
SANDIA REPORT
SAND96-2147 ● UC-405
Unlimited Release
Printed September 1996

Parallel Processing ITS

SF2900Q(8-81]

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO BOX 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

SAND96-2147

Unlimited Release

Printed September 1996

Distribution

Category UC-405

PARALLEL PROCESSING ITS

Wesley C. Fan

Radiation and Electromagnetic Analysis Department

and

John A. Halbleib, Sr.
Simulation Technology Research Department

Sandia National Laboratories

Albuquerque, NM 87185

ABSTRACT

This report provides a users’ guide for parallel processing ITS on a UNIX workstation network, a

shared-memory multiprocessor or a massively-parallel processor, The parallelized version of ITS

is based on a master/slave model with message passing. Parallel issues such as random number

generation, load balancing, and communication software are briefly discussed. Timing results for

example problems are presented for demonstration purposes.

ACKNOWLEDGEMENTS

This work was made possible with the continuous support from Leonard J. Lorence and

Gary J. Scrivner. We thank James H. Renken for his encouragement of this project. We
also thank Clifton R. Drumm and Patrick J. Griffin for their comments and suggestions.

2

Contents

I. INTRODUCTION . 5
II. PARALLEL PROCESSING ISSUES . 5

A.Master/SlaveParadigm . 5

B. Random Number Generation . 7

C.LoadBalancing . 8

III. IMPLEMENTATION . 9

A. Communication Software Packages: MPI, PVM, and NX. 9
B. Correction Update.. 9

C.New*DEFINE andInputKeywords .
IV. PERFORMANCE EVALUATION .

A. UNIXWorkstation Network .
B.IntelPARAGON .

V. CONCLUSIONS .

REFERENCES .

APPENDIX .

Message Passing Interface .
Parallel Virtual Machine .
Intel PARAGON .

10
14

14
16
17

21

22

22
22
23

List of Figures

Figure 1. A schematic diagram of the master/slave model used in ITS. The master and slave

processes may execute different statements by branching within a single
program. The arrowheads indicate the flow of data using message passing. ..6

Figure 2. The existing data structure of common block /ca.lc/ in lTS Version 3. The global
variables areshown in italic font. 11

Figure 3. The rearranged data structure of common block/talc/used in the parallelized ITS.
The global variables, shown in italic font, are grouped together.12

Figure 4. A cross-sectional view of the three-dimensional configuration of the EG&G

LINAC bremsstrahlung convertor and collimator. 18
Figure 5. Comparison of computihg time per batch for two ITS calculations of the EG&G

LINAC problem on PARAGON. This problem was run with 512 batches and
with 512 computing nodes. These timing results show that a small number of
histories per batch can result in disparity in batch CPU time and thus affect load

balancing andparallel efficiency .20

List of Tables

Table 1. Measured Speedup Factors and Parallel Efficiencies of ITS/PVM on a UNIX
Workstation Network for Selected Test Problems. ..15

Table 2. Timing Results of ITS Calculations on PARAGON for the EG&G LINAC
Problem. ...18

Table 3. Comparison of Speedup Factors and Parallel Efficiencies on PARAGON with
Different Number of Particle Histories per Batch and Scale Bremsstrahlung
Factor forthe EG&GLINACl?roblem. ...19

PARALLEL PROCESSING ITS

I. INTRODUCTION

Advances in computer hardware and communication software have made it possible to
perform parallel computing for many scientific/engineering applications. Monte Carlo

calculations are inherently parallelizable because the individual particle ~jectones can be
generated independently with minimum need for interprocessor communication.

Furthermore, the number of particle histories that can be generated in a given amount of

wall-clock time is nearly proportional to the number of processors. This is an important

fact because the inherent statistical uncertainty in any Monte Carlo result decreases as the
square root of the number of histories. For these reasons, researchers have expended

considerable effort to take advantage of different parallel architectures for a variety of
Monte Carlo radiation transport codes, often with excellent results [1]. Generally

speaking, parallel processing can reduce the notoriously high computational expense often
associated with the Monte Carlo method and allows users to solve extremely complex
problems with fast turnaround time.

The Integrated Tiger Series (ITS) [2] provides state-of-the-art Monte Carlo solutions

of linear, time-independent, coupled electron/photon radiation transport problems with or

without the presence of external electric and magnetic fields. It has been widely used in
weapon-effect simulator design and analysis, radiation dosimetry, radiation effects studies

and medical physics research. Since its inception, the goal of the ITS developers has been
to simultaneously maximize physics accuracy and operational efficiency. This is
accomplished by employing the most complete physics models describing the production
and transport of the electron/photon cascade, the best available cross-section data and

sampling distributions, and variance reduction techniques for various difficult applications

[3]. In this work, we focus on a major software development for the ITS code system so
that ITS calculations can now be performed in parallel. This is accomplished by

developing an update for ITS Version 3 which can be adapted by users to construct and

tailor the ITS codes for specific applications and for various parallel-processing platforms.
These platforms can be a UNIX workstation network, a symmetrical multiprocessor, or a

massively parallel machine.

In the following sections we first discuss the parallel algorithm appropriate for the ITS
code system and its implementation. Two techniques that proved effective for load

balancing across multiple processors and machines are briefly discussed. Timing results
and performance evaluation for selected problems are described.

