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Abstract

This paper presents an analytical, computational method whereby two-dimensional images
of an optical source represented in terms of a set of detector array signals can be registered with
respect to a reference set of detector array signals. The detector image is recovered from the
detector array signals and represented over alocal region by afourth order, two-dimensional tay-
lor series. Thislocal detector image can then be registered by a general linear transformation with
respect to a reference detector image. The detector signal in the reference frame is reconstructed
by integrating this detector image over the respective reference pixel. For cases in which the gen-
eral linear transformation is uncertain by up to plus-or-minus two pixels, the genera linear trans-
formation can be determined by least squares fitting the detector image to the reference detector
image. This registration process reduces clutter and jitter noise to alevel comparable to the elec-
tronic noise level of the detector system. Test results with and without electronic noise using an
analytical test function are presented.
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1 Introduction

This work was motivated by the need to be able to register satellite images of the earth as
measured from different perspectives by an optical array detector for purposes of detecting and
identifying random, localized optical events. An exact comparison between successive satellite
images of the same earth scene is not possible because the satellite is never in the same position
and orientation relative to the earth scene as time progresses. Fluctuations in individual detector
pixel measurement values due to the regular, predictable motion of the satellite -- orbital, satellite
sun and earth tracking -- are referred to as clutter noise. Jitter noiseis attributed to random, unpre-
dictable satellite motion such as angular motions due to tracking errors and equipment vibration.
Clutter and jitter noise associated with individual pixel measurements over time periods on the
order of seconds may be large compared to the detector shot and electronic noise.

The purpose of this paper is to present an algorithm that allows one to register images
acquired from different perspectives. In this method the detector image is recovered from the dis-
crete detector array signal values and represented over a local, continuous region by a fourth
order, two-dimensional taylor series (Sec. 3). Thislocal detector image can then be registered by a
genera linear transformation with respect to a reference detector image. The detector signalsin
the reference frame can be reconstructed by integrating the registered detector image over each of
the respective reference pixels. For the case in which the linear transformation is known, this
image registration algorithm can be used to build a single extended image based upon a sequence
of individual (partialy overlapping) images acquired from various perspectives, or it can be used
to look at differences between overlapping images taken at different times and perspectives (Sec.
4). Also, there are no practical constraints on the time dependence of the source image. In this
case, the clutter noise is essentially eliminated. On the other hand, if the motion of the system is
only partially known, due to the presence of jitter noise, so that the linear transformation is uncer-
tain by no more than plus-or-minus two pixels over a subset of pixels, then the linear transforma-
tion is determined by least squares fitting the detector image to the reference image. Only a subset
of pixel values are required for this least squares fit procedure; however, the number needed for
convergence to a desired accuracy increases as the detector noise increases. The least squares fit
procedure implicitly assumes that, in this case, the source image is essentially time independent
except for occasional random optical events and electronic detector noise. This registration pro-
cess can reduce clutter and jitter noise down to the electronic noise level of the detector system
(Sec. 5). Test resultsfor a64”~ 64 array detector with and without electronic noise using an ana-
lytical test function are presented in Sec. 6 [1].

A survey describing various other image registration technigques has been given by Brown
[2]. Other algorithms for achieving subpixel registration have been given by Tian and Huhns [ 3]
and Goshtasby, Stockman, and Page [4]. A contour-based approach to image registration has been
developed by Li, Manjunath, and Mitra[5]. A least squares image registration algorithm has been
indicated by Zikan [6]. In this paper the iterative solution to the integral equation (9) in Sec. 3is
central to our analytical registration method.

2 Definition of the Problem

Let the source image be Q(u, v) and time independent for the purposes of this discussion
(Sec. 2). Let 1,(x,y) bethekth image that is projected on the array detector at relative time kD;.
The x,y coordinates are attached to the array detector, and the origin of the x,y coordinate frameis



arbitrarily chosen to be the center of the array detector plane. The most general linear transforma-
tion [2, 7] between u,v and X,y iS given by

u = A(t)x+B(t)y + C(1) (D)

v = D(t)x+ E(t)y + F(t) 2

and takes account of the changes in the detector image as a function of relative time t. Let
I+ 1(X, y) bethe (k+1)thimagethat is projected on the array detector at relativetime (k+ 1)D; .

