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Abstract

This paper presents an analytical, computational method whereby two-dimensional images
of an optical source represented in terms of a set of detector array signals can be registered with
respect to a reference set of detector array signals. The detector image is recovered from the
detector array signals and represented over a local region by a fourth order, two-dimensional tay-
lor series. This local detector image can then be registered by a general linear transformation with
respect to a reference detector image. The detector signal in the reference frame is reconstructed
by integrating this detector image over the respective reference pixel. For cases in which the gen-
eral linear transformation is uncertain by up to plus-or-minus two pixels, the general linear trans-
formation can be determined by least squares fitting the detector image to the reference detector
image. This registration process reduces clutter and jitter noise to a level comparable to the elec-
tronic noise level of the detector system. Test results with and without electronic noise using an
analytical test function are presented.
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1 Introduction
This work was motivated by the need to be able to register satellite images of the earth as

measured from different perspectives by an optical array detector for purposes of detecting and
identifying random, localized optical events. An exact comparison between successive satellite
images of the same earth scene is not possible because the satellite is never in the same position
and orientation relative to the earth scene as time progresses. Fluctuations in individual detector
pixel measurement values due to the regular, predictable motion of the satellite -- orbital, satellite
sun and earth tracking -- are referred to as clutter noise. Jitter noise is attributed to random, unpre-
dictable satellite motion such as angular motions due to tracking errors and equipment vibration.
Clutter and jitter noise associated with individual pixel measurements over time periods on the
order of seconds may be large compared to the detector shot and electronic noise.

The purpose of this paper is to present an algorithm that allows one to register images
acquired from different perspectives. In this method the detector image is recovered from the dis-
crete detector array signal values and represented over a local, continuous region by a fourth
order, two-dimensional taylor series (Sec. 3). This local detector image can then be registered by a
general linear transformation with respect to a reference detector image. The detector signals in
the reference frame can be reconstructed by integrating the registered detector image over each of
the respective reference pixels. For the case in which the linear transformation is known, this
image registration algorithm can be used to build a single extended image based upon a sequence
of individual (partially overlapping) images acquired from various perspectives, or it can be used
to look at differences between overlapping images taken at different times and perspectives (Sec.
4). Also, there are no practical constraints on the time dependence of the source image. In this
case, the clutter noise is essentially eliminated. On the other hand, if the motion of the system is
only partially known, due to the presence of jitter noise, so that the linear transformation is uncer-
tain by no more than plus-or-minus two pixels over a subset of pixels, then the linear transforma-
tion is determined by least squares fitting the detector image to the reference image. Only a subset
of pixel values are required for this least squares fit procedure; however, the number needed for
convergence to a desired accuracy increases as the detector noise increases. The least squares fit
procedure implicitly assumes that, in this case, the source image is essentially time independent
except for occasional random optical events and electronic detector noise. This registration pro-
cess can reduce clutter and jitter noise down to the electronic noise level of the detector system
(Sec. 5). Test results for a  array detector with and without electronic noise using an ana-
lytical test function are presented in Sec. 6 [1].

A survey describing various other image registration techniques has been given by Brown
[2]. Other algorithms for achieving subpixel registration have been given by Tian and Huhns [3]
and Goshtasby, Stockman, and Page [4]. A contour-based approach to image registration has been
developed by Li, Manjunath, and Mitra [5]. A least squares image registration algorithm has been
indicated by Zikan [6]. In this paper the iterative solution to the integral equation (9) in Sec. 3 is
central to our analytical registration method.

2 Definition of the Problem

Let the source image be  and time independent for the purposes of this discussion
(Sec. 2). Let  be the kth image that is projected on the array detector at relative time .

The x,y coordinates are attached to the array detector, and the origin of the x,y coordinate frame is

64 64×

Q u v,( )
Ik x y,( ) k∆t
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arbitrarily chosen to be the center of the array detector plane. The most general linear transforma-
tion [2, 7] between u,v and x,y is given by

(1)

(2)

and takes account of the changes in the detector image as a function of relative time t. Let
 be the (k+1)th image that is projected on the array detector at relative time .