II. PARALLEL PROCESSING ISSUES

A. Master/Slave Paradigm

In ITS, the particle histories are divided into “batches” of equal size and the evaluation
of the estimated quantities are performed using batch-averaged sample statistics. Since the

5

batchwise evaluation can be performed independently, it provides a natural partition for
parallel processing. At present, the parallelized version of ITS is based upon a master/
slave paradigm in conjunction with message-passing. The basic operations of the parallel
code can be summarized as follows: (1) the master process performs the input functions,

starts up the slave processes, processes the problem-dependent parameters and sends a

copy of parameters to all slaves, (2) the slaves perform the Monte Carlo calculations, i.e.,

generating particle trajectories and scoring, and (3) the master receives and combines the
data tallied by the slaves, and finally outputs the results. These operations are shown

schematically in Figure 1. All the message-passing tasks, including process control and
data transfer, are handled by the communication software.

MASTER

INPUT

INITIALIZATION

START UP SLAVE

OUTPUT

PROBLEM DEPENDENT I SLAVE
DATA

*
PARTICLE

TRAJECTORIES

RESULTS
d TALLIES

Figure 1. A schematic diagram of the master/slave model used in ITS. The master and
slave processes may execute different statements by branching within a single
program. The arrowheads indicate the flow of data using message passing.

One can make two observations about this master/slave model. First, there is no
interprocessor communication required between the slaves. The problem-dependent data

and the tallied results are transfmred between master and slaves, but no data is shared
between the slaves. Thus, message passing is needed only at the start and end of Monte
Carlo calculation. Second, with efficient network communication, it is obvious that step
(2) will require the majority of the computation time. Since each slave process can carry
out these tasks concurrently, this time requirement can be reduced almost linearly with the
number of processors.

6

B. Random Number Generation

The generation of random-number sequences for large-scale Monte Carlo simulations

in a parallel-processing environment poses a non-trivial problem. The random number
sequences for each processor must be independent, with good “randomness” properties,

and with sufficiently long period. Here, we adopt the pseudorandom number generator,

RANMAR, proposed by Marsagalia and Zarnan. Detailed information and
implementation can be found in the review article by James [4]. The basic algorithm of
RANMAR is a combination of two different random number sequences, {Xi} and {Yi}.
The first is a lagged Fibonacci generator,

X. ‘Xi_~~, if ‘i-972 xi-’33
Xi = ‘-97

x.I-97 ‘Xi_~~+l> otherwise,
(1)

where a starting table of 97 values is initialized using a combination of lagged Fibonacci

method using three lags, and a multiplicative congru~ntial generator. The second one is a
simple arithmetic sequence for the prime modulus 2 – 3 = 16777213. This sequence is
defined as

Yi_~-c> if Yi2C
Yi =

Y.l–l— c + d, otherwise,
(2)

where c = 7654321/16777216 and d = 16777213/ 16777216. The final random
number is then obtained by a subtraction operation

Xi– Yi> if Xi2Yi
Zi =

xi– Yi + 1, otherwise
(3)

The most exceptional property of this generator is the extreme ease of generating

independent disjoint sequences, which can be accomplished by initializing the lagged

Fibonacci generator with different integers. Furthermore, RANMAR has been tested for

randomness, and has been demonstrated to have very long period [4-5]. It is noted that this

generator is more expensive to compute than the simple multiplicative linear congruential
generators since all the operations are carried out in floating-point. However, the effect of

this may be insignificant since the computing time spent in the random number generation
is almost negligible in comparison to that for particle tracking.

To employ this random number generator for parallel ITS calculations, an integer seed

will be used to initialize the lagged Fibonacci sequence for each batch of histories. This

seed itself is produced by a simple linear congruential generator

sn+l = 1366. S. + 150889(mod 714025). (4)

7

With this, an integer ranging from 1 to 714025 will be selected to start RANMAR and
produce a sequence of length 1034, and is guaranteed to be independent of any other

sequences. Although this implementation limits the maximum number of batches to
714025, we believe it is sufficient for realistic simulation. More importantly, since each

batch uses an independent ranhom number generator, the computed results will be

independent of the number of processors and are reproducible.

C. Load Balancing

The goal of load balancing is to enhance perfomm.nce and achieve the greatest
possible speedup of a parallel program. A balanced program can usually keep all
processors busy and have them finish roughly at the same time. Otherwise, valuable
processor cycles are wasted if some processors have to wait on others to finish. Load
balancing is essential in parallel processing ITS since the computing time for each batch

may vary, and thus adversely affect the performance. This variation in computing time
may result for the following reasons: (1) the stochastic nature of particle histories; a few

anomalous batches may involve long trajectories, (2) the difference in computational

power on each machine in a heterogeneous configuration, and (3) the change in
computational performance im a multiuser, time-sharing environment. These
considerations must be taken care of by adjusting the way the problem is distributed in a

parallel system.

The current version of ITS p~ovides two load distribution schemes, namely, the static
and dynamic methods. The static method is simple and easy to implement. In this method

the required tasks (or batches) are divided up and assigned to the available machines or

processors. The assigned number of batches can vary from machine to machine to account

for different computation power for different machines. These assignments are set at the
start and will not be adjusted to the actual loading and performance. As one may expect

this scheme can be quite effective on a dedicated or lightly loaded system, but it does not

provide any mechanisms to address issue (1) which can be the main impediment to
efficiently running ITS in parallel.

