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Abstract

In support of the Motorola CRADA, the capabilities of the computational fluid dynamics code FIDAP
(Fluid Dynamics International) for simulating problems involving fluid flow, heat transport, and
chemical reactions have been assessed and enhanced as needed for semiconductor-processing
applications (e.g. chemical vapor deposition). A novel method of treating surface chemical species that
uses only pre-existing FIDAP commands is described and illustrated with test problems. A full-
Jacobian treatment of the chemical reaction rate expressions during formation of the stiffness matrix
has been implemented in FIDAP for both the Arrhenius-parameter and user-subroutine methods of
specifying chemical reactions, where the Jacobian terms can be calculated analytically or numerically.
This formulation is needed to obtain convergence when reaction rates become large compared to
transport rates (“stiff” chemistry). Several test problems are analyzed, and in all cases this approach
yields good convergence behavior, even for extremely stiff fluid-phase and surface reactions. A stiff
segregated algorithm has been developed and implemented in FIDAP. Analysis of test problems
indicates that this algorithm yields improved convergence behavior compared with the original
segregated algorithm. This improved behavior enables segregated techniques to be applied to
problems with stiff chemistry, as required for large three-dimensional multi-species problems.
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1. Introduction

1.1. Motivation

In support of the Motorola CRADA, the computational fluid dynamics code FIDAP (Fluid Dynamics
International) [1] has been examined for simulating semiconductor-processing applications. The class
of problems to be addressed has the following relevant characteristics:

c gas equation of state, significant temperature and density variations

. dynamically incompressible flow, low Mach number

● steady laminar flow, modest Reynolds number
● multiple gas-phase and surface chemical species and reactions

● chemistry often dilute, yielding advection-diffision situation
● complex geometry, often three-dimensional

FIDAP has been used extensively by Motorola personnel to simulate problems with some of these
features [21. FIDAP solves the Navier-Stokes and energy equations for fluid motion and energy
transport. It also treats up to 15 chemical species with mass fractions (concentrations) c(n), which are
transported in the fluid and react in the bulk fluid and on reactive surfaces according to

@Z)Vc@)) + #mJ((c(R)}) in the fluid,pc(%l . Vc(m) = v .(pcx (1.1)

- pa(’% . Vc(m)+C(m)st = s‘m)({c(n)]), p;. h = St, st = ~s(m) on the surface. (1.2)
m

The fluid-phase and surface chemical-reaction source terms S(m) and s(m) for c(~) can depend on all
species concentrations { c ‘“) ] . Of particular interest are FIDAP’s capabilities in the following areas:

● surface chemical species and reactions

● chemical reactions with rates greatly exceeding transport rates (“stiff chemistry)

● large problems with chemistry, both three-dimensional and multi-species

1.2. Goal

An effort was made to assess FIDAP’s capabilities for these types of problems and to enhance FIDAP’s
capabilities as needed while preserving the FIDAP architecture as much as possible [3]. This report
presents the results of this effort. Chapter 2 presents a method of treating surface chemical species
(i.e. not existing in the fluid) that uses only pre-existing FIDJQ commands, with test problems tO
illustrate this approach. Chapter 3 presents a method for solving problems when the chemical-
reaction rates are large compared to the species-transport rates (“stiff” chemistry)usingcross-wecies
information in the stiffness matrix. This method has been implemented in FIDAP for both the
Arrhenius-parameter and user-subroutine methods of speci&ing chemical reactions, where the
required information can be calculated analytically or numerically. Several test problems are
presented to illustrate the resulting good convergence behavior, even for extremely stiff fluid-phase
and surface reactions. Chapter 4 presents a method for improving the convergence behavior of
segregated solution techniques for- problems with stiff chem&y &d the implementation of
method in FIDAP, along with test problems to demonstrate the improved convergence behavior.

this
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2. Treatment of Surface Chemical Species -

2.1. Method

In many semiconductor-processing applications (e.g. chemical vapor deposition), some of the chemical
species exist only on reactive surfaces and not within the adjacent fluid phase. Although at first
glance it appears to lack the capability to handle surface chemical species, FIDAP can in fact be used
to simulate such species in a straightforward fashion. In the remainder of this section, a method for
implementing surface chemical species in the context of FIDAP’s pre-existing capability to treat fluid-
phase species is presented. This method involves applying pre-existing FIDAP commands in a novel
way and thus requires no custom user subroutines or modifications to FIDAP itself. Examples
validating this approach by comparison to analytical solutions are presented.

The following method can be used to treat surface chemical species in FIDAP via FIPREP.

1. Although in reality species m exists only on reactive surfaces and not in the fluid, allow
-species m to exist in the fluid as an artifice.