During the time increment D, the image projected onto the detector array may be rotated, scaled,

sheared, displaced relative to the X,y coordinate frame due to sensor motion asimplied in Egs. (1)
and (2). Equations (1) and (2) do not include the effects of perspective.
Now, consider the measured signals. Let S, |, | be the analytical representation of the mea-

sured signal Sy at time kD, from pixel mn where

nu nmu

\

Scmn= 0O O lk(xy)dxdy (3)

(n-1)d(m-1)d

and d is the width of a square detector pixel. The center coordinates of each pixel in terms of the
indices m,n are given by

X, = (M-12)d 4
Y, = (n—12)d (5)
where mn run from (=Npj,qs92) + 1 10 Npjyeis 2. Npjyqs IS the total number of pixel rows or

columns and is assumed to be even. The analytical signal from pixel mn at time kD, is S ,
where

nu nmu

\

Smn= 0O 0O l(xydxdy . (6)
(n—1)d(m-1)d
Clearly, if the image has been rotated, scaled, sheared, displaced relative to the x,y coordinate
framein thetimeinterval D, then 1, (x,y) and I.(x,y) arefunctionally different and the signal
S m n isdifferent fromthesignal S |, |, even though the source image has not changed. There-
fore, the problem hereisthat signal S, ,, ,, doesnot register withsignal §, | ..
The purpose of this paper is to define an algorithm that transforms the signal S, |, |, so that
it can be registered with another signal suchas § |, ;.
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3 Analytical Representation of the Detector Image

The effects of detecting the optical image by an array detector consisting of Npjeis” Npiyers
square detector pixels of width d [8] isequivalent to applying a spatial frequency filter to the pro-
jected image function 1, (X, y) . Thus, the detector image G,(x,y) correspondsto the spatial fre-

guency filtered projected image function. If the point spread function of the optical system is
comparable or greater than the dimensions of a detector pixel, then the projected image function
I (X, y) and the detector image function G,(x, y) are essentially the same and the overall reso-

lution of the system is consistent. These effects are exemplified in Sec. 6.

The detector image Gy(x, y) at time kD, that can be deduced from §'7, . isrepresented
over alocal region by atwo-dimensional taylor expansion
G 1G
= + =X )+ o -y )+ Y 7
Gk(xi y) Gk, m, n ﬂX Km n(x Xm) ﬂy km n(y yn) 4 ( )
where
Gk, m, n ° Gk(xm’ yn) ' (8)

In our analysis G,(x,y) is carried out to fourth order [only the zero and first order terms are
shown in Eq. (7)]. The detector image G,(x, y) isrelated to the pixel signal S, , by

nu mu

\

Scmn= O 0O Gyxy)dxdy . (9)
(n=1)d(m-1)d

Substitution of Eq. (7) for G,(x,y) into Eq. (9) yields

S(, m, n = dé[l OGk, m,n+Yk, m, n] (10)

where
Yk,m,n =1 1[Gk,m+2,n+Gk,m—2,n+Gk,m,n+2+Gk,m,n—2]
+ Z[Gk,m+1,n+Gk,m—1,n+Gk,m,n+1+Gk,m,n—1]
+ S[Gk,m+1,n+1+Gk,m+1,n—l+Gk,m—l,n+1+Gk,m—1,n—1] ' (11)

Valuesfor | j are tabulated in Table 1. Odd order contributions from Eqg. (7) in Eq. (9) are zero.
16

Ix

In this analysisthe partial derivatives in Eq. (7) are expressed in terms of finite dif-

k- mn
ferences so that, for example,

11



Table 1: Zeroth, second, and fourth order | -coefficientsfor Eqgs. (10) - (11).

Order I (I I, | 5
Oth 1 0 0 0
2nd 5/6 0 1/24 0
4th 1219/1440 1/1920 13/360 1/576
16 _ Gk,m,n+1_Gk,m,n—1. (12)
ik mn 2d

Consequently, all partial derivatives in Eq. (7) are replaced by various linear combinations of
Gy i as defined in Eq. (8).

The G, , , can be evaluated according to the following algorithm.
Step 1: The G, |, , are given to zeroth order by

easured
kan:'_ﬂ%L_' ﬂ@
d
Step 2: To ahigher order approximation consistent with Egs. (7) and (9), the G |, , are given by
1 easured
kan:i_{’mg _Ykmﬂ' (14)
0 d

Using the previous values of G,  , to evaluate the perturbing term Y, ..\, new values of
Gy m n e given by Eq. (14). A self-consistent solution is found by iterating Eq. (14) for al

allowed values of m,n. The rate of convergence is such that the maximum absolute fractional
change in G, |, , decreases by about an order of magnitude for each iteration. The zeroth order

solution gives values of G, ., , for LEmMEN and1£n£N the second order solution

pixels pixels’
givesvaluesof Gy ., , for 1 <m<N, ¢ and 1<n <Ny, and the fourth order solution gives
valuesof Gy , , for 2<m< N, gs—1 and 2<n <Ny, s— 1. Itiscomputationally cost effec-

tive to first determine the second order solution and then proceed with the fourth order solution as
opposed to doing only afourth order solution starting with the zeroth order valuesfor G, |, ..

At this point, we now have a functional representation of the detector image G,(x,y) as
easured

represented by Eq. (7) in the vicinity of x., y,, as deduced from measured values of ST mn
The neighborhood over which the two-dimensional taylor series representation of the image
extends is shown by the shaded region in Figure 1.

