 3D Exact Solution 103
Rotating Disk Reactor 121
Si3N4 Equilibrium . 96
SPIN Comparison . 118
Surface Reaction . 99
The Soret Effect . 94
Thermally Developing Flow in a Channel 109
Tilted Reactor . 126
Vortex Shedding from a Cylinder 111

ExodusII5, 8, 10, 12, 15, 16, 42, 72
exoIIlb load balancing utility . 6

f_3d_navier_stokes . 103, 104
f_annulus_exact . 92
f_Danckwerts .78, 79, 80
f_Danckwerts_X0 .78, 79, 80
f_Danckwerts_Y0 . 80
f_mole_fraction .81, 95, 124
f_pressure . 82, 124
f_ss_centroid . 86, 110
f_xy_spin_disk . 80, 124
f_xy_spin_tilt9_disk . 80, 128
FASTQ mesh generator . 5
fn_data_location . 66, 67
fn_data_next_location . 68
function data . 48, 66

accessing function data66, 67, 68
FLOAT . 48
FN_DATA . 48
input file . 48
INT . 48
look-up tables. Also see look-up tables. 49
STRING . 48
TABLE . 48, 49
time_history_line. See time_history_line.
time_history_points. See time_history_points.

GEN3D . 5

137

General Specifications. See input file, general specifica-
tions.

generalized surfaces 33, 35, 61
NORMAL . 33
TANGENT . 33

global sum, max, and min . 90
gmake . 11, 12
GMRES .24, 26, 27, 70, 71
governing equations . 15
gravity . 31
guacamole pre-processor 5, 8, 9, 10, 16

horizontal CVD reactor . 126

inexact Newton’s method 22, 23
initial conditions. Also see initial guess. 40
initial guess . 40, 62

function . 41, 62, 71
restarting . 122
variable specific . 33

input file
boundary condition specifications. See boundary

conditions.
chemistry specifications 27

Chemkin file . 28
Energy equation source terms 27
Multicomponent Transport 28
Pressure (atmospheres) 28
Species equation source terms 28
Surface chemkin file 28
Thermal Diffusion 28
Transport chemkin file 28

function data specification. See function data.
general specifications . 14

Cartesian or Cylindrical when 2D 16
Debug . 17
Input FEM file . 15
Interpolation order 16
LB file . 16
Number of processors 16
Output FEM file . 16
Problem type . 15
Stabilization . 16

initial condition/guess specifications 40
Apply function . 41
Set Initial Condition/Guess 41
Time Index to Restart From 42

material ID specifications. See material properties
output specifications . 42

Global variable names 45
Name of Exact Solution Function 45
Nodal variable names 44
Nodal variable output times 43

Number of global output variables 44, 45
Number of nodal output variables 44
Parallel Output . 43
Scalar Output . 43
Test Exact Solution Flag 45
Time Index to Output To 43
User Defined Output 42

parallel I/O specification 45
Disks per controller 47
Machine . 46
Number of controllers 46
Number of RAID controllers 47
Offset numbering from zero 47
Root location . 47
Staged writes . 46
Subdirectory . 47

solution specifications 17, 18
Initial Parameter Value 20
Initial Step Size . 20
Maximum Number of Steps 20
Maximum Time or Parameter Value 20
Order of integration/continuation 19
Relative Time Integration Error 20
Solution Type . 18
Step Control . 19

solver specifications . 21
Calculate the Jacobian Numerically 23
Choice for Inexact Newton Forcing Term . 22
Convergence Norm 24
Enable backtracking for residual reduction . 22
Linear Solver Normalized Residual Tol . . . 27
Maximum Linear Solve Iterations 27
Number of Newton Iterations 22
Orthogonalization . 26
Override Default Linearity Choice 21
Preconditioner . 24
Scaling . 26
Size of Krylov subspace 26
Solution Absolute Error Tolerance 23
Solution Algorithm 24
Solution Relative Error Tolerance 23
Use Modified Newton Iteration 22

input-ldbl . 6
input-salsa .8, 13, 14
interp .7, 8, 97

JAC_BC_FUNCTION_ARGLIST 57
JAC_SRC_FUNCTION_ARGLIST 55
Jacobian

analytic . 2, 23
analytic entries for source terms 55
entries for boundary conditions 37
numerical . 2, 23

