
MIG 0.0 Model Interface Guidelines:
Rules to Accelerate Installation of Numerical Models
Into any Compliant Parent Code.

R. M. Brannon, M. K. Wong

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited.

SANDIA REPORT
SAND96-2000 • UC-405
Unlimited Release
Printed August 1996

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by the trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government, any agency thereof or
any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A08
Microfiche copy: A01

SAND96-2000
Unlimited Release

Printed August 1996

MIG Version 0.0
Model Interface Guidelines:

Rules to Accelerate Installation of Numerical

Models Into Any Compliant Parent Code

Rebecca M. Brannon† and Michael K. Wong‡
†Computational Physics and Mechanics

‡Computational Physics Research and Development
Sandia National Laboratories
Albuquerque, NM 87185-0820

Abstract

A set of model interface guidelines, called MIG, is presented as a means by which
any compliant numerical material model can be rapidly installed into any parent
code without having to modify the model subroutines. Here, “model” usually
means a material model such as one that computes stress as a function of strain,
though the term may be extended to any numerical operation. “Parent code”
means a hydrocode, finite element code, etc. which uses the model and enforces,
say, the fundamental laws of motion and thermodynamics. MIG requires the mod-
el developer (who creates the model package) to specify model needs in a stan-
dardized but flexible way. MIG includes a dictionary of technical terms that
allows developers and parent code architects to share a common vocabulary when
specifying field variables. For portability, database management is the responsi-
bility of the parent code. Input/output occurs via structured calling arguments. As
much model information as possible (such as the lists of required inputs, as well
as lists of precharacterized material data and special needs) is supplied by the
model developer in an ASCII text file. Every MIG-compliant model also has three
required subroutines to check data, to request extra field variables, and to perform
model physics. To date, the MIG scheme has proven flexible in beta installations
of a simple yield model, plus a more complicated viscodamage yield model, three
electromechanical models, and a complicated anisotropic microcrack constitutive
model. The MIG yield model has been successfully installed using identical sub-
routines in three vectorized parent codes and one parallel C++ code, all predicting
comparable results. By maintaining one model for many codes, MIG facilitates
code-to-code comparisons and reduces duplication of effort, thereby reducing the
cost of installing and sharing models in diverse new codes.

Distribution
Category UC-405

ii

Acknowledgment

By providing numerous useful suggestions, the following people (listed in
order from earliest to most recent involvement) have been instrumental in
the development of MIG. Their time, patience, and encouragement is great-
ly appreciated.

Paul Yarrington and Mike McGlaun : provided general comments and
management support.

Steve Attaway: helped shape the appearance and syntax of the ASCII data
file. Pointed out the distinction between model and data units. Stressed the
importance of data ordering in drivers.

Paul Taylor: provided his version of the Steinberg-Guinan-Lund model as
the first model to be “migized”. Acted as the first MIG developer to build a
new model (Bammann-Chiesa) using MIG.

Gene Hertel: provided comments and support. Was first to read and follow
written instructions for installation of a MIG model into CTH.

Gordy Johnsonand Bob Stryk: provided much useful feedback and beta
comments, especially improving the migtionary. Were first to install a MIG
model (SGL) into a non-Sandia code (EPIC).

Glenn Randers-Pehrson: meticulously read — and greatly improved —
early drafts of the document. Pointed out issues regarding common block
communication. Inspired developer’s code of honor. Was first to install a
MIG model into Livermore-DYNA.

Dave Benson: sparked interest in MIG within academia.

Archie Farnsworth: acted as a developer retrofitting an existing model to
MIG format; also developed MIG-compliant electromechanical models.

Fred Norwood: offered many insightful editorial comments that greatly
improved the version 0.0 guidelines.

iii

Contents

Acknowledgment ... ii
Preface.. vi
Introduction.. 1

Scope.. 2
How to use this document.. 3
The Standard MIG model package .. 5
Roles of the developer, architect, and installer .. 7

The Model Developer .. 8
What constitutes a MIG model package? .. 8
ASCII data file ... 9
Required routines... 18
MIG utilities... 27
Models with special needs ... 28
Creating a MIG package step-by-step.. 29
Developer’s code of honor... 30

The Parent Code Architect... 32
Automation .. 33
Partial functionality.. 34
Sharing models between different parent codes .. 34
ASCII data processing in general .. 35
Required Routines.. 35
Storage allocation in general.. 37
Interface drivers in general .. 39
Processing migtionary terms.. 40
Summary.. 41

The Model Installer.. 42
Model installation instructions for CTH.. 42
Model installation instructions for ALEGRA.. 42

References.. 43
APPENDIX A: MIG Primer .. A-1

Part 1: DEVELOPER’s Guide. .. A-1
Part 2: ARCHITECT’s and INSTALLER’s Guide. .. A-10

APPENDIX B: MIGTIONARY .. B-1
Key to variable types ... B-3
The MIGtionary ... B-9
OPERATORS .. B-38

APPENDIX C: Unit Keywords ... C-1
APPENDIX D: Sample MIG package... D-1

ASCII data file ... D-1
Data Check Routine ... D-3
Extra Variable Routine .. D-6
Driver Routine ... D-8

APPENDIX E: MIGCHK.. E-1
Getting started.. E-1

iv

Getting help.. E-1
Using MIGCHK to create a model package .. E-2
STEP 1: Generate fill-in-the-blanks template for the ASCII data file................. E-3
STEP 2: Create the ASCII data file ... E-7
STEP 3: Check and correct the ASCII data file... E-8
STEP 4: Examine the “check” file output by migchk.. E-9
STEP 5: Examine the “skeleton” file output by migchk...................................... E-11
STEP 6: Transform the skeletons into actual working subroutines..................... E-17
STEP 7: Deliver the completed MIG package to a model installer..................... E-21
Creating an unabridged migtionary ... E-23
Creating an abridged migtionary ... E-23
Adding terms to the migtionary ... E-26
Checking an ASCII data file using an abridged migtionary E-26
Generating includes for rapid package installation.. E-26
Testing the SGL model .. E-30

APPENDIX F: MIG-compliance of Particular Parent Codes.................................... F-1
ASCII data processing in CTH .. F-1
ASCII data processing in ALEGRA.. F-2
Storage allocation in CTH ... F-5
Storage allocation in ALEGRA ... F-7
Interface driver for CTH .. F-8
Interface driver for ALEGRA.. F-11
Processing migtionary terms in CTH (and migchk) .. F-12

APPENDIX G: Development Log... G-1
Unresolved Problems... G-2
Resolved Problems... G-12

APPENDIX H: Viewgraphs .. H-1

v

Figures

Figure 1. Thumbnail sketch of the required data-check routine.............................. 18

Figure 2. Thumbnail sketch of the required extra variable routine. 21

Figure 3. Thumbnail sketch of the required model driver routine. 24

Figure E-1.Taylor anvil benchmark geometry for the SGL model............................ E-30

Figure E-2.Yield stress as a function of time for both tracers from SGL benchmark
calculations using parent codes(a) CTH and(b) ALEGRA. E-31

Tables

Table 1: Ordered dimensions and associated units .. 14

vi

Preface

The model interface guidelines (MIG) originated on July 3, 1994, when members of the
computational physics groups 1431 and 1432 (now 9231 and 9232) at Sandia National
Laboratories posed the following challenge: Devise a way for our physics codes to all
possess equivalent constitutive modeling capability, but do it in such a way that we need
not maintain different versions of each material model for each parent code. The problem
seemed simple enough, and we knew that such a capability would save much time in the
long run. However, our physics codes were very different. The code with the most
extensive selection of constitutive models was a vectorized finite-difference code written
in FORTRAN. Another of our codes was built for world class parallel platforms, and was
written in C++. Another possessed special data structures for the arbitrary Lagrange-
Eulerian (ALE) method of solving the governing field equations. Clearly, to meet our
challenge in a timely manner, we were going to have to avoid grandiose panaceas and
concentrate only on primitives. What, we asked, was the absoluteminimum to be done to
use thesame constitutive subroutines inall of our codes? At our first official meeting on
July 19, 1994, we identified reasons why it was so hard to retrofit a material model from
one code for use in another code. The obstacles were simple, but overwhelmingly
abundant. For example, existing numerical models tended to contain common blocks and
subroutine calls that depended on the parent code in which that model was originally
installed. The scientist retrofitting the model for a new code would generally have to spend
considerable time learning about the model physics in order to identify precisely what
coding was science and what was merely parent code taskwork. Then the scientist would
have to figure out how to replace the coding from the old parent code with equivalent
coding for the new parent code. Similar delays resulted when the original model ran only
on selected computer platforms, or only with specific compiler options, or only with a
particular set of physical units. Another delay in retrofitting models from one code to
another resulted from simple miscommunication (such as erroneous comment lines stating,
for example, that a variable was a strain rate when in fact is was a strainincrement). At our
first meeting in the Summer of 1994, there was no dearth of obstacles to sharing models
among our codes. Our charter was to devise workarounds (inelegant if necessary) for each
impediment. The early result was what we then called SICOM (Standard Interface for
COnstitutive Models). It was soon renamed MIG (Model Interface Guidelines) to
emphasize that our concept wasn’t limited to only material models. Over the last two years,
MIG has been continually modified to incorporate solutions to an incessant (but relenting)
stream of snags. Fortunately, the rate of resolution of problems has exceeded the rate of
creation of problems, and the current MIG has matured to anearly stable state. We now
offer this preliminary, still pliable, version to the scientific community specifically to
solicit suggestions for improvement.

Rebecca Brannon, rmbrann@sandia.gov
Mike Wong, mkwong@sandia.gov
August 8, 1996

1

MIG 0.0 Introduction

MIG Version 0.0
Model Interface Guidelines:

Rules to Accelerate Installation of Numerical

Models Into Any Compliant Parent Code

Introduction

This document is version “zero” of the Model Interface Guidelines, or
“MIG” for short. Being neither software nor hardware, MIG is a set of stan-
dardizing rules that specify how developers can “package” fundamental model
components (such as input/output lists, precharacterized model data, physics
routines, model units, etc.) so that any MIG-compliant model may be rapidly
installed into diverse parent codes* without having to modify the model sub-
routines. Advantages of such standards include:

•Reduced model development time. The theorist may focus on properly
capturing the model physics, spending less time on code-dependent
taskwork such as establishing storage, reading inputs, etc.

•Reduced installation time. By standardizing primitive model needs, less
effort is required to install new material models into parent codes. MIG is
designed so that all information needed to install a model may be found in
the standardized package. The uniform structure of all standardized MIG-
models permits optional development of automated installation.

•Model portability. Installation “hooks” (required, for example, to read
material input data, reserve storage, etc.) can be added cleanly and
automatically, thereby avoiding invasive installations which can hinder
porting the model to different codes or computer platforms.

•Model maintenance and code-to-code consistency. Model standards allow a
single version of a model to be used in multiple codes, thus accelerating
dissemination of model enhancements and guaranteeing fair code-to-code
comparisons.

Being “version zero,” this edition of the Model Interface Guidelines must be
regarded as a preliminary or beta standard, subject to extensive revision and
correction without notification and probably without support in later versions.
Readers are strongly encouraged to offer suggestions and corrections during
this development phase. Before doing so, however, please review Appendix G,
which chronicles most of the resolved and unresolved problems addressed
since the inception of these standards.

* that is, programs (finite-element, finite-difference, particle, element-free, etc.) that have been suitably
modified to accept MIG models.

2

Introduction MIG 0.0

Scope

In this document, a “model” is defined as a “black box” that requires a spe-
cific set of quantifiable inputs and provides a specific set of quantifiable out-
puts. This definition spans a purposely general range. A model could be a
material plasticity rule that requires the stress and velocity gradient as input
and supplies an updated yield stress as output. A model could be an electro-
chemical rule that requires magnetic flux and rate of reaction as inputs and
supplies temperature as an output. A model could be a socioeconomic rule that
requires the inflation rate as input and supplies an unemployment rate as
output. A model could even be a more grandiose black box containing, say, an
entire finite element code that requires element sizes as input and supplies
convergence rates as output. In this early phase of the development of MIG,
we have limited specific examples to material models of the sort commonly
seen in large thermomechanical structural or physics codes, but the guidelines
are designed to naturally accommodate other applications.

Streamlining the process of model installation and maintenance is an
ambitious charter for which MIG is only a first step. To skirt a spectrum of
special or unpredictable code requirements, MIG standardizes only model
primitives, that is, only tasks that all models generally share. For example,
MIG specifies how the model developer (who knows the model physics and
packages it in numerical form) must list user input requirements, unit depen-
dencies, special storage requests, and many other fundamental model needs.
MIG also specifies where (on an argument list) the model should supply prom-
ised model output. For the most part, MIG does not restrict what a model may
request as input or supply as output. Nor does MIG dictate how the model
computes its output. This is not to say that such guidelines wouldn’t be useful;
they are simply not covered under MIG.

The model developer only states (in a standardized way) what is needed
from the parent code; actually acquiring and supplying these needs is the
responsibility of the code architect who modifies a particular parent code to
run MIG-compliant models. MIG standardizes the “hooks” extending from any
MIG model, but not the way in which they are to be used. MIG does not stan-
dardize how the code architect must run a MIG model. Because MIG models
only specify needs, the architect is free to satisfy these needs in any manner
(most likely consistent with the way such needs are handled for the non-MIG
models in a given code). Hence, the parent code architect may ensure that the
user interface for MIG models looks and feels identical to the interface for all
the non-MIG models already installed in the code.

3

MIG 0.0 Introduction

Because all MIG models are structured similarly, the code architect will
probably begin to recognize repetitive tasks when installing models. For exam-
ple, the architect may notice that the user input list is always in the same
place for each MIG model and that these inputs are acquired from the code
users via a parent code fragment that is similar in structure for all MIG mod-
els. The code architect initially creates these code fragments by hand (as for
non-MIG models), but the constancy of MIG models may eventually prompt
the architect to write utility scripts to generate the required code fragments
for the simplest model primitives. One vision of the legacy of model guidelines
is that a parent code’s useful installation scripts and instructions may slowly
coalesce into a streamlined model installation process. Ideally, this process
could be performed rapidly by any model installer who knows how to run the
scripts but who need not be so intimately familiar with either the parent code
or the model. MIG does not demand or guarantee the existence of time-saving
installation procedures — MIG merely enables their eventual development at
the discretion of each parent code’s architect.

How to use this document

MIG’s beta testers (working with one or more of the production thermo-
mechanics codes CTH [1], ALEGRA [2], EPIC [3], and LLNL-DYNA [4,5])
have reported that initial exposure to MIG — whether as a developer, code
architect, or installer — entails a fairly steep learning curve. The main MIG
documentation is only 43 pages long, but roughly 150 pages of appendices con-
taining sample coding, keyword lists, etc., can make MIG an occasionally
imposing tome (see item #15 on page G-10).

As you read the guidelines, you may become aware that models require
much more bookkeeping information than might seem evident. Learning a
standard procedure for each task is unavoidably time consuming and
demands significant commitment to our ultimate goals of reducing installa-
tion time and easily sharing models among codes. Fortunately, it has been the
nearly unanimous experience of beta testers that once the initial learning hur-
dle is conquered, subsequent applications of MIG are straightforward and
expeditious. To help you pass swiftly up the MIG learning curve, the following
lists provide “navigation” suggestions for model developers, code architects,
and installers:

4

Introduction MIG 0.0

If you are a model developer wishing to package a MIG-compliant
model...

1. Read the definition of a standard MIG model “package” on page 5 to learn
roughly what constitutes a MIG-compliant model.

2. If you are familiar with linear elasticity, the MIG primer in Appendix A
should give you an idea of the steps you will need to “migize” your own
model.

3. Read the extremely important guidelines for the model developer
beginning on page 8. This section contains the “meat” of MIG. Keep in mind
that some of the discussion might not apply to your model. If you find
yourself wondering why specific tasks in MIG are designed the way they
are, you might find answers in MIG’s beta development log in Appendix G.

4. Review the “Sample Package” in Appendix D for an example of a complete
MIG model that is less trivial than the one in the MIG primer.

5. Skim the lengthy migtionary* beginning on appendix page B-9 to identify
technical terms relevant to your own area of expertise.

6. Before you actually begin retrofitting your model to conform to MIG, you
should find out if you have access to a utility like “migchk” discussed in
Appendix E. Even if such a utility is not available, the migchk appendix is
nevertheless useful because it documents another example MIG-package.

7. Having read the above items, you are now ready to create your own MIG-
compliant model package. If a utility like “migchk” (Appendix E) is
available, use it. Otherwise, you can follow the step-by-step instructions on
page 29.

8. Read the developer’s code of honor on page 30.

If you are a code architect wishing to prepare your code to run MIG
models...

1. Carefully read everything recommended above for the developer, including
the primer. Formulate a plan for how you would modify your parent code
to be able to handle MIG models.

2. Read advice for the parent code architect on page 32.

3. Consider installing the straightforward Steinberg-Guinan-Lund model
(documented in Appendix E) into your code. For a more challenging task,
install the example package in Appendix D.

4. Prepare instructions for installers (see page 42).

*A portmanteau word of “MIG” and “dictionary.”

5

MIG 0.0 Introduction

If you are a model installer wishing to hook a MIG model to a MIG-
compliant parent code...

1. Lightly skim everything recommended above for the developer.

2. Read the responsibilities of the model installer on page 42.

3. Contact your parent code architect for further instructions.

The Standard MIG model package
A MIG model package is the set of files, subroutines, and documents that

must be provided by the model developer for making the model work on a
MIG-compliant parent code. The MIG package is created and maintained by
the model developer. With a properly prepared model package, a model
installer will be able to quickly install the package into a parent code without
having to consult with the model developer and without having to know details
about the model itself. Minimally, a MIG package consists of two required files
(described in much greater detail later):

1. Ascii database text file.This important item provides a wealth
of critical information about the model. Inputs and outputs of the
model are specified by keywords selected from a special MIG dic-
tionary (“migtionary”) of technical terms. The ASCII database
file also provides a list of model input parameters along with
adjustable input sets (if any) for specific materials that have
been precharacterized. As much information as possible is pro-
vided in this ASCII file to relieve some of the burden on the
model developer and to make MIG as language-independent as
possible.

2. MIG library. This file contains three required routines:
(i) Data-check routine. This required routine is called by the

parent code after the parent code has read all user input for the
model. The data-check routine provides an opportunity to vali-
date model input, as well as to perform other tasks if desired.
The data-check routine will always be the first of the three
required routines called by the parent code. Constants derived
from the input values may be calculated and stored by the data-
check routine.

(ii) Extra variable routine. An extra variable is any field variable
that is not listed in the MIG dictionary (“migtionary”) of techni-
cal terms. Such a variable is typically peculiar to the model (i.e.,
it is not in common use in the literature). The extra variable
routine defines names, plot labels, physical dimensions, advec-
tion options, and initial values for each extra variable, if any. All
user input is available to the extra-variable routine. The parent
code is responsible for allocating enough storage for the model’s
extra variables and, if applicable, advecting them.

6

Introduction MIG 0.0

(iii) Model driver routine. This routine performs the physical cal-
culations for the model. It is called every cycle during the main
calculation. The routine receives arrays containing all user-
input material values, all global and derived constants, and all
field values requested in the ASCII data file. In short, this rou-
tine receives all of the information it needs to apply the model
physics and return promised output arrays back to the calling
parent code.

Model developers may also choose to include any of the following supple-
mental items in their model packages:

3. Model library (optional). This file contains supplemental
physics routines [other than MIG utilities of page 27] that per-
form model-specific tasks such as iterating to a yield stress.
These routines are accessed by a calling tree that originates in
one of the above three required routines — they are never called
directly by the parent code.

4. Utilities library (optional). This file contains supplemental
utility routines that perform non-model specific tasks such as
zeroing out array or inverting a matrix. The ability to segregate
utility and model routines is provided in anticipation of future
refinements of MIG to permit general utility libraries such as
LINPACK.

5. MIG model documentation (optional). This document
describes the purpose of the model and the meanings of its
inputs, outputs, and extra variables, referencing relevant
detailed literature. If necessary, the document also outlines any
special needs of the model that are not accommodated within the
MIG framework.

Every item in a MIG package must be independent of the parent code. The
model developer is therefore liberated from code-dependent programming
tasks such as acquiring user input, allocating memory, etc. These tasks are
handled by the parent code architect based on information in the ASCII data
file. Thus, the developer is free to focus on physics, leaving the odious task of
book-keeping to the parent code’s MIG interface.

7

MIG 0.0 Introduction

Roles of the developer, architect, and installer

The code architect establishes “hooks” that permit rapid installation of
any MIG package into a particular parent code. While a model has only one
developer, each parent code on which that model is to be run will have a code
architect who ensures that the code will be able to:

• parse the ASCII data file to extract necessary informa-
tion about the model such as user input keywords,

• read user input and provide it to MIG required routines,

• reserve storage space for user inputs, global parame-
ters, and derived constants,

• reserve storage for extra variables (if any),

• compute and deliver all requested field input variables,

• extract output field variables,

• advect extra variables (if applicable), and

• output results in a plot-ready form.

The architect designs the MIG interface in a general way, deciding how the
parent code will acquire information it needs to accomplish the above tasks for
any generic MIG model. That is, the parent code architect decides how the
model’s ASCII data file and required routines (supplied by the developer)
will be processed for the particular parent code. In principle, there is no direct
contact between the model developer and the architect.

The model installer forms the bridge between the architect and the
developer. The model installer is the individual who actually connects a
particular model package to the hooks established by a particular code archi-
tect. Every parent code will have a model installer (or team of installers). The
model installer will usually review a newly-submitted MIG package to verify
that it conforms to the guidelines. If there is anything wrong with the pack-
age, the installer returns the package to the model developer for corrections.
The developer should expect the installer to aggressively attempt to crash
the model.

These are conceptual roles. The architect, installer, and sometimes even
the model developer might be one-and-the-same person, especially during a
first exposure to MIG.

8

The Model Developer MIG 0.0

The Model Developer

The model developer knows the physics of the model and creates the MIG
“package” for the model. The package is a collection of basic information about
the model together with all source code required to perform the model physics.
Ideally, an installer may hook a MIG-compliant package into any MIG-compli-
ant parent code without having to examine the model routines and without
having to consult the developer.

This chapter is the most important part of the MIG documentation. A clear
understanding of what constitutes a MIG package is imperative not only for
model developers, but for code architects and installers as well. This chapter
describes a MIG package in terms of a material model, but MIG could equally
well be used for other types of models.

What constitutes a MIG model package?
Minimally, a MIG model package consists of two files:

1. ASCII data file: contains ASCII text that specifies basic model
information such as required input, data for pre-characterized
materials, etc.

2. MIG library: contains the three FORTRAN routines that are
required for any MIG model. These required routines (which are
called directly by the parent code) are:

(i) input check routine: Checks user input values (ensur-
ing, for example, that the initial density is positive).
If desired, this routine also permits the calculation of
derived constants.

(ii) extra variable routine: Requests supplemental field
variables that are peculiar to the model and not,
therefore, already allocated storage by the parent
code. Most simple models will not require extra vari-
ables.

(iii) driver routine: Performs the model physics.

The argument lists must conform to a specific format, as detailed
later in this chapter. With few exceptions (e.g., page 27), any sub-
routine that is accessed by a call from a required routine must be
provided in either the model library or the utilities library.

A MIG model package may also contain optional library files.

3. Model library: contains supplemental model-specific routines.
4. Utilities library: contains supplemental non-model-specific rou-

tines.

Here a “model-specific” routine is one that performs a task unique to or spe-
cialized for the model. For example, a routine that computes a compliance

9

MIG 0.0 The Model Developer

probability integral for all possible material grain orientations would likely be
model-specific, whereas a simple matrix inversion routine would be non-model
specific. The model and utilities libraries are optional only if none of the
required MIG routines call other routines.

Finally, a good MIG package will come with (optional)
5. Written documentation: details the physical theory and the

meaning of each user input parameter. Also provides benchmark-
ing tests.

ASCII data file
The remainder of this chapter details the above items that comprise a MIG

package. The most important package item is the ASCII data file, which pro-
vides a wealth of information such as the model’s input and output (by stan-
dard keyword), keywords for material constants required by the model, etc.
The way in which this file is processed will vary from code to code.

It is easiest to describe the format in terms of the following sample ASCII
data file.* The numbers at the right of some lines refer to the numbered list
immediately following this sample listing.

! SCM MIG0.0 (1)
version : 19940928c (2)
Descriptive model name : Statistical Crack Mechanics of J.K.Dienes (3)
 (jkd@lanl.gov) extended by R.M.Brannon
(rmbrann@sandia.gov)
Short model name: Statistical Crack Mechanics (4)
Theory by: John Dienes (LANL) and Rebecca Brannon (SNL) (5)
Coded by: Rebecca Brannon (rmbrann@sandia.gov) (6)
Caveats: The coding for this model was done at Sandia (7)
 National Laboratories; Sandia is not responsible for

any damages resulting from its use.
MIG library: ftp://machine.company.suf/pub/mig/scmmig.f (8i)
model library: ftp://machine.company.suf/pub/mig/scmlib.f (8ii)
utilities library: ftp://machine.company.suf/pub/mig/scmutl.f (8iii)
input check routine name: CHKSCM (9i)
extra variable routine name : SCXTRA (9ii)
driver routine name: ELSCM (9iii)

alias: (10)
 SCM_DAMAGE=EXTRA~1
 ROD=RATE_OF_DEFORMATION
 COMPLIANCE_REDUCTION=SCRATCH~10

input: (11)
 CYCLE GEOM TIME TIME_STEP
 DENSITY ROD VORTICITY EDIT
input and output: (11)
 BACK_STRESS SCM_DAMAGE EXTRA~2THRU4
 TEMPERATURE STRESS
output: (11)
 YIELD_IN_SHEAR POROSITY GLOBAL_ERROR
 COMPLIANCE_REDUCTION SCRATCH~1THRU9

model units: consistent (12)
data units: centimeter gram second eVt item (13)

*This sampleASCII data file is for illustration purposes only. Most models will have far simpler
entries. The genuineASCII data file for statistical crack mechanics is different in many respects.

10

The Model Developer MIG 0.0

alias: (10)
 TZERO=ABSOLUTE_TEMPERATURE~0

control parameters: (14)
 FINIT IOPT NOCOR PAMB(-1,1,-2) VARMOD
 L1 TZERO(0,0,0,1) ZIGN(1) ITRSCM
control parameter defaults: (15)
 0.00000E+00 5.00000e+00 1.00000E+00 0.00000E+00 1.00000E+00
 5. 0.25680E-01 0.00000E+00 0.00000E+00

material constants: (16)
 ALPH "Number of crack intersections permitted"
 AMU =ISOTHERMAL_ELASTIC_SHEAR_MODULUS

•
•
•

 SCFCRO (-.5,1,-2) "Slowdown stress concentration factor open cracks"
 CKPVOL (-3,,,,1) "Number of cracks per unit (initial) volume"
 DYDP "Linear coef in yield as fnt of pressure"
 HD2YDP (1,1,-2) "half the second derivative of yield wrt pressure"
 YLS (-1,1,-2) "Min flow stress at high temperature"
 YLDSTS (-1,1,-2) =YIELD_IN_TENSION

remark : For readability, the data to follow are tabulated in this form: (21)

 ALPH AMU AMUBD AMUBS AMUV
 ANU ANUATM BKH BKSTMX CBARZ
 CD CDS CV ESUBL EXPOC
 EXPOO FF SURFE GROWTH GRU
 MODY RHOZ S SCFCRC SCFCRO
 CKPVOL DYDP HD2YDP YLS YLDSTS

material constants data base: (17)
 USER 0. 0. 0. 0. 1.e99
 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0.

AD995-Al_Oxide 4.000E+00 1.517E+12 2.600E-01 2.600E-01 1.000E+20
 2.310E-01 1.000E+10 3.000E+10 0.200E+09 5.000E-04
 2.000E+05 4.000E+04 1.070E+11 1.000E+12 1.000E+01
 1.000E+01 5.000E+00 5.000E+03 -9.0 1.000E+00
 2.000E+00 3.890E+00 1.000E+00 1.0000-99 1.0000-99
 6.283E+06 5.000E-03 0.000E+00 1.000E+08 3.500E+10

note: The input constant SCRN=(number of cracks per unit volume per unit (21)
 solid angle) which was used in previous versions has been eliminated
 in favor of the more intuitive CKPVOL=(cracks per volume)=SCRN*2pi.

max number of derived constants: 40 (18i)
max number of global constants: 0 (18ii)
max number of extra variables: 28 (18iii)

Calls MIG models: (19)
 Objective terms in a PMFI rate using a specified skew-symmetric tensor
 Decomposition of 4th-order tensor in limited dimension sym space

benchmarking: (20)
 See the document "CTHSCM User's Guide" for description
 of a benchmark experiment.
 This document is available in postscript form at
 <URL:mode://machine.company.suf/usr/local/mig/scmdoc.ps>
special needs: none (22)
done: 3/21/95 (23)

11

MIG 0.0 The Model Developer

Syntax of the ASCII data file. The format of the ASCII data file is rather
free form. Text preceding a colon (:) is called a “key phrase”, which identifies a
particular model attribute. Key phrases always start on a new line. The
attribute value (text following the colon) may begin on the same or any subse-
quent line. Key phrases may be used in any order, except as noted below. For
the most part, entries in the data file are case insensitive (the notable excep-
tion being file names). Any text in quotes (") or tics (') is case-sensitive. Any
key phrase that does not apply to a particular model may be omitted.

Information contained in the ASCII data file. The ASCII data file con-
tains as much information as possible about the model. The italic numbers on
the right-hand side of the sample listing refer to the following list:

1. The model keyword and MIG version. In the above example,
the keyword is “SCM”. It is preceded by an exclamation point (!) to
demark the beginning* of a MIG database set. Most parent codes
will use the model keyword in their input decks to signify the
beginning of input data for the model. The second word, “MIG0.0”,
on this line is the version of MIG that was used to create the ASCII
data file.

2. Model version. The model version may be any string of letters or
characters that identifies the package. In the example, the package
creation date was used as the version string, but something like
“4.3b” or “distribution8” would be perfectly acceptable as well. The
model version is provided for the developer’s record keeping pur-
poses; it is generally ignored in MIG installations, other than for
occasional output messages.

3. Descriptive model name. This is a long, case-sensitive, string
that uniquely distinguishes the model from other MIG models
(uniqueness may be ensured by including, say, the developer’s elec-
tronic mail address). At the discretion of the parent code, this
string will be written to output files.

4. Short model name. This is simply a shorter, case-sensitive, string
that briefly (not cryptically) identifies the model. Some architects
might use the short model name in generated code or in output.

5. Model theorist(s). This is the person (or team) who developed the
theory for the model. Suppose, for example, the model is a numeri-
cal implementation of the famous equation, E=mc2. Then the model
theorist would be “Albert Einstein,” while the coder (item 6, below)
would be some lesser-known person. The list of model theorists
may permissibly contain contact information such as an e-mail
address or affiliation information such as the sponsoring company.

6. Code writer. This is the person (or team) who created the subrou-
tines implementing the model physics as well as the routines and

*The “!keyword” demarks thebeginning of data; it need not be on the fist line.

12

The Model Developer MIG 0.0

ASCII data file required to conform to MIG. Code writer address
and/or affiliation information may be optionally supplied. Often,
the coder and theorist are one-and-the-same.

7. Caveats. This case-sensitive string contains any legal statements
the developer needs to add. Caveat statements might be written to
output files for some parent codes.

8. Library names. Recall that a MIG package consists of the ASCII
data file and the model physics encoded in computer source code.
The source code for any package is assumed to be packed into up to
three files whose names are provided in the ASCII data file as fol-
lows:

(i) Name of the MIG library file that contains the three
required MIG routines (i.e, the routines that are
called directly by the parent code — see item #9,
below). The suffix follows the traditional UNIX con-
vention. In the example, “.f” indicates that the file is
uncompiled FORTRAN source.

(ii) Name of the file that contains model library (i.e., sup-
plemental model routines not called directly by the
parent code). The key phrase “model library” may be
omitted if there is no model library.

(iii) Name of file containing additional non-model-specific
utility routines. Here, a utility routine is one that
performs a task that is not an integral part of the
model per se. For example, a routine that returns the
symmetric part of a matrix would be a utility routine.
The key phrase “utility library” may be omitted if
there is no utility library.

One fundamental principle of MIG is that model developers should
be responsible for upgrading and maintaining their own models,
which means that the models should reside on the developer’s host
machine where they may be readily updated. Hence MIG package
file names should adhere to the complete URL standard. Of course,
some developers may be working at sites that are not accessible via
the internet. In this case, developers may omit the URL informa-
tion, citing simple file names (presumably, the files would be
shipped on tape or disk with the ASCII data file).

9. MIG routine names. Item 8i above gives the name of the MIG
library file itself; the ASCII data file also explicitly cites the names of
routines contained in that file, namely,

(i) Name of the data-checking and derived-constants
routine.

(ii) Name of the extra variable routine.
(iii) Name of the model driver routine.

10. Aliases. The ASCII data file contains lists of field input/output. To
ensure that all models use identical definitions of terms, these lists
draw from specific keywords listed in the MIG dictionary — or
“migtionary” for short — in Appendix B. Terms that contain a tilde

13

MIG 0.0 The Model Developer

(~) are standard migtionary entries combined with standard opera-
tions defined on appendix page B-38. Terms in the migtionary
might not coincide with terms that the developer would prefer to
use. The alias key phrase allows model developers to define aliases
to the standard variable names. For example, a developer might
define STRAIN_RATE = VELOCITY~GRADIENT~SYM. One model
developer might define YIELD = YIELD_STRESS_IN_TENSION, while
another might define YIELD = YIELD_STRESS_IN_SHEAR. Any num-
ber of “alias” key phrases are allowed. However, an alias term must
always be defined before used.

11. Input/output lists. The input/output needs of the model are speci-
fied by using the following three key phrases:

• input
• input and output
• output

Each of these key phrases is followed by a list of standard migtion-
ary variable names or terms that are aliased to migtionary names
[see, for example, “ROD” in the sample ASCII data file]. For the most
part, items listed under the input/output key phrases are conven-
tional field variables such as stress along with perhaps a few global
variables (i.e., those that don’t vary from cell to cell) such as the
time step. To ensure that parent codes provide precisely the desired
input and to ensure that they interpret the output correctly, all
input/output keywords come from the migtionary (Appendix B).
While the migtionary is an extensive list of engineering variables,
it is not exhaustive. When a model requires an input/output vari-
able that is not listed in the migtionary, it may be defined in the
model’s extra variable routine as discussed on page 21. As
explained on appendix page B-14, a model can place its extra vari-
ables (if any) in the ASCII data file input/output lists by using the
keyword EXTRA~1 for the first extra variable, EXTRA~2 for the
second, or even EXTRA~3THRU7 for the third through seventh
extra variable (such a form might be used for a deviatoric tensor,
which has five scalars). Some models may require the use of tempo-
rary working arrays, which may be requested in a similar manner
by using the keyword SCRATCH defined on appendix page B-30.

12. Model units. If the input and output between the parent code and
the model driver must be phrased in terms of a particular set of
units, those units are defined in the ASCII database with the “model
units” key phrase. The syntax is described below for “data units”. If
model units are not specified or are declared to be “consistent”,
then the model is unit independent — i.e., it requires only that the
input and output be in any consistent set of units. Use of model
units is strongly discouraged. If the model uses universal dimen-
sional constants (such as the speed of light), but is otherwise
dimensionally consistent, one of the three options* described on
page 19 must be followed.

14

The Model Developer MIG 0.0

13. Data units. Any and all data listed in the ASCII data file will be
interpreted in the specified units. If data units are not specified, the
SI system of units is assumed. Even if the model units are consis-
tent, data units ordinarily need to be defined because numerical
data must be stated in some unit system. The table below lists
some permissible base units, with the SI default in italics.

Appendix C lists other admissible non-SI keywords as well as defi-
nitions of the ones listed here. If a keyword does not exist for the
base unit used in the model, the unit may be defined by multiplying
any same-type unit by an appropriate factor. For example picosec-
onds could be defined by writing “1.e-12*second”. Derived units
such as “Newtons” are always expressible in terms of the above
seven base units [6].

14. Control parameter keyword list. Control parameters are (real)
user inputs that are not material properties. For example, in the
sample ASCII data file, FINIT controls whether or not to use finite
deformation kinematics and PAMB specifies the an ambient crack
pressure. The keywords listed under this key phrase do not come
from the migtionary or any other standard list — they are invented
by the model developer. The parent code — not the model developer
— is responsible for actually acquiring values for these user inputs.

Incidentally, the “control parameters” listed in the sample ASCII

data file on page 10 employ the same syntax as described later for
“material constants.” This particular developer has listed more
than one control parameter per line and has forgone descriptive
phrases, which is acceptable but perhaps cryptic. The entry could
be improved by listing control parameters like this:

*preferably option #3

Table 1: Ordered dimensions and associated units

Base Dimension SI keyword Other Keywords

length meter or m centimeter, kilometer, foot

mass kilogram or kg gram or gm, slug, u

time second or s millisecond or ms, year

temperature Kelvin or K eVt, Rankine or R

discrete amount mole kg-mol, cg-mol, item

electric current ampere or amp milliamp

luminous intensity candela

15

MIG 0.0 The Model Developer

control parameters:
 FINIT "Finite deformation flag"
 IOPT "Plastic flow option"
 NOCOR "Skip cmpl. correction yes-1/no-0"
 PAMB (-1,1,-2) "Ambient crack pressure"
 VARMOD "Variable modulus yes-1/no-0"
 L1 "Ign. location"
 TZERO (0,0,0,1) =TEMPERATURE~0
 ZIGN (1) "Characteristic ignition length"
 ITRSCM "Crack tracer"

In the sample ASCII data file, some keywords are followed by a list
of numbers in parentheses. These numbers are the exponents on
the ordered list of seven base dimensions given in Table 1 on
page 14. For example, the sample data file establishes an “ambient
crack pressure” by the keyword PAMB followed by (–1,1,–2) to indi-
cate that pressure has the dimensions

This way of specifying physical dimensions is admittedly somewhat
awkward, but it is much more straightforward for code architects to
implement than a scheme that uses more natural symbolic expres-
sions of units (e.g., N/m^2). Future versions of MIG will undoubt-
edly permit such an enhancement, but the exponent list is the only
acceptable way to specify variable dimensions at this time.

IMPORTANT: Control parameters which are also standard vari-
ables in the migtionary should be so indicated with an alias. This
allows the installer to ensure that all user inputs are consistent.
The alias may be defined using the alias key phrase or directly in
the control parameter list. In the sample data file on page 10,
TZERO is aliased to be the initial temperature. Parenthetical
dimensions in the control parameter list are not necessary for key-
words which are aliased to standard variables, but may be included
for clarity. Note how the above alternative control parameter list
defines the TZERO alias directly in the list, reducing the chance of
oversight at installation time.

15. Control parameter defaults. These (real) values are the defaults
for the control parameters and are listed in the same order as the
control parameter keywords.

16. Material constants keyword list. This entry defines keywords
available to the user for supplying or changing material constants.
Just like “control parameters,” any word under the key phrase
“material constants” that starts with an alpha (a-z, A-Z) is inter-
preted as a keyword. Any word that starts with a left parenthesis is
the start of a dimensions list for the most recent keyword. Any-
thing enclosed in double quotes (") is a descriptive phrase for the
most recent keyword. Alternatively, anything that starts with an
equal sign (=) defines an alias for the most recent keyword. Note,
for example, that the sample ASCII data file states that AMU is an
alias for shear modulus. According to the migtionary convention,

length() 1– mass()1 time() 2–

16

The Model Developer MIG 0.0

this alias — being a material constant — should technically end in
the initial value operation (~0); however, the parent code will inter-
pret aliases defined in “material constants” lists to be initial values
even without the “~0” suffix.

17. Material constants database. Input data sets for precharacter-
ized materials (if any) are supplied. All data must be supplied in
the units cited under the key phrase “data units” (or in SI if no
“data units” are explicitly specified. For each precharacterized
material, a name for the material (e.g., MILD_STEEL) is given and
then the material data for that material are listed in the same
order as the material constants keyword list. The very first mate-
rial is always the so-called “USER” material. Values cited for the
USER material are defaults for user-defined materials.

18. Upper bound specifications. To allow the parent code to allocate
sufficient space for the model, the following information is provided
in each model’s ASCII data file:

(i) Max number of derived constants. This integer speci-
fies the amount of space that must be available to
store material constants that are computed from user
input constants and stored in the DC array discussed
on page 21.

(ii) Max number of global constants. This integer is an
upper bound on the number of dimensional parame-
ters such as the universal gas constant that are com-
puted in the data check routine and stored in the GC
array discussed on page 20.

(iii) Max number of extra variables. This integer is an
upper bound on the number of extra variables (NX)
specified in the extra variable routine discussed on
page 21.

The above integers are used by the parent code for dimensioning
purposes — actual values permissibly may be smaller.

19. List of MIG models that are called by the current model. Of
course, the (ambitious) option of being able to construct MIG mod-
els that call other MIG models is not available at this early stage in
the development of the guidelines. However, the entry in the exam-
ple illustrates how such an option might be invoked in later ver-
sions of MIG. Each MIG model is identified by its descriptive name
followed by a carriage return.

20. Benchmarks. The database should contain a description of (or ref-
erence to) one or more benchmark problems. A good benchmark
involves only a single material [see, e.g., page E-30].

21. Remarks and notes. Comments about the model may be inter-
jected anywhere in the ASCII text file following the key phrase
“remark” or “note.” Such comments may be useful to the model
developer to, say, state the range of validity of the model, or to pro-
vide references documenting the model in greater detail, or to list
acknowledgments, etc.

17

MIG 0.0 The Model Developer

22. Special Needs. The MIG guidelines are intended to be very gen-
eral. However, if the model has some special need that is not accom-
modated under MIG, the model developer may use the “special
needs” key phrase to describe the problem in detail along with how
it is to be addressed. Special needs must be explained clearly
enough so that they can be handled by the model installer without
having to contact the model developer. For example, a special needs
entry might look like this:

special needs :
This model requires special tabular utilities that do
not seem accessible under the MIG framework. We employ
special utilites built especially for the xyz code. To
help you replace these utilities with equivalent
utilities for your own code, we have enclosed all non-
MIG-compliant parts of our source code in braces of
this form:

 C xyz{

 C }xyz

All other coding is fully MIG-compliant.

Here is a different example:

special needs :
This ASCII data file, the data check routine, and the
extra variable routine are all fully MIG-compliant.
However, the driver has not yet been fully “migized”
because it still contains non-ANSI constructs and
references to the original parent code.

And another example:

special needs :
The extra variables ERAT and JJJ are “logicals” (i.e.,
they have the values of either zero or one).
Consequently, this model may perform poorly on Eulerian
codes (or rezoning Lagrangian codes) that must “mix”
field variables. The installer should contact the
developer for ideas about how to generalize this model
to Eulerian implementations, should the need arise.

Special needs should be used only as a last resort since they require
potentially time-consuming human intervention in the installation
process. However, if the model developer wishes to relay critical
installation instructions to the installer, the special needs section is
an appropriate place to do it.

23. Termination. The very last line in the ASCII data file should read
done: Date of last modification

where Date of last modification is when the ASCII data file was last
modified.

More sample ASCII data files are on appendix pages A-3, D-1, and E-7.

18

The Model Developer MIG 0.0

Required routines

The ASCII data file is only one part of the MIG package. The other part con-
sists of three required routines:

• Data check routine. Checks validity of user inputs. Also provides a loca-
tion to compute dimensional parameters derived material constants.

• Extra variable routine. Defines and requests storage for supplemental
field variables not listed in the migtionary (Appendix B).

• Driver routine. Performs the model physics over a range of computa-
tional cells provided by the parent code. The meaning of the term “cell”
depends on the parent code. In the driver, a cell should be regarded
abstractly as a collection of inputs for which an output set is computed.

At present, MIG demands that the required routines be written in FOR-
TRAN-77*. Undoubtedly, the guidelines will be later extended to FORTRAN-90
and other languages such as C or C++. Such an enhancement will simply
entail syntactical rules for the argument lists; the ASCII data file won’t be
affected since subroutine languages may be determined by the traditional
UNIX suffixes on the required library name (see item #8 on page 12). Only the
required routines must be FORTRAN-77, and they may permissibly serve as
“wrappers” that call utilities written in other languages. Such an approach is,
however, discouraged during this early development phase of MIG since many
code architects may not be prepared to handle mixed-language libraries.

A “thumbnail” sketch of the qualitative structure of each required routine
accompanies detailed discussions below. Samples of actual working subrou-
tines are provided in Appendices A, D, and E.

Data Check routine

*To learn the impetus of this requirement, see item 1 on page G-2.

 SUBROUTINE DCHK (UI, GC, DC)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 DIMENSION UI(*),GC(*), DC(*)
C compute universal constants (store in GC)
 PLANK=6.63D-34 * DC(1)**2 * DC(2) / DC(3)
 GC(1)=PLANK
 ...
 check user inputs
 IF(UI(1).LT.0.0)CALL FATERR('DCHK','bad UI1')
 IF(UI(4).GT.5.0)CALL FATERR('DCHK','KVAR out bound')
 ...
C calculate derived constants
 DC(1)= function of UI
 RETURN
 END

Figure 1. Thumbnail sketch of the required data-check routine.

19

MIG 0.0 The Model Developer

The data check routine (Fig. 1) is called after all material constants have
been read. The data check routine is always the first model routine called by
the parent code, and it is always called upon restarts (if applicable). A single
array, called UI, contains the user inputs in the same order that they were
specified in the ASCII data file under the key phrases “control parameters and
material constants.” Although Fig. 1 shows direct manipulation of the UI
array, it is certainly acceptable to enhance the readability of the routine by
transferring the values in UI to variables with more descriptive names (see,
for example, lines 28-31 on appendix page A-6).

An array called DC will also be sent from the parent code to the model’s
data check routine. Upon entry to the data check routine, the DC array con-
tains the factors that convert each of the seven base units from SI to the par-
ent code units:

DC(1) converts meter to parent length unit
DC(2) converts kilogram to parent mass unit
DC(3) converts second to parent time unit
DC(4) converts Kelvin to parent temperature unit
DC(5) converts mole to parent discrete amount unit
DC(6) converts ampere to parent electric current unit
DC(7) converts candela to parent luminosity unit

For example, if a particular parent code is running in cgs units, then that par-
ent code will send DC(1)=100 because there are 100 centimeters in a meter,
DC(2)=1000 because there are 1000 grams in a kilogram, and DC(3)=1.

More often than not, this information about the parent code units will not
be needed and may be safely ignored. However, the parent code units are use-
ful if the model employs non-dimensionless universal constants, but is other-
wise consistent (i.e., were it not for the dimensional parameters, the model
could be run using any consistent set of units). Suppose, for example, that the
model’s theory requires the Boltzmann constant (1.38×10-23 J/K) and the per-
mittivity constant (8.85×10-12 Farad/m). Further suppose that the data check
routine must ensure that the eighth user input — a density — not exceed a
maximum value of, say, 5 g/cm3. The model developer has three options:

1. Define model units in the ASCII data file. In this case, the
parent code will be obliged to convert all data and input/output to
the model units before calling any of the model subroutines.

Advantage: Simple solution.
Disadvantage: Can result in costly computational overhead, espe-

cially since the parent code will have to convert all
input and output to the model units before calling
the model driver. Might result in cumulative round-
off errors.

2. Add universal constants to control parameter list. Here,
the universal constants could simply be listed in the ASCII data
file as part of the control parameters, with their values specified
under the key phrase “control parameter defaults”. Then the

20

The Model Developer MIG 0.0

task of converting the variables to parent code units would be
performed by the parent code’s MIG interface.

Advantage: Simple solution.
Disadvantage: The user would be able to change the universal con-

stants because, by definition, control parameters are
user-adjustable. This solution would permit the user
to, say, change the speed of light! Furthermore, the
parent code would have to maintain separate copies
of the universal constants for each material even
though the constants are supposed to have the same
value for all materials.

3. Convert model parameters to the parent code units (pre-
ferred solution). In this scenario, the model must be consistent
(i.e., there are no model units). The entry values of the DC array
are used to convert the dimensional parameters to the parent
code units. The converted constants are then saved in the global
constants array, GC, which is owned by the parent code and need
never to be touched again.

Advantage: Eliminates conversion overhead because the parame-
ter conversion need be done once only and the model
— especially the driver — is thereafter consistent.

Disadvantage: More complicated, somewhat confusing.

To clarify option #3, let’s return to the example in which the model requires
the Boltzmann constant, the permittivity constant, and a density cutoff con-
stant. The first step is to write these constants in terms of the seven ordered
base SI units (see Table 1 on page 14):

Then, at the top of the data check routine, these constants are converted to
the parent code units and stored to the GC (global constants) array:

 SUBROUTINE DCHK(UI,GC,DC)
•
•
•

 BOLTZM = 1.38D-23 *DC(1)** 2 *DC(2) /DC(3)** 2 /DC(4)
 PERMTV = 8.85D-12 /DC(1)** 3 /DC(2) *DC(3)** 4 *DC(6)** 2
 RHOMAX = 5.00D3 /DC(1)** 3 *DC(2)
 GC(1)=BOLTZM
 GC(2)=PERMTV
 GC(3)=RHOMAX
 IF(UI(8).GT.RHOMAX)CALL FATERR(IAM,'density out of range')

Note how the exponent on DC(1) is the same as the exponent on “meters”,
and the exponent on DC(2) is the same as the exponent on kilograms, etc.
Being universal constants, BOLTZM, PERMTV, and RHOMAX are the same

Boltzmann constant 1.38 1023–× m2kg1s 2– K 1–=
Permittivity constant 8.85 1012–× m 3– kg 1– s4A2=

Density cutoff 5000 m 3– kg1=

21

MIG 0.0 The Model Developer

for all materials and need be computed only once. The procedure of converting
and saving universal constants is not necessary for dimensionless constants,
which may be defined more efficiently by using conventional parameter state-
ments. Another example of option #3 may be found on page E-18.

 Upon output, the DC array contains model derived constants (if any).
These derived constants should begin at DC(1); that is, the unit conversion
factors contained upon input in DC(1) through DC(7) should be overwritten.
The data check routine must not compute any more derived constants than
the max number of derived constants specified in the ASCII data file (see item
#18i on page 16).

Further examples of data check routines may be found on appendix pages
A-6, D-4, and E-17.

Extra variable routine

The migtionary (Appendix B) is an extensive list of variables commonly
encountered in engineering and physics, but it is certainly not an exhaustive
list. An extra variable is any field variable used by the model that is not listed
in the migtionary. These variables are typically esoteric model-specific inter-
nal state variables with occasionally peculiar definitions like “crack curvature
times the number of cracks per unit mass” or “smoothen double tempered
exponent.” Occasionally, a model developer might not like the way that a vari-
able is defined in the migtionary; in that case, the developer would simply
define an extra variable using the preferred definition. Typically, an extra
variable is both input and output of a model.

Because the migtionary contains so many standard engineering terms,
models rarely even need to define extra variables. Models that don’t use extra

 SUBROUTINE XTRA (UI, GC, DC,
 & NX, NAMEA, KEYA, RINIT, RDIM, IADVCT, ITYPE)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 CHARACTER*1 NAMEA(*), KEYA(*)
 DIMENSION UI(*),GC(*),DC(*),ITYPE(*)
 DIMENSION RINIT(*),IADVCT(*),ISCAL(*),RDIM(7,*)
 NX=0
C first extra variable
 NX=NX+1
 NAME(NX) = 'my special variable'
 KEY(NX) = 'MYVAR'
 IADVCT(NX) = 1
 RDIM(1,NX) = 2.0
 ...
 RDIM(7,NX) = 0.0
 ITYPE(NX)= 1
 RINIT(NX)= 0.0
C next extra variable
 ...
 CALL TOKENS(NX,NAME,NAMEA)
 CALL TOKENS(NX,KEY,KEYA)
 RETURN
 END

Figure 2. Thumbnail sketch of the required extra variable routine.

22

The Model Developer MIG 0.0

variables need only make a “dummy” extra variable routine that simply
returns (note, however, that even a dummy routine must have eleven place-
holders in the calling argument list). The extra variable routines on appendix
pages A-8 and E-18 are dummy routines.

For models that do use extra variables, the required MIG extra variable
routine specifies storage requirements, plot labels, physical dimensions, and
advection options for each extra variable. The parent code processes the infor-
mation provided by the extra variable routine, reserving appropriate storage
and writing relevant information to its output for plotting.

Referring to Fig. 2, the extra variable routine receives the following inputs:
• UI: the user input array, containing valid user inputs (which have

already been checked by a previous call to the model’s data check routine).

• GC: the global constants array, containing the GC values (if any) com-
puted in the data check routine.