2. Define the surface reactions using the SREACTION keyword on the ENTITY card along with
the REACTION card.

3. Use the BCNODE card to set the concentration of species m to an arbitrary constant
(preferably zero unless a reasonable guess is known) throughout the fluid and on all
nonreactive surfaces. The EXCLUSIVE option is used to ensure that the concentration is not
set on the reactive surfaces. A FIPREP example is shown below for species 3.

bcnode (add,species=3 ,entity =’’fluid”,constant= $bndrs3 ,exclusive)

bcnode (add,species=3 ,entity =’’lower”,constant= $bndrs3 ,exclusive)

bcnode (add,species=3 ,entity =’’upper”,constant= $bndrs3 ,exclusive)

bcnode (add,species=3 ,entity= ”right” ,constant= $bndrs3 )

4. Put the SNOCONVECTION= m keyword on the ENTITY card for the fluid to suppress the
convective term for species m , or (alternatively) set the CAPACITY for species m to a “very
small” value (not zero, or FIDAP will default it back to unity) to render the convective-
transport term negligible compared to the chemical-reaction source term. A FIPREP example
is shown below for species 3.

entity (add,name=” fluid” ,fluid, property =’’carrier”,

species=l ,mcap=’’specl” ,mdiff=’’specl” ,mreac=’’bspecl” ,

species=2 ,mcap=”spec2” ,mdif f=“spec2” ,mreac=”bspec2” ,

species=3 ,mcap=”spec3” ,mdif f=“spec3” ,snoconvection=3 )

5. Set the DIFFUSIVI’IT for species m to a “very small” value to render the diffusive flux
negligible compared to the surface-reaction term.

Using this approach, e(m) will be free (a mathematical ‘(unknown”) only at nodes on the reactive
‘~) flux will be very close to zero: the convective flux is zero since thesurfaces. At these nodes, the c

convection term has been suppressed, and the diffusive flux is negligibly small by virtue of the small
diffusivity. Thus, the equation applied at each of these nodes is as desired for a surface species: the

‘~) = O Note that surface diffusion is absent.surface reaction rate vanishes at steady state, s .

10



This approach has several advantages.

1. No modifications to the FIDAP source code or custom user subroutines are required.
.

.

2. The problem size remains manageable: since the surface species concentrations are “known”
(arbitrary constants) away from the reactive surfaces, they do not enter into the matrix
equation as additional unknowns.

3. Since the diffusivities of surface species are taken to be small, unphysical lateral diffusive
transport of surface species on the reactive surfaces is minimized.

4. Other quantities existing only on the surface such as area density of unoccupied sites for
surface reactions can probably be treated in the same manner.

This approach also has some limitations.

1. Although the diffusivities are small, they are nonzero, leading to some transport of surface
species away from the surface and into the fluid. This is mitigated by the small size of the
difiisivities.

2. The small size of the diffusivities makes this a numerically stiff problem. This is mitigated
by modi&ing FIDAP to form the full Jacobian of the chemical-reaction source terms, as
discussed in subsequent chapters of this report.

3. It must be recognized that the “mass fraction” variables of surface species should not be
interpreted as mass fractions in the fluid phase. The chemical model being employed entirely
determines the interpretations assigned to these variables (e.g. area density of unoccupied
surface sites).

2.2. One-Dimensional Example

As a test case, a one-dimensional diffusion problem with three species and a reactive surface at x = O
is considered. Species 1 and 2 are present in the fluid and on the surface and have diffusivities of
unity. The concentrations of these species are fixed at x = 1: C(1‘( 1) = 1 and C(2)(1) = O. Species 3 is
present on the surface but not in the fluid and has effectively zero diffusivity. The following conditions
apply on the reactive surface at x = O:

de(’) de(2)——
dx

= y(c(i) -C(l)), –~ = y(c(3) –C(2)) , 0=y(c(l) -C(3)) + y(c(2) -C(3)) (2.1)

where y >0 is the stiffness parameter, effectively the ratio of the reaction rate to the diffusion rate.
These equations correspond to two surface reactions: “1’’++”3” and “3”++”2”, both with forward and
backward rate parameters of y. This system has the following analytical solution:

C(!)(x) = 1–r(l –x), C(2)(X) = r(l –x), C(3)(0) = ~, where r = ~.
2(l+y)

(2.2)

Figure 2.1 shows FIDAP results using the method outlined above for y = 99. A species 3 difisivity of
10-7 is used which appears to be sufficiently small. Note th~~ in both cases the analytical results for
C(l)(X) , C(2)(X), and C(3)(0) are obtained despite setting c equal to 1 (rather than the expected
surface value of 1/2 ) away from the reactive surface. Additional simulations employing different y
values (both larger and smaller) are also found to reproduce the analytical results identically.
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Figure 2.1. One-dimensional reaction-diffusion problem for y = 99.
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2.3. Two-Dimensional Example

To illustrate how this method performs for multidimensional problems, simulations are performed
using the two-dimensional flow over a backward-facing step, with a reactive surface located upstream
of the step, on which the chemistry used in the previous example is applied but with y = 1. An
advection-diffusion analysis is performed for this case: the flow field is scdved for first, and the
chemistry is solved for subsequently. Table 2.1 provides geometric information, material properties,
and boundary conditions for the simulations. The following analytical results hold for this case:

C(’)(x, y) +C(2)(X, y) = 1 and c(3)(reactive surface) = 1/2. (2.3)

Figure 2.2 shows the computational mesh and contour plots of the streamlines, temperature, and
species concentrations. The species 1 and species 2 contour locations are identical and their values
sum to unity, indicating satisfaction of the analytical result. The species 3 contours depart from unity
only at the reactive surface, on which C(3) is identical to the analytical value of 1/2.

Table 2.1. Information for the surface-species backward-facing step simulations.