Dynamic load-balancing is accomplished by the “pool-of-tasks” paradigm. Initially,

each slave process is given a batch just as in the static scheme. As a slave process finishes

its task it will receive another on~. With this scheme all the slave processes are kept busy

as long as there are batches rerrlaining in the pool. The work load for each processor

(machine) is adjusted according to the “realistic” computational performance which may
be problem-dependent and can, be changing dynamically as other users share the

resources,

The static and dynamic load-distribution schemes also have different impact on the
dump/restart operation. For the static scheme, the batches of histones are generated in
cycles, with a cycle being defined as the time period that each process starts and finishes a
batch of histories. A synchronization or a barrier is setup at the end of a cycle so that the

output can be updated and the dump file can be written. On the other hand, there is no

clear way to define such a cycle for the dynamic scheme since the batches are started and

8

finished in a random fashion. Consequently, the dump file will only be written at the end

of the run.

III. IMPLEMENTATXON

A. Communication Software Packages: MPI, PVM, and NX

There are numerous communication software packages to support message passing on

different classes of parallel machines. Although there are many variations, these packages
all provide the basic functionalities such as point-to-point communication, collective

communication, and process management. Reeently, several systems have demonstrated
that a message-passing system can be efficiently and portably implemented. In the

parallelized version of ITS, we incorporated three of such systems, Message Passing
Interface (MPI) [6], Parallel Virtual Machine (PVM) [7], and Intel NX library [8].

The NX library is the native message-passing library used on the Intel PARAGON and

will be supported on the coming Teraflops supercomputer at Sandia. Both MPI and PVM

are freely available software, and have been widely used in many scientific/engineering
applications. The most attractive feature of these software packages is that they allow
users to construct their own parallel machine by linking many UNIX workstations
together. In addition, they also support shared-memory multiprocessors (SMP) and

massively-parallel processors (MPP).

At presen~ we prefer MPI over PVM for the following reasons. First, MPI is

becoming a standard and its features are formally specified. In contrast, PVM is an
ongoing research project with no obligation to provide compatibility. Therefore, its

functionality may change, and lack of support may be a concern in the future. Second,
PVM has a fundamental deficiency in communication performance. This deficiency is

mainly due to excessive buffering (pack and unpack) and is most apparent on
multiprocessors with fast interconnection networks, such as the Intel PARAGON. On this

machine, PVM communication performance can be orders of magnitude worse than that

of the native message-passing library, while MPI performance is more comparable.

B. Correction Update

We have developed an “update” (a correction set for UPEML [9]) for implementation
of the parallel processing capability in ITS Version 3. This update consists of two major
components: corrections for the common block structure, and codes for process control
and message passing.

It is necessary to modify the common blocks in ITS to minimize both the number and
the size of messages. With the current generation of machines and communication

hardware, sending a message is still an expensive operation. As a rule of thumb, the fewer

messages sent, the better the performance of a program. To achieve this, we have arranged

the data structure so that the variables (arrays) with the same data type are grouped
together and are stored in contiguous memory locations. Moreover, variables of the same
data type are separated into two groups, the global and local variables. The global

9

variables are those provide information on problem input and tallied results and that have

to be transfemed between the master and the slave processes. With this arrangement we

can send the global variables for a given data type in one package by specifying the

beginning address and the appropriate length, thus minimizing the number of messages. In
the rearranged common blocks, the floating-point variables are placed fiisg followed by
the integer, logical and charactet variables. The global variables are placed before the
local variables.

As an example, we present tthe old and new structures of common block /talc/ in

Figures 2 and 3. This common block contains the variables mainly used in the input and
monte-carlo routines. With the old structure, one needs to either pack the variables into a

message buffer and send it or seed a large number of small messages. Both approaches

can be time consuming. The new common block allows us to transfer data with two
messages, one for floating-point vtiables (from ASTEP to W2Z) and the other for integer
variables (from NTKAY to NPL~TS).

The correction update is designed in such a way that users can incorporate their own
modifications to construct and tailor the codes for their specific applications. However,

one must pay attention to how ancl where these modifications are made. If any new global

variables are introduced, they need to be included in message passing between the master

and slave processes. If any chqnges are made to the existing common blocks, the
corresponding message passing routines must be modified to assure that the messages
contain appropriate memory addrdss and length.

C. New *DEFINE and Input Kejwords

To select a desired communication software in the correction update, one has to define

the following keyword

*DEFINE [MPI, PVM, ~]

where only one option listed in the brackets has to be activated. Similarly, the following

keyword is used to select the load-balancing scheme,

*DEFINE [STATIC, DYNi4MIC].

An additional keyword is also needed in the ITS input file.

Syntax: TASKS [paramete~(l)], [parameter(2)]

Example: TASKS 8,2

Default 1,1

The fwst parameter associated with the keyword TASKS is NTASKS, which specifies
the number of tasks that will perfok-n the Monte Carlo calculation in this run. The second
parameter, NPRINT, specifies the frequency of printed output to the scratch file. Its value
should be between one and the totdl number of batches.

