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Abstract

The processing conditions during coating and subsequent drying of sol-to-gel films
strongly affect the final film properties and microstructure. A predictive theory of the drying
process enables determining processing conditions to produce coatings with controlled pore sizes
and properties. This report describes predictions of drying phenomena in gelled coatings (i.e. a
porous solid elastic network filled with air or solvent). Initially, the gelled coating is saturated with
solvent, but as it dries, liquid-vapor menisci begin to recede into larger pores and the gel becomes
a partially-saturated porous medium. Transport occurs by Darcy-type convection and molecular
diffusion in both the gas and liquid phases within the pores. The capillary pressure within the pore
liquid causes the coating to shrink, the pores to constrict, and the solid skeleton to deform from its
initial configuration. Large deformation of the solid skeleton is described by a non-linear, neo-
Hookean constitutive equation. Solid deformation and solvent transport are strongly coupled
through variations in capillary pressure and physical properties.

The governing set of non-linear, coupled partial-differential equations is solved by
Galerkin’s Method with Finite Element basis functions. This enables predictions of the evolution
of the coating shape and distributions of porosity, pore size, liquid and gas pressures, and moisture
content. The shape of the drying profile exhibits a series of stages that are each related to different
mechanisms for solvent transport. We compare these predictions to two types of experiments:
cantilever beam measurements of stress in a partially-saturated coating and ellipsometric
measurements of coating shrinkage during dip coating and drying. The latter experiment exhibits
a ‘springback’ effect in late stages of drying as the effects of capillary pressure diminish. The
theory shows that ‘springback’ is maximized over a range of pore-size and gel modulus.
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1. Introduction

1.1 Introduction to Sol-Gel Processing and Microstructure Issues

The sol-gel method is a convenient method for producing ceramic coatings with a wide range of
properties and for a wide range of applications. Brinker et al. (1,2,3] have shown that the properties of
the ceramic coatings are sensitive to the processing conditions used to coat the film onto a substrate
and to the drying conditions used to remove solvents from the gelled coating. This report presents a
theory that describes fully-coupled, multiphase transport in a deformable, unsaturated porous medi-
um and shows how the final properties of a gelled film can depend upon the processing conditions. The
theoretical approach focuses on developing a set of physical principles which reproduce the conceptual
framework that resulted from experimental studies [2,3,4].

In general inorganic gels produced from the sol-gel route are considered to be a solid network
whose pores are filled with liquid or gas. Bulk gels and gel coatings have been produced from the sol-
gel method with a wide range of porosity (up to 99.5%) and a wide range of pore-sizes [1,5). Some mea-
surements suggest that the pore-radius in gels can be on the order of several angstroms, that is about
the size of the solvent molecules. An issue is whether a medium with such small pores can really be
called porous and whether standard approaches to modeling flow in porous media are valid in these
gels. Another issue is whether molecules confined in pores of molecular dimensions have properties
similar to the same molecules in bulk liquid. In gels with larger pore-sizes (on the order of several na-
nometers) experiments show that they behave like porous media; supercritical drying enables the re-
tention of the initial wet gel pore structure by the elimination of the main driving force for shrinkage,
interfacial tension in the pores, and reversible springback of gels also indicates existence of a capil-
lary stress that vanishes as the material nears dryness. In this paper, we treat the gel as a porous
body with a distribution of pore sizes and assume that the solvent in the pores has the same proper-
ties as the bulk liquid solvent. We also assume there is no molecular adsorption onto the pore walls
and that the liquid does not cavitate in small pores even under extraordinarily large tension produced
by the capillary pressure. These assumptions become more valid in gels with larger pore-sizes (>10
nm), but in this report we apply the theory over the whole range of pore-sizes.

Scherer[1] has pioneered the development of theories describing stress development in sol-gel
materials and experiments to verify those theories. Scherer’s theories describe stress development
during drying in gels with many different geometries, and he has made the extension to viscoelastic
deformation of gels{1,5,6]. Scherer also measured experimentally how the modulus of a gel rises as an
inverse power law of the porosity, which we use in this report. However, Scherer’s theories were re-
stricted to cases for which he could derive analytical solutions to the governing equations and to cases
in which the pores remained filled with solvent. This report extends the concepts from Scherer’s work
to partially-saturated porous gels in which the gel experiences large, nonlinear elastic deformations.

1.2 Summary of this Report

This report presents the theory that describes fully-coupled, multiphase transport in a moving,
deformable, unsaturated porous media. The model is composed primarily of four parts: 1) a macro-
scopic description of flow in an unsaturated porous media, 2) a simple, microscopic, pore-scale model
to obtain the parameters for the macroscopic model, 3) a solid-mechanics model of the interaction be-
tween capillary pressure and solid network deformation, and 4) a lumped parameter (mass transfer
coefficient) model for solvent vapor removal from the coating surface. The model predicts the evolu-




Figure 1 Stages of drying of dip-coated, porous, gel films which exhibit a ‘springback’ phenomenon.
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tion of moisture (or solvent) content, stress, porosity (fraction of medium volume occupied by pores),
and pore-radius during drying of a gelled coating [7]. Under appropriate conditions, a drying gel coat-
ing can exhibit all the drying stages shown in Figure 1; this figure depicts drying of a gel coating dur-
ing continuous low-speed dip-coating with a solvent (coating liquid). Initially, the gel is saturated with
solvent and has an entrained layer of bulk liquid on its surface; at this point the coating is stress-free.
When the liquid layer evaporates, the gel coating is exposed to air and begins drying and shrinking.
Initially the drying rate is nearly constant because the gel is saturated with solvent and changes in
the porosity and solvent partial pressure are small. Later, as the capillary pressure in the liquid
starts to rise rapidly, the rate of coating shrinkage increases due to wicking of solvent parallel to the
substrate, and the coating enters its most compressed state. As the capillary pressure rises, the larg-
est pores in the media empty and the gel becomes partially saturated. In a partially saturated gel, the
capillary pressure force, which causes the gel to shrink, decreases and the gel can expand back to its
original volume, i.e. ‘spring back’. The rate of springback is determined primarily by diffusion of sol-
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vent vapor through the gas in the pores and through the external gas phase. The final coating thick-
ness is determined by the physical properties of the initial gel (modulus and pore-radius) and the
solvent content of the drying gas. This report shows how all these stages can be predicted from theory.

The set of equations describing this process are presented in Chapters 2 and 3. The equations
resulting from this model were solved using the finite element method in two dimensions using GO-
MA, a computational fluid dynamics program developed at Sandia[8], and the solution method is de-

scribed in Chapter 4. Chapter 5 displays results computed from the theory for a variety of processing
conditions.

Figure 2 shows a sample result predicted by this theory. The coating enters the computational
domain from the bottom saturated with solvent and stress-free. As liquid evaporates from the coating
through the free surface (left boundary in Figure 2), the coating shrinks and the stress in the coating
balances the rising capillary pressure force. As the coating shrinks, the pores shrink from 4 nm mean
pore radius to 2.4 nm, and the capillary pressure eventually becomes large enough that the largest
pores fill with air (as determined by a micro-scale pore model). The point at which the pores start to
empty is a result of the coupling between the multiphase solvent transport, the solid network stress
development, and the pore structure evolution and pore-scale model. Once the pores begin to empty,

Figure 2 Typical results for dip coating and drying of solvent onto a porous, gel film. a) cartoon de-

picting process, b) shape of coating with shading indicating the saturation (fraction of
pore-space filled with liquid) and horizontal axis expanded by 100x.
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the saturation decreases rapidly as shown by the sharp gradient of greyscale in Figure 2. After the
pores begin to empty, the in-plane stress is maximized at about 50 Bars before the stress in the solid
network falls nearly to zero and the film expands nearly back to its initial thickness. The capillary
pressure continues to rise, as menisci recede into smaller pores, until the remaining liquid becomes in
equilibrium with the bulk gas.

The theory presented in this report enables predictions of how the springback phenomena de-
pends upon pore sizes, solid network stiffness, and solvent transport. By raising or lowering the ini-
tial pore radius, the springback effect disappears. At larger pore-size, springback disappears because
the capillary pressure at which the pores start to empty is insignificant. At smaller pore-size, spring-
back disappears because the capillary pressure never becomes large enough to empty the pores. These
concepts can be used to help develop dried gel coating with specified porosity and pore-size.
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2. Theory of Drying Deformable Porous Coatings

2.1 General Approach

There are a variety of approaches for describing the transport of mass, momentum and energy
in porous medium. In this paper, we assume that the porous medium is isothermal, so we solve equa-
tions of conservation of mass and momentum within the liquid, solid, and gas phases in the porous
media subject to the appropriate boundary conditions.

This chapter describes the equations governing the interaction between solid network stress,
capillary pressure, and solvent transport in a porous medium. Section 2.2 focuses on the principle of
conservation of mass and all the auxiliary equations needed to describe multi-phase flow in a porous
medium. Section 2.3 focuses on the principle of conservation of momentum and the constitutive equa-
tions used to describe the coupling between fluid stress (capillary pressure), solid network stress, and
large deformations. Section 2.4 focuses on the boundary conditions applied to these equations.

2.2 Multiphase Mass Transport in Unsaturated Porous Media

This discussion focuses on a partially saturated porous medium in which the solid skeleton, in-
terstitial liquid, and interstitial gas are all assumed to be continuous phases. In this formulation, the
liquid is pure solvent (or water) and the gas is composed of air (as a lumped species) and solvent va-
por. The solvent can evaporate into the gas phase, but does not adsorb into the solid phase, and the air
does not dissolve into either the liquid or solid phases.

The overall formulation for conservation of mass requires several parts: a general conservation
equation, constitutive equations for the fluxes in terms of driving forces and material properties, local
equilibrium relationships between the phases, and a material dependent capillary pressure versus
saturation relationship. These principles and the strategy for solving them is described in the follow-
ing sections.

2.2.1 Conservation of Mass of Solvent and Air

For conservation of mass, we follow the approach developed by Martinez (1995), which describes
flow in partially saturated porous media using only the liquid and gas phase pressures as un-
knowns|9]. This theory only applies rigorously when the medium is partially saturated and the liquid
and gas phases are in local equilibrium[9]. Macroscopic mass balances conserve the mass of the sol-
vent contained in both the liquid and gas phases and the air in the gas phase:

Figure 3 Schematic of partially-saturated porous medium. All three phases, air, liquid and gas,
are connected in the third dimension.

Saturated with Gas




Figure 4 Multi-phase flow in a porous medium. Liquid and gas both flow through pores due to a
gradient in pressure. The liquid and gas are locally in equilibrium with evaporation of sol-
vent into the gas phase. Solvent vapor diffuses through air in the gas phase.

aC,,

—at = —VQFw (1)
aC,

= = _VoFa )

Here C, is the bulk concentration of solvent in units of mass (of both liquid and solvent vapor) per
unit volume, C, is the bulk concentration of air, F, is the total solvent mass flux, and F,, is the total
air mass flux. These bulk properties contain the values in each phase averaged over a representative
elementary volume(REV) that contains all three phases [10]; the hypothetical REV is both large
enough and small enough that the averaged values do not change appreciably for small changes in
size or position of the REV. An important feature of this approach is that the rate of evaporation from
the liquid phase to the gas phase is not explicitly calculated, the evaporation rate results naturally
from an assumption of local equilibrium between the phases. If the volumetric porosity (fraction of
space which is contained inside pores) is designated as ¢, and the saturation (fraction of porosity that
is filled with liquid) is designated as S the bulk concentrations can be related to the densities of air
and solvent in both phases:

Cy = 0[Sp;+(1=-S)p,,] @)

Cy = 0(1-S)pg, @

Here p, is the density of pure liquid solvent, p gv 1S the partial density of solvent vapor, p,, is the
partial density of air. Throughout this section, we assume that the porosity is a known value, because
it is determined as a result of the momentum equations in the next section.

The fluxes or air and solvent are the sum of bulk convection with the solid skeleton, Darcy-type
pressure-driven convection of each phase relative to the solid skeleton, and diffusion within the gas
phase (no diffusion in liquid phase because it is pure solvent):

14



F,=vC +F+X,F,+dJ, (5)

F,=v,C, +XgaFg+J ©)
v, is the velocity of the solid phase, F, is the flux of liquid relative to the solid, F, is the flux of gas
relative to the solid, X, is the mass fraction of solvent in the gas phase, X ga 18 the mass fraction of
air in the gas phase, J 1s the diffusion flux of solvent vapor in the gas phase, and , is the diffusion
flux of air in the gas phase. The velocity of the solid phase is calculated from the conservation of mo-
mentum discussed in Section 2.3, so for now it is assumed to be a known quantity.

In the finite element implementation of these equations, the field variables are calculated at ref-
erence points which move with the solid phase, thus the time derivative needs to be adapted to a solid
material reference frame (moving with velocity v, ):

oC, dC,
2 ”
oC, dC,
FRr O ®
Then equations (1) and (2) become:
dC,
_Ft_ = -VeF +v,eVC, =-Ve(F;+ X F,+J,)+C, Vev, (9)
dC,
el ~VeF, +v,eVC, = -Vo(X_  F,+J,)+C,Vev, (10)

This is the form of the macroscopic mass balances that we use in our finite element formulation. The
last term on the right hand side of each equation represents the change in concentration caused by
contraction or expansion of the solid skeleton. The divergence of the solid phase velocity poses a com-
putational challenge; so we solve these equations using the first right-hand-side in each of the above
equations. The field variables we use are the liquid pressure, the gas pressure, and the porosity, so all
the properties and coefficients in these equations need to be calculated in terms of the field variables
through constitutive relationships as detailed in the next two sections.

2.2.2 Constitutive Relations for Flux

Darcy’s law describes the flux of the interstitial fluid through the porous medium relative to mo-
tion of the solid skeleton. The Darcy velocity is the local volume flux per unit area of the medium (i.e.
the Darcy velocity is an averaged, macroscopic variable while the micro-scale fluid velocity in pores
can be considerably higher. In multi-phase unsaturated porous media, the extended Darcy Law
weights the mass flux in each phase with a relative permeability to account for the reduced flow due
to partial saturation of the porous medium:

15




F __Pikk
! = Pwd: = —-TLZ—(VPz*Pzg) (11)

ghkg

Fg = pgqg = - (Vpg_pgg) (12)

Here g, and q, represent the Darcy flux, or Darcy velocity, in the liquid and gas phases respectively,
k is the permeability of the porous medium, k; and kg are the relative permeabilities for the gas and
liquid phases respectively, u; and p, are the viscosities of the liquid and gas phases respectively, p;
and pg are the pressures in the liquid and gas phases respectively, and g is the gravitational force vec-
tor. p, is the density of the gas phase and is equal to the sum of the partial densities of air and solvent

vapor, pg = pgv + pga

In general, the relative permeabilities are a function of the saturation, and the permeability is a
function of the porosity. In this Chapter, we assume that these relations are known, and the function-
al forms of these relationships are discussed in detail in Chapter 3.

In the gas phase, binary diffusion causes diffusive flux of air and solvent vapor relative to the
bulk gas flow. This flux is described by Fick’s Law:

a

J, = -p; D, VX, = (13)

Here D,, is the effective binary mutual diffusion coefficient for solvent vapor through the pores in the
gas phase and X, is the mass fraction of solvent vapor in the gas phase (X, = pg,/(Pga+ Pgu) )
The effective bmary mutual diffusion coefficient is related to the volume fraction of the gas phase, the
tortuosity (1), and the mutual diffusion coefficient in bulk vapor (D ):

_ poo1-S)
D,, = D= (14)

7 is the tortuosity of the porous medium/[10}, which represents the increased path-length required for
solvent to dlffuse through the pore-space. Currently, we assume the mutual diffusion coefficient in
bulk vapor, D , is a constant, but this assumption could easily be relaxed in future calculations.