Quantity Value

Channel length upstream 4, fromx=-4to x=0

Channel length downstream 6, fromx=Oto x=6

Step height 0.5, from y = –0.5 to y = O

Channel height upstream 0.5, from y = O to y = 0.5

Channel height downstream I1,from y = -0.5toy = 0.5 I
Heated region –Z<x<(),y=()

.

Density 1

Viscosity 0.01

Specific heat 1

Thermal conductivity 1/71

Species 1, 2, 3 capacities 1, 1, 0 (convection term removed)

Species 1, 2, 3 diffusivities 1/71 , 1/71 , 10-’/71

Velocity at inlet, reactive surface, other walls ( 12y - 24y2 ,0,0), (0,0,0), (0,0,0)

Temperature at inlet, reactive surface, other walls 1,2, 1

Species 1,2 concentrations at inlet 1,0

Species fluxes at reactive surface, other walls chemistry, O

Species 3 concentration away from reactive surface 1 (arbitrary)

Velocity, temperature, species at outlet I nah.malboundm-yco nditions I

13
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Figure 2.2. Backward-facing step simulation with surface species and reactions.
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3. Full-Jacobian Approach
,

3.1. Method

for Stiff Chemistry

In many semiconductor-processing applications involving gas flow and chemistry, “stiff” chemistry is.
encountered: the chemistry is orders of magnitude faster than diffusive or convective transport, so the
stiffness parameter y, which describes the ratio of the chemical reaction rate to the transport rate (a
Damkohler number), becomes large. When this occurs, how the chemical-reaction source terms are
treated affects the convergence behavior of a solution algorithm. In what follows, the implementation
in FIDAP of a full-Jacobian treatment of the chemical-reaction source terms is described, and
examples are presented demonstrating its effect on convergence behavior.

The physical system considered consists of chemical species c(~) (some may be surface species) which
are transported and can react in the fluid and on reactive surfaces according to

pc(m)i? . Vc(m) = V . (pct(m)Vc(n)) + S(~)({c(~)}) in the fluid, (3.1)

-pa (m)ii . Vc(m)
+ c(m)St = S(m)({c(n)}), p;. i = St, St = ~s(~) on the surface, (3.2)

m

where the fluid-phase and surface chemical-reaction source terms S(m) and s(m) for c(m) can depend
on all the other species concentrations {c(n) } . The corresponding discretized version of this system
can be expressed as

(3.3)#@&@) _ #m) = _[#@c@) _ #“)] ,

where K(m) is the diffusive-convective stiffness matrix evaluated using quantities from the m-evious
iteration, S(m) is the chemical-reaction source-term vector evaluated
previous iteration, 3c(m) is the vector of species concentration updates,
chemical-reaction source-term updates.

To enable solution of this system, a linear form must be provided for
Several treatments are possible, including the following

M’(m) + O (successive substitution),

.
using quantities from the
and &S(m) is the vector of

&S’(m) in terms of {tic(n)}.

(3.4)

&$$m)+ (~S(m)/Zlc(m))6c(m) (diagonal Jacobian), (3.5)

&S(m)+ ~(%3(m)/~c(”))3c(n) (full Jacobian), (3.6)
n

where dS(m)/tic(”) is the Jacobian derivative matrix evaluated at the previous iteration. Of these
three treatments, only the full-Jacobian approach is appropriate for problems with stiff chemistry. A
disadvantage of the full-Jacobian approach is that the resultant matrix equations for the different
species are strongly cross-coupled by the off-diagonal terms, which renders solutions difficult to
obtain with segregated algorithms. However, although decoupled and thus amenable to segregation,
the other two choices often are unstable or, if stable, converge at extremely slow rates. In the next
chapter, a method is presented for combining the full-Jacobian treatment of stiff chemistry with a
segregated approach.

15



FIDAP has been modified to allow solution of the coupled linear system using the fidl-Jacobian
approach to ~epresent the chemical-reaction source terms:

c(m) ~ Jr2) + ~c(m)
(3.8)

This implementation has been performed in FIDAP for both fluid-phase and surface chemical
reactions. Both the Arrhenius-parameter (CONSTANT keyword on the REACTION card in FIPREP)
and user-subroutine (SUBROUTINE keyword on the REACTION card in FIPREP to access the
USRRXN subroutine) methods [11 can be used to specifj reaction parameters. The user also has the
option of either numerically differencing the source terms to determine the Jacobian matrix or
entering the Jacobian matrix directly via a user subroutine.

This approach has been tested on a wide variety of cases, including some with up to four chemical
species, various combinations of fluid-phase, fluid-surface, and surface chemical species, linear and
nonlinear chemical-reaction source terms, isothermal and coupled-thermal problems, and advection-
diffusion and fully coupled flow-thermal-chemical problems. In all cases examined, known analytical
results are always reproduced, and good convergence behavior typical of Newton-Raphson methods is
observed without the use of nonzero acceleration factors and independent of whether numerical or
analytical Jacobian matrices are used, even for stiff problems.