• DC: the derived constants array, containing the DC values (if any) com-
puted in the data check routine.

The extra variable routine returns the following outputs:

• NX: The actual number of extra variables. The extra variable routine is
responsible for defining no more extra variables than the maximum num-
ber specified in the ascii data file (see item #18iii on page 16).
Default: NX=0

• NAME/A: A string array giving descriptive extra variable names (e.g.,
“crack curvature”), presumably to be used as plot labels.

Default: NAME = ‘ ’.
NAME is converted to NAMEA by a call to TOKENS, defined on page 28.

• KEY/A: A string array giving plot variable keywords (e.g., “CKDENS”).
These keywords are invented by the developer and used (at the discretion
of the parent code) to identify the variable for plotting requests. Default:
KEY = ‘ ’. KEY is converted to KEYA by a call to TOKENS.

• RINIT: A real array giving the initial value for each extra variable. Val-
ues in the UI, GC, and/or DC arrays are often used to set initial values.
[Default: RINIT=0.0]

• RDIM: Real array specifying the dimensions of each extra variable by giv-
ing the exponents on each of the seven base dimensions listed in Table 1:
LENGTH, MASS, TIME, ELECTRIC CURRENT, THERMODYNAMIC
TEMPERATURE, AMOUNT OF A SUBSTANCE, LUMINOUS INTEN-
SITY. Suppose, for example, the Kth extra variable has units of pressure,
that is,

(length)–1(mass)1(time)–2.

Then RDIM(1,K)=-1. , RDIM(2,K)=1. , and RDIM(3,I)=-2. , and
the other RDIM are zero, which need not be specified explicitly because the
default is: RDIM=0.0

• IADVCT: An integer array giving the advection option for each extra

23

MIG 0.0 The Model Developer

variable (this information is used by Eulerian codes or Lagrangian codes
that rezone)

“1” advect by volume-weighted averaging.
“2” advect by mass-weighted averaging [Default = 2]

• ITYPE: Integer indicating the variable type. If an extra variable is a sca-
lar (not vector, tensor, or special), then specification of ITYPE may be omit-
ted (by default, the parent code will assume the variable is a scalar).
Permissible values for ITYPE are

1: scalar [default]
2: special
3: vector
4: 2nd-order skew-symmetric tensor
5: 2nd-order symmetric deviatoric tensor
6: 2nd-order symmetric tensor
7: 4th-order tensor
8: 4th-order minor-symmetric tensor
9: 2nd-order tensor
10: 4th-order major&minor-symmetric tensor
11: 2nd-order symmetric tensor 6d
12: 4th-order minor-symmetric tensor 6d
13: 2nd-order deviatoric tensor
14: 2nd-order symmetric deviatoric tensor 6d
15: 3rd-order tensor
16: 4th-order major&minor-symmetric tensor 6d

These variable types are defined in detail on page B-3 (in the migtionary
preface). The parent code defaults ITYPE =1, so only variables of a differ-
ent type need to have an ITYPE specification.

Most parent codes will ignore information about variable type. However,
such information is necessary if the parent code performs a coordinate
rotation. For these codes, tensorial information is required to properly
transform the extra variables.

Furthermore, for multi-scalar variables (vectors, tensors) all components
must be defined as extra variables. It would be illegal, for example, for a
model to define an extra variable for only the x-component of a vector but
not the other components.

Each of the scalars of any multiscalar extra variable must be requested
individually in the extra variable routine in the standard variable order
defined in the migtionary. The first scalar will set ITYPE to the appropri-
ate value; the remainder must set ITYPE to the negative of that value to
indicate continuation of the same variable type. Default: ITYPE=1

Instead of directly returning the string arrays NAME and KEY, the extra
variable routine first converts these arrays to single character streams
NAMEA and KEYA as seen at the bottom of Fig. 2. This procedure is per-
formed (by the two calls to TOKENS*) to permit MIG packages to be processed
by non-FORTRAN parent codes.

Important: Extra variables are delivered to the model physics routines as

*See page 27.

24

The Model Developer MIG 0.0

an item on the model driver’s calling argument list. The location of the extra
variables on the argument list must be specified in the ASCII data file by using
the migtionary keyword “EXTRA”. Developers may request each extra variable
individually by using the component extraction operator, ~n, defined on
Appendix page B-42. For example, under the key phrase “input and out-
put ” in the example ASCII data file on page 9, SCM_DAMAGE is an alias for
EXTRA~1, which is the first extra variable, and EXTRA~2THRU4 represents the
2nd through 4th extra variables (such a form might be used, for example, for a
vector extra variable)

Appendix page D-6 gives a nontrivial example of an extra variable routine.

Model driver routine

The model driver routine — where the model physics is actually applied —
is called every computational cycle. The driver applies the model physics over
several input sets, or “cells.” The meaning of the term “cell” depends on the
nature of the parent code: for example, a cell could be an Eulerian finite-differ-
ence cell, a Lagrangian finite-element, or even just an integration point.

The first five arguments of the driver are the same for all MIG models.
Namely, referring to Fig. 3, the first argument, MC, is used to dimension field
variables as discussed below. The second argument, NC, is the number of cells
to process (NC will always be less than or equal to MC). The next three argu-
ments, UI , GC, and DC, contain the user input, global constants, and derived
constants, respectively. The developer may assume that the parent code will
place appropriate values into these arrays before calling the driver. In this
listing, the UI , GC, and DC arrays are dimensioned “star” for convenience. If
array bound checking is desired, the model developer may of course give the
dimensions explicitly, so long as they don’t exceed the upper bounds given in
the ASCII data file.

All of the remaining items on the argument list are the standard (migtion-
ary) field inputs and outputs ordered exactly as they were in the ASCII data file
under the input/output key phrases. Hence, for example, the driver corre-
sponding to the sample ASCII data file on page 9 might look like this:

 SUBROUTINE DRIVER(MC,NC,UI,GC,DC,
 & FV1,FV2, GV1, FV3 ← input/output list)
 DIMENSION UI(*),GC(*),DC(*)
 DIMENSION FV1(MC,*),FV2(MC,*),FV3(MC,*)
 DO 100 I=1,NC
C field output = fnt of UI,GC,DC, and field input
 FV3(I,3) = FV2(I,1)+GV1*FV1(I,5)
 100 CONTINUE
 RETURN
 END

Figure 3. Thumbnail sketch of the required model driver routine.

25

MIG 0.0 The Model Developer

 SUBROUTINE SCDRVR (MC,NC,UI,GC,DC, ← first 5 arguments always the same
C
C input ← listed under the key phrase “input” in
C ----- the ASCII data file on page 9.
 $ ICYCLE,IGEOM,TIME,DT,
 $ RHO,ROD,W,IEDIT,
C
C input and output ← listed under the key phrase “input and output.”
C ----------------
 $ BCKSTS,SCMDMG,CKVECT,TMPR,SIG,
C
C output ← listed under the key phrase “output” in the ASCII data file.
C ------
 $ YLDSHR,PORO,GERR,
 $ CMPLR,CKDAT)
C***
C REQUIRED MIG DRIVER ROUTINE for Statistical Crack Mechanics
C Loops over a gather-scatter array.
C
C MIG input Obligatory (all MIG models have this input)
C ---------
C MC: Upper bound on number of cells (dimensioning const)
C NC: Number of gather-scatter "cells" to process
C UI: user input array
C GC: model global constants array
C DC: derived material constants array
C
C MIGtionary input and/or output From input/output keyphrases in
C ------------------------------ the ASCII data file.
C ICYCLE: CYCLE (global)
C IGEOM: GEOM (global)
C TIME: TIME (global)
C DT: TIME_STEP (global)
C RHO: MASS_DENSITY
C ROD: VELOCITY~GRADIENT~SYM (aka, rate of deformation)
C W: VELOCITY~GRADIENT~SKEW (aka, vorticity)
C IEDIT: EDIT
C BCKSTS: BACK_STRESS
C SCMDMG: EXTRA~1 (SCM damage parameter)
C CKVECT: EXTRA~2THRU28 (Crack factors)
C TMPR: ABSOLUTE_TEMPERATURE
C SIG: CAUCHY_STRESS
C YLDSHR: YIELD_IN_SHEAR
C PORO: POROSITY
C GERR: GLOBAL_ERROR (=0 if no error) (global)
C CMPLR: SCRATCH~10 (temp work array, compliance reduction)
C CKDAT: SCRATCH~1THRU9 (temporary orientation arrays)
C***
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 DIMENSION UI(*),GC(*),DC(*)
 DIMENSION ← only field variables
 $ RHO(MC),ROD(MC,6),W(MC,3),IEDIT(MC) require dimensioning,
 $,BCKSTS(MC,5),SCMDMG(MC),CKVECT(MC,*),TMPR(MC) not global variables
 $,SIG(MC,6),YLDSHR(MC),PORO(MC),CMPLR(MC),CKDAT(MC,*) like GEOM or TIME
C
 LOGICAL NOCOR
 PARAMETER (ZERO=0.0D0)
 CHARACTER*6 IAM
 PARAMETER(IAM = 'SCDRVR')
C-------------------------------
C For readability, transfer user input to variables
C with more descriptive names:
C
 FINIT = UI(1) Compare this coding with the
 IOPT = INT(UI(2)) lists of “control parameters”
 NOCOR = (UI(3).GT.ZERO) and “material constants” in
 PAMB = UI(4) the ASCII data file on page 10.
 VARMOD = UI(5)
 L1 = INT(UI(6))
 TZERO = UI(7)
 ZIGN = UI(8)
 NBIN = INT(UI(9))

26

The Model Developer MIG 0.0

 ALPH = UI(10)
 AMU = UI(11)

•
•
•

 SCFCRO = UI(34)
 CKPVOL = UI(35)
 DYDP = UI(36)
 HD2YDP = UI(37)
 YLS = UI(38)
 YLDSTS = UI(39)
C ___
C / gathered loop over the cells \
C/ \
 DO 100 I=1,NC

•
• Compute promised output for each cell.
•

 100 CONTINUE
C\ /
C ___/
C
C
 RETURN
 END

Note that field variables (like the density RHO) are dimensioned MC. Multi-
scalar field variables, like the stress SIG, are dimensioned MC by the number
of scalars (or star, if array boundary checking is not important). Global vari-
ables like the time step DT that do not vary from cell to cell are not dimen-
sioned (global and field variables are distinguished in the migtionary by the
sign of the number of scalars, as explained in item #2 on appendix page B-2).

Note how the sample driver on page 25 transfers the user inputs from the
UI array to variables with more descriptive names. The user inputs are
arranged in exactly the same order they were cited in the ASCII data file under
the key phrases “control parameters” (if any) and “material constants”. Even
though each UI is a floating point number, note how the sample driver con-
verts the 2nd, 6th, and 9th user inputs (IOPT, L1 , and NBIN) into integers and
the third user input (NOCOR) into a logical.

To summarize, the driver calling arguments are defined as follows:
• MC is the leading dimension of field variables. Many parent codes will sim-

ply call MIG drivers with MC=NC.
• NC is the number of “cells” to be processed. Here, the term “cell” could refer

to a finite element or an integration point within a finite element or a com-
putational cell in an Eulerian code. A cell is simply an entity to which the
model physics is to be applied. To enhance performance on a vector
machine, the driver routine receives several cells at a time.* The driver
applies the physics of the model in a loop over the cells.

• UI is an array containing the user input. The user inputs are stored in this
array in the same order that they were defined in the ASCII data file under
the key phrases “control parameters” and “material constants”.

*This approach doesnot trash cache performance in scalar/parallel implementations; such codes
call drivers in a scalar mode (MC=NC=1) — see appendix page F-11 and item #8 on page G-15.

27

MIG 0.0 The Model Developer

• GC contains global constants (if any) stored in the same order that they
were defined in the required MIG data check routine.

• DC contains derived constants (if any) stored in the same order that they
were defined in the required MIG data check routine.

• input/output list : FORTRAN variable names (of the developer’s cre-
ation) for each of the model’s input and output variables. These appear in
the argument list in exactly the same order as listed in the ASCII data file.

The structure of the top of the driver is dictated by MIG, but the driver
may compute the promised output in whatever way is most convenient (and
preferably most efficient). Usually this is done by one or more loops over the
“cells” within which the physics is performed. The driver may call supplemen-
tal subroutines so long as those subroutines are packaged into the model or
utilities libraries (Exception: if the routine is one of the standard MIG utilities
discussed below, it does not belong in the model or utility libraries.)

 Appendix pages A-9, D-8, and E-19 show other examples of model drivers.

MIG utilities
All parent codes that support MIG will (architects read: “must”) have the

following routines available for use by any MIG package. In the list below,
the arguments to the utilities are underlined if they are input, overlined if
they are output (both if they are both). Overlined utility names are functions.
In the list, CALLER, is a character string containing the name of the calling
routine. MESSAGE is a character string message.

BOMBED (MESSAGE)
Writes the catastrophic failure MESSAGE and then immediately
terminates the calculation. This utility should be used, for exam-
ple, when an imminent division by zero is detected. By calling
bombed, the parent code will have a chance to gracefully close
files, run statistics, etc., before termination. Example:

CALL BOMBED('Negative energy detected in subcycle')

FATERR (CALLER, MESSAGE)
Writes a fatal error MESSAGE and increments a counter of fatal
errors. The parent code will not terminate immediately; instead, it
will continue to run up until a certain point where it terminates
only if the fatal error counter is non-zero. FATERR should be
used, for example, to detect errors in user input, where continued
execution up to a point (the end of input processing) will not crash
the code catastrophically. This way, the user can be informed of
more than one input error at a time. Example:

CALL FATERR('MYDCHK', 'Invalid user input for xct')

FATRET(NERR)
Returns the number of calls to FATERR in the integer NERR.
This can be used to check whether the calculation has been error-
free up to the current moment. Example:

28

The Model Developer MIG 0.0

CALL FATRET(NERR)
IF(NERR.NE.0)THEN
 CALL LOGMES('task delayed until errors corrected')
 RETURN
END IF

LOGMES(MESSAGE)
Writes MESSAGE to the output log file. This utility may be used,
for example, to issue (non-fatal) warnings or to alert the user that
an input constant has been reset to a different value. Example:

CALL LOGMES('rate dependence disabled')

SPRINT (STRING)
Prints STRING to the parent code’s output. This routine should
be used in lieu of all direct writes to output files. Of course, this
requirement forces very awkward programming, but it is neces-
sary to enable porting the model to various parent codes which
may handle input/output in ways quite different from standard
FORTRAN (77 or 90). Example:

WRITE(JNKSTR,'(''Num. of iterations was ''I4)')NITER
CALL SPRINT(JNKSTR)

The difference between LOGMES and SPRINT is that LOGMES
writes the string to the calculation’s log file whereas SPRINT
writes the string to the model’s output file (for some parent codes,
these files may be identical). Use LOGMES for short messages to
the user and SPRINT for lengthy output.

TOKENS (NUM,LIST, STREAM)
Takes a LIST of NUM tokens (character strings) and converts it
to a STREAM of characters (CHARACTER*1 array). This subrou-
tine is needed to interface with non-FORTRAN parent codes. In
particular, this subroutine must be called at the end of the extra
variable routine to create character streams for the extra variable
names and keywords. Examples of proper usage are in the extra
variable subroutines on pages 21 and D-6. For parent code archi-
tects, further details may be found on page 36 in the Architect
section.

Models with special needs

MIG does not presently support models that require, say, tabular functions
or the velocity at specific locations. From time to time, other unusual or unan-
ticipated model features will undoubtedly crop up that simply do not seem to
fit under the MIG umbrella.

However, even if a model is not perfectly suited to MIG, surely it’s at least
partially suited. As discussed in item #22 on page 17, the ways in which the
model fails to fall into the MIG framework can be explicitly discussed in the
special needs section of the model’s ASCII data file; then special arrange-
ments can be made by the code architect to accommodate the model’s special
needs.

29

MIG 0.0 The Model Developer

Creating a MIG package step-by-step
It is easiest to create a package by using a syntax-checking source-generat-

ing tool such as the MIGCHK utility described Appendix E. However, if such a
tool is unavailable, the following steps (similar to those in Appendix A) should
lead to successful package creation:

STEP 1. Create an ASCII data file (see, for example, page 9 or
appendix pages A-2, D-1, and E-7).

STEP 2. Create dummy input check, extra variable, and driver
routines that have the proper number of place-hold-
ers in the calling arguments, but which simply stop
the calculation by calling BOMBED.

STEP 3. At this point, you have a very basic (non-functioning)
MIG package, which should be installable into any
MIG-compliant code. Have a MIG installer install the
dummy package into a parent code.

STEP 4. Run the parent code with the newly installed pack-
age. If necessary, debug the ASCII data file or the
installation until the parent code runs all the way to
the dummy input check routine where the first
BOMBED is encountered.

STEP 5. Replace the dummy input check routine with a genu-
ine input check routine that examines the user input
for unacceptable values (see, for example, appendix
pages A-6, D-3, and E-17).

STEP 6. Recompile the parent code (this need not involve the
installer since the hooks established in STEP 3 are
still in place).

STEP 7. Run the parent code. Debug if necessary until the
code stops from the call to BOMBED in the dummy
extra variable routine.

STEP 8. Replace the dummy extra variable routine with a
genuine extra variable routine that requests the sup-
plemental field variables (if any) for your model (See,
for example, appendix pages A-8, D-6, and E-18).

STEP 9. Recompile the parent code.
STEP 10. Run the parent code. Debug if necessary until the

code reaches the call to BOMBED in the driver routine.
STEP 11. Replace the dummy driver routine with a genuine

driver routine that applies your model’s physics (see,
for example, appendix pages A-9, D-8, and E-19).

STEP 12. Recompile the parent code.
STEP 13. Run and debug the code until the model is performing

the physics correctly. At that point, the MIG package
is complete. If possible, test it on other parent codes.

30

The Model Developer MIG 0.0

Developer’s code of honor
The success of MIG depends heavily on developers accepting the responsi-

bility to maintain their own models. Developers must be willing to rectify any
MIG violations or theory mistakes in their model in a timely manner. Other-
wise, multiple versions of the model will quickly develop and code-to-code
portability will be lost.

FORTRAN guidelines

All FORTRAN routines in a MIG package must satisfy the following restric-
tions:

1. FORTRAN must conform to ANSI 77 standards (see item #1 on page
G-2.)

2. Coding must contain reasonable detection of and protection
against floating point exceptions such as division by zero. This is
not to say that the coding should come with IEEE handlers
(which are machine-dependent and therefore not MIG-compli-
ant). Rather, the logic of the algorithm should include tests for,
say, imminent square roots of negative numbers, overflow, etc.
Usually a carefully written user input data checking routine is
sufficient to avoid these types of problems.

3. In anticipation of later extension of MIG to FORTRAN90, common
blocks are discouraged. If used, however, all common blocks must
be “owned” by the model. That is, no model common is to be
accessed, supplied, created, or modified by the parent code.

4. All common blocks must be “saved” (i.e., every common block
must be preceded by a save statement like this

SAVE /MYCOMN/
COMMON /MYCOMN/ VAR1, VAR2

5. Each common block must be “dedicated to its segment”. A MIG
package is segmented into three distinct phases: (1) data check,
(2) extra variables, and (3) driver. Each of these segments has
one required MIG routine which, at the discretion of the devel-
oper, may call deeper routines. MIG permits the parent code to
segment its calculation (i.e., run up to three separate calcula-
tions) according to the natural MIG segments. Therefore, each
common block must be “dedicated to its segment”, meaning that
it must appear in the required MIG routine for the segment and
may permissibly appear in any routine below the segments’s
required routine, but must not appear in any routine for any
other segment.

6. No variable may be used before defined (i.e, don’t assume the
compiler will initialize all variables to zero).

7. Never use the FORTRAN write (or print) command. Instead use
the MIG utility SPRINT (or LOGMES) of page 28.

31

MIG 0.0 The Model Developer

C/C++ guidelines

While MIG presently demands that the three required routines be written
in FORTRAN, it is certainly permissible for those routines to in turn call non-
FORTRAN routines. All C or C++ routines in a MIG package must satisfy the
following restrictions:

1. C or C++ must conform to ANSI standards.

2. Global variables should not be used.

3. Enumerated types should be contained within file or class scope.

4. C++ classes must be sane upon completion of a constructor - all
data members of the class must be set.

5. C++ class hierarchies and C++ friend functions and classes must
be contained within the MIG package with the exception of stan-
dard functions and classes and the MIG tools package.

32

The Parent Code Architect MIG 0.0

The Parent Code Architect

The parent code architect is the individual (or team) who knows a particu-
lar parent code well enough to ready it for installation of MIG-compliant mod-
els. Each parent code will have an architect (or team of architects) with the
following responsibilities:

• Modify the parent code to be able to process MIG packages.
• Handle special needs for particular material models.
• Accommodate periodic enhancements of the MIG standards.
• Provide written guidelines and technical support to installers.

Since each parent code is unique, the hooks required to accommodate MIG
models will vary among codes. Making a parent code “MIG compliant”
requires a rather substantial initial effort (~one month full time) on the part
of the code architect. This one-time effort is spent becoming familiar with the
guidelines and prioritizing which tasks to automate (if any). MIG liberates
installers from searching unknown depths to find information necessary to
retrofit a model for a new parent code. Hence, initial time invested to make a
parent code MIG-compliant can be recouped by time saved in the longer run.

The code architect is presumed to know “everything” about the parent
code. The short term objective of the code architect is to acquire a thorough
knowledge of MIG standards and to develop a simple plan for installing MIG
models by hand. Hence, the short term activities should not be much different
from the way models are currently installed. The difference is that the next
MIG model will be structured exactly like the previous MIG model and the
one before that. Hence, the MIG standardization (1) makes hand installation
tasks similar for all models and therefore (2) makes automated model installa-
tion possible. The primary purpose of MIG is to standardize the basic features
common to any model (model input and output lists, model units, etc.). Such
standards make automatic installation ultimately possible. MIG is a first step:
an evolution, not a revolution.

MIG is not designed to make life easier on the code architect — on the con-
trary, MIG provides a means for the code architect to simplify tasks of the
model installer.* The architect’s long term (and unavoidably burdensome)
objective is to automate as many model installation tasks as possible. If the
code architect writes quality utilities that can process arbitrary MIG models
to prepare them for installation into the parent code, then the installer’s
duties could conceivably (in the very long run) degenerate into simply typing a
command like “install new_model.dat ”. Writing such quality utilities will
generally require a significant initial effort from the code architect, but this is
a one-time investment†, paid off by on-going savings in model installation and
model sharing between codes.

*who, of course,is the architect in many cases, especially during early efforts.
†modulo periodic maintenance.

33

MIG 0.0 The Parent Code Architect

The tasks of the parent code architect vary. This chapter discusses funda-
mental issues in general, usually followed by specific examples of how those
issues were handled in the Sandia codes, CTH [1] and ALEGRA [2] — other
codes* use different approaches.

Automation
As an architect reads the guidelines for the first time, it becomes clear that

a great many tasks may have to be performed by the installer for any given
model. For each potential task, it is the job of the architect to decide whether
to handle it by hand or automatically. Probably the best approach is to handle
frequently encountered tasks automatically and other tasks by the status quo
(i.e., by hand).

A fundamental task, for example, is determining what inputs are required.
This task must always be performed for any model, MIG or not. However, for
non-MIG models, the only way to find out what inputs are required is to either

1.ask the model developer, or
2.read the coding.

One problem with asking the developer is that different people use the same
terms to mean different things. The term “the yield stress”, for example, might
mean yield-in-tension to one developer and yield-in-shear to another. Another
problem with non-MIG models is that the developer rarely provides a com-
plete list of the input requirements. The developer might remember the inputs
on the calling arguments, but forget those passed via common blocks. In short,
asking the developer rarely leads to accurate results. The second option (read-
ing the model coding to determine the model input) requires considerable
physical understanding (not to mention time) on the part of the installer. By
contrast, the advantages of a MIG model are

• The list of required inputs is easy to find (in the ASCII data file
under the key phrase “input”).

• The list of required inputs is exhaustive (i.e, complete).
• The meaning of any input is always unambiguous because the

migtionary defines terms uniquely.
• Where to place the inputs in the call to the model driver is always

clear (because MIG standardizes it).
• All input is passed via calling argument, not via common.

Consequently, the time and effort required to identify and supply model
inputs is considerably less with MIG than without MIG, even if this task is
done by hand. The code architect may optionally decide to write a utility that
locates the input list in the ASCII data file and automatically generates a code
fragment to be inserted into the parent code to transfer requested input from
the particular code’s data arrays into arguments in a call to the model’s driver.

*For example, EPIC [3] and LLNL-DYNA [4,5].

34

The Parent Code Architect MIG 0.0

Some tasks can be expected to occur so infrequently that simply perform-
ing them by hand on a case-by-case basis may be the more prudent approach.*

For example, the code architect for a shock-physics code might decide not to
support installation of models that are not in cgs or consistent model units
(conventionally used in shock-physics problems). What would this architect do
on the occasions that a model comes along in other units? The architect would
just handle it by hand, the way models were handled before MIG existed. The
MIG model installer may confidently and quickly determine if special units
handling is required because information about units will always be found in
the same place for any MIG model (in the ASCII data file under the key phrase
“model units”). Again, even a task performed by hand will likely be accom-
plished faster for a MIG model than for a non-MIG model.

Partial functionality
The architect must carefully read the guidelines to ensure that all things

promised to the model developer will indeed be available. Importantly, it is not
really necessary to enable all capabilities all at once — it would probably be
folly to attempt to do so. The best example is the migtionary. Surely most par-
ent codes would never need every term in the migtionary. A mechanics code,
for example, might never employ a model that uses EXTENT_OF_REACTION.
The code architect may therefore wish to establish an “abridged” migtionary
containing only those migtionary terms that the parent code understands. The
code architect may even wish to establish a parent code “dialect”, defining
alternative aliases for terms in the migtionary, and parent code “slang” defin-
ing terms that are not in the migtionary but are treated as though they were.
With such a structure, the architect could merely expand the parent code’s
vocabulary on an as-needed basis. This “abridged migtionary” approach is dis-
cussed briefly on page E-23.

Sharing models between different parent codes
Another important goal of MIG is to provide a way for very different codes

(such as Eulerian and Lagrangian codes) to run the same model using identi-
cal model subroutines. Naturally, to accomplish such a goal, one or both of the
parent codes will incur some overhead. For example, a model optimized to run
well on an Eulerian code might not run as well on a Lagrangian code, and vice
versa. Therefore, the code architect must work closely with the code installer
to decide exactly what is wanted out of any particular model. If single-code
performance is desired and portability is not a concern, the code architect may
decide to actually modify the model’s subroutines to suit the parent code. This
may involve, for example, adjusting requested inputs to exactly match what’s
available in the parent code, or it may involve modifying the routines to per-
form tasks differently (for example, large-rotation kinematics might be moved
from the model to the parent code). The code architect must accept the prices

*This is especially true during MIG’s “moving-target,” version-zero, development phase.

35

MIG 0.0 The Parent Code Architect

paid for modifying a MIG model routine, namely: (1) the model will no longer
freely port, (2) honest code-to-code comparisons will become impossible, and
(3) the original developer will no longer be obligated to maintain the model.

ASCII data processing in general
Probably the first job of the code architect is to decide how information in

the ASCII data file will be used. The ASCII data file contains the vast majority of
information about the nature of the model. The way in which the ASCII data
file is processed is entirely up to the parent code architect. The data file might
be simply copied into a large collection of such files which is processed by the
parent code during each calculation. Alternatively, the model data file may be
pre-processed to generate, say, source code or binary data files written in a for-
mat preferred by the parent code. These decisions are left entirely to the
whimsy of the architect. Examples of particular approaches to ASCII data pro-
cessing are provided on appendix pages F-1 and F-2.

Required Routines
Page 27 of the developer section of MIG promises that developers will

always have certain routines available to them. These routines (LOGMES,
BOMBED, FATERR, FATRET, etc.) perform tasks such as recording and reporting
error messages and terminating the calculation in a graceful way. The ways in
which these tasks are accomplished will vary from parent code to parent code.
For example, one parent code’s version of BOMBED might write restart files and
perform diagnostics before stopping the calculation, while another parent
code’s version of BOMBED might simply stop without even printing out a mes-
sage — it is entirely up to the code architect.

Shown below are examples of the simplest forms that the required routines
might take. Architects should feel free to use these routines as a starting
point, perhaps enhancing them to suit their code’s unique needs.

 SUBROUTINE LOGMES(MESAG)
 PARAMETER (ILOG=12)
 CHARACTER*(*) MESAG
 PRINT*,MESAG
 WRITE(ILOG,*)MESAG
 RETURN
 END

--
 SUBROUTINE SPRINT(MESAG)
 PARAMETER (IOUT=33)
 CHARACTER*(*) MESAG
 WRITE(IOUT,*)MESAG
 RETURN
 END

--
 SUBROUTINE BOMBED(MESAG)
 CHARACTER*(*) MESAG
 PRINT*,MESAG
 PRINT*,'----ABORTING CALCULATION!----'
 STOP
 END

36

The Parent Code Architect MIG 0.0

--
 SUBROUTINE FATERR(CALLER,GRIPE)
 CHARACTER*(*) CALLER,GRIPE
 SAVE NERR
 DATA NERR/0/
 NERR=NERR+1
 PRINT*,'fatal error detected by routine ',CALLER
 PRINT*,GRIPE
 RETURN
C
 ENTRY FATRET(KNTERR)
 KNTERR=NERR
 RETURN
 END
--

 SUBROUTINE TOKENS(N,SA,CA)
C***
C This routine converts the array of strings SA to a single character
C stream with a pipe (|) separating entries. For example, suppose
C
C sa(1) = 'first string '
C sa(2) = ' a witty saying '
C sa(3) = ' '
C sa(4) = 'last '
C
C Then the output of this routine is
C
C CA = 'first string| a witty saying||last|'
C input
C -----
C N: number of strings in SA (i.e., the dimension of SA)
C SA: array of strings
C
C output
C ------
C CA: single character stream of the strings in SA separated by pipes.
C
C BEWARE: it is the responsibility of the calling routine to dimension
C CA at least as large as N*(1+LEN(SA)).
C***
C calling arguments:
 INTEGER N
 CHARACTER*(*) SA(N)
 CHARACTER*1 CA(*)
C local:
 CHARACTER*1 PIPE,BLANK
 PARAMETER (PIPE='|',BLANK=' ')
 INTEGER I,KNT,NCHR,ICHR
 KNT=0
 DO 502 I=1,N
 DO 500 NCHR=LEN(SA(I)),1,-1
 500 IF(SA(I)(NCHR:NCHR).NE.BLANK) GO TO 7
 7 DO 501 ICHR=1,NCHR
 KNT=KNT+1
 CA(KNT)=SA(I)(ICHR:ICHR)
 501 CONTINUE
 KNT=KNT+1
 CA(KNT)=PIPE
 502 CONTINUE
 RETURN
 END

The rather obtuse routine TOKENS converts an array of strings to a stream
of characters, as explained in its prologue. It would normally be called in MIG
extra variable routines. TOKENS is necessary to accommodate parent codes
written in C or C++, which cannot handle string arrays. For parent codes writ-
ten in FORTRAN, the following routine (not required) may be used to convert
the character stream back to a string array:

37

MIG 0.0 The Parent Code Architect

 SUBROUTINE PARTOK(N,CA,SA)
C***
C This routine reverses the operation of subroutine tokens
C
C input
C ------
C N: number of strings in to be extracted from CA
C CA: single character stream separating strings in SA by pipes.
C
C output
C -----
C SA: array of strings
C
C***
C calling arguments:
 INTEGER N
 CHARACTER*(*) SA(*)
 CHARACTER*1 CA(*)
C local:
 INTEGER IS,KNT,M,I,MLS
 CHARACTER*1 PIPE
 PARAMETER (PIPE='|')
CC
C set upper bound on last needed character in CA
C worst case: each SA is packed.
 MLS=LEN(SA(1))
 M=(MLS+1)*N
C
 IS=1
 IF(IS.GT.N)RETURN
 KNT=0
 SA(IS)=' '
C
 DO 100 I=1,M
 IF(CA(I).EQ.PIPE)THEN
 IS=IS+1
 IF(IS.GT.N)RETURN
 KNT=0
 SA(IS) = ' '
 ELSE IF(KNT.LT.MLS)THEN
 KNT=KNT+1
 SA(IS)(KNT:KNT)=CA(I)
 END IF
 100 CONTINUE
 RETURN
 END

Storage allocation in general
The parent code has four basic storage allocation responsibilities. Namely,
• User input. The parent code must read and save the user inputs specified

in the ASCII data file.
• Global constants. The parent code must supply the parent code’s physical

units (for the given calculation) to the model’s data check routine in the
DC array. Upon output, the GC array contains dimensional constants (if
any), which must be stored by the parent code throughout the duration of
the calculation.

• Derived constants. The parent code must allocate sufficient space for the
model to store material constants that are derived from the user inputs.

• Extra variables. The parent code must allocate space for extra field
variables (if any) requested from the model’s extra variable routine.

38

The Parent Code Architect MIG 0.0

The parent code is manages the database (including restarts if applicable) for
the above four model storage requirements, each of which is discussed in
greater detail now.

The USER INPUT

The parent code is responsible for reading user input (using keywords or
descriptive phrases indicated in the model’s ASCII data file) and storing the
input into parent code arrays. Typically, the parent code will allocate one such
user input array for each material that uses the model. The user input array
is always passed to the model through the calling arguments of the required
routines.The parent code must keep and save the user input arrays for as long
as the model might need them. Therefore, it is the parent code’s responsibility
to write user input to restart files (if applicable).

The Global Constants

The global constants should be regarded as dimensional universal parame-
ters. By “dimensional,” we mean that they have physical units associated with
them. By “universal”, we mean that they do not vary from material to mate-
rial. Examples include the speed of light and other physical constants, as well
as constants that are peculiar to the model such as pressure cutoff limits. If
these variables were dimensionless, the developer could simply define them
with a parameter statement. However, since they have dimensions, the devel-
oper must convert their values to whatever units the parent code is using (see
item #3 on page 20). For parent code storage of global constants, a single array
could be saved for each model. However, architects may find it more expedient
to simply “piggyback” global constants behind the user inputs, making sure
that copies of these constants are made for each material in the problem.

The Derived Constants

The derived constants may be stored in essentially the same way as user
input constants. The parent code must allocate enough space to store the max
number of derived constants (if any) requested in the ASCII data file. Before
calling any data check routine, the parent code must store unit conversion fac-
tors into the derived constants array, as mentioned on page 19. The derived
constants array is passed into the model’s data check routine, where values of
the derived constants are computed (overwriting the unit conversion factors),
usually using values in the user input array. As with the user input, the par-
ent code must save the derived constant array as long as the model might
need it.

The Extra Variables

Most developers will find the variables they need already listed in the mig-
tionary. However, more exotic models might use peculiar field variables for
which special-purpose storage must be allocated. By calling the model’s extra

39

MIG 0.0 The Parent Code Architect

variable routine, the parent code learns exactly how many extra variables are
required. The parent code must allocate storage for each extra variable in
basically the same way it would for any other field variable such as tempera-
ture. That is, for each extra variable, one floating point number per cell must
be allocated, where (recall) the meaning of “cell” could be a finite element, an
integration point, or other entity depending on the nature of the parent code.
The parent code is also responsible for storing extra variable plotting informa-
tion such as the variable name. Of course, the parent code architect always
has the option of ignoring plot information (though they would be denying
users the opportunity to visualize the evolution of extra variables).

The architect will likely write a subroutine — lets call it SETXD — to set
extra variable defaults to the values promised on page 22 of the developer sec-
tion of MIG. SETXD would be called just before any call to a MIG extra vari-
able routine. The architect will also likely write a routine — lets call it SAVXV
— that would be called immediately after any MIG model’s extra variable rou-
tine and which would save (allocate) space in the parent code’s field arrays for
each requested extra variable. With these two routines written (a one-time
effort), the architect may formulate a plan for handling MIG extra variable
needs:

1. Read the ASCII data file to determine the name of the extra variable
routine — for illustration suppose it’s called MDLXV.

2. Generate (automatically or by hand) a code fragment of the form
 CALL SETXD(...) ← parent code sets extra variable defaults
 CALL MDLXV(...) ← model specifies extra variable requirements
 CALL SAVXV(...) ← parent code meets extra variable requirements

3. Insert the code fragment into the section of the parent code where stor-
age requests are processed.

Examples of particular approaches to storage allocation are provided on
appendix pages F-5 and F-7.

Interface drivers in general
Of the three required MIG routines (data check, extra variable, driver), the

most important is, of course, the driver. This routine performs the physics
behind the model. Unlike the other routines that are called only once (per
material), the driver routine is called every computational cycle and the phys-
ics is applied for every computational “cell” (finite element, integration point,
etc.).

If the parent code is running in a vectorized mode, cells are processed in
groups of size equal to the driver’s second argument NC, which stands for
“number of cells.” NC is often set to, say, 512, for optimal vectorized perfor-
mance, though some parent codes [see, for example, appendix page F-8] may
simply set NC to equal the number of cells in the current row.

If, on the other hand, the parent code is running in scalar mode (as for par-
allel implementations), the physical data are probably stored in a cache-opti-
mum order that requires both NC and the dimensioning argument MC to be

40

The Parent Code Architect MIG 0.0

set equal to unity [see, for example appendix page F-11 and item #8 on page
G-15].

As mentioned on page 24, the first five arguments of any MIG driver are
always the same. The first argument, MC, is used in the driver to dimension
field variables — especially those such as vectors and tensors that have more
than one associated scalar. If the parent code happens to store stress in an
array dimensioned SIG(IMAX,6), but the parent code is processing only the
cells from IBEGIN through IEND (with IEND<IMAX), then the parent code
would send MC equal to IMAX and NC equal to IEND–IBEGIN+1. Thus, for
example, if one of the input-output variables for the model driver is stress
SIG, dimensioned in the parent code SIG(IMAX,6), then a vectorized code
[appendix page F-8] would call the driver with a code fragment of this form:

 NCELLS=IEND-IBEGIN+1
 CALL DRIVER(IMAX,NCELLS, parent code’s UI, GC,DC pointers,
 $ SIG(IBEGIN,1), remainder of the driver’s input/output arguments)

In other words, a vectorized code will send cells to be processed in groups.
Cache-based parallel codes, on the other hand probably store stress in an
array that is (effectively) dimensioned SIG(6,IMAX). As mentioned above,
these codes generally run in scalar/parallel mode, so they send MC and NC
both equal to unity and they call the driver from a loop over cells like this:

 DO 100 I=IBEGIN,IEND
 CALL DRIVER(1,1, parent code’s UI, GC,DC pointers,
 $ SIG(1,I), remainder of the driver’s input/output arguments)
100 CONTINUE

In the above examples, the “parent code’s UI, GC, and DC pointers” are the
start of data for the user input, global constants, and derived constants dis-
cussed earlier.

Surrounding each of the above sample drivers code fragments is presum-
ably a loop over all materials that are modeled with the particular MIG driver.
Hence, as apparent in Appendix F, the interface between the parent code and
the model driver may be complicated or simplified depending on whether data
for materials are packed contiguously. If not, a software gather and scatter
that “closes” the gaps may be required [see, for example, page F-8].

Processing migtionary terms
Several issues must be considered if the architect is interested in process-

ing migtionary terms by some sort of automated utility:

1. Limited vocabulary. The parent code architect may wish to cre-
ate an abridged migtionary that contains only that subset of the
terms in the migtionary which are actually used and understood by
the parent code. Such a capability is written into the utility
“migchk” described in Appendix E. Of course the parent code may
need to access the unabridged migtionary to verify that terms in an
ASCII data file are valid regardless of the parent code’s own limited
vocabulary.

41

MIG 0.0 The Parent Code Architect

2. Scratch. One “standard” keyword available to all MIG models is
SCRATCH~# where # represents a location in the parent code’s
scratch array. Since # may be any integer, the parent code cannot
anticipate a priori how many scratch spaces are needed. One sim-
ple way to handle the situation is to wait until a model asks for a
particular piece of scratch, and then to treat the particular
SCRATCH~# as a standard migtionary term.

3. Operators. Determining validity of a migtionary keyword is com-
plicated by the possibility of operators (such as ~GRADIENT or
~RATE). Computing and storing all possible combinations of mig-
tionary terms and operators would be awkward and inefficient. A
rather straightforward alternative is to examine terms with opera-
tors only as they are accessed by the user or by the parent code. If
the operators on the term are deemed to be valid (e.g., ~SYM is not
acting on a scalar), the operated term could then be saved and
thereafter treated as an ordinary migtionary term.

4. Aliases. Not only are aliases pre-defined in the migtionary, but
they may also be used temporarily by a particular model. An auto-
mated utility must be able to decide if an alias is indeed pointing to
a valid migtionary term.

Effectively addressing each of the above tasks in an automated way is non-
trivial and may well be best postponed until it is clear that the effort to create
and maintain such a utility is less than the effort to simply process migtionary
terms by hand. One architect’s approach is provided on appendix page F-12.

Summary
A great deal of initial preparation is required from the architect to make a code
“MIG-compliant.” A plan must be formulated for delivering every promise
made to developers. The plan must be simple enough to execute that it will save
time in the long run. Achieving this goal might entail writing data checking
and code generating utilities for common tasks. A good approach is to slowly
add MIG capabilities to your code on an as-needed basis, perhaps using the
examples in Appendix F as a guide.

42

The Model Installer MIG 0.0

The Model Installer

The model installer is the person who places a completed standard model
package into the parent code. In principle, the model installer need not know
very much about the model. The model installer merely places subroutine
calls to the new model, regarding it as a “black box.” One purpose of a stan-
dard interface is to minimize the work of the model installer. Therefore, the
parent code architect has done a good job if the responsibilities of the model
installer can be accomplished in a very short time. As long as a model is avail-
able in MIG package form, it can be installed quickly and easily into any code
that supports MIG, which is one goal of this work.

Responsibilities of the model installer depend on the way in which the
interface was incorporated into the parent code. The code architect is respon-
sible for providing the model installer with installation instructions.

Model installation instructions for CTH

A set of instructions for installation of MIG models into CTH is available
locally at “file:/home/rmbrann/MIG/docs/www/cthmig.html#installers”.

Model installation instructions for ALEGRA

A set of instructions for installation of MIG models into ALEGRA is avail-
able locally at “file:/home/rmbrann/MIG/docs/www/alegramig.html#install-
ers”.

43

MIG 0.0 References

References
1J.M. McGlaun, S.L. Thomson, and M.G. Elrick, CTH: A three-dimension-

al shock wave physics code. Int. J. Impact Engr., Vol 10, No. 1-4, pp. 351-360
(1990).

2Summers, R. M., J. S. Peery, and M. K. Wong, “Recent Progress in
ALEGRA Development,” submitted to HVIS 96, June 1996.

3Johnson, G. R., Stryk, R.A., Holmquist, T.J., and Beissel, S.R., User in-
structions reference for 1996 EPIC code, Alliant Techsystems Report March,
1996.

4Whirley, G., Englemann, B. E., and Hallquist, J. O., DYNA2D: A Nonlin-
ear, Explicit, Two-Dimensional Finite Element Code for Solid Mechanics User
Manual, Lawrence Livermore National Laboratory Report UCRL-MA-110630,
Livermore, CA, April 1992.

5Whirley, G., Englemann, B. E., and Hallquist, J. O., DYNA3D: A Nonlin-
ear, Explicit, Three-Dimensional Finite Element Code for Solid and Structural
Mechanics -- User Manual, Lawrence Livermore National Laboratory Report
UCRL-MA-107524, Rev 1, Livermore, CA, November 1993.

6Sedov, L.I., Similarity and Dimensional Methods in Mechanics,
10th Edition, 1993, CRC Press, page 4.

7Taylor, P.A., CTH Reference Manual: The Bammann-Chiesa-Johnson
Viscoplastic/Damage Model, Sandia National Laboratories Report SAND96-
1626 (1996).

8Taylor, P.A., CTH Reference Manual: The Steinberg-Guinan-Lund Visco-
plastic Model, Sandia National Laboratories Report SAND92-0716 (1992).

9Sjaardema, G. D., APREPRO: An algebraic preprocessor for parameteriz-
ing finite element analyses. Sandia National Laboratories Report SAND92–
2291 (1992).

44

Intentionally Left Blank

A-1

MIG 0.0 Appendix A: MIG Primer

APPENDIX A: MIG Primer

Part 1: DEVELOPER’s Guide.

How to Create a MIG Package for Linear Elasticity.
Here we illustrate the process of creating a MIG-compliant numerical

package by using Hooke’s law of linear elasticity as an example. For interest,
we will throw in a twist that the elastic constants are different in tension and
compression. Part 2 of this primer is devoted to a discussion of how to imple-
ment our simple Hooke’s law MIG model into a parent code.

Before you start.
Lightly skim the MIG documentation. You will see that a completed MIG

model minimally consists of these items:
1. An ASCII data file listing important information about the model.
2. A set of subroutines implementing the model.

Before you can put together a MIG-compliant numerical package, you must
look critically at the theory itself.

Characterize the theory
Let, , , and be strains in the x, y, and z directions, respectively, and
, , and be the corresponding stresses. Let and be the shear

strains and stresses. Hooke’s Law states

(A.1)

where Young’s modulus E and Poisson’s ratio ν are material constants, and

. (A.2)

εx εy εz
σx σy σz γ ij σij

σ

ε

τ

γ

E

µ

εx
1
E
--- σx ν σy σz+()–[]=

εy
1
E
--- σy ν σz σx+()–[]=

εz
1
E
--- σz ν σx σy+()–[]=

γ xy

τxy

µ
-------=

γ yz

τyz

µ
------=

γzx

τzx

µ
------=

µ E
2 1 ν+()
--------------------=

A-2

Appendix A: MIG Primer MIG 0.0

Rephrase the theory for numerical implementation
People who are familiar with linear elasticity might be tempted to skim

this section and go straight to the final conclusion [Eq. (A.6)]. But the point of
this section is not the development of the theory. The lesson is that model
developers should be nominally conscious of the general way that parent codes
work so that they can deliver a consistent model in a useful format.

Most codes store stresses and strains in tensor (matrix) form. Rather than
using a Cartesian xyz system, most codes use an orthogonal 123 system where
the 1-, 2-, and 3- directions are defined by the parent code according to the
geometry of the problem [see GEOM on “migtionary” appendix page B-17].

The matrix version of Eqn (A.1), namely,

, (A.3)

is better suited for numerical implementation. Here,

, , and , (A.4)

and

. (A.5)

Most codes provide the strain rate (or increment) as input and expect the
updated stress as output. Hence, a better form for implementation is obtained
by taking the rate of both sides of (A.3) and solving for the stress rate to give

, (A.6)

where the Lamé modulus λ is defined

. (A.7)

The ASCII data file
On page 9 in the “developer” section of the main MIG documentation, you

will find a lengthy discussion of the so-called “ASCII data file,” which contains
important information that any model installer would need to get a model
implemented in a code. Here is how a data file for Hooke’s law might look:

ε
˜

1 ν+
E

------------ σ
˜

ν
E
--- tr σ

˜
() I

˜
–=

ε
˜

εx
1
2
---γ xy

1
2
---γ zx

1
2
---γ xy εy

1
2
---γ yz

1
2
---γzx

1
2
---γ yz εz

≡ σ
˜

σx τxy τzx

τxy σy τyz

τzx τyz σz

≡ I
˜

1 0 0

0 1 0

0 0 1

≡

tr σ
˜

() σ11 σ22 σ33+ +≡

σ
˜
˙ 2µ ε

˜
˙ λtr ε

˜
˙() I

˜
+=

λ Eν
1 ν+() 1 2ν–()

--------------------------------------≡

A-3

MIG 0.0 Appendix A: MIG Primer

You must supply information about your model after all applicable “key
phrases” (shown here in bold). The order of key phrases is unimportant. The
information may begin on the same line as a key phrase or on any subsequent
line. The remainder of this primer will explain how you decide which key
phrases apply to your model (as well as how to provide values to the key
phrases). As you create your ASCII data file, make sure that you answer all
questions that an installer (unfamiliar with Hooke’s law and your implemen-
tation of it) would normally need to ask you if they were handed only your
model routines. What inputs do you need? What outputs do you provide?
Where are these values placed in the calling argument list? How much storage
must be reserved? You will have written a quality ASCII data file if a MIG
installer is able to hook your model into a parent code without having to con-
sult you and without having to examine your model’s routines.

! HOOKE MIG0.0
Short model name: Hooke’s Law
Descriptive model name :
Hooke’s Law of linear elasticity with pressure-dependent elastic constants.

Theory by:
Robert Hooke and Thomas Young ← the mathematician and scientist credited for the theory.
Coded by: Jane Hacker ← your name, since you are creating the MIG numerical package.

MIG library: hooke.f ← name of the file containing the required MIG routines
input check routine name: HCHK ← name of the input check routine itself
extra variable routine name : HXT ← this is a dummy routine for Hooke’s Law
driver routine name: HLDRVR ← this routine applies Hooke’s Law.

alias: STRAIN_RATE=VELOCITY~GRADIENT~SYM

input: TIME_STEP STRAIN_RATE
input and output: STRESS

material constants:
Ec (-1,1,-2) "Young’s modulus in compression"
NUc () "Poisson’s ratio in compression"
Et (-1,1,-2) "Young’s modulus in tension"
NUt () "Poisson’s ratio in tension"

data units: inch slug second
remark: 1 psi = 12 slug/(in*sec^2)
remark: Ec NUc Et NUt
material constants data base:

 USER 0. 0. 0. 0.
P93Steel 348.0e6 0.261 314.8e6 0.257

6061-T6-Aluminum 120.0e6 0.327 0. 0.

note:
The material P93Steel is ASTM-A36 steel with 5% porosity.
The compressive elastic constants for aluminum are for fully dense aluminum.
The user MUST supply appropriate tensile values for the Aluminum.

max number of derived constants: 4
done: 2/28/96

You make up these
routine names.

You find these variable names

You make up descriptive
names for your user input
constants.

in the “migtionary”

A-4

Appendix A: MIG Primer MIG 0.0

Can your model be run in any consistent set of units?
Most model developers answer “yes” to this question, but they are rarely

right. Unit dependencies can be very well hidden. The only way you can
answer “yes” with confidence is to actually run your MIG model using several
units combinations. Unit-dependent models can be highly inelegant and ineffi-
cient. The main MIG documentation (page 19) discusses in great length how
you can write a unit-independent model. If a model must be run using a par-
ticular set of units, the ASCII data file would contain the key phrase “model
units ”. The fact that our Hooke’s law data file does not have this key phrase
means that our model can be run in any consistent set of units.

Characterize needed user inputs
We wish to create a MIG implementation of equation (A.6). The most

important step is identifying what values are needed as input and whether or
not these values are material constants or field variables (i.e., variables that
vary in space and time).

Hooke’s law requires two material constants, Young’s modulus E and Poi-
son’s ratio ν. Allowing different elastic moduli in tension (T) and compression
(C), our implementation has four user inputs:

(A.8)

Note how these user inputs are specified in the ASCII data file (page A-3)
under the key phrase “material constants ”. You (the developer/coder)
dream up the name for each user input. In this case, we used the descriptive
names Et , NUt, Ec, and NUc.

Young’s modulus has dimension of force per area. In your ASCII data file, the
physical dimensions of user inputs are specified by a series of numbers in
parentheses. The first three numbers represent the exponents on length,
mass, and time respectively. Thus, since

, (A.9)

the Young’s moduli are followed by “(-1,1,-2) ”. For other models that need
dimensions such as temperature or electric current, refer to item #14 on page
14 of the main MIG documentation.

Do you have data for any precharacterized materials?
Our Hooke’s law data file (page A-3) has a “material constants data

base ” for steel and aluminum. Of course, even though our model may be run
in any set of units, we must use some set of units to specify this precharacter-
ized material data. The ASCII data file states that these “data units ” are
(ack!) English units. Since the user input Et is known to have dimensions of

ET νT EC νC, , ,

force
area
------------ length() 1– mass()1 time() 2–=

A-5

MIG 0.0 Appendix A: MIG Primer

, the parent code has all the information it needs to
convert the data for Et (given in slug/in·s2) to whatever unit system (e.g., met-
ric) it uses. Since many people forget how to convert pounds to slugs, the ASCII

data file uses the “remark ” key phrase to mention a useful conversion factor.