2.2.3 Equations of State and Local Equilibrium Between Phases

Now, we have relations for the fluxes and mass balances in terms of the phase pressures and
mass concentrations. To be able to calculate the relationship between the mass concentrations of sol-
vent and air in both phases, we need to invoke an equation of state for the gas, the ideal gas equation,
and an equation of local equilibrium between the two phases, the Kelvin equation.

In small pores, the equilibrium vapor pressure above a curved meniscus is lower than the vapor

pressure above a flat meniscus (p*, ). Neglecting the effect of adsorbed layers on pore walls, this is de-
scribed by the Kelvin equation:

(15)

pC w
= p* e w
P, =D vexp[ leTi|
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P.=Dg-p; is the capillary pressure, M, is the molecular weight of solvent, R is the gas constant,
and T'is the temperature. This effect of vapor pressure lowering becomes large in pore-sizes in the
range of nanometers.

In an ideal gas, the mass concentration is directly proportional to pressure (at constant temper-
ature). Thus the mass concentrations of solvent vapor and air (p, = p ¢ — Pu) can be calculated:

M, p

Pev = 7 (16)
M,p

Pga = }ST“ (17)

2.2.4 Capillary Pressure-Saturation Relationship

The saturation, or volume-fraction of the pore-space that is occupied by liquid, is an important
parameter in the mass balance equations. Experimental observations have shown that for a given po-
rous medium the saturation is closely tied to the capillary pressure of fluid in the medium. There are
many empirical and theoretical models of this relationship, and such a relation is discussed in Chap-
ter 3; so for now, we assume that there is a direct functional relationship between saturation, capil-
lary pressure, and porosity:

S = f(p, ) (18

In porous medium in which the liquid wets the solid pore-walls, these relations show that at low cap-
illary pressure, the saturation tends to one (or pore-space saturated with liquid), and at high capillary
pressures, the saturation tends to zero (or pore-space saturated with gas). The range of capillary pres-
sure over which the saturation changes from zero to one depends upon the pore-structure, the surface
tension and contact angle of the liquid, and whether liquid is entering or leaving the pore-space; the
range of this capillary transition is narrow in media with large pores or narrow pore-size distribu-
tions. In deformable porous media, as the medium compresses and the pore-size shrinks, the capillary
pressures at which the saturation falls (i.e. pores empty) increases.

2.2.5 Solution Strategy

In the previous 4 sections, we have listed equations describing the equilibrium, state, and fluxes
of transport in a multi-phase porous medium. In this formulation, the only field variables are liquid
phase pressure, gas phase pressure, and porosity; all the other variables and all the fluxes are quanti-
ties derived from these three variables. A strategy for calculating all the needed quantities from the
three field variables is shown in Figure 5. For numerical solution of the balance equations (9) and
(10), several strategies have been employed to calculate interpolated values and gradients of these
quantities within the domain. We have chosen to interpolate the field variables and only calculate the
needed quantities at the points of interest (at the Gauss points during numerical integration).

Equations (9), (10), and (13) require gradients of concentrations and mass fractions, which are
quantities derived from the field variables. To calculate these gradients, we use the chain rule to con-
vert gradients of the field variables to gradients of these quantities:

17




Figure 5 Strategy for calculating physical quantities from field variables in an unsaturated po-
rous medium

Starting from the Field Variables and their Gradients:
pl> pg’ (D’ Vpla Vpga Vq)
And the List of Physical Constants:

p*lyMw’ pl’Ra T,Ma>k,kl, ul, g,k D

g Mg Ygu

k.

y

Calculate the Capillary Pressure and Saturation

P, = Dg=D S=fP,0) temmmmm=-

Y

Calculate the Partial Solvent Vapor and Air Pressures

Y

Calculate First Derivatives of all Quantities with respect to the

pcMw I---—-*
pU = p*UeXp _p_l-ﬁ pa = pg—pv

Y

Calculate the Gas Phase Concentrations and Mass Fraction

M, p M,p
_ wi'v _ Tafa _
Pov = RT Pga = RT ng = ng/(Pga+PgU)

—a-

Y

Y

field variables, and second derivativesof C,, C,,and X .

Calculate the Bulk Mass Concentrations

C, = olSp;+ (1 —S)pgv] C, = (p(l_s)pga .
Calculate the Fluxes ’

»

Pk, p Rk
Fo=——gpi-eg) Fy= (VR 0e8) -~ K
= = vV 4
J” - —pngvVng - —Ja ¢

Substitute all these into the Mass Balances (9) and (10), using the ’
Chain Rule to get the gradients of concentrations.
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vC Vo, (vp )2 8 4 (v 2w
w (Pz) +( Pg) pg+(¢)—a&)— (19)

aC,
VCy = (VP)5— +(Vpg)a +(V¢) a¢ @)

X X

(21)

¢

Thus, to calculate gradients of the derived quantities, we need to be able to calculate the first deriva-
tive of the derived quantities with respect to the field variables. In the fully-coupled full-Newton ap-
proach taken in GOMA to solve the balance equations, the second derivatives of these quantities are
also needed to calculate the analytical sensitivities needed in GOMA. This is a straightforward, but
tedious task, because all the quantities are calculated from analytical functions.

2.3 Total Momentum Balance of Multiple Phase Systems

Sol-gel films are deformable. Deformation results from conservation of the elastic energy in the
solid network subject to the stresses imparted on it from external sources and from the interstitial flu-
id. In theory, one would like to solve for conservation of momentum microscopically in each phase and
with the appropriate normal traction conditions at the interfaces. In practical situations this is not
possible, so averaged, macroscopic forms of the total momentum balance are used {10,11]:

~VeT P18+ F. = 0 22)

Here T,,, is the total stress tensor for the medium, p,,, is the total density of the multi-phase medium,
and F, is an interaction force resulting from capillary forces [10]. This equation assumes that all elas-
tic deformations are quasi-static (i.e. inertia is small). The interpretation of F, is poorly defined in
general and is normally neglected (it does not appear in the total stress balance from mixture theory)
in practice.

In a multiphase unsaturated porous medium, the total stress is a sum of the partial stresses in
all three phases. The approach used here can be derived by several means: mixture theory, theory of
interacting continua, and volume averaging [12,13]:

Ttot =(1- q))O'solid + <I)S(’liquid +0(1 - S)cgas (23)

The weighting before each stress is the volume fraction of the porous medium that is occupied by that
phase. Normally, the stress in the solid phase is split into an “effective stress” or “drained network
stress” and an isotropic solid pressure stress (i.e. a local microscopic stress in the solid struts or
grains, whereas the effective stress is a macroscopic averaged stress){14]. The motivation for the ef-
fective stress is that raising the pressure of external and interstitial fluids uniformly should result in
negligible deformation of the network; thus after removing the pressure stress from the solid phase
stress, one should end up with an invariant stress-strain relationship. This is the stress that the solid
would experience in absence of interstitial fluid (i.e. the effective stress represents a stress-strain law
for the drained network):
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(1=8)0401iq = Oopr = (1 = ®) Pgorial (24)

The liquid and gas stresses are normally assumed to be the isotropic pressures in each phase. Then
the total stress is split into a sum of the effective stress and the pressure stress in the three phases:

Ttot = cseff -1(1- ¢)psolid + q)Spliquid +0(1 - S)pgas]I (5)

A critical issue is evaluating the value of the solid pressure stress, and there are several ap-
proaches to determining this value. One approach is to use a weighted average of the liquid and gas
pressures:

Psolid = Spliquid +(1- S)pgas (26)

Then the equation for total stress simplifies to:

Ttot = Geff - [Spliquid +(1- S)pgas]I @7

In many realistic situations, the gas-phase pressure is nearly constant and so can be subtracted from
the total stress; then the liquid-phase pressure is converted into the capillary pressure:

T, = Cofr + Sp I (28)

This form of the effective stress law is valid for partially-saturated coatings in which the solid materi-
al 1s incompressible or in which the porosity is large.

2.3.1 Derivations of the Effective Stress Principle

From the “effective stress principle” [14,15,16,17,18] Garg and Nur [19] suggest a general form
of equation (25) for saturated porous media:

Ttot = Geff+ CpcI (29)

Here, p, is the capillary pressure of the interstitial liquid, and the ambient pressure (pg,,) has been
set to zero. I is the identity matrix, and ( is a factor. The drained network stress is a stress-strain re-
lationship for the network at zero pressure (i.e. in a vacuum). This form of the total stress would re-
sult from equation (25) if the gas pressure is set to zero, the saturation is one, and pg,;;s = &Pjiquid -
Many authors disagree on the value and interpretation of { [19]. Several authors suggest that the
pressure stress should be weighted by the fluid content or porosity (i.e. {= ¢). However, stress experi-
ments on saturated (fluid-filled) rocks have shown that the scaling factor is nearly one if the solid ma-
terial is much stiffer than the solid network. Biot [14] suggests a scaling factor of (1 — K /K;) where
K, is the bulk modulus of the network and K, is the bulk modulus of the solid material, and Garg and
Nur [19] suggest a scaling factor (1 — (1 - $)K/K,). From micro-scale arguments, if the solid material
is nearly incompressible (implying that K >> K), the pressure force in the liquid must be transmit-
ted to the solid phase locally, so the solid locally has the same pressure (i.e. isotropic stress) as the lig-
uid. Then the pressure force is weighted by the fluid content plus the solid content (i.e. {= 1).

The factor { = (1-(1-99)K,/K,) can be derived for a simple model of a porous material as a
series of deformable plates (Hookean) separated by Hookean springs (see Figure 6). In this model, the
plates are deformable springs with a spring constant K, corresponding to changes in the plate thick-
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ness d and the plates are separated by springs with a spring constant K, corresponding to changes in
the gap between the plates h. If there is no liquid between the plates, then the total externally applied
force acts on both the plates and the gap:

F=Kg—h—o=Ks d 2 (30)
o

The total strain is a sum of the strains in each of the phases (solid and pore-space) multiplied times
the volume fraction of the phase in the undeformed state:

h-h h d-d d
e e gtk ey ddrdy ) EG L F )
ko +d, Ry \ho+d,)  "d, \h,+d,)” K"K,

¢, is the porosity of the medium (volume fraction of pore-space) in the undeformed state. Equation
(31) can be rearranged to get the force as a function of a modulus for the network times the total
strain:

F =0, = S_ e=K ¢ (32)

This is the equation for the effective stress, or drained network stress and defines the value of the net-
work modulus for a medium of springs in series.

If the gel is immersed in a bath of liquid at pressure p;, the force applied at the surface is p; and
the liquid pressure between the plates is p;. In this case only the plates deform because the separation
between the plates is supported by the liquid pressure:

d-d
s > =p ~ (33)
d

[¢]

F=K

Figure 6 Simple model of deformable porous media for derivation of the effective stress law. The
plates have a thickness d and are deformed by liquid pressure p;. The plates are separated
by a distance h into a network which is deformed by external stresses F.

Fy
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The total strain is the strain in the solid phase times the initial volume fraction of the solid phase:

Py
€= ;{—S(l—%) (34)

This equation can be solved for the total stress as a function of the total strain plus an extra stress
due to the liquid pressure:

F = p; =0 = Oe+Lp; = K e +{p; (35)

The strain from equation (34) can be plugged into the effective stress equation (35) and solved for the
effective stress factor, {:

C=1-(1-9p)K /K, (36)

Thus, using a simple model of the structure of the porous medium, namely deformable plates separat-
ed by springs (springs in series), it is possible to derive a functional relationship for the effective
stress law parameter which is similar to the factor reported in the literature. Clearly a more rigorous
derivation is needed for complex porous structures and for partially-saturated porous media. In the
results of Chapter 3 and Chapter 5 the effective stress factor is normally set equal to the saturation,
but in cases where the compressibility of the medium is likely to be important (i.e. if K /K > 0.1) we
haveused { = S(1-(1-0)K,/K,).

2.3.2 Large Deformation Elasticity

In sol-gel materials, large stresses can develop due to large capillary pressure existing in small
pores (0.5 - 10 nm). Thus, large deformations of gels are frequently observed in practice - often a de-
crease in volume of a gel to 10% of its initial volume. So, the stress-strain relationship in the effective
stress principle needs to account for large volume changes and rotations. The relationships developed
below all reduce to linear elasticity for small deformations and rotations of the elastic media.

In an elastic material there is a state of deformation in which the all the elastic stresses are
zero (the undeformed state); we call this state the stress free state. In the stress free state, the mate-
rial exhibits zero strain, and an appropriate measure of the strain should be invariant to solid body
translation or rotation. Departure from the stress-free-state is described in terms of field of displace-
ments [c.f. 11]:

xdeformed = Xstress — free — state +d (&7

The displacement field, d, describes the change in position from the stress free state, X, to the current
state, x. The current position field of the material, x, is a field of material points that move with the
solid (i.e. they are in a material frame of reference, or Lagrangian). Stress arises in a material due to
stretching between material points. An appropriate measure of the separation of points in a material
is the deformation gradient F:

F=f7x=887§ (38)

In equation (38), the gradient operator is a Lagrangian gradient operator that represents the gradient
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of the current displacement field with respect to the undeformed, stress-free coordinates. The defor-
mation gradient is a mapping between the stress-free state and the current state of the material (af-
ter removing solid-body translation). Combining equations (37) and (38) shows that the deformation
gradient is related to the Lagrangian gradient of the deformation field:

F =1+Vd (39)

Note that if the deformation field is everywhere zero, or everywhere the same, F = I (because x =X),
and the material is in its stress-free-state.

It is convenient to think of the deformation as occurring from several sources, such as dilation
and shear. The dilation, or fractional change in volume of the material from its stress-free-state, is
equal to the determinant of the deformation gradient, det|F]|, which is equal to one in the stress-free-
state. A measure of the volume strain, which reduces to trIle in linear elasticity is:

e = 3(det|F|'*-1) (40)

The total deformation gradient can be split multiplicatively into shear and dilational components
{20,21]:

F = Fsheaerilation (41

F,,, = F/det|F|'” (2)
1/3

Fdilation = det‘Fl I (43)

F ;;10::0n TEPresents the isotropic dilational stretching of the solid, and F,,,, contains the shear in-
duced deformation (non-dilational) of the solid (note that det|F, | = 1).

In a porous medium, dilation of the solid network translates into changes in the porosity of the
medium. If the solid material is assumed to be microscopically incompressible, then any changes in
volume of the network are accommodated purely by a change in the porosity:

1-¢
det|F| = 9 (44)
1-¢
Figure 7 Changes in porosity with shrinkage for 1-D, 2-D, and 3-D uniform shrinkage and an
initial porosity of a) 0.9, and b) 0.99. In highly porous materials, changes in porosity
are only significant under large deformation.
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Here, ¢, is the porosity of the medium in the stress-free-state (such that the right-hand-side equals
one in the undeformed state). An important feature of this equation is its nonlinearity - in a shrinking
porous medium, large changes in the characteristic length of the media (thickness in 1-D, size of
square in 2-D, size of cube in 3-D) may be needed to significantly change the porosity (see Figure 7).
Thus, in highly deformable materials, large deformations (dilational changes) are required for signifi-
cant changes in the porosity.