3.2. Two-Dimensional Example

To illustrate the full-Jacobian approach, chemically reacting flow over a two-dimensional backward-
facing step is considered. As before, a heated reactive surface upstream of the step is included.
Figure 3.1 shows the convergence history for the simulation discussed below, Figure 3.2 shows a
schematic diagram of the geometry and the mesh used in the simulations, and Table 3.1 shows
geometric information, material properties, and boundary conditions. The velocity and temperature
fields are weakly coupled by virtue of the temperature-dependent material properties, so solving this
problem demonstrates that the full-Jacobian approach is not limited only to advection-diffusion
problems. Four species are considered: species 1, 2, and 4 in the fluid, and species 3 on the reactive
surface. Heat is released as all reactions proceed, and all reaction rates and the heat production rate
are temperature-dependent. The fluid-phase and surface reaction rates, S(m) and s(~), and the fluid-
phase and surface heat production rates, Q and q , are given by:

()S(l)= -s(2)= ye~p ++ (c(*) -c(’)) , S(4) = (), (3.9)

Q = -~#), (3.10)

~(l)
= S(2) ()

Ez
= yZ’Bexp -~ (C(3)*-c(1) c(2)) , s(4)

()
= y7’Pexp –~ (C(3)–C(4)) ,

S(3)
= -(s(’)+ S(2)+ S(4)), (3.11)

~ = _~s(l) (3.12)

where the Arrhenius parameters are y = 103 (very stiff.), E, = 1, EQ = 10, ~ = 0.75,and H = 10.
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Table 3.1. Information for the full-Jacobian backward-facing step simulations.

Quantity Value

Geometry identical to Table 2.1=

Density 1 I
1

Viscosity ~(z’) = 7’0”7/100

I Specific heat II I

Thermal conductivity A?(Z’) = TO’7/71

Species 1,2, 3,4 capacities 1, 1, 0, 1 (convection term removed)

Species 1, 2,3,4 di&sivities
~(1,2,4)

(T) = T0”7/71 , a(3)(T) = 10-7T0’7/71

I Velocity at inlet, reactive surface, other walls I ( 12y - 24Y2 ,0,0), (0,0,0), (0,0,0) I

Temperature at inlet, reactive surface, other walls 1,5, 1 I

Species 1,2,4 concentrations at inlet 0.5,0.5,0

Species fluxes at reactive surface, other walls chemistry, O

I Velocity, temperature, species at outlet. I natural boundary conditions I

Several analytical results are available for this case. ~~pce S(1) = s ‘2) the surface reactions ;pult in
‘z) at the \nlet, it is found that cequal changes of species 1 and species 2. Thus, since c = c

= C(2)

S(2) – O everywhere in the fluid. Species 4 is created at the heated reactive surface and isand S(l) = -
transported out into the fluid phase. Since S(1) + S(2)+ S(4) = O in the fluid phase and
~(l)

+s(2)+ s(4) = O at the surface by virtue of s(l)+ S(2)+ S(3)+ S(4) = O and S(3) = O (species 3 is a
surface species), it can be shown that in the fluid C(’) + C(2)+ C(4) = 1, as expected. Although not
obtained due to the fini$ rate of the chemicfil reactions (y< m), if equilibrium were obtained at the
reactive surface, then c = C(3) = (C(1)C(2))1 would be observed, which with the above constraints

‘4) along the reactive surface as y + ~. The factimplies values of I/3 for each of C(l), C(2), C(3), and c
that the sum of these four “mass fractions” exceeds unity does not pose a difficulty: C(3) should not be
included in the sum of mass fractions for the fluid phase since species 3 exists only on the reactive
surface. Thus, as discussed previously, the precise meaning of the C(3) value depends on the
interpretation assigned to C(3) when developing the particular expressions for the surface chemical-
reaction source terms s(~).

Since for highly nonlinear problems the starting guess for the fields can play a very important part in
finding the solution, a reasonable initial guess for the velocity field is generated by solving the
corresponding flow and thermal problem without chemistry in the same geometry with the same
velocity and temperature boundary conditions (no temperature dependence on the viscosity is used).
The velocity field from this simulation serves as the initial guess for the velocity field in the coupled
flow-thermal-chemistry problem although the initial temperature field for the latter is set to a
constant value of 3 at all interior nodes. The initial concentrations of species 1 and species 2 are set to
the fluid-phase equilibrium concentration of 0.5, and the initial concentrations of species 3 and
species 4 are both set to 0.1 on the interior nodes.
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Two simulations are performed: one in which the reactions are specified using the CONSTANT
keyword on the REACTION card with the Jacobian terms calculated analytically, and the other in
which the reactions are specified using the SUBROUTINE keyword on the REACTION card with the
Jacobian terms calculated by numerical differencing. In both cases, acceleration factors of zero are
employed, and convergence of all fields occurs in 9 iterations (no appreciable differences are found
between the results). Figure 3.1 shows the norms of the relative errors for all degrees of freedom as a
function of iteration number. This plot shows a smooth transition from a low convergence rate to a
significantly higher convergence rate with increasing iteration number, which is characteristic of
Newton-Raphson approaches. Applying the original algorithm (without the full-Jacobian approach) to
this problem does not yield a solution for y values much larger than unity. The flow, thermal, and
concentration results of the first simulation are shown in Figure 3.2. In agreement with the analytical
results, it is observed that C(l) = C(2) and c(l) + C(2)+ C(4) = 1 in the fluid. On the reactive surface, due
to the large value of y, only slight departures are seen fi-om the equilibrium values of
c(l) = C(2) = C(3) = C(4) = ~/3.

