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Abstract

A gridless method has been developed for the simulation of coupled fluid/structural interactions
over arbitrary bodies. This method uses Eulerian-based points arbitrarily distributed over the
computational domain with no formal connectivity as typically required for a traditional grid.
Comparisons are made with known exact solutions for simple two-dimensional model
problems. Methods of improving the accuracy of the current implementation by using higher
order approximations have been implemented. Accuracy improvement by using point adaption
has been investigated. Plane strain and axisymmetric shells have been added to the code
structural code PRONTO2D for future fluid/structural calculations. To date, coupled fluid/
structure calculations have not been made.
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1 Introduction

There are numerous important fluid and structural problems which require tracking a
moving membrane responding to the forces induced by the motion of a fluid. Examples include
the deployment and inflation process of a parachute and air bag; the aeroelastic phenomenon
- known as aileron buzz; and in the biomedical field, the opening and closing of pressure-driven
heart valves and angioplasty balloon devices. Safety issues are also a concern in those areas
where a rapid decompression may occur, such as a tire blowout at highway speeds. New
techniques in mold processing using inflatable bladders may improve quality control by
reducing anisotropic strain rates during manufacturing.

Fluid/structure problems, such as the examples listed above, are difficult to solve using
existing numerical techniques. The difficulty in simulating coupled problems persists because
the solution algorithm, in addition to solving for the fluid dynamic field variables (e.g., density,
pressure, velocity, etc.), must also provide for the motion of both the membrane surface and the
surrounding mesh. Transient remeshing of unstructured grids is computationally expensive, and
convergence and solution accuracy degrade appreciably when the motion of the grid results in a
highly distorted mesh. Typically, such grid related errors occur where large-scale structural
deformation and/or large flow gradients occur, and it is precisely in those regions where the--
greatest accuracy is required.

In order to avoid the problems associated with grid generation and grid distortion, we
proposed to develop a new technique which provides for the solution of both the field variables
and the structural motion utilizing a gridless technology based on a random point distribution.
The strength of the methodology lies in its ability to model any geometry in two and three
dimensions using “clouds” of discrete points with no requirement for the points to be connected
to form a grid as in conventional computational fluid dynamics (CFD) and structural mechanics—
algorithms. The governing partial differential equations (PDE’s) which determine the equations—
of motion are solved locally at every point in the domain.

The proposed method is not a finite-difference, finite-volume, or finite-element approach
since differences, metrics, areas, or volumes, are not computed. The methodology is extremely
versatile in that the governing equations of motion for the fluid dynamics are not limited to one
class of problems. That is, the method permits one to solve the relevant equations based on the
complexity of the problem at hand. Hence, the difficulty of simulating either a potential flow,
Euler flow, or full Navier-Stokes flow, and the ability to model compressible or incompressible
flows is dictated only by the set of PDE’s solved and is easily amenable to a modular code
structure. This modularity appears as a simple consequence of the fact that the equations of
motion are independent of the point distribution and the solution algorithm is completely grid
free.

In this report we summarize research conducted during FY94 and FY95 on a gridless
technique for fluid/structural dynamic coupling on flexible membranes. This project was funded
by Sandia National Laboratories’ Laboratory Directed Research and Development (LDRD)
program. There were a number of principal investigators for this project. These were divided
into smaller teams, each responsible for one part of the project. In this report, each chapter
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describes one aspect of the project and was authored by those team members responsible for
that aspect. If a chapter does not list specific authors, e.g., this chapter, then all members of the
research team contributed to its content.

Chapter 2 presents an overview of gridless methods along with a brief survey of recent
work by others in this area. We also give an example of the gridless method applied to a simple
one-dimensional problem and present the concept of coupled linear operators for solving
systems of differential equations. In Chapter 3 we give a description of the specific methods
currently implemented in our gridless code and present some numerical results for our two-
dimensional model problem: fluid flow described by Laplace’s equation. Chapters 4 and 5
describe the results of efforts to improve the solution accuracy. Chapter 4 gives results of-—
research into higher-order representation of the variables over the computational domain, and
Chapter 5 presents the results of our investigations into point adaption. Chapter 6 contains
results of research into shell elements, which are needed for coupled fluid/structural
calculations. Chapter 7 contains a summary of the work and recommendations for the direction
of continued research in gridless methods. Because of this modular report structure, each
chapter is a semiautonomous unit with its own equations and nomenclature. Symbols are
defined in each chapter as they are used. We have, therefore, decided not to include a
nomenclature section for the entire report.

From its inception to completion, this project had several personnel turnovers. One of the
individuals responsible for the original concept of this project and the LDRD proposal was
Anthony Thornton, currently Director of Diversity Leadership and Education Outreach. Due to
his promotion in early FY94, he was unable to participate in the actual research. Christine
Hailey left Sandia at the beginning of FY95 to take a position at Utah State University. She was
able to continue her involvement during the summer of 1995 through a university research
contract. Walter Wolfe joined the project in January of 1995.

Because of unexpected difficulties with some of the tasks, LDRD funding cutbacks in
FY95, and personnel turnovers, we were not able to complete all of the tasks originally planned.
Extension of the method to the Navier-Stokes equations and the actual coupling of the fluid and
structural calculations were not completed.
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2 Overview of Gridless Methods

Roy S. Baty & Walter P. Wolfe

2.1 Introduction and General Gridless Philosophy

In this chapter we present a summary of gridless methods, a brief review of recent work by
others in this area, and an outline of our current gridless method applied to a simple, one-
dimensional problem. We also present an optimization of our calculations using the concept of
coupled linear operators. The extension of the current gridless method to two dimensions is
presented in Section 2.5 and Chapter 3.

The gridless method we present here uses Eulerian-based points arbitrarily distributed
over the computational domain with no formal connectivity as typically required for a
traditional grid. Each point in the domain has associated with it a cloud of neighboring points.
These neighbors are chosen by a scheme that considers their position relative to the point of
interest. Derivatives in the governing PDE’s are numerically approximated by assuming a
functional dependence of each variable within the local cloud of points, where the number of
points in the cloud is greater than or equal to the number of unknown derivatives. The number of.
points is usually greater than the number of unknown derivatives in order to improve the
accuracy of the derivative estimates. We have assumed here that the form of the functional
dependence is a Taylor series. The governing partial differential equations are then solved
locally at each point in the computational domain. This gives a solution to the governing
equations without any a priori assumptions concerning grid or element topology, and allows for
addition, deletion, or movement of points with no change in solution algorithms.

2.2 Previous Gridless Investigations

In recent years, a few individuals have begun to investigate gridless techniques. Liska and

Orkisz! and Batina® have reported results of initial investigations into the use of gridless
methods for two-dimensional applied mechanics and fluid flow applications, respectively. Liska
and Orkisz calculated derivatives by assuming a second-order Taylor series expansion about the
central point in a nine point cloud. This formulation gives eight equations for the calculation of
five derivatives. To solve this overdetermined set of equations, they used a weighted least

squares formulation. They chose a weighting factor of 1/ Ai » Where A; is the distance between

the cloud’s central point and the j’h neighboring point. The justification for the use of this
weighting factor was not given. Boundary conditions were imposed through the use of ghost
points.

One of the significant points to come from the work of Liska and Orkisz is the importance
of point geometry when forming a local cloud. The most straightforward means of selecting
points for a cloud is to pick the N points that are closest to the point of interest. However, this
criterion often gives an ill-conditioned or singular set of equations due to an irregular
distribution of points. They found that an additional criterion is often needed to insure that the
points have a more uniform angular distribution about the point of interest. We confirmed this
finding in our research.
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Batina investigated the use of gridless methods for calculation of flow over 2-D airfoils,
using both Euler and Navier-Stokes equations. He assumed a first-order Taylor series expansion
for the cloud of points and used a least squares method to determine the derivatives. Details of
the least squares method are not given. He also imposed boundary conditions by using ghost
points. In the examples presented in reference 2, the points in the computational domain were
determined by using an unstructured-grid generator and picking the centers of the resulting
triangles as the points. The cloud of neighboring points was determined by choosing the centers
of the triangles that shared sides with triangle of interest. This gives a four-point cloud where
the points are reasonably evenly distributed around the point of interest. Any problems arising
from irregular point distribution were, therefore, not addressed.

2.3 The Gridless Numerical Method

The gridless numerical method developed here consists of two parts: (1) a scheme that
approximates a function and its derivatives and, (2) a scheme that combines the function/
derivative approximation with iterative techniques to satisfy the differential equation and the
boundary conditions. The solution proceeds in a interactive manner between these two parts, or
steps, until a specified convergence criteria is met. To start the iterative process, an initial
distribution for the function is assumed. The gridless scheme separates the approximation of the
function and its derivatives from the solution of the differential equation so that arbitrary
distributions of field points may be applied to compute the solution. In this section, a gridless
method is derived for a 1-D model boundary value problem, illustrating the basic approach for
linear differential equations.

To develop the scheme for a linear boundary value problem, consider the simple 1-D
model problem defined on the closed interval [0,1]:

a0’ (x) + a9’ (x) + apd(x) = 0 (2.1)

and

¢(0) = o and ¢(1) = B (2.2)

where o, B, and q, for i = 0, 1,2 are constants.

Now, let {x,} be any finite partition of [0,1] such that x; = 0, xy = 1, and x;< X for
all j<k. Note that {x,} is not assumed to be uniformly spaced. Next, recall that the Taylor

series for the function ¢ expanded about any partition point x; in [0,1] is given by:

Ok +h)) = 0(x)+0 (x)h;+ —21—!¢”(xl.)h 2 %(b”’(xi)h R 2.3)

where h; = x;—x ;- Then truncating the Taylor series after the second derivative and

rearranging yields:

OCx,+h)) = 0(x) 2 ¢’ (), + 507 (x)h 2.4)
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Applying equation (2.4) at [ (I 22 ) points neighboring x; produces the linear system:

Dt =1 | 2.5)
where
S
h, 2—!’1?
1.2
D= M M 2.6)
1
hy 5"12
£ =160 61 2.7)
and
n=1[0,-0 0,-0 ... ¢,-01" (2.8)

Here the superscript T indicates the transpose of the vector. The boundary conditions given by
equation (2.2) are satisfied by fixing the value of the solution ¢ at the points O and 1. For more
general boundary value problems, such as potential flow, the derivative matrix D is reformulated
to satisfy the boundary conditions on the boundary of the computational domain. The details of
this reformulation are contained in subsection 3.2.3 on page 27.

As an example of how equations (2.6), (2.7) and (2.8) are evaluated, a typical calculation
might use four grid points to evaluate the matrix equation (2.5): the point where the differential -
equation is solved and three neighboring points, generating a 3 x2 matrix for D. Only
determined and overdetermined linear systems are used to approximate the function and its
derivatives. The determined case (D is a nonsingular square matrix) produces a unique solution
for the derivatives, while the overdetermined case (D is a rectangular matrix with nullity of
zero) yields a unique least squares solution. The underdetermined case where there are more
unknowns than points has an infinite number of solutions and was not consider in this study.

The differential equation (2.1) defining the boundary value problem can also be written in
matrix form as: '

LE = v (2.9)
where
ap ap
L=|0 0 (2.10)
0 0
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&=1¢" ¢"1 2.11)

and

v=lae .. d 2.12)

Equation (2.10) representing the differential operator is written as a matrix with the same row
and column dimensions as the derivative matrix D by adding zeros as needed. This
representation for L is used to simplify the analysis for the coupled linear operators presented in_
Sections 2.4 and 2.5.