An appropriate form of the strain in the solid in the Eulerian frame of reference (lab frame for
use in the Eulerian form of the momentum equation) is:

1 17
E = E[I_F F '] (45)

T
TF _1] (a6)

shear shear

E

1
shear = E[I -F
Equation (45) contains the standard Eulerian strain tensor, and equation (46) contains the dilation-
free strain tensor. This strain measure is symmetric, invariant to translation and rotation, and goes
to zero when the deformations go to zero.

The elastic stresses are a function of the strain according to a constitutive equation. For Neo-
Hookean materials the stress is expressed in terms of the shear strain times the shear modulus and
the volume strain times the bulk modulus. This relation reduces to the standard linear elastic consti-
tutive model in the small strain limit:

+ Kel (47)

shear

Geff = 2GE
Equation (47) has a clear separation of the shear and dilational effects.

More elaborate theories exist relating the stress and deformation in porous materials, especially
for rocks and granular bodies. Because gels represent a significantly different type of material, we
chose to use this simple form of Neo-Hookean constitutive equation to understand the phenomenon of
coupled deformation and multiphase flow. We plan to improve on our choice of constitutive equation
as we seek more quantitative results. As a porous medium shrinks or expands due to the stresses im-
parted upon it, experiments show that the elastic moduli used in the Neo-Hookean equation should
also vary. Scherer [5] has shown that the elastic moduli of gels varies in a power law with respect to
the volume of gel. In terms of the porosity, this equation is:

G6) = Gof 7] )
K(¢) = Ko(ll_'(g)o)m (49)

Here G(¢) = u(¢) is the shear modulus of the gel, G is the shear modulus at a reference porosity,
0., and m is the power law exponent. Scherer [5] found that this power law exponent is fairly consis-
tent for gels in the range of 2.5 <m < 4. Scherer also suggests a Poisson ratio of v = 0.2 for gels. In
the small strain limit, the bulk and shear modulus can be related by the poisson ratio:
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_2G(1+v)
T o3(1-2v)

This equation can be used to calculate K in (49) if the poisson ratio of a gel is independent of the po-
rosity, which probably is not true over all ranges of porosity (especially as the porosity goes to zero). In
the results of this Chapter and Chapter 5, the reference porosity was taken to be zero, so
K(0) = Kyo(1-¢)™ with K, the modulus for dense silica.

(50)

2.3.3 Convection of Solid

Even though the momentum equation (22) is quasi-static, the solid material is moving. For a
coating drying with time, the solid velocity is equal to the time derivative of the deformation. For
steady-state drying of a convecting coating, the elasticity equations are put in a moving frame of ref-
erence [22}]. Thus, the velocity of the solid, v,, can be calculated and used in the mass conservation
equations, but it does not affect the momentum equation (inertia is neglected).

In dip-coating of sol-gel films, the process reaches a steady-state in which the coated film con-
vects upward but the drying line remains steady in the laboratory coordinates. Because the deforma-
tion gradient is calculated from a material frame of reference, convection of solid material into and
out of the domain requires special treatment. In this section, we derive the large deformation elastici-
ty equations in a moving frame of reference.

For steady-state processes, the velocity of the solid material in the lab frame is independent of
time. If the solid material does not deform, then the velocity of this material must be either solid-body
translation or solid-body rotation. In dip coating, the velocity is solid-body translation. Thus, the coor-
dinates of the undeformed material move uniformly in time:

X(t) = X(ty) - vyt (51)

Uy is the velocity of the stress-free-state in the hypothetical case of no deformation. This relation can
be easily derived for solid-body rotation also [22]. Thus, the solid, undeformed material would convect
from the position X(¢;) attime ¢, to a position X(¢) attime t . However, if the solid material is de-
formed, we need to calculate how the deformation causes the velocity of the deformed solid to deviate
from the velocity of the undeformed solid:

o 35 _ 93X Dd
S ot ot Dt
The uppercase D’s on the right-hand side represent a derivative which is calculated following the mo-

tion of the material; that is, the displacements are connected to material points, so Dd/Dt is the
change in displacement of a material point as it moves with the material:

(52)

_DD_‘_: = vy, 0 Vd (53)

One way to think of this equation is that the right-hand side represents a chain rule to convert the
motion of the stress free state to the velocity relative to the moving frame of reference. Substituting
equation (53) into equation (52) gives:
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v, = %}7(+vsfSOVd = v I+Vd) = v o F (54)
This equation shows that the deformation gradient maps the velocity from the stress-free-state to the
deformed configuration. Thus, if v, is known a priori, then we can use this equation to get the con-
vective velocity in the solid material. As long as the inertia of the total system is still small relative to
the elastic stresses, the quasi-static momentum balance equation (22) is still valid and is unchanged
by the convection of the solid. This relationship for v, controls the solvent transport by bulk convec-
tion in equations (9) and (10).

Note that in transient simulations, the stress-free-state does not (or does not necessarily, and
does not in the results in this report) move, so the velocity in the solid is simply the time derivative of
the displacement at a material point.

2.4 Boundary Conditions

The set of equations derived so far in this chapter apply to transport of mass and momentum
within a macroscopic porous medium. How this transport is affected by external conditions comes
from the boundary conditions that are applied to these equations. The following sections describe sev-
eral boundary conditions that are commonly employed in the solution of drying porous medium prob-
lems.

2.4.1 BC’s on Mass Flux

For initial conditions, inlet conditions, and equilibrium conditions, the pressure of the liquid or
gas phase is known a priori, and this pressure is imposed as a Dirichlet boundary condition (i.e.

pliquz’d = Pknown ).

At the free surface of drying coatings, the concentration results from a balance between the in-
ternal and external mass transfer rates. In this paper, we treat the mass transfer in the external
phase by a lumped-parameter mass transfer coefficient model. Thus, we get a flux boundary condition
at the free surface:

(r e Fw)coating = KG(pgas - poo) (55)

The left-hand side of equation (55) represents the normal mass flux of solvent to the surface of the
coating, and the right-hand side represents the mass flux of solvent away from the surface on the gas’
side. n is a unit normal to the surface, K, is a mass transfer coefficient based on a gas phase concen-
tration driving force, p,,, is the concentration of solvent vapor in the gas at the surface of the coating
and p. is the concentration of solvent in the gas phase far away from the coating. In this paper, the
mass transfer coefficient is treated as a constant along the free surface.

When the solid coating convects through the domain in which the problem is being solved, sol-
vent convects through the outflow plane. Then the mass flux normal to the outflow plane is equal to
the bulk concentration times the convection velocity:

(neF,)

= (nev,C,) (56)

outflow outflow

For problems in which the coating is not completely dry at the outflow plane, this convection condition
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becomes important.

2.4.2 BC’s on Stress

There are two types of boundary conditions that are normally applied to the solid-body deforma-
tions: 1) Applied Normal Traction and 2) Applied Displacement (often resulting from perfect adhe-
sion). '

At free surfaces, the external gas phase exerts a pressure stress on the surface and exerts negli-
gible shear stress on the surface. Thus the normal component of the traction tensor should be equal to
the external pressure at free surface boundaries:

(n * Ttot)fs = NPyt 67
This condition is applied to all free surface boundaries.

Wherever the coating adheres to the substrate, its displacements must be equal to zero (assum-
ing that the substrate is rigid). This is applied as a Dirichlet condition fixing the position of the solid
along the boundary.
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3. Simple Models of Pore Structure and Transport Prop-
erties

3.1 Conceptual View of the Pore-Space

A porous medium is normally composed of pore-bodies and pore-throats (constrictions)[23]. De-
pending upon the chemistry and processing of a gel, the gel may be composed of particles that consol-
idate into a solid network or polymers that crosslink into a solid network (presumably some sort of
micro-phase separation must occur to obtain a porous medium). Nevertheless, gels have a measurable
porosity (by ellipsometry, density) and pore-size distribution (by nitrogen adsorption, surface acoustic
wave devices), but their structure is not so clear. We envision the structure of gels produced from acid-
catalyzed TMOS or TEOS as being a fractal network of solid struts with interstitial void-space. Unfor-
tunately such a pore-space is difficult to approximate theoretically; so, we have developed a simplified
view of the pore-space that retains some of its features while neglecting the true physical structure.
Improvements on this approach could come from constructing a network model of the pore-space or
developing other microstructure based models of the liquid distribution in a fractal porous medium.

3.2 Simplified Pore Model with a Pore-Size Distribution

In developing a pore model from which to calculate physical properties, we want to maintain
several features: 1) analytical development of transport properties, 2) distribution of pore sizes, and 3)
deformability. The pore model that we chose is a bundle of randomly oriented capillary tubes with a
general pore-size distribution function as shown in Figure 8. This model is not an attempt to approxi-
mate the real pore structure; rather it is a method to obtain physical properties which approximate
those for the physical system. [23,10,25,26]

For the development of the model in this chapter, we assume that we know a pore-size probabil-

Figure 8 Conceptual View of a Representative Elementary Volume in the Simplified Pore Model
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Figure 9 Examples of Probability Density Function (PDF) and Distribution Function (DIST) over a
range of pore-sizes. The probability density function is rescaled to fit on the graph.
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ity density function (PDF), F(r ) , for the material which represents the fraction of pores of a given
radius. Because we are mterested in deformable porous media, the pore-size probability density func-
tion is also a function of the volume change of the porous medium, FY( r,, 0) . The probability of choos-
ing a pore or radius (by randomly picking a pore from the porous medlum) between r, and r,, + Ar, is
equal to F(r,, ¢)Ar, for small Ar,. The integral of the pore-size probability density function is the
pore-size dlstrlbutlon function (DIST), which ranges from zero to one; thus the integral of the proba-
bility density function from zero to infinite pore radius is equal to unity (the probability of the pore-
size being between zero and infinity):

jF(rp, ¢)dr, =1 , (58)
0

Another way to think of the distribution function is that it is equal to the fraction of pores smaller
than the given radius (in a sample with infinite number of pores). Thus in a large enough volume of
porous medium where the distribution function can be approximated by a smooth function, summa-
tion of properties over all the pores can be simplified to an integral of the pore-size probability density
function:

n—)°0

z f(r) = ﬁf(rp)F(rp,mdrp} (59)
0

1=1

The integral on the right-hand-side calculates the mean value of the function f(r ») averaged over all
the pores; so it is multiplied by the number of pores, n »» to get the value of f(r,) summed over all the
pores. For some properties (like saturation and relative permeability), we need the sum of a function
only over some of the pores (in a given range of pore-sizes) which is expressed by an integral over a
range of pore sizes.

else =0

P <r.<ry=f(r) 2
2 { ? = np jf(rp)F(rp,¢)drp (60)

Ty

To calculate properties using this pore model, each pore contributes individually to the overall
properties, and averaging the contribution of each pore gives the macroscopic properties. For example
if all the pores are cylindrical, span a representative elementary volume, which is a cube of volume a°,
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and have a tortu031ty of 1, the volume of pores in this cube can be calculated by summing the volumes
of each pore nar; 2/7 in the cube:

n_-oo
p

v,= Y nar =n (——pF(rp,(b)dr ] (1)

i=1

Likewise the surface area can be calculated by summing over all the pores:

n_—eo
£ 2nar;

2rar
SA, = ¥ —— =n,|[—LF(, ¢)dr, (62)
1=1 0

The porosity is the sum of the volumes of each pore divided by the total volume of the porous
medium, or for a unit cell of volume a® containing n p pores:

2
n r
= _gg——TPF(rp, ¢)drp) (63)
0

a

n
oo Vo Vo ¥
Vp+\g a3 =

|
Sl

nr
a

A

The factor n o/ a’isa geometric factor which depends upon the specific porous medium (represents

the pore number density in the porous medium), and it comes up repeatedly in the calculations using
this microscopic model:

n
p _ o
— = (64)

j—é ,Q))drp
0

So, the surface area per unit volume of porous medium, M, can also be simplified into useful pa- |
rameters:

20[r,F(r,. 0)dr,
RrpF d _ 0
— (rp0)ar, | = — (85)
JriFer,¢)drp
0

£
2

Q
Q

S
]
n
|8
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]
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Note that this is the surface area of pores per unit volume of medium; for the surface area per unit
volume of solid the right-hand-side is divided by the solid volume fraction (1 -0).

3.3 How Deformation Affects Pore Structure

As a porous medium deforms, the pore size distribution shifts; how it shifts may depend upon
the type of deformation and properties of the solid skeleton. However, from the relationships shown in
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this chapter and some geometrical arguments, we can put some restrictions on how the pore size dis-
tribution must change with changes in the porosity. We use these restrictions to determine how the
pore-size probability density function depends upon porosity.

In any deformation, the change in volume of the material is accounted for primarily by a change
in porosity; in other words, as the total medium shrinks, the volume occupied by solid material, Vs,
stays constant, while the volume occupied by the pore-space shrinks. Because the volume of solid is
proportional to one minus the porosity, we can use this concept to determine how the dimensions of
the REV change as the porosity changes from a reference state, ¢,, to the current state, ¢ :

V= (1-0)a’ = (1-6p)a; (66)
1—0.n173
a = ao(—l—_%)) (67)

As the porous medium deforms, the dimensions of the REV change, but the number of pores in
the REV do not change; thus we can take the ratio of equation (63) at the current state to the refer-
ence state and simplify it using equation (67):

Py o(1-0
_([rpF(rp,cp)drp = qTO(l-q:)

2/3% 5
) j rF(r,, 6o)dr, (68)
0

This is a restriction on how F(r, ¢) can vary with porosity, and can be used in conjunction with
equation (58) to solve for the functional form of F(r p» ¢) . For pore-size distribution functions in which
the distribution shifts proportionately with the maximum pore-size (with no change in shape of the
function), we have found that the maximum (or mean) pore-size always follows the following relation-
ship with respect to porosity:

Fmax(9) = rmax(¢o)(q;—¢0)l/2(l—1:_-%)>v3 (69)

This expression is useful if the PDF has only one parameter (r,,,, ) which depends on the porosity;
then equation (69) can be inserted into the PDF to develop its full dependence upon porosity for a giv-
en PDF, reference porosity, and maximum pore-size at the reference porosity. Figure 10 shows how the

Figure 10 Variation of the Characteristic pore-size with a) the porosity and b) deformation for an
initial porosity of 0.9.
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pore-size changes with porosity and deformation. As with variation in the porosity with deformation
(Figure 7), the pore-size falls more slowly under small deformations and falls rapidly as the porosity
approaches zero.

There is an additional restriction on the variation in PDF with porosity which may result in a
more realistic PDF, restricting the total surface area to remain constant.This is done by taking a ratio
of equation (62) at the reference state to the current state, setting this ratio to one, and substituting
equation (67):

- _ o \I/3
erF(rp,¢)drp = (11-—(1()1)0) GrpF(rp, ¢O)drpj (70)
0 0

So for a PDF with a restriction of constant surface area, there are three constraint equations that
must be satisfied as the porosity changes, equations (58), (68), and (70); such a PDF would require
three adjustable parameters (such as magnitude, maximum pore-size, and minimum pore-size). Ap-
plying equation (70) as a constraint on the PDF can cause the PDF (in a PDF where the maximum
and minimum pore-sizes and the amplitude are the adjustable unknowns) to narrow as the porosity
decreases until it is impossible to shrink the porous medium and maintain a constant surface area.
Allowing the shape of the PDF to change as a function of porosity may enable applying equation (70)
as a constraint. We have not used this equation as a constraint in developing our PDF dependence
upon porosity.

3.4 Calculating a Saturation Versus Capillary Pressure Curve

Here, we treat the saturation of the porous medium as being in equilibrium locally and allow no
hysteresis in the capillary pressure versus saturation curve. In other words, we assume that at a giv-
en capillary pressure, only pores smaller than the capillary radius (reciprocal of mean curvature) are
filled with liquid. Pores larger than the capillary radius cannot support such a meniscus (because it
cannot span across the pore) and so the larger pores are empty (see Figure 11).