Identify input/output to be exchanged with the parent code

If we intend to use Eq. (A.6) to provide an updated value of the stress, we
will require the following three variables as input from the parent code:

, the STRAIN_RATE

, the STRESS (at the beginning of the step)
, the TIME_STEP (A.10)

Our model will provide only one output

, the STRESS (at the end of the step) (A.11)

Observe how these inputs and outputs are specified in the ASCII data file using
the keywords TIME_STEP, STRAIN_RATE, and STRESS. Unlike user inputs (for
which names are conjured up by the MIG developer), these i/o field variable
names, must be taken from the special dictionary of technical terms in Appen-
dix B of the main MIG documentation, or — as with STRAIN_RATE — they
must be aliased to a standard term. As a new user of MIG, you should spend
some time browsing the contents of this “migtionary” to see which variables
you might eventually use for your own models.

Are there derived material constants?

Tensile and compressive values of µ and λ may be derived from the corre-
sponding moduli in Eqn (A.8). Since these derived constants play such an
important role in the governing equation (A.6), an efficient program would
compute and save them from the user inputs once and for all, using the saved
computed constants throughout the remainder of the calculation.

Are there user input sanity checks?

You should always perform checks of the user inputs to ensure that they
are physically reasonable. For linear elasticity, positive definiteness of the
elastic response requires that E>0 and that . A well-written code
should abort if either of these conditions fails. While negative values of Pois-
son’s ratio are possible (for reentrant microstructures), they are certainly
unusual, and a good programmer might wish to log an alert if a negative Pois-
son’s ratio is encountered.

length() 1– mass()1 time() 2–

ε
˜
˙

σ
˜ ∆t

σ
˜

1– ν 1 2⁄< <

A-6

Appendix A: MIG Primer MIG 0.0

The DATA CHECK routine
User input sanity checks and the computation of derived material con-

stants are performed in the required “data check” routine. Our ASCII data file
says the name we gave this routine is “HCHK”. The data check routine is gen-
erally the first routine you will write whenever you create a MIG-compliant
implementation of your model. Here is the data check routine for our simple
Hooke’s law:

1 SUBROUTINE HCHK (UI, DUM, DC)
2 C**
3 C REQUIRED MIG DATA CHECK ROUTINE
4 C Checks validity of user inputs for Hooke's Law
5 C Calculates and stores derived material constants.
6 C
7 C input
8 C -----
9 C UI: user input as read and stored by parent code.
10 C
11 C output
12 C ------
13 C UI: user input array
14 C DUM: dummy placeholder (no model global constants)
15 C DC: constants derived from the user input.
16 C
17 C author: Jane Hacker
18 C************************ abc mm/yy *******************************
19 IMPLICIT DOUBLE PRECISION (A-H,O-Z) ← Mandatory
20 PARAMETER (HALF=0.5D0,ZERO=0.0D0,ONE=1.0D0,TWO=2.D0)
21 DIMENSION UI(*), DC(*)
22 CHARACTER*6 IAM
23 PARAMETER(IAM = 'HCHK') ← Name of this routine.
24 C ~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 C Transfer values from the user input array to variables with
26 C descriptive names (same order as listed in ASCII data file).
27 C
28 Ec = UI(1) ←Compare this coding with the list of user inputs
29 rNUc = UI(2) in the ASCII data file on page A-3 under the key
30 Et = UI(3) phrase “material constants”
31 rNUt = UI(4)
32 C
33 C ~~~~~~~~~~~~~~~~~~~~~~~~~~~ For bad inputs call the MIG utility FATERR
34 C Check validity of user input described on MIG page 27. For unusual
35 but permissible input, call LOGMES.
36 IF(Ec.LE.ZERO)CALL FATERR(IAM,'Neg. compressive Modulus!')
37 IF(Et.LE.ZERO)CALL FATERR(IAM,'Neg. tensile Modulus!')
38
39 IF(rNUc.LE.-ONE.OR.rNUc.GE.HALF)THEN
40 CALL FATERR(IAM,'Bad value for compressive Poisson ratio')
41 ELSE IF(rNUc.LT.ZERO)THEN
42 CALL LOGMES('Neg. compressive Poisson? [okay, but unusual]')
43 END IF
44
45 IF(rNUt.LE.-ONE.OR.rNUt.GE.HALF)THEN
46 CALL FATERR(IAM,'Bad value for tensile Poisson ratio')
47 ELSE IF(rNUt.LT.ZERO)THEN
48 CALL LOGMES('Neg. tensile Poisson? [okay, but unusual]')
49 END IF
50 C ~~~~~~~~~~~~~~~~~~~~~~~~~~~
51 C Compute derived constants
52 (do so only if user input is good)
53 CALL FATRET(NERR) ← NERR = # calls made to FATERR.
54 IF(NERR.NE.0)RETURN (if nonzero, abort remainder of routine)
55
56 C --compressive and tensile shear moduli--
57 rMUc=Ec/(TWO*(ONE+rNUc))
58 rMUt=Et/(TWO*(ONE+rNUt))

A-7

MIG 0.0 Appendix A: MIG Primer

59 C --compressive and tensile lame moduli--
60 rLAMc=Ec*rNUc/((ONE+rNUc)*(ONE-TWO*rNUc))
61 rLAMt=Ec*rNUt/((ONE+rNUt)*(ONE-TWO*rNUt))
62 C
63 DC(1)=rMUc ← Store derived constants into the DC array.
64 DC(2)=rMUt
65 DC(3)=rLAMc
66 DC(4)=rLAMt
67 C ~~~~~~~~~~~~~~~~~~~~~~~~~~~
68 RETURN
69 END

The parent code is responsible for reading all your user inputs and storing
them into the UI array in the same order that you define them in the ASCII

data file. The ASCII data file says the user inputs are Ec, NUc, Et, and NUt.
Thus, the UI array contains those values in that order. In lines 28-31, the user
inputs have been stored into variables with more descriptive names simply to
make the code more readable. By permitting the parent code to handle all
reading of user input, different parent codes may use the same MIG model
without forcing their users to learn a new input syntax. Furthermore, storage
of the user input is the responsibility of the parent code. You may assume that
the user input will always be available to you via the UI calling argument.

As explained on page 20 of the main MIG documentation, the second argu-
ment to the above data check routine would ordinarily be an array for dimen-
sional global constants (i.e., parameters such as the universal gas constant or
the speed of light that have physical units and cannot, therefore, be defined
with a parameter statement). Since this model uses no dimensional global
constants, its second argument is just a dummy placeholder.

In lines 35-50, the user inputs are checked to ensure they have reasonable
values. If a value is deemed bad, the routine calls a utility called “FATERR”.
This fatal error utility is not written by you (the developer), but you may
always assume that it is available to you, as discussed on page 27 of the main
MIG documentation. Likewise, you may assume that the message passing
routine “LOGMES” is always available to you. Note how FATERR was used to
report bad values, while LOGMES was used to report unusual, but permissi-
ble, input.

The last task performed in the data check routine is the calculation of con-
stants that are derived from the user input values. In lines 51-66 in the above
listing, the equations (A.2) and (A.7) are applied using the compressive and
tensile Young’s moduli and Poisson’s ratios. The results are stored in the DC
array. Later on, in the driver routine, these values may be accessed whenever
needed without having to be recalculated. You, the developer, don’t have to
worry about allotting enough storage for the contents of the DC array. The
parent code is responsible for all database management. The information it
needs is provided in your ASCII data file under the key phrase “max number
of derived constants ”, which tells the parent code how much space it
must reserve for your derived constants.

Incidentally, suppose the user wrongly inputs a Poisson’s ratio ν of 1/2.

A-8

Appendix A: MIG Primer MIG 0.0

Then you would not want to compute the Lamé modulus λ of Eq. (A.7); doing
so would cause division by zero. Of course lines 40 and 46 in the above listing
would have detected the bad user input, but, as explained on page 27 in the
developer section of the main MIG documentation, a call to FATERRdoes not
halt the calculation. Lines 53-54 in the data check routine query whether any
calls have been made to FATERR; if so, the routine merely returns.

The extra variable routine
For our simple Hooke’s law model, all needed field variables (STRAIN_

RATE, and STRESS) may be found in the migtionary. More complicated models
might use bizarre or specialized field variables not conventional enough to
appear in the migtionary. Such models would handle these exotic field vari-
ables by using “extra variables”, which are explained on page 21 of the main
MIG documentation. Hooke’s law uses only conventional variables already
listed in the migtionary, so it does not require any extra variables. Hence, its
extra variable routine is just this dummy routine (named HXT as promised in
the ASCII data file):

70 SUBROUTINE HXT(DUM1,DUM2,DUM3,
71 & DUM4, DUM5, DUM6, DUM7, DUM8, DUM9, DUM10, DUM11)
72 C**
73 C REQUIRED MIG EXTRA VARIABLE ROUTINE
74 C This implementation requires no extra variables,
75 C so this is just a dummy routine.
76 C
77 IMPLICIT DOUBLE PRECISION (A-H,O-Z) ← Mandatory
78 RETURN
79 END

Since this is a dummy routine, the arguments are dummy arguments. MIG
extra variable routines always have exactly eleven arguments.

The driver
The final required MIG routine is the driver, which performs the physics of

the model. The ASCII data file indicates that we decided to name this routine
“HLDRVR”. The first five arguments of any MIG driver are always the same,
namely,

• MC used for dimensioning field arrays,

• NC the number of cells to process,

• UI the user inputs,

• GC the global constants (not used for this simple model), and

• DC the derived constants computed in the data check routine.

The remaining arguments are just the input and output variables in the same
order as listed in the ASCII data file (page A-3) under the key phrases “input ”
and “input and output ”.

Here is the driver for our simple Hooke’s Law:

A-9

MIG 0.0 Appendix A: MIG Primer

80 SUBROUTINE HLDRVR (MC,NC,UI,GC,DC, ← first 5 arguments always the same.
81 & DT,STNRT,SIG) ← input/output as listed in the ASCII data file.
82 C**
83 C REQUIRED MIG DRIVER ROUTINE for Hooke's Law
84 C Loops over a gather-scatter array.
85 C
86 C MIG input ←Obligatory (all MIG models have this input)
87 C ---------
88 C NC: Number of gather-scatter "cells" to process
89 C UI: user input array
90 C GC: model global constants array (dummy)
91 C DC: derived material constants array
92 C
93 C MIGtionary input and/or output ← From input/output keyphrases in
94 C ------------------------------ the ascii data file.
95 C DT: TIME_STEP [input]
96 C STNRT: VELOCITY~GRADIENT~SYM (the strain "rate") [input]
97 C SIG: CAUCHY_STRESS [both input and output]
98 C
99 C author: Jane Hacker
100 C************************ abc mm/yy *******************************
101 IMPLICIT DOUBLE PRECISION (A-H,O-Z) ← Mandatory
102 PARAMETER (ZERO=0.0D0,TWO=2.D0)
103 DIMENSION UI(*),GC(*),DC(*)
104 DIMENSION STNRT(MC,6),SIG(MC,6) ← Only field variables require
105 C ~~~~~~~~~~~~~~~~~~~~~~~~~~~ dimensioning, not the global
106 C Transfer values from the derived constants variable TIME_STEP, which is
107 C array to variables with more descriptive names: the same for all cells.
108 C
109 rMUc = DC(1) These derived constants are retrieved
110 rMUt = DC(2) from the DC array in exactly the same
111 rLAMc = DC(3) order they were computed in the
112 rLAMt = DC(4) data-check routine on page A-6.
113 C
114 C __
115 C / Compute promised output (STRESS) for each cell \
116 C/ \
117 DO 100 I=1,NC
118 C Use stress at the beginning of the time step to decide if
119 C the material is in compression or tension.
120 SIGSUM=SIG(I,1)+SIG(I,2)+SIG(I,3)
121 C
122 C Use compressive moduli if under compression,
123 C tensile moduli otherwise.
124 C
125 IF(SIGSUM.LT.ZERO)THEN
126 TWOMU=TWO*rMUc
127 TERM2=rLAMc* (STNRT(I,1)+STNRT(I,2)+STNRT(I,3))
128 ELSE
129 TWOMU=TWO*rMUt
130 TERM2=rLAMt* (STNRT(I,1)+STNRT(I,2)+STNRT(I,3))
131 END IF
132
133 C Apply Hooke's law (equation A.6 in the theory)
134
135 SIG(I,1)=SIG(I,1) + DT* (TWOMU*STNRT(I,1)+TERM2)
136 SIG(I,2)=SIG(I,2) + DT* (TWOMU*STNRT(I,2)+TERM2)
137 SIG(I,3)=SIG(I,3) + DT* (TWOMU*STNRT(I,3)+TERM2)
138 SIG(I,4)=SIG(I,4) + DT* (TWOMU*STNRT(I,4))
139 SIG(I,5)=SIG(I,5) + DT* (TWOMU*STNRT(I,5))
140 SIG(I,6)=SIG(I,6) + DT* (TWOMU*STNRT(I,6))
141
142 100 CONTINUE
143 c\ /
144 C __/
145 C
146 C
147 RETURN
148 END

A-10

Appendix A: MIG Primer MIG 0.0

For code readability, lines 109-112 transfer values from DC to variables with
more descriptive names. Then, in lines 118-132, the trace of the stress tensor is
examined to decide whether to use the compressive elastic moduli or the ten-
sile moduli. Finally, in lines 135-140, Hooke’s law (eqn A.6) is applied.

Note how the stress and strain tensor are not stored as 3×3 arrays. Being
symmetric tensors, they are stored as 6 dimensional arrays whose values are
the 11, 22, 33, 12, 23, and 31 components, respectively. (This ordering is estab-
lished on page B-4 of the MIGtionary Appendix.) Hence, SIGSUM from line 120 is
the trace of stress, which is positive in tension and negative in compression.

Finish up!
You, the developer, are responsible only for delivering your promised out-

puts. It is the job of the parent code architect to actually use the output of your
MIG model. Now that we have completed our ASCII data file and three required
routines for Hooke’s law, we are essentially finished. The completed MIG
model consists of the ASCII data file (you might want to give this file a descrip-
tive name such as “hooke.dat ”) together with the MIG library file, hooke.f ,
the name of which we cited in the ASCII data file. This file (hooke.f) is just the
concatenation of all 148 lines of the three required routines described above. If
you are working at a remote site, you might want to make the two MIG pack-
age files (hooke.dat and hooke.f) available via ftp or the world wide web.
Remember, though, that it is your responsibility to thoroughly check your
work by running your model on your own home-grown parent code and by
checking it for compliance with the main MIG documentation [see, for exam-
ple, the checklist on page E-22].

Part 2: ARCHITECT’s and INSTALLER’s Guide.

How to modify your parent code
to run a MIG model.

Let’s say you are the architect for a particular parent code. That means you
are tasked to modify your physics code to be able to utilize MIG-compliant
material models. Assuming you are at the beginning of the MIG learning
curve, you would be well advised to act as both architect and installer for a
while.

As an installer, you connect specific MIG models (such as the linear elastic-
ity model of the previous section) to your parent code. Initially, you should
simply install the model as you would any other non-MIG model with the key
difference that you must resist the temptation to examine the model’s source
code. Always assume the model is fully MIG-compliant. It can and should be
treated as a “black box.” You must have faith, for example, that it will not con-

A-11

MIG 0.0 Appendix A: MIG Primer

tain, say, common blocks from some other parent code. You must rest assured
that its input needs and output deliverables can be determined without hav-
ing to look at the source code. This information and more is available to you
from the ASCII data file that comes with any MIG-compliant model.

Your first MIG model installation.
Suppose you have just received the Hooke’s law MIG model developed in

the preceding section, and you wish to install it in your code. It is your first
MIG model. Actual tasks vary from parent code to parent code, but here is a
rough sketch of what you will need to do:

1. As you would with any model (MIG-compliant or not), determine
what user inputs are needed. Because the model is a MIG model,
you know exactly where to find this information: in the ASCII data
file on page A-3, under the key phrase “material constants ”.
You see that this model requires four user inputs: Et , NUt, Ec,
and NUc.

2. As you would with any model (MIG-compliant or not), examine
the model to see what kind of storage you will need to set aside
for material data. Because the model is a MIG model, you know
exactly where to find this information: in the ASCII data file on
page A-3. Counting the number of entries under the key phrase
“material constants ”, you already know that you will need to
reserve space for four constants per material. Save this space in
such a way that it may be passed to the model as a single array.
In your code, for example, this array might be dimensioned CON-
STM(MAXCON,NUMMAT), where MAXCON would be the max num-
ber of constants (in this case, at least four) and NUMMAT would be
the number of materials. This array could be used by all material
models in your code, not just the Hooke’s law model your are cur-
rently installing. The ASCII file key phrase “max number of
derived constants ” demands that you also save space for four
derived constants per material. You could simply “piggyback”
these constants in your CONSTM array if you increase MAXCON
appropriately.

3. As you would with any model (MIG-compliant or not), modify
your parent code to be able to read the user inputs. Don’t get
fancy — just make these modifications as you would for a non-
MIG model. If you decide to define the CONSTM array suggested
above, your coding would look (qualitatively) like this:

print*,’Enter Young’’s modulus in compression’
read(*,*)CONSTM(1,MAT)
print*,’Enter Poisson’’s ratio in compression’
read(*,*)CONSTM(2,MAT)

...
etc.

A-12

Appendix A: MIG Primer MIG 0.0

Note how the phrase “Young’s modulus in compression” comes
directly out of the ASCII data file — there is no need for guesswork
or even physical understanding of the user input. Of course, you
should modify the above coding so that you read user inputs for
the new MIG model in exactly the way you read inputs for all the
other (nonMIG) models in your code. Your users should perceive
no difference between MIG and nonMIG models. If applicable for
your code, it is your responsibility to ensure that the user input
and derived constants survive a code restart.

4. As you would with any model (MIG-compliant or not), check the
validity of values input by the user. Because the model is a MIG
model, you know precisely how to do this: via the data check rou-
tine. Just insert a call to the model’s data check routine, which
you know (from the ASCII data file on page A-3) is called “HCHK”.
The calling arguments for data check routines are the same for
any MIG model, namely:

• user inputs,
• global constants,
• derived constants.

Your call will look like this:

CALL HCHK(CONSTM(1,MAT),DUMY,CONSTM(5,MAT))

For each material, the user input is stored in the first four posi-
tions in the CONSTM array suggested in step 2. Derived mate-
rial constants are simply stored in the subsequent positions,
starting at CONSTM(5,MAT). Again, you may wish to handle your
data storage differently — that’s your prerogative. Note that the
second argument is a dummy placeholder. Ordinarily, the second
argument would be for dimensional global constants (like Boltz-
mann’s constant). You know that the Hooke’s law model has no
dimensional constants because its data file does not have an
entry under the key phrase “max number of global con-
stants ”. For models that do have global constants, see page 38
of the main MIG documentation.

5. Check the ASCII data file for the key phrase “max number of
extra variables ”. If the phrase is missing (or if the max num-
ber is specified as zero), the model has no extra variables. If there
were extra variables, you would need to call the model’s extra
variable routine to establish storage for them (see page 38 in the
main MIG documentation). The simple Hooke’s law model has no
extra variables.

6. As you would with any model (MIG-compliant or not), determine
what kind of storage you will need to establish for field variables.

A-13

MIG 0.0 Appendix A: MIG Primer

Because the model is a MIG model, you know exactly where to
find this information: in the ASCII data file on page A-3. Look
under the key phrase “input ”. The entry TIME_STEP is defined
in the migtionary. Look up the definition to be absolutely certain
that the definition in the migtionary is equivalent to what you
mean when you say “time step”. The migtionary also states that
the time step is a global variable, meaning it does not change
from computational cell to cell [see item #2 on page B-2]. Hence it
requires only one real space in memory. Since your parent code
undoubtedly already has a time step variable, you don’t need to
establish any new storage for TIME_STEP.

The second entry under the key phrase “input ” is STRAIN_RATE.
Recall that all entries under this key phrase must be defined in
the migtionary, but when you go to look up “STRAIN_RATE”, it
isn’t there! Go back to the ASCII data file on page A-3 and look for
the key phrase “alias ”; you will see that the term “STRAIN_
RATE” was invented by the model developer and is to be inter-
preted as VELOCITY~GRADIENT~SYM, which is well-defined in
the migtionary (symmetric part of the velocity gradient). Now
you must decide whether you need to allot any new storage for
this variable. Again, you must carefully examine the precise defi-
nition of the term. If you don’t already have a strain rate, then
you must establish storage for it.

7. As you would with any model (MIG-compliant or not), modify
your code to be able to provide all required input to the main
model driver. Because the model is a MIG model, all required
inputs are precisely defined in the migtionary. This precision of
language is one great advantage of MIG models; when the devel-
oper says a model requires, say, yield stress, you aren’t left won-
dering if that’s yield in shear or yield in tension — all terms are
defined in the migtionary. Your modifications should probably be
placed in the subroutine that will call the model driver, i.e., in
your code’s subroutine that calls material constitutive laws. You
will need to be sure that the time step is available in that rou-
tine. Less trivially, you will need to be sure that the strain rate
(symmetric part of the velocity gradient) is available. If you know
the velocity field, your code must somewhere have lines like
these that compute the symmetric part of the velocity gradient:

 SVLGRD(I,1)= (VX(I)-VX(I-1))/DX

 SVLGRD(I,2)= (VY(J)-VY(J-1))/DY

 SVLGRD(I,3)= (VZ(K)-VZ(K-1))/DZ

 SVLGRD(I,4)= 0.5* ((VX(J)-VX(J-1))/DY + (VY(I)-VY(I-1))/DX)

... etc.

A-14

Appendix A: MIG Primer MIG 0.0

More than likely, your parent code’s constitutive subroutine
already has the strain rate available, so lines like these might
already be in place. However, some codes compute only the devia-
toric part of the strain rate. If this is the case for your code, you
will have to add lines that also compute the isotropic part (i.e.,
the dilatation) so that you will be able to construct the total
strain rate required by the model. Components of the symmetric
part of the velocity gradient (i.e., the strain “rate”) must be com-
puted and stored in precisely the same order as defined in the
migtionary. If your code’s ordering is different, you may need to
do a software gather into a scratch array with the right ordering.

8. Recall that you are supposed to accomplish all of these steps
without looking at the MIG model’s source code. Consequently,
the only way that you can check whether all necessary subrou-
tines are available is to now compile and link your executable.
Indeed, since this is your first MIG installation, you will probably
be alerted of unsatisfied externals for two subroutines called
FATERR and LOGMES. If you look at the main MIG documenta-
tion on page 27, you will find that these two routines must be
written by you, the code architect. Use the examples on page 36
of the main documentation as a guide to write your own FATERR
and LOGMES. Don’t forget to insert a call to FATRET some-
where in your parent code (perhaps after all user input has been
processed) to check whether you should abort the calculation due
to fatal errors.

9. As you would with any model (MIG-compliant or not), insert a
call to the model’s main driver. Because the model is a MIG
model, you will find the information you need in the ASCII data file
on page A-3. For any MIG model, first five arguments are always
MC, NC, UI , GC, and DC, as defined on pages 24 and 26 in the
developer section of the main MIG documentation. The remain-
ing arguments are the inputs and outputs listed in the same
order as given in the ASCII data file (again, the ASCII data file is giv-
ing you all the information you need to correctly place arguments
on your call line). Your call to the Hooke’s law driver might look
like this:

 CALL HLDRVR(IMAXC,IEND,CONSTM(1,MAT),DUMY,CONSTM(5,MAT),

& DT,SVLGRD,STRESS)

Note how your CONSTM array (suggested in step 2) is used: the
first four positions in CONSTM contain the user input, and the
remaining positions contain the derived constants. Depending on
how your code is structured, you may be able to use the output
(an updated value of STRESS) exactly as is, or you may need to
extract the output and convert it in a form required by your par-

A-15

MIG 0.0 Appendix A: MIG Primer

ent code; for example, some codes might immediately decompose
the stress into its deviatoric and isotropic parts.

10.As you would with any model (MIG-compliant or not), exten-
sively check your model installation by running benchmark prob-
lems. Suppose you install the model and it does not work
correctly. If this is the first time this model has been installed in
any code, the problem could lie anywhere and you will simply
have to search for it in the traditional way. If this model has been
earlier installed and tested in other parent codes, you can rule
out errors in the fundamental physical theory — you will know
that the problem is either (i) your installation, or (ii) some non-
theory-related bug in the coding. The only thing you can do is
carefully debug the model just as you would if it were a nonMIG
model. Since you know the theory itself is sound, you can narrow
your search to seek errors typical of MIG models that have been
tested in a limited number of environments. The developer might
have violated MIG by assuming that the compiler would initial-
ize all variables to zero. The developer might have violated MIG
by using some parameter that had physical dimensions (in this
case your answers will be wrong if you use a system of units dif-
ferent from those used to originally develop the model). If you
discover that the problem comes from a developer’s violation of
MIG, then you should not correct the error! You should send the
model back to the developer (i.e., the person/s listed under the
key phrase “coded by: ” in the ASCII data file) reminding them of
the “developer’s code of honor” (MIG page 30). Tell them to fix it.

Refining your installation procedures.
By now you’ve surely noticed that most of the above steps began with the

phrase “As you would with any model.” MIG is no code developer’s panacea.
Nothing about MIG eliminates tasks normally required to get a model up and
running in a parent code. MIG simply standardizes these tasks. There may
even be a few extra steps involved during the early stages. Then what’s so
great about MIG? Answer: portability, automaticity, and accountability.

Portability.

None of the above steps required you to touch or even examine the model’s
source code.* MIG forces developers to follow good portability rules such as
passing information via calling arguments instead of parent code common
blocks. All user input acquisition and all database management is put
squarely in the hands of the parent code architects. These standards make
MIG models much more portable from parent code to parent code.

*You might have to globally replace all “double precision” with “real”, but no major modifications
— especially not ones that require intimate knowledge of the model — should ever be needed.

A-16

Appendix A: MIG Primer MIG 0.0

Automaticity

MIG prescribes how material constants, required inputs, and other critical
aspects of a model are to be handled. Consequently, after installing three or
four MIG models, you (the code architect) will begin to detect patterns. You
will begin to see that all MIG models have certain things in common during
installation. You may realize, for example, that no matter what kind of MIG
model you get, you will always need to generate a user input code fragment
like the one in step 3 on page A-11. The information that you need to generate
that code fragment is always found in the ASCII data file under the key phrase
“material constants ”. This consistency and repetition among MIG models
might prompt you to write a little script or utility that will read the ASCII data
file and automatically generate the desired code fragment. With a couple more
MIG installations, you will likely enhance your utility to automatically per-
form other parts of the MIG installation. You may add optional enhancements
such as utilizing precharacterized material data (if any). Your best approach
would be to automate only those tasks that you find yourself doing repeatedly.

Accountability

One common delay in installing and maintaining models occurs when it is
unclear who is responsible for the model. If a problem is discovered in the user
input section of the code, who is supposed to fix it? Who should update the
numerical installation to reflect enhancements in the theory? MIG clearly seg-
regates different components of a model according to who is responsible for
them. The developer must state (in the ASCII data file) what user inputs are
required, but the parent code architect is responsible for actually acquiring
and storing the user inputs. Suppose that a model is installed in a new code
and it is discovered that it will not work in, say, English units. Then the devel-
oper must correct the problem unless the ASCII data file restricts the installa-
tion to those particular “model data units ”. In that case, the installer is
responsible for failing to accommodate the model’s clearly stated needs.

The distinction between ARCHITECT and INSTALLER

At some point, the utilities/procedures that you write to automatically
install MIG models may reach a level of sophistication that permits them to be
used by someone with a much less intimate knowledge of your code or of the
physics of the models that go into your code. At that point, you anoint yourself
“architect,” and pass on the job of actual MIG model installation to other team
members (the “installers”). In order for this delegation of duty to go smoothly,
you (the architect) must write detailed instructions that permit your installers
to effectively use your MIG utilities. You will never be completely out of the
MIG loop. Your architect skills will be needed on a regular basis as your par-
ent code’s “vocabulary” expands to include more and more migtionary field
variables needed by newer, more advanced, MIG models.

B-1

MIG 0.0 Appendix B: MIGTIONARY

APPENDIX B

MIGTIONARY

The “migtionary” is a special dictionary of technical terms. It is a list of
keywords followed by specific definitions of the physical variables that they
represent. The migtionary allows all developers to use a common vocabulary
when specifying the input and output needs of their models.

Any standard variable appearing in the migtionary satisfies these basic
criteria:

• its definition is unique,
• it is in reasonably common use in the literature,

• it is “quantifiable.”

The last bullet requires that the term can be expressed as a number or a
set of numbers (e.g., as a scalar, vector, tensor, etc.). Rules, principles, and
abstract concepts (such as “inner product”, “first law of thermodynamics”,
“distributed programming”, etc.) do not appear in the migtionary because they
are not quantifiable objects.

Importantly, the migtionary does not discriminate against “non-physical”
or ad-hoc variables (e.g. “damage”). If the variable is well-defined and in com-
mon use, then it belongs in the migtionary, regardless of whether the variable
is of any real scientific value.

Here is a typical migtionary entry:

CAUCHY_STRESS: 6 <2nd-order symmetric tensor> (-1,1,-2) [SIG]

{ } The Cauchy stress componentsσij are the traction [force per area] on thej face in thei
direction. Less heuristically, if the tractiont on a plane is assumed to be a function of the plane’s
unit normaln, then a Cauchy tetrahedron argument leads to the conclusion that the traction is a
linear function of the unit normal. Consequently, there exists a second-order tensor —
termed theCAUCHY _STRESS — such that . 941101.1

STRESS:= CAUCHY_STRESS

VELOCITY:= DISPLACEMENT~RATE

σ
˜

σ
˜ti σijn j=

➀ ➁ ➂ ➃ ➄

➅

➆

➇

➈

➉

B-2

Appendix B: MIGTIONARY MIG 0.0

The numbered items are...

➀ Variable keyword, a unique alphanumeric string with no spaces.

➁ Number of scalars associated with the variable. Usually this number represents the
number of independent scalars. Occasionally, however, the scalars are not independent
(see, for example, POLAR_ROTATION).
If positive, the keyword represents a field variable (such as temperature).
If negative, the keyword represents a global variable (such as time).

➂ <Variable type> The variable type controls the order and/or format of the independent
scalars. A key to variable types is provided on page B-3.

➃ (Physical dimensions) The dimensions are specified using the MIG ordered list of expo-
nents on seven base dimensions, namely,

(length, mass, time, temperature, amount, current, and luminosity)

In the example,

stress = force/area = (length)-1(mass)1(time)-2

Non-specified dimension exponents are defaulted to zero.

➄ [FORTRAN name]. This shortened (and therefore more cryptic) variable name is pro-
vided only as an aid to code architects who may wish to use ASCII versions of the mig-
tionary to generate source code templates. The FORTRAN name is not required to be
unique (i.e., two different standard variables might use the same FORTRAN name).

➅ Definition. The definition generally starts with a heuristic (simpler) definition and con-
cludes with a rigorous definition (often necessarily more abstract to make it unique).
Well-known equations involving the variable will often be provided.

➆ Equivalence or alias. On the left hand side of the “:=” is an alternative keyword for the
migtionary term shown on the right hand side.

➇ Operations. Whenever a migtionary term contains one or more tildes (~), only the part of
the term to the left of the first tilde is explicitly defined in the migtionary. Text to the
right of the tilde is an operation. For example, in the term “DISPLACEMENT~RATE”, DIS-

PLACEMENT is a standard MIG term whose definition is given in the migtionary and
RATE is a standard operation whose meaning is defined at the end of the migtionary on
page B-42, where the distinction between “~RATE” and “_RATE” is emphasized.

➈ Conventional symbol. Provided only for recognition purposes, this is the symbol (or sym-
bols) most commonly used for this variable in the literature. Defining equations will use
this symbol. As with fortran names, the symbol is not intended to be unique for all mig-
tionary entries.

➉ Most definitions end with something like “960821.7”. The first six digits represent the
date the definition was last modified (in this example, August 21, 1996) and the digit
after the decimal is the contributor number listed at the end of the migtionary on page
B-44 (contributor #7 in this example). Questions about any migtionary definition should
be directed to the contributor.

B-3

MIG 0.0 Appendix B: MIGTIONARY

Key to variable types
Listed below in angled brackets are all of the variable types recognized in MIG.

These include scalars, vectors, and tensors up to fourth-order. The variable type dic-
tates the number of scalars associated with the variable (e.g., STRESS, being a sym-
metric second-order tensor, has six scalars associated with it). The variable type also
dictates how the scalars transform upon a change in basis. Immediately following
each variable type key is a parenthetical “(ITYP=n)”, which simply assigns a unique
integer to each variable type. These integers are used by some developers to indicate
variable type in MIG extra variable routines.

<scalar> (ITYP=1) Scalar (invariant under a rigid rotation). 941101.1

<vector> (ITYP=3) Vector. The “engineering” definition of this term is adopted. That
is, a vector always has three components referenced to physical (laboratory) space,
and these components satisfy the vector transformation rules under a rigid rota-
tion. The three scalars associated with the vector are ordered

1, 2, 3 (That is,)

where 1, 2, and 3 represent three mutually orthogonal directions appropriate for
the geometry of the calculation (see the term GEOM on page B-17). Vector compo-
nents are relative to the orthogonal (but possibly curvilinear) coordinate system
associated with the geometry of the problem (see the definition of GEOM). The i
component of a vector v is defined

vi ≡ v•ei

where ei is the ith orthogonal base vector (as defined by GEOM on page B-17) and
the raised dot (•) denotes the vector inner product.

BEWARE: The variable type <vector> applies only when the three scalars are
actual components of the vector relative to the orthogonal basis appropriate for
the geometry (see GEOM). Any other interpretation of the three scalars would
require the use of the <special> variable type (see, for example, POSITION, where
the three scalars are coordinates rather than components).

“Mathematical” vectors (e.g., higher-dimensional vectors) may be defined by using
the variable type <special>. 941101.1

<2nd-order tensor> (ITYP=9) General second-order tensor, nine independent com-
ponents, ordered

11, 21, 31, 12, 22, 32, 13, 23, 33

The ij component of a second-order tensor A is defined

A ij ≡ ei•A•ej = A : (ei⊗ej) ,

where ⊗ represents dyadic multiplication and the colon (:) denotes the second-
order tensor inner product (i.e., for any second-order tensors G and H,

, where repeated indices are summed from 1 to 3).

Note that the components of a 2nd-order tensor are ordered so that they may be
interpreted in subroutines as 3×3 matrices:

v1 v2 v3, ,

G:H GijHij=

B-4

Appendix B: MIGTIONARY MIG 0.0

941101.1

<2nd-order symmetric tensor> (ITYP=6) six independent components, ordered

11, 22, 33, 12, 23, 31

The off-diagonal components are ordered 12, 23, 31, contrary to the traditional
“missing index” ordering (23, 31, 12) to improve efficiency of calculations of two-
dimensional problems, which conventionally occur in the 12 plane with the 23 and
31 components of second-order tensors being zero. The nontraditional ordering
permits nonzero components of 2nd-order tensors to take up four contiguous
pieces of memory,. For 2-D calculations, linear operations (4th-order minor-sym-
metric tensors) on symmetric tensor space, reduce to 4×4 matrices, resulting in
significant computational savings over the 6×6 form for manipulations such as
inverses. The ordering causes no change in 3-D performance. 941101.1

<2nd-order deviatoric tensor> (ITYP=13) eight independent components, ordered

11, 21, 31, 12, 22, 32, 13, 23 941101.1

<2nd-order symmetric deviatoric tensor> (ITYP=5) five independent compo-
nents, ordered

11, 22, 12, 23, 31 941101.1

<2nd-order symmetric deviatoric tensor 6d> (ITYP=14) same as <2nd-order
symmetric deviatoric tensor> except the off-diagonal components are multiplied
by .

11, 22, *12, *23, *31

The square roots are explained below. 941101.1

<2nd-order symmetric tensor 6d> (ITYP=11) six independent components,
ordered

11, 22, 33, *12, *23, *31

Here, the fourth entry, *12, means that the fourth scalar is equal to the 12-
component of the tensor multiplied by . The fifth and sixth entries are inter-
preted similarly. In other words, the components are sent in the same order as for
the <2nd-order symmetric tensor>, except the off-diagonal components are multi-
plied by . This 6-d vector interpretation preserves the Euclidean inner product.
That is, if A and B are symmetric tensors and {a} and {b} are their associated 6-d
vector arrays, then the inner product

A:B =

may be computed by

11 12 13

21 22 23

31 32 33

2

2 2 2

2 2 2

2
2

2

AijBij
j 1=

3

∑
i 1=

3

∑

B-5

MIG 0.0 Appendix B: MIGTIONARY

A:B = ,

The 6d vector representation is often used in models that never reconstruct an
actual 3×3 symmetric matrix.

A more mathematical explanation of the relies on the fact that the set of all
symmetric second-order tensors is itself a six-dimensional vector space. With this
view, the scalars for the <2nd-order symmetric tensor 6d> are just the compo-
nents with respect to the orthonormal basis

Any symmetric tensor A may be written in terms of either basis as

Double-dotting both sides of this equation by b4 shows . Thus it
becomes clear that the is a simple consequence of normalization. 941101.1

<2nd-order skew-symmetric tensor> (ITYP=4) three independent components,
ordered

32, 13, 21

These are also the components of the axial vector (which explains the seemingly
haphazard ordering). As a matter of fact, this variable type should be regarded as
type <vector> whenever operations are employed. For example, VORTICITY~GRA-
DIENT should be regarded as the gradient of the vorticity vector (not the vorticity
tensor); so the result is a <2nd-order tensor>, not a 3rd-order tensor. 941101.1

<3rd-order tensor> (ITYP=15) 21 independent components, interpreted as 3×3×3
array. The component ordering increments indices from left to right. That is, the
components of a <3rd-order tensor> are ordered

111, 211, 311, 121, 221, 321, 131, 231, 331,
112, 212, 312, 122, 222, 322, 132, 232, 332,
113, 213, 313, 123, 223, 323, 133, 233, 333

941101.1

<4th-order tensor> (ITYP=7) 81 independent components, interpreted as 9×9
matrix with rows and columns corresponding to the ordering for a <2nd-order ten-
sor>. The components are ordered column by column:

aKbK

K 1=

6

∑

2

b1 e1 e1⊗=

b2 e2 e2⊗=

b3 e3 e3⊗=

b4 e1 e2⊗ e2 e1⊗+() 2⁄=

b5 e2 e3⊗ e3 e2⊗+() 2⁄=

b6 e3 e1⊗ e1 e3⊗+() 2⁄=

A Aijei e j⊗

j 1=

3

∑
i 1=

3

∑ aKbK

K 1=

6

∑= =

a4 2 A12=

2

B-6

Appendix B: MIGTIONARY MIG 0.0

1111, 2111, 3111, 1211, 2211, 3211, 1311, 2311, 3311,
1121, 2121, 3121, 1221, 2221, 3221, 1321, 2321, 3321,
1131, 2131, 3131, 1231, 2231, 3231, 1331, 2331, 3331,
1112, 2112, 3112, 1212, 2212, 3212, 1312, 2312, 3312,
1122, 2122, 3122, 1222, 2222, 3222, 1322, 2322, 3322,
1132, 2132, 3132, 1232, 2232, 3232, 1332, 2332, 3332,
1113, 2113, 3113, 1213, 2213, 3213, 1313, 2313, 3313,
1123, 2123, 3123, 1223, 2223, 3223, 1323, 2323, 3323,
1133, 2133, 3133, 1233, 2233, 3233, 1333, 2333, 3333

The ijkl component of a fourth-order tensor U is defined

Uijkl ≡ (ei⊗ej):U:(ek⊗el),

where (ei⊗ej) and (ek⊗el) are dyads and the double dot (:) is the second-order ten-
sor inner product (i.e., indices are summed pairwise). 941101.1

<4th-order minor-symmetric tensor> (ITYP=8) The components satisfy the minor
symmetries . Such a tensor may be represented by a 6×6
matrix with row and column ordering corresponding to the ordering defined for
2nd-order symmetric tensors. The components are sent column by column:

1111, 2211, 3311, 1211, 2311, 3111,
1122, 2222, 3322, 1222, 2322, 3122,
1133, 2233, 3333, 1233, 2333, 3133,
1112, 2212, 3312, 1212, 2312, 3112,
1123, 2223, 3323, 1223, 2323, 3123,
1131, 2231, 3331, 1231, 2331, 3131

The rows and columns of the above matrix conform to the ordering convention for
2nd-order symmetric tensors. Since (recall) 2nd-order symmetric tensor ordering
is nontraditional, the above ordering for 4th-order minor-symmetric tensors may
differ from ordering often seen in the literature.

The 6×6 matrix representation of a 4th-order minor-symmetric tensor must be
handled with extreme caution to make proper connection with the 3×3×3×3 repre-
sentation of that tensor. Consider, for example, linear elasticity in which the lin-
ear dependence of stress on strain is described via a fourth-order tensor E as

.

Explicitly incorporating minor symmetry of E, this expression may be written

where the upper-case subscripts, K and L, range from 1 to 6 representing the com-
ponents 11, 22, 33, 12, 23, and 31 (these are called “Voigt” indices*). The above
expression may be written

*See the definition of <2nd-order symmetric tensor> regarding the component ordering.

Uijkl U jikl Uijlk= =

σ
˜

ε
˜

σij Eijklεkl
j 1=

3

∑
i 1=

3

∑=

σK EKLεL

L 1=

3

∑ 2EKLεL

L 4=

6

∑+=

B-7

MIG 0.0 Appendix B: MIGTIONARY

, where

If E possesses major symmetry; note that ξ does not. Importantly,

While Eijkl is a 4th-order tensor, the associated matrix EKL is not a (Euclidean)
tensor. One important ramification of this fact concerns fourth-order tensor
inverses. Suppose Cijkl is the inverse of Eijkl. If FKL are the components of the
inverse of the matrix EKL, then the <4th-order minor-symmetric tensor> matrix
CKL associated with the tensor Cijkl is

A final caution concerns lab measurements. Consider again the linear elasticity
example. Suppose the ε12 strain is varied in the laboratory (holding the other five
independent strains constant), and the resultant stresses are measured. Then the
slope of σ11 vs. ε12 is 2E1112 (the factor of 2 comes from the fact that ε12 cannot be
varied in the laboratory without also varying ε21). Hence, the components ξKL are
measured in the laboratory, and these must be converted to EKL components to
correspond to the components of a <4th-order minor-symmetric tensor>. 941101.1

<4th-order minor-symmetric tensor 6d> (ITYP=12) This is the same as the 4th-
order minor-symmetric tensor except that the fourth-order tensor components
having an off-diagonal first pair are multiplied by , and components having an
off-diagonal second pair are multiplied . Hence, components having both are
multiplied by 2. Here, “off-diagonal first pair” means the first two indices are 12,
23, or 31. For example, 1311 has an off-diagonal first pair, but not an off-diagonal
second pair. Thus, the components are sent in the same order as for the non-6d
representation except they are adjusted by factors of or 2 as follows:

1111, 2211, 3311, *1211, *2311, *3111,

1122, 2222, 3322, *1222, *2322, *3122,

1133, 2233, 3333, *1233, *2333, *3133,

*1112, *2212, *3312, 2*1212, 2*2312, 2*3112,

*1123, *2223, *3323, 2*1223, 2*2323, 2*3123,

*1131, *2231, *3331, 2*1231, 2*2331, 2*3131

Mathematically, the above matrix represents the components of the fourth-order

σK ξKLεL

L 1=

6

∑= ξKL
EKL if L 3≤

2 EKL if L 4≥






=

Whenever a <4th-order minor-symmetric tensor> is requested
as a standard migtionary variable, the 36 scalars will be the
EKL components, not the ξKL.

CKL

F11 F12 F13 F14 2⁄ F15 2⁄ F16 2⁄
F21 F22 F23 F24 2⁄ F25 2⁄ F26 2⁄
F31 F32 F33 F34 2⁄ F35 2⁄ F36 2⁄

F41 2⁄ F42 2⁄ F43 2⁄ F44 4⁄ F45 4⁄ F46 4⁄
F51 2⁄ F52 2⁄ F53 2⁄ F54 4⁄ F55 4⁄ F56 4⁄
F61 2⁄ F62 2⁄ F63 2⁄ F64 4⁄ F65 4⁄ F66 4⁄

=

2
2

2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

B-8

Appendix B: MIGTIONARY MIG 0.0

tensor when viewed as a second-order tensor in the six-dimensional space
spanned by the Euclidean basis {b1,...,b6} defined on page B-5 for the <2nd-order
symmetric tensor 6d> variable type. That is, any fourth-order tensor U may be
written in terms of either basis as

This representation is especially convenient when used to compute transforma-
tions of second-order symmetric tensors. Consider, for example, the computation
A=U:B (i.e., Aij = UijklBkl), where A and B are symmetric tensors and U is a
fourth-order minor-symmetric tensor. With the 6d representation, this computa-
tion becomes a simple matrix-vector multiplication {a} = [U]{b}, where {a} and {b}
are the 6-d representations of A and B. Likewise, the quadratic form, A:U:B is
easily and intuitively computed by {a}T[U]{b}. Major symmetries (if any) of U
imply analogous major symmetries of its 6-d representation [U]. This preserva-
tion of symmetry properties greatly reduces the computational cost of many kinds
of matrix manipulations. The 6d representation of a fourth-order tensor is itself a
second-order Euclidean tensor. Hence this representation has the advantage that
the 6d matrix associated with the inverse of a fourth-order tensor is just the
matrix inverse of the 6d matrix for the original fourth-order tensor — there are no
awkward factors of 2 or 4 like those seen in the non-6d representation. 941101.1

<4th-order major&minor-symmetric tensor> (ITYP=10) The components satisfy
both the minor symmetries and the major symmetry

. The minor symmetries permit a 6×6 matrix description of the ten-
sor as described above. The major symmetry implies that the matrix is symmet-
ric. The twenty-one independent components are sent in the following order:

1111, 2222, 3333, 1122, 2233, 3311,
1212, 2323, 3131, 1223, 2331, 3112,
1112, 2212, 3312,
1123, 2223, 3323,
1131, 2231, 3331 941101.1

<4th-order major&minor-symmetric tensor 6d> (ITYP=16) This is the same as
the <4th-order major&minor-symmetric tensor> except the off-diagonal pairs in
components are multiplied by . The twenty-one independent components are
therefore:

1111, 2222, 3333, 1122, 2233,3311,
2*1212, 2*2323, 2*3131, 2*1223,2*2331,2*3112,
*1112, *2212, *3312,
*1123, *2223, *3323,
*1131, *2231, *3331

<special> (ITYP=2) The variable is a special type. The interpretation and ordering
convention is specified in the definition itself. 941101.1

<(BLANK OR MISSING)> If the variable type is not specified or is blank, the vari-
able is <scalar> if the number of scalars equals 1 (or –1) and <special> otherwise.

U Uijklei e j ek el⊗ ⊗ ⊗

l 1=

3

∑
k 1=

3

∑
j 1=

3

∑
i 1=

3

∑ UMN bM bN⊗

N 1=

6

∑
M 1=

6

∑= =

Uijkl U jikl Uijlk= =

Uijkl Uklij=

2

2 2 2
2 2 2
2 2 2

B-9

MIG 0.0 Appendix B: MIGTIONARY

The MIGtionary

1ST_PIOLA_KIRCHHOFF_STRESS: = LEFT_PIOLA_KIRCHHOFF_STRESS

2ND_PIOLA_KIRCHHOFF_STRESS: 6 <2nd-order symmetric tensor>
(-1,1,-2) [PK2STS]

{ } Second Piola-Kirchhoff stress, , defined by

,

where is the CAUCHY_STRESS, ρ is the MASS_DENSITY, ρo is the MASS_
DENSITY~0, and F is the DEFORMATION_GRADIENT. The second Piola-
Kirchhoff stress is conjugate to the LAGRANGE_STRAIN~RATE, ; i.e., the
SPECIFIC_STRESS_POWER may be written

,

where ρo is the MASS_DENSITY~0. 941101.1

ABSOLUTE_TEMPERATURE: 1 (,,,1) [TMPR]

{T, θ} The measure of the “hotness” of a body postulated by the zeroth law
of thermodynamics. The existence or definition of temperature for dynamic
deformations is questionable; however, if it is nevertheless used, it is usu-
ally regarded as the temperature associated with an accompanying “con-
strained equilibrium” state that would be attained if the material were
isolated at its current strain and stress with the dynamic changes
arrested. 941101.1

ACCELERATION: =VELOCITY~RATE

BACK_STRESS: 5 <2nd-order symmetric deviatoric tensor> (-
1,1,-2) [BCKSTS]

{ } Back stress is the off-set tensor associated with an axisimilar (kine-
matic) yield surface. In the most general situation, a stress-based yield cri-
terion states that yield occurs when F(, β, t) = 0, where is the STRESS, t
is time, and β symbolically represents one or more other state variables on

This dictionary is under continual development. Many
variables may be missing (or vaguely defined). If the vari-
able you need is missing and it satisfies the basic migtion-
ary criteria on page B-1 , contact the lexicographer
rmbrann@sandia.gov. Report errors to the appropriate
contributor (listed at the end of the migtionary).

s s

s
ρo
----- F 1– σ

ρ̃
--- F T–••=

σ
˜

ε
˜
˙

s:ε
˜
˙

ρo

S̃ S̃

σ
˜

σ
˜

B-10

Appendix B: MIGTIONARY MIG 0.0

which the yield surface might depend. For the most general back-stress
model, the yield function F may be cast in an axisimilar form

where S is the STRESS~DEVIATOR, p is the PRESSURE, t is TIME, is the
BACK_STRESS (which is deviatoric), and k is a material function. The func-
tion f must be specified by the model developer. This general back stress
yield function may be interpreted geometrically as follows: In the devia-
toric plane (i.e., in the plane defined by p=0), the yield surface has a certain
prescribed shape such as a Huber-Mises circle, a Tresca hexagon, etc. This
shape is displaced from the deviatoric-plane origin by the back stress .
For planes parallel to the deviatoric plane (i.e., for planes defined by p=con-
stant), the yield function has exactly the same shape, but is contracted or
expanded by an amount dictated by the material function k, which allows
pressure-dependence of yield. The center of contraction is the back stress

, and the yield surface is “axisimilar.” For a generalized Huber-Von Mises
yield model, the function f is simply , where is the
symmetric deviatoric part of , and the yield surface is said to be axisym-
metric because its cross-section is circular. If neither nor k varies with
time, the material is said to be “non-hardening”. If k varies with time, then
the material is said to harden “isotropically” (if k or varies with pres-
sure, then the yield function is pressure-dependent). If varies with time,
the material is said to harden “kinematically”. 941101.1

BULK_MODULUS: = ISOTHERMAL _ELASTIC _BULK _MODULUS

CAUCHY_STRESS: 6 <2nd-order symmetric tensor> (-1,1,-2)
[SIG]

{} The Cauchy stress components σij are “the traction (force per area) on
the j face in the i direction”. Less heuristically, if the traction vector t on a
plane is assumed to be a function of the plane’s unit normal n, then a
Cauchy tetrahedron argument leads to the conclusion that the traction is a
linear function of the unit normal. Consequently, there exists a second-
order tensor — termed the CAUCHY_STRESS — such that .
941101.1

CAUCHY_GREEN_DEFORMATION_TENSOR: 6 <2nd-order symmetric
tensor> () [C]

{} Symmetric, positive-definite reference tensor defined FT•F, where F is
the DEFORMATION_GRADIENT. This tensor is the metric for convected coor-
dinates. It is also related to the FINGER_TENSOR by a material rotation.

941101.1

F σ
˜

t,() f S S̃ p β t, ,()–
k p β t, ,()

---------------------------------- 
 =

S̃

S̃

S̃
f ξ

˜
() 1

2
---ξ
˜

d:ξ
˜

d
1–= ξ

˜
d

ξ
˜ S̃

S̃
S̃

σ
˜

ti σijn j=

B-11

MIG 0.0 Appendix B: MIGTIONARY

COURANT_TIME_STEP: -1 (,,1) [DTC].

{} Maximum time step based on the Courant sound speed criterion. If this
variable is requested as input to a model, it represents the maximum time
step for the current cycle. If this variable is provided as output of a model,
it represents the maximum allowable time step for the next cycle. 941101.1

CYCLE: -1 () [ICYCLE]

{} Cycle number in a computation. This variable may be requested as
model input only — it may not be part of a model’s output. Furthermore, it
may be used only for diagnostic information. It should not be used to deter-
mine whether to perform local initialization tasks such as setting model
constants; such tasks should be done during data check or in the driver
using the standard input variable RESTART. 941101.1

DAMAGE: 1 <scalar> () [DAMAGE]

{φ} Fracture pressure degradation parameter (always lies between 0
and 1). If is the VIRGIN_FRACTURE_PRESSURE, then the FRACTURE_
PRESSURE of the “damaged” material is given by

where φ is the DAMAGE. Models that define DAMAGE differently, must use
an extra variable rather than this standard variable.