- To see how the basic gridless scheme works for the model problem, the local -

approximation defined by equations (2.5) and (2.9) must be applied at each grid point in (0,1).
This requires defining the computational cells used to approximate the solution of the boundary
value problem. Figure 2.1 shows the computational interval (0,1). The solid dots represent an
arbitrary computational cell in this interval. For each grid point x; in (0,1), choose at least two
distinct points x; neighboring x;. Each x; and its neighbors will constitute the computational
cell, or cloud, for x;, yielding the explicit equations for the local approximation. The boundary
conditions (2.2) are satisfied by fixing the value of the solution ¢ at x; = 0 and x, = 1.

x; computational cell

Figure 2.1 An arbitrary computational cell in the interval (0,1) for the gridless
numerical method

Once the local approximation of the boundary valuc problem has been determined, the
gridless scheme computes the solution using an iterative process. The following five steps are
performed on the computational domain:

1. Guess a value for the solution ¢(x;) at each grid point in (0,1). Fix ¢ at x, = 0 and
xy = 1 so that the boundary conditions are satisfied.

16



2. On each computational cell, compute the approximate derivatives &(¢) from equation
(2.5). Since, in general, equation (2.5) represents an overdetermined system of
equations, a least squares scheme must be used to compute .

3. Substitute & and ¢ into matrix equation (2.9) and define a local residual as a function of

o:
R, (¢) = LE-v (2.13)

4, Compute ¢ such that —€ <R, (¢) <& for some small value € >0. Any convergent

root-finding scheme can be used. Steps 2 through 4 are repeated at each point in the.
computational domain.
5. After steps 2 through 4 are completed for each cell in the domain, a global residual is
~ computed and checked for convergence. The global residual, R, is defined as’

N
R; = ’ZR{ (2.14)
1

where N is the number of field points in the computational domain. If the global
convergence criteria has not been met, the solution procedure repeats starting with step -
2.

To measure the convergence of this scheme, a global convergence criteria is defined as:

Rg

—- <C¢ (2.15)

Rg
where R'Cl; is the n™ iteration global residual, R((); is the initial starting solution global residual,
and C is the global convergence criteria. The basic gridless scheme consisting of steps 1.
through 5 is computed iteratively until equation (2.15) is satisfied. Numerical examples of the
convergence and accuracy of this scheme are given in Chapter 3 for potential flow.

2.4 Least Squares Solutions for Coupled Linear Systems

In the preceding section, a general numerical scheme was derived to approximate
solutions of differential equations on irregular meshes. For arbitrary linear differential
equations, this numerical technique yields coupled systems of linear equations on each local
computational cell. This section outlines an algebraic method to find the solution of an arbitrary
coupled linear system on an arbitrary computational cell. The solution obtained for the coupled
system on each computational cell at each solution iteration will be a least squares solution
which will minimize the local residual computed in step 3 above for a fixed value of v. Recall
that least squares solutions minimize the error in terms of Euclidean length.

Consider the following system of linear matrix equations:
DE = (2.16)
LE = v (2.17)
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where Dand L are M x N matrices, § is a N-component vector, and 1), v are M-component
vectors. On an arbitrary computational cell for some solution iterate, D€ = 1 approximates the

derivatives, &, of the unknown function, 1, and LE = v approximates the differential equation. -
Equations (2.16) and (2.17) define a coupled linear system.

In general, coupled linear systems do not have solutions. As an example of a coupled
linear system with no solutions, suppose that equations (2.16) and (2.17) represent the simple
scalar equations '

Gt = 1 (2.18)
bE =y (2.19)

where a, b, M and v are any nonzero scalar values such that 1/a # v/b . Notice that the coupled
equations (2.18) and (2.19) are solvable only in the event

n/a = v/b (2.20)

Hence, a solution to equations (2.18) and (2.19) does not exist. However, a least squares
solution may be found. The least squares solution is the best approximation to equations (2.18)
and (2.19) in the sense that it minimizes the error defined in terms of the Euclidean norm.

The problem defined by the coupled linear system (2.16) and (2.17) has been solved in a

general algebraic setting for abstract linear operators by Bryan, Kinyon and Tucker.? Their work
is applicable to any coupled linear system. Following the development of reference 3, a new
matrix G is introduced:

G = H 2.21)
L

So, the coupled linear system then becomes
GE =z (2.22)

where z = [n v]T. Now, a least squares solution of (2.22) is a least squares solution of the

original problem defined by equations (2.16) and (2.17). And applying the results of Bryan,
Kinyon and Tucker, the least squares solution to equation (2.22) is given by

G* m = % [L*v + (- L*L)D™] + % [D™ + (- D*D)L*v] (2.23)
v

where G*, D*, and L* are the Moore-Penrose inverses*> of G, D, and L respectively.

Therefore, to obtain a least squares approximation to the computational problem defined
by equations (2.16) and (2.17), equation (2.23) must be computed on each interior
computational cell at each solution iteration. Now, to see how equation (2.23) might be applied
in practice, an example is given. In the coupled linear matrix problem, let D and L be the
rectangular matrices

18



112 011
D=1922 ana =000 (2.24)
1 01 000
1 01 000
and let the vectors 1 and v in equations (2.16) and (2.17) be given by:
n=[2022]" (2.25)
and
vy =[0000]". ‘ (2.26)

The differential operator L is written as a matrix with the same row and column dimensions as
the derivative matrix D by adding zeros as needed. This representation for L is used to simplify
the analysis for the coupled linear operators. In this example, the matrix D is just a simple
matrix with integer entries which has no immediate physical or numerical interpretation.
However, the matrix L can be associated with a linear differential operator and a matrix similar
to L will be applied to approximate Laplace’s equation in Section 2.5. ~

To compute the least squares solution of (2.21), first notice that the Moore-Penrose
inverses of D and L are given by:

33 -1 -1
LOOOI, 4 12 12
D+=01oo21 D (2.27)
11
00, 1 o
and
2000
0000/ " o
L*=11000 0010 (2.28)
1000
0001

Analytical methods to evaluate the Moore-Penrose inverses of these rectangular matrices are
developed in Campbell and Meyer;4 however, in numerical practice, the singular value

decomposition (SVD) method can be used to compute the Moore-Penrose inverses.

Substituting equation (2.26) into (2.23) yields

G* H = % (d-L*L)D*n + % D*n (2.29)
v

which reduces to
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G*N = (-} 1D | (2.30)
v 2

To evaluate equation (2.30) numerically, equation (2.27) and the first term of equation (2.30) are -
simplified, yielding

0.14286 -0.23810 0.26190 0.26190
D*=10.00000 033333 -0.16667 -0.16667 (2.31)
0.14286 0.09523 0.09523 0.09523

and ' >
| 1 0 0 |
I-5L°L)=|0o 3/4 -1/4| (2.32)
0 -1/4 3/4

Combining equations (2.31) and (2.32) then gives

: 0.14286 -0.23810 0.26190 - 0.26190
(-5 L'DD* = | 003572 022619 —0.14881 -0.14881 (2.33)
0.10715 -0.01191 0.11309 0.11309

Finally, applyingy=[{202 2)7 to this matrix produces the least squares solution

1 4/3 |
x=(- > B*B)D™n = -2/3 ‘ (2.34)

2/3

Now, to see that this solution satisfies the coupled linear system, substituting the right-
hand-side of (2.34) and equations (2.24) into equations (2.16) and (2.17) yields

11 2] 5]
02 2| 43 0

D¢ = Lol 2/3| = ) (2.35)

2/3
10 1 2
and

01 1 0]
00 ol ¥?3 0

L§ = —2/3| = (2.36)
000, 0
0 0 0 0
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as required. Notice that the solution & computed here is not unique; although it is an optimal
solution in the least squares sense.

2.5 Least Squares Solutions for the Gridless Method

This section applies the least squares solutions for coupled linear systems to an example of
the gridless method. The specific gridless scheme developed here is used to simulate steady,
incompressible, potential flow in two-dimensions. Potential flow is described by Laplace’s
equation:

V29 = 0 (2.37)
subject to the boundary conditions:
Vo - i = 0 on stationary solid bodies (2.38)
and
Vo approaches the freestream velocity as r — oo. (2.39)

Here, in equation (2.38), # is a normal vector for the solid bodies. In rectangular coordinates
equations (2.37) and (2.38) may be written as:

O+ 0y, =0 (2.40)
and

O,n + 0,1y = 0 (2.41)

o T .
where i = [n, ny] is the normal vector.

The linear partial differential equation (2.40) requires the numerical approximation of the
second derivatives of ¢ . Therefore, the Taylor series used to approximate the derivatives of D
will be truncated after the second order terms:

'~ I, 2 1, 2
¢j=¢i+hj¢x+kj¢y+§hj ¢xx+§kj ¢yy+hjqu>xy (2.42)

Equation (2.42) is expanded about the field point (x;, y;) where h; = x;—x; and k; = y;-y;.
For the examples computed in this report, each computational cell in the flow field will assume
nine grid points: a single field point where ¢ is approximated and eight surrounding field points.
This yields a 8 x 5 derivative matrix D, a 5-component derivative vector & and an 8-component
potential-value vector n:
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kDL
D = hy ko %h% %k% hak, (2.43)
h8 kS %hg %ké h8k8‘
& =10, ¢, 0y 0y, 0,1 | (2.44)
and ’
N =10;-0 ¢,-0 ... o3-0]" (2.45)

On solid bodies, the boundary condition given by equation (2.38) must be satisfied. This is
accomplished by substituting V¢ - 72 = O into the Taylor series so that the derivative matrix D
is modified. For the numerical examples presented in Chapter 3, six field and boundary points

are used to approximate the potential flow at each grid point of the body. Furthermore, the ---

equation (2.41) is combined with the Taylor series so that singularities do not occur in the event
that n, = O or n, = 0 (see Subsection 3.2.3 for details). '

The next step in developing the gridless method is to obtain a matrix representation for
Laplace’s equation (2.40). Since this differential equation is a linear combination of two

components of the derivative vector, a 8 X 5 matrix L representing the Laplacian is given by:

00110
L=190000 (2.46)
where the Image vector is zero:
v=100..0] (2.47)

Notice that the dimensions of L are chosen to agree with the dimensions of the derivative

matrix. This representation for L will simplify the numerical evaluation of the gridless
numerical scheme on a computational cell. '

Now to compute the least squares solution of the coupled linear system:
DE = n (2.48)
LE = v (2.49)

defined by equations (2.43), (2.45), (2.46) and (2.47), the Moore-Penrose inverses must be
computed for D and L. The Moore-Penrose inverse for D is computed numerically using
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singular-value-decomposition, while the Moore-Penrose inverse for L is computed analytically.

Recall that L is very similar to the example derived in Section 2.4. This analysis implies that L*
is given by:

[
ot

20000000
- 710 1
00000 00000O00O0
0000000100000
L+=1000000010000 (2.50)
1000000001000
0000000000100
- "0 0000010
0 000000 1
Simplifying L™ yields the 5 x 8 matrix:
(0 0.0
0 0 ..0
L*=1/2 0 ... 0 (2.51)
172 0 ... O
L 0 0 ... O]
Substituting equations (2.50) and (2.51) into the first term of (2.30) produces:
1 0 0o o 0
1 0 1 0 0 O
I-5L'D=]0 0 3/4 -1/4 0 (2.52)
0 0 -174 374 0
0 0 0 0 1

Finally, € is evaluated by computing D*1 using the singular-value-decomposition and then
applying the result as shown in equation (2.52).
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3 Current Gridless Scheme

‘Walter P. Wolfe, Roy S. Baty, & Glenn A. Laguna

3.1 Overview

In this chapter we present a description of the procedures used in our current two
dimensional gridless code and then present numerical results for our 2-D model problem. For
our model problem, we chose fluid flow modeled by Laplace’s equation because exact solutions
are readily obtainable and this allows us to quantify the accuracy of the method. Only the basic
code is described in this chapter. Enhancements, such as higher-order distributions within a
cloud and point adaption, are presented in later chapters. The code is written in ANSI standard
C.

The current code does not have a built-in point generator. The initial distribution of points
must be generated externally and are read from a grid file. A boundary condition flag is
associated with each point to indicate whether that point is an interior point or a boundary point,
and, if a boundary point, what type of boundary. Some of the test versions of the code also read
in the exact solution in order to compute the final solution error.