The capillary radius is obtained from the Young-Laplace equation:

Figure 11 Representation of the Young-Laplace Equation for Capillary Pressure Drop across a
Meniscus in a Pore. Note that a) a spherical meniscus with radius < r, cannot span the
pore, b) that a meniscus with radius r,, can only span the pore if it has a zero degree
contact angle with the pore wall, and ¢) an adsorbed film of thickness h can reduce the
effective pore radius.
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2ccos(0)
r. = ————p (71)
Cc

Thus at a capillary pressure p., pores smaller than r, are filled with liquid and pores larger than re
are empty. The saturation (fraction of pore-space that is filled with liquid) is equal to the volume of
filled pores divided by the total volume of pores. Thus the saturation is equal to the sum (or integral)

of the volume of all pores sizes ranging from zero to r, divided by sum of the volume of all pores (equa-
tion (61)):

" nar’ e
2
J p pF(rp, q))drp erF(rp, ¢)drp
S(re¢) = 2— =2 72)
tar
p 2
j—T—F(rp, 0)dr, jrpF(rp, 0)dr,
0 0

So, given a pore-size probability density function, the saturation can be calculated from weighted in-
tegrals of the PDF times the pore radius squared. The shape of curves calculated using this equation
match well with empirically determined correlations [23,10]. Figure 12 shows the predicted capillary
pressure versus saturation curves generated from this theory; at low capillary pressures, all the pores
are filled with liquid (S = 1), and at high capillary pressures, all the pores are filled with gas (S = 0).
Also, if the porous medium shrinks (causing a decrease in the porosity and mean pore-size), the capil-
lary pressure at which the pores start to empty rises; i.e. it is harder to remove liquid from a porous
medium under compression.

Equation (71) describes the capillary radius of the largest filled pores based on a purely capil-

Figure 12 Capillary pressure versus saturation curves for a weighted exponential pore-size distribu-
tion as the porosity varies due to deformation in medium without adsorption (pure capil-
larity)
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lary mechanism. However, in real porous media a thin film of liquid often absorbs on the walls of the
pores (Figure 11c¢) making the effective radius of the pore smaller by the film thickness h (as a first
approximation). In pores with radius on the order of a few nanometers, adsorption can cause a signif-
icant rise in the saturation. Density functional theory appears to be an effective way to describe the
state of adsorbed fluids in confined pores(24]. In our future work, we anticipate using the results of
density functional theory to describe molecular adsorption in pores. In this report we assume that the
effect of molecular adsorption is small.

3.5 Calculating Transport Properties

The permeability used in Darcy’s Law is a constant of proportionality between the flux of liquid
and the pressure gradient in a saturated porous medium. The relative permeability is the ratio of the
permeability in a partially saturated porous medium to the permeability in a saturated porous medi-
um. If flow in the capillary tubes is assumed to be described by pressure-driven Poiseulle flow, and the
pores are randomly oriented (such that only 1/3 of the pores on average are accessible to flow in any
axial direction), we can sum the volumetric flowrate of liquid through all the pores and divide it by
the pressure gradient to get the permeability and relative permeability [10,25].

The Hagen-Poiseuille law states that the volumetric flow of Newtonian fluid in a tube is propor-
tional to the pressure gradient and the tube radius to the fourth power:

4
_ Mpdp
Q= 8y of

Q is the volumetric flowrate, p is the viscosity of the liquid, and & is the direction along the tube axis.
Because this equation represents flow in a single pipe, the Darcy flux (volumetric flow per unit area of
pore-space) is the sum of the flow in all the capillary tubes divided by the cross-sectional area of the
unit cell:

(73)

oo 4 oo
1T, 0p 4
n, jg e EI;‘(rp,cp)drp] roF(r,, ¢)dr,
g = —0 __% dpo 7
a’ 24'c2ua&-~°o 2
erF(rp,q))drp
0
So, the permeability becomes:
- 4
J‘rpF(rp,q))drp
k= ¢ 22 (75)
2477 . 5
rpF(rp,¢)drp
0

An example of permeability calculated from this relationship is shown in Figure 13. The relative per-
meabilities for partially saturated flow are calculated similarly for flow in each phase, and normalized
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with respect to this saturated permeability:

e

’ f roF(r 0)dr,
Riiq(re0) = 2 (76)
* Ir:F(rp, (t))drp
0

J.r4pF(rp, ¢)drp
kgas(rc’ ¢) = = 77

r4pF(rp, ¢)dr,
0

~

The relative permeabilities here sum to unity. If the tortuosity of each phase were dependent upon the

saturation, then they would not sum to unity. An example of the liquid relative permeability is shown
in Figure 13.

3.6 Examples of Pore-Size Distributions and their Properties

Table 1 lists the properties of a porous medium predicted by several pore-size probability densi-
ty functions. The delta function corresponds to all pores having the same size r.,, the uniform distri-
bution corresponds to all pore sizes having the same number of pores over a discrete range of pore-
sizes between r,,, and r, , and the uniform volume distribution corresponds to all pore sizes occupy-
ing the same volume fraction of the pore-space. The equations in Table 1 provide analytical represen-
tations for the properties of a porous medium as a function of a few well-defined variables. The pore-

Figure 13 Transport properties predicted for a weighted exponential distribution of pore-sizes. a)
Permeability as a function of the deformed porosity, and b) relative liquid permeability as
a function of saturation. The relative permeability is independent of the porosity in this
model. The undeformed porosity is 0.9.

-14)
S S E 00
1015 e 0.
S 2
% 10—16! 5 :‘: 0.6
oy
= 1077 E
=) E 0.4
10 18 j m
> & 1019 = E 0.2
= ~®
7 a ' 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
] POROSITY LIQUID SATURATION

35




Table 1 Properties of Porous Media with Several Simple Pore-Size Distributions.

Delta Function

Uniform .
Property Range roo=r, Distribution Uniform Volume
Erobability Den- 7o <y 0 0 0
sity Function,
F(r, 0), Tan ST, STy oo 1 or,, 1
Pran = OF, Tx(1—-00) 1- Otri
T [rom eqgn.
0 0 0
(69) Tp>T g
Saturation, S r.<Tmn 0 0 0
o= 2ccos(8)
¢ p. Prn ST, STy 1 (2—)3—0(3 Te o
rmx rml’
(1-o) (1-a)
r.>T, . 1 1 1
Permeability. k N/A o 2 o (1 __as) 5 o (1- oc3) ,
— T — ———— m——— <
241t " 207°(1-o) ™ | 60t (1-0) ™
Liquid Relative Fp<Tmn 0 0 0
Permeability, k),
rmnsrpgrmx 1 (I_L)S_QS (rc)3_a3
rmx rmx
(1-0) (1-0o)
70> s 1 1 I
Gas Relative Per- o <Tmn 1 1 1
meability, &,
rmnSrpSrmx 0 l—kliq l_kliq
Tp>T oy 0 0 0

size distributions, pore-sizes, and tortuosities are not always well known, especially in gels, but we
can use these expressions to make approximations to the behavior of gels and to consider the effect of

changing the properties of the gel.

Another model, a weighted exponential PDF, is a convenient counter-example, because it pro-
vides a smooth pore-size distribution; however, the functional relationships of the properties are also
considerably more complex. The properties shown in Figure 12 and Figure 13 were all calculated with
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the weighted exponential pore-size distribution function. The weighted exponential pore-size proba-
bility density function fits all the characteristics of equations (58), (68), and (69):

4r, 2r,
F(rp, rm) = Texp[——;——] (78)
r m

r,, 1s the mean pore size and is a function of the porosity by equation (69). The functional form of this
probability density function is displayed in Figure 9c. Integrating this function as in equation (72)
gives the saturation:

r.\3 r.\2 r 2r
S(r.,r_)=1- i@£)+2p£)+26£)+lempL—i} (79)
¢ m 3\r, T T r.,

r. is the capillary radius, the radius of the largest pore that is filled with liquid; r, is calculated
from the capillary pressure and the Young-Laplace equation (71). Note that the saturation approach-
es zero as r, — 0 and approaches one as r, — .

The permeability is:
—r (80)

This permeability has the same functional form as given by the models in Table 1. The relative per-
meability is:

5

Rijg(TesTr) = l—exp[———cHi(—C) +Z(_g) +‘-1(—c) +2(—C) +2(—5)+ 1} @81)
r, 1 15\r, 3\r, 3\r,, T T

As with the saturation, the relative permeability varies between zero and one. We used the weighted
exponential model most often for the predictions later in this chapter and in the next chapter.

3.7 Comparison with Experimental Results and Empirical Models

3.7.1 Deriving the Kozeny-Carman Equation

The Kozeny-Carman equation relates the permeability to the porosity for a porous medium and
has been shown to fit well with experimental results in many cases. This equation was originally de-
rived for a bundle of capillary tubes which all have the same pore radius (i.e. the delta function model
above). The pore radius used was the hydraulic radius, which is calculated from the porosity divided
by the total surface area per unit volume of the medium, M:

R = g; = g% (82)
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So plugging this into the equation from Table 1 for the permeability of the delta function (all pores the
same size) model and adding a geometric factor, ¢y, gives a relationship between the porosity and per-
meability:

3

Co &> c
k=_02$_2=_02—¢2 . (83)
- 6T M 617 (1-¢) M;

M, is the surface area per unit volume of solid. This equation has the same form as the Kozeny-Car-
man equation [10,23], and reduces to it if the coefficient is equal to 0.2:

c
0. 0.2 (84)

As the values of both ¢y and 1 are near one, this equation matches with the Kozeny-Carman equation.
Because the permeabilities from both the other pore models in Table 1 and the weighted exponential
model in equation (80) are proportional to the maximum pore radius squared, they also will match the
behavior of the Kozeny-Carman equation.

3.7.2 Equilibrium Stress Development in Films

Samuel et al. [3] have measured the change in stress of a thin gel coatings in equilibrium with
solvent vapor as the pressure of the vapor changes. The film is deposited on a cantilever substrate and
the stress is measured by the deflection of the substrate. The film is thin and adheres to the substrate
so that any shrinkage or expansion of the film is uniaxial (shrinks only in the thickness direction, z)
and the stress is transversely isotropic. Because the experiments are at equilibrium and the shrink-
age is one-dimensional and small, the equations from Chapter 2 simplify considerably. Using the ef-
fective stress principle and small strain elasticity:

¢ = 2GE*+Kel +{p I (85)
In one-dimensional small strain elasticity, if the films shrinks from a thickness h to h{1 - o) in the z-

direction, the deviatoric strain E* and the dilation e = o are related to o:

o/3 0 0
E*=190 o/3 0 (86)
0 0 -2(a/3)

The bending stress, G,,,,, is equal to either of the transverse (x or y) normal stresses, and the total
normal stress in the thickness direction is equal to zero (because the surface is traction-free):
xx

2
Obend = Oxx = Oyy = §Goc—Ka+§pc (87)

Cfree = Oy = —%GOL—KO(+CPC =0 (88)

-4
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Figure 14 Experimental (data points) and theoretical (solid line) stress isotherm for methanol ad-
sorption onto a mesoporous silica coating [Samuel et al.]. At relative pressures above 0.9
both the theoretical and experimental curves follow the stress in a saturated coating. The
fall in stress between P/P0 0.9 and 0.8 is due to emptying of the pores.
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Equation (88) can be solved for the shrinkage, o = {p,/(4G/3 + K), and substituted into equation
(88) for the bending stress:

Chend = (——-——6G )QPC (89)
4G + 3K

Thus, the bending stress is proportional to the capillary pressure of the liquid; the Poisson ratio re-
lates the values of the shear and bulk moduli and simplifies the relationship [1,6]:

_(1=-2v
Sbend = | 75 JoPe (90)

v is the Poisson ratio of the gel (0<v<0.5), { is the effective stress law factor ( 0<{ <1 ) so the
bending stress goes to zero if the Poisson ratio is 0.5 and becomes equal to {p, if the Poisson ratio goes
to zero.

Because the experiments were carried out under equilibrium conditions, the capillary pressure
in the liquid must be in equilibrium with the solvent pressure in the external atmosphere by the
Kelvin equation (12). Thus the bending stress should be proportional to the log of the relative external

pressure[27]:
1-20\,(PRT P
Cpond = ( ] _UU)Q( l‘;‘”l )ln[P* :] (91)

w v

Samuel has compared this expression to experimental data for several solvents adsorbing onto a mi-
croporous gel film. At high relative pressures, the data is linear and fits equation (91) with v = 0.2 (a
typical value for silica gels [5]) and { = 0.64 . This value of { is well within the expected range for sat-
urated coatings and may even match with (1-K,/K), a commonly accepted (empirical) relationship
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for {. Thus the measured bending stress at high relative pressures accurately matches the values
predicted using bulk thermodynamics and capillary stress development. At low relative pressures,
the bending stress deviates from equation (91) because the pores begin to empty. Experimentally,
Samuel observed this deviation but did not observe a fall in stress as is predicted by the theory. Possi-
ble reasons for this discrepancy are: adsorption of solvent on the pore walls, wall-to-wall attractive
forces between the solid, incorrect pore-size distribution function, or incorrect effective stress law for
partially saturated porous media. Nevertheless, the predictions do qualitatively reproduce the behav-
ior and trends in the experimental data. Future improvements in the theory should lead to more accu-
rate predictions.

Samuel also measured stress isotherms in mesoporous coatings (mean pore-size about 4nm) as
shown in Figure 14. This data shows a peak in the stress at about 0.9 relative pressure. At relative
pressures higher than at the peak, the stress fits equation (91) with { = 0.88, corresponding to stress
in a saturated coating. At relative pressures just below the peak, the fall in stress is presumably
caused by emptying of the pores. The rise and fall in stress near the peak is indicative of ‘springback’
behavior of coatings as observed by Prakash et al.[2,4]. Figure 14 also shows predictions of stress de-
velopment and relaxation in mesoporous coatings (initial porosity 0.99 and mean pore-size 6 nm). The
predicted results show the peak in stress at high relative pressure and qualitatively reproduce the da-
ta. The continued rise in experimentally measured stress at low relative pressures could be caused by
solid wall-to-wall interactions, a bimodal pore-size distribution, or a layer of adsorbed liquid on the
pore walls. The experimental data also shows a large hysteresis between adsorption and desorption
which is not predicted by the theory.
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4. Computational Implementation in GOMA

GOMA is a full-Newton finite element program for solving free and moving boundary problems
in single or multiple materials [8]. All the applications of GOMA are based on a subset of the same set
of physical principles chosen from the overall capability of GOMA. The bulk equations solved by
GOMA are all conservation equations (also called equations of change, etc.) which govern conserva-
tion of total mass, component mass, momentum, energy, and mesh pseudo-momentum. The equations
describing solvent transport in and large-strain elasticity of a deformable porous medium have been
implemented within the framework of GOMA. This chapter briefly describes how the equations of
Chapter 2 are solved.

4.1 Weighted Residual form of the Bulk Equations

For problems involving partially-saturated flow in a deformable porous media, the system of
equations describing conservation of mass and momentum were derived in Chapter 2:

dcC,
_Cl;,—- = UsOVCw—VO[vst+vgpgw+vlpl+Jv] (92)
dC,
- = vSOVCa—VO[vSCa+vgpga+Ja] (93)
~ Vol + P18 = 0 %)
1—
det|F| = 1 _(2)0 (95)

Roughly, equation (92) is used to account for the liquid pressure, equation (93) for the gas pressure,
equation (94) for the deformation of the porous medium, and equation (95) for the porosity. However,
all these equations are strongly coupled.