With respect to the performance of an actual optical system, it is important that the optical
system itself be free of asymmetric astigmatism if image registration is anticipated. Circularly
symmetric optical blur spots should not be a problem. Also, it may be necessary to correct the sig-
nal pixel values in order to account for any significant differences in their respective sensitivity.
The analysis presented in this paper assumes linear optics[Egs. (1) and (2)]; however, these trans-

12
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Figure 1 A third or fourth order two-dimensional taylor series representation of the detector
image function G,(x,y) centered on pixel m,n [Eq. (7)] is characterized by the pixel values

,ﬁsﬁre‘j within the shaded region. A first or second order two-dimensional taylor series

easured

centered on pixel mn is determined in terms of S:m,n

(mn),(mn+1),(mn-1),(m+1,n),(m-1,n)

values from pixels

formation equations could be extended, at least in principle, to account for some nonlinear optical
effects.

4 Registration Algorithm for Known Transfor mation

This image registration algorithm (Sec. 4) can be used to build a single extended image
based upon a sequence of individual partially overlapping images acquired from various perspec-
tives, or it can be used to look at differences between overlapping images taken at different times
and perspectives. Also, it can be used to generate images from a given reference image for speci-

fied T, for simulation purposes. This algorithm (Sec. 4) assumes that the transformation matrix
T, can be specified either theoretically or from measurements of the system’s motion.

The coordinate transformation between source point u,v and image point x,y in the foca
plane of the detector at relativetime kD, is T, where

13



u X A(kD,) B(kD,) C(kD)|[x
v| = T¢|y| = |D(kD,) E(kD,) F(kD,)||y| - (15)
1 1 0 0 1 |11

Since the x,y coordinate frame is attached to the array detector, the transformation T, causes rota-

tion, scaling, shearing, and displacement of the image with respect to the x,y coordinates as a
function of time. Here, T, is assumed to be known for all k.

In this discussion, the source image Q,(u, v) may be time dependent. Let Gg(X, Y) bea
reference image that is related to the source image at relative time RD, by the transformation Ty,.
XY are the reference frame coordinates and ssimply correspond to the x,y coordinates at relative
time RD, . Suppose that one wants to register other images with respect to this reference image. If
T, transforms the sourceimage Q,(u, v) to the detector image G, (X, y) , then TngR transforms
the detector image G,(x,y) toanimage H,(X,Y) in the reference coordinate frame where

X ) X X
y| = T Tr|Y| = T r|Y| (16)
1 1 1

(This can be verified using asimple analytical function for Q,(u, v) and arbitrary linear transfor-
mationsfor T and T,.) G,(X,y) isrepresented in terms of atwo dimensional taylor series [Eq.

(7)] which represents the detector image over a limited spatial region (Figure 1) about the point
X Yn- The same image in the reference coordinate frame H, (X, Y) isvadid in a transformed

region [9] about the point x,, z, inthe X,Y reference plane where

Xk Xm Xm

-1
2l = TR Tk Y| = Trk|Yal (17)
1 1 1

An analytical representation of H,(X,Y) intermsof G,(x,y) isgiven in the Appendix. The
M,, N, indices in the X,Y reference plane which contain the center of convergence x, z, are
given by

M, = ceil(x, od) (18)
N, = ceil(z, =d) (29

where the operator ceil rounds a floating point number towards plus infinity to an integer. These
indices are consistent with the definitionsin Egs. (4) and (5). The transformation Ty, | can be used

to transform the region in Figure 1 to the corresponding region in the reference coordinate frame.
The registered signal value Sﬁ’ﬂ N associated with pixel M, N, in the reference coordinate
frame corresponding to G, (x, y) isgiven by

14



s’fﬁ’,l,N = 0 0O HXY)dXdy . (20)
(N-1)d(M -1)d

Depending upon how T, changeswithtime, § 7  may not completely overlap with SrR‘?fM, N and
may extend beyond the boundaries of SrR‘?fM, - The order of the taylor expansion must be suffi-
cient for H, (X, Y) to accurately span the area of integration in Eq. (20). This also implies that

there are practical limitationson Ty, . Registration of an image can result in the loss of informar

tion. This can occur, for example, if the image projected on the array detector undergoes contrac-
tion (for example, due to increasing distance between source and detector).

5 Registration Algorithm for Unknown Transfor mation

Motion of the optical sensor with respect to the source image that is predictable givesrise to
clutter noise as measured by the array detector due to the motion of the projected image having
lateral contrast relative to the array detector. For example, an array detector zooming in on astatic
source image would give various measurement values because the image projected on the array
detector would be expanding. Similarly, motion of the optical sensor with respect to the source
image that is random and unpredictable, such as system angular vibrational motion, gives rise to
jitter noise.