More often than not, damage parameters are not physically-based, but are
nevertheless commonly used as an ad-hoc way to qualitatively capture
fracture strength degradation. 941101.1

DENSITY: =MASS_DENSITY

DEFORMATION_GRADIENT: 9 <2nd-order tensor> () [DEFGRD]

{} This tensor is the partial derivative of particle POSITION with respect to
POSITION~0 holding time constant. That is, a mapping function χ is
assumed to exist such the current position x of a particle may be expressed
as a function of the particle’s initial position X and time:

x = χ(X,t)

The DEFORMATION_GRADIENT F is then

or

Incidentally, this definition of the deformation gradient is more restrictive
than the definition usually found in continuum texts where X is regarded
merely as a particle label, not necessarily the initial particle position, or
even a position ever achieved by the particle. A particular interpretation of
X is required to make the definition unique. 941101.1

Pf
0

Pf Pf
0 1 φ–()=

F
X∂

∂χ X t,()≡ Fij X j∂
∂xi

 
 
 

t

=

B-12

Appendix B: MIGTIONARY MIG 0.0

DEVIATORIC_STRESS_POWER: 1 (-1,1,-3) [SPWRD]

{} The distortional work “rate” per unit volume. If S is the STRESS~DEVIA-
TOR and D is the RATE_OF_DEFORMATION, then

where D´ is the deviatoric part of D. The second expression follows because
the inner product of any deviatoric tensor with the identity tensor is
always zero.

Also see STRESS_POWER. 941101.1

DIELECTRIC_TENSOR: 6 <2nd-order symmetric tensor> (-3,-
1,4,,,2,) [DIELEC]

The dielectric tensor, , relates the Electric Displacement (electric flux
density), D, to the ELECTRIC_FIELD vector, E: 960215.2

DILATATION: 1 <scalar> () [DILTN]

{} Natural log of SPECIFIC_VOLUME/SPECIFIC_VOLUME~0:

For small volume changes, the dilatation is approximately equal to the
change in volume divided by the volume. 941101.1

DILATATION~RATE: = VELOCITY~GRADIENT~TRACE [DILDOT]

{ } This variable is the rate of change of specific volume divided by spe-
cific volume:

As implied in the definition, the dilatation rate equals the trace of the
velocity gradient, which for a Cartesian system is

DISLOCATION_DENSITY: 1 <scalar> (,-1,,,1) [DLCDNS]

{} Number of dislocations per unit mass. 941101.1

DISPLACEMENT: 3 <vector> (1) [DSPLMT]

{} The DISPLACEMENT is the directed line segment from a particle’s loca-
tion at TIME=0 to its current location. The mathematical definition of dis-
placement is complicated by the possibility of different origins. Namely, the
DISPLACEMENT u is

DEVIATORIC_STRESS_POWER SijDij
j 1=

3

∑
i 1=

3

∑ SijDij
′

j 1=

3

∑
i 1=

3

∑= =

εij

Di εijE j=

DILATATION v
vo
----- 

 ln=

v̇ v⁄

DILATATION~RATE v̇
v
---=

DILATATION~RATE
x∂

∂vx

y∂
∂vy

z∂
∂vz+ +=

B-13

MIG 0.0 Appendix B: MIGTIONARY

,

where x(t) denotes the particle POSITION and R(t) denotes the ORIGIN_
POSITION. Many analysts assume that the origin is stationary, in which
case the last two terms cancel. However, such an assumption is generally
unnecessary since displacement is a free vector. Any model that critically
depends on an assumption of a stationary origin (most don’t) must so indi-
cate in the “special needs” section of the ASCII data file.

When rate quantities are supplied to the model, the components are
always with respect to an inertial origin instantaneously coincident with
the current origin. 941101.1

DISPLACEMENT~RATE: 3 <vector> (1,,-1)[VEL]

{} Material velocity. The displacement rate is the material time derivative
of displacement. It equals POSITION~RATE + ORIGIN_POSITION~RATE.
941101.1

DISTORTIONAL_WORK: 1 <scalar> (-1,1,-2) [DISTWK]

{} Integral from TIME=0 to the current time of the DEVIATORIC_STRESS_
POWER. 941101.1

DISTORTIONAL_WORK_INCREMENT: = DEVIATORIC _STRESS_POWER~*DT

{} 941101.1

DT: = TIME_STEP

DYNAMIC_VISCOSITY: 1 <scalar> (-1,1,-1) [DVISCO]

{µ} Proportionality factor defined for materials whose shear stress is lin-
early related to the shear strain rate. If S is the STRESS~DEVIATOR and
is the VELOCITY~GRADIENT~SYM~DEVIATOR, then . 960715.1

EDIT: 1 <scalar> () [IEDIT]

{} Field flag directing whether or not to write an edit (if applicable) for the
cell. Values are:

0 No edit
1 Short edit

u t() x t() x 0()– R t() R 0()–+=

inertial
reference

POSITION ~0 DISPLACEMENT

ORIGIN _POSITION

P
O

S
IT

IO
N

O
RIG

IN
_P

O
SIT

IO
N
~0

(Dashed vectors are fixed in time.)

R(t)
x(t)

u(t)x(0)

R(0)

D'
S 2µ D '=

B-14

Appendix B: MIGTIONARY MIG 0.0

2 Long edit
The definition of “short” or “long” edit is up to the model developer. This
variable is a field variable: it may specify edits for any number of cells in a
gather-scatter array (compare with EDIT1). The edit field input merely per-
mits the user to control edits in the way that is conventional for the parent
code. 941101.1

EDIT1: -1 <scalar> () [IEDIT1]

{} Flag naming a single cell number to edit. This variable is a simple global
alternative to the more general field variable EDIT. The value of EDIT1 is
zero if no cell is to be edited, positive for a full edit, and negative for just a
short edit. The absolute value of EDIT1 is the number of the cell to edit.

ELASTIC_STRAIN_RATE_TENSOR: 6 <2nd-order symmetric tensor>
(,,-1) [EEDOT]

{} The elastic term when STRAIN_RATE is decomposed additively into
elastic and plastic parts. There are many instances when this is not a true
rate. 941101.1

ELECTRIC_FIELD: 3 <vector> (1,1,-2,,,-1,) [EFLD]

{E} The electric field E is the force acting on a charge at a point in space. It
is the negative of the electric potential gradient. 960215.2

ENTROPY: =SPECIFIC _ENTROPY

EQUIVALENT_PLASTIC_STRAIN: 1 () [EQPLS]

{} Integral over time of the SCALAR_PLASTIC_STRAIN_RATE. 941101.1

ERROR: =ERROR_FLAG

ERROR_FLAG: 1 () [IERR]

{} Flag indicating whether an error occurred for the cell. Values are

0 No error
≠0 Error

The interpretation of non-zero errors is up to the model developer. 941101.1

EXTRA: varies (vary) [XTRA]

{} This special array contains the extra variables (if any) defined in a MIG
model’s extra variable routine. EXTRA~1 is the first extra variable, EXTRA~
2 is the second one, and so on. MIG models receive the extra variable
arrays in their driver routine’s calling arguments just like other conven-
tional field variables found in the migtionary. The placement of the extra
variables on the driver routine’s argument list is governed in the usual
way by where the keyword “EXTRA” appears under the key phrase “input
and output ” in the model’s ASCII data file. If the model developer requests
the entire extra variable array as one lumped array, then the model driver
must dimension the extra variables XTRA(MC,NX), where MC is the usual

ε̇

B-15

MIG 0.0 Appendix B: MIGTIONARY

dimensioning parameter for field variables, and NX is the number of extra
variables (or * if array bound checking is not desired). As with other field
variables, the developer may alternatively request extra variables piece-
by-piece. Suppose, for example, that a particular model’s extra variables
are one scalar and one vector. Then the entry under the ASCII data file key
phrase “input and output ” could contain EXTRA~1 and EXTRA~2THRU4.
Then the driver would have two distinct arguments, say SVAR and VVAR,
dimensioned SVAR(MC) and VVAR(MC,3) representing the scalar and the
vector. 941101.1

EXTENT_OF_REACTION: 1 () [EXRCTN]

{φ} Scalar ranging from zero for no reaction to unity for complete reaction.
A partially completed reaction (with fully depletable reactants), is some-
time written

A→(1-φ)A + φB

where A represents the reactants and B represents the products. 941101.1

FIELD_ERROR: =ERROR_FLAG

FINGER_TENSOR: 6 <2nd-order symmetric tensor> () [B]

{B} Symmetric, positive-definite spatial tensor defined F•FT, where F is
the DEFORMATION_GRADIENT. 941101.1

FRACTURE_PRESSURE: 1 (-1,1,-2) [PFRAC]

{ } The value of PRESSURE at which the material is said to have “failed”.
Some codes may insert void or “destroy” elements once a material has
“failed”. The FRACTURE_PRESSURE is usually a large negative number. See
also: DAMAGE, FRACTURE_SPHERICAL_STRESS. 941101.1

FRACTURE_SPHERICAL_STRESS: 1 (-1,1,-2) [TFRAC]

{} The negative of FRACTURE_PRESSURE. This is the maximum tensile
spherical stress that a material can sustain before failing. Typically, parent
codes will not allow the mechanical pressure to become more negative than
this value, and — if the FRACTURE_PRESSURE is regarded as a changeable
field variable — these codes will frequently simulate spall by resetting
FRACTURE_PRESSURE to zero once the material has “failed.” 941101.1

FRAME_SPIN: 3 <2nd-order skew-symmetric tensor> (,,-1) [FRM-
SPN]

{ } The skew-symmetric tensor to be used in frame rate operations. If A is
a spatial second-order tensor, then the “frame rate” of A — indicated by a
hollow superposed circle — is

where is the FRAME_SPIN. If the FRAME_SPIN is equal to the VORTICITY,
then the frame rate is the Jaumann rate. If the FRAME_SPIN is equal to the

Pf

Ω
˜

A
o

Ȧ Ω
˜

A A Ω
˜

•+•–=

Ω
˜

B-16

Appendix B: MIGTIONARY MIG 0.0

POLAR_SPIN, then the frame rate is the polar rate [advocated by Dienes].
The frame rate is well-defined for tensors of other orders as well. For exam-
ple, the frame rate of a vector v is

The frame rate of a third-order tensor U is

and so on. 941101.1

GENERALIZED_ISOTHERMAL_ELASTIC_BULK_MODULUS:
1 <scalar> (-1,1,-2) [BULKM]

{K} The bulk modulus associated with the isotropic part of the (permissi-
bly anisotropic) fourth-order compliance tensor (inverse of stiffness). If this
(minor-symmetric) compliance is denoted H and stored as a 6×6 Voigt
matrix, then

960719.1

GENERALIZED_ISOTHERMAL_ELASTIC_SHEAR_MODULUS:
1 <scalar> (-1,1,-2) [SHRM]

{G} The shear modulus associated with the isotropic part of the (permissi-
bly anisotropic) fourth-order elastic compliance tensor. If this compliance is
denoted H and stored in the Euclidean <4th-order minor symmetric 6d>
form (i.e., as a Voigt matrix with multiplying the off-diagonal terms, as
explained on page B-7), then

960719.1

GENERAL_TANGENT_STIFFNESS: 36 <4th-order minor-symmetric
tensor> [TNGNTS]

{T} The partial derivative of the (objective) rate of stress with respect to
the (objective) strain rate. This variable is well-defined only if stress rate
may be written as a true function of strain rate: , where the
ellipsis (…) denotes any other variables such as strain, temperature, dam-
age, etc. Then the tangent stiffness tensor T is given by

If the function f happens to be homogeneous of degree 1 in strain rate, the

vo v̇ Ω v•–=

Uijk

o
U̇ijk ΩipU pjk– Ω jpUipk– ΩkpUijp–=

K HKL

L 1=

3

∑
K 1=

3

∑
1–

=

2

G 5
2
--- HKK

K 1=

6

∑
 
 
  1

3
--- HKL

L 1=

3

∑
K 1=

3

∑
 
 
 

–
1–

=

σ̇ f ε̇ …,()=

T
˜

∂σ
˜
˙

∂ε
˜
˙

∂f
∂ε

˜
˙

ε
˜
˙ …,()

= =

B-17

MIG 0.0 Appendix B: MIGTIONARY

material is said to be “nominally rate independent”, and the tangent stiff-
ness tensor will depend at most on the direction — not magnitude — of
strain rate. If the function f is linear in strain rate, the material is “strictly
rate independent”, and the tangent stiffness tensor is entirely independent
of the strain rate (though permissibly dependent in any way on the vari-
ables indicated by the ellipsis, and the stress (objective) stress rate is given
by

Symmetry of stress requires range-symmetry (Tijkl =Tjikl) and symmetry of
strain permits domain-symmetry (Tijkl =Tijlk) without loss in generality.
However, the GENERAL_TANGENT_STIFFNESS may permissibly be non-self-
adjoint (see SELF_ADJOINT_TANGENT_STIFFNESS). For plasticity models,
self-adjointness of the tangent stiffness tensor is not generally synonymous
with normality of the plastic flow rule, as is often wrongly claimed in the
literature [Hill’s proof that associativity implies self-adjointness assumes
that the elastic properties are unaffected by plastic deformation. If such
elastic-plastic coupling is not neglected (for, say, porous metals) a non-self-
adjoint tangent stiffness tensor will result even if an associated flow rule is
used. Hutchinson has demonstrated a similar result when thermomechan-
ical coupling is not neglected.] 941101.1

GEOM: -1 () [IGEOM]

{} This flag indicates the problem geometry type. It does not dictate the
underlying coordinate system coordinate system used by a parent code. At
any physical location, there is assumed to be a set of mutually orthogonal
vectors {e1, e2, e3} which are used to compute and supply vector and tensor
components. Importantly, the definition of an orthogonal basis does not
preclude the use of curvilinear coordinates, nor does it preclude the use of
non-orthogonal bases. Models that use, say, embedded bases may obtain
metric information from the deformation gradient tensor.

The values of GEOM are defined as follows:

–10: General One-dimensional rectangular {e1, e2, e3} = { ex, ey, ez}

All field variables f (of any order) have the property

f(x, y+∆y, z+∆z) = f(x, y, z) for all ∆y and ∆z

This geometry would be appropriate to model, say, planar shear waves.

+10: One-dimensional axial symmetry {e1, e2, e3} = { ex, ey, ez}

This is the same as GEOM=–10, with the additional symmetry condition
that for any vector or arbitrary order tensor,

R •> = for all rotations R about the x-axis

Here, the operation “•>” is defined such that R is dotted into every base
vector of . The order of R •> is the same as the order of .

σ̇ij Tijklε̇kl=

w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

B-18

Appendix B: MIGTIONARY MIG 0.0

If is a vector, then

(R •>)i = Rip wp

If is a second-order tensor, then

(R •>)ij = Rip Rjq wpq

If is a third-order tensor, then

(R •>)ijk = Rip Rjq Rkm wpqm

 If is a fourth-order tensor, then

(R •>)ijkl = Rip Rjq Rkm Rln wpqmn

An so on. Four consequences of the restriction that R •> = are:
• They- andz- components of any vector must be zero.

• The off-diagonal components of any second-order tensor
must be zero.

• Theyy-component must be equal to thezz-component.

• Furthermore, the components of any fourth-order double-
symmetric tensor must possess the transversely isotropic
form:

where the scalarsA throughE are unrestricted and the matrix
components correspond to the variable type <4th-order
major&minor symmetric tensor 6d>.

This geometry would be appropriate to model, say, uniaxial strain. Also see
GEOM=13.
–11: General One-dimensional cylindrical {e1, e2, e3} = { er, eθ, ez}

All field variables f (of any order) have the property
f(r, θ+∆θ, z+∆z) = R(∆θ)•>f(x, θ, z) for all ∆θ and ∆z

where R(∆θ) represents a rotation of angle ∆θ about
the z-axis (see figure). In other words, components
with respect to the cylindrical basis do not vary with
θ or z. This geometry would be appropriate to model,
say, shear between concentrically rotating and/or
axially sliding cylinders.

w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

A B C 0 0 0

B A C 0 0 0

C C D 0 0 0

0 0 0 A B– 0 0

0 0 0 0 E 0

0 0 0 0 0 E

11 22 33 12 23 31

11

22

33

12

23

31

r
∆θ

R(∆θ)•v

v

B-19

MIG 0.0 Appendix B: MIGTIONARY

941101.1

+11: One-dimensional cylindrical symmetry {e1, e2, e3} = { er, eθ, ez}

This is the same as GEOM=–11, with the additional symmetry conditions
that for any vector or arbitrary order tensor,

Tθ •> = for a reflection Tθ = I–2eθ⊗eθ in the eθ-direction.
Tz •> = for a reflection Tz = I–2ez⊗ez in the ez-direction.

The first restriction requires that the θ component of any vector be zero,
and the second restriction requires that the z-component of any vector be
zero. That is, all vectors must be parallel to the base vector er.

The first restriction requires that the rθ, zθ, θz, and θr components of any
second-order tensor be zero. The second restriction requires that the rz, θz,
zθ, and zr components of any second-order tensor be zero. Hence, for this
geometry, all second-order tensors are diagonal, but none of the three diag-
onal components are necessarily equal. 941101.1

–12: General One-dimensional spherical {e1, e2, e3} = { er, eθ, eφ}

All field variables f (of any order) have the property

f(r, θ+∆θ, φ+∆φ) =R(∆θ,∆φ) •> f(r, θ, φ) for all ∆θ and ∆φ
where R(∆θ,∆φ) represents a rotation from the point (r, θ+∆θ, φ+∆φ) to (x, θ,
φ). In other words, components with respect to the spherical basis do not
vary with θ or φ. This geometry would be appropriate to model, say, shear
between rotating spherical shells 941101.1

+12: One-dimensional spherical symmetry {e1, e2, e3} = { er, eθ, eφ}

This is the same as GEOM=–12, with the additional symmetry condition
that for any vector or arbitrary order tensor,

R •> = for all rotations R about er

Some consequences of this restriction are:

• Theθ- andφ- components of any vector must be zero. That is,
all vectors must be parallel to the base vectorer.

• The off-diagonal components of any second-order tensor
must be zero.

• Theθθ-component must equal theφφ-component.

• Any <major&minor symmetric 4th-order tensor> must pos-
sess the transversely isotropic form with respect to theθφ-
plane.

941101.1

+13: One-dimensional orthotropic symmetry {e1, e2, e3} = { ex, ey, ez}

This is the same as GEOM=–10, with the additional symmetry conditions
that for any vector or arbitrary order tensor,

Ty •> = for a reflection Ty = I–2ey⊗ey in the y-direction.

w
˜

w
˜

w
˜w

˜
w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

B-20

Appendix B: MIGTIONARY MIG 0.0

Tz •> = for a reflection Tz = I–2ez⊗ez in the z-direction.

The first restriction requires that the y-component of any vector be zero,
and the second restriction requires that the z-component of any vector be
zero.

The first restriction requires that the xy, zy, yz, and yx components of any
second-order tensor be zero. The second restriction requires that the xz, yz,
zy, and zx components of any second-order tensor be zero. Hence, for this
geometry, all second-order tensors are diagonal, but none of the three diag-
onal components are necessarily equal (which is one feature that distin-
guishes this geometry from GEOM=10). This geometry would be
appropriate to model, say, an orthotropic material which has principal
directions aligned with the xyz triad, and which is subjected to loading also
aligned with those directions. 941101.1

–20: General Two-dimensional rectangular {e1,e2,e3} = { ex, ey, ez}

All field variables f (of any order) have the property

f(x, y, z+∆z) = f(x, y, z) for all ∆z

941101.1

+20: Two-dimensional rectangular symmetry {e1,e2,e3} = { ex, ey, ez}

This is the same as GEOM=–20, with the additional symmetry condition
that for any vector or arbitrary order tensor,

Tz •> = for all reflections Tz about the ex-ey plane

This restriction requires that the z-component of any vector be zero. Fur-
thermore, the xz, yz, zy, and zx components of any second-order tensor
must be zero. 941101.1

–21: General Two-dimensional cylindrical {e1, e2, e3} = { er, ez, –eθ}

All field variables f (of any order) have the property

f(r, θ+∆θ, z) = f(x, θ, z) for all ∆θ

941101.1

+21: Two-dimensional cylindrical symmetry {e1, e2, e3} = { er, ez, –eθ}

This is the same as GEOM=–21, with the additional symmetry condition
that for any vector or arbitrary order tensor,

Tθ •> = for reflection Tθ about the er-ez plane

w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

w
˜

B-21

MIG 0.0 Appendix B: MIGTIONARY

This restriction requires that the θ
component of any vector be zero and
that the rθ, zθ, θz, and θr compo-
nents of any second-order tensor be
zero.
Note that the three “1,2,3” directions
are the “r, z, –θ” directions. The con-
ventional ordering in which z comes
last is not adopted so that 2-D prob-
lems will always be in the “1-2”
plane). For problems run with
GEOM=12, the three components of
the vector v are:
v•er, v•ez, –v•eθ that is... vr, vz, –vθ
where the raised dot (•) is the vector
inner product. The negative in the
third component should be inconse-
quential for most problems because

the θ-component of most vectors is (usually) zero for 2-D cylindrical prob-
lems. Likewise, the 13 and 23 components of second-order tensors are gen-
erally zero for this geometry. However, care should be taken in the
interpretation of higher-order tensors since the 13ij and 23ij components
are not necessarily zero and must therefore be assigned in light of the fact
that e3=–eθ. 941101.1

+30: Three dimensional {e1, e2, e3} = { ex, ey, ez}

Motion is generally three dimensional, with no spatial or symmetry
restrictions. 941101.1

GLOBAL_ERROR: -1 () [GERR]

{} If this number is non-zero, an error was detected for at least one cell.
941101.1

GRUNEISEN_COEFFICIENT: 1 () [GRU]

{γ} For isotropic materials, the Grüneisen coefficient γ is , where b is
the THERMAL_STRESS_COEFFICIENT, ρ is the DENSITY and is the
SPECIFIC_HEAT_AT_CONSTANT_VOLUME. The Grüneisen coefficient is
given variously by any of the following derivatives:

where e is SPECIFIC_INTERNAL_ENERGY, T is TEMPERATURE, s is
SPECIFIC_ENTROPY, v is SPECIFIC_VOLUME, and P is THERMODYNAMIC_
PRESSURE. For anisotropic materials, the Grüneisen coefficient is 1/3 the

Geometry Plane

e2 = ez

e1 = er

e3 = –eθ

x

y

z

θ

b ρcv⁄
cv

γ v
T

v∂s

2

∂
∂ e

–
v
T

v∂
∂T

 
 

s
–

v
T

s∂
∂P

 
 

v
v

e∂
∂P

 
 

v
= = = =

B-22

Appendix B: MIGTIONARY MIG 0.0

trace of the GRUNEISEN_TENSOR. 941101.1

GRUNEISEN_TENSOR: 6 <2nd-order symmetric tensor> () [GRUT]

{ } The Grüneisen tensor is the THERMAL_STRESS_TENSOR divided by the
SPECIFIC_HEAT_AT_CONSTANT_VOLUME. It is given variously by any of
the following derivatives:

where e is SPECIFIC_INTERNAL_ENERGY, T is TEMPERATURE, s is
SPECIFIC_ENTROPY. The tensors V and P are any general strain and conju-
gate specific stress (stress divided by density). “Conjugate” means that V
and P must have the property that

,

where ρ is the MASS_DENSITY, is the CAUCHY_STRESS, and is the
RATE_OF_DEFORMATION.

Uniqueness of this definition requires specification of V and P. If these ten-
sors are not specified, they may be assumed to be LAGRANGE_STRAIN and
2ND_PIOLA_KIRCHHOFF_STRESS/DENSITY~0. 941101.1

ISOTHERMAL_ELASTIC_BULK_MODULUS: 1 <scalar> (-1,1,-2)
[BULKM]

{K} For a linearly-elastic isotropic material, the elastic bulk modulus K is
related to YOUNG’S_MODULUS E and POISSON’S_RATIO ν by

The isothermal elastic bulk modulus is the partial derivative of pressure
with respect to dilatation holding temperature constant. Of course, for this
definition to be well defined, a function must exist on which to perform this
partial derivative. If Eijkl is the fourth-order isotropic isothermal elastic
stiffness tensor,

.

Also see: GENERALIZED_ISOTHERMAL_ELASTIC_BULK_MODULUS. 941101.1

ISENTROPIC_BULK_MODULUS: 1 <scalar> (-1,1,-2) [BLKMS]

{κs} The negative of the partial derivative of PRESSURE with respect to
DILATATION holding ENTROPY constant; that is,

,

where p is the PRESSURE, is the DILATATION, and v is the SPECIFIC_

γ
˜

γ
˜

1
T

V
˜

∂s

2

∂
∂ e

–
1
T

V
˜

∂
∂T

 
 

s
–

1
T

s∂
∂P

 
 

V
˜

e∂
∂P

 
 

V
˜

= = = =

VijPij
1
ρ
---σijDij=

σ
˜

D
˜

K E
3 1 2υ–()
------------------------=

K E1111
2
3
---E1212–=

κs εv∂
∂p

 
 –

s
≡ 1

v

v∂
∂p

 
 

s
–=

εv

B-23

MIG 0.0 Appendix B: MIGTIONARY

VOLUME, and s is the ENTROPY. Of course, for this definition to be well
defined, a genuine function must exist on which to perform this partial
derivative. The ISENTROPIC_BULK_MODULUS is commonly used to esti-
mate the speed of plastic waves (elastic waves use the wave modulus, 2µ+λ,
where µ and λ are the isentropic Lamé moduli.) 960719.1

ISOTHERMAL_ELASTIC_SHEAR_MODULUS: 1 <scalar> (-1,1,-2)
[SHRM]

{µ} For an elastic isotropic material, µ is the proportionality constant in
the relation , where S is the PK2_STRESS~DEVIATOR and is the
LAGRANGE_STRAIN~DEVIATOR. For nonlinear elasticity, µ is a secant modu-
lus. The shear modulus µ is related to YOUNGS_MODULUS E and
POISSONS_RATIO ν by

If Eijkl is the fourth-order isotropic isothermal elastic stiffness tensor,

.

Also see: GENERALIZED_ISOTHERMAL_ELASTIC_SHEAR_MODULUS. 941101.1

ISOTROPIC_STRESS_POWER: 1 (-1,1,-3) [SPWRI]

{} Heuristically, the dilatational work “rate” per unit volume. Specifically,
if is the CAUCHY_STRESS and D is the RATE_OF_DEFORMATION, then

,

where “tr” denotes the TRACE operation. Equivalently, the ISOTROPIC_
STRESS_POWER may be computed by the negative of PRESSURE times the
DILATATION~RATE:

Also see STRESS_POWER. 941101.1

JACOBIAN: =DEFORMATION_GRADIENT~DETERMINANT

{J} Equals SPECIFIC_VOLUME/SPECIFIC_VOLUME~0.
Also see DILATATION. 960807.1

JERK: =ACCELERATION ~RATE

KINEMATIC_VISCOSITY: 1 <scalar> (2,0,-1) [KVISCO]

{ν} Ratio of the DYNAMIC_VISCOSITY to the DENSITY, .

LAGRANGE_STRAIN: 6 <2nd-order symmetric tensor> () [LGNSN]

{E} = , where C is the CAUCHY_GREEN_DEFORMATION_TENSOR
and I is the identity tensor. This strain is related to the SIGNORINI_STRAIN

S µε
˜

d= ε
˜

d

µ E
2 1 ν+()
--------------------=

µ E1212=

σ
˜

ISOTROPIC_STRESS_POWER
1
3
--- tr σ

˜
() tr D()=

ISOTROPIC_STRESS_POWER Pv̇
v
---–=

ν µ ρ⁄=

1
2
--- C I–()

B-24

Appendix B: MIGTIONARY MIG 0.0

by a material rotation. 941101.1

LEFT_PIOLA_KIRCHHOFF_STRESS: 9 <2nd-order tensor> (-1,1,-2)
[SIG]

{t} The left Piola-Kirchhoff stress t is defined such that

t•dAo = •dA,

where dAo is any area element vector in the initial configuration, dA is the
associated deformed area element vector, and is the CAUCHY_STRESS.
The two area elements are related by

where Fc is the DEFORMATION_GRADIENT~COFACTOR. Therefore,

,

Note that the left Piola-Kirchhoff stress is associated with nine scalars (the
components). These components are not independent since CAUCHY_
STRESS must be symmetric. However, because the constraints are not eas-
ily reduced to a minimal set of independent components, all nine compo-
nents are sent in computational requests for this variable. 941101.1

LEFT_STRETCH: 6 <2nd-order symmetric tensor> [V]

{V} The symmetric positive-definite stretch tensor V from the polar
decomposition F=V•R, where F is the DEFORMATION_GRADIENT and R is
the POLAR_STRETCH. 941101.1

MASS_DENSITY: 1 (-3,1) [RHO]

{ρ} This is mass per macroscopic volume, which may be quite different
from the matrix density for porous materials. 941101.1

MATERIAL_NUMBER: -1 () [MATID]

An integer identifier for the material. Each material in a calculation may
always be associated with a unique integer identifier. This number will pri-
marily be used for diagnostic messages only. However, some models may
also use it to save constants for the materials (though the DC array is safer
for this purpose). 941101.1

MATERIAL_VELOCITY: =DISPLACEMENT~RATE

{v, vi} Material time derivative of DISPLACEMENT. 941101.1

MECHANICAL_PRESSURE: 1 (-1,1,-2) [PRESUR]

{P} Negative of one third the trace of the Cauchy stress. This is the nega-
tive of SPHERICAL_STRESS. The MECHANICAL_PRESSURE is positive in
compression. 941101.1

σ
˜

σ
˜

dA F
c

dAo•=

t σ
˜

F
c•=

B-25

MIG 0.0 Appendix B: MIGTIONARY

MELT_TEMPERATURE: 1 (,,,1) [TMELT]

{Tm} The ABSOLUTE_TEMPERATURE demarking the boundary between the
solid and liquid phases at the current pressure. 941101.1

ORIGIN_POSITION: 3 <vector> (1) [XORIG]

{} This is the directed line segment from a known fixed (i.e., inertial) loca-
tion in space to the (possibly moving) origin from which particle POSITION
is measured. (see DISPLACEMENT.) 941101.1

PEIERLS_STRESS: 1 (-1,1,-2) [PEIRLS]

{} Peierls-Nabarro stress, the stress required to displace a dislocation
along its slip plane, often regarded as a material property. 960216.1

PLASTIC_STRAIN: =EQUIVALENT_PLASTIC_STRAIN

Integral over time of the SCALAR_PLASTIC_STRAIN_RATE. 941101.1

PLASTIC_STRAIN_TENSOR: 6 <2nd-order symmetric tensor> ()
[EP]

{} Path-dependent quantity defined

where is the PLASTIC_STRAIN_RATE_TENSOR. 941101.1

PLASTIC_STRAIN_RATE_TENSOR: 6 <2nd-order symmetric tensor>
(,,-1) [EPDOT]

{} The plastic term when STRAIN_RATE is decomposed additively into
elastic and plastic parts. There are many instances when this is not a true
rate. For large deformations, the PLASTIC_STRAIN_RATE_TENSOR is
defined as the plastic part of the RATE_OF_DEFORMATION. 941101.1

POISSON: =POISSONS_RATIO

POISSONS_RATIO: 1 <scalar> () [POIS]

{ν} Poisson’s ratio from Hooke’s Law for an isotropic linear-elastic mate-
rial, usually stated (in terms of a rectangular xyz system) as:

Related to the ISOTHERMAL_ELASTIC_BULK_MODULUS K and the
ISOTHERMAL_SHEAR_MODULUS G by

Positive definiteness of the elastic response demands that .

941101.1

PLASTIC_STRAIN_TENSOR ε
˜
˙ p td

t=0

TIME

∫=

ε
˜
˙ p

ε̇

εx
1
E
---- σx ν σy σz+()–[]=

ν 3K 2G–
2 3K G+()
---------------------------=

1– ν 1 2⁄< <

B-26

Appendix B: MIGTIONARY MIG 0.0

POLAR_EULER_ANGLES: 3 <special> () [EULANG]

{φ,θ,ψ} Euler angles are one of many ways to describe any general rotation.
The POLAR_EULER_ANGLES are an alternative means of describing the
POLAR_ROTATION_TENSOR. Let {x,y,z} be an orthonormal triad of coordi-
nate axes initially aligned with the orthonormal computational axes. The
polar reorientation of the triad may be obtained by the following proce-
dure: First rotate the triad an angle φ about its z-axis (this causes x and y
to move to new orientations while z remains unchanged). Then rotate the
triad an angle θ about its new x-axis (this causes y and z to move to new
orientations while x remains unchanged). Finally, rotate the triad an angle
ψ about its new z-axis. The angles {φ,θ,ψ} are the POLAR_EULER_ANGLES.
The matrix of components of the POLAR_ROTATION_TENSOR with respect to
the original orientation of the triad is the product of the three matrices as
follows

941101.1

POLAR_ROTATION_TENSOR: 9 <2nd-order tensor> () [R]

{R} Rotation tensor R from the polar decomposition F = V•R = R•U, where
F is the DEFORMATION_GRADIENT, and V and U are the stretches. Note:
the nine components of the rotation tensor are not independent, but nine
components are provided because the constraints are non-linear (see
ROTATION_VECTOR and EULER_ANGLES).

For 3-D calculations, the rotation tensor is usually found by computing
. Then the stretch U is determined by taking the “square

root” of C in its principal basis. Then the rotation tensor is computed by
. This procedure can be computationally costly because it

requires both an eigenvalue decomposition and a basis transformation.

For 2-D symmetries, F is of the form

, with F33>0

and the rotation tensor is trivial to compute. Namely,

.

Here,

Rij[]
φcos φsin– 0

φsin φcos 0

0 0 1

1 0 0

0 θcos θsin–

0 θsin θcos

ψcos ψsin– 0

ψsin ψcos 0

0 0 1

=

C FT F• U2= =

R F U 1–•=

F
F11 F12 0

F21 F22 0

0 0 F33

=

R
c s– 0

s c 0

0 0 1

=

B-27

MIG 0.0 Appendix B: MIGTIONARY

and

where

and .

941101.1

POLAR_ROTATION_VECTOR: 3 <vector> () [RVEC]

{r} Rotation “vector” associated with the rotation tensor R from the polar
decomposition F = V•R = R•U. This vector is defined such that its magni-
tude is the angle of rotation (radians) and its orientation is the axis of rota-
tion. For small rotation angles, this vector is approximately the axial
vector of R. Beware: the rotation vector associated with two sequential
rotations is not obtained by a vectorial sum of the rotation vectors.

The rotation tensor R may be constructed from the rotation vector rv as
follows

THETA = sqrt(rv(1)**2 + rv(2)**2 + rv(3)**2)
IF(THETA.eq.0)THEN

R(1,1)=1.
R(2,2)=1.
R(3,3)=1.

ELSE
N(1) = rv(1)/THETA
N(2) = rv(2)/THETA
N(3) = rv(3)/THETA
C=COS(THETA)
S=SIN(THETA)
OMC=1.0-C
R(1,1) = C+OMC*N(1)*N(1)
R(2,2) = C+OMC*N(2)*N(2)
R(3,3) = C+OMC*N(3)*N(3)
R(1,2) = OMC*N(1)*N(2) - S*N(3)
R(2,1) = OMC*N(2)*N(1) + S*N(3)
R(2,3) = OMC*N(2)*N(3) - S*N(1)
R(3,2) = OMC*N(3)*N(2) + S*N(1)
R(3,1) = OMC*N(3)*N(1) - S*N(2)
R(1,3) = OMC*N(1)*N(3) + S*N(2)

END IF

Conversely, given a rotation tensor R (with a rotation angle not 180˚), the
associated rotation vector rv may be constructed as follows

a(1) = (R(3,2)-R(2,3)) / 2.0
a(2) = (R(1,3)-R(3,1)) / 2.0
a(3) = (R(2,1)-R(1,2)) / 2.0
S = sqrt(a(1)**2 + a(2)**2 + a(3)**2)
C = (R(1,1)+R(2,2)+R(3,3) - 1.0) / 2.0
THETA = ATAN2(S,C)
IF(S.NE.0.0)THEN

c c

c2 s2+
---------------------= s s

c2 s2+
---------------------=

c F11 F22+= s F21 F12–=

B-28

Appendix B: MIGTIONARY MIG 0.0

 rv(1) = THETA* a(1)/S
 rv(2) = THETA* a(2)/S
 rv(3) = THETA* a(3)/S
ELSE

Clearly, use of the rotation “vector” reduces storage by requiring only three
scalars per cell, but increases computation if the rotation tensor R must be
reconstructed or deconstructed. 941101.1

POLAR_SPIN: 3 <2nd-order skew-symmetric tensor> (,,-1)
[SPIN]

{ } The polar spin tensor is defined , where RT is the

ROTATION_TENSOR~TRANSPOSE and is the ROTATION_TENSOR~RATE.
941101.1

POLARIZATION: 3 <vector> (-2,,1,,,1,)

{} The polarization vector is the electric dipole moment per unit (initial)
volume per unit charge.

960215.2

PORE_PRESSURE: 1 <scalar> (-1,1,-2) [PORP]

{Pv} The average pressure within pores (for microporous constitutive mod-
els). 941101.1

PORE_TO_MATRIX_RATIO: 1 <scalar> () [PORP]

{φ} The ratio of pore volume to matrix volume for microporous constitutive
models. The pore-to-matrix ratio (which is used by many analysts in Taylor
series expansions for small pore volume) is related to POROSITY by

.

POROSITY: 1 <scalar> () [PORO]

{fv} Volume of voids divided by the total volume of a representative volume
element for microporous constitutive models. For large deformations, the
pore and total volumes used in this ratio should correspond to the state
that would be achieved if all internal stresses were removed (this state is
generally non-Euclidean).
Incidentally, if the pores are embedded in an incompressible matrix mate-
rial, the material rate of porosity is equal to

,

where Dp is the permanent part of the macroscopic RATE_OF_DEFORMA-
TION. 941101.1

POSITION: 3 <special> (depends on value of GEOM) [X]

{x} The position vector is the directed line segment from the current origin
to the particle located at the “cell” center. The three scalars representing

Ω
˜

Ω
˜

Ṙ RT•=

Ṙ

f v

φ
f v

1 f v–
--------------=

ḟ v f v 1–()trDp=

B-29

MIG 0.0 Appendix B: MIGTIONARY

the position vector are coordinates, not components. Hence, interpretation
of the three scalars depends on the value of GEOM as shown in the table.

941101.1

POSITION_RATE: 3 <vector> (1,,-1)[XDOT]

{ } This is the material time derivative of the position vector, which is not
equal to material VELOCITY unless the origin is stationary.

Note that this variable ends in “_RATE” instead of “~RATE”. POSITION is a
<special> variable whose independent scalars are coordinates, not compo-
nents and therefore POSITION~RATE gives the material time derivatives of
the coordinates. The POSITION_RATE, on the other hand, represents the
components of the material time rate of the position vector.

To make this distinction perfectly clear, consider polar coordinates
(GEOM=22) where the position coordinates are the radius r and the angle θ.
Then POSITION={r,θ} and POSITION~RATE={ }. By contrast, the material
time rate of the position vector is ; so the POSITION_RATE (with
an underscore instead of a tilde) is { }. 941101.1

PRESSURE: = MECHANICAL_PRESSURE

RATE_OF_DEFORMATION: =VELOCITY ~GRADIENT ~SYM

{D, Dij, d, dij} The symmetric part of the velocity gradient. For small dis-
placement gradients, the RATE_OF_DEFORMATION is approximately equal
to the strain rate. 941101.1

RATE_OF_DEFORMATION~TRACE: 1 <scalar> (,,-1) [DLTNR]

{ } Trace of the RATE_OF_DEFORMATION. Equals the trace of the VELOC-
ITY~GRADIENT. Equals the DILATATION~RATE. 941101.1

RESTART: -1 () [IRSTRT]

{} If non-zero, the calculation is a RESTART of a partially run calculation
(or the first cycle of a new calculation). Models may require this variable as
input if the model driver performs “start-up-only” calculations (these kind

GEOM POSITION1 POSITION2 POSITION3

10 x-coordinate

11 radius (distance from center line)

12 radius (distance from origin)

20 x-coordinate y-coordinate

21 radius (distance from center line) z-coordinate

22 radius (distance from center line) theta

30 x-coordinate y-coordinate z-coordinate

ẋ

ṙ θ̇,
ṙer rθ̇eθ+

ṙ rθ̇,

ε̇v

B-30

Appendix B: MIGTIONARY MIG 0.0

of calculations can usually be performed in either the data-check or extra
variable routines to avoid the need for RESTART information). On subse-
quent iterations, the model will receive RESTART=0. 941101.1

RIGHT_STRETCH: 6 <2nd-order symmetric tensor> [U]

{U} The symmetric positive-definite stretch tensor U from the polar
decomposition F=R•U, where F is the DEFORMATION_GRADIENT and R is
the POLAR_STRETCH. The stretch is trivial to compute for 2-D problems:
see POLAR_ROTATION_TENSOR. 941101.1

SCALAR_PLASTIC_STRAIN_RATE: 1 (,,-1) [PLSNRT]

{ } ≡ times the PLASTIC_STRAIN_RATE_TENSOR~DEVIATOR~
MAGNITUDE. In other words, the scalar plastic strain “rate” (or equivalent
plastic strain “rate”, as it is sometimes called) is given by

where is the deviatoric part of the PLASTIC_STRAIN_RATE_TENSOR
. That is,

.

In general, the scalar plastic strain “rate” is not the material time rate of
any path-independent quantity (that is why its name ends in _RATE
instead of ~RATE).

The scalar plastic strain “rate” is certainly well defined regardless of the
yield criterion. However, the use of the as well as the use of the plas-
tic strain rate deviator date back to the early days when the Mises yield
criterion was used almost exclusively. The traditional Mises assumption
that the plastic strain rate differs from the stress deviator by only a multi-
plicative scalar implies that the plastic work rate, , is simply equal to
the magnitude of the stress deviator times the magnitude of the plastic
strain rate. Application of the Mises yield criterion shows that the magni-
tude of the stress deviator at yield is equal to , where Y is the
YIELD_IN_TENSION. Thus, it becomes clear that the factor of was
originally introduced into the scalar plastic strain rate simply to enable
analysts to write for Mises models. 941101.1

SCRATCH: varies <special> (dimensions vary) [SCR]

{} This special MIG variable is free temporary storage space (always
assumed available from any MIG-compliant parent code) for working
arrays in a MIG driver routine. Suppose, for example, that the ASCII data
file for a particular MIG model lists SCRATCH~1 SCRATCH~2THRU4 and
SCRATCH~5 in its output list. Then the parent code allocates scratch stor-

ε̇equiv
p

2 3⁄

ε̇equiv
p 2

3
--- ε̇ij

p'ε̇ij
p'

j 1=

3

∑
i 1=

3

∑=

ε̇ij
p'

ε̇ij
p

ε̇ij
p' ε̇ij

p 1
3
--- ε̇kk

p

k 1=

3

∑
 
 
 

δij–≡

2 3⁄

σ
˜
:ε
˜
˙ p

Y 3 2⁄
2 3⁄

σ
˜
:ε
˜
˙ p Y ε̇equiv

p=

B-31

MIG 0.0 Appendix B: MIGTIONARY

age arrays of the appropriate lengths (in this case, 1 scalar, 3 scalars, and 1
scalar, respectively). Upon return, the values contained in scratch are of no
interest to the parent code. A MIG model ordinarily uses scratch arrays to
hold intermediate results. If scratch is requested as an input, the parent
code will first zero out the array. Usually, initialization of scratch is not
needed, so it is merely listed as an output. 941101.1

SELF_ADJOINT_TANGENT_STIFFNESS: 21 (-1,1,-2) <4th-order
major&minor-symmetric tensor> [TNGNTS]

{} This is the same as the GENERAL_TANGENT_STIFFNESS tensor Tijkl with
the added property of self-adjointness. That is, the components satisfy the
major symmetry Tijkl =Tklij. 941101.1

SHEAR_MODULUS: = ISOTHERMAL _ELASTIC _SHEAR_MODULUS

{µ, G} 941101.1

SIGNORINI_STRAIN: 6 () <2nd-order symmetric tensor> [SNSTRN]

{ } = , where B is the FINGER_TENSOR and I is the identity tensor.
Also known as the Finger strain. This strain is related to the LAGRANGE_
STRAIN by a material rotation. 941101.1

SOUND_SPEED: 1 (1,,-1) [SNDSPD]

{} This is the speed at which a mechanical disturbance propagates in
uniaxial strain. For inviscid fluids,

For anisotropic materials, there is no single value of sound speed, but if a
value is returned for SNDSPD, it should equal a value appropriate for
using SNDSPD to control the maximum stable time step according to the
Courant condition. See also: US_UP_INTERCEPT. 941101.1

SPECIFIC_FLAW_DENSITY: 1 (,-1,,,1) [FPM]

The number of flaws per unit mass. The nature of the flaw (e.g., crack,
pore, dislocation) must be determined from context. Unlike the
VOLUMETRIC_FLAW_DENSITY, the SPECIFIC_FLAW_DENSITY will be con-
stant in time whenever flaw nucleation is prohibited. 941101.1

SPECIFIC_HEAT: = SPECIFIC_HEAT_AT_CONSTANT_VOLUME

SPECIFIC_HEAT_AT_CONSTANT_STRESS: 1 (2,1,-2,-1) [SPHSTS]

{ } Partial derivative of SPECIFIC_INTERNAL_ENERGY with respect to
TEMPERATURE holding relevant stress and all other state variables con-
stant. This variable is well defined as a material property only if a proper
function of internal energy as a function of stress exists (so that a deriva-
tive of this function may be taken). 941101.1

ε
˜

1
2
--- B I–()

sound_speed=
isentropic_bulk_modulus

mass_density

cp

B-32

Appendix B: MIGTIONARY MIG 0.0

SPECIFIC_HEAT_AT_CONSTANT_VOLUME: 1 (2,1,-2,-1) [SPHVOL]

{ } Partial derivative of SPECIFIC_INTERNAL_ENERGY with respect to
TEMPERATURE holding relevant strain and all other state variables con-
stant. It is given variously by these derivatives:

where u is the specific internal energy, T is the temperature, v is the spe-
cific volume, s is the entropy and a is the Helmholtz free energy. 941101.1

SPECIFIC_INTERNAL_ENERGY: 1 <scalar> (2,0,-2) [SIE]

{e} Internal energy per unit mass as defined by the local form of the first
law of thermodynamics. While neither SPECIFIC_STRESS_POWER nor the
SPECIFIC_HEATING_POWER is a true rate, the first law states that their
sum is a true material rate of a path-independent state variable called spe-
cific internal energy. The definition of internal energy is unique to within
an additive constant. Different analysts set this constant to various values,
depending on their purposes. Any model that requires a particular value
for the additive constant may determine it by requesting the value of
SPECIFIC_INTERNAL_ENERGY~STP. 941101.1

SPECIFIC_STRESS_POWER: 1 (2,0,-3) [SPSPWR]

{} STRESS_POWER divided by DENSITY. 941101.1

SPECIFIC_DEVIATORIC_STRESS_POWER: 1 (2,0,-3) [SPSPWR]

{} DEVIATORIC_TRESS_POWER divided by DENSITY. 941101.1

SPECIFIC_DISTORTIONAL_WORK_INCREMENT: = SPECIFIC_DEVIATORIC _
STRESS_POWER~*DT

{} 941101.1

SPECIFIC_DISTORTIONAL_WORK: 1 (2,0,-2) [SDSTWK]

{} DEVIATORIC_STRESS_POWER divided by DENSITY. This variable has
dimensions of work per unit mass. 941101.1

SPECIFIC_HEATING_POWER: 1 (2,0,-3) [HTGPWR]

{ } The heat addition “rate” from heat sources or fluxes. Specifically,

,

where r is the heat source per unit mass, ρ is the mass density, and q is the
heat flux. Note: the heating power is not a true rate. See SPECIFIC_
INTERNAL_ENERGY. 941101.1

SPECIFIC_THERMAL_STRESS_TENSOR: 6 <2nd-order symmetric
tensor> () [THSTST]

{ } The negative change in the (specific) stress tensor with respect to a

cv

cv T∂
∂u

 
 

v
T

T∂
∂s

 
 

v
T ∂2a

∂T2
---------- 

 
v

–= = =

PT

PT r 1
ρ
---∇ q•–=

Bv

B-33

MIG 0.0 Appendix B: MIGTIONARY

change in temperature holding conjugate strain constant:

Here, T is TEMPERATURE, and the tensors V and P are any general strain
and conjugate specific stress (stress divided by density). “Conjugate”
means that V and P must have the property that

,

where ρ is the MASS_DENSITY, is the CAUCHY_STRESS, and is the
RATE_OF_DEFORMATION.

Uniqueness of this definition requires specification of V and P. If these ten-
sors are not specified, they may be assumed to be LAGRANGE_STRAIN and
2ND_PIOLA_KIRCHHOFF_STRESS/DENSITY~0. 941101.1

SPECIFIC_VOLUME: 1 (0,-1,3) [SPVOL]

{} Volume per unit mass (=1/DENSITY). 941101.1

SPHERICAL_STRESS: 1 <scalar> (-1,1,-2) [SIGAVG]

{} One third the trace of CAUCHY_STRESS. The SPHERICAL_STRESS is posi-
tive in tension. 941101.1

STRAIN: This quantity is not defined or even aliased here since there are so
many competing strain measures in the literature, none of which seem to
dominate. Look for particular strain measures such as, LAGRANGE_STRAIN
and SIGNORINI_STRAIN. For strain rates, see also RATE_OF_DEFORMATION.

STRESS: = CAUCHY _STRESS

STRESS_POWER: 1 (-1,1,-3) [STSPWR]

{ } The internal work “rate” per unit volume. If is the CAUCHY_STRESS
and D is the RATE_OF_DEFORMATION, then

Also see ISOTROPIC_STRESS_POWER, DEVIATORIC_STRESS_POWER, and
SPECIFIC_STRESS_POWER. 941101.1

TANGENT_STIFFNESS: = SELF_ADJOINT_TANGENT_STIFFNESS

TEMPERATURE: =ABSOLUTE_TEMPERATURE

THERMAL_STRESS_COEFFICIENT: 6 <2nd-order symmetric tensor>
() [THSTSC]

{} The change pressure with respect to with respect to a change in temper-
ature holding volume constant:

T∂
∂P

 
 

V
˜

–

PijV̇ ij
1
ρ
---σijDij=

σ
˜

D
˜

Ps σ
˜

STRESS_POWER σijDij=

B-34

Appendix B: MIGTIONARY MIG 0.0

This definition requires the existence of pressure as a function of tempera-
ture and specific volume.

THERMODYNAMIC_PRESSURE: 1 <scalar> (-1,1,-2) [PRESUR].