GOMA uses the Galerkin’s Method of weighted residuals with Finite Element basis functions to
solve the system of equations presented above. First, the equations are converted to residual equa-
tions by moving all the terms to the right-hand-side [8]. The vector momentum equations (94) are con-
verted to scalar equations by a dot product with the basis vectors, e,. Then the scalar residual
equations are multiplied by a weighting function, ¢, , and integrated over the whole domain to get the
weighted residual equations:

dc
RY = [0 +v,0VC, - Velv,C, 40,0y, +vipy +d,1]dV = 0 o9
D

dC
R? = j(pi[" dta + v, ¢ VCa - V'[vsCa + vgpga +Ja]j!dV =0 (97)
D
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; J(p[ —det|F| +

R = [qieq e [VeT y, +p;0:81dV = 0
D

]dV:O

(98)

(99)

The weighting functions, ¢,, are associated with nodal points throughout the domain. In this paper,
we use bilinear weighting functions which are defined across each element in a finite element mesh.
Then the terms which contain a divergence of a flux are integrated by parts to reduce their order. The

equations listed below are split into characteristic parts:

dc
v (pi[_TﬂdV
D
v @i[(‘% rvgye F) +vC,Jav
D

~$gnev,C,+v +v,p,+,1dS

P

+ jV(pi o[v.C,+ U Pew tUIPLF J,1dV
D

. dC
Ri = J'(pi[:_ dta}dv
D

+ j(p{(-— +Up 0 F) . VCa]dV

- § one[v,Co+v pg,+e,1dS
D

+ [Vo, 0 0 ,Cpt v, pyy +d 1AV
D

R™° § pnee T, dS
+ JV((pi T, AV
j(Pz [P:0:81dV

= [¢;[-det|Fl1dV
Y -0
0
dv
’ j ® [ =]
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In GOMA, the individual terms of the equations are labeled based on their characteristics, i.e. a
MASS matrix term, an ADVECTION term, a BOUNDARY term, a DIFFUSION term, and a
SOURCE term. Each equation contains some, but not all of these terms as labeled above. : denotes a
double-dot product between two tensors. The term labeled BOUNDARY is a surface integral of nor-
mal mass flux or the normal traction (flux of momentum normal to the surface). The BOUNDARY
term is only calculated around the boundaries of the domain (actually it can be calculated as an inte-
gral around each element, but all the internal integrals would cancel from adjacent elements); not cal-
culating this integral is equivalent to applying a no-flux boundary condition. Normally the normal
flux in the surface integral is replaced by a relationship specifying the normal flux in terms of known
quantities (e.g. an evaporation condition specifies the flux in terms of an external driving force). Such
conditions on the normal flux only affect the BOUNDARY term on the weighted residual equations.

Equations (100) to (103) show the bulk equations as they are solved in GOMA. The contribution
of the individual terms are controlled through the properties of the porous medium (such as those in
Figure 5 and equation (43)) and through equation term multipliers; an equation term multiplier is as-
sociated with each term in each equation and can be used as a switch to turn the terms on or off from
the input deck.

4.2 Boundary Condition Implementation

GOMA has been designed to handle a variety of boundary conditions for many applications.
Problems involving flow through a deformable porous coating use only a small subset of the available
boundary conditions: dirichlet, flux, and distinguishing.

Dirichlet conditions specify the value of one of the variables. In the application of the finite ele-
ment method, a Dirichlet boundary condition acts as an equation and replaces the weighted residual
equation corresponding to the node at which the value of the variable is known. Dirichlet conditions
are applied to the matrix problem by adjusting values in the solution vector, the sensitivity matrix,
and the residual vector. The variable at the node is set to the desired value, the row of the matrix cor-
responding to the variable and node is set to zero with a one on the diagonal, and the residual corre-
sponding to the variable and node is set to zero. Examples of Dirichlet conditions used in deformable
porous media are: specifying an initial condition or inflow condition on the liquid and gas pressures,
specifying equilibrium between the porous medium and an external phase, and specifying the dis-
placement of the porous network (e.g. adhesion to the substrate).

Flux conditions equate the normal component of the flux of mass or momentum on both sides of
a boundary. In many cases the flux of mass or momentum in the external phase is known, or is a
known function of the solution along the surface. Specifically, the BOUNDARY term is replaced by a
surface integral of the normal flux which is a known function of the field variables[28]. For example,
the evaporation boundary condition from equation (55) converts the mass flux at the surface to a mass
transfer coefficient times a driving force:

- § o,ne[v.C, + VPgw Uil +dJ,1dS = - § (pi[KG(pgas -p)1dS (104)
aD oD

This relationship replaces the BOUNDARY term in the weighted residual of equation (100) by a new
surface integral. Evaluating the left-hand-side of equation (104) as part of the weighted residual
(without replacing it by the right-hand-side) results in an underspecified set of equations.

Also, not evaluating the BOUNDARY term, i.e. not adding in a flux contribution as a surface in-
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tegral along a boundary, is equivalent to applying a no-flux condition along a boundary. Thus, not
evaluating the surface integral is a convenient way to apply a no-mass-flux condition at an imperme-
able boundary or a traction-free condition at a free surface.

In many applications, the porous body is constrained in its motion by symmetry planes or in-
flow/outflow planes. Such a constraint is applied using a distinguishing condition, which requires that
the solid material (computational mesh) conforms to a specified boundary geometry. The most com-
mon geometric constraint, and the only one used in this paper, is a plane. When a plane is applied as
a distinguishing condition, the equations describing momentum conservation in the solid (equation
(102)) are rotated into components normal and tangent to the boundary. Then the normal component
of the momentum equation is replaced by the equation of a plane (ax + by + cz +d = 0); this equation
is applied at each node along the boundary in a penalized fashion. The tangent component of the mo-
mentum equation is retained, so the solid is free to move tangentially (making it shear-free at the
boundary).

4.3 Solution of Equations in GOMA

GOMA uses the finite element method to evaluate the bulk equations and boundary conditions
listed above. The domain (2-D in this report) is discretized with a set of finite elements in a finite ele-
ment mesh, and nodes are placed in each element. All the field variables (liquid pressure, gas pres-
sure, porosity, x displacement, and y displacement) are interpolated by bilinear or biquadratic
functions across each element such that the value of each variable is a sum of nodal coefficients (the
value of the variable at the nodal point) times the basis functions which are defined in an element.
The results in this paper use bilinear functions (4-nodes in each element) for both the basis functions
and the weighting functions. The number of weighted residual equations is equal to the number of
nodes in the mesh times the number of variables.

The volume and surface integrals of the weighted residuals are calculated numerically by Gaus-
sian quadrature over each element in a 2-D finite element domain. At each Gauss-point, the main
field variables and all the physical properties and auxiliary variables are calculated for evaluation of
the weighted residual equations (c.f. Figure 5). This results in a large system of nonlinear differential-
algebraic equations (DAE) in transient problems or a large system of nonlinear algebraic equations in
steady-state problems. In transient problems, the time derivatives are approximated by the method of
lines and the theta method (encompasses forward-Euler, backward-Euler and Crank-Nicholson); this
converts the system of DAE’s into a set of nonlinear algebraic equations at each time-step. A predic-
tor-corrector scheme enables calculating a variable time-step based on an error norm.

The system algebraic equations is solved using Newton’s method (sometimes with relaxation)
which converts the system of algebraic equations to a matrix problem AAx = R, with A being the
matrix of sensitivities of the solution to the variables, Ax the change in the solution which would
make the residuals, R, equal to zero if the equations were linear. This matrix problem is solved itera-
tively until the residuals fall within a specified convergence criterion (10712 of the I,, I 1 and [ norms
of residual vector scaled by the largest value in each row of the sensitivity matrix).

The large (but sparse) linear problem, is solved with a direct sparse solver to get changes in all
nodal variables at each Newton iteration. In transient problems, GOMA is started with an initial con-
dition, and solutions are calculated at a series of time-steps. In steady-state problems, an initial guess
which is close to the desired solution is often needed for Newton’s method to converge because the
equations are strongly nonlinear and coupled.
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5. Results of Computational Predictions

In this chapter, we explore the phenomena that can be predicted using the theory developed in
the previous chapters. We focus on drying of sol-gel coatings in several different geometries and phys-
ical situations. For the most part, the physical properties in all the example problems are the same,
except for a few key properties which are the bold-face entries. All the parameters required for solving
the equations in the preceding chapters (except for a few geometric and processing-condition-specific
parameters) are listed inTable 1 for drying of a porous silica gel with water as the solvent; in some of
the results below ethanol is the solvent and the parameters are changed accordingly. These parame-

Table 1: Typical Parameter Values in Sol-Gel Films

Property Symbol Value or Range Value in MKS
Parameters Maximum (Mean) Pore Size r 3x1010.10%m
Governing E 34 -10nm
the Pore-Size Surface Tension of pure water ) 72 dynes/cm 0.072 kg/s?
Distribution -
and Network Contact Angle 0 0 degrees 0 radians
Properties Stress-Free Porosity ; 0.2-0.99 0.2-0.99
Geometric Parameter 2 1 1
Elastic Prop- Modulus of Dense Film K, 8000 MPa 8x10° kg/m/s?
erties of Net-
work Poisson Ratio v 0.2 0.2
Power-Law Exponent versus Porosity m 3 3
Parameters Viscosity of Water W, 1CP 10 kg/m/s
used in Trans-
port Properties Viscosity of Air Mg 0.018 CP 1.8x107°
of Porous - e 5 TS
Medium Binary Mutual Diffusivity in Gas Dgu 0.26 cm>/s 2.6x107° m/s
Gravitational Constant g 9.8 m/s? 9.8 m/s”
Parameters Ambient Pressure P, 1 ATM 1.01x10° kg/m/s?
used in Vapor-
Liquid Equi- Vapor Pressure of Pure Water Px 0.042 ATM 4.24x10% kg/mys?
librium
within the Density of Pure Water Pru 1 g/em? 1000 kg/m?
Pore-Space Temperature T 30°C 300°K
Gas Law Constant k 8.314 x10° kg m¥s¥kg-mole/°K
Molecular Weight of Water M, 18 g/g-mole 18 kg/kg-mole
Molecular Weight of Air Ma 29 g/g-mole 29 kg/kg-mole
Processing Initial Relative Humidity RH, 0.9999 0.9999
Conditions
Processing Relative Humidity RH 0.001-0.5 0.001-0.5
Mass Transfer Coefficient in Gas Phase K G 0.3-13 (water) 0.0025-0.1 m/s
based on gas phase conc. driving force kg/m?/hr
Substrate Velocity v, 0.1- 10 mm/s 1041072 mys

45




ters are used in the following sections to predict one-dimensional transient shrinkage of coating and
two-dimensional steady-state deformation of coatings during the dip-coating process.

5.1 1-D Drying of Gel Films

The results in this section depict transient drying of a one-dimensional coating (i.e. uniform in
the transverse directions). The coating adheres to a rigid, impermeable substrate, so deformation of
the solid network only occurs normal to the substrate and there is no flux of solvent into the sub-
strate. To demonstrate the versatility of the theory described in this paper, we examine three test cas-
es with varying pore-size (0.3, 1, and 10 nm) and porosity (0.2, 0.9 and 0.99); all the results in this
section correspond to a film 1 pm thick which is initially saturated with water. The elastic properties
of the network are based on the modulus of dense silica. Evaporation of water into the drying gas is
described by mass transfer coefficient indicative of high airflow (Kg = 0.1 m/s) with 10% relative hu-
midity in the gas (RH = 0.1).

Figure 15 shows predictions of drying of a mesoporous coating (r,,, = 10 nm ¢=0.99). In this ex-
ample and all the results in this section, the gradient in the properties through the coating is negligi-

Figure 15 One-Dimensional drying of a mesoporous coating (r,, = 10 nm ¢=0.99). a) coating thick-
ness, shrinkage rate, moisture content and drying rate versus time showing constant and
falling rate periods, and b) saturation, pore-size and stress versus time.
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ble; at 1 um thickness the coating offers little internal resistance to mass transfer. Initially the rate of
film shrinkage and the rate of water evaporation (the drying rate) are both constant; so the film thick-
ness and moisture content decrease linearly with time. This behavior is indicative of a constant-rate
drying period [29] which is often observed experimentally in porous coatings. The constant-rate peri-
od continues as long as the surface of the coating is completely wet with solvent.

At about t = 0.25 s the drying rate begins to fall slightly because as the capillary pressure in the
liquid rises, the driving force for evaporation decreases. However, the drying rate and the shrinkage
rate do not fall significantly until the pores begin to empty at about t = 0.3 s and the saturation begins
to decrease. When the saturation falls, the rate of shrinkage falls sharply because the capillary pres-
sure force, which has compressed the gel, is reduced, and eventually at about t = 0.35 s the gel begins
to expand and expands rapidly nearly back to its initial thickness. The drying rate however falls
monotonically to zero when the coating is in equilibrium with the atmosphere. Figure 15 also shows

that the mean pore radius decreases to below 6 nm when the gel is compressed before it expands back
to 10 nm in the dry coating.

Throughout the drying process, the capillary pressure in the liquid rises because it is progress-
ing towards equilibrium with the drying gas. The force that the liquid exerts on the solid network,
however, rises initially but falls as the saturation decreases. The maximum bending stress in the coat-
ing is about 6 MPa at about t = 0.32. The magnitude of this maximum stress depends upon several
factors, initial porosity, initial pore-size, modulus of coating, coating thickness, solvent surface tension
etc. As the pore-size or modulus decrease, the magnitude of this maximum bending stress is predicted
to increase. Thus this theory can help determine when cracking may occur in gel coatings.

The results in Figure 16 for a microporous coating (r,, = 0.3 nm ¢=0.2) show a sharp contrast to
mesoporous results above. Because the microporous medium has a much lower porosity, the elastic

Figure 16 One-Dimensional drying of a microporous coating (r,, = 0.3 nm ¢=0.2) which shrinks neg-
ligibly during drying. a) moisture content and drying rate versus time which exhibits only
a falling rate period, and b) saturation, shrinkage and stress versus time.
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moduli are about 5 orders of magnitude higher (by equation (48)) than for a mesoporous coating; thus,
the coating shrinks negligibly during drying. Also because the coating is so stiff, the bending stress in
the coating rises rapidly and saturation starts falling immediately. Thus, there is no constant rate pe-
riod. Also, because the pores are smaller, it is harder to empty the pores and the saturation only falls
to 0.4. Thus, the residual stress in the final coating is much higher (about 90 MPa). There is a slight
maximum in bending stress at about t = 0.5, but the stress only falls by about 10% after that.

Figure 17 shows predictions for a coating with an intermediate mean pore-size (rp=1nm, ¢=0.9).
The modulus of the initial coating is about 1000 times higher than in the mesoporous case; so it
shrinks significantly less (about 40% compared to 80% in the mesoporous coating) before ‘springback’
occurs; the coating also only returns to about 80% of its initial thickness. The initial drying rate shows
a short nearly-constant rate period followed by a falling rate period when the saturation starts to fall.
Because the pores are smaller than the mesoporous case, the saturation only falls to about 1%. The
bending stress rises rapidly and reaches a maximum of about 40 MPa before falling to about 5 MPa.

Thus, the maximum and final stresses in this coating are larger that in the mesoporous coating but
smaller than in the microporous coating.

