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Abstract

Fast, accurate imaging of complex, oil-bearing geologies, such as overthrusts and
salt domes, is the key to reducing the costs of domestic oil and gas exploration. Geo-
physicists say that the known oil reserves in the Gulf of Mexico could be significantly
increased if accurate seismic imaging beneath salt domes was possible. A range of
techniques exist for imaging these regions, but the highly accurate techniques involve
the solution of the wave equation and are characterized by large data sets and large
computational demands. Massively parallel computers can provide the computational
power for these highly accurate imaging techniques.

A brief introduction to seismic processing will be presented, and the implemen-
tation of a seismic-imaging code for distributed memory computers will be discussed.
The portable code, Salvo, performs a wave-equation-based, 3-D, prestack, depth imag-
ing and currently runs on the Intel Paragon, the Cray T3D and SGI Challenge series.
It uses MPI for portability, and has sustained 22 Mflops/sec/proc (compiled FOR-
TRAN) on the Intel Paragon.

1 This work was supported by the United States Department of Energy under Contract DE-ACO04-
94AL.85000, and by DOE’s Office of Mathematical, Information and Computational Sciences.
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1. Introduction. A key to reducing the risks and costs of associated with oil
and gas exploration is the fast, accurate imaging of complex geologies. Prestack
depth migration generally yields the most accurate images, and one approach to this
is to solve the scalar wave equation using finite differences. As part of an ongoing
Advanced Computational Technologies Initative (ACTI) project? a finite-difference,
3-D prestack, depth—-migration code for a range of platforms has been developed. The
goal of this work is to demonstrate that massively parallel computers (thousands of
processors) can be used efficiently for seismic imaging, and that sufficient computing
power exists (or soon will exist) to make finite-difference, prestack, depth migration
practical for oil and gas exploration.

Several problems have been addressed to obtain an efficient code. These include
efficient 1/0, efficient parallel tridiagonal solves, and high single-node performance.
Furthermore, portability considerations have restricted the code to the use of high-
level programming languages and interprocessor communications using MPI.

Efficient I/0O is one of the problems that have been addressed. The initial input to
our seismic imaging code 1s a sequence of seismic traces, which are scattered across all
the raid systems in the 1/O subsystem and may or may not be in any particular order.
The traces must be read, Fourier transformed and redistributed to the appropriate
processors for computation. In Salvo, the input i1s performed by a subset of the nodes,
while the remaining nodes perform the pre-computations in the background.

A second problem that has been addressed is the efficient use of thousands of
processors. There are a couple types of parallelism available in a finite—difference
solution of the wave equation for seismic imaging. The first and most obvious is
frequency parallelism; however, this limits the available parallelism to hundreds of
processors and restricts the size of problem that can be solved in-core. Spatial par-
allelism addresses both of these problems, but introduces another issue. Specifically,
an alternating direction implicit (ADT) method (or a variant) is typically used for the
solution at each depth level, which means that tridiagonal solves must be parallelized.
Parallelizing individual tridiagonal solves is difficult, so the problem has been handled
by pipelining many tridiagonal solves.

The remainder of this paper describes in more detail the algorithms and imple-
mentation used in Salvo and presents some numerical results.

2. Imaging algorithm. The following development is an industry-standard ap-
proach [Claerbout 1985, Yilmaz 1987, Li 1991], and is repeated here for reference.
The equation used to model the propagation of pressure waves through the earth is
the scalar wave equation,
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where P(z,y,z,t) is pressure, and v(z,y,z) is the acoustic velocity of the media.
This equation is transformed to a Helmholtz equation and then to the paraxial wave

2 The project title is “3-D Seismic Imaging of Complex Geologies: Remote and Rapid Processing
of Terabyte Datasets. Project Partners include Arco Oil and Gas, Conoco Inc., Cray Research Inc.,
Golden Geophysical (a division of Fairfield Industries), IBM, Intel SSD, Oryx Energy Co., PGS
Tensor, Providence Technologies, TGS Calibre, Sandia National Laboratories and The University of
Texas at Dallas Center for Lithospheric Studies.
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where w is the frequency of the propagating wave. The positive and negative signs
correspond to upcoming and downgoing wave fields.

The evaluation of the square-root operator is numerically difficult, hence it is ap-
proximated by a series that has its origin in a continued fraction expansion [Claerbout 1985,
p. 84] [Yilmaz 1987, p. 513]. The continued fraction expansion can be represented by
ratios of polynomials [Ma 1981] and the polynomial coefficients can be optimized for

propagation angle [Lee and Suh 1985]. With these approximations, the paraxial wave
equation can be written as

oP 1w T @S
—=4+— |1 P
(3) 0z + v + ZZ:; 14+ 85|
where
2 g2 2 92
(1) S=8 48, = v? 0 v? 0

w2 9z " W2 Oy?’
and ay and f; are the expansion coefficients [Lee and Suh 1985].
The terms of the expansion,
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are separated by the method of fractional steps [Fletcher 1988] and a sequence of
(m + 1) equations are solved (i.e., one for each term on the right-hand side of (5)).
The solution from one step in the sequence is fed into the next step until the last step
produces the solution at the next depth level.