{P} Pressure P used in thermodynamical descriptions for which it is
assumed that

de = Tds – Pdv ,

where e is SPECIFIC_INTERNAL_ENERGY, T is ABSOLUTE_TEMPERATURE, s
is SPECIFIC_ENTROPY, and v is SPECIFIC_VOLUME. The above equation is
not a general expression of the first law of thermodynamics, nor is it a
statement of the second law. 941101.1

TIME_STEP : -1 <scalar> (,,1) [DT]

{∆t} Computational time step. This may or may not correspond to the
actual time step used in the parent code running the model. Any MIG
model that requests TIME_STEP as an input is assumed a rate model.
Hence, all input is regarded as the value at the beginning of the step
(except rate inputs, which are preferably at the half step for second-order
differencing) and all output is the value at the end of the step. For other
interpretations, use the operators ~NEW, ~OLD, or ~CTR. 941101.1

TIME: -1 (,,1) [TIME]

{t} Computational real problem time. 941101.1

US_UP_COEF1: 1 <scalar> () [USUP1]

{s1} The linear coefficient in the power expansion of the shock speed vs.
particle speed function (see US_UP_INTERCEPT). 960304.1

US_UP_COEF2: 1 <scalar> (-1,,1) [USUP1]

{s2} The quadratic coefficient in the power expansion of the shock speed vs.
particle speed function (see US_UP_INTERCEPT). 960304.1

US_UP_COEF3: 1 <scalar> (-2,,2) [USUP1]

{s3} The cubic coefficient in the power expansion of the shock speed vs. par-
ticle speed function (see US_UP_INTERCEPT). 960304.1

US_UP_INTERCEPT: 1 <scalar> (1,,-1) [USUP0]

{co} The intercept of the shock speed vs. particle speed function (Also
known as the “us-up” curve). The intercept is the first term in the following
power expansion

Also see the related (not necessarily. equivalent) term: SOUND_SPEED.
960304.1

T∂
∂p

 
 

v

us up() co s1up s2up
2 s3up

3 …+ + + +=

B-35

MIG 0.0 Appendix B: MIGTIONARY

VELOCITY: = MATERIAL_VELOCITY

VELOCITY~GRADIENT: 9 <2nd-order tensor> (,,-1) [VELGRD]

{L, Lij} The components Lij of the VELOCITY~GRADIENT are given by

where v is the VELOCITY, x is the current POSITION, and the quantity t
being held constant in the derivative is time. See also: RATE_OF_DEFOR-
MATION and VORTICITY. 941101.1

VIRGIN_FRACTURE_PRESSURE: 1 (-1,1,-2) [PFRAC]

{} The value of FRACTURE_PRESSURE for an “undamaged” (virgin) mate-
rial. See also: DAMAGE. 941101.1

VISCOSITY: =DYNAMIC_VISCOSITY

VOLUMETRIC_FLAW_DENSITY: 1 (-3,,,,1) [FPV]

{} The number of flaws per unit volume. The nature of the flaw (e.g., crack,
pore, dislocation) must be determined from context. Also see SPECIFIC_
FLAW_DENSITY. 941101.1

VOLUME_FRACTION_OF_MATERIAL: 1 <scalar> () [VOLFRC]

{} The volume fraction of material in the computational cell. This variable
is not of much use to Lagrangian codes, where the volume fraction is
always equal to unity. Technically, this variable should not be required by
MIG models even for Eulerian codes, since it is the responsibility of the
parent code to send material values for field variables. However, this vari-
able may be useful to code architects who do not have a gather-scatter
capability enabled. MIG models may still be installed in such codes by add-
ing check lines (shown in bold) to each MIG driver loop over cells:

DO 100 I=1,NC

IF(VOLFRC(I).GT.0.0)THEN

process this cell

END IF

100 CONTINUE

VORTICITY: = VELOCITY~GRADIENT~SKEW

{ } The vorticity vector is defined as half the curl of velocity v:

Lij x j∂
∂vi

 
 
 

t

=

ω
˜

ω
˜

B-36

Appendix B: MIGTIONARY MIG 0.0

The vorticity tensor W is defined as the skew-symmetric part of the velocity
gradient. The components of W are related to the components of by

The ordering convention for a <2nd-order skew-symmetric tensor> states
that the three independent skew-symmetric tensor components are {W32,
W13, W21}. As seen above, these components are identical to the three com-
ponents of the vorticity vector, {ω1, ω2, ω3}. Hence, VORTICITY may be
regarded as a tensor or a vector, whichever is more convenient (when used
as an operand, it should be regarded as a vector). 941101.1

YIELD_IN_SHEAR: 1 (-1,1,-2) [YIELDS]

{Y} Yield stress in pure shear. i.e., the value of Y at yield when the stress
tensor is of the form

.

This variable is well-defined only for isotropic materials. For an isotropic
material, the material is said to be “at yield” when

where I1, I2, and I3 are three independent invariants of stress and F is the
isotropic yield function. Suppose, for example, the invariants I1, I2, and I3
are taken to be the SPHERICAL_STRESS, STRESS~DEVIATOR~MAGNITUDE,
and STRESS~DETERMINANT, respectively. Then the yield in shear Y is be
the solution to

The Huber-Mises (Von Mises) yield model assumes that the function F
depends only on the magnitude of STRESS~DEVIATOR. It is straightforward

ω
˜

1
2
--- v∇×≡

1
2

x2∂
∂v3

x3∂
∂v2–

 
 
 

1
2

x3∂
∂v1

x1∂
∂v3–

 
 
 

1
2

x1∂
∂v2

x2∂
∂v1–

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

=

ω
˜

W
0 ω– 3 +ω2

+ω3 0 ω– 1

ω– 2 +ω1 0

=

σ
˜

0 Y 0
Y 0 0
0 0 0

=

F I1 I2 I3, ,() 0=

F 0 2Y 0, ,() 0=

B-37

MIG 0.0 Appendix B: MIGTIONARY

to show that for the Mises yield model, the YIELD_IN_TENSION = (YIELD_
IN_SHEAR). Yield models that permit pressure dependence of yield will not
satisfy this relationship. 941101.1

YIELD_IN_TENSION: 1 <scalar> (-1,1,-2) [YIELDT]

{σy} Yield stress in uniaxial stress; i.e., the value of σy at yield when the
stress tensor is of the form

.

This variable is well-defined only for isotropic materials. For an isotropic
material, the material is said to be “at yield” when

where I1, I2, and I3 are three independent invariants of stress. Suppose, for
example, the invariants I1, I2, and I3 are taken to be the SPHERICAL_
STRESS, STRESS~DEVIATOR~MAGNITUDE, and STRESS~DETERMINANT,
respectively. Then the yield in tension σy is be the solution to

The Huber-Mises (Von Mises) yield model assumes that the function F
depends only on the magnitude of STRESS~DEVIATOR. It is straightforward
to show that for the Mises yield model, the YIELD_IN_TENSION = (YIELD_
IN_SHEAR). Yield models that permit pressure dependence of yield will not
satisfy this relationship. 941101.1

YOUNGS_MODULUS: 1 <scalar> (-1,1,-2) [YOUNGS]

{E} Elastic stiffness material property E appearing the generalized
Hooke’s law, usually stated (in rectangular coordinates x, y, and z):

Young’s modulus is related to the ISOTHERMAL_ELASTIC_BULK_MODULUS
K and the ISOTHERMAL_SHEAR_MODULUS G by

960722.1

2

σ
˜

σy 0 0

0 0 0

0 0 0

=

F I1 I2 I3, ,() 0=

F
σy

3
------ 2

3
---σ

y
0, , 

  0=

2

εx
1
E
---- σx ν σy σz+()–[]=

E 9KG
3K G+
-------------------=

B-38

Appendix B: MIGTIONARY MIG 0.0

OPERATORS

This part of the migtionary lists operators which may act on any (appropri-
ate) migtionary term. Operators are always preceded by a tilde (~) and are
listed in the order of application. For example the symmetric part of the vor-
ticity gradient may be specified by VORTICITY~GRADIENT~SYM, with the gradi-
ent and symmetry operators acting in the order listed.

Immediately following the operator term, somewhat cryptic codes indicate
properties of the operation. The first code indicates the change in the number
of scalars. For example, the code n->n-1 would mean that the operation
decreases the number of scalars by 1. Similarly, the code n->n+3 (see, e.g., the
GRADIENT operation) indicates that the operation increases the number of sca-
lars by 3. The codes in angled brackets show the change in variable type.
Recall that pages B-3 through B-8 define sixteen variable types (ITYPE):

 1: scalar

 2: special

 3: vector

 4: 2nd-order skew-symmetric tensor

 5: 2nd-order symmetric deviatoric tensor

 6: 2nd-order symmetric tensor

 7: 4th-order tensor

 8: 4th-order minor-symmetric tensor

 9: 2nd-order tensor

10: 4th-order major&minor-symmetric tensor

11: 2nd-order symmetric tensor 6d

12: 4th-order minor-symmetric tensor 6d

13: 2nd-order deviatoric tensor

14: 2nd-order symmetric deviatoric tensor 6d

15: 3rd-order tensor

16: 4th-order major&minor-symmetric tensor 6d

For each of these operand types, the 16 codes in angled brackets <...> show the
resultant variable type under the given operation. If the operation is inappro-
priate for the variable type, then the code is zero. Thus, for example, the codes
for the GRADIENT operation show that the gradient of a <scalar> is a <vector>,
the gradient of a <special> cannot be computed without knowledge of the
meaning of the special scalars (code=0), the gradient of a <2nd-order tensor>
is a <3rd-order tensor>, etc.

Whenever the operand is a skew-symmetric tensor, it is regarded as a
<vector>. Hence, the gradient of a <2nd-order skew-symmetric tensor> is
treated as the gradient of a <vector>, which is a <2nd-order tensor>.

B-39

MIG 0.0 Appendix B: MIGTIONARY

~ADJUGATE: n->n <0,0,6,6,6,6,0,0,9,0,11,0,9,11,0,0>

{A→Ac} For 2nd-order tensor operands, the adjugate is the matrix of the
signed minors of the operand matrix. Also known as COFACTOR. Invariant
definition: If A is a 2nd-order tensor, then the adjugate, or cofactor, is the
unique tensor Ac satisfying

(A•u)×(A•v)=Ac•(u×v) for all vectors u and v.

The adjugate is always defined even if the tensor is singular. However, if an
inverse exists, [Ac] = det(A) [A–T].

For vector operands, the adjugate is the dyad of the vector, uc = u⊗u. (This
definition is adopted to accommodate <2nd-order skew symmetric tensors>
since they are to be regarded as vectors whenever they are operands.)

941101.1

~COFACTOR: = ADJUGATE.

{A→Ac} 941101.1

~CONTRACTij : n->n-2 <0,0,0,1,1,1,9,C12:6 C23:9
C34:6,1,6,1,C12:11 C23:9 C34:11,1,1,3,11>

{A→ (A)} (for Nth-order tensor operands, where N≥max(i,j), i≠j) Con-
traction operation on the ith and jth base vectors. This operation reduces
the order of the operand by two. For example, if Uijklm are the cartesian
components of a 5th-order tensor, then CONTRACT13 applied to this tensor
would result in a third-order tensor whose cartesian components would be
Upjplm, where the repeated index p is summed from 1 to 3. More generally,
if Uijklm are the contravariant components of a 5th-order tensor, then the
action of CONTRACT13 is determined by writing the invariant form U=Uijklm

gigjgkglgm, where the curvilinear base vectors {gi} are multiplied dyadi-
cally. Then CONTRACT13 of U is obtained by contracting the 1st and 3rd base
vectors to obtain a third-order tensor Uijklm (gi•gk)gjglgm = Uijklm gik
gjglgm, where gik is the metric and repeated indices are summed. Note
that when the operand is a 2nd-order tensor, the only possible contraction
operation (CONTRACT12) is equivalent to the TRACE operation. 941101.1

~CTR: value at the center of the step. See: ~NEW.

~CIJ: =CONTRACTij

{A→ (A)} 941101.1

~DEVIATOR: varies <1,0,3,4,5,5,7,8,13,10,14,12,13,14,15,16>

{ } (for 2nd-order tensor operands) If the operand is A, then the
deviator Ad is A- (trA) I, where (trA) is the TRACE of A and I is the identity
tensor.

Cij

Cij

A A´ A, d→
1
3

B-40

Appendix B: MIGTIONARY MIG 0.0

More generally, the deviator operation depends on the order of the oper-
and. For every order of tensor, there is a sub-space of isotropic tensors (i.e.,
tensors whose components do not change with a rigid transformation of
basis). For scalars, the space consists of only zero. Likewise, for vectors, the
isotropic space consists of only the zero vector. For second-order tensors,
the space is the span of the 2nd-order identity tensor. For third-order ten-
sors, the isotropic space is the span of the alternating tensor. For fourth-
order tensors, the isotropic space is the span of three tensors, the symme-
try-deviator projector, the skew-symmetry projector, and the spherical pro-
jector [see, for example, Malvern]. The general definition of the deviator
operation acting on a general operand U is to subtract from U its projection
onto the isotropic space of the same order as U. 941101.1

~DETERMINANT: n->1 <1,0,0,1,1,1,1,1,1,1,1,1,1,1,0,1>

For even-order tensors, the determinant is the n-th invariant, where n is
the order of the tensor.

~EXCHANGEij : n->n <1,0,0,4,5,6,7,X12:8 X23:7 X14:7
X34:8,9,X12:10 X23:7 X14:7 X34:10,11, X12:12 X23:7 X14:7
X34:12,13,14,15,X12:16 X23:7 X14:7 X34:16>

{} (for Nth-order tensor operands, where N≥max(i,j), i≠j) Exchange the ith
and jth base vectors. This operation preserves the order of the operand. For
example, if Uijklm are the cartesian components of a 5th-order tensor, then
EXCHANGE13 applied to this tensor would result in a fifth-order tensor
whose cartesian components would be Ukjilm. More generally, if Ui

jk
lm are

the mixed components of a 5th-order tensor, then the action of EXCHANGE13
is determined by writing the invariant form U=Ui

jk
lm gig

jgkglgm, where
the curvilinear base vectors {gi} are multiplied dyadically. Then
EXCHANGE13 of U is obtained by exchanging the 1st and 3rd base vectors to
obtain a fifth-order tensor Ui

jk
lm gkgjgiglgm = Uk

ji
lm gigjgkglgm. Note that

when the operand is a 2nd-order tensor, the only possible exchange opera-
tion (EXCHANGE12) is equivalent to the TRANSPOSE operation. 941101.1

~GRADIENT: n->n+3 <3,0,9,9,15,15,-,-,15,-,15,-,15,15,7,->

{} Derivative of the operand with respect to current POSITION holding
TIME constant. The components correspond to a so-called “left” gradient.
For example, if A is a second-order tensor, then A~GRADIENT is a third-
order tensor with rectangular cartesian components

Of course, the left gradient components are computed differently for curvi-
linear components. 941101.1

~MAGNITUDE: n->1 <1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1>

{} (for scalars and tensors of any order) If the operand is , the MAGNI-

A~GRADIENT()ijk xk∂
∂Aij=

w
˜

B-41

MIG 0.0 Appendix B: MIGTIONARY

TUDE of is , where the raised dot represents the inner product
appropriate for the order of the tensor (simple multiplication if the operand
is a scalar).

If the operand is a <scalar>, s, then

If the operand is a <vector> v, then

If the operand is a <second-order tensor> B, then

If the operand is a <3rd-order tensor> , then

and so on.

Importantly, the above definitions also apply for tensor subtypes. For
example, if the operand is a <2nd-order symmetric tensor>, A, then

Note that the off diagonal terms “count twice” because . So if A is
stored as a <2nd-order symmetric tensor>, A~MAGNITUDE is computed by

On the other hand, if A is stored as a <2nd-order symmetric tensor 6d>,

,

a more intuitive result. 941101.1

~NEW: value (or proposed value) of the operand at the next time step. See the
definition of TIME_STEP; if TIME_STEP is one of the arguments of a model,
then inputs are implicitly understood to be at the beginning of the step and
outputs are understood to be ~NEW. The operator ~NEW may be used in
input lists if the model requires estimates of a variable at the end of the
step. Also see: ~OLD and ~CTR.

~OLD: value of the operand at the previous time step. See: ~NEW.

w
˜

w
˜

w
˜

•

s~MAGNITUDE s2 s= =

v~MAGNITUDE vivi
i 1=

3

∑=

B~MAGNITUDE BijBij
j 1=

3

∑
i 1=

3

∑=

T
˜

T~MAGNITUDE TijkTijk
k 1=

3

∑
j 1=

3

∑
i 1=

3

∑=

A~MAGNITUDE Aij Aij
j 1=

3

∑
i 1=

3

∑ A11
2 A22

2 A33
2 2A12

2 2A23
2 2A31

2
+ + + + += =

Aij A ji=

A~MAGNITUDE A1
2 A2

2 A3
2

2 A4
2 A5

2 A6
2

+ +()+ + +=

A~MAGNITUDE A1
2 A2

2 A3
2 A4

2 A5
2 A6

2
+ + + + +=

B-42

Appendix B: MIGTIONARY MIG 0.0

~RATE: n->n <1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16>

{} Derivative of the operand with respect to TIME holding INITIAL_POSI-
TION constant. This is the so-called Lagrangian derivative. Incidentally,
some engineering terms are called rates even though they are not the time
derivative of any path-independent quantity. The migtionary uses an
underscore for quantities that are not true rates. Hence, for example, the
migtionary cites the term PLASTIC_STRAIN_RATE instead of PLASTIC_STRAIN~
RATE. 941101.1

~STP: n->n <1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16>

{} Value of the operand at standard temperature and pressure.

~SYM: varies <1,0,0,0,5,6,0,0,6,-,11,-,5,14,-,->

{} (for 2nd-order tensor operands) Symmetric part of the operand. 941101.1

~SKEW: varies <0,0,0,4,0,0,-,-,4,-,0,-,4,0,-,->

{} (for 2nd-order tensor operands) Skew-symmetric part of the operand.
941101.1

~TRACE: =1ST_INVARIANT

~TRANSPOSE: n->n <1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16>

{} (for 2nd-order tensor operands) exchange of the base vectors. If Tij are
the cartesian components of a 2nd-order tensor, then Tji are the compo-
nents of its transpose. For curvilinear coordinates, the tensor should be
written in invariant form and the base vectors exchanged. See also:
EXCHANGE. 941101.1

~*DT: n->n <1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16>

{} Multiplication of the operand by the TIME_STEP. 941101.1

~Xij: =EXCHANGEij

{} 941101.1

~0: n->n <1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16>

{} Evaluation of the operand at TIME=0. For example, DENSITY~0 is the
initial value of MASS_DENSITY. 941101.1

~n : n->1 <2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2>

{} (n>0) Extraction of the nth scalar. Recall, for example, that STRESS is a
symmetric 2nd-order tensor and that the components of symmetric 2nd-
order tensors are ordered {11, 22, 33, 12, 23, 31}. Then STRESS~3 would be
the 3rd scalar, . 941101.1

~nTHRUm : n-> m- n+1 <2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2>

{} Extraction of the nth through mth scalar. Recall, for example, that
STRESS is a symmetric 2nd-order tensor. Also recall that the components of

σ33

B-43

MIG 0.0 Appendix B: MIGTIONARY

symmetric 2nd-order tensors are ordered {11, 22, 33, 12, 23, 31}. Then
STRESS~3THRU5 would be the collection of the 3rd through 5th scalars,
{σ33,σ12,σ23}. 941101.1

~6D: n->n <0,0,0,0,14,11,0,12,0,16,11,12,0,14,0,16>

{} (for 2nd-order symmetric tensor or 4th-order major&minor symmetric
operands) Multiply all off diagonal pairs by . This operation converts
2nd-order tensors in 3-space to 1st-order Euclidean tensors in 6-space. It
converts 4th-order tensors in 3-space to 2nd-order Euclidean tensors in 6-
space. 941101.1

~1ST_INVARIANT: n-> <>

{} (for even-order tensor operands) Sum of the components on the main
diagonal. See also: CONTRACT. 960801.1

~2ND_INVARIANT: n->n <0,0,0,1,1,1,0,0,1,-,1,-,1,1,0,->

{} (for even-order tensor operands) The sum of principal 2×2 minors. For a
2nd-order tensor in 3-D physical space, this is the TRACE of the COFACTOR.

941101.1

~3RD_INVARIANT: n->n <0,0,0,1,1,1,0,0,1,-,1,-,1,1,0,->

{} (for even-order tensor operands) The sum of principal 3×3 minors. For a
2nd-order tensor in 3-D physical space, this is the DETERMINANT.

941101.1

~<VARIABLE_TYPE>: n->n <VARIES>

This operation generalizes the variable type of the operand to the specified
type of the operator (with white space replaced by underscores). For exam-
ple, STRESS is a <2nd-order symmetric tensor>. Hence, according to the
definition on page B-4, it has six associated scalars: namely the compo-
nents ordered

.

The operation STRESS~<2ND-ORDER_TENSOR> would result in the stress
stored according to the convention of variable type <2nd-order tensor>,
namely,

This operation would permit the developer to dimension stress as
SIG(MC,3,3), but it is strongly discouraged since many parent codes will
not employ a compatible (inefficient, redundant) variable storage and will
therefore be forced to perform a software gather to supply the values in the
specified order. However, the operation STRESS~<2ND-ORDER_TENSOR>
would be appropriate for models that allow the stress tensor to be nonsym-
metric. 941101.1

2

σ11 σ22 σ33 σ12 σ23 σ31, , , , ,

σ11 σ21 σ31 σ12 σ22 σ32 σ13 σ23 σ33, , , , , , , ,

B-44

Appendix B: MIGTIONARY MIG 0.0

Contributors

Below is a list of individuals who have contributed definitions to the mig-
tionary. Every migtionary entry ends with a contributor’s code such as 940428.1,
which, in this example, means the term was last modified on 4/28 in 1994 by
contributor number 1 below. Any and all comments regarding migtionary defi-
nitions should be directed to the appropriate contributor.

1. Brannon, Rebecca M. (rmbrann@sandia.gov) (505)844-5095
Sandia National Laboratories,
PO BOX 5800, MS 0820
Albuquerque, NM 87185-0820
USA.

2. Wong, Mike W., (mkwong@sandia.gov) (505)844-5091
Sandia National Laboratories,
PO BOX 5800, MS 0819
Albuquerque, NM 87185-0819
USA.

C-1

MIG 0.0 Appendix C: Unit Keywords

APPENDIX C: Unit Keywords

Listed below are keywords that may be used in an ascii database entry to
specify model or data units in terms of the seven fundamental dimensions of
the SI standard.* If the desired unit is not listed, it may be defined by multi-
plying a like-keyword by the appropriate factor. For example, a furlong could
be defined by 0.125*mile or an attometer could be defined by meter*1.e-18.

*See Sedov, L.I.,Similarity and Dimensional Methods in Mechanics, 10th Edition, 1993, CRC
Press, page 4.

unit keyword definition

length meteror m = m, SI unit of length

centimeteror cm = 10-2 m

kilometeror km = 103 m

millimeter or mm = 10-3 m

foot or ft = 0.3048m

lightyear = 9.46×1015 m

mass kilogramor kg = kg, SI unit of mass

gramor gm = 10-3 kg

slug = 14.59kg

u = 1.66×10-27 kg

poundor lb = 0.4536kg

time secondor s =s, SI unit of time

millisecondor ms = 10-3 s

year = 3.156×107 s

temperature Kelvin or K = K, SI unit of absolute temperature

Rankine or R = 1.8K

eVt = 11604.5K

amount moleor mol = SI unit of discrete amount
= 6.022045×1023 items

kg-mol = 103 mol

lb-mol = 453.6mol

itemor items = 1.660565×10-24 mol

current ampereor amp = SI unit of electric current

milliamp = 10-3 amp

luminosity candella = SI unit of luminous intensity

C-2

Intentionally Left Blank

D-1

MIG 0.0 Appendix D: Sample MIG package.

APPENDIX D: Sample MIG package.
Viscoplasticity/damage model

of Bammann, Chiesa, and Johnson

ASCII data file

The listing below shows the MIG ASCII data file for a the viscoplasticity/
damage model of Bammann, Chiesa, and Johnson [7]. The numbers in the
right margin refer to the numbered list starting on page 11 in the “developer”
section of the main MIG documentation.

! BCJVPD MIG0.0 (1)
version : 19960208 (2)
descriptive model name : Bammann-Chiesa-Johnson viscoplasticity/damage model (3)
Short model name : BCJ VPD (4)
Theory by : D.J.Bammann, M.L.Chiesa, G.C.Johnson (5)
Coded by : P.A.Taylor (pataylo@sandia.gov) (6)

Caveats : The package for this BCJVPD model, including but not limited to this (7)
MIG data file and source code files, has been developed at Sandia National
Laboratories, which is not responsible for any damages resulting from its use.
This listing in MIG 0.0 documentation may not coincide in every respect with
the genuine package actually installed in parent codes.

MIG library : snlvpd.f (8i)
model library : sandvp.f (8ii)

input check routine name : SVPCHK (9i)
extra variable routine name : SVPEX (9ii)
driver routine name : SVPDRV (9iii)

alias : (10)
 equiv_pl_strain=EQUIVALENT_PLASTIC_STRAIN
 pl_strain_rate=SCALAR_PLASTIC_STRAIN_RATE
 KAPP=EXTRA~1
 BETA=EXTRA~2
 DAMR=EXTRA~3
 BCJP=EXTRA~4
 W23DT=SCRATCH~1
 W31DT=SCRATCH~2
 W12DT=SCRATCH~3
 SCR=SCRATCH~4THRU9

note : This model establishes 4 extra variables (21)
 (aliased above for readability.)
 (1)-KAPP, an isotropic hardening variable
 (2)-BETA, a viscoplastic rate variable
 (3)-DAMR, the damage rate,
 (4)-BCJP, a tensile mechanical pressure used to calculate damage

input : (11)
 velocity~gradient~sym velocity~gradient~skew time_step
 temperature mechanical_pressure
input and output : (11)
 stress~deviator back_stress equiv_pl_strain
 pl_strain_rate damage
 KAPP BETA DAMR BCJP
output :
 W23DT W31DT W12DT SCR

data units : meter kilogram second kelvin (13)

D-2

Appendix D: Sample MIG package. MIG 0.0

remark : (21)
 The next block of information (material constants) defines material
 properties that must be supplied by the user. The numbers in
 parentheses, which define the physical dimensions of the variables,
 are the exponents on the fundamental dimensions in the following order

 (length, mass, time, temperature, number, current, luminosity)

material constants : (16)

 rho =MASS_DENSITY
 ym =YOUNGS_MODULUS
 pr =POISSONS_RATIO
 temp0 =TEMPERATURE~0
 hc (1,-1,2,1)
 c1 (-1,1,-2) "Coefficient for function V"
 c2 (,,,1) "Exponent for function V"
 c3 (-1,1,-2) "Parameter c3 for function Y"
 c4 (,,,1) "Parameter c4 for function Y"
 c5 (,,-1) "Coefficient for function f"
 c6 (,,,1) "Exponent for function f"
 c7 (1,-1,2) "Coefficient for function rd"
 c8 (,,,1) "Exponent for function rd"
 c9 (-1,1,-2) "Parameter c9 for function h"
 c10 (-1,1,-2,-1) "Parameter c10 for function h"
 c11 (1,-1,1) "Coefficient for function rs"
 c12 (,,,1) "Exponent for function rs"
 c13 (1,-1,2) "Coefficient for function Rd"
 c14 (,,,1) "Exponent for function Rd"
 c15 (-1,1,-2) "Parameter c15 for function H"
 c16 (-1,1,-2,-1) "Parameter c16 for function H"
 c17 (1,-1,1) "Coefficient for function Rs"
 c18 (,,,1) "Exponent for function Rs"
 a1 (-1,1,-2) =BACK_STRESS~1
 a2 (-1,1,-2) =BACK_STRESS~2
 a3 (-1,1,-2) =BACK_STRESS~3
 a4 (-1,1,-2) =BACK_STRESS~4
 a5 (-1,1,-2) =BACK_STRESS~5
 a6 (-1,1,-2) "Initial value for scalar hardening variable kappa"
 dex "Parameter m defining damage variable phi"
 d0 =DAMAGE~0
 fs0 =FRACTURE_SPHERICAL_STRESS
 c19(,,,-1) "Parameter c19 for function Y"
 c20(,,,1) "Parameter c20 for function Y"

remark : (ym=e, temp0=temp, dex=n, where e, temp, & n are defined (21)
 by the routine MATDATA, written by M.Chiesa)
 rho ym pr temp0 hc
 c1 c2 c3 c4 c5
 c6 c7 c8 c9 c10
 c11 c12 c13 c14 c15
 c16 c17 c18 a1 a2
 a3 a4 a5 a6 dex
 d0 fs0 c19 c20

material constants data base : (17)

USER 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0

HY-80_STEEL 7.831e+03 2.069e+11 3.000e-01 2.944e+02 0.000e+00
 0.000e+00 0.000e+00 5.449e+08 0.000e+00 1.000e+00
 0.000e+00 5.728e-08 0.000e+00 4.262e+09 0.000e+00
 0.000e+00 0.000e+00 1.069e-09 0.000e+00 2.262e+08
 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
 0.000e+00 0.000e+00 0.000e+00 0.000e+00 3.700e+00
 1.000e-04 3.670e+09 0.000e+00 0.000e+00

D-3

MIG 0.0 Appendix D: Sample MIG package.

•

•

•
6061-T6_ALUMINUM 2.714e+03 6.897e+10 3.300e-01 2.944e+02 0.000e+00
 1.034e+07 0.000e+00 1.600e+08 1.617e+02 2.500e+01
 0.000e+00 1.914e-06 6.944e+02 1.028e+09 0.000e+00
 0.000e+00 0.000e+00 4.422e-08 8.555e+02 8.345e+07
 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
 0.000e+00 0.000e+00 0.000e+00 0.000e+00 8.000e+00
 1.000e-04 1.200e+09 0.000e+00 0.000e+00

max number of derived constants : 2 (18i)
max number of global constants : 0 (18ii)
max number of extra variables : 4 (18iii)

benchmarking : (20)
 The model has been benchmarked with two problems. The first is a Taylor
 cylinder impact calculation for 6061-T6_ALUMINUM to validate the viscoplastic
 portion of the model. The second problem is a spall calculation to test
 the damage predictions of the model. These benchmark problems are documented
 in the Sandia National Laboratories report SAND96-1626.

done : 19960208 (23)

MIG library

The MIG library is the file that contains the three required MIG routines,
namely:

1. The data check routine.
2. The extra variable routine
3. The driver routine.

According to the ASCII data file, these routines are concatenated together
into a single file called snlvpd.f . Listings of each of these routines are given
below for the same viscoplastic/damage model whose data file is given above.

Data Check Routine
The data check routine is always the first of the three required MIG rou-

tines called by the parent code. It is called even upon calculation restarts. By
the time the data check routine is called, the user input has been read by the
parent code and stored in the array UI. For readability, this sample routine
transfers user inputs to variables with more descriptive names. The third
user, UI(3), is Poisson’s ratio ν. Since the bulk modulus will later be computed
by a formula that involves division by 1–2ν, this third input is checked to see
if it is equal to 1/2; if so, the call to LOGMES informs the user that the value is
replaced by a number close to 0.5. Several other inputs are checked to ensure

D-4

Appendix D: Sample MIG package. MIG 0.0

that they are positive. Some users might complain about the vagueness of the
“bad value” message. A better message would have been “value must be posi-
tive.” As stated in the ascii data file, this particular package has no global con-
stants (i.e., dimensional parameters to be computed using conversion factors
in DC and then stored in the GC array). However, the values in the user input
array UI are used in the data check routine to compute two derived constants,
which are stored in the DC array. The call to FATRET ensures that derived con-
stants are not computed if there any errors were detected in user input. Sup-
pose, for example, that the user had wrongly input PR as -1.0. Then the test
for positiveness of PR would have failed and FATERR would have been called.
However, FATERR does not immediately halt the calculation. To avoid the divi-
sion by zero when TWOG is calculated, the line after the call to FATRET checks
if any fatal errors had occurred. If so, no derived constants are computed.

C---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
 SUBROUTINE SVPCHK (UI, GC, DC)
C***
C REQUIRED MIG DATA CHECK ROUTINE
C Checks validity of user inputs for Sandia/CA VPD
C Calculates and stores derived material constants.
C
C input
C -----
C UI: user input as read and stored by parent code.
C DC: The first seven places of DC contain the
C factors that convert from SI to parent code units for each
C of the seven base dimensions
C
C 1 --- length
C 2 --- mass
C 3 --- time
C 4 --- temperature
C 5 --- discrete count
C 6 --- electric current
C 7 --- luminous intensity
C
C This information is not used because this model does not
C currently use any universal constants.
C (See MIG documentation)
C
C output
C ------
C UI: This model does not currently modify the UI array
C GC: global constants (Just a place holder)
C DC: derived material constants.
C
C************************ pat 03/95 ************************************
C
C written: 03/08/95
C author: P.A.Taylor
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) ← Mandatory
 DIMENSION UI(*), GC(*), DC(*)
 CHARACTER*6 IAM
 PARAMETER(IAM = 'SVPCHK')
C
 PARAMETER(PONE = 1.0D0, PTWO=2.0D0, PHALF=0.5D0)
CC
C
 RHO = UI(1) ← Compare this coding with the list of user inputs
 YM = UI(2) in the ASCII data file on page D-1 under the key
 PR = UI(3) phrase “material constants”

D-5

MIG 0.0 Appendix D: Sample MIG package.

 TEMP0 = UI(4)
 HC = UI(5)
 C1 = UI(6)
 C2 = UI(7)
 C3 = UI(8)
 C4 = UI(9)
 C5 = UI(10)
 C6 = UI(11)
 C7 = UI(12)
 C8 = UI(13)
 C9 = UI(14)
 C10 = UI(15)
 C11 = UI(16)
 C12 = UI(17)
 C13 = UI(18)
 C14 = UI(19)
 C15 = UI(20)
 C16 = UI(21)
 C17 = UI(22)
 C18 = UI(23)
 A1 = UI(24)
 A2 = UI(25)
 A3 = UI(26)
 A4 = UI(27)
 A5 = UI(28)
 A6 = UI(29)
 DEX = UI(30)
 D0 = UI(31)
 FS0 = UI(32)
 C19 = UI(33)
 C20 = UI(34)

 IF(PR.EQ.PHALF)THEN ← This shows how to modify/adjust user input.
 CALL LOGMES('Replacing PR by 0.49999')
 UI(3)=0.49999D0
 PR=UI(3)
 END IF
C For bad inputs call the MIG utility FATERR described on MIG page 27.
 IF(YM.LT.PZERO)CALL FATERR(IAM,'Bad value for YM')
 IF(PR.LT.PZERO)CALL FATERR(IAM,'Bad value for PR')
 IF(C1.LT.PZERO)CALL FATERR(IAM,'Bad value for C1')
 IF(C3.LT.PZERO)CALL FATERR(IAM,'Bad value for C3')
 IF(C5.LT.PZERO)CALL FATERR(IAM,'Bad value for C5')
 IF(C7.LT.PZERO)CALL FATERR(IAM,'Bad value for C7')
 IF(C9.LT.PZERO)CALL FATERR(IAM,'Bad value for C9')
 IF(C11.LT.PZERO)CALL FATERR(IAM,'Bad value for C11')
 IF(C13.LT.PZERO)CALL FATERR(IAM,'Bad value for C13')
 IF(C15.LT.PZERO)CALL FATERR(IAM,'Bad value for C15')
 IF(C17.LT.PZERO)CALL FATERR(IAM,'Bad value for C17')
 IF(A6.LT.PZERO)CALL FATERR(IAM,'Bad value for A6')
 IF(DEX.LT.PZERO)CALL FATERR(IAM,'Bad value for DEX')
 IF(D0.LT.PZERO)CALL FATERR(IAM,'Bad value for D0')
 IF(FS0.LT.PZERO)CALL FATERR(IAM,'Bad value for FS0')

 CALL FATRET(NERR) ← NERR = total number of calls made to FATERR.
 IF(NERR.NE.0)RETURN (if nonzero, abort remainder of routine)

 TWOG = YM/(PONE + PR)
 BLK3 = YM/(PONE - PTWO*PR)
C
 DC(1) = TWOG ← Store derived constants into the DC array.
 DC(2) = BLK3
C
 RETURN
 END

D-6

Appendix D: Sample MIG package. MIG 0.0

Extra Variable Routine
This model requests four extra variables. The model takes advantage of

defaults established by the parent code (as listed in the long preamble com-
ment section and defined on page 22 of the main MIG document). Also note
the “implicit double precision” statement — all routines must contain such a
statement. This developer has wisely included a parameter MX, which is
equal to the “max number of extra variables” specified in the ascii data file,
and has checked that no more than this number of extra variables are defined.

C---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
 SUBROUTINE SVPEX (UI, GC, DC,
 & NX, NAMEA, KEYA, RINIT, RDIM, IADVCT, ITYPE)
C**
C REQUIRED MIG EXTRA VARIABLE ROUTINE
C This subroutine defines extra variables for
C Sandia/CA VPD
C
C called by: MIG parent after all input data have been checked
C
C input
C -----
C UI = User input array
C GC = Global constants array (place holder)
C DC = Derived material constants array
C
C output
C ------
C NX = number of extra variables [DEFAULT=0]
C NAMEA = single character array created from string
C array NAME, where NAME is a descriptive
C name of the variable which will be used
C on plot labels. [no default]
C KEYA = single character array created from string
C array KEY, where KEY is the plot variable
C keyword to be used in keyword-based
C plotting packages. [no default]
C / \
C | Note: NAMEA and KEYA are created from the local variables |
C | NAME and KEY by calls to the mig subroutine TOKENS. |
C \ /
C
C RINIT = initial value [DEFAULT = 0.0]
C RDIM = physical dimension exponent [DEFAULT = 0.0]
C This variable is dimensioned RDIM(7,*) for the 7 base
C dimensions (and * for the number of extra variables):
C
C 1 --- length
C 2 --- mass
C 3 --- time
C 4 --- temperature
C 5 --- discrete count
C 6 --- electric current
C 7 --- luminous intensity
C
C IADVCT = advection option [DEFAULT = 0]
C = 0 advect by mass-weighted average
C = 1 advect by volume-weighted average
C = 2 don't advect
C ITYPE = variable type (see migtionary preface) [DEFAULT = 1]
C 1=scalar
C 2=special
C 3=vector
C 4=2nd-order skew-symmetric tensor
C 5=2nd-order symmetric deviatoric tensor
C 6=2nd-order symmetric tensor

D-7

MIG 0.0 Appendix D: Sample MIG package.

C 7=4th-order tensor
C 8=4th-order minor-symmetric tensor
C 9=2nd-order tensor
C 10=4th-order major&minor-symmetric tensor
C 11=2nd-order symmetric tensor 6d
C
C************************ pat 03/95 ************************************
C
C written: 03/08/95
C author: P.A.Taylor
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) ← Mandatory
 PARAMETER (MCN=30,MCK=5)
 PARAMETER (MX=4)
 CHARACTER*(MCN) NAME(MX)
 CHARACTER*(MCK) KEY(MX)
 CHARACTER*1 NAMEA(*), KEYA(*)
 DIMENSION IADVCT(*),ITYPE(*)
 DIMENSION UI(*), GC(*), DC(*), RINIT(*), RDIM(7,*)
 CHARACTER*6 IAM
 PARAMETER(IAM='SVPEX')
CC
 NX=0
C
C first extra variable ← EXTRA~1
C
 NX=NX+1
 NAME(NX) = 'Isotropic Hardening Parameter'
 KEY(NX) = 'KAPP'
 RDIM(1,NX) = -1.0
 RDIM(2,NX) = 1.0
 RDIM(3,NX) = -2.0
 RINIT(NX) = 0.0
C
C second extra variable ← EXTRA~2
C
 NX=NX+1
 NAME(NX) = 'Viscoplastic Rate Parameter'
 KEY(NX) = 'BETA'
 RDIM(1,NX) = -1.0
 RDIM(2,NX) = 1.0
 RDIM(3,NX) = -2.0
 RINIT(NX) = 0.0
C
C third extra variable ← EXTRA~3
C
 NX=NX+1
 NAME(NX) = 'Damage Rate'
 KEY(NX) = 'DAMR'
 RDIM(1,NX) = 0.0
 RDIM(2,NX) = 0.0
 RDIM(3,NX) = -1.0
 RINIT(NX) = 0.0
C
C forth extra variable ← EXTRA~4
C
 NX=NX+1
 NAME(NX) = 'BCJ Tensile Pressure'
 KEY(NX) = 'BCJP'
 RDIM(1,NX) = -1.0
 RDIM(2,NX) = 1.0
 RDIM(3,NX) = -2.0
 RINIT(NX) = 0.0
C
 IF(NX.GT.MX)CALL BOMBED('INCREASE PARAMETER MX IN ROUTINE SVPEX')
C ---> ALSO INCREASE "max number of extra variables" IN DATA FILE.
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
C convert NAME and KEY to character streams NAMEA and KEYA
 CALL TOKENS(NX,NAME,NAMEA) ← See MIG page 28.
 CALL TOKENS(NX,KEY ,KEYA)
 RETURN
 END

D-8

Appendix D: Sample MIG package. MIG 0.0

Driver Routine
The third and final required routine for this model is shown below. This

driver routine receives the field variables from the parent code in the same
order that they were requested in the ASCII data file. This particular driver
performs no physics directly in the driver routine. Instead, the model physics
is performed in two model routines [which are part of the model library, not
provided in this appendix but available on request at the discretion of the
author]. One advantage of such an approach is that the developer can freely
modify the physics routines without ever changing the higher-level required
MIG routines. Model output is returned to the parent code via driver calling
arguments in the same order as they were listed in the ASCII data file.

C---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
 SUBROUTINE SVPDRV (MC,NC,UI,GC,DC, ← first 5 arguments always the same.
C
C input ← listed in the ASCII data file under “input”.
C -----
 $ ROD,W,DT,TMPR,PRESUR,
C
C input and output ← listed in the ASCII data file under “input and output”
C ----------------
 $ SIGDEV,BCKSTS,EQPLS,PLSNRT,DAMAGE,
 $ KAPP,BETA,DAMR,BCJP,
C
C output (all scratch) ← listed in the ASCII data file under “output”
C -------
 $ W23DT,W31DT,W12DT, SCR)
C***
C REQUIRED MIG DRIVER ROUTINE for Sandia/CA VPD
C Loops over a gather-scatter array.
C
C MC: dimension (stride) for field arrays
C NC: Number of gather-scatter "cells" to process
C UI: user input array
C GC: global constants array
C DC: derived material constants array
C ROD: VELOCITY~GRADIENT~SYM
C W: VELOCITY~GRADIENT~SKEW
C DT: TIME_STEP
C TMPR: ABSOLUTE_TEMPERATURE
C PRESUR: MECHANICAL_PRESSURE
C SIGDEV: STRESS~DEVIATOR
C BCKSTS: BACK_STRESS
C EQPLS: EQUIVALENT_PLASTIC_STRAIN
C PLSNRT: SCALAR_PLASTIC_STRAIN_RATE
C DAMAGE: DAMAGE
C KAPP: EXTRA~1
C BETA: EXTRA~2
C DAMR: EXTRA~3
C BCJP: EXTRA~4
C W23DT: SCRATCH~1 = W23*DT
C W31DT: SCRATCH~2 = W31*DT
C W12DT: SCRATCH~3 = W12*DT
C SCR: SCRATCH~4THRU9
C
C************************ pat 03/95 ************************************
C
C written: 03/08/95
C author: P.A.Taylor
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) ← Mandatory
C
 DIMENSION UI(*),GC(*),DC(*)

D-9

MIG 0.0 Appendix D: Sample MIG package.

 DIMENSION
 $ ROD(MC,6),W(MC,3),TMPR(MC),PRESUR(MC),SIGDEV(MC,5)
 $,BCKSTS(MC,5),EQPLS(MC),PLSNRT(MC),DAMAGE(MC)
 $,KAPP(MC),BETA(MC),DAMR(MC),BCJP(MC)
 $,W23DT(MC),W31DT(MC),W12DT(MC),SCR(MC,6)
C
 CHARACTER*6 IAM
 PARAMETER(IAM = 'SVPDRV')
CC
C
C Call routine to ensure old stress state is on Yield Surface
C
 CALL YLDCHK(
C input
C ----------------
 * NC,KAPP,BETA,DAMAGE,
C input and output
C ----------------
 * SIGDEV(1,1),SIGDEV(1,2),SIGDEV(1,3),SIGDEV(1,4),SIGDEV(1,5),
 * BCKSTS(1,1),BCKSTS(1,2),BCKSTS(1,3),BCKSTS(1,4),BCKSTS(1,5),
C scratch
C ----------------
 * SCR(1,1),SCR(1,2),SCR(1,3),SCR(1,4),SCR(1,5),SCR(1,6))
C
C
C Call routine to determine new values deviatoric stress, back_stress,
C isotropic hardening variable, and damage according to Sandia/CA
C viscoplasticity/damage model:
C
 CALL SVPDAM(
C input
C --------------
 * NC,UI,DC,
 * ROD(1,1),ROD(1,2),ROD(1,3),ROD(1,4),ROD(1,5),ROD(1,6),
 * W(1,1),W(1,2),W(1,3),DT,TMPR,PRESUR,
C input and output
C ----------------
 * KAPP,
 * SIGDEV(1,1),SIGDEV(1,2),SIGDEV(1,3),SIGDEV(1,4),SIGDEV(1,5),
 * BCKSTS(1,1),BCKSTS(1,2),BCKSTS(1,3),BCKSTS(1,4),BCKSTS(1,5),
 * EQPLS,PLSNRT,DAMAGE,DAMR,BCJP,
C output
C ------
 * BETA,
C scratch
C ----------------
 * W23DT,W31DT,W12DT,
 * SCR(1,1),SCR(1,2),SCR(1,3),SCR(1,4),SCR(1,5),SCR(1,6))
C
 RETURN
 END

Note how this driver calls other routines, namely YLDCHK and SVPDAM.
These are supplemental routines not called directly by the parent code. They
may be found in the model library file which, according to the ASCII data file
is called “sandvp.f ” (not provided in this appendix). The author of this driver
might someday consider slightly modifying the routines YLDCHK and SVPDAM
so that they too follow the basic MIG driver format. That way, this model
might eventually be modularized into two distinct MIG components, which
may be convenient for parent code architects.

D-10

Intentionally Left Blank

E-1

MIG 0.0 Appendix E: MIGCHK

APPENDIX E: MIGCHK
A Utility for Developers, Architects, and Installers

This Appendix is a tutorial on using the migchk utility, which helps develop-
ers, architects, and installers in the following ways:

For model developers:
• Creates an ASCII data file template that can be readily modified to suit the

model’s needs.
• Checks existing data files for proper syntax and rational input.
• Summarizes information in the ASCII data, clearly confirming where model

input, output, and user constants will be stored in MIG arrays.
• Generates very customized skeletons (templates) for the three required MIG

routines.

For MIG architects and installers:
• Creates a computer-readable unabridged migtionary.
• Creates special abridged dictionaries, so that different codes may posses

different vocabularies and even slang.
• Creates includes for rapid installation into Sandia’s hydrodynamics code, CTH.

Technically, migchk is a tool written by and for the Sandia National Laborato-
ries CTH code architect, though it performs several functions undoubtedly
useful to other code architects as well. The utility is well-documented here to
give new code architects ideas about what kind of automated services they
may wish to provide to their own code group. While the (FORTRAN) source for
migchk is available upon request, the utility itself is not intended to be gener-
ally supported. Rather, the source is available to anyone who wishes to use it
as a starting point for their own code architect responsibilities.

Getting started
To run migchk on Sandia’s valinor LAN, type

% alias migchk /home/rmbrann/MIG/migchk/migchk

where % stands for the unix prompt. For external users, migchk is available
upon request at the discretion of the author. Throughout this appendix, bold-
italic-Courier type style represents UNIX keyboard commands.

Getting help
Type “migchk” with no arguments to obtain this “man-page”:

%migchk
 migchk checks MIG ASCII data files for correct syntax.
 If data okay, migchk also generates customized
 templates -- or skeletons -- for required routines.

 developers/architects may use migchk to generate abridged migtionaries.
 EXECUTION SYNTAX: migchk [options] [AsciiDataFileName]

E-2

Appendix E: MIGCHK MIG 0.0

AsciiDataFileName contains the MIG ASCII data.

Enter ___ (3 underscores)to get a fill-in-the-blanks data file.

 OPTIONS:

 -c Convert data to parent units.

 -<m> Model id [Default is next available id]

 -D<pcode> Create a dictionary using vocabulary/slang/aliases

 in <pcode>.vocab

 -d<pcode> Use a dictionary that was previously created with -D<pcode>

 -k<key> Look for specified keyword (useful when a data file contains

 more than one data set). Default: keyword is obtained from

 data file name <key>.dat or first set encountered if no <key>.

 -x Extract the data for a particular model from a file that

 contains more than one data set (use with -k)

Using MIGCHK to create a model package

STEP 1. Execute “migchk ___” to generate a fill-in-the-blanks ASCII
data file. Here, “___” is literally three underscores.

STEP 2. Modify the template “___.dat ” appropriately for your model.
Save the modification to “mymodel.dat ”, where “mymodel ” is
any name you wish to give to your model.

STEP 3. Execute “migchk mymodel.dat ”. This will check your data
file for proper syntax. If errors are detected, correct
“mymodel.dat ” and run migchk again. Once migchk runs
successfully with no errors detected, it will generate two files:
“mymodel.chk ” and a skeleton file (which will have the same
name as the MIG library file but with a suffix “.skl ”).

STEP 4. Look over the file mymodel.chk to verify that the ASCII data
file was interpreted as desired.

STEP 5. Examine the skeleton file to see how information given in the
ASCII data file is reflected in this template for required mig
routines.

STEP 6. Modify the skeleton file to reflect the specific needs of your
model. That is, transform the skeleton file to FORTRAN source
code. These modified required routines are the MIG library.
Ensure that the MIG library compiles without errors.

STEP 7. Now the MIG package is complete. Present the ASCII data
file and the MIG library to a MIG model installer for testing
in a parent code.

The remainder of this chapter details the above steps for a specific example
model.

E-3

MIG 0.0 Appendix E: MIGCHK

STEP 1: Generate fill-in-the-blanks template for the ASCII data file
To generate a data file template, type “migchk” followed by “___” (literally,

three underscores).
%migchk _ _ _
 Template for ASCII file written to... _ _ _ .dat

This command generates a file called “___.dat”, which is a fill-in-the-
blanks ASCII data file containing all possible key phrases (highlighted in
bold below).

%cat _ _ _ .dat
 __
| |
| Scattered throughout this blank data file are boxes like this which |
| contain useful instructions. These explanatory boxes must be |
| removed in the final version of the data file. |
| Experienced users may request a blank template with these boxes |
| already removed by executing `migchk _` (one _ instead of three) |
|__|
 __
| |
| The first line of the data file is a short model keyword preceded |
| by a an exclamation point. Following the model keyword is the MIG |
| version to which the ASCII data file adheres. |
| The mig version is shown in the upper-left corner of any page in the |
| MIG documentation . |
|__|
!???? MIG0.0
 __
| |

remark : Remarks may be added anywhere in this file by using the
 "remark" keyphrase.
Note : "note" is equivalent to "remark". Everything past a note or
 remark is ignored until another key phrase is encountered.
| |
|__|
 __
| |
| The "version" is the model version, given by any contiguous |
| alphanumeric string. The "descriptive model name" is a long (up to |
| 200 characters) name of the model that is sufficiently detailed to |
| distinguish it from all other long MIG model names. The "short |
| model name" is a brief name of the model which will likely be used |
| by the parent code for output messages about the model. The "model |
| theorists" are the people (or person) who developed the physical |
| and/or numerical THEORY behind the model. The "coded by" keyphrase |
| lists the people who coded the theory. "Caveats" are any legal or |
| proprietary statements associated with the model. |
|__|
version : 19940000
descriptive model name :
Short model name :
Theory by :
Coded by :
Caveats :
 __
| |
| The "MIG libary" is the name of the file that contains the source |
| for REQUIRED MIG routines (data check, extra, and driver). The |
| "model library" is the name of the (optional) file that contains |
| source code any supplemental model-specific routines called by the |
| mig required routines. The "utilities library" contains source code |
| for (optional) non-model-specific routines called by any of the mig |
| package routines. Here non-model-specific routines are utilities |
| such as matrix solvers or root-finders that are not specifically |

E-4

Appendix E: MIGCHK MIG 0.0

| intended just for the particular model, but may equally well be used |
| by other models. |
|__|
MIG library : ???.f
model library : ???.f
utilities library : ???.f

 __
| |
| Below are the actual names of the three required routines. |
|__|
input check routine name : ______
extra variable routine name : ______
driver routine name : ______

 __
| |
| The input/output key phrases specify the field variables required by |
| the model. The requested inputs will be gathered up by the parent |
| code and sent in the model driver's argument in precisely the same |
| order as specified here in the data file. Likewise, the parent code |
| will extract output from the model driver's argument list in the |
| same order as listed here. The parent code will scatter the output |
| to wherever it is needed. |
|__|
input :
 STANDARD_VARIABLE_1 STANDARD_VARIABLE_2 STANDARD_VARIABLE_3

input and output :
 STANDARD_VARIABLE_1 STANDARD_VARIABLE_2

output :
 STANDARD_VARIABLE_1 STANDARD_VARIABLE_2
 __
| |
| Above, STANDARD_VARIABLE_# stands for any variable keyword |
| (or alias) taken from the following list. See the MIGtionary for |
| definitions of these terms. |
| |
| |
| ------ global ------- |
| COURANT_TIME_STEP |
| CYCLE |
| GEOM |
| GLOBAL_ERROR |
| RESTART |
| TIME_STEP |
| TIME |
| |
| ------ field -------- |
| ABSOLUTE_TEMPERATURE |
| BACK_STRESS |
| BULK_MODULUS |
| CAUCHY_STRESS |
| • |
| • |
| • |
| YIELD_IN_TENSION |
| YOUNGS_MODULUS |
| |
| ------ aliases ------ |
| ACCELERATION = VELOCITY~RATE |
| BULK_MODULUS = ISOTHERMAL_ELASTIC_BULK_MODULUS |
| • |
| • |
| • |
| VISCOSITY = DYNAMIC_VISCOSITY |
| VORTICITY = VELOCITY~GRADIENT~SKEW |
| |
| |
| You (the developer) are responsible to use the standard variables |
| EXACTLY AS THEY ARE DEFINED IN THE MIG DICTIONARY! If you wish to |

E-5

MIG 0.0 Appendix E: MIGCHK

| define a variable differently than it is defined in the MIGtionary, |
| then you must do so via an extra variable. |
|__|

 __
| |
| The standard variable list (above) contains many descriptive, but |
| cumbersome entries. The alias keyphrase (below) permits the |
| definition of short references to the long definitions. The alias |
| keyphrase permits you to define your own aliases (recall, several |
| of the most common ones have been pre-defined). The alias |
| keyphrase may be used anywhere and any number of times in the data |
| file. An alias must be defined before it is used. |
|__|

alias : MY_WORD = STANDARD_VARIABLE_WITH_LONG_NAME
 SHORT_NAME = ANOTHER_STANDARD_VARIABLE_WITH_HUGE_NAME
 __
| |
| MODEL UNITS are the units in which the driver expects input to be |
| delivered. Omit specification of model units if the model is |
| consistent (i.e., if it runs correctly for input delivered in ANY |
| consistent set of units). |
| |
| DATA UNITS, on the other hand, represent the assumed units of any |
| data provided in this ASCII data file. Most models will have a |
| data unit specification even if they don't have a model units |
| specification. |
|__|
model units : furlong slug blink-of-an-eye Rankine item
data units : centimeter gram second eV

 __
| |
| The next two blocks of information ("control parameters" and |
| "material constants") define information that must be supplied by |
| the user. Unlike the input and output specified above, the keywords |
| for control parameters and material constants are NOT taken from any |
| standard dictionary -- these keywords are invented by you (the |
| developer). Control parameters are user inputs that are NOT material |
| properties (e.g., the ambient pressure, or a parameter to control |
| the desired order of accuracy in the solution). Both control |
| parameters and material constants are identified by their keyword |
| (of the model developer's creation) followed by a list of |
| dimensional exponents in the order... |
| |
| (length, mass, time, temperature, number, current, luminosity) |
| |
| The dimension list may be terminated at the last non-zero entry. |
| Any keyword not followed by a dimension list is assumed to be |
| dimensionless (with the exception noted below). |
| |
| example (control parameters) |
| AMBIENT_PRESSURE(-1,1,-2) REFERENCE_TEMP(0,0,0,1) YIELD_MODEL |
| |
| example (material properties) |
| FRACTURE_STRESS(-1,1,-2) MELT_TEMPERATURE(0,0,0,1) |
| CRACKS_PER_VOLUME(-3,,,,1) CRIT_ANGLE |
| |
| IMPORTANT! if any of the control or input parameters for the model |
| can be found in the MIG dictionary, the keyword should be aliased |
| to the standard variable name. For example, if RHOZ |
| is to be the keyword for user-input initial density then there |
| should be an alias defined "RHOZ = DENSITY~0". Keywords that are |
| standard variables need not be accompanied by a dimension list. |
|__|
control parameters :
 CNTRL(?,?,...) CNTRL(?,?,...) CNTRL(?,?,...)
control parameter defaults :
 ?.? ?.? ?.?
material constants :
 MTL_CNST(?,?,...) MTL_CNST(?,?,...) MTL_CNST(?,?,...)