,B, D in gas, C on surface I
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Figure 3.1. Convergence history for the full-Jacobian backward-facing step simulation.
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Figure 3.2. Backward-facing step simulation with full-Jacobian approach for y= 103.
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4. Segregated Solution Approach

4.1. Method

for Stiff Chemistry

In the previous chapter, it was shown that incorporating a full Jacobian of the chemical-reaction
source terms into the matrix equation improves the convergence behavior of the solution algorithm.
However, the cost associated with this approach is that the species-transport equations are strongly
cross-coupled: the effect of the variations of all species must be simultaneously included in each
species transport equation. Incorporation of this cross-species coupling appears to preclude the use of
segregated algorithms to obtain solutions since segregated approaches effectively consider all species
but one to be constant during each portion of the iteration. However, a segregated algorithm is often
necessary to maintain a manageable problem size, particularly for the large three-dimensional multi-
species problems that can be encountered in semiconductor-processing applications. Thus, an
algorithm is desired that is both chemically coupled and segregated, which appear to be contradictory
goals. Nevertheless, in the remainder of this section, one approach is outlined that maintains the
strong cross-species chemical coupling in an approximate fashion yet is segregated in
implementation. This stiff segregation algorithm has been implemented in FIDAP, and examples are
presented to illustrate its behavior.

To outline this method, consider a chemistry problem involving three species, labelled “1”, “2”, and
“3”. Suppose for convenience that the boundary conditions are such that at each node either all or
none of the species concentrations are known (this can be relaxed straightforwardly, but the notation
becomes more cumbersome). Then the global linear system that must be solved can be written
schematically as

where ~n(~i;) the number of nodes at which the N~ species concentrations are unknown and the
entries M are N. x N. banded matrices, of 0( Nm2’3 ) bandwidth for three-dimensional problems.
The vectors 6C(M) and V(n) represent the updates to species concentration unknowns and the right-
hand side vectors for species m. In segregation as it is generally applied, all of the off-diagonal
matrices are zeroed to yield

(4.2)

which as previously discussed is inappropriate when stiff chemical reactions are present. In the stiff
segregated method, it is necessary to select an “active” degree of freedom, the species that will be
updated during this portion of the iteration (all other species are “inactive”). For convenience,
species 1 is selected. All submatrices except those that multiply the active degree of freedom are
summarily truncated to only their diagonal elements, leaving the approximate system
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EIEiE!=Eil~
where D(’”~) is the diagonal portion of M(mn). Now consider the equation
species 1 degree of freedom at node i

~M,}’’)&;’) + ~ii(’2)8Ci(2)+ @’3)6Ci(3) = V,(’) .
J

(4.3)

associated with the

(4.4)

Here, Mti(ll) “IS entry j of row i of the corresponding submatrix. In order to have a segregated
scheme, it is necessary to eliminate the inactive species unknowns tki(z) and &i(3) from this
equation. To accomplish this, the other two equations associated with node i are used:

(1) + ~ @2)&.(’)+ ~ii@&i(’) = vi(’),~Mi~2’)6cj ii ~ (4.5)
J

~Mi}3’)6c}1) + Dii(32)3ci(2) + Dii(33)6ci(3) = vi(’) . (4.6)
j

These latter two equations are used to find 3ci(2) and i5ci(3) as functions of the species 1 vector ~c( 1)
and to eliminate them from the first equation. Note that operations on a 2 x 2 matrix rather than an
N. x IVn matrix are required: i enters parametrically. The identical process is repeated for all other
nodes, and the end result is a segregated matrix equation for species 1:

.@ll)6c(l) = ~(l)
) (4.7)

- (11)
where M is a modified species 1 stiffness matrix containing contributions from M(2’ ), M(31), and
all of the diagonalized matrices. Similarly, ~(1) is a modified right-hand side vector. The contributions
from these off-diagonal terms stabilize the solution scheme for stiff chemistry when the magnitude of
the off-diagonal terms becomes comparable to or larger than the on-diagonal terms.

A few points about implementation of the above approach require some elaboration. In particular, the
previous discussion appears to assume that the entire global stiffness matrix is available for use. Of
course, this is not the case when solving a problem for which a segregated algorithm is necessary
(that is the point of using a segregated algorithm). Consider how to implement the stiff segregation
solution algorithm from the standpoint of each element’s local stiffness matrix, that is, during rather
than following global assembly. The most obvious approach is to attempt to apply the algorithm to
each local stiffness matrix prior to its assembly into the global matrix. Unfortunately, because the
algorithm requires both a matrix inversion and multiplication of matrix elements, this approach will
not work because the summations of the contributions to each node from its surrounding elements
will not distribute properly, and the result will be incorrect. The ll~~n) and related quantities (but not
the M~j~n)) must be computed on a global basis, that is, taking into account the contributions from all
elements, before stiff segregation can be applied during assembly. Therefore, a three-pass process is
employed. During the first pass, all local stiffness matrices are computed and the appropriate
quantities are extracted from them and accumulated. In a second pass, these accumulated quantities
are modified to yield quantities employed in the subsequent assembly of the modified global matrix,
which occurs during the third pass. The steps that occur in this three-pass process are delineated
below and have been implemented in FIDAP.
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4.2. Implementation Steps

For Al species, with species s active and the remaining species inactive, apply the following steps:

Step 1:

A)

B)

Step 2:

A)

B)

Step 3:

A)

B)

Step 4:

Step 5:

Step 6:

Loop over all elements.