138

Krylov subspace 26, 27, 70, 71

LAPACK . 13
linear solver . 24, 71

convergence norms . 25
table of choices . 24

load balancing . 6
look-up tables . 49, 83

makefile . 11, 12
material properties . 29

density . 31, 51
diffusion coefficients . 32
gravity . 31
heat capacity . 31, 50
heat source term . 31, 51
mass source term . 32, 51
material types . 31
molecular weight . 32
multiple materials . 29
number of species . 32
reference temperature . 31
source term Jacobian entries 32, 54
special species equation 32
species names . 30, 32
table of keywords 31, 32, 33
table of material types . 31
thermal conductivity 31, 51
viscosity . 31, 51
volume expansion coefficient 31
volumetric source . 51

Material Specifications. See material properties.
memory . 70, 71
Merlin . 72

input file . 72
mesh generation . 5
mesh partitioning . 6
mesh sequencing . 71, 106
MPSALSA_HOME . 7, 12
multicomponent diffusion 28, 76
multi-physics . 76
MULTIVAR_FUNCTION_ARGLIST 54

Navier-Stokes exact solution 103
NemesisI . 6, 7, 9, 10, 12, 16
NetCDF . 12
Newton iterations . 22, 70
node set . 5, 37, 40
normal vector . 33, 61
Num_Proc . 88
Nusselt number . 111

optimization . 18, 19
output file . 8
output functions . 64, 84

info on a side set . 86
solution along a line . 85
time history . 84

Output Specification. See input file, output specifica-
tions.

Paragon . 12, 13, 46, 97, 119
parallel I/O 9, 10, 11, 12, 43, 45

Also see input file, parallel I/O specifications.
partitioning . 6
physical properties. See material properties.
plasma . 76
porous media . 76
preconditioner . 70, 71

table of choices . 25
print_sync_end . 89
print_sync_start . 89
Proc . 88
pseudo . 18, 19, 20, 70, 97

radiation . 29, 76
restarting 11, 16, 41, 43, 70, 121, 123, 124

time index . 42
rf_user_continuation.c18, 73, 128
robustness . 71
rotating disk reactor . 121
running MPSalsa . 13

salsa executable . 12, 13
scalar I/O . 9, 10, 16, 43
Scaling . 71

table of choices . 26
side set . 5, 33, 35, 37, 40
SIMPLER . 109
smos .7, 8, 12
SNGLVAR_FUNCTION_ARGLIST52, 57, 63
Solution Specifications. See input file, solution specifi-

cations.
Solver Specifications. See input file, solver specifica-

tions.
Soret effect . 28, 94
source code . 12
SPECIES_LIST .39, 77, 124
SPIN .118, 119, 121
stability analysis . 76
stabilization . 16
status flag . 84
steady-state . 18, 70
Stefan velocity 77, 99, 100, 101, 102, 121, 128

139

Step Control . 74
step size . 74
Strouhal number . 114, 117
SUNMOS . 7, 12, 13
surf.bin . 8
SURF_SPECIES_LIST 77, 78, 101, 102
SURF_VECTOR_FUNCTION_ARGLIST 62
surface chemistry . 77
Surface Chemkin . 7, 99
surface_chemkin_bc 77, 99, 100, 101, 124, 128
SURFACE_SPECIES_LIST 128
synchronization . 88

tangent vector . 33, 61
tfqmr . 24, 71
time dependent 17, 18, 19, 20, 96
time_history_line 49, 68, 85, 86, 110, 119
time_history_points 49, 65, 84, 85, 97, 115
tran.bin . 8
turbulence . 76

units . 31, 50, 103
user functions . 50

boundary conditions . 57
continuation . 65
density . 51
exact solutions . 63
function data . 66
heat capacity . 50
initial condition/guess . 62
normat and tangent vectors 61
output . 64
source terms . 51
thermal conductivity . 51
viscosity . 51

user_bc_exact 45, 57, 58, 63, 64, 111
user_continuation . 65, 73
user_out . 42, 45, 64, 84

variable properties . 50
Also see material properties.

visualization . 10
von Karman vortex street . 114

Y12 . 13
yod . 13, 97

140

EXTERNAL DISTRIBUTION:

Steve Ashby

Lawrence Livermore Nat. Lab.