E-6

Appendix E: MIGCHK MIG 0.0

 MTL_CNST(?,?,...) MTL_CNST(?,?,...) MTL_CNST(?,?,...)
 MTL_CNST(?,?,...)
material constants data base :

USER ?.? ?.? ?.?
?.? ?.? ?.?
?.?

 Balonium ?.? ?.? ?.?
?.? ?.? ?.?
?.?

 __
| |
| Upper bound information is provided so the parent code can be sure |
| to reserve enough storage space for the derived constants and |
| temporary extra variable arrays. The ACTUAL number of derived |
| constants or extra variables may permissibly be less than specified |
| below. |
|__|
max number of global constants : ?
max number of derived constants : ?
max number of extra variables : ?
 __
| |
| Under the keyphrase "benchmarking", describe a simple sample problem |
| that can be run to test the model. A reference to a document would |
| be sufficient. Some parent codes may reject MIG packages that omit |
| benchmark information. |
|__|
benchmarking :

 The paper,

 Doe, John. (1993) "The Doe-sah-Doe visco-damage model with
 applications to folk dancing". Journal of Reprehensible
 Results. p 2-3.

 contains a description of a reverse taylor anvil calculation with
 plots of yelp stress and pwastic stwain.

 __
| |
| The last line of the ASCII data file must read, "done:", followed by |
| the date of the last modification of the model package. |
|__|
done : 4/14/95

E-7

MIG 0.0 Appendix E: MIGCHK

STEP 2: Create the ASCII data file
Suppose you are creating an ASCII data file for, say, the Steinberg-Guinan-

Lund (SGL) yield model [8], which computes yield stress as a function of the
thermodynamic state, the stress, the equivalent plastic strain, and the stress
power. Having created a blank data file template by executing “migchk _ _ _ ”,
the next step is to copy it to a new file, say, “sgl.dat ”, and to modify it appro-
priately for the SGL model as shown in the following listing. Some lines in
these listings have been truncated (see unresolved problem #2 on page G-3).
The complete SGL MIG model files are available upon request (at the author’s
discretion).

%cp ___.dat st.dat
%vi st.dat ← Modify the template for the SGL model.
%cat st.dat ← Then show the finished SGL data file.
!ST MIG0.0
version: 19940109
descriptive model name: Steinberg-Guinan-Lund yield model
 for ductile materials
Short model name: Steinberg Guinan Lund
Theory by: D.J. Steinberg, M.W. Guinan, C.M. Lund, and S.G. Cochran
Coded by: Paul Taylor, Sandia National Laboratories
MIG library: st.f
model library: sgl.f

input check routine name: SGLCHK
extra variable routine name: SGLX
driver routine name: STDRVR

alias:
 R0ST=DENSITY~0
 TM0ST=MELT_TEMPERATURE~0
 GM0ST=GRUNEISEN_COEFFICIENT~0
 G0ST=SHEAR_MODULUS~0
 EIST=EQUIVALENT_PLASTIC_STRAIN~0
 YPST=PEIERLS_STRESS
 Y0ST=YIELD_IN_TENSION~0

input:
 TEMPERATURE DENSITY PRESSURE
 EQUIVALENT_PLASTIC_STRAIN
 TIME_STEP
 DEVIATORIC_STRESS_POWER~*DT
 STRESS~DEVIATOR~MAGNITUDE
 VOLUME_FRACTION_OF_MATERIAL

input and output:
 YIELD_IN_TENSION

output:
 SHEAR_MODULUS GLOBAL_ERROR FIELD_ERROR
 SCRATCH~1thru5 SCRATCH~6thru10
 SCRATCH~11 SCRATCH~12 SCRATCH~13 SCRATCH~14 SCRATCH~15
 SCRATCH~16 SCRATCH~17 SCRATCH~18 SCRATCH~19 SCRATCH~20
 SCRATCH~21 SCRATCH~22 SCRATCH~23 SCRATCH~24 SCRATCH~25
 SCRATCH~26 SCRATCH~27

data units: centimeter gram second eV

material constants :
R0ST TM0ST ATMST GM0ST AST(1,-1,2)
BST(,,,-1) NST C1ST(,,-1) C2ST(-1,1,-1) G0ST
BTST EIST YPST UKST(2,1,-2) YSMST(-1,1,-2)
YAST(-1,1,-2) Y0ST YMST(-1,1,-2)

E-8

Appendix E: MIGCHK MIG 0.0

remark :
 R0ST TM0ST ATMST GM0ST AST BST NST
 C1ST C2ST G0ST BTST EIST YPST UKST
 YSMST YAST Y0ST YMST

material constants data base :

 USER 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 0.00 0.00 0.00 0.00
 ALUMINUM 2.707 0.105127 1.50 1.97 6.52E-12 7.148680 0.27
 0.00 0.00 0.271E+12 400.0 0.00 0.00 0.00
 0.00 0.00 4.0E+08 4.8E+09

•
•
•

 TUNGSTEN 19.30 0.389487 1.30 1.67 0.938E-12 1.601490 0.13
 0.71E+06 0.12E+06 1.60E+12 7.70 0.00 1.6E+10 0.31
 1.5E+10 1.1E+10 2.2E+10 4.0E+10

max number of derived constants : 0
max number of global constants: 7
max number of extra variables : 0

benchmarking:

 A tantalum cylinder impacting a rigid wall is described in

 Taylor, Paul (1992) "CTH Reference Manual .. The Steinberg-
 Guinan-Lund Viscoplastic Model" Sandia National Laboratories.
 Report SAND92-0716 * UC - 405.

 The history plots shown in the above report exhibit some spurious
 oscillation and spikes that have been corrected since the report
 was published. A successful MIG benchmarking calculation for the
 model problem will, however, exhibit the same qualitative shapes.

done : 05/02/95

STEP 3: Check and correct the ASCII data file
Now that the data file has been created, the next step is to verify correct

syntax by running migchk using the name of your modified data file as the
argument:

%migchk sgl.dat
 ============================
 Steinberg Guinan Lund (ST) data okay.
 SUMMARY WRITTEN TO sgl.chk
 SKELETON SUBROUTINES WRITTEN TO sgl.skl
 ========== done ============

This execution ran successfully, creating two output files: a “check” file
called sgl.chk and a “skeleton” file called migsgl.skl , each described
below.

E-9

MIG 0.0 Appendix E: MIGCHK

STEP 4: Examine the “check” file output by migchk
One of the outputs generated by the above execution of migchk is a simple

echo of the information in the ASCII data file. Shown below is the “check” file
for the Steinberg-Guinan-Lund model (long lines have been truncated). High-
lighted in bold are useful results such as explicit confirmation of where
requested input, output, and user constants will be located in the MIG arrays.

%cat sgl.chk

############################ Steinberg Guinan Lund ############################
 ST
 Steinberg Guinan Lund
 Steinberg-Guinan-Lund yield model for ductile materials
 version 19940109
 coded by Paul Taylor

 data check routine name: SGLCHK
 extra variable routine name: SGLX
 driver routine name: STDRVR

type order standard variable name
--- i n p u t
field 1 ABSOLUTE_TEMPERATURE
field 2 MASS_DENSITY
field 3 MECHANICAL_PRESSURE
field 4 EQUIVALENT_PLASTIC_STRAIN
global 5 TIME_STEP
field 6 DEVIATORIC_STRESS_POWER~*DT
field 7 STRESS~DEVIATOR~MAGNITUDE
field 8 VOLUME_FRACTION_OF_MATERIAL
--- b o t h
field 9 YIELD_IN_TENSION
--- o u t p u t
field 10 ISOTHERMAL_ELASTIC_SHEAR_MODULUS
global 11 GLOBAL_ERROR
field 12 ERROR_FLAG
field 13 thru 17 SCRATCH~1thru5
field 18 thru 22 SCRATCH~6thru10
field 23 SCRATCH~11
field 24 SCRATCH~12
field 25 SCRATCH~13
field 26 SCRATCH~14
field 27 SCRATCH~15
field 28 SCRATCH~16
field 29 SCRATCH~17
field 30 SCRATCH~18
field 31 SCRATCH~19
field 32 SCRATCH~20
field 33 SCRATCH~21
field 34 SCRATCH~22
field 35 SCRATCH~23
field 36 SCRATCH~24
field 37 SCRATCH~25
field 38 SCRATCH~26
field 39 SCRATCH~27

 UNIT CONVERSION FACTORS:
 1.0000000000000
 1.0000000000000
 1.0000000000000
 1.0000000000000
 6.0200000000000D+23
 1.0000000000000

E-10

Appendix E: MIGCHK MIG 0.0

 INTEGERS TO THE LEFT OF KEYWORDS ARE LOCATIONS IN THE UI ARRAY

 material constants and their defaults:

--
USER
--
 1)R0ST = 0.00000E+00 2)TM0ST = 0.00000E+00 3)ATMST = ...
 4)GM0ST = 0.00000E+00 5)AST = 0.00000E+00 6)BST = ...
 7)NST = 0.00000E+00 8)C1ST = 0.00000E+00 9)C2ST = ...
10)G0ST = 0.00000E+00 11)BTST = 0.00000E+00 12)EIST = ...
13)YPST = 0.00000E+00 14)UKST = 0.00000E+00 15)YSMST = ...
16)YAST = 0.00000E+00 17)Y0ST = 0.00000E+00 18)YMST = ...

•
• (more precharacterized materials)
•

--
TUNGSTEN
--
 1)R0ST = 1.93000E+01 2)TM0ST = 3.89487E-01 3)ATMST = ...
 4)GM0ST = 1.67000E+00 5)AST = 9.38000E-13 6)BST = ...
 7)NST = 1.30000E-01 8)C1ST = 7.10000E+05 9)C2ST = ...
10)G0ST = 1.60000E+12 11)BTST = 7.70000E+00 12)EIST = ...
13)YPST = 1.60000E+10 14)UKST = 3.10000E-01 15)YSMST = ...
16)YAST = 1.10000E+10 17)Y0ST = 2.20000E+10 18)YMST = ...

 Physical dimensions of user input

KEYWORD	length mass time temp amount current lumin	M/D
 R0ST | -3.000 1.000 0.000 0.000 0.000 0.000 0.000 | ...
 TM0ST | 0.000 0.000 0.000 1.000 0.000 0.000 0.000 | ...
 ATMST | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | ...
 GM0ST | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | ...
 AST | 1.000 -1.000 2.000 0.000 0.000 0.000 0.000 | ...
 BST | 0.000 0.000 0.000 -1.000 0.000 0.000 0.000 | ...
 NST | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | ...
 C1ST | 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 | ...
 C2ST | -1.000 1.000 -1.000 0.000 0.000 0.000 0.000 | ...
 G0ST | -1.000 1.000 -2.000 0.000 0.000 0.000 0.000 | ...
 BTST | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | ...
 EIST | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | ...
 YPST | -1.000 1.000 -2.000 0.000 0.000 0.000 0.000 | ...
 UKST | 2.000 1.000 -2.000 0.000 0.000 0.000 0.000 | ...
 YSMST | -1.000 1.000 -2.000 0.000 0.000 0.000 0.000 | ...
 YAST | -1.000 1.000 -2.000 0.000 0.000 0.000 0.000 | ...
 Y0ST | -1.000 1.000 -2.000 0.000 0.000 0.000 0.000 | ...
 YMST | -1.000 1.000 -2.000 0.000 0.000 0.000 0.000 | ...

 7 ALIASES

 R0ST = DENSITY~0
 TM0ST = MELT_TEMPERATURE~0
 GM0ST = GRUNEISEN_COEFFICIENT~0
 G0ST = SHEAR_MODULUS~0
 EIST = EQUIV_PL_STRAIN~0
 YPST = PEIERLS_STRESS
 Y0ST = YIELD_TENSION~0

 max number of derived material constants= 0
 max number of global constants= 7

E-11

MIG 0.0 Appendix E: MIGCHK

STEP 5: Examine the “skeleton” file output by migchk
Another output generated by migchk is a “skeleton” file, which contains

FORTRAN source code templates for the three required MIG routines. The
skeletons are highly customized based on information contained in the ASCII
data file, but they must always be modified appropriately for your model.
Shown below is the “skeleton” file for our sample Steinberg-Guinan-Lund
model. Bold highlights show how the skeleton directly reflects information
contained in the ASCII data file.
%cat migsgl.skl
! SKELETONS FOR REQUIRED ROUTINES
! -------------------------------
!
! This file contains skeletons for required MIG routines.
! These skeletons have been generated based on information in
! the Steinberg Guinan Lund ASCII data file.
! The ASCII data file cited
!
! SGLCHK
! SGLX
! STDRVR
!
! as the required data-check, xtra-variable, and driver routines.
!
! Shown below are skeletons for these routines. These skeletons must be
! modified appropriately to suit the model. YOU (THE DEVELOPER) ARE
! RESPONSIBLE FOR ENSURING THAT YOUR CODING CONFORMS TO ANSI FORTRAN77.
!
C---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
 SUBROUTINE SGLCHK (UI, GC, DC)
C***
C REQUIRED MIG DATA CHECK ROUTINE
C Checks validity of user inputs for Steinberg Guinan Lund
C Calculates and stores derived material constants.
C
C input
C -----
C UI: user input as read and stored by parent code.
C GC: Global constants (i.e., dimensional universal constants)
C DC: Upon input, the first seven places of DC contain the
C factors that convert from SI to parent code units for each
C of the seven base dimensions
C
C 1 --- length
C 2 --- mass
C 3 --- time
C 4 --- temperature
C 5 --- discrete count
C 6 --- electric current
C 7 --- luminous intensity
C
C This information is used only if the model is dimensionally
C consistent, but uses universal constants that must be
C converted to parent units. (See MIG documentation)
C
C output
C ------
C UI: user input array modified to incorporate default values
C or modified by adjusting values (or not modified at all).
C DC: constants derived from the user input. These constants
C (if any) begin at DC(1). That is, the unit information
C contained in DC upon input is overwritten.
C
C************************ abc mm/yy ************************************
C
C written: mm/dd/yy
C author: Paul Taylor

E-12

Appendix E: MIGCHK MIG 0.0

C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 PARAMETER (ZERO=0.0D0)
 PARAMETER (MDC= 0)
 PARAMETER (MDCDIM=MAX(MDC,7))
 DIMENSION UI(*), DC(MDCDIM)
 CHARACTER*6 IAM
 PARAMETER(IAM = ' SGLCHK')
CC
! If applicable,
C Compute dimensional universal constants
! Suppose, for example, the model requires the speed of light, which
! Is 2.99792458E8 m/s. Recalling that DC(1) converts 'meter' to the
! parent length unit, and DC(3) converts 'second' to the parent time
! unit,
!
! SLIGHT = 2.99792458E8 *DC(1)/DC(3)
!
! Now SLIGHT contains the speed of light in parent units and may be
! saved to the GC array, never to change again.
! GC(1)=SLIGHT
!
! NOTE! Universal constants are not just physical constants like
! the speed of light. Suppose your code contains something like
!
! PARAMETER (PSMALL=1.D-12)
! STRESS=MAX(STRESS,PSMALL)
!
! This sort of limiting on variables is frequently performed
! for protection against division by zero. However, since PSMALL
! is being compared to STRESS, PSMALL must have dimensions of stress.
! Strictly speaking, that means that PSMALL must be handled in the
! same way that the speed of light was handled above. That is, since
! stress = (length)**-1 *(mass)**1 *(time)**-2, this routine should
! contain
!
! PSMALL=1.D-12 * /DC(1)*DC(2)/DC(3)**2
! GC(2)=PSMALL
!
! where PSMALL is stored into the GC array and the parameter
! statement in the original coding is removed. Otherwise,
! your model will not work correctly in any parent code that uses
! a set of units (such as micrometer, kilogram, microsecond) in which
! stresses are generally of the same order as 1.D-12.
!
C ~~~~~~~~~~~~~~~~~~~~~~~~~~~
! If applicable,
C Adjust user input values.
! For example...
!
! IF(UI(5).EQ.ZERO)THEN
! UI(5)=TROOM
! CALL LOGMES('Reference temperature reset to room temperature')
! END IF
!
C ~~~~~~~~~~~~~~~~~~~~~~~~~~~
! If applicable,
C Check validity of data
! For example...
!
! IF(UI(9).LE.ZERO)CALL FATERR(IAM,'BAD VALUE FOR MODULUS')
!
C ~~~~~~~~~~~~~~~~~~~~~~~~~~~
! If applicable,
C Compute derived constants
! For example...
!
! DC(1)=UI(3)*UI(5)**2
!
! The above example could be made much more readable by transfering
! values from the user input array to local variable with more
! descriptive names; i.e.,

E-13

MIG 0.0 Appendix E: MIGCHK

!
! DENSTY=UI(3)
! SNDSPD=UI(5)
!
! BULKM = DENSTY*SNDSPD**2
!
! DC(1) = BULKM
!
! Doing it that way also leaves more flexibility to change the
! Ordering of variables in UI or DC.
! BEWARE: The number of derived constants must not exceed MDC, which
! is the "max number of derived constants" cited in the data file.
!
C ~~~~~~~~~~~~~~~~~~~~~~~~~~~
 RETURN
 END
C---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
 SUBROUTINE SGLX(
 & NX, NAMEA, KEYA, RINIT, RDIM, IADVCT, ITYPE)
C**
C REQUIRED MIG EXTRA VARIABLE ROUTINE
C This subroutine defines extra variables for
C Steinberg Guinan Lund
C
C called by: MIG parent after all input data have been checked
C
C input
C -----
C UI = MIG user input array
C DC = MIG derived material constants array
C
C output
C ------
C NX = number of extra variables [DEFAULT=0]
C NAMEA = single character array created from string
C array NAME, where NAME is a descriptive
C name of the variable which will be used
C on plot labels. [no default]
C KEYA = single character array created from string
C array KEY, where KEY is the plot variable
C keyword to be used in keyword-based
C plotting packages. [no default]
C / \
C | Note: NAMEA and KEYA are created from the local variables |
C | NAME and KEY by calls to the mig subroutine TOKENS. |
C \ /
c
C RINIT = initial value [DEFAULT = 0.0]
C RDIM = physical dimension exponent [DEFAULT = 0.0]
C This variable is dimensioned RDIM(7,*) for the 7 base
C dimensions (and * for the number of extra variables):
C
C 1 --- length
C 2 --- mass
C 3 --- time
C 4 --- temperature
C 5 --- discrete count
C 6 --- electric current
C 7 --- luminous intensity
C
C IADVCT = advection option [DEFAULT = 0]
C = 0 advect by mass-weighted average
C = 1 advect by volume-weighted average
C = 2 don't advect
C ITYPE = variable type (see migtionary preface) [DEFAULT = 1]
C 1=scalar
C 2=special
C 3=vector
C 4=2nd-order skew-symmetric tensor
C 5=2nd-order symmetric deviatoric tensor
C 6=2nd-order symmetric tensor
C 7=4th-order tensor

E-14

Appendix E: MIGCHK MIG 0.0

C 8=4th-order minor-symmetric tensor
C 9=2nd-order tensor
C 10=4th-order major&minor-symmetric tensor
C 11=2nd-order symmetric tensor 6d
C
C************************ abc mm/yy ************************************
C
C written: mm/dd/yy
C author: Paul Taylor
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 PARAMETER (MCN= 30 ,MCK=5)
 PARAMETER (MX= 0,MDC=0)
 PARAMETER (MDCDIM=MAX(MDC,1) , MXDIM=MAX(MX,1))
 CHARACTER*(MCN) NAME(MXDIM)
 CHARACTER*(MCK) KEY(MXDIM)
 CHARACTER*1 NAMEA(*), KEYA(*)
 DIMENSION IADVCT(MXDIM),ITYPE(MXDIM),ISCAL(MXDIM)
 DIMENSION UI(*), DC(MDCDIM), RINIT(MXDIM), RDIM(7,MXDIM)
 CHARACTER*6 IAM
 PARAMETER(IAM=' SGLX')
CC
 NX=0
C
C Provide extra variable data defined above.
C
C ~~~~~~~~~~~~~~~~~~~~~~~~~~~
C first extra variable
C
C NX=NX+1
! NAME(NX) = '?' long name for labeling plot axes [NO DEFAULT]
! KEY(NX) = '?' keyword for plotting [NO DEFAULT]
! IADVCT(NX) = ? advection option [DEFAULT=0]
! ITYPE(NX) = ? variable type [DEFAULT=1]
! ISCAL(NX) = ? scalar number [DEFAULT=1]
! RDIM(1,NX) = ?.? exponent on length [DEFAULT=0.0]
! RDIM(2,NX) = ?.? exponent on mass [DEFAULT=0.0]
! RDIM(3,NX) = ?.? exponent on time [DEFAULT=0.0]
! RDIM(4,NX) = ?.? exponent on temperature [DEFAULT=0.0]
! RDIM(5,NX) = ?.? exponent on discrete number [DEFAULT=0.0]
! RDIM(6,NX) = ?.? exponent on current [DEFAULT=0.0]
! RDIM(7,NX) = ?.? exponent on luminous intensity [DEFAULT=0.0]
! RINIT(NX) = ?.? initial value [DEFAULT=0.0]
C
C ~~~~~~~~~~~~~~~~~~~~~~~~~~~
C second extra variable (EXAMPLE)
! NOTE HOW THE DEFAULTS ARE EXPLOITED.
C
! NX=NX+1
! NAME(NX) = 'Adjusted Critical Tensile Stress'
! KEY(NX) = 'ACTS'
! IADVCT(NX) = 1
! RDIM(1,NX) = -1.0
! RDIM(2,NX) = 1.0
! RDIM(3,NX) = -2.0
C
! Do not touch the coding below this line:
C ##
 IF(NX.GT.MX)CALL BOMBED
 & ('INCREASE PARAMETER MX IN ROUTINE SGLX AND IN DATA FILE')
C convert NAME and KEY to character streams NAMEA and KEYA
 CALL TOKENS(NX,NAME,NAMEA)
 CALL TOKENS(NX,KEY ,KEYA)
 RETURN
 END
C---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
 SUBROUTINE STDRVR(MC,NC,UI,GC,DC
C
C input
C --------------
 &, TEMP, RHO, PRESUR, EQPLS, DT, DSTWK, SMAG, PHIM
C

E-15

MIG 0.0 Appendix E: MIGCHK

C input and output
C --------------
 &, YLD
C
C output
C --------------
 &, SHRM, GERR, IERR, SCR1t5 , SCR6t10 , SCR11, SCR12
 &, SCR13, SCR14, SCR15, SCR16, SCR17, SCR18, SCR19
 &, SCR20, SCR21, SCR22, SCR23, SCR24, SCR25, SCR26
 &, SCR27)
C***
C REQUIRED MIG DRIVER ROUTINE for Steinberg Guinan Lund
C Loops over a gather-scatter array.
C
C MIG input
C ---------
C NC: Number of gather-scatter "cells" to process
C UI: user input array
C DC: derived material constants array
C
C MIGtionary input and/or output
C ------------------------------
C TEMP: ABSOLUTE_TEMPERATURE
C RHO: MASS_DENSITY
C PRESUR: MECHANICAL_PRESSURE
C EQPLS: EQUIVALENT_PLASTIC_STRAIN
C DT: TIME_STEP
C DSTWK: DEVIATORIC_STRESS_POWER~*DT
C SMAG: STRESS~DEVIATOR~MAGNITUDE
C PHIM: VOLUME_FRACTION_OF_MATERIAL
C YLD: YIELD_IN_TENSION
C SHRM: ISOTHERMAL_ELASTIC_SHEAR_MODULUS
C GERR: GLOBAL_ERROR
C IERR: ERROR_FLAG
C SCR1t5: SCRATCH~1THRU5
C SCR6t10: SCRATCH~6THRU10
C SCR11: SCRATCH~11
C SCR12: SCRATCH~12
C SCR13: SCRATCH~13
C SCR14: SCRATCH~14
C SCR15: SCRATCH~15
C SCR16: SCRATCH~16
C SCR17: SCRATCH~17
C SCR18: SCRATCH~18
C SCR19: SCRATCH~19
C SCR20: SCRATCH~20
C SCR21: SCRATCH~21
C SCR22: SCRATCH~22
C SCR23: SCRATCH~23
C SCR24: SCRATCH~24
C SCR25: SCRATCH~25
C SCR26: SCRATCH~26
C SCR27: SCRATCH~27
C
! Developers: the FORTRAN variable names used in this generated source
! code are only suggestions. You may change the names to anything you
! like. To conform to ANSI FORTRAN 77, you MUST change generated
! variable names that are over 6 characters long or those that contain
! underscores.
C************************ abc mm/yy ************************************
C
C written: mm/dd/yy
C author: Paul Taylor
C
*- INCLUDE IMPDOUBL
C All real numbers are double precision.
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*-
C
C The following declarations have been automatically generated based on
C information in the ASCII data file.
C

E-16

Appendix E: MIGCHK MIG 0.0

 DIMENSION UI(*),DC(*)
C
C In the following declarations, the first dimension is guaranteed
C to be at least as large as the number of scalars associated with
C the variable. The second dimension (if present) runs over the
C number of cells (NC) to be processed.
 DIMENSION
 & TEMP(*),RHO(*),PRESUR(*),EQPLS(*),DSTWK(*)
 &,SMAG(*),PHIM(*),YLD(*),SHRM(*),IERR(*)
 &,SCR1t5(*),SCR6t10(*),SCR11(*),SCR12(*),SCR13(*)
 &,SCR14(*),SCR15(*),SCR16(*),SCR17(*),SCR18(*)
 &,SCR19(*),SCR20(*),SCR21(*),SCR22(*),SCR23(*)
 &,SCR24(*),SCR25(*),SCR27(*),SCR27(*)
C
 CHARACTER*6 IAM
 PARAMETER(IAM = ' STDRVR')
CC
! If desired...
c Transfer values from the user input array to variables with more
C descriptive names:
C
 R0ST = UI(1)
 TM0ST = UI(2)
 ATMST = UI(3)
 GM0ST = UI(4)
 AST = UI(5)
 BST = UI(6)
 NST = INT(UI(7))
 C1ST = UI(8)
 C2ST = UI(9)
 G0ST = UI(10)
 BTST = UI(11)
 EIST = UI(12)
 YPST = UI(13)
 UKST = UI(14)
 YSMST = UI(15)
 YAST = UI(16)
 Y0ST = UI(17)
 YMST = UI(18)
C
C ~~~~~~~~~~~~~~~~~~~~~~~~~~~
! If desired...
C Do the same for derived constants
! (fill in the blanks with any descriptive FORTRAN variable names)
! ______ = DC(1)
! ______ = DC(2)
C
C ___
C / First gathered loop \
C/ \
 DO 100 I=1,NC

! \vv/
! perform physics & update extra variables
! /^^\

 100 CONTINUE
c\ /
c ___/
C
! Add more gathered loops as necessary. Alternatively, make this
! routine a genuine driver by calling one or more subroutines that
! perform gathered loop calculations.
!
! Don't forget that the array XTRA is both input and OUTPUT.
!
C
 RETURN
 END

E-17

MIG 0.0 Appendix E: MIGCHK

STEP 6: Transform the skeletons into actual working subroutines
The skeletons for required routines must be modified to suit your model.

Our sample Steinberg-Guinan-Lund model performs a few user input checks
and outputs a simple message when rate dependence is not active. This model
does not require any extra variables, so its extra variable routine simply
returns (consequently, dimensioning statements in the skeleton extra variable
routine may be removed). Of course, the driver skeleton is modified exten-
sively to perform the Steinberg-Guinan-Lund model physics. Names of both
the field variables and the scratch variables in the driver skeleton are modi-
fied to suit the tastes of the model developer. Shown below are the finished
required routines for the Steinberg-Guinan-Lund model.

%cat migsgl.f

 SUBROUTINE SGLCHK (UI, DC)
C***
C REQUIRED MIG DATA CHECK ROUTINE
C Checks validity of user inputs for Steinberg Guinan Lund
C Calculates and stores derived material constants.
C
C input
C -----
C UI: user input as read and stored by parent code.
C DC: The first seven places of DC contain the
C factors that convert from SI to parent code units for each
C of the seven base dimensions
C
C 1 --- length
C 2 --- mass
C 3 --- time
C 4 --- temperature
C 5 --- discrete count
C 6 --- electric current
C 7 --- luminous intensity
C
C This information is used because the model is dimensionally
C consistent, but uses universal constants that must be
C converted to parent units. (See MIG documentation)
C
C output
C ------
C UI: This model does not currently modify the UI array
C GC: global constants (do not vary from material to material)
C TROOM: room temperature
C DELTA: yield shift
C PRES0: initial pressure?
C SHMLO: lower bound on shear modulus
C SDOLO: lower bound on distortional work
C SDOHI: upper bound on distortional work
C TOL : tolerance on strain rate determining convergence.
C
C DC: derived material constants.
C
C************************ pat 02/95 ************************************
C written: 02/11/95
C author: Paul Taylor
C migized: Rebecca Brannon
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 PARAMETER (SMALL=0.1D-5,ZERO=0.0D0,TRDEF=298.0D0)

E-18

Appendix E: MIGCHK MIG 0.0

C set dimensional universal constants in SI units
C conversion to parent code units is performed here using DC array
 PARAMETER (PDELTA=0.1D6,PPRES0=0.0D0,PSHMLO = 0.1D6,
 $ PSDOLO = 0.0D0,PSDOHI = 0.1D12)
C convergence tolerance
 PARAMETER (PTOL = 0.1D-10)
 DIMENSION UI(*), GC(*), DC(*)
 EXTERNAL FATERR,LOGMES
 CHARACTER*6 IAM
 PARAMETER(IAM = 'SGLCHK')
CC
C
C "global" constants
C
 TROOM = TRDEF *DC(4)
 PRES0 = PPRES0 /DC(1)*DC(2)/DC(3)**2
 SHMLO = PSHMLO /DC(1)*DC(2)/DC(3)**2
 DELTA = PDELTA /DC(1)*DC(2)/DC(3)**2
 SDOLO = PSDOLO /DC(1)*DC(2)/DC(3)**2
 SDOHI = PSDOHI /DC(1)*DC(2)/DC(3)**2
 TOL = PTOL /DC(3)
C
 GC(1) = TROOM
 GC(2) = PRES0
 GC(3) = SHMLO
 GC(4) = DELTA
 GC(5) = SDOLO
 GC(6) = SDOHI
 GC(7) = TOL
C
C For readability, transfer user inputs into
C variables with meaningful names.
C
 R0ST = UI(1)
 TM0ST = UI(2)
 G0ST = UI(10)
 EIST = UI(12)
 Y0ST = UI(17)
 C1ST = UI(8)
C
 IF(R0ST.LE.ZERO) CALL FATERR(IAM, 'non-positive density R0ST')
 IF(TM0ST.LE.ZERO)CALL FATERR(IAM, 'non-positive melt temp TM0ST')
 IF(G0ST.LE.ZERO) CALL FATERR(IAM, 'non-positive shear mod G0ST')
 IF(EIST.LT.ZERO)
 & CALL FATERR(IAM, 'negative equivalent plastic strain EIST')
 IF(Y0ST.LE.ZERO)
 & CALL FATERR(IAM, 'non-positive yield stress Y0ST')
C
 IF(C1ST.LE.SMALL) CALL LOGMES
 &('Steinberg-Guinan-Lund rate dependence not active for this matl')
 RETURN
 END

C---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
 SUBROUTINE SGLX (D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11)
C***
C REQUIRED MIG EXTRA VARIABLE ROUTINE
C Steinberg Guinan Lund
C No extra variables. This is a dummy routine
C************************ pat 02/95 ************************************
C
C written: 02/11/95
C author: Paul Taylor
C migized: Rebecca Brannon
 RETURN
 END

E-19

MIG 0.0 Appendix E: MIGCHK

C---.----1----.----2----.----3----.----4----.----5----.----6----.----7--
 SUBROUTINE STDRVR(MC,NC,UI,GC,DC
C
C input
C -----
 &,T,RHO,PRES,EQPSOX,DT,
 & DDNSDO,SDOX,PHIMAT
C
C input and output
C ----------------
 &,YS,XTRA
C
C output
C --------------
 &,SHM,GERR,IERR,YSB,Q
 &,DEDN,SDO,EQPSO,SHMT,YAF
 &,Y0,DEDE,DEDP,YSMIN,YSMAX
 &,YSINT,YSBT,QF,RTNEW,LSRATE
 &,LSCONV,LSJUMP)
C***
C REQUIRED MIG DRIVER ROUTINE for Steinberg Guinan Lund
C Loops over a gather-scatter array.
C
C input
C -----
C MC: dimension (stride) for field arrays
C NC: Number of gather-scatter "cells" to process
C UI: user input array
C GC: global constants array
C DC: not used -- just a place holder
C T: ABSOLUTE_TEMPERATURE
C RHO: MASS_DENSITY
C PRES: MECHANICAL_PRESSURE
C EQPSOX: EQUIVALENT_PLASTIC_STRAIN
C DT: TIME_STEP
C DDNSDO: DEVIATORIC_STRESS_POWER~*DT
C SDOX: STRESS~DEVIATOR~MAGNITUDE
C PHIMAT: VOLUME_FRACTION_OF_MATERIAL
C SHM: ISOTHERMAL_ELASTIC_SHEAR_MODULUS
C YS: YIELD_IN_TENSION
C GERR: GLOBAL_ERROR
C = 0 no problems
C > 0 last cell where problem occurred
C IERR: ERROR_FLAG
C = 0... no problem in cell I
C = 1... problem in cell I
C YSB: SCRATCH~1thru5
C Q: SCRATCH~6thru10
C DEDN: SCRATCH~11
C SDO: SCRATCH~12
C EQPSO: SCRATCH~13
C SHMT: SCRATCH~14
C YAF: SCRATCH~15
C Y0: SCRATCH~16
C DEDE: SCRATCH~17
C DEDP: SCRATCH~18
C YSMIN: SCRATCH~19
C YSMAX: SCRATCH~20
C YSINT: SCRATCH~21
C YSBT: SCRATCH~22
C QF: SCRATCH~23
C RTNEW: SCRATCH~24
C LSRATE: SCRATCH~25
C LSCONV: SCRATCH~26
C LSJUMP: SCRATCH~27
**
C written: 02/92
C author: Paul Taylor (MIGized: 02/95 Rebecca Brannon)

E-20

Appendix E: MIGCHK MIG 0.0

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 CHARACTER*6 IAM
C
C ***** numerical constants and dimensionless parameters
 PARAMETER (ZERO=0.D0, ONE=1.D0, TWO=2.D0,PTHIRD=1.0D0/3.0D0,
 $P2O3=2.0D0/3.0D0, PSMALL=0.1D-5, EQPSLO=0.0D0, EQPSHI = 1.0D1,
 $NINT = 4, PFILL = 0.9950D0)
C ***** parameter arrays *****
 DIMENSION UI(*), GC(*), DC(*)
 DIMENSION
 & T(MC),RHO(MC),PRES(MC),EQPSOX(MC),DDNSDO(MC),SDOX(MC)
 &,PHIMAT(MC),SHM(MC),YS(MC),IERR(MC),YSB(MC,5)
 &,Q(MC,5),DEDN(MC),SDO(MC),EQPSO(MC),SHMT(MC),YAF(MC),Y0(MC)
 &,DEDE(MC),DEDP(MC),YSMIN(MC),YSMAX(MC),YSINT(MC),YSBT(MC)
 &,QF(MC),RTNEW(MC),LSRATE(MC),LSCONV(MC),LSJUMP(MC)
 EXTERNAL LOGMES
 DATA IAM/'STDRVR'/
 DATA NMESS,MAXMES/0,100/
CC
 PSQ23 = SQRT(P2O3)
 PSQ32 = ONE/PSQ23
 TROOM = GC(1)
 PRES0 = GC(2)
 SHMLO = GC(3)
C
 R0ST = UI(1)
 TM0ST = UI(2)
 ATMST = UI(3)
 GM0ST = UI(4)
 AST = UI(5)
 BST = UI(6)
 G0ST = UI(10)
C ___
C / shear modulus \
C/ \
 DO 10 I=1,NC
 ETA = RHO(I)/R0ST
C tmeltm = material melt temperature
 TMELTM = TM0ST*EXP(TWO*ATMST*(ONE-(ONE/ETA)))*
 1 (ETA**(TWO*(GM0ST-ATMST-PTHIRD)))
C
 IF (T(I) .GE. TMELTM) THEN
C matl mat has melted & can't support shear.
 SHM(I) = SHMLO
 ELSE
 SHM(I) = G0ST*(ONE+AST*(PRES(I)-PRES0)/
 1 (ETA**PTHIRD) - BST*
 2 (T(I) - TROOM))
 ENDIF
C
 SHM(I) = MAX(SHM(I), SHMLO)
 10 CONTINUE
C\ /
C ___/
C
 DELTA = GC(4)
 SDOLO = GC(5)
 SDOHI = GC(6)
 TOL = GC(7)
C
 CSTN = UI(7)
 CSTC1 = UI(8)
 CSTC2 = UI(9)
 CSTG0 = UI(10)
 CSTBT = UI(11)
 CSTEI = UI(12)
 CSTYP = UI(13)
 CSTUK = UI(14)
 CSTYS = UI(15)
 CSTYA = UI(16)

E-21

MIG 0.0 Appendix E: MIGCHK

 CSTY0 = UI(17)

 CSTYM = UI(18)

C

C ___

C / yield stress \

C/ \

•

• Continue physics computations using loops from 1 to NC.

•
C\ /

C ___/

C

C write error messages (if applicable)

 IF(INASTY.EQ.0) GO TO 341

 NMESS = NMESS+1

 IF(NMESS.LT.MAXMES) THEN

 CALL LOGMES('elvpst error.')

 ENDIF

 IF(NMESS.EQ.MAXMES) THEN

 CALL LOGMES(' no more messages from elvpst will appear.')

 ENDIF

341 GERR=FLOAT(INASTY)

C

C

 RETURN

 END

STEP 7: Deliver the completed MIG package to a model installer

 The MIG library file (migsgl.f, which contains the data check, extra vari-
able, and driver routines), together with the already completed ASCII data file
(sgl.dat) comprise the completed MIG package. The final step is simply to
deliver your MIG package to a model installer. The installer must be able to
install your package without having to consult you.

Before turning your model package over to an installer, you should com-
plete the following checklist:

E-22

Appendix E: MIGCHK MIG 0.0

❏ The FORTRAN coding conforms to ANSI 77 standard (see item #1 on
page G-2.).

❏ All common blocks are “local” to the model. That is, there are no refer-
ences to common blocks of a particular parent code. Currently, it is up
to the installer — not the developer — to ensure there is no parent/
model conflict of common block names.

❏ No variable is used before defined. The coding must not assume that
the compiler initializes variables to zero. If a variable must be set to
zero, then it must be explicitly set to zero.

❏ Saved variables are explicitly saved. The coding must not assume that
the compiler will save local variables in subroutines. If a local variable
must be saved, then it must be saved using the FORTRAN “save”
statement.

❏ The subroutine and common block names are designed to minimize the
possibility of conflicts with the parent code’s routine and common block
names. Do not, for example, call your driver “DRIVER”. Similarly, do
not name one of your common blocks “CONST”.

❏ Floating point numbers are double precision, and every routine con-
tains an “IMPLICIT DOUBLE PRECISION ” statement.

❏ The coding will survive a restart. That is, initialization tasks are not
done by simply checking if the cycle number is 1 or if time is zero. Ini-
tialization tasks (if applicable) should be performed by checking the
migtionary standard variable called “RESTART.”

❏ The package will survive aggressive attempts by the installer (or care-
less user) to make it break. That is, coding looks for bad user inputs
that might cause, say, division by zero. The coding guards against, say,
infinite loops by inserting calls to BOMBED whenever a catastrophic
failure is imminent.

❏ If the model uses non-dimensionless universal parameters (such as the
speed of light), they are handled in one of the three permissible ways
described on page 19 of the main MIG documentation.

❏ The ASCII data file is free of superfluous information and organized in
a readable fashion. This means that all of the explanatory comments
(such as the long list of standard variable names) contained in the
“___.dat ” file have been deleted for the final data file.

❏ The ASCII data file contains a remark in which all user input variables
are briefly defined. If any user inputs are also standard variables, they
are aliased to the standard variable.

E-23

MIG 0.0 Appendix E: MIGCHK

The remainder of this document describes capabilities of migchk for archi-

tects and installers.

Creating an unabridged migtionary
(architects only)

Standard keywords come from the migtionary. In order to automate ASCII
data file processing, the contents of the migtionary must be available in a com-
puter readable file. An unformatted migtionary is created by using the -D suf
option. If suf = “mig ”, then the migtionary will be unabridged. For example,
the command

%migchk -Dmig

Creates a local file called “mig.dict ” which contains a formatted
unabridged list of all the words in the migtionary. The above command also
creates an unformatted version of the unabridged migtionary called
“MIG.dict ”; this unformatted file is regarded as the “official” migtionary used
by MIG architects. This unformatted file may be read by using subroutine
RDICT, which is part of the migchk source code.

Creating an abridged migtionary
(architects only)

Of course, most parent codes will not be able to compute — or even “under-
stand” — each and every standard variable listed in the migtionary. Hence,
most code MIG architects will wish to create an abridged migtionary that con-
tains only those migtionary terms that the parent code is capable of process-
ing. To create an abridged migtionary, simply make a file called
pcode .vocab , where pcode is a string of your choice (probably the name of
your parent code). The pcode .vocab file — which is created and maintained
by the MIG architect —should contain a list of all standard variables in the
parent code’s vocabulary. Shown below, for example, is the vocabulary file for a
hypothetical parent code called “BOOMER”:

%cat boomer.vocab
vocabulary:
 ABSOLUTE_TEMPERATURE [TEMP]
 CYCLE [ICYCLE]
 DAMAGE
 DEVIATORIC_STRESS_POWER~*DT
 EDIT
 ERROR_FLAG
 EQUIVALENT_PLASTIC_STRAIN [EPS]
 GLOBAL_ERROR
 MASS_DENSITY
 POISSON'S_RATIO

E-24

Appendix E: MIGCHK MIG 0.0

 MECHANICAL_PRESSURE [PRES]
 SCRATCH
 ISOTHERMAL_ELASTIC_SHEAR_MODULUS [SHRM]
 SHEAR_MODULUS~0
 SOUND_SPEED [CS]
 STRESS~DEVIATOR [S]
 TIME
 TIME_STEP [DT]
 VELOCITY~GRADIENT
 YIELD_IN_TENSION [YLD]
 VOLUME_FRACTION_OF_MATERIAL [PHIM]

slang:
 FAILED_VOLUME_FRACTION 1 <scalar> () [PHIF]

alias:
 PRESSURE=MECHANICAL_PRESSURE
 POIS=POISSON'S_RATIO
 PHIF=FAILED_VOLUME_FRACTION

parent code units: centimeter gram second ev item

Under the heading “vocabulary”, the vocab file lists all standard migtion-
ary terms to be included in the abridged dictionary. If desired, the FORTRAN
variable name may be changed by including the preferred name in brackets.
Under the heading “slang”, the vocab file gives defining information for slang
terms (if any). A slang term is a variable name that is not in the unabridged
migtionary, but is to appear in the abridged dictionary as an invented term
understood only by the BOOMER code. Defining information for slang follows
the same convention as defining information in the migtionary. Under the
heading “alias”, the vocab file reads more slang terms that are simply alterna-
tives for migtionary terms or even for other slang terms. An abridged migtion-
ary containing only the standard variables specified in boomer .vocab is
created by executing

%migchk -Dboomer
 ABRIDGED DICTIONARY WRITTEN TO
 boomer.dict
 Template for ASCII file written to... ___.dat

This command creates an unformatted abridged dictionary called
BOOMER.dict , which may be read by the migchk subroutine RDICT. Addition-
ally, a formatted dictionary is written to another file called boomer.dict ,
shown below. The formatted dictionary is provided to allow the user to ensure
correct processing of the vocabulary input file.

%cat boomer.dict
 k e y w o r d ns typ d i m e n s i o n s FORT
 -------------- -- --- --------------------------- ------

 FAILED_VOLUME_FRACTION 1 <1> (0, 0, 0, 0, 0, 0, 0) [PHIF]
 ABSOLUTE_TEMPERATURE 1 <1> (0, 0, 0, 1, 0, 0, 0) [TEMP]
 CYCLE 1 <1> (0, 0, 0, 0, 0, 0, 0) [ICYCLE]
 DAMAGE 1 <1> (0, 0, 0, 0, 0, 0, 0) [DAMAGE]
 DEVIATORIC_STRESS_POWER~*DT 1 <1> (-1, 1, -2, 0, 0, 0, 0) [SWRKD]
 EDIT 1 <1> (0, 0, 0, 0, 0, 0, 0) [IEDIT]
 EQUIVALENT_PLASTIC_STRAIN 1 <1> (0, 0, 0, 0, 0, 0, 0) [EPS]
 ERROR_FLAG 1 <1> (0, 0, 0, 0, 0, 0, 0) [IERR]
 GLOBAL_ERROR 1 <1> (0, 0, 0, 0, 0, 0, 0) [GERR]

E-25

MIG 0.0 Appendix E: MIGCHK

ISOTHERMAL_ELASTIC_SHEAR_MODULUS 1 <1> (-1, 1, -2, 0, 0, 0, 0) [SHRM]
 MASS_DENSITY 1 <1> (-3, 1, 0, 0, 0, 0, 0) [RHO]
 MECHANICAL_PRESSURE 1 <1> (-1, 1, -2, 0, 0, 0, 0) [PRES]
 POISSON'S_RATIO 1 <1> (0, 0, 0, 0, 0, 0, 0) [POIS]
 SHEAR_MODULUS~0 1 <1> (-1, 1, -2, 0, 0, 0, 0) [SHRM0]
 SOUND_SPEED 1 <1> (1, 0, -1, 0, 0, 0, 0) [CS]
 STRESS~DEVIATOR 5 <5> (-1, 1, -2, 0, 0, 0, 0) [SIGDEV]
 TIME_STEP 1 <1> (0, 0, 1, 0, 0, 0, 0) [DT]
 TIME 1 <1> (0, 0, 1, 0, 0, 0, 0) [TIME]
 YIELD_IN_TENSION 1 <1> (-1, 1, -2, 0, 0, 0, 0) [YLD]
 VELOCITY~GRADIENT 9 <9> (0, 0, -1, 0, 0, 0, 0) [VELGRD]
 VOLUME_FRACTION_OF_MATERIAL 1 <1> (0, 0, 0, 0, 0, 0, 0) [PHIM]

 variable types

< 1> scalar
< 2> special
< 3> vector
< 4> 2nd-order skew-symmetric tensor
< 5> 2nd-order symmetric deviatoric tensor
< 6> 2nd-order symmetric tensor
< 7> 4th-order tensor
< 8> 4th-order minor-symmetric tensor
< 9> 2nd-order tensor
<10> 4th-order major&minor-symmetric tensor
<11> 2nd-order symmetric tensor 6d
<12> 4th-order minor-symmetric tensor 6d

 UNITS

 length: 1.0E-02 meter
 mass: 1.0E-03 kilogram
 time: 1.0 second
 temperature: 11604.5 Kelvin
 amount: 1.6611E-24 mole
 current: 1.0 ampere
 luminosity: 1.0 candela

 ALIASES

 PRESSURE = MECHANICAL_PRESSURE
 POIS = POISSON'S_RATIO
 PHIF = FAILED_VOLUME_FRACTION
 DENSITY = MASS_DENSITY
 DT = TIME_STEP
 EQPLSTN = EQUIVALENT_PLASTIC_STRAIN
 EQUIV_PL_STRAIN = EQUIVALENT_PLASTIC_STRAIN
 ERROR = ERROR_FLAG
 FIELD_ERROR = ERROR_FLAG
 POISSON = POISSON'S_RATIO
 SHEAR_MODULUS = ISOTHERMAL_ELASTIC_SHEAR_MODULUS
 VELGRAD = VELOCITY~GRADIENT
 TEMPERATURE = ABSOLUTE_TEMPERATURE

The top of the formatted dictionary shows a list of all terms in the abridged
dictionary, with slang listed first. Then a key to the variable types is given, fol-
lowed by a summary of the “parent” units. These are the units that will be
used if migchk is subsequently executed using both the ‘d=’ and the ‘-c’ options
(see the section entitled “checking a data file using an abridged dictionary”,
below)

E-26

Appendix E: MIGCHK MIG 0.0

Adding terms to the migtionary
(architects only).

Only members of the Sandia MIG team may add terms to the migtionary
for access by migchk. At present this is done in a somewhat inelegant manner
as follows:

On the Sandia valinor lan, open the frame maker document /home/
rmbrann/MIG/docs/dictionary . Add the new term, being sure to include
the first-line information about the number of scalars, variable type, dimen-
sions, and FORTRAN name (or being sure to include an equals sign if defining
an alias). The term must be entered using the “migtionary” paragraph style.
Save the file “as text” to “/home/rmbrann/MIG/docs/dictionary.txt ”.
Use carriage returns between paragraphs and skip table contents. Also save
the file “as mif” to “/home/rmbrann/MIG/docs/dictionary.mif ”. Now
migchk will reflect the new term whenever a new migtionary is created using
the -Dsuf option.

Checking an ASCII data file using
an abridged migtionary

(installers only)

Before installing a MIG package into a particular code, it would be wise to
run migchk using the “-d pcode ” option in order to ensure that the package
uses only those terms that are in the parent code’s vocabulary.

For example, the Steinberg-Guinan-Lund model could be checked for
installation into CTH by typing
%migchk -dcth sgl.dat

If the migtionary file (CTH.dict) does not reside locally, the full path may
be provided.