3.2 Method Development
3.2.1 Cloud Formation

The only requirement for the distribution of points in a gridless method is that it allows an
accurate solution of the governing equations over the entire computational domain. Each point
has associated with it a cloud of neighboring points that are used to determine the derivatives
needed to solve the governing equations. In the following discussion, we have chosen the word
Jfocus to designate this central point and the word neighbors to designate the other members of a..
cloud.

We have assumed that the points are read into the code in a completely random order, i.e.,
there is no underlying structure to the point array. Therefore, the entire array of points must be
searched for each focus to find the points that form its cloud of nearest neighbors. Although this
is a time consuming process, it need only be done once for each point during the initial problem
setup and, therefore, is not a large fraction of the total run time. Once found, the neighboring
points’ indices are stored in each focus’ data structure. A point’s index number is its position in
the original point array. We made no attempt to develop efficient functions for this search.

The search procedure proceeds as follows for each point in the interior of the domain:

1. For each point or focus, the distances to all other points are computed.

2. This array of distances is sorted from smallest to largest using a Quicksort function
from reference 10.

3. The closest point’s index number is stored in the focus’ cloud array.

4. The next closest point is then checked to see if it is suitable for inclusion within the
cloud. After the first point, the angular position of each point relative to the focus is
checked against the angular position of each of the previously selected neighbors. If
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the point lies within a wedge of £180/N°, centered on the focus, from any of the
previously selected cloud members, then that point is rejected. N is the number of
neighboring points which form the cloud.

5. The routine repeats step 4 until the set of N neighboring points has been selected.

We found that step 4 was necessary for a stable and accurate solution procedure. Without this
step, the points of the cloud could be biased toward one side of the focus, resulting in an ill- .
conditioned matrix.

It is possible for the above search procedure to pick points that are on the other side of the
body from the cloud’s focus. In practice, this never happened with the interior points, but it did
occasionally occur when selecting points for clouds on the body’s boundary. For boundary -
points on the body’s surface, the following steps were performed before the above procedure
was initiated:

1. The two closest boundary points, one on either side of the focus, were first added to
the cloud.

2. The plane tangent to the body at the focus was computed.

3. Only those interior (non-boundary) points that lay “above” this tangent plane, where
“above” means in the direction of the outward normal, were included in the above
search.

3.2.2 Cloud Equations

The equations presented in this subsection are a repeat of the equations presented in
Section 2.5. They are repeated here to facilitate the following discussion. Within each cloud of

points, we modeled the functional variation of the unknowns in the governing equations with a

M _order Taylor series expansion about the cloud focus, i.e.,

Fuy) =[x y0) + {hSf (%0, yo) + kf (%0, ¥o) } + (3.1
SR f (T o) + 2RES 1y (5 30) + K f (g Y0))

where (xg, yo) are the coordinates of the focus, & and k are given by & = x—x, and
k = y-1y,,and the subscripts x and y denote partial derivatives in the usual notation.

Writing equation (3.1) for each of the nodes in the cloud results in the set of linear
equations of the form

[4][pr] = [£] (3.2)

where
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and m=5.

The number of nodes used to determine the [Df] vector may be increased (m>5) in
order to improve the accuracy in approximating the derivatives, resulting in an overdetermined
set of linear equations. Equation (3.2) is solved using the singular value decomposition (SVD)
routines from reference 10. The use of SVD in the current gridless code offers several
advantages: (1) SVD gives the least squares solution for an overdetermined set of equations,
and (2) if the [A] matrix is ill-conditioned or singular, SVD can detect the problem and, in
some cases, can provide a solution. Within a cloud, the [A] matrix is constant unless the
cloud’s points move or change. Therefore, this matrix is formed and its decomposition--
calculated and stored at the beginning of the solution procedure. Derivatives are then easily
recomputed whenever the [ f ] matrix changes. In the example problems described in Section
3.3, nine points were used for the interior clouds and six points for the boundary clouds.

3.2.3 Boundary Conditions

Rather than use ghost points to impose boundary conditions, we decided to incorporate
them directly into the cloud equations. We have examined only two types of boundaries, far
field and solid surface. Far field boundary conditions were imposed by fixing the values of the
unknown field variables. At wall boundaries, we examined two different methods for imposing
boundary conditions.

The normal velocity condition at a solid surface is expressed as

‘%
heV =V, (3.3)

. . pe AN . . =,
where #i is the unit normal to the surface, V is the fluid veloch vector, and V, is the surface
velocity. For the remainder of this discussion, we assume that V = 0. For a two dimensional
problem, this reduces to
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nV,+nV, =0 (3.4)

This equation can be rearranged to give

ny
V., = —n—x- Vy for n,#20 (3.5)
or
nx
Vy =-=-V, for n, #0 , (3.6)
ny

If the function f in equation (3.1) is the velocity potential, ¢ , then superimposing the
above boundary condition on equation (3.1) gives

2 2

; " .\ .
= Y n K-
¢ = ¢o+(k nxh)¢y|o+ 2<bx,c|0+ 2q>yy|0+hkq>xy|0 for n,#0 | (3.7)
or
- 2 2
= 0o+ h- +£l‘¢ +k—¢ + hkd for n,#0 (3.8)
=% n, x|o 2 xx|0 2 yylo xylo y .

The first two columns in the I:A:I matrix in equation (3.2) are replaced by the appropriate
terms from equation (3.7) or (3.8), depending on the relative magnitudes of n, and n, The
component with the largest absolute value is always placed in the denominator. After solution of
equation (3.2), equation (3.5) or (3.6) is used to determine the final derivative.

The second way of imposing the wall boundary conditions was to add equation (3.4) as the
m + 1 equation in the matrices of equation (3.2). Neither method seems to offer an advantage in

either speed or accuracy over the other. The second method has the advantage of being cleaner
and easier to program than the first.

3.2.4 Solution Procedure

The solution procedure used for the example calculations given below follows the
procedure described in Section 2.3 on page 14. The solution procedure consists of two nested
iteration loops. The outer, or global, loop spans the computational domain and uses a Gauss-
Seidel scheme to reduce the global residual of the governing equation. We found that a Gauss-
Seidel scheme converges two to three times faster than a scheme using Jacobi iteration. At the
beginning of each global loop, the values of the velocity potential at each point in the domain
are updated, the set of derivatives computed, and the local residuals from the governing equation
sorted from largest to smallest. The inner, or local, loop is then begun, starting at the point with
the largest local residual and proceeding in sorted order to the smallest. The inner loop
calculations are performed for each cloud of points to find the value of the velocity potential at
the cloud focus that temporarily brings the local residual of the governing equation to 0 % €. For

the test cases discussed below, € = 1107 . Smaller values of & were tried, but did not improve
the overall solution accuracy. These local calculations were performed using Brent’s method.
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This is a modified secant search routine that is guaranteed not to diverge. If the routine detects
any divergence in the search, it switches to a bisection routine. Timings showed that this method
converged two to three times faster than pure bisection. The actual C function for Brent’s
method was taken from reference 10. Attempts to use a- Newton-Raphson scheme were not
successful. After the calculations for the last cloud are completed, the local and global residuals
are recomputed. The calculations are terminated when the global residual is reduced by five
orders of magnitude from the global residual of the starting solution. If the solution is not
converged, another global iteration is performed.

3.3 Numerical Examples

In this section, the gridless numerical method is applied to simulate steady,
incompressible, potential flow around simple two-dimensional cylinders. The inviscid flow field
is computed for two geometries: a circular cylinder and an elliptic cylinder of aspect ratio 5:1.
We first describe these model problems and their exact analytical solutions. We then give the
numerical results of the gridless method for the model problems and discuss the types and
magnitudes of numerical errors discovered. The numerical results presented here were
generated with and without application of the coupled linear operator described in Sections 2.4
and 2.5. Comparison of the gridless method with and without the coupled linear solutions shows
that the basic gridless scheme closely approximates the optimal coupled solution for a given
spatial resolution. Overall, the numerical results of the gridless method are in very good
agreement with the known exact solutions for the circular and elliptic cylinders.

3.3.1 Model Potential Flow Problems

This section describes the exact analytical solutions to two simple model flow problems.
To define the model problems, consider steady, incompressible, potential flow around an
arbitrary two-dimensional cylinder with no circulation. The first model problem is to compute
this ideal flow field for the circular cylinder of radius one, while the second model problem is to
compute this flow for an elliptic cylinder of aspect ratio 5:1. Recall that these idealized flows are
described by Laplace’s equation subject to simple boundary conditions on the surface of the
cylinders and at infinity, i.e.,

V=0
Vo - #i = 0 on stationary solid bodies (3.9
V¢ approaches the freestream velocity as r — oo

For both model problems, the gridless method is used to compute the velocity potential ¢
around the cylinders as specified by these equations. The results were used to compute the
pressure coefficient on the surface of the circular and elliptic cylinders. The computed velocity
potentials and pressure coefficients are then compared with the exact analytical solutions of the
model problems.

As is well known from classical aerodynamics, the complex velocity potential around a
circular cylinder with no circulation is given by

A

F) = UL+7

(3.10)
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where { = x+iy, U is the freestream velocity, and A = a’U. Here a is the radius of the

circular cylinder. All the numerical results in this report assume @ = 1 and U = 1. Recall, that
the complex velocity potential is defined by

F(x+iy) = 6(x, y) +iy(x, y) (3.11)
where ¢ is the velocity potential, and y is the stream function. Differentiating the complex

velocity potential with respect to { then yields the complex velocity. Therefore, equation (3.10)
implies that the exact solution for the complex velocity around a circular cylinder with no -
circulation is given by

2
W) = U(l -“—2) (3.12)
g

The exact analytical solution for potential flow around an elliptic cylinder can be obtained
in a similar manner by transforming the complex potential obtained for the circular cylinder via

conformal mapping. Let z({) denote a conformal mapping which carries the unit circular
cylinder onto an elliptic cylinder. It can be shown that the Joukowski map defined by

2(0) = gﬁ% (3.13)
with n = 2/3 will map the unit cylinder onto an elliptic cylinder of aspect ratio 5:1. Now,
recall that z maps the velocity potential of the circular cylinder to the velocity potential of the

elliptic cylinder. So, given the velocity potential for the circular cylinder, F({), the velocity
potential for the elliptic cylinder becomes

F(z()) (3.14)

where { = z—l(z;) is the inverse of equation (3.13). Then differentiating equation (3.14) with
respect to { and applying equation (3.13) yields the complex velocity for the elliptic cylinder

4 1
W(z(8)) = W()| — (3.15)
dz
4
where W({) is the complex velocity around the circular cylinder and
d _ .0 (3.16)

IS
Once the complex velocity has been determined, the pressure coefficient C, on the
surface of a given cylinder may be computed from
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C,=1-Ww (3.17)
where W is given by equation (3.12) for the circular cylinder or equation (3.15) for the elliptic

cylinder. Further details of the model problems outlined here and their exact analytical solutions
may be found in Karamcheti.

3.3.2 Numerical Results

To test the gridless numerical method, several computational experiments were conducted.
This section presents numerical results generated by these experiments for three versions of the
gridless scheme for both model flow problems. The first gridless scheme considered is referred
to as the basic scheme and applies the algorithm defined by steps 1 through 5 on page 16 of
Section 2.3 without modification. The second and third gridless schemes are referred to as
coupled-schemes one and two and modify how the algorithm approximates the derivatives and
the differential equation on each local computational cell. Coupled-scheme one computes the
least squares solution for the coupled linear system defined by equations (2.48) and (2.49) (the
approximation of the derivatives and the differential equation) on each interior cell in the
computational domain. Coupled-scheme two generalizes scheme one by computing a least
squares solution for the coupled system given by (2.48) and (2.49) on the boundary as well as
the interior cells of the computational domain. On the interior of the computational domain, the
local coupled system is evaluated using equations (2.30) and (2.52) developed in Sections 2.4
and 2.5.