The solution to the first equation,

W
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is simply a complex exponential. The primary computational load is the solution of
equations of the form
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Another operator splitting similar to the method of fractional steps is performed but

this time in the « and y directions. To convert the operator, S, to a linear combination
of Sz and Sy, we write
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and drop the cross—product terms to obtain

(7)

aPz W

9z

Oész

OzzSy

v |14 B¢Se

1+ ﬁzSy

b

The operators in (7) are once again split by method of fractional steps to produce the

sequence of equations
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These equations produce tridiagonal systems that can be solved efficiently.

To obtain an image that is reasonably accurate for waves propagating at angles

up to 65°, we retain two terms in (3) and solve

(10)
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with o = 0.478242 and # = 0.376370. Other approximations are obtained by choosing
different values for o and 3 and/or by retaining more terms in (3) [Yilmaz 1987].
Neglecting the cross product terms in (6) introduces substantial errors into the

image. We can partially correct for these errors by solving the additional “filter”
equation [Graves and Clayton 1990]

This is actually accomplished in a stable fashion by setting

and solving

(11)
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The factor €y was chosen to minimize the phase error along the lines y = £ for wave
propagation angles between 0° and 65°. The factors €; and €5 were chosen to provide
a stable numerical scheme without too much damping of the solution. The relation
€9 > (eoaﬁAzw)z /(4v%e1) — 3€1/8 is the relationship between el and €; required for
stability. D;, j = 1,2, is evaluated by solving a sequence of 4 tridiagonal linear
systems. Solving these tridiagonal systems is less computationally expensive than
solving (8) and (9), and in practice, we find that approximately half of the total
computational time is spent solving (11).

The boundary conditions must be chosen so that no waves are reflected back into
the domain, i.e., absorbing boundary conditions. Several possible absorbing boundary
conditions are given in [Clayton and Engquist 1980], of which two are used here. The
boundary conditions used when solving (10) are

opP v O°P w opP
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where
a = 1
b o— 1, left boundaries
- —1, right boundaries

. 2 — 2/\/3, left boundaries
o 2/\/3 —2, right boundaries

In phase—space, this is a hyperbola fit to the circle of the wave equation. The use of
first order differences in the boundary conditions maintains the tridiagonal structure
of the resulting linear system.

The boundary conditions used when solving (11) are
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—=+—P
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This boundary condition is designed to completely absorb waves incident at 30°, and
is used instead of (12) to provide a more stable discretization of (11).

3. I/0. Seismic datasets consisting of recorded pressure waves can be large,
sometimes more than a terabyte in size. Even if the computations can be performed
in-core, the time required to read the initial seismic data, read the velocity models
and write the images is substantial. In Salvo, the effect of the “I/O bottleneck” is mit-
igated by performing preliminary computations and data redistribution using nodes
not directly involved in the 1/0.

The trace dataset is distributed across many disks to increase the total disk-to-
memory bandwidth. A subset of the available nodes is assigned to handle the 1/0,
and each node in this subset, termed an I/O node, is assigned to handle I/O from one
file system.

The remaining nodes, termed compute nodes, can complete computations and
communications necessary before the migration can begin. Each compute node is
assigned to an I/O node, and performs the pre-computations on the data read by its
I/O node. Currently the pre-computation comprises fast Fourier transforms (FFTs),
but other computations could also be performed. If we assign a sufficient number of
compute nodes to each I/O node, the time to read a block of seismic data will be
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greater than the time required to compute the FFTs and distribute the frequencies to
the correct nodes for later computations. Thus, the computation time will be hidden
behind the T/O time.

A model of the I/O and pre-computations and communications can be developed
to determine the proper balance between 1/O nodes and compute nodes. The 1/0O
node begins by reading a block of data from a disk and distributing this data to a set
of compute nodes. The time required for this operation is approximately

i (V)]

where @ is the disk bandwidth, b is the blocksize, « i1s communication latency, 3 1s
the time to communicate one byte, and ¢ is the number of compute nodes.

The time to compute the FFTs, 7, is machine and library dependent. Because 7
can be measured easily on most platforms, it is not further decomposed into compu-
tational rates.