Compute the local stiffness matrix for each element e.

Extract D. .(~”)(e) from each matrix and accumulate it into llii(~”) . The local stifiess

matrices at~enot assembled into the global matrix during this pass.

Loop over all nodes.

For each node i, invert Dii(~”) over (m.n ) to obtain Zii(”n) according to:

zii(nm) = (Dii@n))-’ , m#s, n#s. (4.8)

Determine Ri(sm) from these two matrices according to:

Rj(sm) = - ~ D,,(s”)Z,,(”m), m *S. (4.9)
n$s

Loop over all elements.

Compute the local stiffness matrix and right hand-side vector for each element e and
modify them according to:

(sS)(e)

ti~j = ll~j(ss)(e) + ~ .Z?~(sm)M~j(ms)(e) , (4.10)
7n*s

vi(s)(e) = vi(s)(’)+~ Ri@Wi@)@). (4.11)
m*s

Assemble the modified local stiffness matrices and right hand-side vectors (given above)
into their global counterparts.

Solve the global matrix system @ss)8c(s) = fi(s).

Update the species s concentrations c(s) + c(s)+ ~c(s).

Increment the active species and return to Pass 1.

A single iteration is completed when all species have been the active species once.

4.3. Additional Considerations

As discussed above, the stiff segregation algorithm differs from the original segregated algorithm in
FIDAP by requiring additional computational steps for additional quantities. Therefore, different
amounts of memory are needed for the same physical problem, and individual iterations are longer.
Also, as for any segregated strategy, stability and approach to convergence become important issues.

The additional memory requirements to implement this algorithm are acceptable. During the first
pass, iVn(NS - 1)2 memory locations need to be allocated to store the Dii(~’) matrices, where N. is
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the number of species and N. is the number of nodes. For typical three-dimen.sional problems, this is
comparable to or smaller than the N.5’3 memory locations needed to store the global matrix if it has
a bandwidth of Nn2’3. After the second pass, only N.(N, - 1) memory locations are needed to store
the back substitution coefficients l?i(s~). For both passes combined, this. amount of memory is
equivalent to (NS – 1) additional solution vectors.

A second issue-is the additional computational time associated with the algorithm. The fact that there
are two sweeps through the element list does not necessarily mean that the computational time is
doubled. In general, the time for assembly of the global matrix is a small fraction of the time
required to solve the corresponding linear system. Hence, making essentially two assembly passes
should not dramatically affected the ruining time. The other issue is the amount of time needed to
invert N. (NS – 1) x (NS – 1) matrices during the second pass. Roughly speakin ~ the number of
operations needed to invert a full (N. – 1) x (N. – 1) matrix scales as (NS – 1) . Therefore, the
operations needed for the second pass is N.(N, – 1)3, whereas solving a global matrix of bandwidth
Nn213 requires roughly Nn7’3 operations. Consequently, the relative time between pass 2 and pass 3
should scale as (N, – 1)3/Nn4’3. A three-dimensional problem typically contains at least
N. = 203 = 8000 nodes, and the maximum number of species allowed in FIDAP is N, = 15. In this
case, the time for the second pass would be only a small fraction of the time for the third pass. This
fraction would increase for problems with fewer nodes, but for these problems it would probably be
better to use the direct solver.

Convergence behavior and stability for the stiff segregated algorithm are typical of segregated
algorithms. First, convergence is still rather slow although much better than the original segregated
algorithm, as shown below. Second, the method becomes unstable when convection dominates either
diffusion or chemistry. This is because the convection portion of the stiffness matrix generally has
zeroes for diagonal entries. In the former case, this difficulty can be circumvented by selecting an
upwinding factor of unity, which places entries of the appropriate size on the diagonal. In the latter
case, the original segregated soIver should be used.

4.4. One-Dimensional Example

To illustrate the above approach, a one-dimensional diffusion problem (no convection) with a reactive
surface at x = 1 is considered. Two species, denoted “l” and “2”, are present in the fluid and on the
surface and have diffusivities of unity. The concentrations of these species are tied at x = O:

(1) O – 1 and C(2)(0) = O The following conditions apply on the reactive surface at x = 1:co-,

de(’) de(z)
—=
dx

y(c(2)– c(’)), ~ = y(c(’)– c(z)) , (4.12)

where y >0 is the stiffness parameter. This system has the following analytical solution:

C(l)(X) = 1 -rx, C(2)(x) = rx, where r = *Y. (4.13)

This problem is a good test case because it can be solved using both the direct and segregated
approaches and has an analytical solution. Due to the linearity of the source term, the full-Jacobian
direct approach yields a converged solution to the analytical result for arbitrarily large y values in
exactly 2 iterations, independent of the initial guess (really only 1 iteration is required, but an
additional iteration is required to “veri&’ that the solution has converged). Application of the stiff
segregated approach yields the analytical result, but with slower convergence. Convergence of the
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original segregated method depends on how the reactions are specified. If the Arrhenius-parameter
method is employed, the original method uses the diagonal-Jacobian approach and appears to
converge, but at an extremely slow rate. If the user-subroutine method is employed, the original
method uses the successive-substitution approach and diverges for all values of y much greater than
unity. As an example, Figure 4.1 shows the y = 103 solution achieved after 100 iterations of the stiff
segregated solver, which agrees with the analytical result to 5 decimal places, and the solution
achieved after 1000 iterations of the original segregated solver (using the diagonal-Jacobian
approach), which differs substantially from the analytical result.
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One-dimensional reaction-diffusion problem with y= 103.
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4.5. Three-Dimensional Example

