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Abstract

A previously-developed approximation to the first integral of the Poisson

equation enables one to obtain solutions for the voltage-current characteristics of

a radio-frequency (rf) plasma sheath that are valid over the whole range of inertial

response of the ions to an imposed rf voltage or current-specified conditions. The

theory reproduced the time-dependent voltage-current characteristics of the two

extreme cases corresponding to the Lieberman rf sheath theory and the Metze-

Ernie-Oskam theory. In this paper the sheath model is connected to the plasma

bulk description, and a prescription is given for the ion relaxation time constant,

which determines the time-dependent ion impact energy on the electrode surface.

It appears that this connected model should be applicable to those high density,
low pressure plasmas in which the Debye length is a small fraction of the ion mean
free path, which itself is a small fraction of the plasma dimension.
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1. Introduction

Sheath models have generally concerned themselves with the sheath as an

isolated collisionless phenomenon near the material wall bounding a plasma. 1‘3 In

this report I will make an analysis that attempts to remove this restriction.

Although the arguments are somewhat circuitous, I will develop a model that

should be applicable to low pressure, high density plasmas which are driven by

inductive coupling. The analysis does not apply to plasmas in which the sheath

motion is on the order of the plasma size (capacitively coupled systems).

Lieberman’ S1 theory of an rf-driven plasma sheath leads to an analytic

solution for the enharmonic voltage required to produce a prescribed sinusoidal rf

displacement current in the electrons. The model assumes that the electrons are

cold in the sense that the electron density distribution is equal to the ion density

inside the sharp electron boundary, and is zero towards the wall or electrode.

There is no dc current except for the ion flow to the wall, and all the rf current is

due to the oscillation of the electron boundary within the sheath, which is a

displacement current. The time-independent ion density distribution within the

sheath is computed self-consistently assuming that the ions see only the time

average of the potential. In other words, the ions are completely inertial,

responding only to the average field. The limitations of this model are mainly due

to a lack of electron particle current to the wall.

Another model for an rf plasma sheath is that of Metze, Ernie, and Oskam,2

which assumes that the electrons and the ions both respond instantaneously to an

imposed time variation of the sheath potential. This is a quasi-steady state (QSS)

model of the particle dynamics in which the ions as well as the electrons are

effectively inertialess because they respond to a slowly varying field. This model

includes electron particle current to the wall, as well as ion current and electron

displacement currents. This model becomes accurate as the applied fields

approach the dc limit.

It is obvious that a model that connects these two limiting theories would

be of importance in the simulation of plasma sheath dynamics. Such a model has

been developed3 and appears to be fairly robust. As a computational model
formulated as an ordinary differential equation in time connecting the overall

sheath potential and total plasma current, it is capable of incorporating boundary

conditions expressed as either time-dependent potential or current. The model is a

generalization of the QSS model, with a controlled amount of inertial response of
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the ions added into the theory by means of an approximate first integral of the

Poisson equation and a time damping procedure for simulation of the average ion

response.
. In this report I review the sheath mode13 and show how to obtain a fully

connected plasma-to-sheath transition based on asymptotic analysis. Divergences
. are eliminated or irrelevant and the physics is well defined throughout. In Section

2, I present the basic global description of the whole plasma. Section 3 discusses

various regions of the plasma as isolated approximations to the general plasma

equations, Section 4 presents the connection formulae between the regions, and

Section 5 develops the approximation for the ion motion in an rf-driven sheath. In

Section 6 I present an argument for the ion relaxation time constant that is used in

the time-dependent differential equation for the ion energy in the sheath.
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2. Basic Foundations of the Plasma Model

Some aspects of plasmas require a kinetic description -- details of the

particle energy distribution and subtleties in heating mechanisms .come to mind.

However, properties such as current-voltage relations and densities are generally

obtainable with good accuracy from a fluid description. In this section I present

the fluid equations of motion (EOM) which are generally applicable to the low-

pressure, high-density plasmas of interest.4-7 References 6 and 7 are particularly

valuable for a discussion of the general sheath problem.

Consider a one-dimensional, time-dependent plasma in contact with

material walls or electrodes. The one-dimensional nature is not so much a

restriction as a condition that the plasma is being analyzed in the vicinity of the

walls. The coordinate is just the local outward-directed normal to the wall. The

major charged particles in the plasma are a positive ion species and electrons, of
number densities ni and ne. The plasma ions are described by the continuity

equation,

fii+(niui)’=ri, (1)

where

by the

where

ui is the ion fluid velocity, and ri is the volume ionization source rate, and

momentum equation,

Ui+-ui+ ~E–viui,
mi

(2)

E= – ~’ is the electric field, vi is the sum of momentum transfer and

ionization collision frequencies, and the ion diffusion term has been neglected.

Ion thermal diffusion is dominated by arnbipolar diffusion in the bulk, and it is

unimportant in the sheath transition region. The ions are generally cold compared
to the electrons. There is a constant background neutral density NO, which is

typically considerably larger than the plasma density. The collision frequency is

related to background density, ion velocity, and an ion-neutral scattering cross

section:

vi = No vi O.1“
(3)



The velocity vi in this relation is approximately the larger of the magnitude of the

ion fluid velocity or the ion thermal velocity. In and near the sheath region it will

be the ion fluid velocity.

The electrons are assumed to be in an equilibrium distribution at
temperature Te in the plasma. This is reasonable because of the electron’s mean

energy ( a few eV) and light mass, the high plasma density, and the low pressure,

all of which contribute to the rapid establishment of thermal equilibrium among the

electrons. I do not account for electron inertia which is unimportant throughout

the radio-frequency range of interest, at least once the means of energy input to

the plasma and ionization rate are specified. In other words the electrons obey the

quasi-steady-state Boltzmann equation distribution in the potential field. This

relation can be expressed in either differential form, or in integral form using values
at some reference point x. within the plasma bulk:

n: I ne =e@’lkTe,
(4)

ne =noexp(e(@–@o) lkTe),

where @is the potential. The only requirement on the reference point is that the

electron and ion densities may be taken to be equal there -- thus it does not lie in

the sheath. The differential form of the Boltzmann distribution in Eq.(4) may be

obtained directly by equating the large electron mobility and diffusion terms in the

drift-diffusion approximation to the electron fluid momentum equation (not

shown). This is an argument that may be used to derive the equilibrium

distribution of the electrons.

Poisson’s equation describes the collective interaction of the charged

species:

v’= -L(71i-ne).
E*

(5)

All other symbols are as usually defined.

The first task is to scale these equations so that all redundant information is

removed. First the potential and electric field are scaled with the presumed
constant electron temperature:
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@lnew =e@OldlkTe,

Elnew = e EIOld/ kTe.
(6)

The Bohm (sonic) velocity is used to scale the ion velocity to u,

and the ion mean free path, Ai, is used to scale the space coordinate from x tos:

The time variable t is scaled with the ratio of the ion collision length to Bohm

velocity in order to complete the transformation to dimensionless variables:

UB

‘=Ait” (9)

This time scaling will not be used much since the analysis of the equations will be

done for the most part in the quasi-steady-state approximation where the time

variable does not appear. One notes that the “unit” of time is roughly the mean

time between collisions of a few-eV ion. The prime and over dot conventions will

denote derivatives

Introducing

with respect to the scaled variables.