For all of these calculations, the problem was initialized by assuming that the velocity
potential was equal to the freestream velocity potential at each field point. The potentials at the
outer boundary points were set equal to those of the exact solution potential to satisfy the
boundary condition at infinity. This was done so that any errors in the solution would be due to
the gridless numerical method and not attributable to boundary conditions. The calculations
proceeded until the global residual was reduced by more than five orders of magnitude from the-
global residual of the starting solution, i.e.,

n
—£<107 (3.18)

0
RG

The global residual is defined as the root-sum-square of the local residuals at each field point.
The local residual is the deviation of the governing equation from zero, i.e.,

R, = V% | (3.19)

Since we know the exact solution for these test cases, we have also defined a local error, E;, as
the difference between ¢ exact and ¢ calculated

EL = ¢exact - ¢calculated (3-20)

The global error, E;, is defined as the root-sum-square of the local errors
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(3.21)

where N is the number of points in the computational domain.

Circular Cylinder Calculations

Figures 3.1 and 3.2 show the point distribution used in the circular cylinder calculations.
There are 80 points in the circumferential direction and 41 points in the radial direction, for a--
total of 3280 points. The inner layer of points lie on the body’s surface. The point locations
where chosen coincident with polar coordinate lines so that the point distribution is uniform in--
the angular direction. In the radial direction, the spacing increases with a geometric ratio of 1.05
as one moves away from the body. This calculation took 1423 cpu seconds on a 120 MHz Sun
SPARC 20 workstation.

Figure 3.3 shows the behavior of the global residual and error during this calculation.
~While the global residual continues to decrease as the solution progresses, the global error
reaches a minimum just past an iteration count of 800 and then asymptotically approaches a

steady-state value of approximately 9x107° , 1.e., two orders of magnitude reduction from the
starting solution error. Figure 3.4 shows the distribution of the local error around the cylinder.
The largest local error is less that one percent of the exact solution and occurs at the flow
stagnation points. To obtain a second quantitative view of this error, Figure 3.5 shows the
pressure coefficient on the surface of the cylinder. Here, the zero circular cylinder angle is
aligned with the X-axis. Since the gridless scheme yields a symmetric solution about the X-axis,
the angle can be measured either clockwise or counter-clockwise. Figure 3.5 shows that the
gridless scheme generated a pressure coefficient in very good agreement with the exact
analytical result.

The overshoot in the global velocity potential error before approaching a steady-state
value (Figure 3.3) is believed to be a numerical oddity with no real significance. During the code
development, other solution techniques were examined. For some of them, the solution error
approact:zd the same asymptotic value from above, i.e., with no overshoot. We believe that
given this point distribution and second-order derivative approximation, this is the best solution
that the current method can achieve. In order to improve the solution accuracy, point adaption
and/or a higher-order derivative approximation are needed, at least in the vicinity of the
stagnation points.

A second test calculation was made for flow over the cylinder with the number of field
points doubled in both directions, i.e., 160 by 82, for a total of 13,120 points. The convergence
characteristics are shown in Figures 3.6 and 3.7. The distribution of the local error around the
cylinder is shown in Figure 3.8. The increased spatial resolution reduced the global error by a
factor of approximately 4.5. However, the number of global iterations required to achieve the
same level of residual convergence increased by almost a factor of approximately 3.75. The
computer time required to achieve this solution increased by a factor of approximately 16 over

the previous solution, indicating that the current implementation gives an N method. We have
made no effort to optimize the efficiency of the current code.
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We also compare the basic gridless scheme with the two coupled schemes for potential
flow around the circular cylinder. Figure 3.9 compares the global residual of the basic scheme
with the coupled gridless schemes one and two. Both coupled schemes yield the same global
residual as a function of iteration number. Moreover, the coupled schemes produce a residual
which was slightly smaller than the basic scheme. For a given approximation of the derivatives
and the differential equation, the least squares solution generates the approximation with the
smallest residual. This suggests that the basic gridless scheme closely approximates the optimal
least squares solution for a given spatial resolution. Figure 3.10 shows the global errors
computed with all three schemes. They all produced the same global error as a function of
iteration number, since all three schemes performed a local iteration on each computational cell
by calculating the.root of an equation. Recall that the local iteration process is defined in step 4
of the basic gridless method. The differences between the coupled and uncoupled gridless
schemes were so small that the local iteration yielded the same global error. One main
conclusion of Figures 3.9 and 3.10 is that the basic scheme produces numerical approximations
which are essentially identical to the optimal coupled solutions.

Elliptic Cylinder Calculations

Calculations were also performed for potential flow around an elliptic cylinder of aspect
ratio 5:1. Figures 3.11 and 3.12 show the field point distributions used in these calculations. For .
this example, the field point locations were obtained through the conformal mapping of the
points for the circular cylinder (Figure 3.1). As for the first model problem, these calculations
used 80 points circumferentially and 41 points radially for a total of 3280 field points. Figure
3.13 shows the convergence properties for this calculation using the basic gridless scheme. As
with the circular cylinder, the global error approaches an asymptotic value while the global
residual continues to decrease. Figure 3.14 shows the spatial distribution of the local error. The
largest error observed is less then six-tenths of a percent of the exact solution and occurs at the
flow stagnation points. Figure 3.15 shows the pressure coefficient on the surface of the cylinder.
The zero elliptic cylinder angle is aligned with the X-axis. As in the circular case, the gridless.
scheme yields a solution symmetric about the X-axis, hence, the angle of Figure 3.15 can be
measured either clockwise or counter-clockwise. The plot of the pressure coefficient
demonstrates that the basic gridless scheme generated numerical results in excellent agreement
with the exact analytical solution.

Figures 3.16 and 3.17 compare the global residual and error of the basic gridless scheme
with both coupled gridless schemes. The numerical results shown in these figures are
qualitatively similar to the results found for the circular cylinder. However, the global residuals
computed with the coupled gridless schemes are almost identical to the residuals computed with
the basic scheme. For the elliptic cylinder, the basic scheme approximates the coupled solution
very well.
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Figure 3.1 Field points for calculation of the potential flow around a circular
cylinder - 3280 points
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Figure 3.2 Close-up view of the field point distribution in Figure 3.1 for the
circular cylinder
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Figure 3.11 Field point distribution for potential flow around a 5:1 aspect ratio

elliptical cylinder - 3280 points

e

Figure 3.12 Close-up view of the field point distribution in Figure 3.11 for the
elliptical cylinder
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4 Higher Order Taylor Series

Christine E. Hailey & N. Todd Snyder

4.1 Overview of Tasks

In order to assist with the development of gridless CFD techniques, we were asked to
analyze several aspects of the problem. The ideas for our tasks were based on work previous

finite-element researchers performed using h and p techniques for improving the solution.” In-
general, h versions of the finite-element method fix the degree of the element and convergence
is achieved by mesh refinement. The p version fixes the mesh and convergence is obtained by
increasing the degree of the element. The gridless technique also appears to lend itself to a form
of h-p adaption. The tasks summarized in this chapter focus on investigating the effect that the
order of the Taylor series has upon the solution convergence and accuracy, analogous to the p
finite-element techniques. Subsequent tasks, to be reported in phase two of our project, focus on
h adaption techniques.

The first task required the development of a generalized recursion relationship for an n®-
order, two-dimensional Taylor series. This was then incorporated into a C-language program.
The routine requires the user to define the number of terms in the Taylor series. The second task
was to assess the impact of additional terms in the local Taylor series approximation on
convergence and accuracy of the solution of a two-dimensional equation, such as Laplace’s.

4.2 Two-Dimensional Taylor Series
An expression for the Taylor expansion about a point (x, y,) is given by9

o 1(,3 ,dY
1) = 3, (g k] o y0) + Ry @

n=0
where N is the order of the Taylor series and the remainder term, Ry, , ;, is given by

RN+1 -

1 p d N+1
m(ha—x + ka) f(&m) 4.2)
The point ({,n) is somewhere on the line segment joining the points (xg» yo)and (x,y).

In this expression 4 and k are given by 2 = x—x; and k = y-y,. For example, a third-order

Taylor series expansion is written as:
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F(x,y) = f(xg yo) + {hf (x0, yg) + kfy(xo’ Yo)} (4.3)
+ 300 f ol Y0) + 2k 1y (5 Y) + K- £y (3 Yo
+ 31_!{h3fxxx(x0’ Yo) + 3h2kfxxy(x0’ Yo) + 3hk2fxyy(x0’ Yo) + k3fyyy(x09 Yo)}

+R,

where the subscripts x and y denote partial derivatives in the usual notation. In order to write a. ...

recursive relation for the two-variable Taylor series which could readily be implemented in a-

computer program,‘we let a = h% and b = kaa—y. Then the Taylor series can be written in
terms of the binomial theorem
J 1
fy) = 3, —(a+b)' f(xpy0) + Ry (4.4)
n=0

where (a + b)" is given by

(a+b)" = a”+( n }:"‘11”[ n Ja"‘zb%( n }”‘3b3+ A D 4.5)
1 2 3

The binomial coefficient ( n j is given by
m

( n ]: _n (4.6)
m (n-m)'m!

Both the binomial coefficient and the factorial term can be easily calculated using canned
computational routines, such as those found in Numerical Recipes in c.10

A C-language program was written in order to check the higher-order Taylor series
algorithm. A function whose derivatives could be determined analytically, given by

Fxny) = 2y 4.7)

was used to test the C-code. A surface plot of the function is presented in Figure 4.1. The
function is well-behaved in the domain of interest, [0,1]x[0,1]. The derivatives for these two
functions were evaluated at two points: (0.5, 0.5) and (0.9, 0.8). The first point is located in a
region with a fairly flat gradient and curvature, and the second point is located in a region with a
steep gradient.

The numerical evaluation of the derivatives depended on two different parameters. The
first parameter of interest was the number of points necessary to form a “cloud” surrounding the
evaluation point. Clearly, in order to obtain higher-order derivatives, more points were needed.
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s (0.9, 0.8)

Figure 4.1 Surface Plotof f(x,y) = x4y4

However, we were also interested in the effect the number of points in the cloud might have on
the solution. For example, a third-order solution requires a minimum of 9 points, however it is
possible to form a cloud with more than 9 points. The second parameter of interest was the
cloud geometry. Circular, rectangular, and irregular clouds were formed.

In the first investigation, all points were equally spaced on a circle or circles, centered at
(0.5, 0.5) or (0.9, 0.8). For example, for a cloud of 20 points, 10 points were equally spaced on a
circle of radius 0.01 and another 10 points were equally spaced on a circle of radius 0.02 (see
Figure 4.2 for an illustration).

The results of the first investigation for the function are shown in Table 4.1 for the
evaluation point (0.5, 0.5) and in Table 4.4 for the evaluation point (0.9, 0.8). Second, third,
fourth, and fifth-order terms in the Taylor series were examined. Clouds contained either 509,
14, or 20 points. The cloud geometry consisted of a single circle centered about the evaluation
point with radius of 0.01 (denoted R = 0.01 in the tables) or families of circles centered about
the evaluation point with increasing radii, as indicated in the tables.

We offer several comments about the results. We observe that the selection of cloud
geometry greatly influences the solution, especially for the evaluation point (0.9, 0.8) which is
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Figure 4.2 Example of Circular Cloud Geometry

located in a region of very steep gradient. If all points are selected to lie on the circumference of
a single circle, the results for the higher-order derivatives are poor. The fifth-order solution gave
best results for points selected to lie on either two or three circles. Spreading the points out over
too many circles did not give as good of results for the fifth-order solution. Clearly, there is an
optimum cloud geometry which is dependent on the function and evaluation point. In general,
the fifth-order results are poor for a fifth-order Taylor series, the fourth-order results are poor for
a fourth-order Taylor series, and so on. We noted that one must select a Taylor series order that
is at least one order higher, preferably two orders higher, than the order of the derivative of
interest. Since most governing equations of interest contain only first and second order
derivative, it appears one could select a fourth-order Taylor series and obtain good estimates for
the first and second derivatives.