During the time increment  the image projected onto the detector array may be rotated, scaled,

sheared, displaced relative to the x,y coordinate frame due to sensor motion as implied in Eqs. (1)
and (2). Equations (1) and (2) do not include the effects of perspective.

Now, consider the measured signals. Let  be the analytical representation of the mea-

sured signal  at time  from pixel m,n where

(3)

and  is the width of a square detector pixel. The center coordinates of each pixel in terms of the
indices m,n are given by

(4)

(5)

where m,n run from  to .  is the total number of pixel rows or

columns and is assumed to be even. The analytical signal from pixel m,n at time  is 

where

. (6)

Clearly, if the image has been rotated, scaled, sheared, displaced relative to the x,y coordinate
frame in the time interval , then  and  are functionally different and the signal

 is different from the signal  even though the source image has not changed. There-

fore, the problem here is that signal  does not register with signal .

The purpose of this paper is to define an algorithm that transforms the signal  so that

it can be registered with another signal such as .
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3 Analytical Representation of the Detector Image

The effects of detecting the optical image by an array detector consisting of 

square detector pixels of width  [8] is equivalent to applying a spatial frequency filter to the pro-
jected image function . Thus, the detector image  corresponds to the spatial fre-

quency filtered projected image function. If the point spread function of the optical system is
comparable or greater than the dimensions of a detector pixel, then the projected image function

 and the detector image function  are essentially the same and the overall reso-

lution of the system is consistent. These effects are exemplified in Sec. 6.

The detector image  at time , that can be deduced from , is represented

over a local region by a two-dimensional taylor expansion

(7)

where

. (8)

In our analysis  is carried out to fourth order [only the zero and first order terms are

shown in Eq. (7)]. The detector image  is related to the pixel signal  by

. (9)

Substitution of Eq. (7) for  into Eq. (9) yields

(10)

where

. (11)

Values for  are tabulated in Table 1. Odd order contributions from Eq. (7) in Eq. (9) are zero. 

In this analysis the partial derivatives  in Eq. (7) are expressed in terms of finite dif-

ferences so that, for example,
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. (12)

Consequently, all partial derivatives in Eq. (7) are replaced by various linear combinations of
 as defined in Eq. (8).

The  can be evaluated according to the following algorithm.

Step 1: The  are given to zeroth order by

. (13)

Step 2: To a higher order approximation consistent with Eqs. (7) and (9), the  are given by

. (14)

Using the previous values of  to evaluate the perturbing term , new values of

 are given by Eq. (14). A self-consistent solution is found by iterating Eq. (14) for all
allowed values of m,n. The rate of convergence is such that the maximum absolute fractional
change in  decreases by about an order of magnitude for each iteration. The zeroth order

solution gives values of  for  and , the second order solution

gives values of  for  and , and the fourth order solution gives

values of  for  and . It is computationally cost effec-

tive to first determine the second order solution and then proceed with the fourth order solution as
opposed to doing only a fourth order solution starting with the zeroth order values for .

At this point, we now have a functional representation of the detector image  as

represented by Eq. (7) in the vicinity of  as deduced from measured values of .
The neighborhood over which the two-dimensional taylor series representation of the image
extends is shown by the shaded region in Figure 1.

With respect to the performance of an actual optical system, it is important that the optical
system itself be free of asymmetric astigmatism if image registration is anticipated. Circularly
symmetric optical blur spots should not be a problem. Also, it may be necessary to correct the sig-
nal pixel values in order to account for any significant differences in their respective sensitivity.
The analysis presented in this paper assumes linear optics [Eqs. (1) and (2)]; however, these trans-

Table 1: Zeroth, second, and fourth order -coefficients for Eqs. (10) - (11).

Order

0th 1 0 0 0

2nd 5/6 0 1/24 0

4th 1219/1440 1/1920 13/360 1/576
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formation equations could be extended, at least in principle, to account for some nonlinear optical
effects.