After completing an FFT, the compute node must distribute each frequency to
the processor assigned to perform the seismic migration for that z and y location and
frequency. The time to evenly distribute the frequencies of one trace is approximated

by
Pu

where p,, 1s the number of nodes at a specific  and y location, that is, the number of
nodes in the frequency decomposition, n is the number of words in a frequency trace,
¢ is the size of one word of data (g = 8 for single precision, complex numbers). The
total time required to FFT the traces and redistribute frequencies for b/(cn g) traces,
(i.e., the number of traces which one compute node processes) is approximately

S

To determine the minimum number of compute nodes for each I/O node, cop, the
time required to read and distribute a block of data must be equal to or greater than
the time required to FFT the time traces and redistribute frequencies. This yields

b (®+5)+/x
2w ’

(13) copt =
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All of the variables in the expression for cqp;, except p., are either machine
constants or defined by the problem size. Figure 1 shows the c,,; as a function of p,
and points indicating several “real” runs. We see that the model does a good job of
predicting whether the run time is dominated by disk reads or by computation and
communication.
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Fia. 1. The graph shows copt as a function of p,. Crrcles correspond to actual runs in which
I/0 nodes had no idle time; squares correspond to actual runs in which I/0 node were idle for part
of the run.

4. Tridiagonal solves. At each depth step the algorithm solves a sequence of
tridiagonal systems. It is difficult to parallelize the solution of a single tridiagonal
system, but this difficulty is offset because there are many such systems. Salvo takes
advantage of this by setting up a pipeline. That is, in the first stage of the pipeline,
processor one starts a tridiagonal solve. In the second stage of the pipeline, processor
two continues the first tridiagonal solve, while processor one starts a second tridiagonal
solve. This process continues until all processors are busy.

In the implementation of a pipeline, there are two sources of parallel inefficiency.
The first is communication between processors. This communication time is domi-
nated by the message latency since very small amounts of data must be transferred.
This can be offset by grouping several tridiagonal solves into each stage of the pipeline.

The second source of parallel inefficiency is processor idle time associated with
the pipeline being filled or emptied. This is dominated by the computation time of
each pipeline stage. It can be reduced by reducing the computation time, but it is
increased by grouping several tridiagonal solves in each stage of the pipeline.

The total parallel overhead can be minimized by choosing how many tridiagonal
solves are grouped into each stage of the pipeline. The number of tridiagonal solves
to group is based on the following model. The communication time is approximated

by
nmm:N@%+M@,

where N is the total number of tridiagonal solves, b is the number to be grouped
into each stage of the pipeline, « is the communication latency, and [ is time to
communicate one byte. The pipeline idle time 1s approximated by

Tpipe = Whny +p(2a + 2403) ,

where W is the total number of floating point operations required at each grid point,
n is the number of points in each stage of the pipeline, p is the number of processors in
the pipeline, and 7 is the computational time required for one floating point operation.
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(b)

Fia. 2. Impulse response for a filtered migration. An z-z section through the center of the
migration 1s shown in (a), and an z-y section through the 60° propagation angle (b).

The value of b that minimizes the total overhead, b,,;, 1s computed by summing
Teomm and Tp;pe, and minimizing. This yields

A 2N a 1
T A Wny 4+ 24p B ’

We have found this model to be quite accurate, and all results presented later in
this paper use this value of b,

5. Results. To validate Salvo, several tests were performed to ensure accu-
rate imaging of reflecting layers. The problems selected for the test cases include
a simple impulse response from a hemispherical reflector, the poststack migration of
the ARCO-French Model [French 1974][Sun 1996], and the prestack migration of an
SEG/EAEG-Overthrust-Model section [Aminzadeh et al. 1994].

The impulse-response problem is a good initial problem, because of the simple
inputs and the simple solution. The test can be described as a source impulse which
is initiated at the center of the hemispherical reflector. This impulse propagates into
the domain as a hemispherical wave. The reflected impulse coalesces at the center of
the hemispherical reflector generates a receiver impulse. Thus, the inputs for this test
are a source trace with an impulse at some time, a receiver trace with an impulse at
some later time, and a constant velocity field.

Figure 2 shows a typical output for this problem. The parameters used for this
run are

ny = 101, Az =5 m,
ny = 101, Ay =5m,
n, = 100, Az =5 m,
ny; = 128,  A¢ = 0.004 s,
ny = 63, v = 3000 m/s.

In Fig. 2(a), the shape of the hemispherical image in comparison to the reflector is
accurately determined up to a propagation angle of 65 degrees. Beyond 65 degrees; the
image curls back to the center of the domain. This structure is termed the cardioids of
the solution [Bunks 1995]. They are caused by the approximations to the square-root
operator in (3), where evanescent energy has been introduced.

In Fig. 2(b), an z-y plane through the solution is shown. The depth of the plane
was selected so that the 60 degree propagation angle is located on the hemispherical
reflector. The cross-section of the hemispherical reflector is nearly circular, which
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Fia. 3. The French Model acoustic velocity (a) and Salvo solution (b).

should be the case since this is within the 65 degree approximation limits. So although
a slight diamond shape remains, any further refinements in the filter would add little
value to the solution.