The next investigation was to form several “clouds” which better resemble those that
might be formed using a rectangular-based mesh. Again, the evaluation points were taken as
(0.5, 0.5) and (0.9, 0.8). A rectangle is formed which surrounds the evaluation points. The
midpoints of the sides of the rectangles are located a distance of 0.01 from the evaluation point.

The vertices were located 0.01 /2 units from the evaluation point. Thus, eight points are used to
evaluate the Taylor series which allows a second-order solution. A second rectangle can be
formed which surrounds the first one. Each side of this larger rectangle contains five points
spaced at a distance of 0.02. With the inner and outer rectangle surrounding the evaluation point,
24 points are available to evaluate the Taylor series which allows up to a fifth order solution. An
example of the rectangular cloud geometry for the evaluation point (0.5, 0.5) is shown in Figure
4.3. The results of these calculations are shown in Table 4.2 and in Table 4.4.
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Figure 4.3 Example of Rectangular Cloud Geometry

By selecting a rectangular clustering of points, we ensured that not all points lie on a circle
with a fixed radius. Hence, all results give fairly good approximation to the lower-order terms in
the Taylor series. In fact, it is interesting that the 8-point rectangle which provides only a 2nd-
order approximation to the Taylor series, gives reasonable results. Clearly, if one is interested in
only first and second derivatives, a fourth-order solution using a double rectangle should give
very good results.

Finally, we considered a more pathological case of cloud point distribution. In particular,
suppose grid adaption or mesh refinement/coarsening has occurred and the points have clustered
to one side of the evaluation point. Again, two evaluation points were used: (0.5, 0.5) and (0.9,
0.8). In this case, seventeen neighboring points were selected to evaluate the derivatives and are
shown in Figure 4.4. The results of these calculations are shown in Tables 4.3 and 4.4.

In order to summarize the results presented in Tables 4.1 through 4.4, we calculated the
absolute percent error in the f  term. We selected this term because it is second-order, typical

of a term found in Laplace’s equation. The results are shown in Figures 4.5 and 4.6. On the y-
axis, we have plotted the normalized error, which is give by

normalized error =

Calculated Value — Exact Value (4.8)
Exact Value

We offer some observations based on the above results. First, a fourth-order Taylor series
approximation for f,  gives better results than the third-order Taylor series. And the third-order
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Figure 4.4 Plot of Cloud Geometry for Irregular Geometry
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Taylor series gives better results than the second-order Taylor series. These results are very
consistent with the results found by finite-element researchers for p-adaption. Higher-order
terms can be used to improve solution accuracy. However, these results suggest there is an
optimum higher order. Clearly the fifth-order results are no better than the fourth-order results.
The fifth-order Taylor series approximation may have provided too many degrees of freedom -
for estimation of the function. We also note that we would be hard pressed to answer the
question: “What cloud geometry gives the best results?” The cloud geometry and number of
points in the cloud affect the solution, but these results do not indicate which combination is
best or worst. The irregular cloud geometry gave reasonable results, which is an important result
as we proceed in looking at h-adaption where the points will be moved/added/deleted and
irregular clouds may be formed. Finally, the function had a less steep gradient at the (0.5, 0.5)

evaluation point and the numerical simulation did a better job of predicting the value of £ . As

the function steepened, the scheme did not predict the f, = term as well.

4.3 Higher-Order Solutions of Laplace’s Equation

The 2-D Laplace’s code described in Chapters 2 and 3 had to be modified in two places in
order to permit higher-order terms: in the formation of cloud geometry and in the formation of
the [A] matrix used to evaluate derivatives (see equation (3.2) on page 26). First we noted that in
order to include third-order Taylor series terms, at least 9 points must be used to form a cloud,
similarly for fourth-order Taylor series at least 14 points must be used, and for fifth-order Taylor
series at least 20 points must be used to form the cloud. Since we were interested in comparing
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higher-order results with the second-order results described in Section 3.3, we utilized the same
point distribution, which results in cloud geometries similar to the sketch shown in Figure 4.4.

In order to develop a robust code which would allow a user-defined number of points for a
cloud, we began with the existing cloud formation algorithm. The best way to summarize the
this algorithm is to imagine the evaluation point as the origin of a local x-y coordinate system.
The existing algorithm selects eight points which are fairly uniformly distributed in all four
quadrants of this x-y coordinate system. This is accomplished by calculating the distance all
points are from the evaluation point, sorting the distances and then selecting the point which is
closest to the evaluation point. The closest point is the first member of the cloud. The point
which is second closest to the evaluation point will be allowed in the cloud formation provided
it is not located within a pie-shaped wedge of 45° (£22.5°) which emanates from the origin and
contains the first-closest point. Similarly, the third point in the cloud formation will be third
closest to the evaluation point provided it does not lie in the pie-shaped wedges which surround
the previous two points. Should the third point lie within a pie-shaped wedge, it is rejected and
the next closest point is selected as a candidate. This algorithm effectively finds eight cloud
members which are fairly uniformly distributed in all four quadrants which surround the
evaluation point.

Since we were interested in higher-order terms, we always needed to form clouds with.....

more than eight points. We used the existing algorithm to select the first eight points. We then
return to the list of sorted distances and select the next closest to the evaluation point which has
not already been used in the cloud geometry. We form a 22.5° (£11.25°) pie-shaped wedge
centered around this point, return to the sorted list of distances and select the next closest value.
If this value is not within the 22.5° pie region, it becomes a member of the cloud geometry, we
form another 22.5° pie region surrounding this point and then we select the next closest point
which does not lie in the previous two points’ pie-shaped wedges. This process is repeated until
the required number of points have been selected. Again, we are trying to ensure the cloud
- contains points which are more uniformly distributed in all four quadrants surrounding the
evaluation point.

The second modification to the 2-D Laplacian code was to calculate an appropriate [A]
matrix which would contain the higher-order terms. We were able to use the C-function used to
generate the results in Section 4.2. The user has to specify the order of the Taylor series, the
number of points in an interior point cloud, the number points in a wall cloud, and the number
of derivatives.

Results of applying higher-order terms to the solution of Laplace’s equation are described
below. We utilized the grid shown in Figure 3.11, which contained 3280 points, and solved
Laplace’s equation for flow over a 5:1 ellipsoid. The boundary conditions were the usual for
potential flow, no flow normal to the boundary. First, we ran the existing 2-D code which was
second-order using 8 points in a cloud. Then we ran a number of cases for higher order
solutions.

The results are disappointing. They indicate that by using a higher-order Taylor series
everywhere in the solution domain, the solution accuracy is diminished. Shown in Figure 4.7 are
several of the third- and fourth-order solutions we calculated compared with the original
second-order solution which utilized an eight point cloud. We have plotted the results in terms
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Figure 4.7 Several Higher-Order Calculations of Laplace’s Equation Compared with the
Second-Order Solution

of number of iteration until the global residual reached a value smaller than 107. After each
iteration, the local error at each point is calculated by subtracting the calculated solution from
the exact solution. Shown in Figure 4.7 is the largest local error value in the domain. The
second-order Taylor series calculation using eight nodes gives the best results, although the
error reaches a minimum and then begins to grow before the convergence criterion is reached.

We observed that the largest local error in all cases occurred on the wall. So we tried one
additional case. Without too much effort, we were able to modify the 2-D Laplacian code to
allow one order of solution on the wall and another order of solution in the interior. This gave
better results, as shown in Figure 4.8. We were able to continue to reduce the error as the
residual was reduced when we selected third-order on the wall and second-order in the interior.
Finally, it is important to note that a number of cases would not converge. For example, the case
of 19 points on the interior, 16 points on the wall converged, however, for cases with the same
order of Taylor series and less than 19 points on the interior, the solution did not converge.

These results suggest that we would probably have reduced error for higher-order terms if
we would select a region “close” to the wall and incorporate a higher-order solution. This is not
surprising. The flow field is changing rapidly near the wall and requires some form of adaption.
In the far field, the flow is essentially freestream which has no higher order behavior. By trying
to insist on higher-order functions for freestream behavior we are giving the solution too many
degrees of freedom.
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Figure 4.8 Results of Predictions with Highest Order on Wall, Lowest Order in Interior

4.4 Summary and Recommendations for Future Work

We developed a generalized recursive relationship for an n-order, two-dimensional

Taylor series which was incorporated into a C-program where the user is allowed to define the .

number of terms in the Taylor series. We used this code.to evaluate behavior of higher-order
terms on solution accuracy. We varied both the number of points in a particular cloud and also
the cloud geometry. In general, we found the most accurate results were obtained if the user
selected terms in the Taylor series which are two orders higher than the highest derivative to be
evaluated. However, the accuracy is a strong function of cloud geometry and number of points
in a cloud.

We then incorporated the higher-order Taylor series code into a Sandia developed code
which solved the two-dimensional Laplace’s equation. We evaluated the effects of the addition
of terms in the Taylor series approximation on the convergence and accuracy of solutions. We
found that simply fixing a higher-order Taylor series everywhere in the flow field did not give
better accuracy because in the far field the higher-order terms provide too many degrees of
freedom for a flow field that is essentially freestream. Since the largest error occurred near the
body, we allowed the solution to be higher order on the wall and lower order in the interior.
These results provided close to the same accuracy as the simple second-order Taylor series
results and better convergence properties. The error continued to diminish as the residual
diminished.
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Future efforts will be focused on incorporating both -h and p adaption into the two-
dimensional Laplace’s equation solver. The results found to date suggest that if we could select
a region of points sufficiently close to the wall and apply a higher-order Taylor series, we would
probably obtain better accuracy than the second order results. This will require a major rewrite
of the two-dimensional code. We also plan to investigate the effects of h adaption on the
solution accuracy. ’

w?
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Table 4.1 Higher-Order Taylor Series Calculations for f(x, y) = x* y4 , Circular Geometry, Evaluated at x =0.5, y = 0.5

fe 0.03125 -3.00E-08 -6.000E-08 2.000E-08 1.000E-08 -2.000E-08 2.78E-05
£ 0.03125 -1.00E-08 -1.900E-07 8.000E-08 1.50E-07 -5.000E-08 2.81-E-05
fux 0.1875 -8.000E-07 4.800E-06 -2.400E-06 1.56E-05 -5.000E-07 3.061E-03
fy 025 1.200E-06 -7.000E-06 | -1.410E-05 -2.56E-05 -6.800E-06 3.030E-03
By 0.1875 -2.000E-07 | -4.500E-06 1.290E-05 -1.380E-05 | 3.7000E-06 | -3.187E-03
o 0.75 5.114E-04 4.123E-04 9.1000E-05 | -3.899E-03 1.945E-04

oy 15 1.081E-03 3.268E-03 -5.808E-03 | -1.338E-02 | 2.7500E-03

iy 1.5 1.019E-03 2.109E-03 -4.435E-03 1.491E-03 1.251E-03

Loy 0.75 3.768E-04 2.699E-03 1.515E-04 -3.312E-03 -3.411E-04

Froex 15 3.600E-02 -5.002E-02 4.385E-03 2.355E-01 3.605E-03

Froxxy 6.0 2. 79TE-02 3.466E-01 -LLI06E+00 | -2.877E+00 | 4.189E-01

ey 9.0 ~4.356E-03 -1.638E-01 ~7.891E-01 -5.404E-01 -5.99¢E-02

Feyyy 6.0 -6.330E-04 | -4303E-02 5.149E-01 1.6717E+00 | -1.204E-01

Loy 15 -1.186E-02 3.815E-01 1.094E+00 5.594E-01 1.325E-03

Focxes 0.0 1.493E-05 7.055E-03 -4.03E-02

Frcry 12.0 -1.200E+01 | -1201E+01 | -1.208E+01

Frcxyy 36.0 -3.600E+01 | -3.602E+01 -3.61E+01

Feyyy 36.0 -3.600E+01 | -3.599E+01 -3.60E+01

Foyyy 12.0 -L.200E+01 | -1.202E+01 | -1.200E+01

Fovvyy 0.0 1.489E-05 -9.794E-04 4.563E-02




S¢S

Table 4.1 Higher-Order Taylor Series Calculations for f(x, y)