Eqs.(7)-(9) into the continuity Eq.(1) gives:

‘i + (ni U)’= –r,= (lo)

Applying all of Eqs.(6)-(9) to the momentum Eq.(2) gives:

U+ UU’+(JY+UV=O, (11)

where v = vi / uB is the scaled magnitude of either the ion fluid velocity or the

thermal velocity. The Boltzmann Eq.(4) becomes:
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n~lne=~’,
(12)

ne =nOexp(@– @o).

The one additional scaling to be done is to introduce the Debye length lo

characteristic of the plasma density nOat reference point XO:

A.~=&OkTe le2no,

I introduce Eqs.(6), (8), and (13) into the Poisson Eq.(5) to have:

&2w’=–(i’li-lle)lllo,

&=k*l Ai.

(13)

(14)

For the low-pressure, high-density plasmas that we are investigating, &is a small

number because the Debye length is much smaller than the ion collision length. s

is the most important measure of the size of the sheath compared to the bulk. Note

that I have not explicitly scaled the number densities, but the Debye length

contains the “reference” bulk plasma density. Eqs.(10), (11), (12), and (14)

constitute the general description of the plasma.

One restriction that it will be necessary to make on the general description
is the quasi-steady-state (QSS) approximation in which all y = O. This is an ion

response approximation and is dealt with in the sheath region by means of the

sheath model developed previously.3 I invoke the QSS and collect the scaled

equations, giving:

(1’liU)’= r,

Uu’+ip’+uv=o,

n~lne=~’,

&24“ = –(ni–n JlnO.

(15)

The equations within Eq.(15) are the basis for the analytic theory presented in this
work. They are assumed to provide an adequate description (so-called exact

within certain models for the electronic motion) of the plasma from the bulk to the
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material wall. Basically, all developments will begin with Eq.(15) as a consistent

starting point and develop approximations based on the smallness of c. This

affords-a neat mathematical description of the approx~ations necessary to

describe the transition from the bulk plasma to the wall.

The work of Godyak and Sternberg6 is very close to the asymptotic

analysis presented here. The major difference of course is the final sheath model

for the ion response in an rf field.3

A comment should be made about the distance scaling used in this report.

The use of Eq.(8) assumes that the cross section for ion velocity relaxation is

constant. This may not true in general. For ion-neutral momentum transfer due to
elastic scattering, the product of v G(V) is nearly constant due to the “Maxwell

molecule” effect for 1 / r4 interactions. Thus it may be necessary to scale distance
with the ion mean free path at a particular velocity or energy. If v o(v) is

constant, the functional form of the scaled momentum equation changes. In fact, if
the mean free path at the Bohm velocity is chosen, the term uvinEqs.(11) and

(15) and the term U2 in Eqs.(20) and (24), and in other places, just become u. The

form of tie analytic solution for the coordinate in terms of ion fluid velocity to be

written down in Section 3.2, Eq.(21 ) changes, but this has no practical effect on

the results, as it affects only the divergent character of the field in region 11A.

I will now proceed with the description of the various regions in order to

derive useful new information about the sheath relation to the plasma bulk. This

analysis will argue for the recognition of four distinct regions within a low

pressure, high density plasma. Progressing from the bulk outward, there is the

ambipolar region I where the conditions for ambipokir diffusive motion of the ions

are met. Next is region IIA where the plasma is effectively neutral but the

ambipolar conditions are violated. Then comes the near-wall sheath region called

III where the ion velocity reaches and exceeds the Bohm velocity and neutrality

no longer holds. Lastly is region IV which is essentially the Child-Langmuir

region at the wall which is almost totally devoid of electrons.
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3. The Four Regions of the Plasma

From a mathematical point of view, the so-called regions of the plasma are

defined by the approximations to the general equations of motion that afford

certain approximate solutions which describe the plasma in those regions.

Fortunately these regions have been explored in the past and correspond to

certain physically observable features. In this Section 3, I will cover these regions

individually and not develop the connection algorithms between the spatially

isolated (if that is the case) regions. Connection will be addressed in Section 4.

3.1 The Ambipolar Diffusion Region I of the Bulk Plasma

This analysis could begin in Eq.(15), which is QSS, or in the full time-

dependent set of equations written down earlier. I start with the earlier set to

show that this approximation does not restrict the time dependence in the

plasma’s approximate EOM. Set & to zero in Eq.(14). The resulting (asymptotic)
solution requires ne = ni - n, i.e. plasma neutrality. Then Eq.(12) must hold for

ions as well as electrons, and the ion momentum Eq.( 11) becomes:

ti+uu’+n’ln+uv=O. (16)

I now estimate the size of Itil as Iuu’I (or even smaller if we are near QSS), and the

size of n’/ n as u’/ u from analysis of the continuity equation. What this

reveals is that the n’/ n and u v terms dominate Eq.(16) if u is much less than

unity (scaled units). The term uu’ is negligible compared to u’/ u under this

condition and this is a sufficient condition for the development of the ambipolar

diffusion equation. One can now retain only these two dominant terms in Eq.(16),

giving, in scaled and unscaled form:

kTe
nu=– n’lv or l’lii%i=–—n~=– Dan~,

Hli Vi
(17)

where Da is the arnbipolar diffusion coefficient.4 Note that we can identify vi in

the unscaled relation whether we used the ion fluid velocity or the ion thermal
velocity to determine the collision frequency. Eq.( 17) is the arnbipolar expression

for ion flux that allows Eq.(1) to be solved as a diffusion equation.

11
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have obtained the form of the arnbipolar diffusion coefficient that has the electron

temperature much higher than the ion temperature. The two primary conditions

required for accuracy of this approximation are that the plasma be quasi-neutral

and the ion velocity be much less than the Bohm velocity.

From the solution to Eq.(1 ) or (10) via Eq.(17), the other physical quantities

are found, in scaled and unscaled form:

?le=l’li=?l,

E= –n’/n or E=-~n~l~i,
e

u=E/v or ui=~E~~iE,
mi Vi

(18)

0=00 +ln(n/no) or @=@. +&ln(ni /no).
e

pi is the ion mobility.4 Boundary conditions (b.c.) must be formulated in order to

complete the analysis. This will be the topic of a later section of this work.

3.2 Neutral Region II and the Pre-sheath Region IIA

I begin the analysis with Eq.(15) and let the dimensionless parameter &

approach zero. Using the standard arguments of asymptotic analysis,8 all physical

variables are assumed to have a Taylor series development in the &parameter.

Recall that & is the ratio of Debye length to ion collision length. This asymptotic

limit leads to the zeroth-order-in- E, quasi-neutral equivalents of Eq.(15):

(nu)’=r,

uu’+n’ln+uv=O,

n’fn=@’=– E,

ne =ni=n.

(19)

Together Eq.(19) can be solved numerically to determine all properties of the

plasma in the neutral region II (and I) if conditions can be formulated at the
boundaries (b.c.). It is seen that region II includes all the plasma that is quasi-

neutral - everything but the sheath itself. The relationship of the above to the
.



ambipolar theory of Section 3.1 just involves the size of u compared to unity.