The input parameter NTASKS has different implications to the program for different

communication packages and load balancing schemes. This information is given in Table
1. For the static scheme, a positive value of NTASKS implies that the master process will

perform the same Monte Carlo calculation as the slave processes. The number of

10

NION /rAT,r/

ASTEP (INMAX,INMT),,r,7.-...,-.-.-, AT (NSURV,INMT),
~vL,J---.. , .-. .-”,

1 ACON(INMT) ,
$ PIBL (INMT), CORBb (ANMAA,LNM’1’) ,
2 BDIS (IKTOP,IMTOP,INMT),
3 CALPH (IMM4X),

BETA (INMAX1), BREN (IMTOP),
CCH (NANGS), CHANG (INPANG,INRANG,INTANG,

4 CEL (INPEL,INEEL), COSAV(INM4X,INMT),
5 CTHB , DBREN(IMToP1),

CTH(2) ,

6 DEEL (INEEL1), DEPS (INEPS1),
DCALPH (IMi%4X),

7 DLAM (INLAN), DRANG (INRNG1),
DGAS (INGAS),

8 DRGS (INMM, INMT), DPANG,
DRG (INMAX1,INM’1’)

; LgPs, DPEL,
DPS (INPPS,INEPS), DTXNG (INTNG1),

, E(INMAX1), EARL (INWIX,INMT)
i :W%%% j,

EDGK (INMT),
N~x ,

3 EM (INMAX),
MTxx ,

4 F~,
5 GAUSS (INGAS1),
6 PBREM (INMAX1,INMT),
7 W(I,
~c~~E~~I%uA+ ;INMT), Yfiv\J.lWU, Llvlu-1/

INMT),

/

t

EPS (INEPS), ::: (iJS’PEC),
G (IMMAX,INMAX,INMT),
PANG (INPANG),
PEL (INPEL),

PAIfW (JATPR,INMT),

PPS (INPPS)
fIA77/TR7Rfl. V $Rmfn>

PRUTH (INMAX1),

1 QCON (Iti:hmT) ,
2 QS,

QCONS (INMT),

$ RAV(INMAX,INMT), N~m:{W ‘
4 RKT (IKTOP),
$ COHSCT (NSURV,INMT),

,

S SPECIN (IJSPEC), SUBFAC (JAHSUB),
T~G (IN7WJG),

SURV1 (NSURV,INMT),

: ‘+D, TL(INLAN1), TP, FLAMC(INMAX. TNMT~
l’% ,

QPHOT,
RANGE (INA?7LY1,INMT),

SHD,

8W .,—-.-——.,--....,,
& ...{7 WB , TPMIN ,—z,
~ i~fJT(INMAX1,INMT), pBREc (INMAxl,INJfT), ASIGN; JAZSCT,
1 ZSR, NSUB (INMAX,INMT),
COMMON /CALC/

CTSR

; $=: ICROSS, IFUP,TF,Tr,,-. IFUPA,
IPR,

ICTH,
NLAN, NGAS,

.Vu.lr, NDIFA ,
NDIFS, NSCALE ,
NTANN,

NSKALE ,
IMPI (INMT),

0 NM’I’, NMAx. MT(3P
NEMAX ,

-L .,,

2 CPH(2), L)x,
i+H(2) , W ,

3 STHB,
STH(2) , SCH (N~GS) ,

CPHB ,
2 STSR, SPHB ,

CPSR, SPSR,
3 YSR, Wlx, W1Y,

XSR ,
4 Wlz,

fcT17 n1712 Ar. r-nnm
W2X, W2Y, W2Z

,----- ,
~ LPCZ, LBCZK, rjucz

L KW1 (lflmx~ , lNSH, INMT), EPART (INMAX1,INSH,INEM1,INMT),
~~ SHEL (INMAX1,INSH,INMT), PPART (IMTAX,INTAB,INEM1,INMT)

WF, STHF, CPHF, SPHF,

1 NPLOTS, RMNPLT, WIXPLT, ZI@VPLT,ZMXPLT.

AVE(KPTMAX), ECSIG (KPTMAX)

Elgure 2. The existing data structure of common block /talc/in ITS Version 3. The global
variables are shown in italic font.

11

COMMON /CALC/ ASTEP (INMAX,INMT) , AT (NSURV,INMT), pIBL (rN&fT),
& CORBL (INM4X,INMT), BDIS (IK7WP,IMTOP,INMT), BETA (INMAx1),
& BREN (IMTOP), CALPhl(IMMAX), CCH (NANGS),
& CHANG (INPANG,INRAidG,INTANG’,INMT), CEL”(INPEL,INEEL),
& COSAV (INMAX,INMT), DBREN (IMTOpl), DCALPH (IMMAX), DEEL (INEEL1),
& DEPS (INEPS1), DGAS (INGAS), DLAM(INLAN) , DR4NG (INRNG1),
& DRG (INMAX1,INMT), DRGS (IN7.f.AX,INMT), DpANG, DpEL, Dpps,
& DPS (INPPS,INEPS), DTANG (INTNGI), E (Iml), EARL (Ire, INMT),
& ED (INMAX), EDGK (II@fT), EEL (INEEL), EM(I=) , Eps (INEps),
& ESP (ILJSPEC), FAN, G (IMMAX,INiWIX,INMT), GAS, GAUSS (INGAsl),
& PANG (INPANG), PAIRy (JATPR,INMT), PBREM {INiWAXl,INMT), PEL (INPEL),
& PPS (INPPS), PRUTH (UL’tAXl), PSEC (INMAX1,INMT), QAV(INMAX,IllMT),
& QCON (INMAX,INMT), RANG (INRANG), RANGE (INM4x1,INMT),
& RAv (INM4X,INMT), R~T (IKTOp), coHsCT (NsuRv,INMT), spEcIN (IJspEc),
& SUBFAC (JAHSUB), SURVI (NSURV,INMT), TMG (INTY1.NG), TL {INLAN1),
& FLAMC (INM4X,INMT), BCUT (IAIMAxl,INMT), pBREc (INMAx1,I~T) ,
& ZSR, CTSR
COMMON /CALC/ ECEB (dfl’!!,INTAB,INMT),