Generating includes for rapid package installation
(CTH installers only)

Upon receiving a completed package, run the data file through migchk
using the - ## option, where ## is the model number that you wish to assign to
the model. For example, the Steinberg-Guinan-Lund model uses model num-
ber 5, and migchk is executed with the option -5 . As shown below, instruc-
tions about where to place the includes are provided. The only include that
requires modification is the one that goes into the CTH subroutine ELSG.
Using information in the model’s ASCII data file, migchk creates this include

E-27

MIG 0.0 Appendix E: MIGCHK

set by modifying a simple universal template as shown in bold below. For
example, migchk counts the number of user inputs specified in the ascii data
file: 18 for the Steinberg Guinan Lund model. Hence, migchk generates calls
to the model’s required MIG routines sending VPUINP(1:18, MAT) as the user
input array; migchk also notes the max number of global and derived con-
stants and piggybacks them appropriately behind the user inputs. Below, any-
thing not in bold is the same for all mig models in CTH. For readers not
familiar with CTH, includes begin with “*- INCLUDE ” and end with “*- ”.

%migchk -5 -dcth sgl.dat
%tail -114 migsgl.skl

|
| Steinberg Guinan Lund
INCLUDES FOR CTH
INSTALLER: Below are the includes that must be inserted into CTH
to make Steinberg Guinan Lund run in CTH.
INSTALLER: These includes conform to a naming convention that is
designed to minimize conflicts with the names of pre-existing includes.
The first letter of the include is "M" to indicate that it is a MIG
include.
The next two letters (05) are the integer identification
of the model. If the model is an elastic-plastic model, this number
is the MODLEP number; if the model is a fracture model, this number
is the MODLFR number; if the model is an eos model, this number is
the MEQ number.
The next letter in the include name is a "P" for elastic-plastic
models, an "F" for fracture models, or an "E" for eos models.
You (the INSTALLER) are responsible for examining the ASCII data
file to classify the model as P, F or E. If the model is classified
as "P", then only the M 05P includes are required for installtion,
and the others may be ignored. Similar statements hold if the model
is classified F or E.
The next letter in the include name is an integer indicating the
routine in which the include is to be installed. The routines
for each class are listed below:
P0=uinep F0=uinep E0=eos user input routine
P1=uinchk F1=uinchk E1=uinchk
P2=uinisv F2=uinisv E2=eos extra variable routine
P3=elsg F3=elsg E3=eos driver routine
Trailing letters (if any) in an include name are used simply to
distinguish includes when more than one include is installed into
the same routine.
Example:
"M 05P0B" means
M: normal mig include
05P : MODLEP = 05 , plasticity model
0B: zeroth subroutine , Bth include.
INSTALLER: To place the standard includes, go to the indicated
subroutine and search for "INCLUDE M99P" (or M99F for fracture
models or M99E for eos models). Then place the associated M 05P
include immediately PRECEDING the M99P include. For example,
the include M 05P0B goes just ahead of the include M99P0B.
INSTALLER: If the model installation requires extra coding not

E-28

Appendix E: MIGCHK MIG 0.0

| in the standard MIG includes, the extra coding should be placed
| in an include whose name conforms to the above scheme except that
| the name should begin with an "X" (to indicate it is eXtra coding).
| For example, extra user input available only for CTH implementations
| of the model may be accomodated by simply looking for that extra
| input after the standard MIG model inputs are read. For example,
| include M 05P0C could be immediately followed by an extra include
| X 05P0C in which the extra read is performed. Putting extra coding
| into extra includes is only recommended, not required.
|
| See installation guidelines for more details.
|

 | |
 | INSTALLER: THE FOLLOWING INCLUDES GO IN SUBROUTINE UINEP. |
 |___|

*- INCLUDE M 05P0A
C ----------------------------------
C Steinberg Guinan Lund declarations
C ----------------------------------
 CHARACTER DN 05P*21,K 05P*2
 PARAMETER (DN 05P=' Steinberg Guinan Lund ', K 05P=' ST')
 PARAMETER (MNV 05P=18 , MNM 05P=35 , MDL 05P=05)
 CHARACTER*5 KW 05P(MNV05P)
 CHARACTER*16 SMN 05P(0:MNM05P)
 DIMENSION LKW 05P(MNV05P), VAL 05P(MNV05P,0:MNM05P)
*-
*- INCLUDE M 05P0B
C --
C Read Steinberg Guinan Lund keywords and data
C --
 CALL RDATA (IOUVP,IAM,K 05P,DN05P,MNM05P,MNV05P,
 * NV 05P,KW05P,LKW05P,NM05P,SMN05P,VAL 05P)
*-
*- INCLUDE M 05P0C
C --
C Look for Steinberg Guinan Lund keywords and parameters
C --
 CALL LOOKFK(MDL 05P,K 05P,DN05P,MNM05P,MNV05P,NV05P,KW05P,LKW05P,
 & NM 05P, SMN 05P, VAL 05P, KODFLG, MATUID,
 & IPOS,NVPPAR,VPUINP,UDEFVP,MODLEP,MATNAM,GOTONE)
 IF (GOTONE) GO TO 100
*-
*- INCLUDE M 05P0D
C --------------------------------
C Echo Steinberg Guinan Lund input
C --------------------------------
 ELSE IF (MODLEP(IMAT) .EQ. 05) THEN
C put a dummy value in the yield stress array
 YLDVM(IMAT) = PYDEF
 WRITE(KPT6,9029) DN 05P, MATNAM(IMAT)
 WRITE(KPT6,9729)(N,KW 05P(N),VPUINP(N,IMAT),N=1,NV 05P)
*-

 | |
 | INSTALLER: THE FOLLOWING INCLUDE GOES IN SUBROUTINE UINCHK. |
 |___|

*- INCLUDE M 05P1
C ---------------------------------
C Check Steinberg Guinan Lund input
C ---------------------------------
 IF (MODLEP(IMAT) .EQ. 05)THEN
 CALL SI2CTH(VPUINP(26 ,IMAT)) ← Fill cgs conversion factors into this model’s DC array
 CALL SGLCHK(VPUINP(1,IMAT),VPUINP(19 ,IMAT),VPUINP(26 ,IMAT))
 LTEP(IMAT)=.T.
 END IF
*-

E-29

MIG 0.0 Appendix E: MIGCHK

 | |
 | INSTALLER: THE FOLLOWING INCLUDE GOES IN SUBROUTINE UINISV. |
 |___|

*- INCLUDE M 05P2
C ---
C Request Steinberg Guinan Lund extra variables
C ---
 IF(MODLEP(IMAT).EQ. 05) THEN
C >>> set defaults for model’s extra variables.
 CALL MIGSEX(
 & NXP(IMAT), NAMEA, KEYA, RNIT, RDIM, IADVCT, ITYPE, ISCAL)
C >>> call the model’s extra variable routine.
 CALL SGLX(VPUINP(1,IMAT),VPUINP(19 ,IMAT),VPUINP(26 ,IMAT),
 & NXP(IMAT), NAMEA, KEYA, RNIT, RDIM, IADVCT, ITYPE, ISCAL)
C >>> call CTH routines to actually reserve extra variables (if any)
 IF(NXP(IMAT).GT.0)CALL MIGXT(IMAT,JXPMIG(IMAT)
 & NXP(IMAT), NAMEA, KEYA, RNIT, RDIM, IADVCT, ITYPE, ISCAL)
C >>> Also reserve storage for any migtionary field variables
C >>> that are not already defined by default in CTH.
 CALL MIGADD(IMAT,'EQUIVALENT_PLASTIC_STRAIN')
 END IF
*-

 __
 | |
 | INSTALLER: THE FOLLOWING INCLUDE GOES IN SUBROUTINE ELSG. |
 |__|
 This include requires some modification by the INSTALLER.

*- INCLUDE M 05P3
 IF (MODLEP(MAT).EQ. 05) THEN
 CALL GATHER(' ABSOLUTE_TEMPERATURE' ,SCR(1, 1))
 CALL GATHER(' MASS_DENSITY' ,SCR(1, 2))
 CALL GATHER(' MECHANICAL_PRESSURE' ,SCR(1, 3))
 CALL GATHER(' EQUIVALENT_PLASTIC_STRAIN' ,SCR(1, 4))
 CALL GATHER(' DEVIATORIC_STRESS_POWER~*DT' ,SCR(1, 5))
 CALL GATHER(' STRESS~DEVIATOR~MAGNITUDE' ,SCR(1, 6))
 CALL GATHER(' VOLUME_FRACTION_OF_MATERIAL' ,SCR(1, 7))
 CALL GATHER(' YIELD_IN_TENSION ' ,SCR(1, 8))
C
 CALL STDRVR(IMAX,NGS
 &,VPUINP(1,IMAT),VPUINP(19 ,IMAT),VPUINP(26 ,IMAT)
 &,SCR(1, 1),SCR(1, 2),SCR(1, 3),SCR(1, 4),DT,SCR(1, 5),SCR(1, 6),SCR(1, 7)
 &,SCR(1, 8)
 &,SCR(1, 9),GERR,SCR(1, 10),SCR(1, 11),SCR(1, 16),SCR(1, 21),SCR(1, 22)
 &,SCR(1, 23),SCR(1, 24),SCR(1, 25),SCR(1, 26),SCR(1, 27),SCR(1, 28)
 &,SCR(1, 29),SCR(1, 30),SCR(1, 31),SCR(1, 32),SCR(1, 33),SCR(1, 34)
 &,SCR(1, 35),SCR(1, 36),SCR(1, 37))
C
 CALL SCATER(' YIELD_IN_TENSION ' ,SCR(1, 8))
 CALL SCATER(' ISOTHERMAL_ELASTIC_SHEAR_MODULUS' ,SCR(1, 9))
 CALL SCATER(' ERROR_FLAG' ,SCR(1, 10))
 GO TO 2000
 END IF
*-

In the last include, the subroutine GATHER sweeps over the current row of
Eulerian cells, collecting the specified field values for the current material into
specific locations in a temporary SCR array.* These arrays are sent as the argu-
ments to the model’s driver routine along with similar place holders for the
output arrays, which are scattered appropriately upon output.

* The subroutineGATHER does not yet port consistently, so the current version of CTH explicitly
performs the gather (much likeINCLUDE M12P3 on page F-9). The include generated by migchk
contains sufficient information (mostly scr pointers) for an installer to transform it to explicit loops.

E-30

Appendix E: MIGCHK MIG 0.0

Testing the SGL model

The migchk utility does not aid the testing of a model for proper installa-
tion. However, since most of the examples in this appendix used the Stein-
berg-Guinan-Lund model, a benchmarking model problem is described below.
Keep in mind that the SGL model is just one component of the complete mate-
rial model. The parent code must use the yield stress output by the SGL model
to compute an updated stress using, say, standard elasticity with a radial
return for plastic deformation. The parent code is also responsible for comput-
ing the equivalent plastic strain rate and applying an appropriate equation of
state. Finally, while the SGL model does output a shear modulus, it is the
responsibility of the parent code to actually use it in a Hooke’s law expression.

SGL benchmark
The benchmark is a standard Taylor
Anvil problem as illustrated in Fig E-1.
The tantalum cylinder impacts a rigid
wall at 250 m/s. There are two
Lagrangian tracer particles (i.e., diag-
nostic locations that move with the
material): one located at the cylinder
center and one near the cylinder edge,
both near the impact point.

The deviatoric elastic response of
the cylinder is modeled with simple lin-
ear elasticity (Hooke’s Law). Referring to the ASCII data file, the initial shear
modulus is given by the user input G0ST for tantalum and the dynamic shear
modulus is an output of the SGL driver. Poisson’s ratio is taken to be 0.3268.
For the benchmarking calculation, the isotropic (equation of state) response
for the material is taken to be Mie-Grüneisen with the following values:

initial density:

sound speed:

slope of us-up:

Grüneisen coef:

specific heat:

(note: 1eVt=11604.5 Kelvin)

Cylinder radius : 0.381 cm

Cylinder length : 4.694 cm

Impact speed : 250 m/s

..1 2

Tracer #1 :
z=0.06cm
r=0.0 cm

Tracer #2 :
z=0.06cm
r=0.321 cm

Figure E-1. Taylor anvil benchmark
geometry for the SGL model.

stop time : 150 µs

RIGID

ρo 15.69 g cm3⁄=

cs 3.414 105× cm s⁄=

s 1.2=

go 1.67=

cv 1.6247 1010× erg gm eVt⋅⁄=

E-31

MIG 0.0 Appendix E: MIGCHK

The desired benchmark output is:

•Plot of final deformed shape showing plastic strain contours or shading.
•Plot of yield stress vs. time for both tracers.
•Plot of equivalent plastic strain vs. time for both tracers.

Keep in mind that the SGL model is only one component of the complete mate-
rial model. Not only is the parent code responsible for implementing a Mie-
Grüneisen model, it is also responsible for computing the equivalent plastic
strain. Hence, while the SGL component will be the same on all parent codes,
different codes may nevertheless get quantitatively different results for plas-
tic strain and isotropic response, though these should at least agree qualita-
tively. The SGL computation isn’t very sensitive to equivalent plastic strain
and isotropic perturbations, so different parent codes should predict both
quantitatively and qualitatively similar results for the yield stress, as in
Fig. E-2.

In Fig. E-2, the same subroutines (namely, the standardized MIG routines
given in this appendix) were used in two very different codes, which demon-
strates the viability of MIG. Plots of the deformed shapes from these two cal-
culations may be found on appendix pages H-11 and H-12.

Figure E-2. Yield stress as a function of time for both tracers from SGL benchmark
calculations using parent codes (a) CTH and (b) ALEGRA.

(a) (b)

tracer #1

tracer #2

tracer #1

tracer #2

E-32

Intentionally Left Blank

F-1

MIG 0.0 Appendix F: MIG-compliance of Particular Parent Codes

APPENDIX F

MIG-compliance of Particular Parent Codes

The architect section on page 32 of the main MIG documentation discusses
general approaches that an architect might take to make their code MIG com-
pliant. To provide ideas to new code architects, this appendix discusses the
particular approaches employed in Sandia’s Eulerian hydrocode CTH [1] and
arbitrary Lagrange-Eulerian code ALEGRA [2]

ASCII data processing in CTH
The implementation of MIG into CTH takes a simple approach — namely,

some tasks are performed by hand. This certainly represents an improvement
over the previous state of affairs where every task had been performed
tediously and invasively by hand. As time permits, more and more tasks will
be automated.

Many important tasks are accomplished by a special-purpose program
called “migchk ”, which was written and maintained by the CTH-MIG archi-
tect and is discussed in detail in Appendix E. The utility migchk performs
several tasks to help model developers create their MIG models from the
ground up. Namely, migchk

• Generates a fill-in-the-blanks template for a MIG data file. Before
even writing any subroutines, the model developer will ordinarily
request this template and modify it to suit the model.

• Checks any MIG data file for accuracy. Once the model developer
has modified the template to suit the particular model, the com-
pleted data file is resubmitted to migchk for syntax checking.

• Echoes MIG data file information, listing precise locations of
requested standard variables and other useful diagnostic infor-
mation.

• Generates custom templates for required routines based on infor-
mation in the data file. The model developer will ordinarily use
these templates as the starting point for creating the model’s
required MIG routines.

Recall that a primary goal of the code architect is to speed model installa-
tion. The special purpose migchk utility performs one very important task for
the model installer, namely migchk

• Generates include decks for installation into CTH. These
includes make the model run in CTH. All the installer has to do is
recompile the code with the new include set.

The CTH-MIG include-blocks contain code fragments that
(i) call the appropriate CTH subroutines to read the

model input,
(ii) call the model’s data check routine,

F-2

Appendix F: MIG-compliance of Particular Parent Codes MIG0.0

(iii) request the model’s extra variables (if applicable),
(iv) transfer the model’s input needs from CTH arrays to

the model driver calling arguments, and
(v) transfer results from the model driver output argu-

ments to appropriate locations in CTH arrays.

Appendix page E-27 shows an actual set of includes generated by migchk
for the Steinberg-Guinan-Lund model. The first three code fragments are very
easy to automate. The last two, however, are more difficult (and, at this time,
are constructed by hand). The CTH interface to MIG drivers performs a soft-
ware gather of all MIG inputs into scratch arrays. Upon return from the
driver, CTH performs a software scatter of the results. Fortunately, the
gather-scatters incur negligible overhead in comparison to the cost of running
the model. The main difficulty is the mere complexity of writing the gathers
and scatters in a general way.

Rather than having all terms in the migtionary available, CTH uses an
“abridged” migtionary, containing only those migtionary terms that are in the
CTH “vocabulary,” i.e., those variables for which the architect has formulated
a plan if a MIG model requests them. The CTH primary vocabulary consists of
migtionary variables such as stress, temperature, sound speed, etc., for which
there already exist storage arrays. The CTH secondary vocabulary consists of
migtionary terms such as back stress that are made available by requesting
them as extra variables.

The material data base provided in any MIG model’s ASCII data file is
made available to CTH by simply appending the ASCII data file to the CTH
VP_data file. The routine that reads VP_data has been modified to detect
whether a data set is in MIG or pre-MIG format.

At this early stage, only strength models are highly automated. The
installer may need to examine the input/output lists of the model to decide if it
should instead be installed in the EOS section of CTH, in which case, the
installer will currently need to place calls to required routines by hand.

ASCII data processing in ALEGRA
In ALEGRA, material models are implemented through library functions

comprising the entire set of material models compiled for a particular version
of the code. All material models are derived from a common abstract base
class, Material_Model. Implementation of a MIG model primarily involves
transferring information in the ASCII data file to the layout of classes derived
from Material_Model.

ALEGRA is currently in development and use as version 3. The material
model interface in this version closely follows the spirit of MIG. Thus, infor-
mation in the ASCII file is directly transferable to specific parts of the coding.
A preprocessor can easily be produced to convert this information. Earlier
implementations of MIG in ALEGRA v.2 used scripts to parse and generate a
header file and source file skeleton. A similar script would also be a simple

F-3

MIG 0.0 Appendix F: MIG-compliance of Particular Parent Codes

matter to generate. However, in version 3, the incorporation of MIG ASCII
data file information into code templates is so straightforward, scripts have
been dispensed with in favor of manually filling in information into files cop-
ied from these templates. These template files (not to be confused with tem-
plate classes used in C++) provide the structure necessary to be a derived
Material_Model class and also satisfy MIG.

The header file consistent with the statistical crack mechanics ASCII data
file on page 9 of the main MIG documentation is listed below.

#ifndef scm_mig H
#define scm_mig H

#include “code_types.h”
#include “material_data.h”

class Statistical_Crack_Mechanics : public Material_Model
{
 public:

 enum ParamType { FINIT, IOPT, NOCOR, PAMB, VARMOD
 L1, TZERO, ZIGN, NBIN,

 ALPH, AMU, AMUBD, AMUBS, AMUV,
 ANU, ANUATM, BKH, BKSTMX, CBARZ
 CD, CDS, CV, ESUBL, EXPOC,
 EXPOO, FF, SURFE, GROWTH, GRU,
 MODY, RHOZ, S, SCFCRC, SCFCRO,
 CKPVOL, DYDP, HD2YDP, YLS, YLDSTS ,

 MAX_PARAM };

 static char* ParamNames[Statistical_Crack_Mechanics ::MAX_PARAM];
 static Int num_params;

Statistical_Crack_Mechanics ();
Statistical_Crack_Mechanics (Int);
Statistical_Crack_Mechanics (const Statistical_Crack_Mechanics &);

 ~ Statistical_Crack_Mechanics ();

 char *Name() { return “ Statistical Crack Mechanics ”; }
 Int Num_Params() const { return MAX_PARAM; }
 Real Get_Parameter(Int);
 Void Set_Parameter(Int, Real, Int);
 ErrorStatus Set_Up(Material*);

 ErrorStatus Initialize_State(Material_Data*);

 ErrorStatus Update_State(Real* scalar_vars,
 Vector* vector_vars,
 SymTensor* symtensor_vars,
 Tensor* tensor_vars,
 Real** material_vars,
 Real* global_vars,
 Material_Data* var);

 private:

 // variable ids

 // input
 Global_Parameter CYCLE, GEOM, TIME, TIME_STEP ;
 Material_Data_Variable DENSITY;
 Element_Data_Variable ROD;
 Material_Data_Variable VORTICITY;
 Global_Parameter EDIT ;

 // ioput

F-4

Appendix F: MIG-compliance of Particular Parent Codes MIG0.0

 Material_Data_Variable BACK_STRESS, SCM_DAMAGE,
EXTRA2, EXTRA3, EXTRA4 ,

 TEMPERATURE, STRESS ;

 // output
 Material_Data_Variable YIELD_IN_SHEAR, POROSITY ;
 Global_Parameter GLOBAL_ERROR;

 // standard MIG data members

 Real* global_const; // Global Constants Array
 Real* derived_const; // Derived Constants Array
 Int num_extra; // Number of Extra Variables
 char** ex_name; // Extra Variable Names
 char** ex_key; // Extra Variable Keys
 Int* ex_advect; // Extra Variable Advection Keys
 Real* ex_init; // Extra Variable Initial Values
 Real** ex_dim; // Extra Variable Dimensions
 Int* ex_type; // Extra Variable Type

};
#endif

The bold entries above indicate items which are specific to the model. The
remainder is template text used in all MIG model interfaces in ALEGRA.

The following conventions are used:
1. The file name and#ifdefargument are derived from the lower case keyword

entry in the ASCII data file. The keyword is concatenated with “_mig” to
indicate that it is a MIG material model. Thus, the header file isscm_mig.h
and the source file isscm_mig.C.

2. The class name is derived from the Short model name entry
where “_” replaces white space. Thus, the entry:

Short model name : Statistical Crack Mechanics

yields a class name of Statistical_Crack_Mechanics .
3. The control parameters and material constants are identified in

an enumeration. Because the enumeration is defined within the
class, the names used in the ASCII data file can be explicitly
listed without concern for a name collision elsewhere in the code.
The MAX_PARAMS entry is always the last item and is a conve-
nient way of providing the number of control parameters and
material constants for dimensioning the user input array.

4. The Short model name entry also is the printable name of the
model (i.e., the character string returned by the Name() func-
tion).

5. The variable identifiers are listed in the order and name used in
the ASCII data file. The variable types Element_Data_Variable,
Material_Data_Variable, and Global_Parameter are all typedefs
or mnemonics for integers. These integers are the indices into the
data which is passed into the Update function (the Update func-
tion calls the MIG model driver). The values assigned to these

F-5

MIG 0.0 Appendix F: MIG-compliance of Particular Parent Codes

identifiers are discussed on page F-7.
6. Scratch variables, including aliases, do not have indices as these

values are not stored in the data array. Rather, they are stati-
cally allocated locally in the call to the MIG driver.

Storage allocation in CTH
In this section, we outline how the four basic storage allocation tasks (see

page 37 of the main document) are approached in Sandia’s hydrocode CTH [1].
For strength models, CTH saves all user inputs — MIG or not — into a long
array called VPUINP. Upon encountering a user input of the form KEY=VAL,
where KEY is a character string and VAL is a real number, CTH searches for
a match among the keywords listed in the model’s data file under the phrases
“control parameters” and “material constants”. Thus, for example, installation
of the model of page 9 (main document) requires the CTH installer to write a
code fragment of this form*:

In CTH, derived constants and global constants are piggybacked behind
the user inputs in the same array (VPUINP). For example, the ASCII data file
on page 9 of the main document shows 39 user inputs (9 control parameters
and 30 material constants) and it states that there will be no more than 40
derived constants. Hence CTH reserves the first 39 positions in VPUINP for
user inputs. The next 40 positions starting with VPUINP(40) and ending with
VPUINP(79) are reserved for derived constants. The remaining positions,
starting with VPUINP(80), are reserved for global constants. The ASCII data
file on page 9 of the main document states that the name of the data check
routine is SCDCHK; hence the CTH call to this routine looks like this:

*This is not the actual code fragment. In CTH, more elegant (but equivalent) coding is used.

 IF (KEY.EQ.'FINIT') VPUINP(1,MAT)=VAL
 IF (KEY.EQ.'IOPT') VPUINP(2,MAT)=VAL
 IF (KEY.EQ.'NOCOR') VPUINP(3,MAT)=VAL
 IF (KEY.EQ.'PAMB') VPUINP(4,MAT)=VAL
 IF (KEY.EQ.'VARMOD') VPUINP(5,MAT)=VAL
 IF (KEY.EQ.'L1') VPUINP(6,MAT)=VAL
 IF (KEY.EQ.'TZERO') VPUINP(7,MAT)=VAL
 IF (KEY.EQ.'ZIGN') VPUINP(8,MAT)=VAL
 IF (KEY.EQ.'NBIN') VPUINP(9,MAT)=VAL
 IF (KEY.EQ.'ALPH') VPUINP(10,MAT)=VAL
 IF (KEY.EQ.'AMU') VPUINP(11,MAT)=VAL

•
•
•

 IF (KEY.EQ.'SCFCRO') VPUINP(34,MAT)=VAL
 IF (KEY.EQ.'CKPVOL') VPUINP(35,MAT)=VAL
 IF (KEY.EQ.'DYDP') VPUINP(36,MAT)=VAL
 IF (KEY.EQ.'HD2YDP') VPUINP(37,MAT)=VAL
 IF (KEY.EQ.'YLS') VPUINP(38,MAT)=VAL
 IF (KEY.EQ.'YLDSTS') VPUINP(39,MAT)=VAL

control parameters

material constants

← 39 user inputs, total

F-6

Appendix F: MIG-compliance of Particular Parent Codes MIG0.0

The routine SI2CTH was written by the CTH architect to load the seven
CTH unit conversion factors into the derived constants array, as explained on
page 19 of the main document. CTH calls SI2CTH just prior to calling any
MIG data check routine. In CTH, all MIG data check code fragments look like
this one, differing only by the items shown in bold. Another example of a CTH
call to a MIG data-check routine may be found on page E-28.

In CTH, extra variable storage is allocated in the CTH subroutine UINISV
by simply calling EXTADD for each of the model’s extra variables. The follow-
ing example shows how CTH calls the required extra variable routine SCXTRA
for the sample statistical crack model of page 9 of the main document:

C ---
C Request Statistical Crack Mechanics extra variables
C ---
 IF(MODLEP(IMAT).EQ. 12) THEN
 CALL MIGSEX(
 & NXP(IMAT), NAMEA, KEYA, RNIT, RDIM, IADVCT, ITYPE, ISCAL)
 CALL SCXTRA(VPUINP(1,IMAT),VPUINP(80 ,IMAT),VPUINP(40 ,IMAT),
 & NXP(IMAT), NAMEA, KEYA, RNIT, RDIM, IADVCT, ITYPE, ISCAL)
 IF(NXP(IMAT).GT.0)CALL MIGXT(IMAT,JXPMIG(IMAT),
 & NXP(IMAT), NAMEA, KEYA, RNIT, RDIM, IADVCT, ITYPE, ISCAL)

 CALL MIGADD(IMAT,'BACK_STRESS')
 CALL MIGADD(IMAT,'POROSITY')
 END IF

The call to SCXTRA is preceded by a call to a CTH routine MIGSEX* which
sets defaults for extra variable data, as promised to the developer on page 22
of the main document. The meat of this CTH default-setting routine is

 SUBROUTINE MIGSEX (
 & NXTRA, NAMEA, KEYA, RINIT, RDIM, IADVCT, ITYPE)
C

•
• Declarations
•

 NXTRA=0
C
 DO 200 ICHR=1,LEN(NAMEA)
 NAMEA(ICHR)='|'
 200 CONTINUE
C
 DO 300 ICHR=1,LEN(KEYA)
 KEYA(ICHR)='|'
 300 CONTINUE
C
 DO 100 IXTRA=1,MXTRA
 DO 400 IUNIT=1,NUNIT

*It really does stand for “MIG: SetEXtra variables”.

C ---------------------------------------
C Check Statistical Crack Mechanics input
C ---------------------------------------
 IF (MODLEP(IMAT) .EQ. 12)THEN
 CALL SI2CTH(VPUINP(40 ,IMAT))
 CALL SCDCHK(VPUINP(1,IMAT),VPUINP(80 ,IMAT),VPUINP(40 ,IMAT))
 END IF

UI GC DC

F-7

MIG 0.0 Appendix F: MIG-compliance of Particular Parent Codes

 RDIM(IUNIT,IXTRA) = 0.0D0
 400 CONTINUE
 RINIT(IXTRA)=0.0D0
 IADVCT(IXTRA) = 0
 ITYPE(IXTRA)=1
 100 CONTINUE
C
 RETURN
 END

Once the extra variables have been specified by the call to SCXTRA, they are
actually requested by a call to a CTH routine MIGXT, which extracts needed
information from the extra variable arrays and translates it into a form
needed by the CTH storage-requesting subroutine EXTADD.

Incidentally, following the call to SCXTRA, there are two calls to the CTH
routine MIGADD, which establishes field variable storage for the secondary
vocabulary variables back stress and porosity. Unlike the bread-and-butter
variables like stress and temperature that are always defined in CTH calcula-
tions, these variables exist only by request. Another example of a CTH call to
a MIG extra variable routine may be found on page E-29.

Storage allocation in ALEGRA
In ALEGRA, storage is dynamically allocated for variables as required by

the particular physics and material models used for each calculation.
ALEGRA has classes Vertex, Element, and Material_Data which are capable of
storing data. Each of these classes has a small data array containing its vari-
ables. Thus, data are stored on an entity-by-entity basis (entity being Vertex,
Element, or Material_Data). The data are allocated by determining the number
and types of variables required by the models.

The particular types of variables are classes or typedefs: Int, Real, Vector,
Tensor, SymTensor,and AntiTensor.The Int and Real types are typedefs of int and
double, respectively. The other types are standard rectangular Cartesian vec-
tor/tensor quantities with appropriate operators defined. All of these quanti-
ties may be expressed as type double*, indicating an array of doubles of the
number of components. Thus, once the number of variables and the number of
components of each variable are known, the length of the array can be deter-
mined and storage allocated.

To obtain the variables and number of components for a particular mate-
rial, each variable used by a material model must be registered with the Mate-
rial class. The registration function of the Material class creates a list of all
variables and types requested by the material models which are assigned to
the particular material. It returns the index into the Material_Data array
where the registered variable will be located.

For example, if a model used density, temperature, and stress (in that
order), the entry in the header file might be:

Material_Data_Variable DENSITY, TEMPERATURE, STRESS;

Upon registration, DENSITY, TEMPERATURE, STRESS would have values

F-8

Appendix F: MIG-compliance of Particular Parent Codes MIG0.0

0, 1, and 2, respectively (C++ and C start arrays start at 0). The data array
would be allocated as shown in this table:

Alternatively, the data array is designed to allocate variables in the follow-
ing order: scalars, vectors, tensors, symmetric and antisymmetric tensors.
Thus, DENSITY and TEMPERATURE have scalar indices of 0 and 1, respectively.
STRESS has a symmetric tensor index of 0. Generally, this method is the pre-
ferred approach to referring to variables in the data array as the stride associ-
ated with a particular variable is handled by the proper variable class (e.g.,
SymTensor for stress). This allows dimensionality to be hidden in the class
rather than require the coder to keep track of stride (i.e., symmetric tensors
will have stride of four in 2D and six in 3D).

Referring to the example header file for Statistical Crack Mechanics, the
indices are maintained as private data. This means that these variables are
visible only to the Statistical_Crack_Mechanics class. Thus, there is no prob-
lem with using the names directly from the ASCII data file as the variable
indices.

Interface driver for CTH

For the CTH implementation of MIG, all MIG drivers for strength models
are called from the CTH subroutine ELSG. Executing migchk (Appendix E)
with the option “-dcth” makes migchk use the CTH abridged dictionary to cre-
ate a set of includes that must be inserted in specified locations in CTH. The
only include that requires significant modification is the one that goes into
ELSG. This include must be modified to provide the input required by the
driver in the order it was requested in the ASCII data file.

Shown here is the ELSG include for the Statistical Crack Mechanics model
of page 9* of the main document:

*This include block is for illustration purposes only. The actual SCM coding keeps ELSG clean by
calling an external routine do these tasks. Also, several mixing operations have been omitted.

0 DENSITY

1 TEMPERATURE

2 STRESS-XX

3 STRESS-YY

4 STRESS-ZZ

5 STRESS-XY

6 STRESS-YZ

7 STRESS-ZX

F-9

MIG 0.0 Appendix F: MIG-compliance of Particular Parent Codes

*- INCLUDE M12P3
 IF (MODLEP(MAT).EQ.12) THEN
 DO 100 IGS=1,NGS
 I=IGSMAP(IGS)

C Gather the 13 required inputs... ← under the headings “input” and
C “input and output” in ASCII file on p. 9.
C---- cycle is a global variable
C---- geom is a global variable
C---- time is a global variable
C---- time_step is a global variable

C---- density
SCR(IGS,1) = RHO(I)

C---- Rate of deformation (ROD)
SCR(IGS,2) = DVXDX(I)

 SCR(IGS,3) = DVYDY(I)
 SCR(IGS,4) = DVZDZ(I)
 SCR(IGS,5) = PHALF*(DVXDY(I)+DVYDX(I))
 SCR(IGS,6) = PHALF*(DVYDZ(I)+DVZDY(I))
 SCR(IGS,7) = PHALF*(DVZDX(I)+DVXDZ(I))

C---- Vorticity
SCR(IGS,8) = PHALF*(DVZDY(I)-DVYDZ(I))

 SCR(IGS,9) = PHALF*(DVXDZ(I)-DVZDX(I))
 SCR(IGS,10) = PHALF*(DVYDX(I)-DVXDY(I))

C---- Edit flag (set flag to zero for no edits)
SCR(IGS,11) = PZERO

C---- backstress (this is saved in a CTH extra variable)
SCR(IGS,12) = EXVAR(I,J,NBCKST+1)

 SCR(IGS,13) = EXVAR(I,J,NBCKST+2)
 SCR(IGS,14) = EXVAR(I,J,NBCKST+3)
 SCR(IGS,15) = EXVAR(I,J,NBCKST+4)
 SCR(IGS,16) = EXVAR(I,J,NBCKST+5)

C---- SCM damage (according to the ASCII data file,
C this is an alias for the first extra variable)

SCR(IGS,17) = EXVAR(I,J,JMIG+1)

C---- EXTRA~2thru4
SCR(IGS,18) = EXVAR(I,J,JMIG+2)

 SCR(IGS,19) = EXVAR(I,J,JMIG+3)
 SCR(IGS,20) = EXVAR(I,J,JMIG+4)

C---- temperature
SCR(IGS,21) = T(I)

C---- stress
SCR(IGS,22) = S11O(I,J)-PRES(I,J)

 SCR(IGS,23) = S22O(I,J)-PRES(I,J)
 SCR(IGS,24) = -S11O(I,J)-S22O(I,J)-PRES(I,J)
 SCR(IGS,25) = S12O(I,J)
 SCR(IGS,26) = S23O(I,J)
 SCR(IGS,27) = S34O(I,J)
 100 CONTINUE
C
C ###
 CALL SCDRVR(IMAX,NGS,
 $ VPUINP(1,MAT), VPUINP(80,IMAT), VPUINP(40,MAT),
C
C input
C -----
 $ ICYCLE, IGEOM, TIME, DT,
 $ SCR(1,1) , SCR(1,2) , SCR(1,8) , SCR(1,11)
C
C input and output
C ----------------
 $ SCR(1,12) , SCR(1,17) , SCR(1,18) ,
 $ SCR(1,21) , SCR(1,22) ,

F-10

Appendix F: MIG-compliance of Particular Parent Codes MIG0.0

C
C output [MIG scratch starts at SCR(1,25)]
C ------ Thus, scratch~1thru9 is in SCR(1,25)thru SCR(1,33)
C and scratch~10 is in SCR(1,34)
 $ SCR(1,23) , SCR(1,24) , IGERR,
 $ SCR(1, 34) , SCR(1,25)
C ###
C
C Now scatter the 10 promised outputs ← under the headings “input and output”
C and “output” in ASCII file on p. 9.
 DO 200 IGS=1,NGS
 I=IGSMAP(IGS)

C---- back stress
 BCKNEW(I,1)=BCKNEW(I,1)+PHIM(I,J,MAT)* SCR(IGS,12)
 BCKNEW(I,2)=BCKNEW(I,2)+PHIM(I,J,MAT)*SCR(IGS,13)
 BCKNEW(I,3)=BCKNEW(I,3)+PHIM(I,J,MAT)*SCR(IGS,14)
 BCKNEW(I,4)=BCKNEW(I,4)+PHIM(I,J,MAT)*SCR(IGS,15)
 BCKNEW(I,5)=BCKNEW(I,5)+PHIM(I,J,MAT)*SCR(IGS,16)

C---- SCM damage (i.e., the first extra variable)
 EXVAR(I,J,JMIG+1)= SCR(IGS,17)

C---- EXTRA~2thru4
 EXVAR(I,J,JMIG+2) = SCR(IGS,18)
 EXVAR(I,J,JMIG+3) = SCR(IGS,19)
 EXVAR(I,J,JMIG+4) = SCR(IGS,20)

C---- temperature
 EXVAR(I,J,JTEMP) = EXVAR(I,J,JTEMP)+PHIM(I,J,MAT)* SCR(IGS,21)

C---- stress
 EXVAR(I,J,JPRES) = EXVAR(I,J,JPRES
 PRESUR=-PTHIRD*(SCR(IGS,22) +SCR(IGS,23)+SCR(IGS,24))
 S11(I,J) = S11(I,J)+PHIM(I,J,MAT)*(SCR(IGS,22) + PRESUR)
 S22(I,J) = S22(I,J)+PHIM(I,J,MAT)*(SCR(IGS,23) + PRESUR)
 S12(I,J) = S12(I,J)+PHIM(I,J,MAT)*(SCR(IGS,25))
 S23(I,J) = S23(I,J)+PHIM(I,J,MAT)*(SCR(IGS,26))
 S34(I,J) = S34(I,J)+PHIM(I,J,MAT)*(SCR(IGS,27))

C---- yield in shear (CTH uses the yield in tension)
 YTEMP(I)=ROOT3* SCR(IGS,23)

C---- porosity
 EXVAR(I,J,JPORO)=EXVAR(I,J,JPORO)+PHIM(I,J,MAT)* SCR(I,24)

C---- global error
 IF(IGERR.NE.0)CALL LOGMES('error detected by SCM')

C---- compliance reduction and SCRATCH~1thru9
C This is scratch, so we ignore it.

 200 CONTINUE

 END IF
*-

Preceding the call to the model driver SCDRVR, field variable information
available in ELSG is gathered into scratch arrays which are then sent to SVP-
DRV. For multiscalar variables, note that only the start of data (shown in
bold) is an argument to the driver routine. The model output is then scattered
back into ELSG field arrays. Presently, the installer must these gather and
scatter code fragments by hand, which demands a moderately intimate knowl-

F-11

MIG 0.0 Appendix F: MIG-compliance of Particular Parent Codes

edge of the locations and meanings of arrays in CTH. The process has recently
been greatly simplified to simple calls such as “CALL GATHER(‘VORTIC-
ITY’,SCR(1,7)”. These simplifications reduce the above include block to 21
intuitive generated lines, with maintenance of the gather/scatter routines
being the responsibility of the CTH architect.*

Interface driver for ALEGRA
In ALEGRA, the interface to a MIG model driver is located in the Update

function for the model. The Update function is required of all classes derived
from Material_Model, the abstract base class for material models. The arguments
to the update function are the global parameter list, element variable arrays,
and material data object. A sample update function is shown below for the
Statistical Crack Mechanics model, consistent with the ASCII data file and
header file shown earlier on page F-3.

ErrorStatus Statistical_Crack_Mechanics::Update_State(
 Real*,
 Vector*,
 SymTensor* symtensor_vars,
 Tensor*,
 Real** material_vars,
 Real* global_parms
 Material_Data* var)
{
 // MIG Argument List:
 // input:
 // CYCLE GEOM TIME TIME_STEP
 // DENSITY ROD VORTICITY EDIT
 //
 // input and output:
 // BACK_STRESS SCM_DAMAGE=EXTRA1
 // EXTRA2 EXTRA3 EXTRA4
 // TEMPERATURE STRESS
 //
 // output:
 // YIELD_IN_SHEAR POROSITY GLOBAL_ERROR
 // COMPLIANCE_REDUCTION=SCRATCH10
 // SCRATCH1THRU9

 // Allocate static scratch
 // total scratch: 1 named scalar, 1x9 unnamed scalar = 10 scratch

 static Real scratch[10];
 static Real xtra[1];
 static Int ONE = 1;

 // Variable Processing

 SymTensor deformation_rate = Sym(Trans(var->Rotation())
 * symtensor_vars[ROD]
 * var->Rotation());

 scdrvr (ONE, ONE, ← MC,NC (run in scalar mode)
 param, ← UI
 global_const, ← GC
 derived_const, ← DC

 // input
 // ------------
 (Int&) global_params[CYCLE],

* At present, these CTH utilities need revision to port consistently.

F-12

Appendix F: MIG-compliance of Particular Parent Codes MIG0.0

 (Int&) global_params[GEOM],
 (Real&) global_params[TIME],
 (Real&) global_params[TIME_STEP],
 (Real&) var->Scalar_Data(DENSITY),
 (Real*) deformation_rate,
 (Real*) var->AntiTensor_Data(VORTICITY),
 (Int&) global_params[EDIT],

 // io_put
 // -----------
 (Real*) var->SymTensor_Data(BACK_STRESS),
 (Real&) var->Scalar_Data(SCM_DAMAGE),
 (Real*) var->Scalar_Data(EXTRA2),
 (Real&) var->Scalar_Data(TEMPERATURE),
 (Real*) var->SymTensor_Data(STRESS),

 // output
 // ------------
 (Real&) var->Scalar_Data(YIELD_IN_SHEAR),
 (Real&) var->Scalar_Data(POROSITY),
 (Int&) global_params[GLOBAL_ERROR],
 (Real&) scratch[9],
 (Real*) scratch[0]);

 return 0;
}

Scratch variables are allocated locally and held as static data. Higher
order data types (vector, tensor, etc.) are cast to an array of Real. Due to the
layout of the data array, a SymTensor can be cast to Real* and the order of the
data in the array is consistent with the MIG specification for the order of the
tensor components.

A similar reasoning is used for the EXTRA2 argument. This is sent down as
an array, even though it was allocated as a single value. However, EXTRA3 and
EXTRA4 occupy the next two scalar variable locations in the data array. Thus,
because the argument list expects NCx3, only the EXTRA2 location is sent. Also,
because the data structure is on a point-by-point basis, the values for MC, and
NC will always be 1.

An attractive feature of maintaining the variable indices in private data is
that the names closely follow the names used in the ASCII data file.

Processing migtionary terms in CTH (and migchk)
The listing below shows principal segments from the function MIGK2I

which is used by CTH and migchk to determine whether or not a migtionary
keyword is valid. These code fragments are provided as a guide to architects
designing their own utilities. The routine MIGK2I receives a keyword string
KEY and returns a unique integer identifier associated with that keyword. The
integer identifier is zero if the keyword is deemed to be invalid. Otherwise, the
integer identifier is the position of the keyword in the stored array SVKW con-
taining all valid keywords. If the keyword is deemed to be valid yet does not
have a place in the SVKW array (e.g., because it is an operated term), then a

F-13

MIG 0.0 Appendix F: MIG-compliance of Particular Parent Codes

place for that variable is created in SVKW.

 FUNCTION MIGK2I(KEY)

•
• Declarations

•

CC
C
C Check if keyword has a model alias
C
 DO 400 IALIAS=1,NA99D The arrayA99D is a temporary array
 IF(KEY.EQ.A99D(IALIAS))THEN (in a common block) containing the aliases
 MIGK2I=IA99D(IALIAS) of the model currently being examined.
 RETURN
 END IF
 400 CONTINUE
C
C Check if keyword has a migtionary alias
C
 DO 500 IALIAS=1,NALIAS The arrayALIAS contains the standard
 IF(KEY.EQ.ALIAS(IALIAS))THEN migtionary aliases. The arrayIDA contains
 MIGK2I=IDA(IALIAS) the integer ids of the standard migtionary
 RETURN terms associated with each standard
 END IF migtionary alias.
 500 CONTINUE
C
C Check if keyword is a standard variable
C
 DO 501 IKEY=-NGVKW,NFVKW The arraySVKW contains the standard
 IF(KEY.EQ.SVKW(IKEY))THEN migtionary terms. IfKEY is found to match one
 MIGK2I=IKEY of these terms, then the integer returned by
 RETURN this function is just the placement of the key
 END IF word in the migtionary arraySVKW.
 501 CONTINUE
C
C To reach this point, no match was found
C
C
 IF(KEY(1:7).EQ.'SCRATCH')THEN
 IDUM=LNBL77(KEY) The variable is a scratch request.
 IF(IDUM.EQ.7)THEN
 CDUM='1'
 IDUM=1
 ELSE
 CDUM=KEY(8:IDUM)
 CALL FNDINT(CDUM,IDUM,IERR)
 IF (IERR.GT.0) GO TO 9999
 IDUM=MAX(IDUM,1)
 END IF
 VARFOR='SCR'//CDUM
 NSCAL=IDUM
 IF(IDUM.GT.1)THEN
 ITYP=2
 ELSE
 ITYP=1
 END IF
 DO 100 I=1,NUNIT
 DIM(I)=PZERO
 100 CONTINUE
 ELSE
C Check if keyword is an acceptable mig term being operated
C on by one of the standard operations.
C If so, add the keyword to the dictionary.
C However, don't do this if the dictionary is abridged.

F-14

Appendix F: MIG-compliance of Particular Parent Codes MIG0.0

 IF(ABRDGD)GO TO 9999
 ITILDE=INDEX(KEY,TILDE)
 IF(ITILDE.LE.0)GO TO 9999
 IDUM=LNBL77(KEY)
 OPRATR=KEY(ITILDE+1:IDUM)//TILDE
 OPRAND=KEY(1:ITILDE-1)

•
• Ensure thatOPERAND is a valid term; if not go to 9999.

•
 88 CONTINUE
C To reach this point, the operand is a valid migtionary variable.
C Set operand properties.
 VARFOR=FORT(MIGID) Set operand properties
 NSCAL=NSCALR(MIGID)
 ITYP=MVTYP(MIGID)
 DO 800 I=1,NUNIT
 DIM(I)=DSV(I,MIGID)
 800 CONTINUE
C ==================================
C extract the first operator from OPRATR
 701 IDUM=LNBL77(OPRATR)
 IF(IDUM.LE.0)GO TO 22
 ITILDE=INDEX(OPRATR,TILDE)
 IF(ITILDE.LE.0)ITILDE=IDUM+1
 IF(ITILDE.EQ.1)GO TO 9999
 OPER=OPRATR(1:ITILDE-1)
 IF(ITILDE+1.LE.IDUM)THEN
 OPRATR=OPRATR(ITILDE+1:IDUM)
 ELSE
 OPRATR=' '
 END IF
C ==================================
C
C Now check if OPRAND~OPER is a valid operation
C If so, reset the OPRAND properties so that
C OPRAND gets replaced by OPRAND~OPER
 IF(OPER.EQ.'DEVIATOR')THEN

The “deviator” operation is valid if the operand is a tensor, which can
be checked because the variable type of the operand is presumably
known. If the deviator operation is valid, the properties of
OPRAND~OPER must be set accordingly.

 ELSE IF(OPER.EQ.'GRADIENT')THEN
The “GRADIENT” operation is valid for most variable types. The
properties ofOPRAND~OPER are set according to the properties ofOPRAND.
For example, ifOPRAND hasn scalars, thenOPRAND~OPER has n+3
scalars.

•
•
•

 ELSE
To reach this point, the operator is deemed inappropriate for the
operand, and this function exits with a value of zero.

 GO TO 9999
 END IF
C
 22 CONTINUE
C To reach this point, OPRAND~OPER was found to be valid.
C Hence, replace OPRAND by OPRAND~OPER so the next operator
C may be checked.
 OPRAND=OPRAND(1:LNBL77(OPRAND))//TILDE//OPER
 VARKEY=OPRAND(1:LNBL77(VARKEY))//TILDE//OPRATR
 END IF
C
C To reach this point, the original variable has been accepted.
C Therefore, add it to the migtionary
 IF(NSCAL.GT.0)THEN

F-15

MIG 0.0 Appendix F: MIG-compliance of Particular Parent Codes

 NFVKW=NFVKW+1
 IF(NFVKW.GT.MFVKW)
 & CALL BOMBED('Recompile with larger value for MFVKW')
 MIGID=NFVKW
 ELSEIF(NSCAL.LT.0)THEN
 NGVKW=NGVKW+1
 IF(NGVKW.GT.MGVKW)
 & CALL BOMBED('Recompile with larger value for MGVKW')
 MIGID=-NGVKW
 END IF
 FORT(MIGID)=VARFOR
 SVKW(MIGID)=KEY
 NSCALR(MIGID)=NSCAL
 MVTYP(MIGID)=ITYP
 DO 190 I=1,NUNIT
 DSV(I,MIGID)=DIM(I)
 190 CONTINUE
 MIGK2I=MIGID
 RETURN
C
 9999 MIGK2I=0
 RETURN
 2 FORMAT(I5)
C################# end of routine MIGK2I
 END

F-16

Intentionally Left Blank

G-1

MIG 0.0 Appendix G: Development Log

APPENDIX G: Development Log

MIG: Past, Present, and Future
This appendix documents the development history of MIG from its incep-

tion to date. We show here how we have approached the problem, where we
stand, and what remains to be done.

This appendix archives specific problems that have been addressed
throughout the course of the development of MIG. These issues are split into
two categories: resolved and unresolved. Each problem is briefly described
and followed by discussions of merits and weaknesses of all proposed solu-
tions. We provide a complete chronicle of these issues so that interested read-
ers may see what motivated our decisions in the development of MIG and so
that they may determine if we have considered particular issues that may
appear to have been ignored. This appendix will be available only in version
0.0 to facilitate discussion during MIG’s growth and development phase.

Action Plan (scratched out items have been accomplished!)
(vi) Design a prototype standard interface.
(vii) Modify CTH and ALEGRA to accept the prototype interface.
(viii) Select an existing CTH material model.
(ix) Provide the model developer with written interface guidelines.
(x) Have the model developer use only the interface guidelines to stan-

dardize the model. If the model developer is unable to produce a
standardized package for the model, correct deficiencies in the
interface and/or the guidelines, and return to (iv).

(xi) Install the model’s standard package into both CTH and ALEGRA.
(xii) If the package performs incorrectly, modify the interface to address

the problems, and go to (iv) or (vi) as appropriate. If the package
performs satisfactorily and there remain CTH models that have not
been standardized, go to (iii).

(xiii) Select an existing material model in ALEGRA and perform steps
(iv) through (vii).

(xiv) Solicit buy-in and beta-version MIG revision suggestions from the
PRONTO group and other interested Lab groups.

(xv) Establish and install three packages into CTH, ALEGRA, and
PRONTO. Resolve problems encountered during this process.

(xvi) Relax the ASCII data file syntax to permit enhanced data input
such as includes and sophisticated data units.

(xvii)Publish guidelines as a Sandia technical report for a beta distribu-
tion period of approximately one year. Solicit beta testing from non-
Sandia code groups.

(xviii)Incorporate changes in the guidelines that seem necessary based
on problems encountered during the beta test period.

(xix) Publish guidelines as a SAND report. Also make the guidelines

G-2

Appendix F: Development Log MIG0.0

available on line, preferably with hypertext.
(xx) Enter MIG maintenance mode (involving, for example, regular revi-

sions and additions to the migtionary).
(xxi) Develop a MIG package distribution plan (e.g. a central repository

on the internet).
(xxii)Begin “migizing” existing models of general scientific interest (this

task would be well-suited for a graduate student or even a co-op).

State of the work
At present, the guidelines are well-crystallized in the DEVELOPER sec-

tion, where the definition of a MIG package is given. Guidelines for architects
and installers have been greatly enhanced, but still require refinement. Both
ALEGRA and CTH now have routines that can parse the ASCII database for
model information and both codes have developed the utilities needed to make
them MIG-compliant. The Statistical Crack Mechanics model is packaged in
MIG format. The Steinberg-Guinan-Lund model has been fully packaged
under MIG and has been successfully installed into four codes: Sandia’s
ALEGRA (parallel, arbitrary Lagrange-Eulerian, C-language), Sandia’s CTH
(vectorized, finite-difference, FORTRAN), Alliant’s EPIC (vectorized, finite-
element), and Sandia-Livermore’s DYNA (finite-element). The new Bam-
mann-Chiesa viscoplasticity/damage model has been fully migized and runs in
CTH. The deviatoric part of the effective stress model has been migized and
installed in CTH. Several electro-mechanical models have been developed
under MIG and installed in ALEGRA. SRI’s BFRACT model is currently being
“migized” at Sandia; testing is being performed in CTH.

UNRESOLVED PROBLEMS

Below is a list of unresolved (or unsatisfactorily resolved) problems with
the prototype MIG interface guidelines. This list assumes familiarity with the
main MIG documentation.