4 Registration Algorithm for Known Transformation
This image registration algorithm (Sec. 4) can be used to build a single extended image

based upon a sequence of individual partially overlapping images acquired from various perspec-
tives, or it can be used to look at differences between overlapping images taken at different times
and perspectives. Also, it can be used to generate images from a given reference image for speci-
fied  for simulation purposes. This algorithm (Sec. 4) assumes that the transformation matrix

 can be specified either theoretically or from measurements of the system’s motion.
The coordinate transformation between source point u,v and image point x,y in the focal

plane of the detector at relative time  is  where

x 

y

m,n

δ

δ

Figure 1  A third or fourth order two-dimensional taylor series representation of the detector
image function  centered on pixel m,n [Eq. (7)] is characterized by the pixel values

 within the shaded region. A first or second order two-dimensional taylor series

centered on pixel m,n is determined in terms of  values from pixels

.
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. (15)

Since the x,y coordinate frame is attached to the array detector, the transformation  causes rota-

tion, scaling, shearing, and displacement of the image with respect to the x,y coordinates as a
function of time. Here,  is assumed to be known for all k.

In this discussion, the source image  may be time dependent. Let  be a

reference image that is related to the source image at relative time  by the transformation .

X,Y are the reference frame coordinates and simply correspond to the x,y coordinates at relative
time . Suppose that one wants to register other images with respect to this reference image. If

 transforms the source image  to the detector image , then  transforms

the detector image  to an image  in the reference coordinate frame where

. (16)

(This can be verified using a simple analytical function for  and arbitrary linear transfor-

mations for  and .)  is represented in terms of a two dimensional taylor series [Eq.
(7)] which represents the detector image over a limited spatial region (Figure 1) about the point

. The same image in the reference coordinate frame  is valid in a transformed

region [9] about the point  in the X,Y reference plane where

. (17)

An analytical representation of  in terms of  is given in the Appendix. The

 indices in the X,Y reference plane which contain the center of convergence  are

given by

(18)

(19)

where the operator ceil rounds a floating point number towards plus infinity to an integer. These
indices are consistent with the definitions in Eqs. (4) and (5). The transformation  can be used

to transform the region in Figure 1 to the corresponding region in the reference coordinate frame.

The registered signal value  associated with pixel  in the reference coordinate

frame corresponding to  is given by
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. (20)

Depending upon how  changes with time,  may not completely overlap with  and

may extend beyond the boundaries of . The order of the taylor expansion must be suffi-

cient for  to accurately span the area of integration in Eq. (20). This also implies that

there are practical limitations on . Registration of an image can result in the loss of informa-
tion. This can occur, for example, if the image projected on the array detector undergoes contrac-
tion (for example, due to increasing distance between source and detector).

5 Registration Algorithm for Unknown Transformation
Motion of the optical sensor with respect to the source image that is predictable gives rise to

clutter noise as measured by the array detector due to the motion of the projected image having
lateral contrast relative to the array detector. For example, an array detector zooming in on a static
source image would give various measurement values because the image projected on the array
detector would be expanding. Similarly, motion of the optical sensor with respect to the source
image that is random and unpredictable, such as system angular vibrational motion, gives rise to
jitter noise.

We now consider the problem in which  is not completely known. In particular, two kinds

of motion may coexist: motion that is predictable and motion that is random. In this registration
algorithm, the predictive motion between time steps may be large, but the random motion must be
small. This method is based on a least squares fit procedure that is used to determine the optimum
transformation for purposes of registering a detector image with respect to a reference image. This
algorithm can be applied to situations in which an optical array detector makes successive mea-
surements from different vantage points of a source scene that is essentially time independent

except for occasional random optical events in time and location. The measured signals 
may also include detector noise. As a result of the registration process, contributions to clutter and

jitter noise within  are typically reduced to the detector noise level. The least squares
algorithm is as follows.

Step 1: Pixel Selection. For the kth detector image, select pixels m,n whose signal values

 are to be used in the least squares fit procedure. As the least squares fit progresses,
alternative pixels may be used for successive iterations. At each iteration, the pixels in the refer-
ence frame may need to be matched, if necessary, to the pixels selected in the kth detector image
due to changes in the transformation matrix with each least squares fit iteration. Only those pixels
that overlap with the reference array are included in the least squares fit procedure. Within a
square subarray which typically excludes several of the outer rows, we pick every  pixel. If

convergence fails, another subset of pixels is chosen by picking every  pixel. A starting

value of  is reasonable. It may be necessary for the user to experiment with the num-
ber of pixels needed in order to get a sufficiently accurate least squares fit; the number of pixels
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M 1–( )δ

Mδ

∫
N 1–( )δ

Nδ

∫=

Tk Sk M N, ,
reg

SR M N, ,
ref

SR M N, ,
ref

Hk X Y,( )
TR k,

Tk

Sk m n, ,
measured

Sk m n, ,
measured

Sk m n, ,
measured

Nskip

Nskip 2⁄
Nskip 16=



16

needed in the least squares fit will depend upon the degree of lateral contrast in the detector image

and the level of detector noise relative to the lateral variation in .