M/S L-316

PO Box 808

Livermore, CA 94551-0808

Rob Bisseling

Department of Mathematics

Budapestlaan 6, De Uithof, Utrecht

PO Box 80.010, 3508 TA Utrecht

The Netherlands

Petter Bjorstad

University of Bergen

Institutt for Informatikk

Thomohlengst 55

N-5008 Bergen, Norway

Randall Bramley

Dept. of CSci.

Indiana University

Bloomington IN 47405

Rich A. Cairncross

Mechanical Engineering Department

University of Delaware

313 Spencer Laboratory

Newark, DE 19716-3140

G. F. Carey

ASE/EM Dept., WRW 305

University of Texas

Austin, TX, 78712

Steven P. Castillo

Klipsch School of Electrical & Computer Eng.

New Mexico State University

Box 30001

Las Cruces, NM 88003-0001

J. M. Cavallini

US Department of Energy

OSC, ER-30, GTN

Washington, DC 20585

T. Chan

UCLA

405 Hilgard Ave.

Los Angeles, CA 90024-7009

Warren Chernock

Scientific Advisor DP-1

US Department of Energy

Forestal Bldg. 4A-045

Washington, DC 20585

Doug Cline

The University of Texas System

Center for High Performance Computing

%Balcones Research Center

10100 Burnett Road, CMS 1.154

Austin, Texas 78758

Vernon Cole

Equipment Simulation Group, APRDL

3501 Ed Bluestein Boulevard, MD: K-10

Austin, TX 78721

Tom Coleman

Dept. of Computer Science

Upson Hall

Cornell University

Ithaca, NY 14853

Prof. D. S. Dandy

Colorado State Univ.

Dept. Agriculture and Chem. Eng.

Fort Collins, CO 80523

Prof. J. J. Derby

Dept. of Chemical Eng. and Materials Science

University of Minnesota

421 Washington Ave. S.E.

Minneapolis, MN 55455

Distribution

141

J. J. Dongarra

Computer Science Dept.

104 Ayres Hall

University of Tennessee

Knoxville, TN 37996-1301

I. S. Duff

CSS Division

Harwell Laboratory

Oxfordshire, OX11 ORA

United Kingdom

Erik Egan

Equipment Simulation Group, APRDL

3501 Ed Bluestein Boulevard, MD: K-10

Austin, TX 78721

Alan Edelman

Dept. of Mathematics

MIT

Cambridge, MA 02139

%edelman@math.mit.edu

Steve Elbert

US Department of Energy

OSC, ER-30, GTN

Washington, DC 20585

H. Elman

Computer Science Dept.

University of Maryland

College Park, MD 20842

R. E. Ewing

Mathematics Dept.

University of Wyoming

PO Box 3036 University Station

Laramie, WY 82071

Charbel Farhat

Dept. Aerospace Engineering

UC Boulder

Boulder, CO 80309--0429

J. E. Flaherty

Computer Science Dept.

Rensselaer Polytechnic Inst.

Troy, NY 12180

G. C. Fox

Northeast Parallel Archit. Cntr.

111 College Place

Syracuse, NY 13244

R. F. Freund

NRaD- Code 423

San Diego, CA 99152-5000

D. B. Gannon

Computer Science Dept.

Indiana University

Bloomington, IN 47401

Horst Gietl

nCUBE Deutschland

Hanauer Str. 85

8000 Munchen 50

Germany

Paul Giguere

Group TSA-8

MS K575

Los Alamos National Laboratory

Los Alamos, NM 87545

John Gilbert

Xerox PARC

3333 Coyote Hill Road

Palo Alto, CA 94304

R. J. Goldstein

Mechanical Engineering Department

University of Minnesota

111 Church St.

Minneapolis, MN 55455

G. H. Golub

Computer Science Dept.