*IF -DEF,PCODES
& EAUG(3, INMT), EK(4,IiViVT), pKEG(INMT) , pxRAy(INMul, Im) ,
& RAUG(3,INMT), RK(4,INMT), WK(INMT),

*EI
*IF DEF,PCODES

& RWT (INMAX1,INSH,INiT), EPART (INMAX1,INSH,INEM1,INMT),
& SHEL (INMAX1,INSH,INMT), PPART (IMTAX,INTAB,INEM1,INMT),

*EI
*IF DEF,MCODES

& CTHT, STHT, CPHT, SPHT, CTHF, STHF, CPHF, SPHF, SP,
*EI
*IF DEF ,CYLTRAN

& RMNPLT, RMXPLT, ZMilIPLT,ZMXPLT,
*EI
*IF -DEF,TIGER

& SCH (NANGS), STSR, CPSR, SPSR, XSR, YSR,
& WIX, WIY, WIZ, W2X, W2Y, W2Z, X, Y, DX, DY, CPlI(2), SPH(2) ,
6 STH (2), STHB, CPHB, SPHB,

*EI
& ECAVE (KPTMAX), ECSIG (KPTmX) ,
G ACON (INMT), CTH(2) , CTHB, DZ, PKI, QCONS (INMT),
& QPHOT, QS, RMAX (INLiT), SHD, T, TB, TD, TP, W, WB, TPMIN,
& WX, Z, ASIGN, CWCF
COMMON /CALC/ iV%2 Y(ihl’MT), NSUB (INMAX,INMT), I,4NN,IFUP, IFUPA ,
& JATIN, JF, ICTH, NiLAN,NGAS, NDIF, NDIFA , NTANN, IMPI (.INMT),
& NRANG, NEPS, KTOP, ,NT~G, JSPEC, MMAX, NEEL, NMAX1 , LD, NMT,

*IF -DEF,PCODES
& JATKA (4,INNfT),

*EI
*IF DEF,MCODES

& LBN, IBETA, IMOD,
*EI
*IF DEF ,CYLTRAN

& NPLOTS,
*EI
*IF -DEF,TIGER
*IF DEF,ACCEPT

& LPCZ, LBCZK, LBCZ,
*EI

& NTBX, MTXX, JAZSCT, ICROSS, IPR,
& NSCAL,E,NSXALE , NT, NEIYfAx, mx,
& LSZ , NGMAX

LAST, LB, ND, NDIFL, NDIFS,
MTOP , NPANG , NPEL , NPPS ,

Figure 3. The rearranged data str@cture of common block /talc/ used in the parallelized
ITS. The global variable~, shown in italic font, are grouped together.

12

Static Load Distribution

Communication ANTASKS MASTERa Remarksb
MPI >0 1 NP = NTASKS

<o 0
,

NP = NTASKS + 1

PVM >0 1 NP = NTASKS

<o 0 use PVMTASKSC

NX >0 1 NP = NTASKS

<o 0
,

NP = NTASKS i- 1

Dynamic Load Distribution

Communication NTASKS MASTER Remarks
MPI >0 0

#
NP = NTASKS + 1

PVM >0 0 NP = NTASKS + 1

<o 0 usePVMTASKS
NX >0 0 NP = NTASKS + 1

a. If MASTER =1, the master process will perform Monte Carlo calculation as well as the slave process.
b. The column shows the relationship between the parameters NTASKS and NP, which is the number of

processes started for the current run. For PARAGON, it is the number of nodes (size) requested at the run time.
For MPI, it is the parameter supplied with the option “-rip”. For PVM, this is the number of host machines
under the current PVM confimwation.

c. PVMTASKS is an ASCII file used to control how processes get started on a UNIX workstation cluster.
Detailed information on this file is given in the appendix.

13

processes started is identical to the number of tasks required. Conversely, a negative value
of NTASKS means that the mastcir process will not perform the Monte Carlo calculation.
Thus the number of processes $tarted should be one more than the number of tasks

specified.

For the dynamic scheme, the master process will not perform the Monte Carlo
calculation. Its mission is to perform input/output, monitor and control the other

processes. Therefore the number qf processes started should be one more than the number
of tasks specified. For most UI’llIX computers, this arrangement does not waste any

processing power since multiple p~ocesses can often be run on a processor simultaneously.