The ARCO-French Model adds two dipping layers to the French model to generate
a laterally varying overburden. The trace data is generated using a horizon based
phase shift approach, which yields exact results consistent with the one-way wave
equation, including dips up to 90 degrees [Sun 1996]. The velocity model has 111 x
111 x 250 grid points with a grid spacing of 100 ft. x 100 ft. x 20 ft. Therefore, the
total velocity-model volume is 11,000 ft x 11,000 ft x 5000 ft. A 2-D section through
the 3-D velocity model is shown in Fig. 3(a). There are several constant velocity
layers at different dip angles and two dome structures. (Only one dome is shown in
the figure.) All the flat dipping reflectors are angled into the page so that the worst
case, reflectors along the line y = =z, is tested.

The trace dataset is generated by an exploding reflector algorithm and requires
poststack migration. With a slight modification, the Salvo code can handle poststack
data and perform the poststack migration. A calculated solution is shown in Fig. 3(b)
using the French velocity model and the poststack traces. Good agreement with the
velocity model is seen.

Finally, a small region of the synthetic SEG/EAEG Overthrust Model was used
to evaluate the Salvo code. This model has more variations in velocity, both in depth
and 1n the horizontal directions. The velocity model for the entire Overthrust Model
has 801 x 801 x 187 grid points with 25 m spacing in each direction. The selected
subvolume has 100 x 100 x 150 grid points, and a 2-D slice of this subvolume is shown
in Fig. 4(a).

The trace dataset was generated with the original SEG acoustic-wave-propagation
code and used as input to the Salvo code. The trace dataset was used in its raw form
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(a)

Fia. 4. SEG/EAEG Overthrust 2-D Section: velocity model (a) and Salvo solution (b).

and did not have deconvolution performed or first arrivals removed. The latter caused
noise near the surface. The 2-D section of the image produced by Salvo corresponding
to the 2-D slice of the velocity model shown in Fig. 4(a) is shown in Fig. 4(b), and
again, good agreement with the velocity model 1s evident.

We are continuing to test and validate Salvo.

6. Performance. To test the computational performance of Salvo, the sample
impulse problem was run on the Intel Paragon. The spatial size of the impulse problem
has been adjusted so that each processor has approximately a 101 x 101 spatial grid.
Sixty-four frequencies have been retained for the solution independent of how many
frequency processor were used.

Timings for the sample impulse run are shown in Table 1. From these numbers,
we can make a few statements about the parallelism of the migration routine. First,
the spatial parallelism is very efficient as soon as the pipeline is fully utilized (after
3 x 3 x 1 processor mesh). However there is a penalty for introducing the pipeline
in each direction, which is about 10% for each (i.e., 1 x 1 x 1 at 100% to 91% for
2 x 1x1, and to 81% for 2 x 2 x 1). The origins of this “overhead” is still under
investigation.

Second, the frequency parallelism is very efficient, staying in the upper 90’s for
most of the problems. This is expected, since frequency parallelism requires little
communication during the solve. The primary communications are a broadcast of
velocity data at the beginning of each depth step and a summation to produce an
image at the end of each depth step.

For an additional timing figure, we ran a 2000 x 2000 x 1000 impulse problem
with 140 frequencies on a 1,792-node Intel Paragon. Each node processed a 250 x 250,
z—y subdomain with 5 frequencies. The total run time was 7 hrs., 51 mins, which
corresponds to a computational rate of 22 Mflops/second/node.

7. Conclusions. In this paper, an implementation of a wave-equation-based,
finite—difference, prestack, depth migration code for MPP computers has been pre-
sented. The results of several test runs were presented to show the accuracy of the
code. Also, timing results and performance models have been presented to show that
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pr X py X po | Runtime (sec.) Efficiency (%)

Spatial Parallelism

Ix1x1 84.1 100.0
2x1x1 92.4 91.0
2x2x1 103.2 81.5
3x3Ix1 108.7 77.4
4x4x1 108.9 77.2
hxbxl1 112.2 75.0
6x6x1 114.8 73.3
TxTx1 115.6 72.8
8x8x1 116.2 72.4
Frequency Parallelism

Ix1x1 84.1 100.0
1x1x2 42.21 99.6
1x1x4 21.19 99.2
1x1x8 10.63 98.9
1x1x16 5.35 98.2
1x1x32 2.71 97.0
1x1x64 1.40 93.8

TABLE 1

Timings for a sample impulse problem for spatial, frequency, and mived parallelism on the Intel
Paragon. Single processor times are estimated. All other times are measured.

the code can be tuned to run

efficiently on MPP computers.
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