We now consider the problem in which T, isnot completely known. In particular, two kinds
of motion may coexist: motion that is predictable and motion that is random. In this registration
algorithm, the predictive motion between time steps may be large, but the random motion must be
small. Thismethod is based on aleast squaresfit procedure that is used to determine the optimum
transformation for purposes of registering a detector image with respect to areferenceimage. This
algorithm can be applied to situations in which an optical array detector makes successive mea-

surements from different vantage points of a source scene that is essentially time independent

except for occasional random optical eventsin time and location. The measured signals S red

may also include detector noise. As aresult of the registration process, contributions to clutter and
easur ed

jitter noise within S? mn  aretypicaly reduced to the detector noise level. The least squares
algorithm is as follows.
Step 1: Pixel Selection. For the kth detector image, select pixels m,n whose signal values

,ﬁsﬁre‘j are to be used in the least squares fit procedure. As the least squares fit progresses,

alternative pixels may be used for successive iterations. At each iteration, the pixels in the refer-
ence frame may need to be matched, if necessary, to the pixels selected in the kth detector image
due to changes in the transformation matrix with each least squaresfit iteration. Only those pixels
that overlap with the reference array are included in the least squares fit procedure. Within a

sguare subarray which typically excludes several of the outer rows, we pick every Naip pixel. If
convergence fails, another subset of pixels is chosen by picking every Nekip 22 pixel. A starting
value of Ng;, = 16 isreasonable. It may be necessary for the user to experiment with the num-
ber of pixels needed in order to get a sufficiently accurate least squares fit; the number of pixels

15



needed in the least squares fit will depend upon the degree of lateral contrast in the detector image

and the level of detector noise relative to the lateral variation in Sy s o

Step 2: Gy 1, - From the measured values ST ?ﬁsﬁ red , the detector image values G mn are

determined as indicated in Sec. 3. The values of G, ., ,, and X, y, define the two-dimensional
taylor series [Eq. (7)] that is an analytical representation of the detector image G,(X,y) in the
neighborhood of x_, y,, (see Figure 1) at relative time kD;.

Step 3: Ty r. The user must supply an initial guess for the effective transformation T,
defined in Eq. (16). Even though T, r may result in significant displacement of the pixels with
respect to their original positions, T, p must position the image with respect to the reference
image to within plus-or-minustwo pixels. If D, issufficiently small, then T, _; r, whichisknown
from the previous least squares fit, can be used as the initia guess for T, . Another approach
might be to calculate T,  based on the known kinematics of the system. All of the known move-
ments of the system, which give rise to clutter noise and may give rise to large displacements, are
represented by Ky ; presumedly values for the matrix elements of K, ¢ can be calculated or

deduced from measurement. The unknown movements of the system which give rise to jitter
noise must be small and are represented by J, . Since Jy  is unknown, it might be approxi-

mated by either zero motion matrix elements or the previous value J, _; g, providing the present

value has some correlation with the previous value. Thus, the estimated value for TE:StR is given
symbolically by

t | t
TES R = Kﬁa RJE,S R- (21)

The estimated transformation matrix Tﬁﬁq must bring the pixels chosen within the subarray to

within plus-or-minus two pixels of being correctly registered assuming a third or fourth order tay-
lor series representation of G, (x,y) or within plus-or-minus one pixel of being correctly regis-

tered assuming either afirst or second order taylor expansion. Otherwise, convergence of the least
sguares fit procedure may be impossible.

Step 4: Sy - Having T, g or Tﬁﬁq allows one to transform the detector image G, (X, y)
to its corresponding image H, (X, Y) in the reference frame. The general analytical expression
for H (X, Y) isgiveninthe Appendix. The two-dimensional taylor seriesin the reference coordi-
nate frame is expanded about x,, z, asgiven by Eq. (17); this point is contained with the reference

pixel M, N, specified by Egs. (18) - (19). The calculated values for Sﬁ’ﬂ y With respect to the
reference array are given by Eq. (20). The analytical expression for Sﬁ’ﬂ n aswell as the partial
derivatives  of Sieﬁ’,, n Wwith respect to the T, transformation parameters

A¢ r Bk R Ck R Dk r B R Fi g @€ givenin the Appendix.

Step 5: Least SquaresFit Equations. Given that

16



Vdata ﬂS; ﬂS;

Uyq = & fc, | e, 22)
n=1
"iata ﬂS;

V, = & (Sswm.n—Scm. ).”C (23)
n=1

where § 7  is determined from Eq. (20), the sum over n is over the M,,, N, pixels selected
which can be registered with respect to the reference image. The parameter Cj corresponds to the
jth element in the sequence of transformation elements A, g, By g, Cy g Dy r Ex r Fx g IN EQ.

eg
fc,

to least squares fit Sy n 10 Sk 8 @ function of A, g By g C r Dy r Ex r Fic r- THIS

(15). The analytical expressions for §7  and are given in the Appendix. The ideais

implies that Sy, \ Must have some semblance to Sy - Hence, this algorithm applies to
source scenes which are for the most part time independent. This does not exclude having detector

noise, and Sﬁ’ﬂ n May be perturbed by occasional random optical events; however, it is better to
exclude pixels from the least squares process having obvious transient optical signal values.