Thus ambipolar theory is just a special limit of the overall quasi-neutral region. In

practice it will be convenient to decompose II into the ambipolar region I and the

residual of II, to be called region IL&

Straightforward manipulations of Eq.( 19) give an analytic solution for u in
terms of an indefinite integral of r once we have specified the ion collision

velocity v as being either the magnitude of the fluid velocity or the ion thermal

velocity. However the general solution in region II is only needed in an outer

volume where we may suppose that r is zero (flux is constant) and the ion fluid
velocity large enough that v = Iulwithout introducing significant error. I call this

region IIA. It is basically an “ion mean free path’s worth” of the plasma near the

wall. Thus the simplified EOM in the outer part of region II (i.e. IIA) maybe
written (considering only orientations u >0 ):

(nu)’ = O,

U’(u–llu)+u 2=0,

E=u’lu=– 4’ *

ne =ni=n.

(20)

Henceforth I will assume u >0 in the analysis, which means that we are

considering the sheath as a right-hand boundary on the plasma. The thickness of
region IIA is of O(Ai ) or 0(1) is scaled distance units. Without loss of generality,

I can impose b.c. of u = 1 (Bohm velocity) at position s = SI; the analytic

solutions u(s) and E(s) to Eq.(20) can be expressed in terms of that one

integration constant,

s=sl–in(u)–~(1/u2–1),
(21)

E=u2/(1–u2).

Eq.(21) is an implicit solution for u(s) with b.c. imposed at the space point S1. It

may easily be shown from Eq.(20) that the solution approaches the point S1with

infkite slope. Thus u’ (and also n’ and E ) is divergent at the point S1. This

divergence of the electric field as one approaches the Bohm velocity from the

“inside” is a well known problem in the analysis of plasma sheaths.5-7 It is also a
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sign that the asymptotic analysis of the differential equations needs correction at

the point of diverence. The other quantities are determined from the solution in
Eq.(21)and b.c. at S1. Note that Eq.(21) may be used to connect the b.c. at point

S1 to those at so if UOis known at the reference point. This suggests that the

reference point should lie in region IIA so that assumptions leading to Eq.(20)

hold true.

The ambipolar approximation derived in Section 3.1 should be contained

within the quasi-neutral approximation appropriate for the whole region II, except

for the time dependence. If I assume that u is less than unity, the field expression

2 hich is the same as E=uv=u2 from Eqs.(17) andin Eq.(21) reduces to E= u , w

(18), once having set v= u because the ion collision frequency is being

determined by the macroscopic ion fluid velocity near the sheath.

Thus far I have obtained solutions for the plasma that have taken

advantage of the smallness of &to avoid the very stiff numerical problem

associated with doing a full numerical solution of the fluid equations coupled with

the Poisson equation. Both regions I and IIA are quasi-neutral, being parts of

region II. However there is a problem -- the field solution found in region HA

diverges when the ion fluid velocity reaches the Bohm velocity, corresponding to

about an eV of kinetic energy. This is not acceptable if one is required to evaluate

the field directly, as the ions easily reach an energy of a few or several eV upon

traversing the plasma sheath potential created by the electrons and their

interaction with the material wall.4~7 Thus we are missing a valid solution in the

neighborhood of the wall. This solution must carry the description through the

plasma sheath where the above asymptotic solution of region IIA diverges and is

not acceptable.

3.3 The Transition Region III

The results of the previous Sections 3.1 and 3.2 maybe summarized as
follows: we obtained an approximate asymptotic solution to the plasma fluid EOM

by using the ratio of the Debye length to ion collision length as a smallness

parameter. The asymptotic solution broke down at the point where the ion fluid

velocity reached the Bohm velocity. Thus there is a non-uniformity involved in

the approximation, and this must be corrected by some other analysis. I now will

14



redo the limit of &+ O by a method of analysis8 that leads to a uniform solution in

the vicinity of the sheath.
Begin with Eq.(15) but do not yet let &+ O. Recall that this limit gave a

quasi-neutral solution which was singular at u = 1,s = S1. The space coordinate is

now “stretched”8 by first substituting s= S1+ &Z into Eq.(15) and then letting

&+ O. Again only the zeroth-order terms in a Taylor expansion in & of the

dependent variables are retained. The space derivatives now dominate the

equations and the & dependence disappears from the Poisson equation. The f~st

two equations become complete differentials and may be integrated with two
constants of integration corresponding to scaled flux and energy, rl and El .

The result is:

(22)

These equations can be further integrated by substituting the ne and ni

dependence on @into the Poisson equation.2~3~5-7 This is the so-called fwst

integral of the second order Poisson equation which relates the electric field and

potential. I do not write this out because it involves three undetermined constants

of integration which we cannot, at the moment, determine.

It is worth understanding the limitation of Eq.(22) due to the stretching

transformation8 which was used to derive it. The solution to Eq.(22) is only valid
within a small region of size & about the point S1. Nevertheless this is a very

important region of the plasma, as the above solution no longer requires neutrality

and the equations can be interpreted as the collisionless free fall of the ions from

the bulk to the material wall.4-7 The present problem is to find how to connect

the general region III solution of Eq.(22) to the solution in the neutral region II.

One should note that the original coordinate scaling, as given in Eq.(8), implied no

approximations to the EOM by itself. The stretching transformation though,

which is the same as a coordinate scaling with the Debye length, has been used to

generate an approximation based on the smallness of &.

3.4 The Child-Langnmir Region IV
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This is a well-discussed plasma region which I only briefly discuss from the

perspective of what is being developed here. There would appear to be two CL

(Child-Langmuir) forms that might be used: collisional and collisionless. The

collisionless is more commonly used4 and is obtained simply as the large-argument

form of the stretched EOM presented in Eq.(22). At large argument (coordinate)

the electron density vanishes exponentially and one is left with the equations:

niu=rl,

b2+$=E1,2 (23)

~“=-niln O.

These are easy to solve if one sets rl to some known flux and El to zero to fix

the zero of the potential. The solution leads to useful interpretations of current

and voltage relations.4 The novel collisional CL would be obtained from Eq.( 15)

by scaling @+ @/ ~2 arid ui -+ ui / ~ prior to letting &+ O. This solution

would not be limited in spatial extent. I have not developed it in any way.

The collisionless CL is of limited spatial extent because of the scaling. For

this reason, region IV is really a part of region III in that the approximate solutions

developed for III will be valid for the collisionless IV.
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4. The Connection Algorithms

4.1 Connection of I and II

This is a very simple task. Since the ambipolar and neutral regions are both

uniform in their region of overlap, one just equates the appropriate quantities at
some point in the common territory. Let this point be at so, (scaled XO) the so-

called reference point for the potential. The region I solution requires that u be

small compared to unity, and the region HA solution requires that we be close
enough to the singular point S1that we can neglect the ionization source in the

continuity equation. Once this point is chosen, we equate ion density and flux.