In the appendix, we provide f@-ther information on how to obtain the communication

software MPI and PVM, and ho~ to build the executable program on various parallel

platforms. It is intended to assist ~S users, with limited experience in parallel processing,

to get a quick start. More comprehensive guides on MPI, PVM, and NX can be found in

References [6-8].

IV. PERFORMANCE EVALUATION

A. UNIX Workstation Network

The goal of parallel processing is to make the program run faster (shorter turn-around

time) than it would in the corresponding serial run, A speedup ratio is often used to

evaluate the performance of a p@allized program. On a dedicated system, the speedup

ratio can be calculated in the follotiing manner:

sN=~,
N

(5)

where S~ is the parallelization s~eedup, TI is the elapsed wall-clock time for a single

processor, and TN is the elapsed wall-clock time if N processors are used in the
calculation. Furthermore, one cad also define the parallel efficiency as the ratio of the

speedup factor to the number of processors,

SN
&=—,

N
(6)

which provides a measure of efficiency of a parallel program and takes into account of

effects such as synchronization and communication overhead, A parallel efficiency of one
implies that a program executed with N processors will be N times faster than that with a
single processor.

Table 2 summarizes the meastired speedup ratios and parallel efficiencies for seven

test problems on a cluster of SUN workstations. These test problems include the three
standard codes (TIGER, CYLTRAN, and ACCEPT), two P-codes, and two M-codes of

the ITS system, and utilize man~ tally and biasing options of the system. Sufficient
particle histories were required S6 that the input and output times were negligible in

14

Table 2. Measured Speedup Factorsa and Parallel Efficiencies of ITS/PVM on a UNIX Workstation Network

for Selected Test Problems.

I Number of Processors
Code

~b 4 8 12 16

TIGER 1.99 0.99 3.81 0.95 7.39 0.92 10.88 0.91 14.19 0.89

CYLTRAN 1.97 0.99 3.92 0.98 7.32 0.92 10.93 0.91 14.31 0.89

ACCEPT 1.99 0.99 3.93 0.98 7.42 0.93 10.64 0.89 14.2 0.89

TIGER-P 1.97 0.99 3.93 0.98 7.77 0.97 11.5 0.96 14.39 0.90

ACCEPT-P 1.96 0.98 3.88 0.97 7.64 0.96 11.35 0.95 14.03 0.88

CYLTRAN-M 1.96 0.98 3.87 0.97 7.42 0.93 11.06 0.92 14,56 0.91

a. The speedup factor is measured against a single SUN SPARC 2/40 workstation.

b. For each number of processors, the speedup factors are given in the left column and the efficiencies are given in the right

column.

c. Due to an anomalous batch which consumed 50’%0more computing time, the parallel efficiencies of the ACCEPT-M problem

are much lower than the other codes.

15

comparison to the overall CPU times. It is observed that the speedup ratios increase
almost linearly with the number df processors. The parallel efficiencies are about 90% or
better except for the ACCEPT-Y code, where it drops to as low as 65%. Further studies

indicated that the relatively poor performance of the ACCEPT-M code was caused by an

anomalous batch which consumd.d - 50% more CPU time than the other batches. It is

believed that one or more electrbns entered a vacuum region with a uniform magnetic
field with velocities almost pe~endicular to the field so that they drifted very slowly

through this region. Consequentl~, extra computing time was needed to calculate these
orbits, thus prolonging the CPU time for that batch.

B. Intel PARAGON

To further demonstrate the Mmefit of parallel processing and the dynamics between

load balancing and parallel efficiency, we consider the following problem related to the

EG&G linear accelerator. In th~s problem, it is desired to determine the energy and

angular distribution of the brem~strahlung spectrum generated from an electron beam

incident on a tantalum converter. ~A three-dimensional configuration of the converter and
collimator is shown in Figure 4. ~n order to obtain accurate results with a modest number

of primary electrons, one varian~e-reduction technique available in ITS is to artificially
increase the bremsstrahlung pro@ction as electrons slow down in the converter while

particle weights are adjusted accordingly so that the results are unbiased. This technique
can considerably reduce the com~uting time by reducing the primary electron histories,

since electron tracking is more time consuming than that of photons. More information on

this technique can be found in Reference 2.

Timing results, using different numbers of processors, on the PARAGON machine are
given in Table 3. These results &e based on 512 batches with 25 electron histones per

batch and with the SCALE-BRE~S factor set to 10000. The load distribution for each

processor is fixed; that is, each processor will perform 512/N batches, where N is the
number of processors. The run tirhe ranges from 4.5 hours for 32 processors to 21 minutes

for 512 processors. As a comp~son, the same run will take about 28 hours on an IBM
RS6000 Model 560 workstation. ~

We have also estimated th+ speedup factors and parallel efficiencies for these

calculations. These results are e~timates since we did not perform the calculation on a
single processor, and the run tinxj for a single processor is approximated by summing the
batch CPU times from the multiple-processor run. As shown in Table 4, at 25 histories per
batch the speedup is about one half regardless of the number of processors; hence the

parallel efficiencies are about 504. A closer examination indicates that this relatively poor
performance is mainly due to thd fluctuation in the computing time required to generate

the electron trajectories. Since tkere are only 25 electron histories per batch, batches
involving a few, long-running ~electron histones will run longer than the average.