The corrections to the transformation parameters A, g, By g, Cy g Dy r Ex p Fk g @€
found by solving the linear matrix equation

Uc =V (24)

forc sothat Ay g = A R+ Cpre Fp = Fy r+ C- Steps 4 and 5 are repeated until

absolute(c .
(%) O<Epsilon . (25)

MaX &absol ute(c ) + eps@

where Epsilon has a value on the order of 10~ and epsis set to asmall number (10_6).
Step 6: Image Registration. After the transformation T,  has been determined, the total

image can be registered with respect to the reference array by Eqg. (20) giving Sﬁ’ﬂ n With clutter
and jitter noise contributions ideally reduced to the detector noise level. Optical events of interest

may now more readiily be detected by taking the difference between Sy,  and Sk -

6 Test Results

In order to exemplify these agorithms, the optical source function QtESt(u, V) was arbi-
trarily represented by the test function

17



test

Q (u,v) = 3+ cos(nmu) + cos(j V) (26)

where
_ 2p
M= 914d (27)
. _2p
I~ 207ad (28)

and d isthe width of the detector square pixels. The projected image function ILESt(x, y) isgiven
by
test

I, (X, y) = 3+ cos[mAXx+By+C,)]+cos[j (Dx+Ey+F)] . (29)

The numerical values for mand j have been chosen so that the variation in Ilt(eSt(x, y) over a

pixel width is small (the detector image is consistent with the projected image). This condition is
fulfilled for

1
Lﬂ Ty i,jd 2 « Lj (30)

wherei,j range from 1 to 2 as deduced from Eq. (31). This function can be integrated exactly for
any valueof mand|j to givethetest pixel signal values ﬁef; » Where

t 2
o n = 3d
Sstm—
2
tdmd TmBa cosimMAd(mM-1:2) + Bd(n—-1:2) + Gy}
2 2
D,d E,d
S JTkg 1 5
+d iD.d jEd cos{j [D,d(m-12) + E d(n—12) +F, ]} . (31)
2 2

The sinc functionsin front of the cos functions in Eg. (31) correspond to the effects of spatial fre-
guency filtering inherent in the array detector. The numerical values arbitrarily chosen for the
transformation matrices were

09 031 3.1d
T; = |-0.351 0.95 -3.3d| (32)
0o 0 1

18



0.757 —-0.737 6d
T, = |0.807 0.607 —7d| (33)
0 0 1

from which

0.755309 0.876204 —8.89786d
T, 1 = |-0.702019 0.468946 9.92659d |- (34)
0 0 1

The fictitious array detector was characterized by N = 64 andd = 100 microns.

pixels

6.1 Test Images and Detector Signals

Three-dimensional mesh plots of the projected images [Eq. (29)] derived from T, and T,

are shown in Figure 2 and Figure 3, respectively. The two-dimensiona gray-scale plot of each
image (Figure 2 and Figure 3) is shown in Figure 4 and Figure 5, respectively. Plots of the pixel

signa values ﬁef; » [Eq. (31)] for T, and T, are shown in Figure 6 and Figure 7, respectively,
and are essentially the same as those of the respective projected images aside from a scaling factor
of d*.
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image function: K1_1_3
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Figure 2 Three-dimensional mesh plot of the projected image function [Eq. (29)] resulting from
the transformation T,. The p-pixels are along the x-direction and g-pixels are along the y-

direction.
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Figure 3 Three-dimensional mesh plot of the projected image function [Eq. (29)] resulting from
the transformation T, .
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image function: K2_1_3
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Figure 4 Two-dimensional gray-scale plot of the projected image in Figure 2

image function: K2_2_3
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Figure 5 Two-dimensional gray-scale plot of the projected image in Figure 3
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from the transformation T, .
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6.2 Detector Image Comparison
The fractional difference fd, , ,, between signal value § |, , as deduced numericaly from
the algorithm in Sec. 3 and the test signal value S, , [Eq. (31)], which was determined exactly

from the test image source function QtESt(u, V) , isgiven by

est
_ S(,m,n_ ,m,n

fdy = O _kmn (35)

, M, N

The results of this computation are shown in Figure 8 and Figure 9 for second and fourth order
taylor expansions and indicate the error in determining S, |, , according to the algorithm in Sec.
3. The higher order representation extends the areaover which G, (x, y) isrepresented. The accu-
racy islimited by the approximations implicit in Egs. (10) and (11) (namely representing the par-
tial derivatives in the taylor series by finite differences). The values for fd, ., |, increase as the
test

gpatial rate of changein Q ~ (u, v) increases (by increasing the valuesfor mand j ).