42 Connection of II and III

This is a more complex problem, requiring the matching of solutions

between stretched and unstretched regions of space. There is an analogous

problem in the asymptotic (semiclassical JWKB) solution of the linear Schrodinger

equation at a potential barrier. In that case the explicit solution of the stretched

problem (an Airy function) can be matched to the exponential forms at a sufficient

distance from the turning point. Because the Schrodinger equation is linear, it

offers only conceptual guidance to the highly non-linear plasma problem.

I recapitulate some of the previous discussion. Consider the outer part, IIA,

of region II together with region III. As previously argued, one may neglect the

volume ionization source there as it is a small fraction of the total production (see

discussion leading to Eq.(20) ). If I assume that fimction values are known at the

variable does not appear in Eq.(24) explicitly. In such case the

reference point x.

may be rewritten:

The independent

transformation,

within the neutral region 11A,the general equations in Eq.( 15)

?liU= nouO, ne(xo)=ni(xo)=no ,

uu’+qV+u2=o,

ne =noexp(@ – O.)$

&2v= –uo/u+exp(@– @O).

(24)



d2@ = d dE
— –zE=E—
ds2 d$ ‘

(25)

converts the third order differential system to a second order system of equations:

du+l U2

u d~ ‘E’

c2E@= –~+exp(@– @o).
do U

(26)

The asymptotic solution of Eq.(26) begins by assuming that all dependent

variables have a Taylor or Laurent expansion in s. The approximation of region
11Acan be obtained by taking the &-+ O limit of the Taylor-expanded Eq.(26),

giving the solutions at zeroth-order in &:

u = U. exp(@o – 4),

This is equivalent to the solution found in

yet solved for the coordinate dependence.

E=
U2

(27)
l–u2”

Section 3.2, except that here I have not

Remember that the first equation in
Eq.(27) states ni = ne. The stretched approximation of region III is obtained from

Eq.(26) by frost scaling the field, which is a coordinate derivative,

and then letting &-+ O. One obtains the zeroth-order-in- & equations:

udu+d@=O,

E dE –-~+exp(@ -@O).
do= U

(28)

(29)
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These equations meexact &fferentids, mdmaybe integrated exactly. Inorderto

avoid any confusion, I resubstitute the &parameter into the solution so that all

quantities are the same between variables in region II and III. The general solution

to Eq.(29) is

L*2+$-(/)o=q7
2

~e2E2 =uou+exp(@–@O)+Cz.
(30)

The two constants of integration must be determined by connecting Eq.(30) to the

one given in Eq.(27).
The approximations for u(@) areuniformly well behaved in both region II

and III (examine Eqs.(27) and (30)); thus I can determine the constant Cl by

matching function and slope of the two approximate forms of U(@). By

manipulation of Eqs.(27) and (30), one can show that this requires u to be unity,
which uniquely singles out the Bohm point, which occurs at the point called S1in

the region II spatial solution (Eq.(21)) where E diverges. The result is:

@l=@o+Mu.),

c~=++ln(uo).
(31)

To determine C’2,note that E in Eq.(30) is the unstretched E. Matching of fields

between regions 11A and III requires that this E be finite as &+ O. Determine

C2 by the e+ O limit of Eq.(30) at constant E at the above derived match point:

C2 = ~e2E2 –uOu–exp(@– @o),

)–2U0 . (32)
&+o,U+l
@+@o+lnuo

Thus the connected form of Eq.(30) is:

Lu2+~–~o= ~+ln(uO),
2

1 2E2=uou +exp(@–$0)-2uo.7E
(33)
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Remember that this solution is valid near SI (in region III) and that the subscripted

consta@s are from the reference point SOin region II. Eq.(33) may be rewritten

with the constants defined at the Bohm point instead of the point S0. The f~st

step in rewriting Eq.(33) is to use nouO=nlul =nl to eliminate UO.This leaves a

outside density factor at the Bohm point, nl, which is removed by redefining the

Debye length part of the &parameter to contain reference density nl instead of

no as originally definedinEqs.(13) and (14). The result is the very neat form of

the stretched equation for description about the Bohm point:

(34)

The connection result may be restated to be that the zeroth-order field is zero at
the Bohm point where u= U1and ne =ni =nl. Of course ul is unity and it has

disappeared from Eq.(34).

Numerical studies show that the velocities and densities of the

approximations in regions 11Aand III agree well with the precise numerical

solution to Eq.(24) or (26). Remember that the totality of physical solutions to
Eq.(26) are characterized by the value of & and the point (LJO,@o). The very

good accuracy of the velocity and density approximations is seen in the upper

and lower panes of Fig. 1. A series of numerical investigations not shown here

demonstrate that a better connection result for the electric field than what is given

in Eq.(34) can be obtained by a constant, but &-dependent,

correction to E. This is the field value at the Bohm point:

b2(~-

phenomenological

(35)

El = –log10(&2) .

This result is what is plotted in the center pane of Fig. 1. Of special note is the fact
that the shift in E is not in the position of the cons~nt of integration C2 as seen

in Eq.(30). Various quantities are explained in the caption. The results are very

encouraging. A correction brought out by Godyak9 is of the order of the above,

although his result omits the s-dependence contained in the log function. The
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above log term can be interpreted as an improved (non-zero) value of the field at

the Bohm point. Of course, the approximation still only agrees with the numerical

solution in the proper region of phase space.

In Fig.2 I compare various treatments of the electric field. The upper pane is

the best result using Eq.(35). The center pane is without the correction term, just

as given in Eq.(34), and the lower pane shows the result of using the ambipolar

approximation for the field in region 11A. One notes that the ambipolar
approximation has the field in error by about 20% to 309i0near @= O where it is

approaching its domain of accuracy. Although it might seem that the above

results are contradictory, or at best poorly detlned, they are not. The correction to
E is being made in the stretched region III solution where it is actually an - 0(1)

addition to the 0(1/&) field. In order to see this, substitute Eq.(28) into Eq.(35).
Thus Eq.(34) is actually the &+ O limit of Eq.(35), the latter being more accurate.

Eq.(34) is asymptotically correct for the field as one can see that the field

approaches the exact numerical solutions as one moves away from the Bohm

point.

In Fig.3 I plot the quantities as a function of scaled distance to better show

the comparison of the approximations to the numerical solution at and near the

sheath region. Remember that the dotted quantities should agree with the solid

curves on the LHS of the plots, and the dashed quantities should agree with the

solid on the RHS. All in all, things are very good except for the electric field

singularity of the region IIA asymptotic solution. However this nonuniformity is

totally unimportant once one knows how to connect the solution to the region III

approximation. The accuracy of our connection algorithm is shown by Figs. 1 and

3. In Fig.4 I show the same comparison of the various field approximations as a

function of space coordinate as in Fig.2 in phase space.

In the previous plots of quantities versus space coordinate, the mapping of

coordinate to potential was taken from the numerical solution of the “exact”

equations. It might be more informative to use the approximate mapping implied
in each of the regions. In IIA we use s(u) from Eq.(21) combined with U(@)from

Eq.(27) to find s(@). This is shown in Fig.5 as the multiple-valued function of

coordinate. It is obvious which branch is the correct physical one. In region III

we must do the numerical integral of the field derivative as explained in the Fig.5

caption. The starting point of the numerical solution was chosen to be at the
Bohm point with @lgiven by Eq.(31) and S1by Eq.(21) in terms of so = O and UO.
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A numerical survey showed that adding &to this SI value gave slightly better-

looking results. This is what is shown in Fig.5.