Step 2: . From the measured values , the detector image values  are

determined as indicated in Sec. 3. The values of  and  define the two-dimensional

taylor series [Eq. (7)] that is an analytical representation of the detector image  in the

neighborhood of  (see Figure 1) at relative time .

Step 3: . The user must supply an initial guess for the effective transformation 

defined in Eq. (16). Even though  may result in significant displacement of the pixels with

respect to their original positions,  must position the image with respect to the reference

image to within plus-or-minus two pixels. If  is sufficiently small, then , which is known

from the previous least squares fit, can be used as the initial guess for . Another approach

might be to calculate  based on the known kinematics of the system. All of the known move-
ments of the system, which give rise to clutter noise and may give rise to large displacements, are
represented by ; presumedly values for the matrix elements of  can be calculated or
deduced from measurement. The unknown movements of the system which give rise to jitter
noise must be small and are represented by . Since  is unknown, it might be approxi-

mated by either zero motion matrix elements or the previous value , providing the present

value has some correlation with the previous value. Thus, the estimated value for  is given
symbolically by

. (21)

The estimated transformation matrix  must bring the pixels chosen within the subarray to
within plus-or-minus two pixels of being correctly registered assuming a third or fourth order tay-
lor series representation of  or within plus-or-minus one pixel of being correctly regis-
tered assuming either a first or second order taylor expansion. Otherwise, convergence of the least
squares fit procedure may be impossible.

Step 4: . Having  or  allows one to transform the detector image 

to its corresponding image  in the reference frame. The general analytical expression

for  is given in the Appendix. The two-dimensional taylor series in the reference coordi-

nate frame is expanded about  as given by Eq. (17); this point is contained with the reference

pixel  specified by Eqs. (18) - (19). The calculated values for  with respect to the

reference array are given by Eq. (20). The analytical expression for  as well as the partial

derivatives of  with respect to the  transformation parameters

 are given in the Appendix.

Step 5: Least Squares Fit Equations. Given that
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(22)

(23)

where  is determined from Eq. (20), the sum over n is over the  pixels selected

which can be registered with respect to the reference image. The parameter  corresponds to the

jth element in the sequence of transformation elements  in Eq.

(15). The analytical expressions for  and  are given in the Appendix. The idea is

to least squares fit  to  as a function of . This

implies that  must have some semblance to . Hence, this algorithm applies to

source scenes which are for the most part time independent. This does not exclude having detector

noise, and  may be perturbed by occasional random optical events; however, it is better to
exclude pixels from the least squares process having obvious transient optical signal values.

The corrections to the transformation parameters  are
found by solving the linear matrix equation

(24)

for  so that ,..., . Steps 4 and 5 are repeated until 

. (25)

where Epsilon has a value on the order of  and eps is set to a small number ( ).
Step 6: Image Registration. After the transformation  has been determined, the total

image can be registered with respect to the reference array by Eq. (20) giving  with clutter
and jitter noise contributions ideally reduced to the detector noise level. Optical events of interest

may now more readily be detected by taking the difference between  and .

6 Test Results

In order to exemplify these algorithms, the optical source function  was arbi-
trarily represented by the test function
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(26)

where 

(27)

(28)

and  is the width of the detector square pixels. The projected image function  is given
by

. (29)

The numerical values for  and  have been chosen so that the variation in  over a

pixel width is small (the detector image is consistent with the projected image). This condition is
fulfilled for

(30)

where i,j range from 1 to 2 as deduced from Eq. (31). This function can be integrated exactly for

any value of  and  to give the test pixel signal values  where

. (31)

The sinc functions in front of the cos functions in Eq. (31) correspond to the effects of spatial fre-
quency filtering inherent in the array detector. The numerical values arbitrarily chosen for the
transformation matrices were

, (32)
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, (33)

from which

. (34)

The fictitious array detector was characterized by  and  microns.