To illustrate the applicability of the stiff segregated solver to three-dimensional chemically reacting
flows, three-dimensional flow of a reactive three-species mixture (species 1,2, and 4) over a backward-
facing step is considered (the chemistry is taken to be dilute and does not back-couple to the flow
field). Just upstream of the step is a heated reactive surface, on which species 1, 2, and 4, can react
directly with each other and also via another species (species 3), which ex$c$s only on the reactive
surface. The fluid-phase reaction rates S(n) and the surface reaction rates s are given below:

s(l) = :s(2)

()
. yexp –~ (c

(3)2
-J1)C(2)) , s

(4)

()
. yexp –~ (c

(3)

2 –C(4))>

S(3)
= -(s(’) +s(2) + S(4)).

(4.14)

(4.15)

Fig-&e 4.2 shows a schematic diagram of the geometry, and Tables 4.1,4.2, and 4.3 contain geometric
information, boundary conditions, and material parameters used in the simulation. Note that a very
large value is selected for the stiffness parameter: y = 105.

Table 4.1. Geometric information for three-dimensional backward-facing step simulation.

Quantity Value

Channel length upstream 4, fromx=-4to x=0

Channel length downstream 6, fromx=Oto x=6

Step height 0.5, from y = –0.5 to y = O

\ Channel height upstream \0.5, fromy=Otoy =0.5 I

Channel height downstream 1, fi-om y = -0.5 to y = 0.5

Channel width l, fromz=Otoz=l

I Heated region ] -2sxso, y=o, o<z<l I

I Center line (plotting) I -4<xs6, y=o, z=o.5 I

Table 4.2. Boundary conditions for three-dimensional backward-facing step simulation.

I Quantity I Value I
I Velocity at inlet, reactive surface, other walls I (1,0,0), (0,0,0), (0,0,0) I

I Temperature at inlet, reactive surface, other walls I 1,5, 1 I

Species 1, 2, 4 concentrations at inlet I 0.5,0.5,0 I
Species 1,2,4 fluxes at reactive surface, other walls chemistry, O

Velocity, temperature, species at outlet natural boundary conditions
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Table 4.3. Material parameters for three-dimensional backward-facing_step simulation.

Viscosity \ 0.01 I =

Specific heat 1

Thermal conductivity 1/71

Activation energy E2 1

Stiffness parameter y I ~05 I
The mesh used for this problem is also shown in Figure 4.2. It is composed of 3700 27-node brick
elements, yielding a total of about 20,000 nodes in the mesh and about 60,000 unknown
concentrations (a modest three-dimensional problem). Nevertheless, the direct solver discussed in the
previous chapter would require approximately 1.2 Gbyte of core memory for application to this
problem. Thus, a segregated iterative approach is the only viable approach for large three-
dimensional multi-species problems.

Three simulations are performed for this problem. The original segregated solver and the stiff
segregated solver are both applied to the full three-dimensional geometry in Figure 4.2, and the direct
solver using the full-Jacobian approach previously discussed is applied to the two-dimensional
geometry corresponding to the symmetry plane at z = 0.5 of the full three-dimensional geometry. For
all three simulations, there are two computational steps in the solution procedure. The original
segregated solver in FIDAP is first applied to solve the velocity/pressurehemperature problem alone.
The resulting velocity and temperature fields are then used as input for the subsequent solution of
the species concentration fields. When using the segregated solvers, iterations are continued until the
norm of the relative change of the solution falls below 10q. Table 4.4 shows the computational times
employed by the original and stiff segregated solvers following this procedure, where simulations are
performed on a single node of an IBM RS6000.

Table 4.4. Simulation information for the original and stiff segregated solvers.

Solver Iterations Wall-Clock Time (h) Time per Iter. (s) Accuracy

Original segregated 265 17 3.9 Poor

Stiff segregated 164 15 5.8 Good

The accuracy of the results produced by the original and stiff segregated solvers can be ascertained by
comparing them along the symmetry plane to the fully converged results from the direct solver for the
corresponding two-dimensional problem. Figure 4.3 shows the concentration profiles for species 1
and4 (c(~) = 1–C(l)– C(4)) calculated by all three methods along the center line in the symmetry
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plane (see Figure 4.2). Each species profile calculated by the stiff segregated solver is almost identical
to the corresponding two-dimensional profile, whereas the profiles calculated by the original
segregated solver differ greatly from the profiles calculated by the other two solvers. Note that the
profiles from the original segregated solver differ substantially along the heated region from 1/3, the
large ~ limit of all species concentrations on the heated region for the prescribed surface chemistry
(recall as previously discussed, the “concentration” of surface species 3 is not to be interpreted as a
mass fraction). Thus, the stiff segregated solver has produced an accurate solution, whereas the
original segregated solver has not produced an accurate solution.