4.3 Discussion of the Connected Solutions

This section will do two things: I will discuss the results and try to make

reasonable sense of them, and also I will unscale the equations and write them in

natural units, First of all though, let me summarize the work, grouping things by

region, starting from the “outside.”

4.3.1 Sumary of Regional Decomposition

The wall region IV is the electron-devoid Child-Langmuir region which is a

limiting form of the mathematical solution developed to cover region III. Because

of this it is not necessary to discuss it separately, except to note that the spatial
extent of the region is of 0(&), and therefore negligible-compared to the other

dimensions involved with the plasma volume.

Region III extends from the material wall at s = w inward to the Bohm
point at s = S1 and u =1. In this interval, the approximate EOM are the stretched

version of Eq.( 15). The solution is given by Eq.(33) in fust integral form. This

solution is connected to the solution in the next region II by means of the
constants UOand @o. At the point s = S1, the potential is given by the value in

Eq.(31 ). The spatial extent of region III is 0(s) because of the coordinate

stretching: w – S1=0(e). This implies that the sheath thickness is negligible

compared to other dimensions.
The next region is 11A,which begins at s = S1 and extends inward to s = so

where @oand UOare specified. Within this interval, the approximate EOM is

Eq.(20), whose solution is given in Eq.(21) and (27). This region is not stretched
and the size is S1– so = O(1), in scaled coordinates. The all-important solution

for u(s) given in Eq.(21) affords an evaluation of U. (SO, S1) or So (u., S1),

whichever is appropriate. Note that the EOM in Eq.(24) describe both regions IIA

and HI.
Region II extends from s = SI inward and covers the whole bulk of the

plasma. However I have decomposed II into 11Aand the rest, of which the rest

may be taken to consist of region I, the ambipokw region. Region I therefore
extends from s = so inward to cover the bulk plasma. The EOM are given by
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Eqs.(lO) and(17), forwhich oneneedsb.c. atthe sopoint orsurface. The

approximate solution for the flux given in Eq.( 17) requires neutrality and u

restricted less than unity.
to be

One sees that the plasma has been practically decomposed into regions I,

11A,and III. The other divisions do not seem necessary for the high-density, low

pressure plasma.

4.3.2 Boundary Conditions for Ambipolar Region I

Eq.(21) allows us to specify b.c. for the ambipolar diffusion Eqs.(10) and

(17). The b.c. can be imposed at a fixed distance within the material walls, on the

order of an ion collision length away. The b.c. in the numerical procedure for

solving the ambipolar diffusion equation necessitates n’/ n, which is found from

E by means of the Boltzmann distribution relation for the electrons, E in turn is
found from UO=U(SO) by means of the ion mobility, all of which is given in
Eq.(1 8). One knows that v= Iul near the sheath in these-relations.

It is not practical to demand that UObe much smaller than unity because the

point so would be pushed very far into the bulk of the plasma as seen from

Eq.(21). If I set U. =0.5 Eq.(21) shows SI – so is 0.807 of an ion mean free path,

which is typically close enough to the material boundary to avoid complications

as long as the ion mean free path is a small fraction of the plasma volume, a tenet of

the whole analysis. The question that immediately comes to mind is whether any
significant error is introduced by just setting a b.c. of UO=1 (Bohm velocity) on
the ambipolar equation for the ions. This b.c. would imply that S1= SOso that the

boundary surface is pushed to within 0(8) of the material wall. The ambipolar

breaks down there in principle because of the large fluid velocity. The neutral

(region II) approximation itself breaks down because of the singularities in u’.
However, no serious errors occur with the ambipolar equation with U.= 1 b.c.

applied at the actual material wall as long as the volume ionization sources do

not vary significantly in the outer “mean-free-path’s worth” of plasma volume.

This outer volume layer is assumed to be a small part of the total plasma volume.
The proof that the boundary conditions cause little error is to be found in Fig.6,
where I display the results of using u= 1 b.c. on the ambipolar solution at the

Bohm point at s = S1. The solution to the ambipolar equation in region 11Ais

similar to Eq.(21):
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s = S1 ( )–*1IU2–1 ,

E=u2.
(36)

The error in velocity and density at the point s= O or u= UO=0.5 is about 20%.

This error tends to remain fairly constant as one continues into the bulk of the

plasma, i.e. into the region where one cannot ignore the volume source rate r of

ion production as I have done here. The ignoring of r in no way compromised

the above comparison of the ambipolar approximation to the quasi-neutral in

region IIA.

The accuracy of Fig.6 is sufficient to convince me that the arnbipolar

description can be used for most high-density, low pressure plasmas with

volumetric ionization sources (i.e. non-capacitive).

The actual physics of the sheath will be treated by the solution of the

region III equations, which have almost no feedback into the plasma bulk. The

only input is the scalar potential itself, which becomes important when several

electrodes are coupled to the same plasma. Then the feedback into the plasma

takes the form of current flow through the bulk. For the most part though,

information flows one way through the sheath, and that is outward from the bulk.

Wall b.c. have almost no effect on the state of the bulk plasma when the ionization

rate is supplied inductively as opposed to capacitively.

4.3.3 The Fully Connected QSS Result

The results of this report are frost written down for the quasi-steady-state
limit of the plasma. In principle there is little new here as the basics have been

developed previously .2?4-7 First of all I repeat the general conditions necessary

for the applicability of the basic theory, that the plasma be high density and low

pressure, and driven by a volumetric ionization source. The ion-mean-free-path-

to-plasma-dimension, and Debye-length-to-ion-mean-free-path ratios are assumed

to be small. The plasma is described by solution of the arnbipolar diffusion

equations, as discussed in Section 3.1, and with b.c. as developed in Section 4.3.2.

Collecting the QSS arnbipolar equations, in unscaled form:
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kTe
ni Ui = –—n~=– Dan~,

WliVi

u“1b.c.
‘uB,

with the other quantities determined by the auxillary relations:

kT,
E=–— n~lni,

e
e

Ui=— E~~iE,
Lt?iVi

fP=@l +Uln(ni /nl).
e

(37)

(38)

Although the QSS is being emphasized hereto avoid the question of time

dependence, one should note that the above bulk EOM are applicable to the time

dependent problem as developed in Section 3.1. In fact, the insensitivity of the

bulk to the sheath b.c. tells us that the time-dependent generalization of the above

equations is all that is needed for the time behaviour of the bulk plasma.