-6.00E-08

= x4y4 , Circular Geometry, Evaluated at x = 0.5,y = 0.5

0.03125 -3.00E-08 2.91E-06 -3.60E-07 1.870E-05 1.870E-05
Iy 0.03125 -1.00E-08 -1.90E-07 -3.40E-07 245E-05 1.870E-05 1.87-E-05
S 0.1875 2.511E-04 1.402E-04 9.274E-04 5.14E-05 6.520E-05 6.280E-05
Sy 0.25 3.827E-04 7.996E-04 -9356E-04 -3.571E-03 1.010E-04 1.000E-04
Sy 0.1875 2.502E-04 9.081E-04 8.548E-04 5.14E-05 6.520E-05 - 6.640E-05
S 0.75 5.114E-04 -1.111E-03 -71.517E-02 5.179E-03 -1.125E+00 -1.125E+00
Sy 1.5 1.081E-03 2.303E-03 -1.852E-01 -1.5889E+00 -3.742E-01 -3.736E-01
Loy L5 1.109E-03 3.712E-03 -1.791E-02 1.286E-03 -3.742E-01 -3.752E-01
Sy 0.75 3.767E-04 3.667E-03 1.923E-01 -3.675E-01 -1.125E+00 -1.126E+00




9¢

Table 4.2 Higher-Order Taylor Series Calculations for f(x, y) = Xt y4 , Rectangular Geometry, Evaluated at x = 0.5, y = 0.5

0.03125

3.06-07

2.0E-07

2.0E-07

fx -1.927E-04 -6.25E-05
5 0.03125 3.0E-07 2.0E-07 2.0E-07 -1.927E-04 -6.25E-05
Jax 0.1875 2.3E-06 -2.3E-06 -6.13E-04 -6.131E-04 1.945E-04
fo 0.25 3.0E-06 2.7E-06 6.8E-04 6.8E-04 -1.997E-04
Fyy 0.1875 2.3E-06 -2.3E-06 -6.13E-04 -6.131E-04 1.945E-04
Fexx 0.75 -3.15E-03 3.51E-03 -3.517E-03 ‘

Fory L5 -2.47E-03 2.475E-03 2.475E-03

Foy 1.5 -2.47E-03 2.475E-03 2.475E-03

Fyyy 0.75 -3.15B-03 3.51E-03 -3.517E-03

Foxxr 1.5 6.09E-02 6.1E-02

Fooy 6.0 2.59E-02 2.58E-02

Frgy 9.0 2.01E-03 2.01E-03

Fryyy 6.0 2.59E-02 2.58E-02

Fyyyy 1.5 6.09E-02 6.1E-02

Fooox 0.0 1.88E-05

Focnry 12.0 12.00

Froy 36.0 36.000

Sy 36.0 36.00

Loy 12.0 12.00

Fymy 0.0 1.88E-05
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Table 4.3 Higher-Order Taylor Series Calculations for f(x, y) = x4y4 , Irregular Geometry, Evaluated at x = 0.5, y

-2E-07

5.5E-06

0.03125 9.45E-05

5 0.03125 ~ 3E-08 3.9E-06 5.76E-05
Sax 0.1875 5.9E-06 8.5E-05 6.1E-03
Ly 0.25 1.47E-05 1.89E-04 1.267E-02
Fy 0.1875 -2.8E-06 . .51E-05 9.2313-03
fox 0.75 8.46E-03 9.08E-02 ‘
Sy 1.5 -3.41E-04 5.807E-02

Sy 1.5 -1.48E-04 8.468E-02

Fryy 0.75 -7.72E-04 6.469E-02
Soo 1.5 -1.496E00
Sy 6.0 3.174E-01
Sy 9.0 2.963E-01
Loy 6.0 3.877E-01
Fyyy 1.5 7.23E-02

0.5
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Table 4.4 Higher-Order Taylor Series Calculations for f(x, y) = x4y4 , Evaluated at x=0.9, y=0.8

%

f 1.194396 -2.0E-06 4.0E-06 -2.0E-06 1.0B-06 -5.0E-06 -2.0E-06
5 1.3436928 2.0E-07 2.2E-06 2.0E-07 2.0E-07 3.36E-04 2.0E-07
frx 3.981312 7.22E-04 9.81E-04 7.22E-04 5.43E-04 5.05E-04 5.12E-03
Fry 5.971968 -2.49E-04 7.1E-05 -2.49E-04 -3.45E-04 -4.92E-02 5.676E-03
By 5.038848 5.47E-04 4.02E-04 5.47E-04 4.69E-04 6.2E-04 5.289E-03
Foox 8.84736 1.277E-02 2.743E-02 1.277E-02 -7.262E-02 -4.31E-02 1.277E-02
fexy 19.90656 2.407E-02 -9.2E-03 2.407E-02 3.106E-02 -21.6 2.407E-02
Feyy 22.39488 9.98E-03 1.059E-02 9.98E-03 -3.064E-02 -1.3E-01 9.98E-03
Fyyy 12.59712 -1.297E-02 -3.995E-02 -1.297E-02 |~ -2.284E-02 -5.0558 -1.298E-02

Froox 9.8304 -19.782 -26.38 -19.782 -9.786 -47.76

Jonxy 44.2368 2.060 -1.84 2.060 14.354 75.77

Sy 74.6496 0.4599 -8.274 0.4599 4.878 3.785

Fryyy 55.9872 2.2604 -0.736 2.2604 3.4469 -41.93

Ly 15.7464 -16.295 2.795 -16.295 -13.801 -44.26

S 0.0 2.213E-04 1.71E-04

Soory 49.152 -49 -49

Focoy 165.888 -165 -165

Foxyyy 186.624 -186 -186

Sesvvy 69.984 -69 -69

Fvyyy 0.0 3.14E-04




6S

4.0E-06

—4.4E~05

30606

1347803

1.13E-03

3.85E-04

1.194396
Iy 1.3436928 2.2E-06 -3.28E-0.5 -2.8E-06 -8.952E-04 1.343E-03 4.092E-04
S 3.981312 2.0E-03 1.375E-03 1.288E-03 7.7123E-02 -1.958E-01 -4.681E-02
Sy 5.971968 3.182E-03 1.419E-03 -1.2E-03 1.663E-01 -1.212E-02 -3.848E-02
Ly 5.038848 2.57E-03 2.57E-04 1.22E-03 1361E-01 2.281E-01 4.982E-02
S 8.84736 2.743E-02 6.131E--01 7.51E-01
Foxy 19.90656 -9.2E-03 4.952E-01 241E-01
Loy 22.39488 1.059E-02 6.912E-01 -6.73E-02
Fyyy 12.59712 -3.995E-02 5.69E-01 -2.26E-01
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S Point Adaption Methodology

James M. Nelsen & N. Todd Snyder

5.1 Introduction

Adaption is a procedure that complements and enhances the capability of numerical
methods. The goal of adaption is twofold: provide a more accurate solution and minimize the
computational effort. A more accurate solution will globally approach the true solution while
capturing the important local features. Computational effort is minimized when calculations
that provide negligible contributions to the accuracy or resolution of the solution are eliminated.

During the initial process of applying most numerical methods, a preprocessing procedure
of “seeding” the problem domain, whether by meshes or points, is required. Generally, this
initial “seeding” is not an optimum one regarding the criteria of accuracy and computational
effort. Hence the introduction and utility of adaption.

Adaption techniques can be categorized into three distinct types: movement, refinement/
coarsening and higher-order approximations. All three types have been investigated and utilized
in traditional grid-based solvers. Adaption by movement is the most mature of the three, with-
the spring analogy perhaps the most widely used implementation. In this technique, the mesh
structure is moved according to a local spring constant, which is itself a predefined function of
the solution field. Adaption by mesh refinement/coarsening, sometimes referred to as h-
adaption, will locally refine or coarsen the mesh according to a programmed algorithm.
Similarly, adaption by higher-order approximations, sometimes referred to as p-adaption, will
locally modify the order of the approximating function to an appropriate level according to a
programmed algorithm.

Extension of these standard adaption techniques for gridless methods is straightforward.
In fact, adaption for gridless techniques should be easier since points are geometrically simpler
structures than cells. The primary consideration for adaption, regardless of the type, is the
composition and structure of the algorithm that drives the adaption procedure. This logic path
must consider relevant issues such as: when to adapt; the proper forcing function for adaption;
the order and/or concurrency of adaption types; and perhaps most importantly, any imposed
limitations on the adaption procedure. This is the primary focus of the research work in adaption
for this LDRD.

5.2 Goals for Adaption

The goals for the adaption algorithm under development are stated as follows:

1. Achieve a level of semi-autonomy, allowing the user to intervene only to prescribe a
general purpose accuracy parameter;

2. Incorporate generality, permitting the solution of a wide class of problem sets;

3. Achieve a state of robustness, in which the user-defined level of accuracy can be
accomplished, regardless of the initial point seeding;

4. Allow generality of the adaption algorithm technology to accommodate multi-
dimensional problems.
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A general rriethodology was formulated and developed to achieve these goals. The basic rule set
for the adaption algorithm is outlined in this chapter.

5.3 The Adaption Algorithm

Determination of the appropriate parameters on which to adapt is the primary
consideration in constructing the adaption algorithm. A sampling of these parameters include:. .
the local error from the “true” solution (generally not available), the approximate local error
associated with truncation of the approximating function (which usually is dependent on the
independent spatial variable), the local residual (generally a function of the rate of convergence
which may not be directly associated with the error from the true solution), gradients of
dependent variables and their derivatives, the condition number of the local neighboring point
approximation matrix (which may affect accuracy through numerical round-off) and the
interaction of the spatial resolution and grouping of points related to the approximating
function. In some form, all of these parameters must be considered.

Because of their generality and their availability with this gridless technique, the current
adaption algorithm utilizes the dependent variable, the gradient of the dependent variable and
the derivative of the gradient. This implementation is a slight departure from adaption in

commercial solvers, which primarily use the gradients of the dependent variables. By allowing -

differences in both the variable magnitudes and their first and second derivatives (changes in the
slope and curvature of the solution) to influence the adaption of points, the methodology is both
generalized and moderated.

The mathematical construction of the adaption parameter is shown in equations (5.1) and
(5.2). The adaption parameter comprises two spring coefficients that are essentially linear sums
of the uniformly weighted, normalized, absolute values of the function and its first and second
derivatives. These linear spring coefficients are utilized in multiple roles in the hierarchical
process of the adaption algorithm that is described below.

- ( F@ = F&ho ]| L @i= f@n| | £ fr @) ) (5.1)
- Af(x), .. AF (X 0 Af (%) ax

K - ( FQ) =f @t || SO = f' @] | f'@ - f "<x>f+1) (5.2)
at Af(x),, . Af (%) Af (X} ax

The first step in the adaption process is to identify the criteria under which adaption would
be advantageous to the solution. Certainly, prior to engaging any form of adaption, the solution
should have achieved some level of convergence such that the dependent variable’s values and
derivatives are reasonably accurate. This condition ensures that adaption will not contribute to
solution divergence. Ideally, the local and global solution residuals should have converged to a
specified level (e.g., two orders of magnitude on a normalized scale) and demonstrated a
decrease in the rate of residual convergence.

Assuming the solution has converged to an appropriate level, the first adaption procedure
implemented is point movement. Adaption by point movement is governed by spring forces,

where a generalized spring force is given by equation (5.3) (the term F refers to the force

i-1—>i
s 1
“l

acting on point “i” by point “i-1”). The actual point movement is governed by equation (5.4),
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which incorporates the force vectors and is normalized by the sum of the spring coefficients.
Point movement continues until the discrete spring force imbalance declines below a user
specified tolerance, as provided by equation (5.5).