Consequently, the overall compuding time is dominated by the longest computing time for
a batch. Combining Eqs. (5) afid (6), we can estimate the parallel efficiency for N
processors by

16

(7)

where ~ is the average computing time per batch and Tmax is the longest computing time

among all batches. As shown in Figure 5, the ratio between Tma and ~ is about two,
which validates the parallel efficiency observed.

There are two ways to improve the parallel efficiency. The fwst one is the dynamic
load distribution. As discussed in Section 11.C, this technique dynamically adjusts the

load, the number of batches executed per processor, so that all processors will finish

roughly at the same time. The processors involving long-running batches will execute less

batches while the other processors will pick up additional batches. Timing results with the

dynamic load balancing are also given in Table 4. The parallel efficiencies are about 90%

for small numbers of processors, and decrease monotonically as the number of processors
increases. It is noted that the performance of static and dynamic load distribution are about

the same as the number of processors increase beyond 256. This is expected since the
worst-case efficiency of the static scheme is about 5090 and the number of batches

executed per processor is two or less.

The second method is to reduce the difference between the average and maximum

computing time per batch, which can be accomplished by increasing the number of

electron histories. For this example problem, one can obtain similar results with 200

electron histories per batch and a SCALE-BREMS factor of 1000. This approach reduces
the disparity in computing time as observed in the case of 25 histories per batch (see
Figure 5), hence greatly enhances the efficiency. As shown in Table 4, the parallel

efficiencies increase to 89% for 32 processors and 80% for 512 processors. However,
since it is more time-consuming to generate electron trajectories, the overall computing

time also increases slightly from the previous cases.

V. CONCLUSIONS

We have implemented a parallel-processing capability to the lTS code system. A

generic update to lTS 3.0 has been developed which provides users a basic yet flexible

platform for their applications. We have performed validation and timing tests in various

parallel computing environments. For selected problems, this parallelized version of ITS

performs very well. This capability is anticipated to become a standard feature in the
future releases.

.....

17

+dl

Beam t!hp

“I’
c Blg

m
Electron Beam

Table 3. Timing Results of ITS Calcdations on
PAWWON for the EG&G LINAC Problem.

1 Number of Nodes
Wall-Clock T~me

(Hours)

32 4.44

64 2.43

128 1.27

256 0.64

512 0.35

Figure 4. A cross-sectional view of the three-dimensional configuration
of the EG&G LINAC bremsstrahlung convertor and
collimator.

18

Table 4. Comparison of Speedup Factors and Parallel Efficiencies on PARAGON with Different Number of
Particle Histories per Ba~ch and Scale Bremsstrahlung Factor for the EG&G LINAC Problem.

Case 1 Case 2 Case 3

Number Wall Wall Wall
of Nodes

Clock Speedups Efficiency Clock Speedup Efficiency Clock Speedup Efficiency
(Hours) (Hours) (Hours)

32 4.44 18 0.56 2.57 30 0.93 5.51 29 0.89

64 2.43 33 0.51 1.36 57 0.89 2.80 56 0.88

128 1.27 63 0.49 0.77 102 0.79 1.43 110 0.86

256 0.64 124 0.48 0.50 159 0.62 0.73 215 0.84

512 0.35 229 0.45 0.35 230 0.45 0.39 405 0.80

Case 1.25 electron histories per batch with SCALE-BREMS = 10000.

Case 2. Same parameters as in Casel but with dynamic load distribution.

Case 3.200 electron histories per batch with SCALE-BREMS = 1000.

a. Speedup is calculated with respect to the elapsed wall-clock time of a single processor for the same number of batches

and the SCALE-BREMS factor.

19

20

g 15
g

it!
r+
g

CJ 10

5

25

20

g

3
ii=

B ,,

10

Figure 5.

25 Ii#Mmies

c1 100 200 300 400 500

Batch Number

I I I I t

200 Histimies ImrBatch with Scale-limms = 1000

Averaged CPU Time per Batch

o 100 ~200 300 400 500

Batch Number

Comparison of computidg time per batch for two ITS calculations of the EG&G
LINAC problem on PWGON. This problem was run with 512 batches and
with 512 computing no~es. These timing results show that a small number of
tistories per batch can r~sult in disparity in batch CPU time and thus affect load
~alancing and parallel etiiciency.

20

I. REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

W. R. Martin, “Monte Carlo Methods on Advanced Computer Architectures,”
Advances in Nuclear Science and Technology, Vol. 22, pp. 105-164, 1991.

J. A. Halbleib, R. P. Kensek, T. A. Mehlhom, G. D. Valdez, S. M. Seltzer, and M. J.
Berger, “ITS Version 3.0: The Integrated TIGER Series of Coupled Electron/Photon
Monte Carlo Transport Codes,” Technical Report SAND91-1634, Sandia National
Laboratories, 1992.

J. A. Halbleib, R. P. Kensek, and S. M. Seltzer, “Version 4.0 of ITS Electron/Photon
Monte Carlo Transport Codes,” Trans. Am. Nucl. Sot., Vol. 75, pp. 329-330, 1995.

F. James, “A Review of Pseudorandom Number Generators;’ Computer Physics
Communications, 60, pp. 329-344, 1990.

I. Vattulainen, K. Kankaala, J. Saarinen, and T. Ala-Nissila, “A Comparative Study of
Some Pseudorandom Number Generators,” Computer Physics Communications, 85,
pp. 209-226,1995.