The above observations indicate that the rate of approach to the converged solution by the original
segregated solver has become extremely small even though the difference between the calculated and
converged solutions is still large. This is borne out by examining the convergence behavior of both
segregated solvers, as shown in Figure 4.4. The convergence rate with the original segregated solver
becomes small quite rapidly, even though the solution is far away from the converged result. However,
with the stiff segregated solver, the convergence rate plateaus at a higher value until the converged
solution is closely approached. Figure 4.5 shows the concentration profiles with the stiff segregation
solver after certain numbers of iterations. After only 31 iterations, the solution is already
substantially better than that of the original segregated solver (see Figure 4.3). From 31 to 71
iterations, which corresponds roughly to the plateau in the convergence rate shown in Figure 4.4,
further improvement occurs in” the solution near and downstream of the heated region. By 101
iterations, the solution is almost indistinguishable from the converged result at 164 iterations. Thus,
the stiff segregated solver converges faster to a more accurate solution than does the original solver.

Figure 4.2. Three-dimensional geometry: top, schematic diagram; bottom, mesh.

27



0.5 0.5
.

i-

0.4- -0,4

. ..- ----- ----- . . . . . -----

0.3_ asymptotic _o,3

limit of 1/3
0.2_ asy--+w -0.2

0.1_

“u-- . ........... ‘0”

-4 -2

segregated

0 X2

solver

4 6

for 3D: 265 iterations

0,4- _0,4

----

0.3_ ~ ~ -&-y%ipcotic- -0.3

limit of 1/3
0.2_ asy+~ _O.2

‘,

0.1-
~~‘“.- — --------------

–0.1

01 I 01 1 , 1 !
.4 -2 0 X246

stiff segregated solver for 3D: 164 iterations

0.4- _O.4

----

o.3_ - -&$-rnpt-oiic- .-0.3

limit of 113
\

0.2_

0.1_ “’<::.. . . . . . :

-4 -2 0 6X24

direct solver for corresponding 2D: converged

Figure 4.3. Solver dependence of solution along center line across reactive surface for y = 105.

28



-0.50000

1

-1.20000

NORM

-1.90000“1

.

original segregated solver:
solution is unchanging
but far from convergence

LOG
10**N

-2.60000

-3.30000
~ Q.

-4.00000
i, 1 I 1 I I

0.01000 0.54800 1.08600 1.62400 2.16200 2.70000

ITERATION NO. (X1O+ 2)

-.50000

i

-1.20000

NORM stiff segregated solver:
solution changes appreciably

-1.90000 until convergence obtained
LOG
10**N

-2.60000 <1=
plateau

-3.30000
i

-4.00000 j \
I

1 I 1 I I 1

.01000 .32800 .64600 .96400 1.28200 1.60000

ITERATION NO. (X1O+ 2)

Figure 4.4. Convergence behavior of original and stiff segregated solver for y = 105.

29



.

0.5 0.5
1

0.4_ _0,4

0,3 _ _O.3

0,2 _
.,,
\ _o.2

‘L
0.1 _

. . . . . . . . . . . . . . . .
_o.7

0_ 0
t ( t [

-4 -2 0
X246

0.5 0.5

0.4 _ _O.4

o
c
g ‘3.3- _0,3

;
: 0.2_ .,, _O.2
:

\

0.1 _ ‘L . . . . . . . . . . . ..-.
_o.1

I 0 0
, , t 1

-4 -2 0
X246

31 iterations 71 iterations

0.5 0.5
‘.

0.4- _O.4

0,3 _ _O.3

‘,

0.2- _O.2
‘..

0.1_ “L -— —... . . . . . . . . .
_O.1

0- 0
I I 1 I

-4 -2 0
X246

0.5 0.5
\

0.4 _ -0.4

0.3_
r

_O.3

‘i

0.2_ _O.2
‘.

0.1 _ “ “-_ . . . . . . . . . . . . .
_O.i

0 0
1 1 1 1

-4 -2 0
X246

101 iterations 164 iterations
(converged)

Figure 4.5. Center-line solution behavior of stiff segregated solver prior to convergence.

30



5. Conclusions

In support of the Motorola CRADA, the computational fluid dynamics code FIDAP (Fluid Dynamics
International) has been examined for simulating semiconductor-processing applications. These
applications typically require the solution of flowAhermal/chemistry problems with three-dimensional
geometries and multi-species mixtures, including species that exist only on rgactive surfaces. FIDAP’s
capabilities have been assessed for problems with these characteristics, with particular emphasis on
treating surface species, stiff chemical reactions (rapid reaction rates compared with transport rates),
and large problems (three-dimensional and/or multi-species). Where needed, FIDAI?s capabilities
have been enhanced within the constraints of the overall FIDAP architecture. A method for treating
surface species in FIDAP has been demonstrated. The method requires no modifications to the FIDAP
source code or custom subroutines but instead relies on a novel application of FIDAP commands. For
problems with stiff chemistry, a coupled algorithm utilizing the full Jacobian for the chemical-reaction
source terms has been implemented in FIDAP. Good convergence behavior is obtained even on
extremely stiff test problems. For extremely large problems resulting from three-dimensionality or
many species, a stiff segregated algorithm has been developed and implemented in FIDAP. Test
problems that are too large for the direct solver and too stiff for the original segregated solver are
solved accurately by the stiff segregated soIver. However, upwinding must be used to maintain
algorithm stability for convection-dominated problems. These enhancements will facilitate solution of
chemically reacting flow problems of the type found in semiconductor-processing applications.
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