The effects of noise have also been explored. Gaussian noise was added to ﬁef; n» Whichis

shown in Figure 10. The standard deviation in this noise was defined to be 0.1 times the minimum
value of ﬁesr; ., Which ranges between approximately d“ and 5d° according to Eq. (31). The

fractional difference fd, ., , between S |, |, as deduced from ﬁef; n With noise according to the
agorithm in Sec. 3, and the noisy ﬁef; , Isshownin Figure 11.
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fractional difference: 02_2 3
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Figure 8 Plot of fd, ,, , [Eq. (35)] versus pixel p,q for S}, , generated from Eq. (31) using T,
assuming a second order taylor expansion for determining S, ,, .

fractional difference: 02_4_3
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Figure 9 Plot of fd, ,, , [Eq. (35)] versus pixel p,g for S;°;, , generated from Eq. (31) using T,
assuming a fourth order taylor expansion for determining S, ,, .



numerical S: O1_4_37
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Figure 10 Plot of S, , , with gaussian noise using a fourth order taylor expansion and
transformation T, .
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Figure 11 Plot of fd, ,, , corresponding to S, ,, ,, in Figure 10.
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6.3 Test Registration with Known Transformation

The signal %egfn n Shown in Figure 7 was registered to the reference signal §lesrtn n Shownin
Figure 6 using the algorithm in Sec. 4. In this case the transformation is known [Eq. (34)]. The
quality of the registration is measured in terms of the fractional difference fd, ., , between the

registered signal and the reference signal. This fractional differences fd, ., , is shown in Figure

12. Without noise, the fractional difference in the signalsis on the order of 10~ to 10,

An analogous plot was made for the registration of Stzesrtn » With noise to the reference signal
est

“m n Shown in Figure 10. Both signals have the same level of (uncorrelated) noise (0.1, Sec.

6.2). Now the fractional difference in the registered and reference signal closely approaches as
expected the gaussian noise level as shown in Figure 13.
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fractional difference: 12_2_3
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Figure 12 Plot of the fractional difference between the registered S signal and the

test

Lm n Without noise. The maximum fractional difference shown here is

reference signal

1.3x107* using a second order taylor expansion; the maximum fractional difference in this case

(not shown) using a fourth order taylor expansion is 1.9x10~*

fractiona! difference: L2 4 37
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test
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both having uncorrelated noise (Sec. 6.2). The maximum fractional

difference shown here is 0.27 using a fourth order taylor expansion. The maximum fractional
difference in this case using a second order taylor expansion (not shown) is 0.26. The fractional

Figure 13 Plot of the fractional difference between the registered S signal and the

test

reference signal S, ,

difference can only be evaluated over those regions for which the registered S’Z“,f, , and the
test

reference signal S,°,

overlap.
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6.4 Test Registration with Unknown Transformation

The signal %egfn » Shown in Figure 7 was registered to the reference signal §lesrtn n Shownin

Figure 6 using the algorithm in Sec. 5. In this case the required transformation is supposedly
unknown. In order for the least squares fit algorithm in Sec. 5 to converge, the transformation
must be partially known at least to the extent that it will bring those pixel signal values chosen for
the least squares fit procedure to within plus-or-minus two pixels of being registered. The known
transformation in EqQ. (34) was perturbed by adding to it the error matrix

0.05 —0.08 —1.5d
Terror = |0.04 0.04 1.5d 1. (36)
0 O 0

The displacement of the border pixels associated with the square array Np;,o 24" Ny, o 24 and
Noixet 27 N o @2 centered on the array detector dueto just T isshown in Figure 14.

For the case in which esrtn , and S.tzesrtn . are free of noise, the least squares fit procedure

using the second order taylor expansion converged in five iterations yielding

pixe pixe error

0.755309 0.876211 —8.89785d
T, s¢ = |=0.702021 0.468944 9.92663d |- (37)
0 0 1

The correct answer is given by Eq. (34) so that the residual error is

0.0 0.000007 0.00001d
Terror = TLse—T2,1 = |—0.000002 —0.000002 0.00004d| - (38)
0 0 0

The results of this least squares fit in terms of the fractiona difference between the registered

esrtn » Signa and the reference §lesrtn . signal isshown in Figure 15.
est

Next, we consider the registration of Stzesrtn n onto thereference signal S, |, for the casein
which both signals are noisy (Sec. 6.3). The standard deviation in this noise was defined to be
0.02 times the minimum value of iesr; .- The least squares fit using the second order taylor
expansion converged in sixteen iterations yielding

0.757641 0.875928 —8.91538d
T s = |-0.702611 0.468442 9.93225d |- (39)
0 0 1

with aresidual error of
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0.002332 —0.000276 —0.017520d
Terror = TLse—T2,1 = |-0.000592 —0.000504 0.005660d |- (40)
0 0 0

The results of this least squares fit in terms of the fractional difference between the registered

S.tzesrtn  Signal and the reference Stlesrtn n Signal both with uncorrelated noise are shown in Figure

16.
The same noisy signals were registered using the fourth order taylor expansion. The least
squares fit converged in fourteen iterations yielding

0.756448 0.876873 —8.89075d
T s = |=0.702582 0.468279 9.93026d (41)
0 0 1

with aresidual error of

0.001139 —0.000669 0.007110d
Terror = TLse— T2, 1 = |0.000563 —0.000667 0.003670d| - (42)
0 0 0

The results of this least squares fit in terms of the fractional difference between the registered

S.tzesrtn , Signal and the reference Stlesrtn , Signal both with uncorrelated noise are shown in Figure

17.