6.1 Test Images and Detector Signals

Three-dimensional mesh plots of the projected images [Eq. (29)] derived from  and 
are shown in Figure 2 and Figure 3, respectively. The two-dimensional gray-scale plot of each
image (Figure 2 and Figure 3) is shown in Figure 4 and Figure 5, respectively. Plots of the pixel

signal values  [Eq. (31)] for  and  are shown in Figure 6 and Figure 7, respectively,

and are essentially the same as those of the respective projected images aside from a scaling factor

of .
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6.2 Detector Image Comparison

The fractional difference  between signal value  as deduced numerically from

the algorithm in Sec. 3 and the test signal value  [Eq. (31)], which was determined exactly

from the test image source function , is given by

. (35)

The results of this computation are shown in Figure 8 and Figure 9 for second and fourth order
taylor expansions and indicate the error in determining  according to the algorithm in Sec.

3. The higher order representation extends the area over which  is represented. The accu-

racy is limited by the approximations implicit in Eqs. (10) and (11) (namely representing the par-
tial derivatives in the taylor series by finite differences). The values for  increase as the

spatial rate of change in  increases (by increasing the values for  and ).

The effects of noise have also been explored. Gaussian noise was added to , which is
shown in Figure 10. The standard deviation in this noise was defined to be 0.1 times the minimum

value of , which ranges between approximately  and  according to Eq. (31). The

fractional difference  between , as deduced from  with noise according to the

algorithm in Sec. 3, and the noisy  is shown in Figure 11.
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6.3 Test Registration with Known Transformation

The signal  shown in Figure 7 was registered to the reference signal  shown in
Figure 6 using the algorithm in Sec. 4. In this case the transformation is known [Eq. (34)]. The
quality of the registration is measured in terms of the fractional difference  between the

registered signal and the reference signal. This fractional differences  is shown in Figure

12. Without noise, the fractional difference in the signals is on the order of  to .

An analogous plot was made for the registration of  with noise to the reference signal

 shown in Figure 10. Both signals have the same level of (uncorrelated) noise (0.1, Sec.

6.2). Now the fractional difference in the registered and reference signal closely approaches as
expected the gaussian noise level as shown in Figure 13.
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test
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6.4 Test Registration with Unknown Transformation

The signal  shown in Figure 7 was registered to the reference signal  shown in
Figure 6 using the algorithm in Sec. 5. In this case the required transformation is supposedly
unknown. In order for the least squares fit algorithm in Sec. 5 to converge, the transformation
must be partially known at least to the extent that it will bring those pixel signal values chosen for
the least squares fit procedure to within plus-or-minus two pixels of being registered. The known
transformation in Eq. (34) was perturbed by adding to it the error matrix 

. (36)

The displacement of the border pixels associated with the square array  and

 centered on the array detector due to just  is shown in Figure 14.

For the case in which  and  are free of noise, the least squares fit procedure
using the second order taylor expansion converged in five iterations yielding

. (37)

The correct answer is given by Eq. (34) so that the residual error is

. (38)

 The results of this least squares fit in terms of the fractional difference between the registered

 signal and the reference  signal is shown in Figure 15.

Next, we consider the registration of  onto the reference signal  for the case in

which both signals are noisy (Sec. 6.3). The standard deviation in this noise was defined to be

0.02 times the minimum value of . The least squares fit using the second order taylor

expansion converged in sixteen iterations yielding

. (39)
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. (40)

The results of this least squares fit in terms of the fractional difference between the registered

 signal and the reference  signal both with uncorrelated noise are shown in Figure
16. 

The same noisy signals were registered using the fourth order taylor expansion. The least
squares fit converged in fourteen iterations yielding

(41)

with a residual error of

. (42)

The results of this least squares fit in terms of the fractional difference between the registered

 signal and the reference  signal both with uncorrelated noise are shown in Figure
17.