Message Passing Interface Forum. “MPI: A Message-Passing Interface Standard,”
Computer Science Department Technical Report CS94-230, University of Tennessee,
1994.

G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,
“PVM 3 User’s Guide and Reference Manual,” Technical Report ORNIJTM-12187,
Oak Ridge National Laboratory, 1994.

K. S. McCurley, “Intel NX Compatibility Under SUNMOS,” Technical Report SAND
93-2618, Sandia National Laboratories, 1994.

T. A. Mehlhorn and T. A. Hail, “UPEML Version 3.0: A Machine-Portable CDC
Update Emulator,” Technical Report SAND92-0073, Sandia National Laboratories,
1992.

21

~ I. APPENDIX

This appendix provides infornhation on how to obtain the MPI and PVM software, and

how to build and execute ITS on various parallel platfoxms.

Message Passing Interface

There are several freely avail~ble, quality implementations of MPI, which support a
variety of platforms and corrbnunication networks. More information on these

implementations can be found at the Mississippi State MPI web page http://
Www.erc.msstate.edzdmpi. Althou~h MPI is a standard, its implementations may vary and

are still evolving. Here we empl~y a portable implementation MPICH (Version 1.0.13)

developed jointly by Argonne N@ional Laboratory and Mississippi State University. It
can be obtained by anonymous f+ to the address fp.mcs.anl.gov, and the directory pub/
mpi. I

Assuming that the MPICH p~ckage is installed on a system and the related files are
stored as the following:

I
c Header fdes: /optO/mpich/i~clude,

● Libraries: /optO/mpich/lib, and

● Executable: /optO/mpich/b~n,

the executable program its.mpi cab be built by issuing the shell command

f77 -0-0 its.mpi its.f -1/o#tO/mpich/include -L/optO/mpich/lib -lmpi,

where f77 is the FORTRAN com~iler on the system.

To run its.mpi on N processor!, one can execute the command

mpirun -np N its.mpi c inp > out

where it is assumed that there is it machine configuration file (for example, /optO/mpich/

utilhachines) which contains a libt of machines where the MPI program can be run.

Parallel Virtual Machine

PVM is developed and m~intained by researchers at the Oak Ridge National

Laboratory and University of Tenbessee, Knoxville. Information on PVM can be found at
the web page http://www.epm. o~l.gov/pvm. At present, the parallel ITS program is

designed to work with PVM3.3 ot later versions.

Assuming that the PVM files ~e stored on a system as the following:

● Header files: /optO/pvm3/i~clude/X,

● Libraries: /optO/pvm3/lib/X,

the executable program its.pvm can be built by issuing the shell command

f77 -O -o its.pvm its.f ~1/optO/pvm3/include/X -L/optO/pvm3/lib/X -lfpvm3 -
lpvm3

where X indicates the type of madhines and/or operating system.

22

Before running any PVM programs, one has to start a PVM daemon on the system

pool. This can be done using the PVM console or the hostille option. Reference 6 provides

detailed information on this subject and will not be repeated here. To execute its.pvm,

simply type

its.pvm < inp > out.

Furthermore, one can use the file PVMTASKS for more control over how processes

get started on a UNIX workstation cluster. This option is activated by setting the input
.

parameter NTASKS to a negative number. The format of PVMTASKS is a set of lines of

the form

dWIOSTS> # number of host machines available under PVM, and

@lPH> < HOSTNAME>

where NPH is the number of processes to be started on the machine HOSTNAME. The
last line should be repeated NHOST times to use all the available machines. An example
of such a file, where we want to perform 6 tasks on 3 available machines might be

3

1 sunl

1 sun2

4 sun3

It is important to note that the master process may be running on a machine listed above.

Futihermore, the last machine may be a shared-memory multiprocessor which can start
multiple processes.

Intel PARAGON

At Sandia, an executable program for the PARAGON must be built on the front-end

machine using the cross-compiler. The SUNMOS operating system contains shell scripts

that can be used to compile programs written in C and FORTRAN. This is typically done

by the following command

sif77 -0-0 its.pgon its.f.

The utility yod is then used to load and execute the program:

yod -size N -comm M its.pgon c inp > out,

where N is the number of nodes for the application and M is the memory (in bytes)

allocated for the communication buffer on each node.

23

1 MS 1165 J. E. Powell, 930C

1 MS 1166 J. H. Renken, 520

1 MS 1155 W. Beezhold, 930

1 MS 1159 M. Hedemann, 9311
Attn: Staff ~

1 MS 1179 J. R, Lee, 9341
Attn: Staff ~

5 MS 1179 J. A. Halbleib, 9341

1 MS 1167 E, F. Hartman, 9341
Attn: Staff i

1 MS 1166 G. J. Scnvner, 935~

1 MS 1166 C. R. Drumm, 935P

5 MS 1166 W. C. Fan, 9352 ~

1 MS 1141 J. W. Bryson, 936j
Attn: Staff i

1 MS 1146 T. F. Luera, 9363 ~
Attn: Staff ~

DISTRIBUTION

1 MS 0899 Technical Library, ~4414

1 MS 9018 Central Technical #iles, 8523-2

2 MS 0619 Review and Appro~al Desk, 12630

24