The question arises with regard to the level of noise the least squares fit procedure can toler-
ate and still converge. In order for the least squares fit to converge to the signal values rather than
guasi minimum associated with the noise on the signal, the magnitude of the noise must be small
compared to the difference in the signal on average between adjacent pixels. This suggests that
those pixels most effective in the least squares fit are associated with those parts of the signal with

the greatest spatial gradients. For example, the maximum fraction difference in Stzesrtn , over one

pixel distance is approximately 0.05. Our calculations indicate that the ability of this registration
algorithm to register these particular signals diminishes significantly with fractional noise levels
above about 0.01 as expected. The results in Figure 16 and Figure 17 show that clutter and jitter
noise can be reduced down to the detector noise level providing the detector noise level is small
compared to the fractional variation in the detector signal between adjacent pixels.
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Jitter Displacement Profile: N1_2_3
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Figure 14 Plot of the displacement of the border pixels associated with each of the two
subarrays centered on the detector array using the error matrix in Eq. (36). As the error matrix
goes to zero, these points collapse to the origin.

fractional difference: M2_2_3
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Figure 15 Plot of the fractional difference between the registered S5, , signal and the

reference signal S'l“,; » Without noise using a second order taylor expansion. The maximum

fractional difference shown here is 1.2x10_4.

30



fractional difference: M2_2_36
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Figure 16 Plot of the fractional difference fd, ,, , between the registered S signal using a

second order taylor expansion and the reference signal S test  with noise (0.02). The maximum
Lmn

value of fd, ,, , in this plot is 0.043.
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Figure 17 Plot of the fractional difference fd, , , between the registered S using a fourth

test

1. m,n With noise (0.02). The maximum value of

order taylor expansion and the reference signal S
fdy, m, » in this plot is 0.045.
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7 Appendix: Integralsand Partial Derivatives
Thefunction H, (X, Y) correspondsto

H (X, Y)

s o 1 TG
si(r —s)!.”XS.”yr—S -

(AX+B,Y+C —x ) (D X+EY+F, —y) ~°

r=0s=0 , N

(43)
which is convergent in the neighborhood of the point x,, z, given by Eq. (17). The point x,, z,
also corresponds to those respective values of X and Y in Eq. (43) for which

AX+BY+C —x, =0 (44)
D X+EY+F, -y, = 0. (45)

The registered signal associated with pixel M,N in the reference array at relative time k is
%\ Where
.M, N

NuU viu

ST N= O O HX Ydxdy
(N-1)d(M -1)d
L
=a az— _ L, (46)
si(r S)!ﬂxsﬂyr sk’m rs

r=0s=0 , N

Conseguently, it is necessary to evaluate integrals of the form

Lis= O O (AX+BY+a,)%(DX+EY+b,) ~*dXdY (47)
(N-1)d(M-1)d
where
am = C—Xp (48)
and
by = Fy=Yn. (49)

Keep in mind that m,n are the indices of the pixel in the detector array corresponding to signal
S m n» @d M,N are theindices of the pixel in the reference array to which the signal is to be reg-
istered [Egs. (18) and (19)].
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The L,  integrals are represented here in terms of a row matrix K, and a column matrix

V, ¢ (the subscripts denote different matrices, not elements within the K and V, ¢ matrices)
where

L .=KV

r,s rVr,s:

(50)

Thetimeindex k is dropped for the sake of notational simplicity from the transformation elements
Ay 7a, Fy in the following equations. Also the names K, V. ¢, Pi(m), L;, §, C;, Q; used to
evaluate L, ¢ arelocal to this appendix.

For the zeroth order integral L g ,

r,s’

K, = d° (51)

For thefirst order integrals L ; ,

Ky = | (Po(M)PL(N)) (PyM)P(N) (Ky) | (53
Ly = [(A) (B) (54
Lo = |(D) (E) (55)
Vi = |(Ly) (ay) (56)
Vie = |(Lo) (by)] (57)

where Vr', s Isthe transpose of the column matrix V, <. By way of example

D
L1o = KiVig = | (PLM)PL(N) (PLMIP(N) (Ko) || E
bn
= dP,(M)D + dP,(N)E + d“b,, . (58)
For the second order integrals L , ¢
Kz = | (PaM)PL(N)) (PL(M)P,(ND)  (P(M)P5(N)) (Ky) | (59)
S = (A (208) (8% (60)
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S, = [(AD) (AE+BD) (BE)|

S0 = (0% (20E) (E)

(S,) (2a,L,) (a?nﬂ
(S1) @b+ byly) (ayby)

(S0) (20,L0) (62)

For the third order integralsL 5 ¢

Ky =

| (PAM)Py(N)) (P3(M)P,(N)) (P(M)P5(N))

(PL(M)P4(N)) (K) |

Cs = | (A% (3a%B) (3n8%) (B |

' (D% (3D°E) (3DE?) (Eﬂ

(A°D) (2ABD + A’E) (2ABE + B°D) (BZE)J

(AD?) (2ADE + BD?) (2BDE + AE?) (BE?) ]