Fi 1=K - (x;_1-x;) | (5.3)
Xeng = (Fisi it Fiy )/ (K + Ky ) 5.4

The process of adaption by point movement is an iterative procedure. That is, multiple
passes of each individual point may occur during a single adaption event, without the solution
being updated during this process. This iterative procedure is necessary due to the discrete
spring approach adopted for the system point movement algorithm. However, because of this
iterative point movement approach, several constraints must be imposed on the process, as
described below.

The first constraint imposed on this adaption technique is to limit the maximum distance
that an individual point may move during a single iteration. This constraint is necessary for two
reasons: it would be undesirable to have-points leapfrog neighboring points and the algorithm
that updates the dependent variables’ value and derivatives (during the adaption procedure) is—
based on linear interpolation, which is relevant for short distance moves only. The second
constraint is similar to the first, in that the cumulative movement of individual points during the
entire iterative procedure of a single event of adaption by point movement is limited. Typically,
an individual point is limited to a single iteration movement distance of 5% of the distance to
the nearest neighboring point, while the cumulative constraint is restricted to twice that of the
single iteration distance.

A third constraint imposed during the point movement algorithm is necessary to
counteract the potential oscillatory nature of a system of individual, but coupled springs. That is,
point movement is actually governed by equation (5.6), which is similar to equation (5.4), but
incorporates a numerical viscosity dampening factor, ®. The dampening factor ranges from O to
1, with a value of 0.9 to 0.95 typical. It is only invoked when an individual point movement
reverses direction during a single adaption event, thereby dampening the oscillatory movement.

Xeng = WFi1 it Fiy 50/ (K 5+ K )]0 (5.6)

Upon completion of adaption by point movement, the next procedure implemented in the
adaption process is a refinement/coarsening scheme. Essentially, if the magnitude of any one of
the individual terms that are summed in the spring coefficients, given by equations (5.1) and
(5.2), exceed a user-defined upper bound accuracy parameter (typically 0.05), then a point is
added in this interval. Conversely, if the magnitude of all of the individual terms that are
summed in the aforementioned spring coefficients decline below a user-defined lower bound
accuracy parameter (typically 1/3 of the upper bound value), then the point is deleted from the
system.

The addition of a point using this adaption algorithm is a three-step process. First, the
distance between the nearest neighbors on either side of the central point is calculated. Second,
the central point is moved to the 1/3 position of this calculated distance. Third, a new point is
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positioned at the 2/3 distance location. This procedure attempts to uniformly space the new
addition, allowing the final positioning to be accomplished by the next iteration cycle of the
point movement adaption process. Values of the dependent variables magnitude and derivatives
for the repositioned center point and the new point are derived using linear interpolation from
the nearest neighboring points.

A single constraint is imposed in conjunction with this refinement/coarsening adaption
procedure. That is, points that are nearest neighbors to a point that has been refined or adapted
cannot themselves be refined or adapted during this particular adaption cycle. This condition
ensures that adaption by point movement has an opportunity to reposition the points
appropriately, without the potential for extraneous local refinement or coarsening.

The aforementioned procedures and constraints reflect the 1-D point adaption scheme as
currently implemented. This algorithm addresses the first three goals desired for the 1-D
adaption implementation. It achieved the semi-autonomy desired in goal one, while providing a
broad based from which to verify the generality of problem scope and robustness desired in
goals two and three.

In summary, the current adaption scheme incorporates both point movement and point
refinement and coarsening procedures. While the gridless code possesses the capability to

globally utilize higher-order approximation functions, the extension to local p-type adaption has -

not been implemented, due to unresolved issues concerning the appropriate combination of p-
versus h-type adaption and the coexistence of neighboring points with an incongruent order of
the approximation function.

5.4 Adaption Algorithm Performance

The performance of the adaption algorithm is now assessed through application of several
test problems. These test problems are posed in the form of linear and nonlinear ODE’s. Each
differential equation considered has a known closed-form solution, which allows an accurate
assessment of the numerical gridless solution technique and the assistance provided by
implementation of the current adaption algorithm.

_ The first problem investigated is the simple linear, 274 order ODE, given by eq, (5.7):

2
B_fz = (5)sin(7x) 6.7
x

d

Using the two Dirichlet boundary conditions f(0) = 1 and f(1) = O results in the closed
form solution given by equation (5.8).

f = 1=((5/n%)sin(nx) + x) (5.8)

Figure 5.1 shows the comparison between this closed form solution (the lines represent the
function and its first and second derivatives) and the solution generated by the gridless
technique, utilizing 21 uniformly spaced points across the x-domain [0,1]. As observed, the
comparison is excellent for this simple linear ODE.
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Figure 5.1 Solution to the linear ODE _3;_ = (5)sin(7x)
dx

Since this particular ODE is well behaved, it does not pose a severe challenge to the
adaption algorithm in capturing large gradients in the solution. However, two other aspects of
the adaption routine can be investigated with this simple ODE. The first considers the
movement of points that have been intentionally clustered. If the adaption by point movement is
configured correctly, the clustered points should be repositioned to a more uniform spacing. For
this test case, the adaption by refinement/coarsening has been disabled, even though the latter
type of adaption would be more computationally effective throngh judicious implementation of
point deletion and insertion. :

The result of the adaption by point movement test case is displayed in Figure 5.2. The top
line shows the initial clustering of the points. The middle line demonstrates the final point
locations subsequent to repositioning by movement adaption. As observed and desired, adaption
by movement has repositioned the initially clustered points to a more uniform spacing. The
bottom line provides an “ideal” point positioning for this method of adaption. This ideal

distribution represents a point seeding in which the analytically determined kAx value is
identical for each point. As observed, the adaption method has distributed the points adequately,
when compared with the ideal distribution.

The second test case considers the robustness of adaption by refinement/coarsening.
Specifically, in solving the aforementioned linear ODE, two sets of initial point distributions
were utilized. Within the tolerance and accuracy of the user-defined upper and lower bounds
parameter, the adaption algorithm should be sufficiently robust to determine the approximate
optimam number of points for this solution, regardless of the initial point seeding. In the first
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Figure 5.2 Point Movement

case, the gridless calculations were initiated with 11 points, while the second case utilized 101 .
points. For the first case, the refinement algorithm added points resulting in a final value of 30 -

points. In the second case, the coarsening algorithm deleted points, resulting in a final value of
35 points. As indicated previously, the number of final points is highly dependent on the ratio of
the user-defined upper and lower bounds parameter, which results in the approximate, but not
identical, final point values.

To further demonstrate the robustness and overall capability of the gridless technique, two
additional differential equations were solved. For both of these solutions, adaption by point
‘movement and refinement/coarsening were utilized.

The next example is a slight modification to the previous linear 2"_order ODE, equation
(5.7), given by

2
27 - (5m)’sin(5m%) (5.9)
dx

Utilizing the boundary conditions f(0) = 1 and f(1) = O results in the solution shown
in Figure 5.3. The higher frequency oscillations of this ODE solution require additional fidelity
from the solution technique. However, as observed, the gridless solution has captured the true
solution. Further, the point adaption appears to have clustered at the peaks and troughs of the
solution where the first and second derivatives exhibit their greatest change.

The final example considered is the nonlinear Burger’s equation, given by equation (5.10).

2
%’wa_q’_iﬂ’.:o (5.10)

- The closed form solution for this equation was obtained using a traveling wave solution
technique, which results in equation (5.11):

(Fr2-rG=en)
+ fqe
ox,1) = 12 fIR (5.11)
(Ber-roe-en)
l+e
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Figure 5.3 Solution to the linear ODE f = (5m)%sin(57x)

where the wave speed is given by ¢ = (f, + f,)/2. The variable ¢ asymptotically approaches
the limits f, to the right and £, to the left. By selecting the parameters f, = 1and f; = —1,the
wave speed is set to zero, which simplifies the solution and eliminates the time dependency.

As a result of the choice of f, and f,, the boundary conditions are established as

¢(-1) = 1 and ¢(1) = -1 . The Reynolds number for this solution is arbitrarily established
at 50. The comparison between the numerical gridless solution and the analytic closed form
solution is presented in Figure 5.4. As observed, the gridless technique has captured the true
solution for this nonlinear ODE. However, it should be noted that the tolerance applied to the
point movement algorithm was relaxed slightly, which stabilized the solution in the reg1on near
the discontinuity and reduced convergence times by a factor of three to four.

5.5 1-D Adaption Summary

Several example problems, including both linear and nonlinear ODE’s, were solved using
the gridless technique developed in this LDRD project. Incorporated within this gridless
technique is the capability to adaptively move points, which can enhance solution accuracy and
minimize computational expense. Point adaption was demonstrated using both movement and
coarsening/refinement techniques. The adaption algorithm was demonstrated to be autonomous
and robust, which achieved the goals established for this task in the LDRD. Further, the unique
formulation of the adaption parameter that utilizes local differences in the variable’s value and
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its first and second derivatives performs extremely well in capturing the proper characteristics of
the ODE’s solution.

5.6 The Adaption Methodology in Multi-Dimensions

The extension of the 1-D adaption methodology to 2-D (or higher dimensions) is not -
difficult. However, it encompasses additional degrees of freedom for implementation that
generally manifest as more complicated limitations on the algorithm. The fundamental logic for
point adaption is independent of the spatial dimension. That is, point movement precedes point
refinement/coarsening and its complementary technology of higher order approximations. The
user defined accuracy bounds defined for 1-D are still applicable, as are the limitation imposed
on the adaption procedures outlined for 1-D. The departures from the 1-D adaption
methodology are outlined in the paragraphs below.

Regarding point movement, the consequence of the multi-dimensional spring system 1is
not 1-D translation, but a linear translation that incorporates the contributions of all the
surrounding points of the cloud group. This requires the simultaneous solution of the cloud
group spring forces to achieve the point adaption equilibrium during a single iteration of the .
movement adaption cycle. By necessity, the point distribution of the cloud group surrounding .
the focal point will be important to minimize directional dependence of the point adaption
through movement.

Adaption by point deletion and insertion is less constrained than the analogous 1-D case,
however the basic rule set is still applicable. That is, adaption by point movement continues

until a prescribed level of translation equilibrium-is-achieved,at which time the-adaption by ———
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point deletion and insertion may be considered. As in the 1-D case, if the adaption parameter
(specifically the linear sum of the difference in point values, first, and second derivatives
detailed previously) exceeds a user-defined accuracy value for all the neighbors in a cloud group
(or a majority of the neighboring points, depending on the degree of equilibrium achieved), then
a point insertion process may be implemented. Conversely, if the adaption parameter declines
below a user-defined lower bound for all the neighbors in a cloud group, then the point may be
deleted. For the point insertion algorithm, the following procedure is proposed. Insert a point
between the focal point and its neighbor with the highest adaption parameter magnitude.
Continue this procedure with all of the other neighboring points. It may be preferable, however,
to limit the number of points added by skipping every other neighbor point during a
circumferential search. Other limitations, such as distance parameters for validity of the Taylor
series approximation may be important and should be investigated either mathematically or
empirically as a future research topic.