The sheath properties are found from Eq.(35). In unscaled form, Eq.(35) is:

+(E– E1)2 = ‘lkTe
&o [%-’+expk?(@-ol))-l) ‘3’)

El =
kT

– -#og10(&2) .
i

s is the ratio of the Debye length evaluated at Bohm point to the ion mean free
path, Ai. Unfortunately not much can be done with Eq.(39) until the general

circuit equations are discussed.
A simple example is the case of a zero-current condition at the wall. The

electron current per area to the wall, je, is approximated from kinetic theory as

25



je = –+evene(xw)y (40)

where x = XWis the wall position and Ve is the thermal velocity-of the electrons:

Ve = (8kTe I nme )112. (41)

The electron density at the wall is obtained from theBoltzmannEq.(12) using the

Bohm point as the reference. The ion current per area to the wall is just

.ii ‘e%(%) ui(xw)=enluB . (42)

The total current is set to zero which gives the sheath potential drop and the ion

impact energy on the wall from Eq.(39):

@w-ol=
‘%’”(2)=-%1”(2;;.)

2

[1

~ kTe + ~ kTe in ‘i+miui ‘2
2Zme “

(43)

Eqs.(7) and (41) were used to simplify the result. One sees that the wall potential

is determined as the difference from the Bohm point in the sheath. However the

ion energy is an absolute quantity. The potential distribution within the bulk can

be determined from the ambipolar solution in Eq.(38) once the wall potential is

fixed.

The QSS result for the potential drop in Eq.(43) is well known;7 the new

improved result in Eq.(39) is for the electric field and will be applied later.
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5. Time-Dependent Ion Motion within the Sheath

The basic development thus far for a high-density, low-pressure plasma

which is inductively heated to ionization is that the ambipolar diffusion model for

plasma dynamics is adequate for the bulk description. Weaker bias fields that are

applied to the sheath to control the ion kinetic energy, or stray fields from the

induction source, do not penetrate the bulk significantly and do not affect the flux

of ions from the bulk. However the ion energy must be separately determined

from a sheath modell-3 and this is reviewed here.

The basic “exact” scaled EOM for the whole plasma is the time-dependent

analog of Eq.(15):

?ii+(7Z.iU)’=T,

U+uu’+fb’+uv=o,

ne I no = exp(@ – @O),

&2@”=–(ni–n JlnO.

(44)

I have used the b.c. at some point so as a reference. If I proceed with the s + O

limit directly on Eq.(44), the quasi-neutral ambipolar results of Section 3.1 can be

recovered. Here we are interested in the time-dependent motion of region III;

previously only the QSS was obtained in Sections 4.2.and 4.3.3. As before, we

must scale or “stretch” the coordinates before obtaining an asymptotic

description. The coordinate sin Eq.(44) is stretched to z and the net result of the
time scaling is that it is scaled with the plasma ion frequency, 4 ~pi:

(45)

Remember that in Eq.(44) the time variable is already scaled as in Eq.(9). These

substitutions are made and the &+ O limit is taken, leaving at zeroth order:
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(46)

rii+(7’1iU)’=0,

U+uu’+q’ =0,

w’= ‘ni /nO+exp($–@o).

The reference point at so is independent of time. It maybe argued that the Bohm

point itself is independent of time to 0(~). Essentially this argument begins by
noting that the region 11AEOM for u predicts it to be of O(1) wherever u =1

prior to stretching. After the stretching is done the rate of change is O(&) and
negligible in Eq.(46). Thus the b.c. may be converted to ne =ni =nl, @= @l,and

u= ui /uB = Ml=1 at the Bohm point. The b.c. on the field (negative slope of

potential) can either be taken to be zero or to be the first order term written down

in Eq.(35) and (39).

The analysis now follows along the lines of the arguments of references 3

and 10 in order to obtain a closed-form approximation for the ion motion.

Basically the time-dependent ion motion is approximated by adiabatic motion
within a new potential field, @,which must be determined. The ion density and

velocity are assumed to satisfy the conservative flux and energy relations with a
parametric time dependence contained in ~:

71iU~ nlul=nl,

y+q=~+ql.

Henceforth I will work with the shifted potential

same for ~(x, t)= ~(x, t) – @l(t) so as to avoid

(47)

X(x, t)= @(x,t)– ~1(t) and the
cluttering the equations with the

potential and its time derivative at the Bohm point. This is the same as setting the
zero of the potential at the Bohm point. I now take the reference point so to be at

the Bohm point SI and combine Eqs. (46) and (47) to give the new, mildly

approximated equations:

i= –u(~’–x’),

X“=-1/u+exp(X)7 (48)

u =(1 – 2~)1’2 .
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The Poisson equation in Eq.(48) cannot be integrated exactly. The first integral

must be further approximated in order to obtain an explicit solution. A convenient

means of arriving at this approximation is to assume that the new potential field is
, related to the actual field by a function of time, i.e.:

~ = a(t)%. (49)

Eq.(49) applies to the region III EOM and thus implies that the time dependent

proportionality applies outside the Bohrn point. Within the Bohm point, the
potential is approximately invariant to the time dependence and @=@ as argued

below Eq.(46). This ansatz given in Eq.(49) may be shown to have motivations

based on the approximations for the first integral of the Poisson equation.3

Substitution of Eq.(49) into (48) allows the fiist integral to be performed on the
Poisson equation, giving rise to one new constant of integration, E.. The zeroth-

order boundary conditions are @J=@= @l(or ~ =7 = O) and E= I?. at the

u= U1=1 point. Both @land E. can be time dependent. After the integration is

performed, a(t) is replaced by ~ / ~ to give:

?“ _ql - 27)1’2 (~ -~) ,
x

lEZ+Z (1–27)1’2–1 +exp(~)–1,+( E–E1)2 =2 o
z ( )

El = –log~() (&2).

(50)

I have ex post facto inserted the first-order-in-& correction to E as found in

Eq.(35). This ensures that Eq.(50) reduces correctly and exactly to Eq.(35) as
~ + ~ and E. + O in the QSS limit. The frostequation has the form of a

damping or relaxation equation if the prefactor can be replaced by a constant.

may be argued that the constant is of order unity. It becomes, then, simply, in

scaled and unscaled form:

(51)

It
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(.oPihas been defined in Eq.(45). Eq.(5 1), combined with the voltage-field fwst

integral in Eq.(50), are the equations to be used3?10 to determine the effective

potential of the ion response in a varying potential field. The unscaled form of the

first integral approximation is:

+( E–E1)2 =~E~ +
(

nl kTe z
(J1 – 2e~ I kTe – 1)

&o ?

())

e%
—–1,

+ ‘Xp kT,

El =
kT,

-=log10(&2).
i

(52)

This form differs from the earlier work3~10 in that the Mach number does not

appear. Remember that potential has been shifted by the possibly time dependent

value at the Bohm point.
The constant of integration E. is yet to be determined. The b.c. used here

is that the electric field at the Bohm point is greater than zero (actually
El+ EO(t)), and this correction should be large enough to force the RHS of

Eq.(52) to be non-negative at whatever spatial position it is evaluated. Eq.(52)

reduces to Eq.(39) (unscaled Eq.(35) ) in the limit of slow time variation. In this
limit the constant E. should be identically zero. Two numerical procedures come

to mind to find E.: number one, instantaneously set E.(t) such that the RHS of

Eq.(52) is non-negative as the time-dependent EOM are being solved numerically,
and number two, let E. (t) “ride up” numerically to a constant value such that

the RHS of Eq.(52) remains positive.3~10 In procedure number one the time
derivative of E is zero during the interval that E. is forced to be nonzero. In the

second procedure the time derivative of E. can be ignored as E. becomes

constant after a few rf cycles. The effect of these procedures will be shown later.

