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Abstract 
A major goal for global change studies is to improve the accuracy of general circulation 

models (GCMs) capable of predicting the timing and magnitude of greenhouse gas-induced 
global warming. Research has shown that cloud radiative feedback is the single most impor- 
tant effect determining the magnitude of possible climate responses to human activity. Of 
particular value to reducing the uncertainties associated with cloud-radiation interactions 
is the measurement of cloud base height (CBH), both because it is a dominant factor in 
determining the infrared radiative properties of clouds with respect to the earth’s surface 
and lower atmosphere and because CBHs are essential to measuring cloud cover fraction. 

We have developed a novel approach to the extraction of cloud base height from pairs 
of whole sky imaging (WSI) cameras. The core problem is to spatially register cloud fields 
from widely separated WSI cameras; this complete, triangulation provides the CBH mea- 
surements. The wide camera separation (necessary to cover the desired observation area) 
and the self-similarity of clouds defeats all standard matching algorithms when applied to 
static views of the sky. To address this, our approach is based on optical flow methods that 
exploit the fact that modern WSIs provide sequences of images. 

We will describe the algorithm and present its performance as evaluated both on real 
data validated by ceilometer measurements and on a variety of simulated cases. 
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Chapter 1 

Introduction 

Cloud base height (CBH) is a dominant factor in determining the infrared radiative properties 
of clouds. However, cloud base heights are not well known. To address this fact, this paper 
presents a novel approach for the extraction of cloud base height from pairs of whole sky 
imaging (WSI) cameras. Much like the human visual system can perceive depth by using 
two eyes, cloud height can be computed using two cameras viewing the same cloud field. 

Given two images from widely separated WSI cameras, the core problem of computing 
cloud height is to find corresponding points between the two images, i.e., find points which are 
projections from the same point on a cloud. This complete, triangulation provides the CBH 
measurements. Given the orientation and distance between the cameras, for any given point 
in one image, the corresponding point must lie along a well-defined line in the other image. 
Correlation of intensity values is a standard technique for finding the corresponding point 
along this line. However, the wide camera separation (necessary to cover the observation 
area required by the field measurements site) and the self-similarity of clouds defeat this 
approach when applied to static views of the sky. 

To compute CBH we exploit the fact that modern WSIs provide sequences of images. 
With these sequences, the optical flow field, i.e., a field of vectors which represent the image 
motion of points, can be recovered and used to aid in finding corresponding points. In the 
WSI case, the correlation approach is augmented to  include this motion information along 
with the intensity information at each pixel. 

The following chapters will motivate this problem and the use of WSI cameras, describe 
the central principle of the height extraction algorithm, and present quantitative measures 
of its performance as evaluated on real and simulated data. 

1.1 Background 

1.1.1 
A major goal for the Department of Energy’s (DOE’S) global change efforts is to improve 
the accuracy of general circulation models (GCMs) capable of predicting the timing and 
magnitude of greenhouse gas-induced global warming. Research has shown cloud radiative 
feedback is the single most important feedback effect determining the magnitude of possible 
climate responses to human activity. Yet, as pointed out by Cess [5 ] ,  clouds are not well 

General Circulation Models and Clouds 
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parameterized in GCMs and are, in fact, presently the greatest factor limiting the accuracy 
of atmospheric GCMs. Thus clouds exert the largest influence while at the same time present 
the largest uncertainties in predicting global climate change. As a result, cloud studies are 
critical to understanding global climate change and improving the predictive accuracy of 
GCMs. In recognition of this problem, (e.g., Rossow [13]) a number of important national 
and international programs have recently been initiated to characterize cloud-radiation in- 
teractions, including DOE’S Atmospheric Radiation Measurement Program ARM, and the 
International Satellite Cloud Climatology Project. 

In the ARM program a key to this cloud-radiation characterization is the effective treat- 
ment of cloud formation and cloud properties in GCMs as supported by a field measurements 
program - “an important feature of the ARM Program Plan is to establish a surface-based 
cloud imaging system at the research sites that will provide appropriate information for pa- 
rameterizing solar flux over an entire grid cell” . The first such Cloud And Radiation Testbed 
(CART) site makes measurements, including cloud measurements, over a 30-km diameter 
region. 

1.1.2 Macroscopic Cloud Properties 
A well-recognized approach to reducing the uncertainties associated with cloud-radiation 
interactions involves measuring the macroscopic properties of clouds (shape, size, extent, 
cloud cover fraction, radiance, altitude, etc.) on the mesoscale (20-200 km). Of these 
measurements, cloud base height is particularly important because it is a dominant factor 
in determining the infrared radiation from clouds to  the lower atmosphere and the earth’s 
surface. Furthermore, as shown by Rossow [13], base heights are essential to measuring 
the cloud cover fraction at low, medium and high altitude, and these in turn are needed to 
establish a cloud-radiation climatology. 