Figure 17 One-Dimensional drying of a intermediate porous coating (rp=1nm, ¢=0.9). a) coating
thickness, moisture content, shrinkage rate and drying rate versus time showing nearly
constant rate period, falling rate period and springback, and b) saturation, pore-size and

stress.
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5.2 Dip Coating of Gelled Films

This section displays predictions of drying dip-coated gel films which display a ‘springback’ phe-
nomenon under certain conditions. Figure 18 shows the geometry, boundary conditions, and computa-
tional, finite element mesh used in solving the problem. Because the coating is thin (< 5 pm),
gradients in properties through the coating depth are small, and only two elements through the thick-
ness of the coating were needed to obtain accurate results; however, the gradients in properties paral-
lel to the substrate were steep, requiring fine discretization in that direction. The results compare
well with experimental data [2,3,4]. In this section, we start by showing detailed results from a base-
case, then consider variation in some of the physical properties and show how that affects the predic-
tions. A better understanding of the important physics is developed.

Figure 19 shows a prediction of drying of a low-speed dip-coated gel film using standard values
of the physical properties for a mesoporous gel as listed in Table 1. Figure 19a shows a rapid rise in

Figure 18 Geometry, computational mesh, and boundary conditions for a drying, dip-coated gel film.
The horizontal axis is expanded 100x. Phases of drying predicted for low-speed dip coat-
ing of deformable porous gels are labeled at right.

Wuiflow Plane: dx =T
flux by convection only

= -
z DRY FILM
?
T
3 R
s 7,
s 7
. E % SPRINGBACK
O ZNE 5%
11 31
e T U O~ =~ "’. -
% " COMPRESSED GEL
Y e
, é -2l INCREASING RATE
F 3 é X CONSTANT-RATE
) pemon”
S5 \[ﬂ - dff/o Y NO DRYING

Veas = Pext, Pwater = Psar

49




the capillary pressure at the point where the gel becomes partially saturated. The product of the cap-
illary pressure and the saturation roughly correspond to the in-plane (or bending) stress experienced
by the gel. The in-plane stress goes through a maximum during drying, and the value of the maxi-
mum stress depends strongly on the physical properties of the gel. As in the 1-D examples, smaller
pore-radius or lower modulus causes larger maximum stress during drying because the fall in satura-
tion is delayed. The maximum in in-plane stress coincides with the minimum in coating thickness
(20% of its initial thickness) and the minimum in pore radius (2.4 nm). -

This prediction reproduces all the stages of drying shown in Figure 1 and qualitatively matches
the experimental data of Prakash et al. [2]. Initially the decrease in film thickness is nearly linear,
corresponding to a constant-rate period (see Figure 19); nearly constant-rate drying rates are often
observed in during early removal of wetting liquids from porous media [29,25,26]. At a distance of
about 0.4, the rate of shrinkage increases; this acceleration in shrinkage coincides with a rise in the
capillary pressure. The rising capillary pressure creates a pressure gradient that drives liquid flow

Figure 19 Changes in coating thickness, saturation, mean pore-radius, evaporation, capillary
pressure, in-plane stress, liquid wicking flux, and gas diffusion flux along a drying dip-
coated gel film for a standard base case (using properties in Table 1, r, = 4 nm, ¢y =
0.99, K, = 8 GPa, RH = 0.0001, Kg = 0.25 cm/s, v, = 0.1 mm/s).
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through the pores, a phenomenon commonly referred to as wicking. At a distance of about 0.5, the sat-
uration begins to decrease as solvent empties out of the largest pores. When the saturation falls, the
capillary-induced stress in the coating is reduced, and the coating expands. The rate of expansion is
dictated primarily by the drying conditions and diffusion of solvent vapor through the pore-space;
more rapid diffusion results in slower springback.

The interpretation of these stages is further elucidated by Figure 19b and Figure 20. In Figure
19b, the total mass flux of solvent parallel to the substrate is plotted along with the fractions of that
mass flux which are due to bulk convection with the porous medium, wicking (or liquid convection rel-
ative to the solid), and vapor diffusion. This shows that during the constant rate period, the mass flux
is primarily bulk convection, and wicking becomes important at the point where film shrinkage accel-
erates. Then while the film is compressed, all three types of mass flux are about equally important.
During the springback phase however, the mass flux due to vapor diffusion is much larger than the
mass flux due to bulk convection. That vapor diffusion is more significant than bulk convection is a
surprising result because in such a case the rate of springback is independent of coating speed. This is
only true for low-speed dip coating.

Figure 20 shows how the film thickness profile changes as some of the physical properties are
changed. The diffusion coefficient for solvent in the vapor phase primarily affects the rate of spring-
back (Figure 20a); a higher diffusion coefficient indicates faster vapor diffusion and a slower rate of

Figure 20 Effect of a) vapor diffusion, b) liquid viscosity, and c) external mass transfer on the thick-
ness profiles of drying dip-coated films. All three parameters affect the rate of drying and
the presence and shape of the drying periods, but none of these parameters affect the
amount of ‘springback.’
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springback. Faster diffusion of vapor through the pores causes elevated solvent vapor concentrations
at distances much further along the coating; so the saturation (fraction of pore-space filled with lig-
uid) remains higher for a longer time, slowing the rate of expansion (springback) of the film. The vis-
cosity of the liquid in the pores affects the magnitude of the wicking (Darcy pressure driven
convection relative to solid motion) and reducing the viscosity (or increasing the wicking rate) results
in a shorter constant rate period and a longer compressed stage (Figure 20b). Changing the mass
transfer coefficient (or rate of solvent removal through the gas phase) primarily affects the rate of
shrinkage during the constant rate period. Surprisingly, the rate of ‘springback’ is relatively insensi-
tive to the external drying rate; the reason is that the springback is controlled by the diffusion of sol-
vent through the gas phase rather than by the drying rate.

Figure 21 compares predictions of springback over a range of coating properties. The plots show
the minimum thickness of the coating as it dries, the final thickness of the coating, and the ratio of fi-
nal thickness to minimum thickness, which we call the springback ratio. In gels with small pores or
gels with high modulus, the springback ratio approaches one, i.e. there is no springback under these
conditions. In the small pore case, the coating does not springback because the pores are small enough
that the liquid never empties out of them. In the high modulus case, the coating is so stiff that the
shrinkage is negligible. The springback ratio exhibits a maximum with respect to both pore-radius
and modulus, but due to computational difficulties we could not obtain results showing the spring-
back ratio returning to one in the cases of large pores and low modulus. In the large pore case,
springback is sudden because the saturation falls rapidly over a short range of capillary pressure, and

Figure 21 Effect of a) initial pore radius and b) bulk modulus of dense gel on the minimum thick-
ness, final thickness, and springback ratio of a drying dip-coated gel film. The parameters
used are the same as the base case presented above.
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the steep gradient of this sudden springback is difficult to capture in our computations. In the low

modulus case, the shrinkage at the start of drying is sudden and causes similar numerical difficulties
to the large pore case.

5.3 Comparison with Experimental Data

The predictions in the above section qualitatively reproduce the shape of drying gel coatings as
measured by Prakash et al. However, the coating speed used in these computations is about one tenth
the experimental coating speed and the coating thickness used in these computations is five times the
experimental coating thickness. As the coating speed is raised, the length of the predicted constant
rate period extends roughly in proportion to the speed increase, but the length of the compressed film
and springback stages remain roughly the same. Lowering the coating thickness has a similar effect
and also shortens the length of springback. The length over which springback occurs at the experi-
mental conditions is predicted to be less than 1 mm, but the experimental data shows a springback
length of over 5 mm and a compressed stage which is much longer than predicted. These discrepan-
cies could be explained by several mechanisms, but the most likely cause is diffusion of solvent vapor
through the external drying gas.

As shown in the previous section, diffusion of solvent vapor through the gas phase in the pores
in a 5 um coating is significant; thus diffusion in a stagnant gas layer near the coating surface must
also be significant. Figure 22 shows predictions of this effect which account for convection and diffu-
sion of solvent vapor through the drying gas [28]. The drying gas flows upward near the moving sub-
strate, but further away (about 50 pum) the drying gas flows downward due to buoyancy effects
(because ethanol is heavier than air). The buoyancy driven flow was predicted using a Bousinesq body

Figure 22 Predictions of solvent transport in the drying gas for a coating with a sharp drying line. a)
streamlines and b) solvent vapor concentration contours.
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force in the Navier-Stokes momentum equations.

The solvent transport is dictated by the internal convection and diffusion subject to boundary
conditions. For this sample calculation, we devised a simple set of boundary conditions to approxi-
mate drying of a porous coating; the substrate is wet up to a specified ‘drying line’ above which there
is no flux into or out of the substrate. Below the drying line, the gas at the surface of the substrate is
saturated with solvent vapor. The gas enters or exits the bottom boundary by convection (i.e. there is
no diffusive flux normal to this boundary) and enters or exits the top boundary with zero solvent con-
centration. The wall far away from the substrate (1 cm) is a no-slip impenetrable boundary.

The predictions show that nearly all of the airflow is downward due to buoyancy driven convec-
tion and that flow upward only exists in a thin 50 um layer. However, diffusion of solvent vapor occurs
over much longer length scales and significant concentrations of solvent vapor exist 0.5 cm above the
‘drying line’ [28]. Thus, because the rate of springback is sensitive to vapor diffusion and to small con-
centration of solvent in the drying gas, external transport of solvent vapor explains why the experi-
mentally observed springback occurs over about 0.5 cm. For other solvents, the buoyancy effect can be
reversed, but vapor diffusion still causes an elevated solvent concentration on the order of 0.5 cm
above the ‘drying line’.
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6. Conclusions and Recommendations

6.1 Summary of Phenomena

The theory presented in this report offers a new approach to modeling drying and stress devel-
opment in deformable porous gels. The critical features of this model are the coupling between mul-
tiphase solvent transport in a porous medium, stress development, coating shrinkage, microstructure
(porosity, pore-radius), and pore-emptying. Combining all these features results in a predictive model
that reproduces many features observed in drying gels and drying porous media.

Figure 23 compares predictions of 1-D transient drying for three coatings with a range of prop-
erties. This figure plots the drying rate versus moisture content for the three conditions; such a curve
is often referred to as a ‘characteristic drying curve’ and is a common form for presenting drying data.
The curves show that a mesoporous coating exhibits a long constant rate period (the drying rate does
not change over a large range of moisture content) and a short falling rate period. A microporous me-
dium, however, only exhibits a falling rate period and a much slower drying rate. The intermediate
case exhibits a short constant (or nearly-constant) rate period followed by a long falling rate period.
All these ‘characteristic curves’ are typical of drying of different types of porous medium and all result
from changing only the porosity and mean pore-radius of the gel in our theory [26,25]. We are not
claiming that our theory will solve all porous-medium drying problems, but that it predicts some be-
havior typical of drying porous media, and that it does generalize beyond sol-gel coatings.

The theory has also been applied to steady-state drying of dip-coated gel films. Experimental ob-
servations of Prakash et al. [2] showed that such films can springback (or shrink first then expand lat-
er) during drying. Our theory shows that the springback phenomenon can be explained by capillary
retention of liquid in small pores and a medium with a distribution of pore-sizes. The magnitude of
springback, final thickness divided by minimum thickness, is a strong function of the coating proper-
ties; predictions show that the magnitude of springback is maximized at specific values of the pore-
size (2 nm) and modulus (10 GPa). The drying process also was shown to occur in stages (depicted in

Figure 23 Drying rate curves for the three conditions discussed in Section 5.1.
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Figure 1) which are each characterized by a different physical mechanism.

Unfortunately the predictions of drying and springback do not accurately reproduce the experi-
mental data; as shown in Chapter 5 this inaccuracy is caused primarily by the constant mass transfer
coefficient assumption. Simple predictions of solvent vapor convection and diffusion in the gas phase,
including the effect buoyancy-driven flow, showed that diffusion of solvent vapor in the drying gas can
significantly extend the length over which springback occurs.

6.2 Recommendations

The theory presented in this report includes many features that are coupled in a nonlinear fash-
ion. Thus it is a complicated theory in the sense that it is difficult to intuitively guess how all the indi-
vidual components of the theory will interact. In many applications a simpler form of this theory will
suffice. Most applications of this theory are to films with thicknesses of 10 um or less; at these thick-
nesses the predicted gradient in properties through the film are small. Thus, the 2-D steady-state dry-
ing predictions could be reduced to a 1-D theory, and the 1-D transient predictions could be reduced to
0-D transient. Such a reduction in dimension is similar to lubrication theory for reducing the dimen-
sion of fluid mechanical calculations in thin films and results in much faster computation.

Despite the complexity of the theory, we have assumed simple models to represent most of the
individual components of the theory, and these simplifications limit the quantitative applicability of
the theory. An important simplification, which was discussed already, is using a constant mass trans-
fer coefficient to describe the evaporation rate; this simplification is valid for high-speed coating pro-
cesses but is probably invalid for low-speed dip-coating. An important advance towards quantitative
predictions is to couple the calculation of solvent transport in the porous coating to a calculation of
solvent transport in the external gas flow. This could be accomplished by several means, but a reduced
dimension 1-D approximation for the transport in the coating as an advanced form of boundary condi-
tion on the gas flow seems a promising route. Such an approach would require defining surface un-
knowns for the coating shrinkage, porosity, and liquid pressure and solving the 1-D transport
equations as boundary equations.

Another area needing improvement is the pore-model used to determine the transport proper-
ties. As discussed in Chapter 3, approximating the porous medium as a bundle of capillary tubes with
a distribution of pore-sizes does not represent the true structure of the gel. To improve the micro-scale
model, another type of unit cell structure could be used (e.g. large pore bodies separated by small pore
throats with a distribution of body and throat sizes) with a similar statistical treatment (or a recur-
sive method). Alternatively a network modeling approach, such as that of Pan et al. [30] could be used
to develop the physical properties. The pore-size distribution function used in this report was chosen
for convenience, more accurate functional forms (such as bimodal) or experimentally measured pore-
size distribution functions would give better results.

This report used capillarity as the criterion for pore emptying. In pores with radius 10 nm or
less, solvent adsorption on the pore walls is significant. Including accurate models of solvent adsorp-
tion and the affect adsorption has on the stress and transport properties would make solvent remain
in the pores longer than this theory predicts.

Lastly, the effective stress law for partially saturated porous media needs better theoretical jus-
tification. The form used in this paper does not account for the presence of solid-liquid-vapor contact
lines and the stress imparted onto the solid by surface tension along those lines. The theory also does
not account for differential shrinkage of the filled and unfilled pores. Resolving these issues is difficult
and may require micro-scale or molecular simulations.
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Appendix

A.1 An Example of Solving a Deformable Porous Medium Problem
with Goma

This Appendix contains a tutorial for solving the problems of Chapter 5 using GOMA. Figure 24
shows the domain and boundary conditions used in solving the problem of drying of a dip-coated gel
film. This problem contains several unusual novel implementations of GOMA:

1) Porous Medium Defoms as a Neo-Hookean Solid.

2) Lagrangian Solid Mechanics cast in a convected frame of reference to account for
steady-state motion of the porous solid.

3) Solid Network Stress in porous medium is coupled to the capillary stress in the liquid
in the pores byt the effective stress principle. The pressure stress is equal to the capil-
lary pressure times the saturation.

4) Two-phase transport of air and water in a partially-saturated porous medium. This

tHittt

I
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‘SPRINGBACK’
SATURATED
WITH GAS

dx =0

MENISCI RECEDE
INTO MEDIA
PARTIALLY
SATURATED
Pext

substrate
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Pgas
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Pgas = Pext

Pty |

Figure 24 Geometry of Domain for Predicting Drying of Dip-Coated Porous Sol-Gel Films
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5)

6)

uses species transport equations to solve for the transport of air and water in both lig-
uid and gas phases. The concentration variables in GOMA are actually the pressure in
the liquid phase and pressure in the gas phase when solving for transport in partially
saturated porous media.