Stanford University

Stanford, CA 94305

Anne Greenbaum

New York University

Courant Institute

251 Mercer Street

New York, NY 10012-1185

142

Satya Gupta

Intel SSD

Bldg. CO6-09, Zone 8

14924 NW Greenbrier Parkway

Beaverton, OR, 97006

J. Gustafson

Computer Science Dept.

236 Wilhelm Hall

Iowa State University

Ames, IA 50011

Doug Harless

NCUBE

2221 East Lamar Blvd., Suite 360

Arlington, TX 76006

Michael Heath

Univ. of Ill., Nat. CSA

4157 Bechman Institute

405 North Matthews Ave.

Urbana, IL 61801-2300

Mike Heroux

Cray Research Park

655F Lone Oak Drive

Eagan, MN 55121

Dan Hitchcock

US Department of Energy

SCS, ER-30 GTN

Washington, DC 20585

Fred Howes

US Department of Energy

OSC, ER-30, GTN

Washington, DC 20585

Prof. Marylin C. Huff

Department of Chemical Engineering

University of Delaware

Newark, DE 19716

Prof. Michael K. Jensen

Rensselaer Polytechnic Institute

Troy, NY 12180-3590

Prof. K. J. Jensen

Massachusetts Institute of Technology

Dept. Chem. Eng. MIT 66-566

Cambridge, Mass. 02139-4307

Christopher R. Johnson

Department of Computer Science

3484 MEB

University of Utah

Salt Lake City, UT 84112

David Keyes

NASA Langley Research Center

ICASE

M/S 132C

Hampton, VA 23681-0001

David Kincaid

Center for Numerical Analysis

RLM 13.150

University of Texas

Austin, TX 78713-8510

T. A. Kitchens

US Department of Energy

OSC, ER-30, GTN

Washington, DC 20585

Vipin Kumar

Computer Science Department

Institute of Technology

200 Union Street S.E.

Minneapolis, MN 55455

Joanna Lees

Intel Corp.

Scalable Systems Division

CO1-15

15201 NW Greenbrier Parkway

Beaverton, OR 97006

John Lewis

Boeing Corp.

M/S 7L-21

P.O. box 24346

Seattle, WA 98124-0346

143

T. A. Manteuffel

Department of Mathematics

University of Co. at Denver

Denver, CO 80202

S. F. McCormick

Univ. of Colorado

Program in Applied Mathematics

Campus Box 526

Boulder, CO 80309-0526

Computer Mathematics Group

University of CO at Denver

1200 Larimer St.

Denver, CO 80204

Robert McLay

University of Texas at Austin

Dept. ASE-EM

Austin, TX 78712

%mclay@cfdlab.ae.utexas.edu

P. C. Messina

158-79

Mathematics & Comp. Sci. Dept.

Caltech

Pasadena, CA 91125

C. Moler

The Mathworks

24 Prime Park Way

Natick, MA 01760

Gary Montry

Southwest Software

11812 Persimmon, NE

Albuquerque, NM 87111

D. B. Nelson

US Department of Energy

OSC, ER-30, GTN

Washington, DC 20585

Kwong T. Ng

Klipsch School of Electrical & Computer Eng.

New Mexico State University

Box 30001

Las Cruces, NM 88003-0001

S. V. Patankar

Mechanical Engineering Department

University of Minnesota

111 Church St.

Minneapolis, MN 55455

Linda Petzold

L-316

Lawrence Livermore Natl. Lab.