(C9) (32,8 (3a2Ly) (a3 |

(Cy) (b,S,+22,S)) (a’L,+2a,b.L,) (a2b,) ]

(Cy) (2b,S; +2,Sp) (bL, +2a,b.L,) (a,b2) ]

: (Co) (3b,Sp) (3bZL,) (bﬁ)]

For the fourth order integralsL 4 ¢

K, =

| (Ps(M)Py(N)) (P4(M)P,(N)) (P3(M)P5(N))

(Po(M)P,(N)) (P(M)PS(N)) (Ks) |
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(61)

(62)

(63)
(64)

(65)

(66)

(67)
(68)
(69)

(70)

(71)
(72)
(73)

(74)
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Q, = [ (AY) (4A%B) 6A°B* 4AB® B4J (76)

Q, = [(A°D)(A“(AE + 3BD))(3AB(AE + BD))
(B%(3AE + BD)) (B%E) } (77)

Q, = [ (A’D?) (2AD(AE + BD)) (A’E? + B°D? + 4ABDE)

(2BE(BD + AE)) (B%E)) J (78)
Q, = [ (AD®) (D%(3AE + BD)) (3DE(BD + AE))

(E*(AE + 3BD)) (BE®) ] (79)
Qo = [ (D*) (4D°E) (6D°E®) (4DE’) (E4)] (80)
Vi = [(Q4) (42,,Cy) (6a5S,) (4asl,) (afn)] (81)

Vas = [ (Qs) (b,C;+3a,.C,) (3(ap,S,+a’S,))

(3a2b,L, +alLo) (alhy) | (82)
Voo = [ (Q,) (2(b,C,+a,C,)) (b°S,+a’S,+4a b S,)

(2(a2byLo+ anbiLy) (a2b?) | (83)
Va1 = | (Q)) (anCo+30,Cy) (3(anbySe+b2S))

(3a,b2Ly+b3L,) (a,bd) ] (84

Vao = [(QO) (4b,C,) (6b7S,) (4bﬁL0) (bﬁ)} (85)

Notethat the L, S, C, Q matrices are dependent upon only the transformation elements and there-
fore need be calculated only before each least squares iteration. The partial derivatives of the

L, S, C, Q matrices with respect to A, ¥, F,, which are required for the least squares fit proce-
dure, are asimple function of the preceding L, S, C, Q matrix (for example, the partial derivatives
of the S matrix are asimple function of the L matrices, etc.). The e ements within the K matrices
need only be evaluated once, and the V. matrices need to be evaluated for each pixel in each least
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squaresfit iteration. The P, parameters, which make up the K matrices, are defined as

mu

Ppm = O h" dn (86)
(m-1)d
30 that

P,(m) =d (87)

p,(m) = ZmT—l P (88)
V4

PS(m) — wxd?’ (89)
3 V4

P,(m) = 4m —6m4+4m—1xd4 (90)
4 3 Z

P5(m) _ 5m —-10m + 10m —5m+1xd5 (91)

5
where m is either a row or column pixel index in Egs. (86) - (91) that ranges from
(—Npixets 2) +1 10 Npjye1s 2. Npjyqs IS the total number of pixel rows or columns and must be
even. The origin of the integration variable h in Eq. (86) is at the center of the array detector.
The least squares fit procedure requires an evaluation of the partial derivative of Sﬁ’ﬂ y With
respect to each of the six transformation elements A, ¥4, F, where
ISun_ 2 o 1 16 Mes -

o = aa -
‘Hcj rzoszos!(r—s)!.”XS.”yr Sk,m,n “ﬂcj

Cj corresponds to the jth element in the sequence Ay, ¥4, F, . The partia derivatives of the Vr', S
with respect to the c; are straight forward to derive. Also, certain symmetries exists among the

partials themselves within each r manifold which can be utilized to alleviate the computational
costs.

L

Within the software program, the correctness of the analytical partials derivatives ‘ﬂ—cr 'S

j

should be verified at least once by a computational comparison with the numerical finite differ-

ence calculations of L. ¢ with respect to each transformation element; however, these finite dif-
ferences should not be employed in place of the analytical partial derivatives.

This registration algorithm is the basis for two MATLAB codes [10]: one is based on an

algebraic formulation and the other is based on the matrix formulation presented here. Although
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the matrix formulation is more elegant, it is computationally more expensive as indicated in Table
2. Our MATLAB codes have been converted to C code by Scott Strong. Even though this algo-
rithm is computational intensive, a least squares fit using every tenth pixel and registration of a
256" 256 array detector takes approximately five seconds on a Silicon Graphics Onyx (R4000)

workstation for a second order taylor expansion.

Table 2: Relative MATLAB Computational Costs.

Algebraic Formulation Matrix Formulation
2nd Order Taylor Expansion Number Flops: 211 Number Flops: 561
Time (ms): 23 Time (ms): 22
4th Order Taylor Expansion Number Flops: 1134 Number Flops: 4022
Time (ms): 40 Time (ms): 68
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