Properties of the porous medium change due to compression or dilation of the porous
medium and due to changes in saturation. The changes in properties are predicted
from a simple pore model which treats the pores as a bundle of capillary tubes with a
distribution of pore sizes (in which all pore sizes over a range occupy the same volume
fraction of the pore-space)

Equations rescaled using APREPRO so that the primitive variables are values of or-
der one.

In all of the files used by GOMA for this problem, a definitions file, film.defs, is included to auto-
mate changes in properties, geometry, boundary conditions, etc. This file also sets up the scaling fac-
tors to change the units on the variables:

$ 1-D Drying Porous coating
$ Richard Cairncross (1511) 6/22/95

$

$ Definitions for FASTQ and GOMA

MOV NDNNDDLVRLBVNDLDDNDRODDVNODLVNDNNNNOLNNNN

Define
to a
time
valu
the
Note

leng
mass
time
temp
mole
so p

To c
ve
co
pr
ai

scaling of units (all properties are input in MKS, but we need

dapt them so our values are nicer). Multiply all values in MKS

s L, K, §, T, and M corresponding to its units, and you get

es in the scaled units (e.g. if a length is 10.5 meters and L is le4 then
scaled length is 10.5 * led4 = 105000 in units of 100 microns).

to convert back, just divide by these factors.

th: L = {L = le6} /meter

: K = {K = 1le%} / kg

: S = {8 = leb} / s

erature: T = {T = 1} /kelvin

s: M= {M = K} /k-mclie

ressure unit becomes {K / L / S°2} current units / N/m"2

onvert output to MKS, multiply output by following values:
locity * (S/Lifecr m/s

ncentration * {L"3/K}for kg/m"3

essure* {L * $"2/K}fer Pascals (kg/ms/s”2)

stance * {l/L}for m

time* (1/S} for s

Number
{(nex
{ney
{stre
{stre

Region
coati

Node s
origin

right
left

free s
free s
substr

Side s

Geometry

initial coating thickness: hcoat = {(hcoat = le-6 * L)
1 micron!!

length of domain: length = {length = 0.005 * L}

should be 1 cm !'!

of Elements
= 200}
= 2}
tchx = 1.03}
tchy = 0.9}
ng = {coating = 1)
€t names...

- fixed point: {origin = 1000}
outflow plane: {out_r_ns = 20}
inflow plane: {in_1_ns = 40}
urface: {free_surf_ns = 30}
urface: {wet_ns = €0}
ate surface: {substrate_ns = 10}
et names. ..
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right symmetry plane: {out_r._ss = 2}

left symmetry plane: {in_1_ss = 4}

free surface: {tot_surf_ss = 36}

free surface: {free_surf_ss = 3}

free surface: {wet_ss = 6}

substrate surface: {substrate_ss = 1)

flag for automatic counting: auto_count = {auto_count = -1}

Define Species Numbers
air or gas phase: AIR = {AIR = 1}
water or ligquid phase: WATER {WATER = 0}

H

Get the physical parameters which are independent of the problem
type for flow of water in a porous gel
{include(*/usr/local/racairn/goma/pores/phys.ppt”)}

Now, Calculate physical parameters that are not standard
{Ifndef (RH))

Relative humidity: Rel_Humid = {Rel_Humid = 0.1}
{Else}

Relative humidity: Rel_Humid = {Rel_Humid = RH}
{Endif)

For pressure in liquid phase, in equil with gas, calculate
capillary pressure via Kelvin Equation
Ligquid Pressure: Pl = {Pl = Amb_Pres+Rgas*Temp*density/ (MWw)*1n(Rel_Humid)}

in this problem, the modulus from the phys.ppt file is the bulk modulus
convert it to shear modulus first

(0.2 to 0.5 MPa in bulk gels)
shear_mod = {shear_mod = Modulus0 * 1.5 * (1 - 2*Poisson) / (1 + Poisson))}
the lame_lambda coefficient is the bulk modulus in this formulation

{Ifndef (MOD)}

Elastic Shear Modulus: Modulus = {Modulus = shear_mod)

lame coeff. lambda: Lame_Lambda = {Lame_lambda = ModulusO}
{Else}

multiplying modulus by {MOD}

Elastic Shear Modulus: Modulus = {Modulus = MOD * shear_mod)

lame coeff. lambda: Lame_Lambda = {Lame_lambda = MOD * Modulus0}
{Endif)

{Ifndef (MTCF))}
Mass transfer coefficient: MTC= {MTC = MTCO)}

{Else)

mass transfer coefficient multiplied by {MTCF}

Mass transfer coefficient: MTC= {MTC = MTCF * MTCO)
{Endif}

{ifndef (RPORE)}

Maximum Pore Size: RMX = {RMX = 5e-10 * L}
{Else}

Maximum Pore Size: RMX = {RMX = RPORE * L}
{Endif)

{ifndef (PORCSITY)}

Initial Porosity: Initial_Porosity = {Initial_ Porosity = Porosity0}
{Else}

New Initial Porosity: Initial_Porosity = {Initial_ Porosity = POROSITY}
{Endif)

{Ifndef (VS)}
Velocity of unstressed sclid Vs = {Vs = le-3 * L / S}
should be 1 mm/s!!
{Else}
Velocity of unstressed sclid Vs = (Vs = VS * L / 8}
{Endif)

{Ifndef (AH))
Hammaker Constant: A_hamaker = {A_hamaker = 0}
default to no adsorption
{Else}
Hammaker Constant reset to {AH}

MmO nnunnnuunaanonnonunnounoaunnNneoennunnueonnnounonnonrNnNVRLOHLLLOLETNNNNLLHRHRLLOHDDODVBODOLDODNOVLDODHHNOVLDOODODONDY NN N0
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$ Hammaker Constant: A_hamaker = {A_hamaker = AH * K * L"2 / 8§72}

$ {(Endif)

S

$ Calculate a Rough Biot Number for Saturated Flow

$ Biot = {(hcoat * MTC / RMX"2 * MWa * 60 / Initial_Porosity / Rgas / Temp * viscosity / density *
Vap_Pres / Amb_Pres}

This file is included in all the input files and run through APREPRO to make all the substitutions in
those files. The APREPRO variables RH, MOD, MTCF, RPORE, POROSITY, AH, SOL, and VS are all
used to automate selection of coating properties or processing conditions through the command-line
arguments in goma. If any of these variables are not specified in the command line, they default to
standard values as listed in the file.

The definitions file, film.defs, contains many of the properties and processing parameters used
in solving the problem, but many of the parameters are standard for this system and may be used for
many different problem geometries. The general physical parameters are stored in the phys.ppt file
which is automatically included into film.defs:

$

file ‘phys.ppt’

Contains standard property values for water flow through a
partially-saturated, deformable, porous gel

The values in this file are automatically converted to units that
depend upon the problem type by multiplying by K,L,$,M,T corresponding
to the units of the property. If these values are not already defined,
set them to one:
{Ifndef (K})}
DEFINING THE SCALING PARAMETERS!!!
K = {K = 1}
{Endif}
{Ifndef (L)}
L = {L = 1}
{Endif}
{Ifndef(S)}
S = {8 =1}
{Endif}
{Ifndef (M)}
M= {M=1}
{Endif}
{Ifndef(T)}
T = (T = 1}
{Endif}

Air viscosity (0.018CP): gas_visc = {gas_visc = 1.8e-5 * K / L / 8}

Binary Diffusion Coefficient in Gas Phase (0.26 cm"2/s):
diffusivity = {diffusivity = 2.6e-5 * L * L / S}

Ambient Pressure (1 ATM): Amb_Pres = {(Amb_Pres = 1.0133e5 * K / L / $°2}

Initial Relative humidity (at which gel must be saturated):
Rel_Humid0 = {Rel Bumid0 = 0.999999}

Operating Temperature: Temp
Gas Law Constant: Rgas

{Temp

= 300 * T}
{Rgas = 8

.314e3 * K * L2 / 8°2 / T / M}

Standard Elastic Shear Modulus (0.2 to 0.5 MPa in gels)
(8000 MPa in dense silica):

ModulusQ = {ModulusO = 8e9 * K / L / S°2)
ref Porosity for modulus: ModPO = {ModPO = 0.0}
Poisson Ratio: Poisson = {Poisson = 0.2}
Initial Porosity: Porosity0 = {Porosity0 = 0.99)}

Standard Mass transfer coefficient (at low airflow):
MTCO = {MTCO = 0.0025 * L / S)

Geometric Factor For Permiability:

$
$
$
$
$
$
$
3
$
$
$
$
$
$
3
$
S
$
$
$
$
$
$
$
3
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
s perm_geom = {perm_geom = 1.}
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$

$ Molecular Weight of Air MWa = {MWa = 29 * K / M}

$

$ Gravitational Constant gravity = {gravity = 9.8 * L / 572}
$

$ SOLVENT PROPERTIES

${Ifndef (SOL)}

$ Default to WATER

$ SOL = {SOL=18)}

${Endif}

$
{soll = SOL - 18}
{Ifndef(soll)}
Solvent is WATER

Water viscosity (1CP): viscosity = {viscosity = 0.001 * K / L / S}
Density of Liquid Water (1 g/cc): ’
density = {density = 1000 * X / L"3}
Vapor Pressure of water (0.042 ATM):
Vap_Pres = {Vap_Pres = 0.042 * Amb_Pres)

Surface Tension of Water (may be dirty): (30 - 72.14 dynes /cm)
sigma = {sigma = 0.072 * K / §°2)
Contact Angle of Water in Pores:

contact_angle = {contact_angle = 0}
Molecular Weight of Water MWw = {MWw = 18 * K / M}

{Endif}

{sol2 = SOL =~ 32}

{Ifndef(sol2)}

Solvent is METHANCL

Methanol viscosity (0.55CP): viscosity = {viscosity = 0.00055 * X / L / S}
Density of Liguid Methanol (0.79%14 g/cc):

density = {density = 791.4 * X / L"3)
Vapor Pressure of methanol (0.184 ATM):

Vap_Pres = {Vap_Pres = 0.184 * Amb_Pres)
Surface Tension of Methanol: (22.5 dynes /cm)

sigma = {sigma = 0.0225 * K / §"~2)
Contact Angle of Methanol in Pores:

contact_angle = {contact_angle = 0}
Molecular Weight of Methanol MWw = {MWw = 32 * K / M}
{Endif}
{sol3 = SOL - 46}
{Ifndef(s213)}
Ethanol viscosity .1 CP): viscosity = {viscosity = 0.0011 * K / L / S}

(1
Density of Liquid Ethanol (0.7893 g/cc):
density = {density = 789.3 * K / L"3)
Vapor Pressure of ethanol (0.1028 ATM):
Vap_Pres = {(Vap_Pres = 0.1028 * Amb_Pres}
Surface Tension of Ethanol: (22.39 dynes /cm)
sigma = {sigma = 0.02239% * K / 8§72}
Contact Angle of Ethanol in Pores:
contact_angle = {contact_angle = 0}
Molecular Weight of Ethanol Maw = {MWw = 46 * K / M}
{Endif)

{sol4 = SOL - 41)

{Ifndef(sold4))

Solvent is ACETONITRILE

Acetonitrile viscosity (0.345CP): viscosity = {viscosity = 0.000345 * K / L / 8}
Density of Liquid Acetonitrile (0.7857 g/cc):

density = {density = 785.7 * K / L"3}
Vapor Pressure of acetonitrile (0.165 ATM estimated):

Vap_Pres = {Vap_Pres = 0.165 * Amb_Pres}
Surface Tension of Acetonitrile: ( 29.3 dynes /cm)

sigma = {sigma = 0.0293 * K / 8*2}
Contact Angle of Acetonitrile in Pores:

contact_angle = {contact_angle = 0}

Molecular Weight of Acetonitrile MWww = {MWw = 41.05 * K / M}
{Endif)

{s0l5 = SOL - 60}
{Ifndef (s0l5)}
Solvent is PROPANOL

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
S
S
$
$
S
S
S
$
$
$
S
S
$
S
$
$
S
$ Solvent is ETHANOL
$
$
$
$
S
$
3
$
$
S
$
$
$
$
S
$
$
S
$
$
$
$
S
$
$
$
s
$
s
$
$ Propanol viscosity (2.4CP): viscosity = {viscosity = 0.0024 * XK / L / S}
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Density of Liquid Propanol (0.8035% g/cc):
density = {density = 803.5 * X / L"3}
Vapor Pressure of propanocl (0.0255 ATM - estimated):
Vap_Pres = {Vap_Pres = 0.0255 * Amb_Pres}
Surface Tension of Propanol: (23.78 dynes /cm)
sigma = {sigma = 0.02378 * K / $°2)
Contact Angle of Propancl in Pores:
contact_angle = {contact_angle =
Molecular Weight of Propanol MWww = {MWw = 60 * K
{Endif}

0} "
/ M}

$

$

$

$

$

$

]

S

s

$

$

$ {solé = SOL - 86) >
$ {Ifndef(solb))

$ Solvent is HEXANE

$ Hexane viscosity {(0.294CP): viscosity = (viscosity = 0.000294 * K / L / 8}
$ Density of Liquid Hexane (0.6603 g/cc):

[ density = (density = 660.3 * K / L"3}
$ Vapor Pressure of hexane (0.2156 ATM - estimated):

$ Vap_Pres = {Vap_Pres = 0.2156 * Amb_Pres}
$ Surface Tension of Hexane: (18.43 dynes /cm)

$ sigma = {sigma = 0.01843 * K / S°2}

$ Contact Angle of Hexane in Pores:

S contact_angle = {contact_angle = 0}

$ Molecular Weight of Hexane MWw = {MWw = 86 * K / M)

S{Endif}

$
$
$
$
S
$
$
$

For initial pressure in liquid phase, we need to calculate the
needed capillary pressure to be in equilibrium with the relative humidity
in the gas (via Kelvin Eguation)
Liguid Pressure: P10 = {P1l0 = Amb_Pres+Rgas*Temp*density/(MwWw)*1ln(Rel_Humid0)}

For some problems, we need concentration of solvent in the gas at saturation
Gas Concentration: gas_conc = {gas_conc = Vap_Pres*MwWw/Rgas/Temp)

This file contains standard properties for silica gels, air, and a set of solvents (the solvent type is cho-
sen by SOL and defaults to water if SOL=0).