Livermore, CA 94550

Barry Peyton

Mathematical Sciences Section

Oak Ridge National Laboratory

PO. Box 2008, Bldg. 6012

Oak Ridge, TN 37831-6367

Paul Plassman

Math and Computer Science Division

Argonne National Lab

Argonne, IL 60439

Claude Pommerell

AT&T Bell Labs

600 Mountain Ave., Room 2C-548A

Murray Hill, NJ 07974--0636

Alex Pothen

Department of Computer Science

Old Dominion University

Norfolk, VA 23529-0162

J. Rattner

Intel Scientific Computers

15201 NW Greenbriar Pkwy.

Beaverton, OR 97006

Patrick Riley

Intel-SSD

600 S. Cherry St., Suite 700

Denver, CO 80222

Ed Rothberg

Silicon Graphics, Inc.

MS 7L-580

2011 N. Shoreline Blvd.

Mountain View, CA 94043

144

Y. Saad

University of Minnesota

4-192 EE/CSci Bldg.

200 Union St.

Minneapolis, MN 55455-0159

Joel Saltz

Computer Science Department

A.V. Williams Building

University of Maryland

College Park, MD 20742

A. H. Sameh

CSRD, University of Illinois

305 Talbot Laboratory

104 S. Wright St.

Urbana, IL 61801

P. E. Saylor

Dept. of Comp. Science

222 Digital Computation Lab

University of Illinois

Urbana, IL 61801

Carl Scarbnick

San Diego Supercomputer Center

P.O. Box 85608

San Diego, CA 92186-9784

Rob Schreiber

RIACS

NASA Ames Research Center

Mail Stop T045-1

Moffett Field, CA 94035-1000

M. H. Schultz

Department of Computer Science

Yale University

PO Box 2158

New Haven, CT 06520

Mark Seager

LLNL, L-80

PO box 803

Livermore, CA 94550

T. W. Simon

Mechanical Engineering Department

University of Minnesota

111 Church St.

Minneapolis, MN 55455

Richard Sincovec

Mathematical Sciences Section

Oak Ridge Nat. Lab.

P.O. Box 2008, Bldg. 6012

Oak Ridge, TN 37831-6367

Vineet Singh

HP Labs, Bldg. 1U, MS 14

1501 Page Mill Road

Palo Alto, CA 94304

Anthony Skjellum

Mississippi State University

Computer Science

PO Drawer CS

Mississippi State, MS 39762

L. Smarr

Director, Supercomputer Apps.

152 Supercomputer Applications

Bldg. 605 E. Springfield

Champaign, IL 61801

Burton Smith

Tera Computer Co

400 N. 34th St., Suite 300

Seattle, WA 98103

Harold Trease

Los Alamos National Lab

PO Box 1666, MS F663

Los Alamos, NM 87545

C. VanLoan

Department of Computer Science

Cornell University, Rm. 5146

Ithaca, NY 14853

John VanRosendale

ICASE, NASA Langley Research Center

MS 132C

Hampton, VA 23665

145

Steve Vavasis

Department of Computer Science / ACRI

722 Engineering and Theory Center

Cornell University

Ithaca, NY 14853

R. G. Voigt

MS 132-C

NASA Langley Resch Cntr, ICASE

Hampton, VA 36665

Phuong Vu

Cray Research, Inc.

19607 Franz Road

Houston, TX 77084

Steven J. Wallach

Convex Computer Corp.

3000 Waterview Parkway

PO Box 83385l

Richardson, TX 75083-3851

G. W. Weigand

U.S. DOE

1000 Independence Ave., SW

Room 4A-043 (DP1.1)

Washington, DC 20585

Olof B. Widlund

Dept. Computer Science

Courant Inst., NYU

251 Mercer St.

New York, NY 10012

INTERNAL DISTRIBUTION:

1 MS 0151 Gerold Yonas, 9000

1 MS 0321 William Camp, 9200

1 MS1427 P. Mattern, 1100

1 MS0601 P. Esherick, 1126

10 MS 0601 Harry K. Moffat, 1126

1 MS0601 M. E. Coltrin, 1126

1 MS 0827 J. S. Rottler, 5600

1 MS 1111 Sudip Dosanjh, 9221

10 MS 1111 Scott Hutchinson, 9221

30 MS 1111 John N. Shadid, 9221

30 MS 1111 Andrew G. Salinger, 9221

10 MS 1111 Gary L. Hennigan, 9221

10 MS 1111 Rod C. Schmidt 9221

1 MS 1111 Daniel Barnette, 9221

1 MS 1111 Steven J. Plimpton, 9221

1 MS 1111 David R. Gardner, 9221

1 MS 1111 Matt St. John, 9921

1 MS 1110 Richard C. Allen, 9222

1 MS 1110 David E. Womble, 9222

1 MS 1110 Ray S. Tuminaro, 9222

1 MS 1110 Lydie Prevost, 9222

1 MS 1109 Art Hale, 9224

1 MS 1109 Ted Barragy, 9224

1 MS 1109 Bob Benner, 9224

1 MS 1109 James Tomkins, 9224

1 MS 1111 Mark P. Sears, 9225

10 MS 1111 Karen Devine, 9226

1 MS 1111 Robert W. Leland, 9226

1 MS 1111 Bruce A. Hendrickson, 9226

1 MS 1111 Courtenay Vaughn, 9226

1 MS 0441 S. W. Attawy, 9226

1 MS 0441 L. A. Schoof, 9215

1 MS 0441 T. J. Tauges, 9226

1 MS 0819 J. Michael McGlaun, 9231

1 MS 0819 James S. Perry, 9231

1 MS 0819 Allem C. Robinson, 9231

1 MS 0439 David R. Martinez, 9234

1 MS 0841 P. L. Hommert, 9100

1 MS 0833 Johnny H. Biffle, 9103

1 MS 0841 E. D. Gorham, 9104

1 MS 0843 A. C. Ratzel, 9112

1 MS 0834 M. R. Baer, 9112

1 MS 0834 A. S. Geller, 9112

1 MS 0834 R. R. Torczynski, 9112

146

1 MS 0826 W. L. Hermina, 1553

1 MS 0826 T. J. Bartel, 9153

1 MS 0825 C. C. Wong, 9154

1 MS 0825 Basil Hassan, 9155

1 MS 0437 G. D. Sjaardema

1 MS 0827 Dave K. Gartling, 9111

1 MS 0827 Randy Schunk, 9111

1 MS 0827 Phil Sackinger, 9111

1 MS 0827 Mario Martinez, 9111

1 MS 0827 Mike Glass, 9111

1 MS 0827 Bob McGrath, 9111

1 MS 0827 Polly Hopkins, 9111

1 MS 0827 Jim Schutt, 9111

1 MS 0827 Melinda Sirmar, 9111

1 MS 0827 Steve Kempka, 9111

1 MS 0834 Robert B. Campbell, 9112

1 MS 0835 Roy E. Hogan Jr., 9111

1 MS 0835 Mark A. Christon, 9111

1 MS 0826 Robert J. Cochran, 9114

1 MS 0750 Greg A. Newman, 6116

1 MS 0750 David L. Alumbaugh, 6116

1 MS 9214 Juan Meza, 8117

1 MS 9042 Joseph F. Grcar, 8745

1 MS 9042 Chris Moen, 8745

1 MS 9042 Fran Rupley, 8745

1 MS 9042 S. K. Griffiths, 8745

1 MS 9042 Greg Evans, 8745

1 MS 9051 W. T. Ashurst, 8351

1 MS 9051 Alan Kerstein, 8351

1 MS 9051 Jackie Chen, 8351

1 MS 9051 H. Najm, 8351

1 MS 9018 Central Technical Files, 8523-2

5 MS 0899 Technical Library, 4414

2 MS 0619 Review & Approval Desk, 12630

 For DOE/OSTI

	MPSalsa A Finite Element Computer Program for Reacting Flow Problems Part 2 - User's Guide
	Acknowledgments
	Abstract
	Table of Contents
	1. Introduction
	2. Pre-Processing and Running MPSalsa
	3. The Input File
	4. User Functions
	5. Solution Strategies
	6. Future Development
	Appendix A. Included Functions
	Appendix B. Mass Transfer Examples
	Appendix C. Fluid Mechanics and Heat Transfer Examples
	Appendix D. CVD Reactor Examples
	References
	Distribution