The work of Pointul 1 has recently come to my attention. His sheath model

reduces to a linear approximation for the time-varying part of the sheath potential,

and for that reason, would not seem as accurate as the other models. 1‘3 His work
does predict important features, however, such as the ion plasma frequency scaling

of the ion sheath response.
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6. Circuit Description Including Sheath Model, Examples

Two things must be obtainable from a sheath model in the context that is
. being pursued here. First of all, we need the current-voltage properties of the

sheath so that one can write down the functional relation of the total cument to

the bulk plasma properties and the sheath voltage in order to include the sheath in

the circuit equations for the whole system. Secondly, we need to be able to derive

important kinetic properties of the sheath particles, such as the ion energies that

fall through the potential drop. This will be discussed later, although it is obvious

now that we are committed to using the time-dependent kinetic energy of the

mono-energetic ion fluid as predicted by the damped potential, given by Eq.(47).

For the moment, consider the plasma, the plasma sheaths, and external circuitry

with an analysis similar to Kirchhoff’s rules for writing down the circuit equations.

What is needed from the sheath itself will be written down here.
The total current per area Jtot through the sheath is expressed as

Lot=je+ji+Jd y

.ii ‘el$ni,

jd = E* E. (53)

One can show that the above expression for the total current is constant across

the sheath if the full time-dependent continuity and Poisson’s equations are being

solved consistently. Here we are using approximations to the dynamics, so the

expression is not independent of x. The adiabatic Boltzmann approximation for
the electron particle current je is given by Eq.(40) in terms of the electron density

at the wall, which is related by a potential-drop (Boltzmann) factor in Eq.( 12) to

the electron density at the reference point. The continuity equation for the ions
equates the ion current ji to the value at that reference position. The electron

displacement current jd should be evaluated at the wall position to be consistent

with both the point of determination of je and the later connection to be

developed to the total sheath potential.

The displacement current is expressed as the partial time derivative of the

field at the wall. Only the potential difference between the wall and the bulk
plasma is a quantity accessible in the circuit equations for the system. Thus the

sheath model must supply the relation of electric field to potential. In the case of a
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dc sheath, or the QSS sheath mode1273which is based on adiabatic response of the

dc model to a time-varying applied potential, one can write down the first integral
of the Poisson equation, E = E( @– @l) and evaluate

E(x,t)= ~(@dEo,)(d(x7t) -41(t))j— (54)

which completes the determination of current as a function of voltage. This can

be done from the results in Section 4.3.3 immediately. Note that Eq.(54) would be

simpler if written in terms of the shifted potential with respect to the Bohm point.

The case of faster voltage variations in which the ions cannot track the field

adiabatically requires the use of the sheath model of Section 5. The time

derivative of E now necessitates the evaluation of both partial derivatives,

~E/~(@–@l) and ~E/~(@- @l), inorder to find ~andjd(t):

jd(t)=&ok=&o [%%’) (55)

These partial derivatives are found from Eq.(52), which gives E(~,~) explicitly,

to wit:

and

dE nlkTe x
(E-E1)Z = —

&o ~’

(56)

‘-(’-%l’’-%r”%r” ~ ’57)

Note that I have assumed that E. is independent of time and potential in

evaluating these partials. In practice the derivatives will be evaluated at the wall

position.
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6.1 Case of an Isolated Sheath with Applied rf Bias

In this section I give the numerical solution of the sheath model for an

isolated sheath. A full description of the plasma would require a model of the

pumping of the plasma by an inductive antenna and the ambipolar (possibly)

EOM and kinetics of the plasma bulk. This is too elaborate for the purpose of

illustrating the practicality and utility of the present sheath model. Thus I make

some assumptions and solve the sheath as an isolated system. Previously> 10 I

showed that the present sheath model agreed with the two extreme limits of ion

response, namely the highly inertial ion model of Liebermanl and the QSS model

of Metze, Ernie, and Oskarn.2 I will use an Ar plasma with specified conditions at

the Bohm point:

lf~ =13.56MHz,

kT, le=4eV,

Wli =40 amu (Ar+ ),

n~ =1.0 X1017 /m3 , (58)

NO = 3.535x 1020 / m3 (10 mTorr),

oi = 1.0X 10-18m2 (100A2) .

Some derived quantities are found from the above using the notation and theory

developed in the text:

uB=3.106 km/s,

El =5.032 Vlmm,

Ai = 2.829 mm,

AO = 0.0470 mm, (59)

(Dip =6.607x107/s,

ji =49.77 Afm2 .

The total current through the sheath is given by Eq.(53), with all quantities
evaluated at the wall position. The displacement current is given by Eqs.(55)
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through (57) in terms of the potential and damped (or effective ion) potential at

the wall. The effective potential for the ions is found from the numerical solution

ofEq.(51 ) at the wall. Putting this all together leaves a coupled set of ordinary

differential equations in time with the wall values of the quantities as dependent

variables.

The isolated plasma sheath problem can be solved numerically with either a

specified applied rf voltage or run under “current control” to find the voltage that

produces a specified current through the sheath.3~10 It matters not to the

numerical algorithm presented here which method is chosen, but since a

capacitively-coupled rf bias with zero average current is a common arrangement, I

adopt current control as the method of choice. The components of the total

current per area through the sheath are:

(60)

For a specified Jac the equations are integrated for 800 rf cycles (intentional

overkill) with a numerical step of one thousandth of an rf cycle. The last two

cycles are saved for plotting of the current, voltage, and field at the wall. One

should remember that the use of current control for the isolated sheath problem
requires solving “backwards” for the time derivative of @in terms of the current.

That is to say, from Eqs.(53) and (55):

(61)

All the derivatives in Eq.(61) are to be evaluated at the wall position. If the
potential at the Bohm point is fixed, ~ maybe simply replaced by @. This allows

the EOM to written as a set of coupled ordinary differential equations for the wall
values of the potentials and currents.

6.2 Testing of Sheath Model where EO is Zero

For a considerable range of rf current through the sheath with the

conditions as given in Eqs.(58)-(60), roughly for OS jac < 170A/ m2, the

integration constant E. can be left as zero. In Figs.7 and 8 I show typical results
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for jac =60 A / rn2 and 160A/ m2. The latter value of the AC current amplitude

is close-to the conditions where we need to make E. nonzero. In Figs. 9 and 10 I

show the QSS prediction (the Metze, Ernie, Oskam model) for the same conditions.

The QSS is seen to underestimate the potential by a good factor of two at the wall

in the higher current case, and to rather poorly represent the ion energy at the wall

in both cases. Remember that the damped ion potential is the ion energy at wall

impact.

6.3 Testing of Sheath Model with Nonzero E()

At and above Jac = 170A/ m2 for the problem at hand, E. must be

greater than zero so that the solution for E in Eq.(52) is real. This is a

consequence of the nature of the approximate solution of the time-dependent
sheath problem. Hopefully the size of E. can remain small compared to the wall

values of 1?. In the discussion following Eq.(52), I outlined two algorithms for
selecting E.. Both of these will be tested now.