The film.fas file defines the geometry of the coating, with the definitions from film.defs:

{include(“film.defs")}
$
TITLE Dry_Coating

PCINT 1 C.OOOOQOOE+OO 0.0000006E+00

POINT 2 {length} 0.0000000E+0C0

POINT 3 {length} {hcoat}

POINT 4 0.0000000E+00 {hcoat}

POINT 5 {-length s/ 10) 0.0000000E+0Q0

POINT 6 {-length / 10} {hcoat}

POINT 7 {3*length) 0.0000000E+00

POINT 8 {3*length) {hcoat}

LINE 1 STR 1 2 0 {nex} {stretchx}
LINE 2 STR 2 3 0 {ney} ({stretchy)
LINE 3 STR 4 3 o] {nex} {stretchx}
LINE 4 STR 1 4 0 {ney} 1.0000

LINE 5 STR 4 6 0 {10y 1.3

LINE 6 STR 5 6 0 {ney} 1.0000

LINE 7 STR 1 5 0 {10} 1.3

LINE 8 STR 2 7 0 {20) {1.2}

LINE 9 STR 7 8 0 {ney} ({stretchy}
LINE 10 STR 3 8 0 {20} (1.2}

REGION {coating} {coating} -1 -2 -3 -4 v
REGION {coating * 10} ({coating} -4 -5 -6 -7
REGION {cecating * 20} {coating} -8 -9 ~-10 -2
SCHEME {coating} M &
SCHEME {coating * 10} M
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SCHEME {cocating * 20} M

BODY {coating)} {coating * 10) {coating * 20}
POINBC {origin} 1

POINBC 200 7

POINBC 300 8

POINBC 400 4

NODEBC {substrate_ns) 1 7 8
NODEBC (free_surf_ns} 3 10
NODEBC {wet_ns) 5

NODEBC {out_r_ns) 9

NODEBC {in_1l_ns} 6

SIDEBC {substrate_ss} 1 7 8
SIDEBC {tot_surf_ss) 3 10 5
SIDEBC {free_surf_ss) 3 10
SIDEBC {wet_ss} 5

SIDEBC {out_r_ss} 9

SIDEBC {in_l_ss} 6

EXIT

Before using this file in FASTQ, it must be preprocesses by aprepro, i.e. aprepro film.fas
film.fastq then fastg film.fastq. From fastq a Genesis file, film.gen, should be created and
converted to an ExoduslI file, i.e. exlex2v2 film.gen film.exoII.

The properties of the porous medium as used in GOMA are listed in the porous.mat file (some of the
unused parts of the file are left out for brevity):

{include(“film.defs")}
$
Material Data File for a Drying Porous Gel Coating

/rrxxxrrrxaform of each property card *rxx**xrxx/
PROPERTY = MODEL FLOAT#1 FLOAT#2 ..... FLOAT#5

/rrxxxxrwrrvorm of each Constitutive card ****xxxx+y
MECHANICS_TYPE = MODEL

Of the many available options, MODEL can be USER

AR AAE R EASAREEEEE AR SRS AR A R

---Physical Properties
Density= CONSTANT {density)

---Mechanical Properties and Constitutive Egquations

Solid Constitutive Equation = INCOMP_PSTRAIN

Convective Lagrangian Velocit = CONSTANT {Vs} 0. 0.
#Llame MU = CONSTANT {Modulus}

#Lame LAMBDA = CONSTANT {Lame_lambda}

Lame MU = POWER_LAW {Modulus} {ModP0} (3.}
Lame LAMBDA= POWER_LAW {Lame_lambda} {ModP0O)} {3.}

Stress Free Solvent Vol Frac= CONSTANT{Initial_Porosity)
Ligquid Constitutive Eguation = NEWTONIAN

Viscosity= CONSTANT{viscosity}

Low Rate Viscosity= CONSTANTO.

Power Law Exponent= CONSTANTO.

High Rate Viscosity= CONSTANTO.

Time Constant= CONSTANTO.

Aexp = CONSTANTO.

---Thermal Properties
Conductivity= CONSTANTI1.

Heat Capacity= CONSTANTL.

Volume Expansions CONSTANTI1.
Reference Temperatures CONSTANTO.
Liquidus Temperature= CONSTANT1.
Solidus Temperature= CONSTANTL.

---Microstructure Properties

Media Type = POROUS_PART_SAT
Porosity = DEFORM{Initial_Porosity)}
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Permeability = PSD_WEXP{Initial_Porosity} ({(RMX} {0.0} ({perm_geom}
Capillary Network Stress = PARTIALLY_WETTING

Rel Gas Permeability SUM_TO_ONE {gas_visc}

Rel Lig Permeability PSD_WEXP {viscosity}

Saturation PSD_WEXP {sigma} {contact_angle} {A_hamaker}

i n

---Brinkman-equation parameters

Brinkman Porosity = CONSTANT 1.0
Brinkman Permeability = CONSTANT 1.

FlowingLiquid Viscosity = CONSTANT 1.0
Inertia Coefficient = CONSTANT 0.0

---Species Properties

#Diffusion Constitutive Equation = DARCY

Diffusion Constitutive Eqguation = DARCY_FICKIAN
Diffusivity = CONSTANT {WATER} ({diffusivity * 200}
Latent Heat Vaporizations CONSTANT ({WATER} O.
Latent Heat Fusion= CONSTANT {WATER} O.

Vapor Pressure = KELVIN {WATER} (Vap_Pres} {density} (MWw} {Rgas} {Temp}
Species Volume Expansion = CONSTANT ({WATER} 1.
Reference Concentration = CONSTANT ({WATER} O.

Diffusivity = CONSTANT ({AIR} {diffusivity)

Latent Heat Vaporization= CONSTANT ({(AIR}O.

Latent Heat Fusion= CONSTANT {AIR)O.

Vapor Pressure = IDEAL_GAS {AIR)} {MWa} {Rgas)} {Temp}
Species Volume Expansion CONSTANT {AIR} 1.
Reference Concentration CONSTANT {AIR} 0.

"non

~

**i**i**SpeCies Nu_mberrtt*ttatti**txxﬂ*w%***|

----Source Terms

Navier-Stokes Source= CONSTANT{-gravity * density} 0. 0.
So0lid Body Source= CONSTANTO. C. O.

Mass Source= CONSTANTO.

Heat Source= CONSTANTO.

Species Source= CONSTANT ({WATER} 0.

Species Source= CONSTANT {AIR} 0.

Solution of this problem requires continuation from an initial solution. We found it easiest to get
an initial solution for a wet coating that does not dry (i.e. the relative humidity in the overlying gas is
equal to the initial relative humidity, Rel_Humid = Rel_Humid0 in film.defs). The input file for get-
ting the initial solution is input.initial and contains slightly different boundary conditions and initial-
ization setup than the main input file (only the parts of this file that are different from the standard
input file are shown here):

{include{"film.defs")}
E

FEM File Specifications

FEM file

Output EXODUS II file
GUESS file

SOLN file

film.exoII
out.exoll
contin_in.dat
contin.dat

J S I I

Write intermediate results no

General Specifications

Number of processors =1

Output Level =0

Debug =0

Initial Guess = zero
Initialize = PRESSURE 0 {Initial_TPorosity}
Initialize = MASS_FRACTION {WATER) {P10}
Initialize = MASS_FRACTION {AIR} {Amb_Pres}
Time Integration Specifications

Time integration = steady

Solver Specifications
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Solution Algorithm = lu

Preconditioner = poly
Polynomial = LS,1

S8ize of Krylov subspace = 64
Orthogonalization = classical
Maximum Linear Solve Iterations = 1000
Number of Newton Iterations =8

Newton correction factor = 1.0
Normalized Residual Tolerance = le-12
Residual Ratio Tolerance = le-2

Boundary Condition Specifications

Number of BC = {auto_count}
BC = NORM_FORCE Ss {free_surf_ss} {~-Amb_Pres} 0. 0.
BC = NORM_FORCE S8 {wet_ss} {-Amb_Pres} 0. O.
BC = Y NS {free_surf_ns} {AIR} {Amb_Pres)
BC = Y NS {in_1_ns} {AIR} {Amb_Pres)
BC = Y NS {in_1_ns} {WATER} {P10}
BC = Y NS {wet_ns} {WATER} {P10)
BC = POROUS_FLUX ss {free_surf_ss} {WATER} {MTC) {Rel_Humid0 * gas_conc)
BC = POROUS_FLUX 88 {out_r_ss} {WATER} {0} {0}
BC = DX NS (substrate_ns) 0.
BC = DY NS {substrate_ns} 0.
BC = 1924 NS {out_r_ns} 0.
BC = DX NS {in_1l_ns} 0.
#EBE4HHES
END QOF BC
#44H8A384
Problem Description
Number of Materials = {auto_ccunt}
MAT = porous {coating)
Coordinate System = CARTESIAN
Element Mapping = isoparametric
Mesh Motion = LAGRANGIAN
Number of bulk species = 2
Number of EQ = {auto_count)
EQ = species_bulk Q1 Y 1 1. 1. 1. 1. c.
EQ = meshl Q1 D1 Q1 0. 0. 1. 1 0. 0.
EQ = mesh2 QL D2 Q1L 0. O. 1. 1 0. 0O
EQ = continuity Q1 P Q1 1. 1.
R3S 2]
END CF EQ
#EEERASES
div ms adv bnd dif src porous
HELBREEAEY
END OF MAT
EEES SR 28T

Post Processing Specifications

Porous Saturation = yes

Bulk density of species in porous media = yes

Gas concentration of species in porous media = yes
Gas phase convection vectors in porous media = yes
Liquid phase convection vectors in porous media = yes
Lagrangian Convection = yes

This input file should be run using the APREPRO option in goma , goma -a -i input.initial,
and should converge in a few iterations:

moser.me.udel.edu(130)% goma -a -i input.initial
READING FROM ALTERNATE INPUT FILE: input.initial
Total of 2 commands found

system: aprepro input.initial tmp.input

reading input from temporary file tmp.input

Copyright (<) 1993-1995 Sandia National Laboratories
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PRS, PAS, RRR, KSC, & RAC
"FIPSUMDA, a pig by any other name..."

EXODUS: film.exoII -> out.exoIl
ASCII: contin_in.dat -> contin.dat

Memory Usage:
af{): 120926 entries * 8 bytes/entry = 967408 bytes
x[]: 3465 entries * 8 bytes/entry = 27720 bytes
Setting variable 9 to 0.99
Setting variable 4 to 0.0101191
Setting variable 4 to 0.010133

ToD itn L_oo L 1 L_2 L_oco L_1 L_2 asm/slv (sec)
1.4e-05 3.2e-03 2.1e-04 8 3.1e+00 1.5e-01 2.63e+01/1.00e+01
7.4e~07 6.1le-04 2.0e-05 2 9.6e-02 4.6e-03 2.99e+01/3.32e+00

09:40:00 [2] 3.5e-10 2.0e-07 7.1e-09 2.1e-07 7.5e-05 3.6e-06 3.0le+01/2.58e+00
4.6e-16 2.9%9e-13 9.6e-15 1 5.5e-11 2.6e-12 2.97e+01/2.48e+00

The solution from this run should be written to a contin.dat file for continuation with GOMA. To
get solutions with lower relative humidity in the overlying gas, several continuation steps are needed
where the relative humidity is reduced (using RH starting from 0.9, 0.8, 0.5 . . .). However for the first
reduction in the relative humidity (and any big steps later), relaxation of Newton’s method is needed.
The standard input file, input, for these calculations is:

{include (“film.defs")}

$

FEM File Specifications

FEM file in.exoIl
#FEM file = film.exoIl
Output EXODUS II file out.exoll
GUESS file contin.dat

i

n u n

SOLN file soln.dat
Write intermediate results = no
General Specifications

Number of processors =1

Output Level =0

Debug 0

Initial Guess

read_exoll

Time Integration Specifications

Time integration = steady

Solver Specifications

Scolution Algoerithm = lu

Preconditioner = poly

Polynomial = LS, 1

Size of Krylov subspace = 64

Orthogonalization = classical

Maximum Linear Solve Iterations = 1000

Number of Newton Iterations = 12

Newton correction factor ="1.0

Normalized Residual Tolerance = le-12

Residual Ratio Tolerance = le-2

Beoundary Condition Specifications

Number of BC = {auto_count}

BC = NORM_FORCE Ss {free_surf_ss} {-Amb_Pres} 0. O.
BC = NORM_FORCE ss {wet_ss} {-Amb_Pres} 0. O.
BC = Y NS {free_surf_ns} {AIR} {Amb_Pres}

BC = Y NS {wet_ns} {AIR} {Amb_Pres)
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BC = Y NS {in_l_ns} {AIR} {Amb_Pres}

BC = Y NS {in_1_ns} {WATER} {P10}

BC = POROUS_FLUX ss {wet_ss} {WATER} {le4 * MTC} {Rel_Humid0 * gas_conc)
BC = POROUS_FLUX 8s {free_surf_ss} {WATER} {MTC} {Rel_Humid * gas_conc)
BC = POROUS_FLUX 8Ss {out_r_ss} {WATER]} {0} {0}

BC = DX NS {substrate_ns} 0.

BC = DY NS {substrate_ns} 0.

BC = DX NS {out_r_ns} 0.

BC = DX NS {in_l_ns} C.

EEEE 33221

END OF BC

L2 222333

Problem Description
Number of Materials = ({autc_count}
MAT = porous {coating}

Coordinate System = CARTESIAN
Element Mapping = isoparametric
Mesh Motion = LAGRANGIAN

Number of bulk species = 2

Number of EQ = {auto_count)

EQ = species_bulk Q1 Y Q1 1.

EQ = meshil Q1 Dl 01 . . . .
EQ = mesh2 Q1 D2 Q1 0. O. 1. 1.
EQ = continuity QI P el 1.
EE 22

END OF EQ

#Hheeaise

=)
Q2
(SR
o

HOooo
o

div ms adv bnd dif src porous
EEE ST X T ST
END OF MAT
#H4EHudge8

Post Processing Specifications

Second Invarient of Strain = yes

Third Invarient of Strain = yes

Mesh Stress Tensor = yes

Porous Saturation = yes

Bulk density of species in porous media = yes

Gas concentration of species in porous media = yes
Liguid phase convection vectors in porous media = yes
Lagrangian Convection = yes

User-Defined Post Processing = yes {Rel_Humid)}

For this problem, we use continuation from the exodusll files; so the output exodusll file should be
copied to the input exodusll file as specified in input, cp out.exoII in.exoII. This input file is
run using APREPRO, goma -a RH=0.9, and may require relaxation of Newton’s method:

moser.me.udel .edu(l31})% cp out.exoll in.exoIl

moser.me.udel.edu(l132)% goma -a RH=0.9

Total of 1 commands found

system: aprepro RH=0.9 input tmp.input

reading input from temporary file tmp.input

Copyright (c) 1993-1995 Sandia National Laboratories
PRS, PAS, RRR, KSC, & RAC

"FIPSUMDA, a pig by any other name..."

EXODUS: in.exoII -> cut.exoIl
ASCII: contin.dat -> soln.dat

Memory Usage:

all: 120926 entries * 8 bytes/entry = 967408 bytes
x1): 3465 entries * 8§ bytes/entry = 27720 bytes
init_vec: reading initial guess from "in.exoII"
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Reading
Reading
Reading
Reading
Reading

HEREEERS

exoll
exoll
exolIl
exoll
exoll

Hhadd

# WARNING!! #

#EdHHdag

HEHHH

SPECIES YO
SPECIES Y1

Variable
Variakle

PRESSURE P Variable
MESH_DISPLACEMENT1 DMX Variable
MESH_DISPLACEMENT2 DMY Variable

No user_defined

Writing porous Data to File
Writing gas Data to File

-done

Now, the solution from this run can be can be used as the initial guess for solutions at lower humidi-
ties. Further continuation to lower relative humidities is done in the same manner, and relaxation
normally is not needed unless big steps in relative humidity are taken or if other parameters are

L_2 L_oo L_1 L_2

le-06 1.2e-01 3.9e+00 3.7e-01 2
6e-04 1.5e-04 7.1e-03 5.8e-04 3
2e-06 2.1e-06 2.5e-05 4.7e-06 2
6e~10 3.7e-10 2.8e-09 7.6e~10 2
2e-15 1.4e-14 1.5e-12 7.le-14 3

post processing model implemented

asm/slv (

changed. Standard results from this problem are shown in Chapter 5.
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sec)

.9%e+01/1.
.04e+01/3.
.90e+01/2.
.86e+01/2.
.03e+01/2.

53e+01
28e+00
54e+00
65e+00
73e+00
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