5.7 The Adaption Methodology for Time-Accurate Problems

The implementation of adaption for time-accurate problems is very complex. Whereas an
optimum point location can be determined gradually during the iterative process associated with
the solution of a steady-state problem, a time-accurate problem requires reasonable point
placement at each successive time step. This necessitates an adaption algorithm that can rapidly
react to the transient, even though it will inherently lag the solution. It would be more desirable
to produce an algorithm that is not reactive, but predictive in nature. This might be
accomplished utilizing a predictor-corrector scheme that is intrinsically coupled to the time-
accurate solver. By tracking trends in the point adaption, points could be more optimally
positioned for future time steps. This task represents another future research topic, but certainly
not one that represents a barrier to the generality of the adaption methodology under
development.
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6 Shell Elements

Frank Mello

6.1 Introduction

Recent advancements in computing technology have broadened the horizons of simulation
capabilities by increasing the size and complexity of the models that can be considered.
Frequently these simulations span different time scales as well as regions with different
governing equations. Such is the case in coupled fluid structure modeling. A new technique for
solving fluid dynamics equations on a random unstructured collection of points is being
evaluated. In support of this gridless fluid modeling LDRD, plane strain and axisymmetric
shells have been added to PRONTO2D. The 3D shell element developed by Belytschko, et

al.'l» 12 hag been specialized for 2D. The reduction in dimension dramatically simplifies the
implementation. Rotation reduces to a vector of fixed orientation and the need for tracking
nodal and element coordinates is eliminated. Further, there are no hourglass modes to control in

2D shells. The same commands used to describe shell element attributes in PRONTO3D!3 14

are available in 2D, including shell thickness scaling and layered shell definitions. Much of the

text in this chapter is borrowed from documentation of the 3D features.!> 14

The coupling between fluid calculations and structural calculations will occur by passing
boundary condition data between the codes which will run simultaneously. This strategy has
been effective in linking PRONTO3D and CTH.

6.2 Governing Equations
6.2.1 Equations of Motion

Motion of a deformable body is governed by the balance of linear momentum
V-T-pii+pb =0 6.1)

where T is the stress tensor, p is the material density, & is the acceleration vector and b is the
body force vector. When a body is decomposed into a finite element mesh, the momentum
balance equation is enforced in a weak sense over each element volume. The assembled weak
form, after an integration by parts is then;

ZL TnBudS, - [ T;8i, dV,+ [pbdudV,- | pu',.Su,.dve] =0 (6.2)
e ¢ Ve VvV 1%

e e

where du; is an arbitrary virtual velocity field in the shell body. The first term in this expression

is the rate of work of externally applied tractions and/or displacements. The following terms
correspond to the rates of strain energy, work of the body forces, and work of the inertial forces,
respectively. Since PRONTO uses a lumped mass approach, the above relation reduces to a set

of uncoupled equations describing the motion of the nodal points. The acceleration of the J™
nodal mass may then be expressed as
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EXT INT

_ U -y

iy = (6.3)

In shell elements the nodal points carry rotational degrees of freedom in addition to
translations. The kinematical assumptions discussed in the following section require the
tracking of curvature rates at the nodal points and give rise to rotational acceleration relations in
the principal inertia frame of the form

EXT INT

_myy —myy ) =I5, -1 ) 0;,0,]
Oy = 7
1J
EXT _INT
_myy ™ —myy )15 = 13)) 0,031 (6.4)
Qyy = Ji
27
EXT __INT
_mzy —mz; )=(Iy; -1 ,)®,;04]
Qzy = Ji
37

In 2D this reduces to a single equation, since rotations can occur only about the normal to
the plane of the problem.

mEXT_ INT
o, = __J___I.;.J__ (6.5)

The simplicity of this single equation for rotation leads to the primary reduction in complexity
for 2D shells. Since the only principal direction which admits rotation always has a fixed
orientation the need to track nodal rotation coordinates is eliminated.

6.3 Shell Kinematics

Mindlin shell theory15 assumes that sections through the shell thickness remain straight,
although they may rotate. Rotation of the section allows the element to model transverse shear
strains. Since displacements are assumed to vary linearly through the thickness, the velocity at
any point may be expressed in terms of midplane values as

u=u+Zexowk (6.6)

in which u is the velocity of a point in the shell body, u is the velocity of the point on the
midsurface which has the same normal, and @k is the rotational velocity of the section. The
coordinate of the point through the shell thickness is Z and the unit vector along the normal is e .

Since this is a 2D shell formulation, the unit vector k, indicating the axis of rotational velocity,
is always normal to the plane of the problem.

The components of velocity strains in the corotational coordinate system are

521 du; Ju; 6.7
o= (057 “r
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Substitution of the above relation for # into the velocity strain definitions yields the strain
displacement relations for the shell.

7 _%_28(0
=293, 9%,

dsz = 0 for plane strain; dsys = T for axisymmetric
r (6.8)

~ \Y; ~ A~
dy = B V)(d” + d33) from plane stress

~ _13122 1
912 =73, 2%

where the subscript 1 refers to the direction defined by progressing from the first node of the
element to the second. The subscript 2 refers to the thickness direction and subscript 3 refers to
the direction into the plane of the problem.

6.3.1 Constitutive Assumptions

If the velocity strain components in the corotational system are arranged in a column
matrix as;

d = [d,}, dyy, dss, 2d 51" (6.9)

then the conjugate Cauchy stress components can be written as
A Ao~ AT
Furthermore, the shell is assumed to be in a state of plane stress, so

These representations are conjugate in the sense that the rate of internal strain energy density,

W, can be expressed as

W=d6é6 (6.12)
6.3.2 Element Formulation

The shell element in PRONTO2D uses a two noded line segment to model the middle
surface of a thin structure (or some other reference surface if an offset is given).

6.3.3 Coordinate Systems

In the three dimensional formulation three coordinate systems are needed. Translational
motion is described in the global system. Element calculations are performed in an element-

based system and rotational motion is described in a nodal system aligned with the principle
directions of the nodal inertia tensor. Approximating the nodes as spheres (i.e. homogenizing
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their inertias) is a reasonable approximation for well shaped elements and eliminates the need
for a nodal coordinate system.

In the two dimensional framework we use a global coordinate system and an element
system. No nodal system is required since the inertia of each node is a scalar (motion is confined
to the plane of the problem). Transformations between global and element systems is
particularly simple since both have the same third axis.

6.3.4 Element Equations

The shell element is based on a two noded line segment with linear interpolation of

reference surface coordinates and of both translational and rotational velocities. Coordinates in. ..

the reference surface of the shell are approximated as
x; = x;0,(8) ‘ (6.13)

where ¢, are the shape functions. Repeated upper case indices indicate summation over the two

nodes of the element. Similarly, the velocity of the reference surface and the angular velocity of
the shell normal are interpolated as

;= 1;9,(8)

(6.14)
o = 0;0,(8)

using the same shape functions.

For the case of two dimensional shells, these shape functions may be expanded in terms of
an orthogonal set of base vectors as

1.
0, = 5T +8Ay, (6.15)

where & is the coordinate in the unit line into which the element is mapped. The base vectors
represent deformation of the unit line.

Node £ %, Ay
1 -5 1 -1
2 5 1 1

Rigid body motion is represented by the first vector, X, . The volumetric base vector, A,

represents the stretching of the element and completely describes the element area. For this
element, there are no neglected modes and therefore no hourglass control is required. Since we
are only interested in quantities at the element center, it is easily seen that the velocities are the
average of the nodal values and the velocity gradients are the differences between node 2 and
node 1 values divided by the current element length.
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6.3.5 Computation of Internal Force and Moment Resultants

As mentioned above the gradient operator for this element reduces to a difference between
nodal quantities divided by the element length. So the velocity strains at the reference surface
may be expressed as

d,, determined from plane stress assumptions

dy; = 0 plane strain; ds; = ; axisymmetry

(6.16)

where K is the curvature rate. The constitutive relations operate on these velocity strains to
produce stress increments. The total stress is then integrated to element forces and moments.
These forces are transformed to global components and assembled. Moments are computed
directly from the integration point forces and the offsets.

6.3.6 Hourglass Control
There is no hourglass control for two dimensional shells.
6.3.7 Calculation of Stable Time Increment

The central-difference operator is conditionally stable with the stability limit for a given
system with no damping being

2

mmax

At < (6.17)

where ®,,,, is the maximum frequency of the system. Here the maximum frequencies of a two

dimensional shell system are conservatively estimated based on the most heavily constrained
collection of elements which still admits deformation. Frequencies associated with translations
and rotation have been considered. The membrane frequency accounts for the hoop stiffness in
axisymmetric problems. Further, the rotational frequency will always bound the transverse
deformation case. So the critical time step is based on the largest of the membrane and
rotational frequencies.
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m, max
_ [24EI
0)@, ma; - l3 M
E = Youngs Modulus (6.18)

A =t in-plane; A = It hoop
1 o
I= = bending inertia
M = element mass

[ element length = 2nr for axisymmetry

6.4 Constitutive Models

Currently two material models have been implemented, elastic and combined hardening
elastic-plastic. More constitutive models will be included as needed.
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7 Summary and Recommendations

A gridless method has been developed for the simulation of coupled fluid/structural
interactions over arbitrary bodies. This method uses Eulerian-based points arbitrarily distributed
over the computational domain with no formal connectivity as typically required for a
traditional grid. Each point in the domain has associated with it a cloud of neighboring points.
Derivatives in the governing PDE’s are numerically approximated by assuming a functional
dependence of each variable within the local cloud of points, where the number of points in the
cloud is greater than or equal to the number of unknown derivatives. The governing partial
differential equations are then solved locally at each point in the computational domain. This
gives a solution to the governing equations without any a priori assumptions concerning grid or
element topology, and allows for addition, deletion, or movement of points with no change in
solution algorithms.

The gridless method is neither a finite difference, finite volume, nor a finite element
approach since differences, metrics, areas, or volumes, are not computed. The methodology is
extremely versatile in that the method permits one to solve the relevant equations based on the

- complexity of the problem at hand. Hence, the difficulty of simulating either a potential flow,

Euler flow, or full Navier-Stokes flow, and the ability to model compressible or incompressible -
flows is dictated only by the set of PDE’s solved and is easily amenable to a modular code-
structure. This modularity appears as a simple consequence of the fact that the equations of
motion are independent of the point distribution and the solution algorithm is completely grid
free.

The gridless method had been implemented in a two-dimensional code written in ANSI
standard C. Example calculations using Laplace’s equation as the model test problem have
shown that the current implementation of the gridless method gives reasonable accuracy when a
second-order approximation is used to calculate local derivatives. Comparisons with optimized-
coupled linear methods for the solution of the equations have shown that the current basic
implementation is very near optimum, given the point distribution and order of approximations.
Accuracy can be improved by using a third-order approximation in regions with larger
gradients, such as on the body surface. Point adaption has also shown promise for improved
accuracy. However, point adaption has not yet been extended to two dimensions. The optimum
balance between higher-order derivative approximations and point adaption has not been
determined.

For the structural simulation side of the coupled fluid/structure problem, plane strain and
axisymmetric shells have been added to the code PRONTO2D. The three-dimensional shell
element developed by Belytschko, et al, has been specialized for two dimensions. The reduction
in dimension dramatically simplifies the implementation. Rotation reduces to a vector of fixed
orientation and the need for tracking nodal and element coordinates is eliminated. Further, there
are no hourglass modes to control in two dimensional shells. The same commands used to
describe shell element attributes in PRONTO3D are available in two dimensions, including
shell thickness scaling and layered shell definitions. The coupling between fluid calculations
and structural calculations occurs by passing boundary condition data between the codes which

77




run simultaneously. This strategy has proven effective in linking the codes PRONTO3D and
CTH.

More work needs to be done to bring the current gridless code to a production status. One
of the more pressing needs is to extend the point adaption scheme to two dimensions. Once this
is done, trade-off studies can be run to determine the balance between point adaption and higher
order approximations for improved solution accuracy and speed. Work also is needed to
improve the code efficiency so that run times do not increase as the square of the number of field
points. Improvements need to be incorporated to extend the code beyond the current Laplacian
model problem to more complicated fluid equations, such as the Euler and Navier-Stokes
equations. Extensive coupled fluid/structural calculations are needed to ensure that all of the
problems of coupling the two codes are resolved. Finally, after the above improvements are
made, detailed comparisons are needed between the gridless method code and existing fluid
mechanics codes with similar capabilities. Even after the gridless code has been shown to work
for all cases, it will not have been proven that this method is more efficient than, say, a fluid
code that uses an unstructured grid and regrids as needed to handle a moving structural
boundary.
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