The question arises with regard to the level of noise the least squares fit procedure can toler-
ate and still converge. In order for the least squares fit to converge to the signal values rather than
quasi minimum associated with the noise on the signal, the magnitude of the noise must be small
compared to the difference in the signal on average between adjacent pixels. This suggests that
those pixels most effective in the least squares fit are associated with those parts of the signal with

the greatest spatial gradients. For example, the maximum fraction difference in  over one

pixel distance is approximately 0.05. Our calculations indicate that the ability of this registration
algorithm to register these particular signals diminishes significantly with fractional noise levels
above about 0.01 as expected. The results in Figure 16 and Figure 17 show that clutter and jitter
noise can be reduced down to the detector noise level providing the detector noise level is small
compared to the fractional variation in the detector signal between adjacent pixels.
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7 Appendix: Integrals and Partial Derivatives

The function  corresponds to

(43)
which is convergent in the neighborhood of the point  given by Eq. (17). The point 

also corresponds to those respective values of X and Y in Eq. (43) for which

 (44)

. (45)

The registered signal associated with pixel M,N in the reference array at relative time k is

 where

(46)

Consequently, it is necessary to evaluate integrals of the form

(47)

where

(48)

and

. (49)

Keep in mind that m,n are the indices of the pixel in the detector array corresponding to signal
, and M,N are the indices of the pixel in the reference array to which the signal is to be reg-

istered [Eqs. (18) and (19)].
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The  integrals are represented here in terms of a row matrix  and a column matrix

 (the subscripts denote different matrices, not elements within the  and  matrices)
where

. (50)

The time index k is dropped for the sake of notational simplicity from the transformation elements
 in the following equations. Also the names , , , , , ,  used to

evaluate  are local to this appendix.

For the zeroth order integral ,

(51)

. (52)

For the first order integrals ,

(53)
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(55)

(56)

(57)

where  is the transpose of the column matrix . By way of example

. (58)

For the second order integrals 
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(61)

(62)

(63)

(64)

(65)

For the third order integrals 
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For the fourth order integrals 
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(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

Note that the  matrices are dependent upon only the transformation elements and there-
fore need be calculated only before each least squares iteration. The partial derivatives of the

 matrices with respect to , which are required for the least squares fit proce-

dure, are a simple function of the preceding  matrix (for example, the partial derivatives
of the  matrix are a simple function of the  matrices, etc.). The elements within the  matrices
need only be evaluated once, and the  matrices need to be evaluated for each pixel in each least
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squares fit iteration. The  parameters, which make up the  matrices, are defined as

(86)

so that

(87)

(88)

(89)

(90)

(91)

where m is either a row or column pixel index in Eqs. (86) - (91) that ranges from
 to .  is the total number of pixel rows or columns and must be

even. The origin of the integration variable  in Eq. (86) is at the center of the array detector.

The least squares fit procedure requires an evaluation of the partial derivative of  with

respect to each of the six transformation elements  where

. (92)

 corresponds to the jth element in the sequence . The partial derivatives of the 

with respect to the  are straight forward to derive. Also, certain symmetries exists among the

partials themselves within each r manifold which can be utilized to alleviate the computational
costs.

Within the software program, the correctness of the analytical partials derivatives 

should be verified at least once by a computational comparison with the numerical finite differ-
ence calculations of  with respect to each transformation element; however, these finite dif-

ferences should not be employed in place of the analytical partial derivatives.
This registration algorithm is the basis for two MATLAB codes [10]: one is based on an

algebraic formulation and the other is based on the matrix formulation presented here. Although
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the matrix formulation is more elegant, it is computationally more expensive as indicated in Table
2. Our MATLAB codes have been converted to C code by Scott Strong. Even though this algo-
rithm is computational intensive, a least squares fit using every tenth pixel and registration of a

 array detector takes approximately five seconds on a Silicon Graphics Onyx (R4000)
workstation for a second order taylor expansion.
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Table 2: Relative MATLAB Computational Costs.

Algebraic Formulation Matrix Formulation

2nd Order Taylor Expansion Number Flops: 211
Time (ms): 23

Number Flops: 561
Time (ms): 22

4th Order Taylor Expansion Number Flops: 1134
Time (ms): 40

Number Flops: 4022
Time (ms): 68

256 256×
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