1.1.3 Whole-Sky Imagers and Digital Imagery 
Digital whole-sky imagers have a number of advantages for making cloud studies. They 
are passive and therefore relatively inexpensive and reliable, can be used in unattended 
operation, and obtain images of the whole sky dome rapidly. The particular passive camera 
that has generated our existing data is the Whole Sky Imager developed by the Marine 
Physical Laboratory (MPL) at the Scripps Institution of Oceanography, as described in 
Shields [14]. These imagers are rugged and have demonstrated many years of high-reliability 
field service. Full-resolution (1/3”) digital images can be acquired at one per minute. This 
is rapid enough to capture most of the cloud dynamics of interest and fully utilize the image 
motion of the clouds. As the images produced by the MPL WSI are already digital, there is 
no need for a digitization step before the data can be electronically stored and manipulated 
by a computer. The former insures permanent and undegraded data availability, and the 
latter is the only practical way to handle the volumes of data to be gathered. 

Most prior cloud dynamics studies have been carried out using time-lapse photography 
to investigate the inception, growth, persistence, transport and breakup of clouds. These 
are important elements of the cloud life cycle, and so are presently of central importance 
in the ARM Program. However, the painstaking labor and individual attention required by 
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the use of photographs will make similar studies impossible when attempting to process the 
volume of data which will be collected by the CART sites. Analysis of the data will thus 
require digital image processing. 

1.2 Method 

1.2.1 A n  Overview 
Unfortunately, the state of the art in cloud imagery processing is not yet capable of extracting 
measures as central and important as cloud bottom heights. The main problem is to spatially 
match up cloud fields from widely separated WSI cameras; once registered against each other, 
computation of cloud bottom heights proceeds in a straightforward fashion from triangulation 
and knowledge of the camera locations. Our solution to this problem utilizes temporal flow 
fields from each camera separately. In the following subsections we will review the prior 
history of this problem, illustrate its difficulty, and suggest why flow fields provide the 
necessary additional constraints. 

1.2.2 Prior Work 
Extracting cloud bottom heights via triangulation of registered points has been in the cloud 
stereoscopy literature for twenty years, and is well-understood. The registration itself, how- 
ever, has not been well addressed. In the earlier literature, e.g., Bradbury [3] and Lyons 
[lo], the problem was side-stepped though human intervention, registering the images by 
hand before triangulation. More recently, e.g., Rock [12], the automatic registration prob- 
lem has been successfully handled, but only for nearly parallel views of the sky (;.e., cameras 
spaced closed together). In that case the stereoscopic nature of the views permitted simple 
limited-displacement correlation to suffice as a registration algorithm. 

The registration problem facing ARM, however, is considerably harder in that the camera 
spacing is on the order of 5 km, as this is required to achieve adequate coverage at the 
required resolution with a small number of cameras. With this baseline spacing, the three- 
dimensional nature of clouds generates occlusion and perspective effects that will cause them 
to image differently at the various cameras. Because of this, correlation-based registration 
using intensity only is insufficient. Further, the visual self-similarity of clouds, defeats token 
matching (the detection and matching of a small number of visually distinctive regions), 
which is the only common alternative approach. 

As an example, the top of Figure 1.1 contains a synthetic example pair of simultaneous 
frames (see Chapter 5 for how the data was generated). Careful examination will show that 
corresponding points appear shifted to the top in the right image. This can be difficult to 
determine by eye, primarily due to the difference in perspective experienced by the widely 
separated cameras. However, this synthetic cloud scene was very flat and did not contain 
lighting variation due to the sun. Therefore, finding corresponding points in WSI images of 
real-world cloud fields is even more difficult, creating the need to also use flow fields to find 
corresponding points. 
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Figure 1.1: (a) One frame of a synthetic altocumulous cloud scene as viewed from the bottom 
(left image) and top (right image) cameras. Corresponding points appear shifted to the top 
in the right image. (b) One frame of a real cloud scene as viewed from two WSI cameras. 
This example shows how difficult the correspondence problem can be. Corresponding appear 
shifted down and to the left in the right image. 

10 



1.2.3 Flow Field Correlation 
The use of image sequences to identify the correspondence suggests how one can automate 
the registration process. WSI images are acquired at a rate of one per minute, which provides 
a comparatively dynamic view of the sky. This provides a means to overcome the registration 
obstacles mentioned before, which apply only to the attempt to register two static views of 
the sky. 

The temporal sampling rate of the WSI camera is high enough that optical flow fields 
can be computed using hierarchical correlation methods such as those developed by Burt [4]. 
With the optical flow fields computed for the images from both WSI cameras, each image 
pixel becomes associated with a vector indicating the image motion of that point. Combining 
this with the intensity value at the pixel, a multi-dimensional quantity is associated with 
each image pixel. It is the core of our approach that these flow and intensity fields from 
the separated WSIs are jointly registered against each other. In this way, the additional 
constraints provided by the flow field are exploited to make the matching unique. 
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Chapter 2 

Extracting Cloud Base Heights 

In this section the geometry between WSI sites will be developed. Using the resulting 
equations the height of a registered cloud point (i.e., the azimuth and zenith of the point in 
two WSI cameras is known) can be computed. Further, the epi-polar line can be determined. 
Given a point in one WSI image, the epi-polar line in an image from another WSI site 
defines the line along which the corresponding point must be located. Hence, this line limits 
the search while finding correspondences between WSI images from different sites. The 
uncertainty and sensitivity of these equations will also be examined. 