1. Strict ANSI 77 FORTRAN. Should we require strict ANSI standard FOR-
TRAN 77 as part of the definition of a proper MIG package?

(i) We can require and enforce strict ANSI 77 standard.
Advantage: guarantees true standard for anyone receiving a MIG
package.
Disadvantage: Places difficult constraints on the model developer.
For example, ANSI 77 standard says that comments are indicated
by a star (*) in column 1. Hence, strictly speaking, a “C” in column 1
is not standard! Likewise, variable names exceeding 6 characters
are not ANSI standard. Neither of these variants from strict stan-
dard cause problems with any compiler that we know of.

(ii) We can require ANSI 77 standard in general, but permit certain
“safe” deviations from the standard such as variable names that
exceed 6 characters and “C” in column 1.

G-3

MIG 0.0 Appendix G: Development Log

Advantage: Allows the developer to use common, well supported
variants from ANSI 77 standard.
Disadvantages: Technically, this solution would make MIG non-
standardized. architects of today’s large-scale codes that still
demand strict FORTRAN77 will not be pleased. Importantly, this
option also destroys accountability. Suppose, for example, that
someone produces a package that uses variable names that exceed
six characters. The package runs great on a huge number of mod-
ern compilers, but fails due to the non-ANSI 77 when a professor at
a small university downloads it to run using his ancient compiler.
To whom should this professor complain? If the guidelines officially
permit the variations, he can’t complain to the model developer,
and his only recourse would be to complain to the people who estab-
lished MIG. That is bad accountability.

(iii) We can require strict ANSI 90 standard.
Advantage: While ANSI 90 standard has not been universally
accepted and implemented, it is very nearly so. Sharing many fea-
tures with C and C++, FORTRAN90 is much more flexible than
FORTRAN77.
Disadvantages: ANSI 90 is not yet strictly and uniformly applied
by current compilers, though this situation is being rapidly recti-
fied. Parent code maintenance teams often write in-house source
code preprocessors that may not yet “understand” FORTRAN90.
Some institutions do not yet posses FORTRAN90 capabilities.

(iv) We can require but not enforce strict ANSI 77 standard. In other
words, the guidelines will — strictly speaking — require ANSI 77
standard, but the decision about whether to follow the standard is
up to the developer. The guidelines will, however, strongly encour-
age ANSI 77 adherence to avoid the disadvantages outlined here.
Advantages: Guarantees that MIG is a true standard. Account-
ability for deviations from standard lies with the model developer,
not with the creators of MIG.
Disadvantages: Since deviations from standard would be at devel-
oper discretion, MIG model packages may not work on old, unfor-
giving compilers. More importantly, even if the compiler is
sophisticated, the model source code may need to be run through a
preprocessor in order to handle conflicts in subroutine and common
block names. This preprocessor may not be as mature as the com-
piler in handling non-ANSI 77 constructs.

Temporary resolution: option (iv) for now. The next version of MIG will proba-
bly adopt option (iii) together an extension of driver structure rules to include
other languages.

2. Width of the ASCII data file. There is currently no limit on the width of
the ASCII data file. Possible actions:

(i) Limit line length to 80 characters.
Advantages: improves screen viewing and printouts. May avoid
undesired truncation in electronic mailings.
Disadvantages: May make tables of precharacterized material

G-4

Appendix F: Development Log MIG0.0

data extremely long and difficult to read for complicated models.
(ii) Impose no width limit.

Advantages: see above.
Disadvantages: see above.

Anticipated resolution: option (i).

3. Tabular material functions. MIG already has a way to specify material
constants. More often than not, models use material constants in analytical
expressions, and those expressions may therefore be regarded as material
functions. But what if the material functions are to be specified by the user
through the use of tables? Possible actions:

(i) Adopt an established table scheme such as SESAME.
Advantages: takes advantage of existing utilities.
Disadvantages: May cause trouble if the table scheme changes in
a way that is damaging to MIG.

(ii) Define a MIG table interface.
Advantages: ensures MIG defines the model side of the interface.
Code architects may design their own side of the interface to call
standard table utilities such as sesame, so none of the advantages
of (i) would be sacrificed. Tabular data specifications and storage
may easily be governed by each parent code.
Disadvantages: Makes MIG more complicated.

(iii) Do nothing. That is, prohibit tables for now.
Advantages: easy temporary solution. Most models do not use
tables, so this solution will impact only a subset of developers work-
ing with tabular models. Those developers may have to include
some non-MIG-compliant features to their code which will have to
be called out in the “special needs” section of the ASCII data file.
Disadvantages: As models become more and more complicated,
tabular functions may become more common, and MIG must even-
tually permit them in some general manner.

If solution (i) or (ii) is adopted, there will have to be a considerable amount
of logical design added to MIG. The design must permit material functions to
be tabular or analytical as requested by the user. One developer at Sandia, for
example, recently “migized” a model that permits the user to employ either an
analytical pressure-dependent yield function or a user-defined yield function.
If the user requests the analytical yield function, there is no problem — the
model is fully “migizable”. However, for the user-table option, the model cur-
rently contains calls to CTH table utilities. Since these subroutine calls are
non-MIG-compliant, their existence and purpose must be clearly spelled out in
the “special needs” section of the ASCII data file so that model installers for
other codes may accommodate the table calls.

4. Utilities. Undoubtedly, model developers will take advantage of multipur-
pose utilities either from sources such as LINPAC (SLATEC) or even from per-
sonal collections of utilities. How should this be handled?

(i) Let every developer provide copies of all utilities used in their

G-5

MIG 0.0 Appendix G: Development Log

model.
Advantages: simple solution. MIG package would be truly stand
alone. The model developer would not have to review routines to
determine which are model-specific and which are utilities.
Disadvantages: Large parent codes could end up with many dif-
ferent routines that do essentially the same thing. Model develop-
ers may not have access to utility source (here at Sandia, the
process is non-trivial).

(ii) Declare that conventional libraries will always be available.
Advantages: simple solution for developers, though perhaps not
for architects who would now be responsible for providing the utili-
ties.
Disadvantages: MIG package would no longer be truly stand-
alone — may make MIG unattractive for developers at Universities
or at local/small sites who do not have access to standard libraries
for their own parent codes.

Temporary resolution: option (i)

5. Conflicting subroutine/common block names. There is no insurance
against MIG developer routine names being identical to one or more routines
in the parent code or in other MIG packages. Possible solutions are

(i) Handle conflicting routine names by hand, on a case-by-case basis.
Advantages: Straightforward solution, can be employed in the
short run. Coding would not change appearance too much by a rou-
tine name change here and there.
Disadvantages: Time consuming for the model installer, which is
contrary to the stated goal of this work.

(ii) Require the installer to run the source code through a pre-processor
that would change all of the subroutine names and associated calls
to non-conflicting names.
Advantages: This solution would not require any special action on
the part of the model developer.
Disadvantages: time is required to write and maintain preproces-
sor. Each parent code would have to do this — could severely reduce
attractiveness of MIG to parent code groups. However, such a pre-
processor could be made available upon request to interested par-
ent groups.

(iii) Require that the modeler write source code in a specific preproces-
sor format such as APREPRO [9].
Advantages: At Sandia, APREPRO is fairly well-known and well-
tested.
Disadvantages: APREPRO is less known outside Sandia. Each
parent code group would have to obtain a copy of the preprocessor
— could moderately reduce attractiveness of MIG to parent code
groups. Each model developer would have to obtain and learn the
preprocessor — could severely reduce attractiveness of MIG to
model developers.

G-6

Appendix F: Development Log MIG0.0

Temporary resolution: This is a low-priority problem. In the short term, con-
flicting subroutines will be handled by hand on a case-by-case basis. That is, if
the linker warns of duplicate routine names, the routine names will be
changed by hand. In the long term, architects of each parent code may choose
to run the source through a pre-processor. In the very long term, this problem
will be readdressed to see if binary MIG packages could be permitted. Note,
however, that the problem of duplicate common block names is stickier since
the linker will not gripe about them.

6. Making MIG successful. The following concerns must be addressed:
(i) What are the project milestones?

(ii) What is the project time table?
(iii) How should MIG be maintained?
(iv) How should accountability be distributed? Who

answers questions?

7. Precision. How should the guidelines stand on numerical precision? Possi-
ble answers:

(i) Require that all routines contain the double precision statement

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

Advantages: Simple. May be adopted in the short run.
Disadvantages: The model will perform differently on different
machines (single precision on the CRAY is the same as double on
the SUN). While many parent codes may be quite satisfied with
double precision routines, other parent codes may be written in sin-
gle precision only. Those codes would either have to modify the
model’s routines (contrary to the goals of MIG) or they would have
to “upgrade” their variables to double precision before calling the
model routines (potentially expensive).

(ii) Permit the use of FORTRAN90 precision specification in the source
code, namely allow use of REAL*(IPRCSN), and let a preprocessor
convert this to either REAL or DOUBLE PRECISION as needed
Advantages: This solution is forward thinking. Can be convenient
for the model developer who prefers FORTRAN90
Disadvantages: Can be confusing to the model developer who is
unfamiliar with FORTRAN90. Again requires use of a preprocessor.
FORTRAN90 is not yet standard. Some FORTRAN90 compilers do
not understand variable precision.

(iii) Use “.FOR” as the extension on all source code in the package. That
way, it gets run through a C preprocessor that can convert all
REALS to REAL*(ip), where ip is the precision desired by the par-
ent code.

(iv) Require parent codes to write their own source code preprocessor
that would automatically convert precision to the desired type.
Advantages: Would solve the problem. While the source code
would be changed, the master source code would not be changed.

G-7

MIG 0.0 Appendix G: Development Log

That is, the developer would still be free to change the master code,
and a new implemented source could be generated automatically
with little delay.
Disadvantages: Would be time-consuming for parent code archi-
tects to write such a source code preprocessor.

Temporary resolution: option (i), all routines must contain an implicit double
precision statement.

8. Topology/geometry in extra variable routines. The guidelines state that
the problem topology/geometry is available at the time the extra variable rou-
tine is called. However, the guidelines do not currently pass that information
down to the extra variable routine. Some models may be able to improve their
performance and storage needs if geometry were sent to the extra variable
routine. Options are

(i) Do nothing. Keep the guidelines as they are, with no information
about geometry sent to the extra variable routine.
Advantages: Straightforward solution, especially for code archi-
tects.
Disadvantages: Some models might not be able to optimize their
performance/storage based on problem geometry (i.e, they will be
forced to assume the problem is three dimensional).

(ii) Add IGEOM to the calling argument list of the extra variable rou-
tine.
Advantages: Solves the problem. Not too much of an inconve-
nience to code architects at this point because the MIG arguments
for the extra variable routine are currently being changed anyway.
Disadvantages: It’s one more thing for us poor architects to con-
tend with. Supplying IGEOM is difficult (though not impossible) for
CTH calculations.

9. Spatially varying initialization of extra variables. The output of the extra
variable routine allows extra variables to be uniformly initialized to the same
value. How can a spatially varying initialization be accomplished (e.g., a body
with a varying damage at time zero)?

(i) Let each parent code handle this contingency
Advantages: Solution permits MIG to continue avoiding topology
issues.
Disadvantages: Currently MIG is set up so that neither the par-
ent code architect nor the installer need to know the physical mean-
ings of the extra variables. It is not clear that this could continue to
be true if the parent code were to give its users the ability to spa-
tially vary extra variable initializations. Will have to ponder...

10. Comments within ASCII data file entries for material constants. Cur-
rently, the only way to cite the source of data for precharacterized material
constants data is to use a “remark” key phrase after the data set. This
approach could get unwieldy for large data sets with many sources. We could
use a syntax such as square brackets for in-place comments.

G-8

Appendix F: Development Log MIG0.0

11. Non-number inputs. Currently, MIG assumes that all user inputs are
numbers. Currently, for example, if an input is a logical, then the user would
enter 1 for true and 0 for false. If the input parameter represents an option,
MIG assumes that the options are numbered. Suppose, for example, a model
that has two yield options, say, Mises and Tresca. Then the model developer
defines a user input, say, YLD_MODEL which is 1 for Mises and 2 for Tresca.
In these days of user-friendly computer codes, many users may complain that
they cannot input the words “MISES” or “TRESCA”, letting the computer
translate those words into numbers. Possible actions are

(i) Retain the current philosophy that all inputs are numbers by the
time they reach the driver routine. To accommodate non-numbers
as values of user inputs, we will have to add a mapping syntax for
MIG ASCII data files to define how non-number input values are
translated into numbers by the parent code during user input pro-
cessing.
Advantages: Conceivable to do.
Disadvantages: We can get by without this capability for now. It
would add yet another layer of complexity to the guidelines —
something that could kill the whole project.

(ii) Abandon the current philosophy that all inputs should be numbers.
Instead permit anything as a value of a user input.
Advantages: Solves the problem — maybe.
Disadvantages: Would be a nightmare for non-object-oriented lan-
guages such as FORTRAN?

12. Subgrouping user inputs. It is certainly conceivable that some compli-
cated models may have an extraordinary number of user inputs. That may be
misleading and confusing to users because, more often than not, only a portion
of the user inputs are actually ever used. For example, a complicated model
might come equipped with its own set of yield models, each having its own set
of user inputs. Only one yield model may be used at any one time, so the user
inputs for the other models aren’t ever used. Can we devise a way for the MIG
ASCII data file to reflect this kind of structure?

Here’s a canonical problem: A model has an input parameter called
SFLAG, which may take the value of 1 or 2 and another parameter
ANU which may take any value. In addition to these parameters, the
model has parameters F1A and F1B which are meaningful only if
SFLAG=1 and parameters F2A, F2B, and F2C, which are meaningful
only if SFLAG=2 and ANU>0.

(i) Develop a “switch” or if-then-else syntax for the ASCII data file
that would (effectively) make the model input section of the ASCII
data file look like something like this:

ANU(2,1,,3)
SFLAG
SFLAG==1
 F1A(3,3,,)
 F1B(,,2)
SFLAG==2 && ANU>0
 F2A(,1,,)

G-9

MIG 0.0 Appendix G: Development Log

 F2B
 F2C(1)

Of course, the syntax would have to be worked out.
Advantages: Potentially solves the problem.
Disadvantages: Adds a level of sophistication that may be inap-
propriate at this early in the development of MIG. This effectively
begins to make the ASCII data file syntax a programming lan-
guage. May be very confusing for developers in deciding how inputs
are ordered in the user input array (presently it is simple: they are
ordered the same as in the ASCII data file).

(ii) Do nothing.
Advantages: Granted, this is an inelegant “solution”. However, the
problem is not a do-or-die situation. For now, the data check routine
could ensure that the user would not try to use material inputs
inappropriately. The simplicity of this solution is probably an
advantage during the MIG development period.
Disadvantages: Can be confusing to the user since it might
appear that the model has many more user inputs than it really
does.

13. Units in the ASCII data file. Currently, the guidelines handle units tasks
by a straightforward but awkward ordered list of fundamental dimensions
(length, mass, time, temperature, amount, current, luminosity). Should the
guidelines treat units in a more sophisticated manner? Options are...

(i) Do nothing. Keep the guidelines as they are, with the ordered
dimension list used in one way or another for all unit-related tasks.
Advantages: Straightforward. Simple for code architects. There is
nothing about this option that would prohibit future releases of
MIG from permitting advanced unit specifications. This easy-to-
automate seven-ordered-units option could be adopted during these
critical early stages when encouraging parent code groups to adopt/
accept MIG is of prime importance.
Disadvantages: Awkward for model developers. Could lead to
error-ridden data files unless the data files could be generated by a
preprocessor such as APREPRO [9], which has sophisticated unit
manipulation capabilities.

(ii) Get more fancy with units. Permit data unit specification in a more
natural manner. For example, the somewhat cryptic

data units: centimeter gram second
MAXPRESSURE(-1,1,-2)

could be replaced by
MAXPRESSURE(dyne)

Advantages: Obvious improvement in clarity. The problem of pars-
ing could be alleviated somewhat by offering parsing routines to
new code architects.
Disadvantages: Sophisticated unit parsing requirements may be
a considerable disadvantage for code architects, especially in the
early stages of “just getting things to work.”

Temporary resolution: option (i)

G-10

Appendix F: Development Log MIG0.0

14. Distributing MIG models. Once a model has been “MIGized”, how should
it be distributed among code groups? Some options are:

(i) Create a central repository (perhaps on the internet) containing all
migized models. Require all parent codes to use the model
EXACTLY as it is given in the repository.
Advantages: Facilitates fair comparison between parent codes.
Reduces duplication of effort in model development. Would encour-
age teamwork.
Disadvantages: Different code groups might want to customize
the model to perform specific tasks. There could be delay in convinc-
ing the model “owner” to generalize the model. Conflicts over credit
might arise.

(ii) Permit each parent code group to own its own version of migized
models.
Advantages: Different departments would be free to modify the
model as they see fit. Model enhancements would be easier in the
short run.
Disadvantages: What started out as one model could quickly
evolve into a number of slightly modified models. The advantage of
code-to-code comparison would be lost.

(iii) Compromise. Permit each parent code group to modify MIG models
in any way except in ways that would change the calling arguments
of the required routines.
Advantages: Each code group would be able to experiment freely
with model theory changes. Minor bugs could be fixed promptly.
Since the calling arguments would be uniform among all parent
codes, different versions could be easily traded and compared
among the various code groups. This would foster a healthy compe-
tition among code developers while retaining clear credit for model
improvements.
Disadvantages: Anybody who would want to change the calling
argument list would be faced with delays and all of the disadvan-
tages listed in (i).

(iv) Don’t share migized models at all.
Advantages: Easy solution — this is basically the status quo.
Disadvantages: This is basically the status quo! Duplicates effort
without sharing lessons learned. Reduces Sandia competitiveness
in the power-computing market. Fosters internal sandlot competi-
tiveness.

15. Simplifying the MIG document itself. MIG is a lengthy document princi-
pally because of the many listings of sample ASCII data files, sample routines,
etc. Possible actions are:

(i) Don’t do anything — retain computer listings in MIG.
Advantages: Examples readily available.
Disadvantages: Hard to sort out the examples from their explana-
tions. Makes MIG look more difficult than it really is.

(ii) Replace all listings with references to web sites where the listings

G-11

MIG 0.0 Appendix G: Development Log

may be found.
Advantages: Cleans up the documentation. Allows continual
updates/corrections of examples.
Disadvantages: Some people might not have ready access to web
(this includes people who might be reading the document over cof-
fee at a restaurant).

16. Posting/disseminating MIG models. While MIG standardizes models
themselves, MIG does not provide any guidance for getting new models or
upgrades of existing models distributed to interested code groups:

(i) Don’t do anything — let new models and upgrades go out by cur-
rent chaotic methods (shipping tapes, sending mails, etc., as pre-
ferred by the developer).
Advantages: Simple solution.
Disadvantages: May result in multiple versions of the same
model, especially if the developer does not distribute upgrades to
all code groups. Tough for popular models that are employed in
many codes.

(ii) Establish a world wide web MIG posting protocol
Advantages: Reasonably straightforward solution. The developer
would not have to notify code groups of new postings because any
interested code groups could simply use a web-monitoring robot
like http://www.netmind.com/URL-minder/URL-minder.html to
automatically notify them of model changes.
Disadvantages: Some people might not have ready access to web.

17. Finishing the MIG project. This project has reached the point that nearly
all of the development goals have been reached. That is, we have developed a
set of guidelines, tested them in four parent codes, and sought comments and
suggestions from architects of other codes. While these activities are not yet
complete, the end is now in sight. We need to begin addressing the following
questions

• What is the “end product”? A web document? A database? A cen-
tral MIG repository?

• Should the project be drawn to a strict conclusion, or should the
project be phased into a maintenance mode?

• Who should close or maintain this project? Who will pay?

The first bullet is a human factors issue. The last bullet is basically a man-
agement issue. The middle bullet is a mix of technical and management issues
and will be discussed at the ongoing MIG meetings.

G-12

Appendix F: Development Log MIG0.0

RESOLVED PROBLEMS

Below is a list of resolved problems. Each item in this list was, at one time,
among the unresolved problems, but has been discussed with MIG partici-
pants. The original problems and their respective resolutions (some resolu-
tions are only temporary) are listed below.

1. Communicating between required routines. What if the data check rou-
tine writes some information to a common block and that information is to be
later accessed by the driver? Depending on the parent code’s structure pro-
gram loader instructions, it is possible that the information might not be
passed correctly. On most compilers, the mere presence of “SAVE” for all com-
mon blocks avoids problems. However, for segmented programs, the informa-
tion could be lost. Alternatives:

(i) SUGGESTION FROM ONE BETA MIG READER:
I suggest that a key phrase "Common blocks" be added to the ASCII
data file ... Also, on developer.2, add a task ... "provide an
instance of each common block"

This task could be automated by creating a program module

 block data migbks

that contains all of the common blocks named in MIG model
descriptions,
and the statement "external migbks" in the main program or at some
other location that has all instances of the datacheck routine
and the
driver routine in its calling tree.

Advantages: would solve the problem
Disadvantages: Not as simple a solution as it could be? May be
asking too much from developers. May make model upgrades diffi-
cult for some code architects.

(ii) Here is the response (from the Sandia MIG team) to the above
reader’s suggestion:

[We] are concerned about the non-dedicated commons -- those that
are shared between segments. Since these commons MUST contain
universal constants (not constants that vary from material to
material), a possible win-win solution is to change MIG as
follows:

Add a NEW ARGUMENT -- let's call it UC for "universal constants" -
-to each of the three segment's calling argument list.

With this new argument, we would be able to require that model
commons be DEDICATED TO A SINGLE SEGMENT. This new and minor
adjustment to MIG would be in keeping with the implicit
philosophy that the parent code should be in control of all
restart data and it would establish a new philosophy that the
parent code should also be in control of passing information
between segments.

Resolution: Option (ii) was agreeable to all involved and has been adopted.

2. Retaining information after restarts. A BETA MIG reader had the follow-
ing concern:

There's another issue with common blocks, and that is dumping/
restarting models that use common blocks.

G-13

MIG 0.0 Appendix G: Development Log

This would be another task for the code architect, to "provide
for dumping the contents of model common blocks to the restart
file, and for reloading them from the restart file".

It occurs to me that there could be two types of common blocks,
that should be distinguished from each other in the ASCII
database text file.
There are

 o "global" common blocks, which occur in both the data-check
 subroutine and the driver subroutine, or whose contents need
 to be dumped/restarted, and

 o "local" common blocks which occur only in the data-check
 routine and routines called by the data-check routine, in the
 input routine and routines called by the input routine, or in
 the driver routine and routines called by the driver routine.

Resolution: This is not really a problem. MIG is designed so that models know
nothing about multiple materials existing using the model. That means that,
in a sense, all information really is local to each model segment. All data han-
dling — including saving restart information — is performed by the parent
code.

3. If the parent code is split into segments, each being a truly separate
code, will there be communication problems? With the resolution to the
problem about communicating between routines, this should not be a problem.
All information needed by any segment is provided directly by the parent code
via calling arguments. Therefore, it is the responsibility of the parent code to
write necessary information to input files for each segment if necessary.

4. FORTRAN GUIDELINES. One MIG reader had these comments:
It also occurs to me that "global" common blocks should be
forbidden in the input routine, because that might be located in
a different preprocessor program.

I would recommend that global common blocks not be allowed to
contain mixed data types. Separate blocks should be used for
integers, floats, and characters. (The Fortran standard already
prohibits characters from coexisting with integers and/or floats
in common blocks). Otherwise you run the risk of unpleasant
surprises when the size of a float changes with respect to the
size of an integer.

It should be forbidden to have a "local" common block that
appears in a driver's subroutines but not in the driver itself,
to ensure, as above, that there is really only one copy of the
common block in memory.

Resolution: These comments seem valid and have been added to
the guidelines.

5. Including common block information in the ASCII data file. The parent
code architect may require information about the common blocks used in the
model. How should this information be obtained?

(i) One MIG reader suggests:

Information that should be provided in the ASCII database text
file about the common blocks would include

 name
 type (float, integer, or character)

G-14

Appendix F: Development Log MIG0.0

 length (number of floats, integers, or characters)
 whether global or local
 whether necessary to dump/restart

Using this information, the model installer could (possibly using
automated tools)

 o make sure there's not already a common block by that name,
 and if there is, change the name to an unused one

 o If "global"

 + generate an instance of the block with the right data
 length in the "migblks" module

 + If necessary, add block's address and length to the
 dump/restart list

Also note that "local" common blocks might not need to have the
"save" statement, provided that every time the driver routine is
invoked, the contents of the entire common block are initialized.
The "save" statement won't hurt anything, though, except for a
possible slight degradation in efficiency.

Advantages: would solve the problem
Disadvantages: Not as simple a solution as it could be? To expect
developers (who are often far better physicists and engineering the-
orists than programmers) to accurately provide the info may be
expecting too much.

(ii) An alternative solution is to do nothing.
Advantages: Easy for developers. Reduces chance of developer
error. Easy for code architects who are not concerned about com-
mon block conflicts. If concerned, the architect could spend a one-
time effort writing a utility that would simply scan the source code
for the required information.
Disadvantages: Increases burden on architects.

Resolution: At least for now, option (ii) will be adopted.

6. Model Units. At present, the guidelines permit specification of model units.
However, the model may be unit-independent while only the pre-characterized
material data depends on units. How should this be handled?

(i) Permit two unit specifications: one defining units (if any) assumed
in the coding, and one defining units assumed in the material data
list.

Resolution: the above proposal (i) will be adopted.

7. Standard Variable operators. How should we handle basic operators (such
as gradient, symmetric part, deviator) that can be applied to any migtionary
variable? For example, rather than listing VELOCITY_GRADIENT as a stan-
dard variable, we could simply list VELOCITY as a standard variable and
GRADIENT as a standard operation.

(i) We can simply anticipate eventually adding operator capability by
using an operator syntax. In the short term, we simply treat the
variable with operator as a new variable in its own right. See, for
example, the key phrase VELOCITY~GRADIENT in the MIG dic-
tionary.

G-15

MIG 0.0 Appendix G: Development Log

Advantage: permits the structure of operators to become familiar
to early-phase developers. Easy short-term solution.
Disadvantage: Does not permit true operator use — only those
that have been entered in the MIG dictionary will be available.

(ii) We can truly add operator ability by splitting the migtionary into
two sections, one defining field variables, and the other defining
valid field operations.
Advantage: Good long-term solution.
Disadvantage: Complicates automating the task of parsing the
ASCII data file.

Resolution: option (ii)

8. Driver structure. The MIG guidelines have been modified since the last
meeting to reflect proposals for the basic structure of the required driver. How
should input be sent to the driver?

(i) Send a large real input array dimensioned RIN(NI,NC) where NI
equals the number of inputs and NC equals the number of cells.
Advantage: This scheme places inputs for a given cell close to each
other in memory, which has performance advantages.

(ii) Same as (i) except dimension RIN(NC,NI).
Advantage: This scheme seems to be more convenient for cache-
based parent codes. Also permits the model developer to use equiv-
alence statements.

(iii) Permit the model developer to specify in the ASCII data file one of
the above (i) or (ii).
Advantage: Makes MIG flexible for the developer.
Disadvantage: Greatly increases demands on the architect.

(iv) Do not use a single large input array. Instead, send pointers to the
parent code’s “start of data” for each requested input, with an
assumed data ordering of number of cells by number of scalars.
Advantage: The driver subroutine argument list will have a more
intuitive look; that is, instead of DRVR(RIN,...) we would have
DRVR(VELGRD, STRESS, TEMP,...). Hence, there would be no
need to “unravel” a large input array. There would be no need to
perform a gather-scatter in the parent code. On the other side of the
driver, the data would be VELGRD(MC,9), STRESS(MC,6),
TEMP(MC), where MC is an upper bound dimensioning (stride)
parameter sent by the parent code. This type of data ordering is
well suited for vectorized codes.
Disadvantage: Parent codes that don’t pack data in groups accord-
ing by material would have to send an indicator of whether to pro-
cess each cell or would have to perform a software gather (the latter
option would permit the input array to contain an optimal number
of cells for efficient vectorized processing). This kind of ordering is
not well suited for scalar/parallel codes, but that kind of code can
always call the driver with NC=MC=1 without a degradation in
performance.

(v) As with the previous option, send pointers to the parent code’s

G-16

Appendix F: Development Log MIG0.0

“start of data” for each requested input, but assume a cache-opti-
mal data ordering of number of scalars by a stride that may permis-
sibly be different for each variable type (permits data blocks).
Advantage: The driver subroutine argument list will still have a
reasonably intuitive look except for stride integers accompanying
each field variable. We would have, for example, DRVR(VELGRD,
KVLGRD, STRESS, KSTRES TEMP, KTEMP,...). Here KVLGRD,
KSTRES, and KTEMP are strides for each field variable supplied
by the parent code. On the other side of the driver, the data would
be dimensioned VELGRD(9,KVLGRD), STRESS(6,KSTRES),
TEMP(1,KTEMP).
Disadvantage: All the pointers are a bit awkward for developers.
Will severely degrade performance of vectorized codes. Precludes
someday running parallel vector mode.

Resolution: Of all the issues encountered in the development of MIG, this one
has been the object of the most colorful discussion because it strongly affects
the numerical efficiency of the model. Initially, option (i) was adopted, but was
far too awkward for developers, and was quickly abandoned in favor of option
(iv). For a brief period, option (v) was adopted to avoid cache-trashing in sca-
lar/parallel codes, but we went back to option (iv) when we realized that cache-
based codes can always call vectorized routines in a scalar (NC=MC=1) man-
ner without a performance loss. Thus, option (iv) is a win-win solution, satisfy-
ing both vector and parallel code architects.

9. Processing user input. Suppose a MIG model requires, say, Poisson’s ratio
as a user input constant. Suppose the ASCII data file shows that the keyword
for Poisson’s ratio is “ANU”. Suppose, however, that the parent code’s keyword
for Poisson’s ratio is “POISSON”. The problem is the existence different key-
words for the same variable. Solutions:

(i) Force the user to input identical values for ANU and POISSON.
Disadvantage: Makes user input awkward; has potential for
errors, especially if the parent code does no checks to ensure that
POISSON and ANU have identical values.

(ii) Require the model installer to examine the user inputs for the
model to find user inputs already read by the parent code and, for
each such input, change the ASCII data file keyword to the key-
word used by the parent code.
Disadvantages: Increases installation time by requiring that the
installer understand more details of both the parent code and the
model and be responsible for making decisions regarding input
changes. Also may cause confusion with users since the keywords
in one code may differ from those in another code.

(iii) Modify the MIG standard keyword list to include conventional
material constants.
Disadvantages: Makes MIG more complicated. Forces the hand of
model developers, making them use key-words that might not suit
their taste.

(iv) Modify the MIG standard keyword list to include conventional

G-17

MIG 0.0 Appendix G: Development Log

material constants AND, to address the disadvantage in (iii), intro-
duce a new key phrase for the developers to alias their preferred
key-word to a standard keyword.
Advantages: Permits the model developer to use keyword of their
choosing.
Disadvantages: Still makes MIG more complicated, especially for
architects. Forces developers to carefully examine their inputs to
see which are contained in the MIG dictionary.

Resolution: the above proposal (iv) will be adopted (also see “Evolving the list
of standard variable keywords”, below)

10. Evolving the list of standard variable keywords. When does a variable
stop being an extra variable and start being a standard variable? Suppose the
parent code begins to employ more and more models that use, say, crack den-
sity (number of cracks per unit mass) as an extra variable. As long as all the
models defined this variable in the same way, it would make sense and be
more storage efficient to add the keyword CRACK_DENSITY to the standard
variable list. The question is: when should a new keyword be added to the
standard variable list? Who decides this? Possible solutions:

(i) Do not add new keywords unless there are compelling reasons to do
so (e.g., the variable is used in many models).
Disadvantage: There is the potential for inefficient use of memory.
Would unnecessarily complicate the model developer’s work by
requiring them to define extra variables for non-esoteric variables.
Would make it more difficult for the parent code to extract results
since the variable would be tied up in the extra variable array
(extracting the value might require special effort from the model
installer).

(ii) Allow the standard variable list to grow freely. That is, whenever a
certain variable seems to be appearing frequently in the technical
literature and is well-defined, it may be added to the standard vari-
able list.
Disadvantages: This increases the work involved in maintaining
the guidelines. May also be confusing to architects unless they real-
ize that standard variables may be added to their codes on an as-
needed basis (there may be associated delays in model installation.)

Resolution: the above proposal (ii) will be adopted.

11. Making MIG successful. Past efforts to create a set of guidelines such as
MIG have failed. How can this fate be avoided? Possible answers are:

(i) STAY SIMPLE AND FOCUSED! Past effort probably failed
because the proposed interfaces were so fancy and so all-encom-
passing that funding and support were insufficient to implement
the ideas.

(ii) Stay local initially. Get a prototype version of MIG functional
locally in CTH and ALEGRA. Of course, keep key staff for other
major codes informed and elicit their opinions, but do not require or
request that they make their codes compliant with MIG. That is,

G-18

Appendix F: Development Log MIG0.0

don’t seek external buy-in until viability has been demonstrated
locally. This will also permit MIG to more easily evolve into a better
system. Wide-spread use of MIG would make changing the guide-
lines more difficult, which is an undesirable constraint at this early
stage.

(iii) Keep the burden on the parent code architect. Another possible rea-
son that past efforts have failed might be that too much burden of
the work has been thrust upon the model developers. Keeping the
guidelines as simple as possible for model developers will encour-
age their use of the guidelines.

Resolution: all above proposals will be adopted. Furthermore, the project
plan now contains a revision soliciting buy-in from other interested groups.

12. Quality control. When a developer claims their model conforms to MIG
standards, how can we ensure that it really does? If not, should we “force”
them to fix it? Options are...

(i) Adopt the “honor” system. That is, let the guidelines be enforced by
peer pressure.
Advantages: Straightforward solution. This solution has worked
effectively in industry [Macintosh computers, for example, are quite
effectively enforced by the “honor system” — new programs that
receive low guideline scores in product reviews suffer very low
sales.]
Disadvantages: This solution has potential to fail if participation
in self-policing is poor. Model developers may be lackadaisical about
bringing their models up to spec, causing model installers and
architects to fix the models themselves and thereby resulting in
multiple versions of the same model.

(ii) Establish a review board to “approve” MIG models.
Advantages: Would give product assurance and quality control to
all models carrying the MIG “seal-o-approval”.
Disadvantages: Potentially costly and bureaucratic solution
which is almost impossible to enforce.

Resolution: the above proposal (i) will be adopted.

13. User input descriptions. The current guidelines do not require any
explanation or definition of user inputs except when they are identical to vari-
ables in the migtionary. However, some parent codes may acquire their user
input by interactive means. Such codes would require a description of user
input that is somewhat less cryptic than the user input keyword. Possible
answers are:

(i) Do nothing. Keep the guidelines as they are, with no user input
descriptions.
Advantages: Straightforward solution, especially for code archi-
tects who process the ASCII data file automatically. Developers
may (at their discretion) add a remark describing each user input.
Disadvantages: Can cause great delays installing models into
parent codes that require descriptions of the model input. The

G-19

MIG 0.0 Appendix G: Development Log

model installer for such a parent code would be forced to read the
model documentation in order to create appropriate descriptive
phrases for each user input — no guarantee the installer will per-
form this task adequately. Also, the model installer might require
brief user input descriptions in order to debug an installation.

(ii) Modify the guidelines to permit user input descriptive phrases. One
possible format would be to permit optional descriptive phrases in,
say, square brackets next to user input keywords. For example:

material input:
 RHOZ (-3,1) "initial density of uncracked material"
 ANU "Poisson’s ratio of the cracked composite"

Advantages: Solves the problem. The code architect can
just ignore information in brackets if that information is not
desired. Very useful to installers who brief descriptions of each
input to set up a test problem.
Disadvantages: More work for the code architect to automate
reading of the ASCII data file.

Resolution: the above proposal (ii) will be adopted.

G-20

Intentionally Left Blank

H-1

MIG 0.0 Appendix H:

APPENDIX H

Viewgraphs

This appendix provides viewgraphs that may be used in presentations
about the Model Interface Guidelines.

H-2

Appendix H: Viewgraphs MIG 0.0

M
IG

R
u

le
s

to
 A

cc
el

er
at

e
In

st
al

la
ti

on
 o

f
N

u
m

er
ic

al
M

od
el

s
in

to
 a

n
y

C
om

p
li

an
t

C
od

e
by

R
. M

. B
ra

n
n

on
*

an
d

M
. K

. W
on

g‡

*C
om

pu
ta

tio
na

l P
hy

si
cs

 a
nd

 M
ec

ha
ni

cs
 9

23
2,

 M
S

-0
82

0
‡ C

om
pu

ta
tio

na
l P

hy
si

cs
 R

es
ea

rc
h

an
d

D
ev

el
op

m
en

t 9
23

1,
 M

S
-0

81
9

S
an

di
a

N
at

io
n

al
 L

ab
or

at
or

ie
s

A
lb

u
qu

er
qu

e,
 N

M
 8

71
85

-0
82

0

H-3

MIG 0.0 Appendix H: Viewgraphs

M
IG

:
M

od
el

In
te

rf
ac

e
G

u
id

el
in

es

M
IG

 is
n

ot
 a

 s
et

 o
f

su
br

ou
ti

n
es

.

M
IG

 is
 a

 s
et

 o
f

gu
id

el
in

es
 f

or

1.
“P

ac
ka

gi
n

g”
 m

at
er

ia
l m

od
el

s
in

 a
 s

ta
n

da
rd

 f
or

m
at

.

2.
In

st
al

li
n

g
“h

oo
ks

”
in

 a
 p

ar
en

t
co

de
.

M
IG

 p
re

sc
ri

be
s

st
an

da
rd

 f
or

m
at

s
fo

r
•

Sp
ec

if
yi

ng
 m

od
el

 in
pu

t/
ou

tp
ut

 b
y

st
an

d
ar

d
 k

ey
w

or
d

.
•

Sp
ec

if
yi

ng
 s

pe
ci

al
 m

od
el

 n
ee

d
s

(e
.g

.,
ex

tr
a

va
ri

ab
le

s)
.

•
C

he
ck

in
g

us
er

 in
pu

t.
•

Pr
ov

id
in

g
a

m
at

er
ia

l p
ro

pe
rt

y
d

at
ab

as
e.

H-4

Appendix H: Viewgraphs MIG 0.0

F
un

da
m

en
ta

l P
re

m
is

e.
..

M
od

el
s

te
nd

 to
 h

av
e

se
ve

ra
l f

ea
tu

re
s

in
 c

om
m

on
.

M
os

t
m

od
el

s
co

n
si

st
 o

f
ba

si
c

bu
il

di
n

g
bl

oc
ks

•
in

pu
t l

is
t

•
ou

tp
ut

 li
st

•
in

pu
t s

an
it

y
ch

ec
ks

•
in

te
rn

al
 s

ta
te

 v
ar

ia
bl

e
lis

t
•

ph
ys

ic
s

ro
ut

in
es

M
IG

 s
pe

ci
fi

es
 h

ow
 t

o
pa

ck
ag

e
th

es
e

bu
il

di
n

g
bl

oc
ks

 s
o

th
at

•
T

he
 m

od
el

 is
 in

d
ep

en
d

en
t o

f a
ny

 p
ar

en
t p

hy
si

cs
 c

od
e.

•
L

im
it

ed
 u

nd
er

st
an

d
in

g
of

 th
e

ph
ys

ic
s

is
 r

eq
ui

re
d

 to
 in

st
al

l i
t.

T
h

e
gu

id
el

in
es

 d
o

n
ot

 g
ov

er
n

 h
ow

 t
h

e
pa

re
n

t
co

de
 u

se
s

th
e

m
od

el
.

H-5

MIG 0.0 Appendix H: Viewgraphs

M
od

el
In

te
rf

ac
e

G
u

id
el

in
es

G
O

A
L

M
ak

e
m

at
er

ia
l m

od
el

 in
st

al
la

ti
on

 q
u

ic
k

an
d

ea
sy

 in
 a

n
y

co
m

pl
ia

n
t

co
de

.

A
D

V
A

N
T

A
G

E
S

•
R

ed
uc

e
m

od
el

 in
st

al
la

ti
on

 ti
m

e.
•

R
ed

uc
e

d
up

lic
at

io
n

of
 e

ff
or

t.
•

Fa
ci

lit
at

e
co

d
e-

to
-c

od
e

an
al

ys
is

 c
om

pa
ri

so
ns

.
•

O
pe

n
co

d
es

 to
 b

ro
ad

er
 c

om
m

un
it

y
of

 m
od

el
 d

ev
el

op
er

s.

H-6

Appendix H: Viewgraphs MIG 0.0

K
E

Y
 P

E
O

P
L

E

M
od

el
 D

ev
el

op
er

•
K

n
ow

s
th

e
ph

ys
ic

s
an

d
ca

pt
u

re
s

it
 in

 s
u

br
ou

ti
n

es
.

•
“P

ac
ka

ge
s”

 t
h

e
m

od
el

.
•

N
ee

ds
 n

o
kn

ow
le

dg
e

of
 p

ar
en

t
co

de
.

C
od

e
A

rc
h

it
ec

t
•

K
n

ow
s

th
e

pa
re

n
t

co
de

 a
n

d
in

st
al

ls
 s

ta
n

da
rd

iz
ed

 h
oo

ks
.

•
A

cc
om

m
od

at
es

cl
as

se
s

of
 m

od
el

s
(n

ot
pa

rt
ic

u
la

r
m

od
el

s)
.

•
W

ri
te

s
in

st
al

la
ti

on
 p

ro
ce

du
re

s.

M
od

el
 I

n
st

al
le

r
•

R
ea

d/
fo

ll
ow

s
th

e
in

st
al

la
ti

on
 p

ro
ce

du
re

s
fo

r
a

gi
ve

n
 c

od
e.

•
In

st
al

ls
 p

ar
ti

cu
la

r
m

od
el

s
as

 n
ee

de
d.

•
N

ee
ds

 n
o

de
ta

il
ed

 k
n

ow
le

dg
e

of
 w

or
ki

n
gs

 o
f

th
e

m
od

el
 o

r
of

th
e

pa
re

n
t

co
de

.

H-7

MIG 0.0 Appendix H: Viewgraphs

P
ac

k
ag

e

A
S

C
II

 d
at

a
fi

le
•

M
od

el
 v

er
si

on
 a

nd
 d

es
cr

ip
ti

ve
 n

am
e

•
N

am
es

 o
f r

eq
ui

re
d

 in
pu

t c
he

ck
 a

nd
 e

xt
ra

 v
ar

ia
bl

e
ro

ut
in

es
•

N
am

e
of

 m
od

el
 li

br
ar

y
•

L
is

t o
f m

od
el

 in
pu

t (
fr

om
 s

ta
nd

ar
d

 v
ar

ia
bl

e
lis

t)
•

L
is

t o
f m

od
el

 o
ut

pu
t (

fr
om

 th
e

sa
m

e
lis

t)
•

L
is

t o
f m

od
el

 c
on

tr
ol

 a
nd

 in
pu

t p
ar

am
et

er
 k

ey
w

or
d

s.
•

D
at

a
ba

se
 fo

r
pr

ec
ha

ra
ct

er
iz

ed
 m

at
er

ia
ls

.
•

Sp
ec

ia
l i

ns
tr

uc
ti

on
s

to
 in

st
al

le
r

M
IG

 li
br

ar
y:

1.
da

ta
 c

h
ec

k
ro

u
ti

n
e:

 p
er

fo
rm

s
u

se
r

in
pu

t
sa

n
it

y
ch

ec
ks

2.
ex

tr
a

va
ri

ab
le

 r
ou

ti
n

e:
 r

eq
u

es
ts

 s
u

pp
le

m
en

ta
l s

to
ra

ge
.

3.
dr

iv
er

 r
ou

ti
n

e:
 p

er
fo

rm
s

th
e

m
od

el
 p

h
ys

ic
s.

M
od

el
 L

ib
ra

ry
 (

op
ti

on
al

):
 S

u
pp

le
m

en
ta

l r
ou

ti
n

es
 c

al
le

d
by

 a
n

y
of

 t
h

e
re

qu
ir

ed
 r

ou
ti

n
es

.

H-8

Appendix H: Viewgraphs MIG 0.0

S
A

M
P

L
E

 A
S

C
II

 D
A

T
A

 F
IL

E

!S
C

M
ve

rs
io

n
:

 1
9

9
4

0
9

2
8

D
e

sc
ri
p

tiv
e

 m
o

d
e

l n
a

m
e

:
 S

ta
tis

tic
a

l C
ra

ck
 M

e
ch

a
n

ic
s

o
f
J.

K
.D

ie
n

e
s

(j
kd

@
la

n
l.g

o
v)

e
xt

e
n

d
e

d
 b

y
R

.M
.B

ra
n

n
o

n
 (

rm
b

ra
n

n
@

sa
n

d
ia

.g
o

v)
S

h
o

rt
e

r
n

a
m

e
:

S
ta

tis
tic

a
l C

ra
ck

 M
e

ch
a

n
ic

s
C

a
ve

a
ts

:
T

h
is

 m
o

d
e

l w
a

s
e

xt
e

n
d

e
d

 a
t
S

a
n

d
ia

 N
a

tio
n

a
l L

a
b

o
ra

to
ri
e

s,
 w

h
ic

h
 is

 n
o

t
re

sp
o

n
si

b
le

 f
o

r
a

n
y

d
a

m
a

g
e

s
re

su
lti

n
g

 f
ro

m
 it

s
u

se
.

M
IG

 li
b

ra
ry

:

 m

ig
.f

m
o

d
e

l l
ib

ra
ry

:

 s

cm
.f

d
a

ta
 c

h
e

ck
 r

o
u

tin
e

 n
a

m
e

:

C

H
K

S
C

M
e

xt
ra

 v
a

ri
a

b
le

 r
o

u
tin

e
 n

a
m

e
:

S
C

X
T

R
A

d
ri
ve

r
ro

u
tin

e
 n

a
m

e
:

E

L
S

C
M

in
p

u
t:

IG

E
O

M
 T

IM
E

 D
T

 C
Y

C
L

E

V

E
L

O
C

IT
Y

~
G

R
A

D
IE

N
T

in
p

u
t
a

n
d

 o
u

tp
u

t:

D

E
N

S
IT

Y
 T

E
M

P
E

R
A

T
U

R
E

 S
O

U
N

D
_

S
P

E
E

D
 S

T
R

E
S

S

o
u

tp
u

t:

Y

IE
L

D
_

IN
_

T
E

N
S

IO
N

 E
R

R
O

R
_

F
L

A
G

d
a

ta
 u

n
its

:
 c

e
n

tim
e

te
r

g
ra

m
 s

e
co

n
d

 e
le

ct
ro

n
-v

o
ltT

he
se

 te
rm

s
ta

ke
n

fro
m

 th
e

“m
ig

tio
na

ry
”

H-9

MIG 0.0 Appendix H: Viewgraphs

co
n

tr
o

l p
a

ra
m

e
te

rs
:

F

IN
IT

 I
O

P
T

M

O
D

Y

N

O
C

O
R

 P

A
M

B

V

A
R

M
O

D

L

1

T

Z
E

R
O

 Z

IG
N

IT

R
S

C
M

co
n

tr
o

l p
a

ra
m

e
te

r
d

e
fa

u
lts

:

0

.0
0

0
0

0
E

+
0

0
 5

.0
0

0
0

0
e

+
0

0
 2

.0
0

0
0

0
E

+
0

0
 1

.0
0

0
0

0
E

+
0

0
 0

.0
0

0
0

0
E

+
0

0
 1

.0
0

0
0

0
E

+
0

0

0

.

 0

.0
0

0
0

0
E

+
0

0
 0

.0
0

0
0

0
E

+
0

0
 0

.0
0

0
0

0
E

+
0

0
m

a
te

ri
a

l c
o

n
st

a
n

ts
:

 A

L
P

H

A

M
U

%

A

M
U

B
D

 A

M
U

B
S

 A

M
U

V

 B

K
S

T
M

X

C

B
A

R
Z

 C

B
E

D

C

D
%

 C

D
S

 F

F

S

U
R

F
E

 G

R
O

W
T

H

G

R
U

 R

H
O

Z

 E

IG
N

F

A
C

T
IG

H

T
M

L
T

 Q

B
IG

T

M
L

T
m

a
te

ri
a

l c
o

n
st

a
n

ts
 d

a
ta

 b
a

se
:

 U

S
E

R

0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 0

.

 A

D
9

9
5

-A
l_

O
xi

d
e

4

.0
0

0
0

0
E

+
0

0
 1

.5
1

7
0

0
E

+
1

2
 2

.6
0

0
0

0
E

-0
1

 2
.6

0
0

0
0

E
-0

1
 1

.0
0

0
0

0
E

+
2

0

 0

.2
0

0
0

0
E

+
0

9
 5

.0
0

0
0

0
E

-0
4

 0
.0

0
0

0
0

E
+

0
0

 2
.0

0
0

0
0

E
+

0
5

 4
.0

0
0

0
0

E
+

0
4

 5

.0
0
0
0
0
E

+
0
0
 5

.0
0
0
0
0
E

+
0
3
 -

9
.0

1
.0

0
0
0
0
E

+
0
0
 3

.8
9
0
0
0
E

+
0
0

 0

.0
0

0
0

0
E

+
0

0
 0

.0
0

0
0

0
E

+
0

0
 0

.0
0

0
0

0
E

+
0

0
 5

.0
0

0
0

0
E

+
0

0
 0

.2
5

6

re
m

a
rk

s:

V

a
lu

e
s

fo
r

S
C

R
N

 a
re

 "
b

e
st

 g
u

e
ss

e
s"

.
sp

e
ci

a
l n

e
e

d
s:

n
o

n
e

T
he

se
 te

rm
s

in
ve

nt
ed

by
 th

e
de

ve
lo

pe
r

H-10

Appendix H: Viewgraphs MIG 0.0

F
ir

st
 T

es
t

C
as

e

M
IG

S
te

in
b

er
g

S
E

S
A

M
E

J
H

κε
λσ

ι

ρε
β

C
T

H
A

LE
G

R
A

µι
κε

ω
ον

γ
E

-P

S
O

IL
P

-α

M
IG

M
IG

M
IG

S
U

C
C

E
S

S
!

cB

ρε
β

E
P

IC

γο
ρδ

M
IG

γρ
π

LL
N

L

δι
κ

x
D

Y
N

A

H-11

MIG 0.0 Appendix H: Viewgraphs

E
u

le
ri

an
 C

T
H

 R
es

u
lt

H-12

Appendix H: Viewgraphs MIG 0.0

L
ag

ra
n

gi
an

 A
L

E
G

R
A

 R
es

u
lt

External Distribution

David Benson
Department of AMES, 0411
University of California
San Diego;
La Jolla, CA 92093-0411

Gordon Johnson
Alliant Techsystems, Inc.
600 2nd Street NE; Hopkins, MN
55343

Glenn Randers-Pehrson
US Army Research Laboratory
AMSRL-WT-TD
Aberdeen Proving Ground, MD
21005-5066

Joe Repa, MS A133
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Joe Foster
WL/MNMW
101 West Eglin Blbd, Suite 239
Eglin AFB, FL 32542-6810

Albert Holt, L-163
Lawrence Livermore National
Laboratory
P. O. Box 808
Livermore, CA 94550

Sandia Internal Distribution

MS: Attention:

0318 G. S. Davidson, 9215
0321 W. J. Camp, 9200
0437 E. P. Chen, 9118
0437 S. W. Attaway, 9118
0439 D. R. Martinez, 9234
0441 G. Heffelfinger, 9226
0443 H. S. Morgan, 9117
0458 R. K. Thomas, 5100
0819 M. G. Elrick, 9231
0819 E. S. Hertel, 9231
0819 J. M. McGlaun, 9231
0819 J. S. Peery, 9231
0819 S. V. Petney, 9231
0819 A. C. Robinson, 9231
0819 D. G. Thomas, 9231
0819 T. G. Trucano, 9231
0819 M. K. Wong, 9231
0820 R. L. Bell, 9232
0820 M. B. Boslough, 9232
0820 R. M. Brannon, 9232 (5)
0820 D. A. Crawford, 9232
0820 H. E. Fang, 9232
0820 A. V. Farnsworth, 9232
0820 M. E. Kipp, 9232
0820 F. R. Norwood, 9232
0820 S. A. Silling, 9232
0820 P. A. Taylor, 9232
0820 P. Yarrington, 9232
0834 M. R. Baer, 9112
0843 J. T. Hitchcock, 2521
1109 A. L. Hale, 9224
1110 R. C. Allen, Jr., 9222
1110 D. Greenberg, 9223
1111 S. S. Dosanjh, 9221

0899 Technical Library, 4414 (5)
9018 Central Technical Files, 8523-2
0619 Review & Approval Desk, 12630

for DOE/OSTI (2)