The first procedure utilized a minimum “floating” value for E.(t) such that

the square root in Eq.(52) is well defined. The results are shown in Fig. 11. To be
noted is the “pinning” of E(t) at the minimum value of El = 5kV / m during the

peak positive voltage part of the rf cycle. The second procedure, namely finding a
constant value of E. such that the root for E(t) in Eq.(52) remains real, requires

us to save the maximum transient value of E.(t) as found during the time

dependent integration. In practice, each time the argument of the square root was

less than zero, I increased E; by 0.1 (V /m)2 and retained the incremented value

for the rest of the integration (or until a further increase was necessary). Changing

the size of the increment did not affect the results significantly. These results are

shown in Fig. 12. One must compare Figs. 11 and 12 carefully to find the

differences. I feel that the differences are insignificant, and that the method of
choosing IZois not so important.
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7. Conclusion

First of all I should repeat what is new within this work. The empirical

asymptotic connection formula presented in Eqs.(35) and (39) (scaled and

unscaled) is new. This furnishes an accurate evaluation of the electric field within

the sheath region for the QSS condition. The overall analysis of the connection of

the regions of the plasma is novel from the point of view of the mathematics

(which might be improved I suspect). The determination of the effective ion
“damping rate” is the same as presented earlier, 10 and here only the electric field

is subject to correction within the time-dependent approximation. Previously, I

had advocated an effective Mach number as well as field3~10 to remedy this

problem. The analysis here indicates that the field is the more appropriate way to

adjust the sheath solution for the time dependent situation.

Another new item is the use of the ambipolar theory to describe the plasma

all the way to the wall boundary condition region. This has no doubt been done

before, but the argument for acceptability is novel.
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Figure Caption

Fig.1 These mephase-space plots ofveloci~, field, mddensi~vs. potential. The

solid lines in these figures denote the numerical solution to Eq.(26) in the text.
This particular solution has been obtained with parameter s= 0.01. The starting

conditions for the numerical solution are UO= 0.5 and EO given by Eq.(27) at

@= @o= O. The density was simply defined as ni =UO/u. The dotted curves are

the region HA approximations as given in Eq.(27). The density is defined the same

as in the numerical solution. The dashed curves are the region III approximations
as given in Eq.(35). The match point occurs at @= In(O. 5) = – 0.693. One can

see that coincidence of the dotted and solid curves for @> – 0.5 (to the right of

the match point) demonstrates that the region 11Aapproximations are

asymptotically good. The region III approximations are valid to the left of the

match point.
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Figure Caption

Fig.2 The same as Fig.1, except that only the field is being shown in all three plot

panes. The upper pane is the same as given in Fig. 1, the center pane has the first
order displacement term removed, so that the region III approximation is that of

Eq.(34), and the lower pane uses the arnbipolar approximation for E, namely

E= U2, for the region IIA.
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Figure Caption

Fig.3 These are plots of the space dependence of the velocity, field, and density.

The conditions are the same as in Fig. 1. The left and right sides are reversed from

the phase-space plot in Figs. 1 and 2. The space dependence of the
approximations is found using the S(@) mapping from the numerical solution to

ds / do =– 1/ E (field definition). Note the different perspective as to the size of

the regions compared to the plots in Figs. 1 and 2. It is also interesting to note that

the region 11Aapproximation for the plasma (ion or electron) density, as given by

the dotted line, becomes the region III prediction of the electron density on the
RHS of the Bohm point at S1= 0.83. This maybe seen from Eq.(24), which gives

the exact n~(@) throughout regions 11Aand III, and Eq.(27), which gives the

same result from the region 11Aapproximation when @(s) is inserted from the

numerical integration.
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Figure Caption

Fig.4 The same as Fig.3, except that only the field is being shown in all three plot

panes and the scale is back to logarithmic to better show the comparisons. The

upper pane is the same as given in Fig.3, the center pane has the first order

displacement term removed, so that the region III approximation is that of Eq.(34),

and the lower pane uses the ambipolar approximation for E, namely E= U2,for

the region IIA.
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Figure Caption

Fig.5 These are plots of the space dependence of the velocity, field, and density.
The conditions are the same as in Fig.1 except that the mapping of the s(@)

function for the approximate solutions is obtained from the approximate
ds/d@=– 1/ E(@) in each region. u(s) is a multiple-valued function because of

the structure of Eq.(21).
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Figure Caption

Fig.6 These are plots of the space dependence of the velocity, field, and density

using the arnbipolar equations for the region 11Aapproximation. This figure

should be compared to Fig. 5, which used the quasineutral equations for 11A. The
conditions are the same as in Figs. 1 and 3 except that the mapping of the s(~)

function for the approximate solutions is obtained from the appropriate
approximate ds / d@ = – 1/ E(@) for each region.
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Figure Caption

Fig.7 These are plots of the periodic time dependence of the wall values of the

potentials, field, and currents. The DC current is zero and the AC is 60A/ m2 as

written in Eq.(60). The solid curve in the top pane is the actual potential relative

to the sheath Bohm point, and the dotted curve is the effective ion potential

which governs the ion impact energy. The center pane displays the wall electric

field. In the lower pane, the solid curve is the total current, the dotted curve is the

electron particle current, and the dashed line is the electron displacement current.

The ion current is a constant (=50 A /nz2) as given in Eq.(59).
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Figure Caption

Fig.8 Same as Fig.7 except that the AC current amplitude is 160 A /m2 . Note

the much larger variation in the wall field.
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l?igure Caption

Fig.9 Sarneas Fig.7except thatthe damping time constat, m~l, has been set to

O.Ins to force the effective ion potential to follow the actual potential just as in the

the QSS (Metze, Ernie, and Oskam) model. In the top pane the potentials coincide

to graphical accuracy. For these lower current conditions, the QSS is quite good.
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Figure Caption

Fig.10 ‘Same as Fig.8 except that the darnping time constant, COJ1,has been set to

O.Ins to force the effective ion potential to follow the actual potential just as in the

the QSS (Metze, Ernie, and Oskam) model. In the top pane the potentials coincide

to graphical accuracy. The QSS is not very accurate for this higher current case.
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Figure Caption

Fig.11 The numerical solutions for the potentials, field, and currents for the sheath

model with the AC current amplitude set at jac = 200A/ mz. For this current, the

integration constant 130(t) is allowed to float up and down as necessary in order

to keep the root of Eq.(52) real. E. (t) is nonzero only in the flat spots seen in the

field plot in the center pane at the minima of the curve. The parameters of the

plasma are given in Eqs.(58) and (59).
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Figure Caption

Fig.12-"Sme as Fig.llexcept tiattie integration constant Eo(t)is allowedto

rise to a constant value such that the root does not become imaginary. The value

found from the integration was 51.6 kV/m(516 V/cm) which is a small value

compared to the peak wall field of roughly 450 kV/m. However it is large
compared to the El value of 5 kV/m. Recall that El is the QSS value of the field

at the Bohm point in the bulk-to-sheath transition region III.
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