2.1 Mapping Azimuth and Zenith Between WSI Sites 
Given a point in the sky, the equations describing the azimuth and zenith relative to two WSI 
cameras are developed. Figure 2.1 shows the geometry between two WSI sites separated by 
a distance d. Without loss of generality, let site S2 be directly east of site SI. Assume that 
the two WSIs are aligned in parallel and that S1 and S 2  are at the same altitude.' Given 
the zenith, 61, and azimuth, 41, of a point relative to SI and h, the height of the point, we 
will determine the zenith, 02, and azimuth, $2, of the point relative to S2. 

First we find 4 2 .  The following are obvious: 

d = d, + d2 
dlCOS(d1) = p 

P tan(q52-270) = - 
dl, 

dl sin(41) = d, 
dl tan(&) = - 
h 

Eq. (2.1) is by definition. Substituting Eqs. (2.1) and (2.2) into Eq. (2.3), 

'The effects when these assumptions are violated are addressed in Section 2.4 
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Figure 2.1: The geometry of two WSI sites S1 and S 2 .  q5i and 0; represent the azimuth and 
zenith, respectively. The height of the point is h. The distance to a position underneath the 
point is given by d;. The range from S1 to the point is given by T .  

Substituting Eq. (2.4) into Eq. (2.6) gives 

Finally, substituting Eq. (2.5) into Eq. (2.7) we find 

1 

Next we find 02. The following are obvious: 

h = dl cot(&) 

d2 cos(42 - 270) = d2 
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(2.10) 

h = dzcot(O2) 

Substituting Eq. (2.4) into Eq. (2.9) gives 

4 = htan(B1)sin(dl) 

Substituting Eq. (2.10) into Eq. (2.11) gives 

d; = h tan(02) sin(d2) + d 

Setting Eqs. (2.12) and (2.13) equal and solving for O2 we have 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
~ 

(2.15) 

By rearranging Eq. (2.15) we have the equation for the height of a point given its az- 
imuth and zenith at sites 1 and 2. 

I 

In the next section Eqs. (2.8) and (2.15) will be used to define the eqi-polar line. 

2.2 Computing the Epi-Polar Line 
The equations of the previous section can be used to help find corresponding points between 
images from two WSI sites. Given a point in an WSI image, to  compute it’s height we 
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must find the projection of that point in another WSI image. Given the point in an image 
the azimuth and zenith of that point is known. However, the range, r ,  of that point from 
the WSI is not known. As the range is varied from zero to infinity, the location of the 
corresponding point in another WSI sweeps out a line called the epi-polar line. So, given a 
point in an image, its corresponding point in another image must lie along the well-defined 
epi-polar line. Using the equations above, the epi-polar line at S 2  for a given el and $1 are 
developed in this section. 

All quantities in Eq. (2.8) are constant as r varies except h. However, htan(81) = dl = 
rsin(8). Substituting this into Eq. (2.8) gives 

4 2  = arctan (2.17) 

This equation gives the change of 4 2  as a function of r .  

r cos(O1) into Eq. (2.15) gives: 
We now need to find 0 2  as a function of r .  Substituting h tan(&) = r sin(&) and h = 

r sin(&) sin(+l) - d 
r cos(81) sin(d2) 

02 = arctan (2.18) 

Eqs. (2.17) and (2.18) describe how the azimuth and zenith change as a function of r .  
The following equations from [9] define the point within a WSI image which corresponds 
to  a particular azimuth and zenith. These camera calibration equations were determined 
experimentally and will be discussed in Section 2.4.6. 

d = O(3.032 - 0.002598) (2.19) 
5 = 255 + 0.8dsin(#) (2.20) 
y = 240 + dcos($) (2.21) 

d is the distance from the center of the image to a point. So using Eqs. (2.17)-(2.21) a line 
is defined in an image. This is the epi-polar line and is used to  limit the search when looking 
for corresponding points. 

To determine the height of a point in a WSI image we compute the azimuth and zenith of 
that point relative the WSI site. With the azimuth, zenith and relative location of another 
WSI site given, we compute the epi-polar line in an image from the other WSI site. We 
then search along the epi-polar line for the matching point. Once the corresponding point 
is found its azimuth and zenith is computed relative the the second site. Eq. (2.16) is then 
used to compute the height. 

More specifically, a t  this point the algorithm is as follows: 

e For every point, p l ,  in image 1 

- Compute the epi-polar line for pl in image 2. [Section 2.2, Eqs. (2.17)-(2.21)]. 
- For each point, p2, along the epi-polar line 

* Match pl  and p2 [Section 4.51, 
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- Find the best matching point along the epi-polar line. Call this point G2. 
- Compute the cloud height using p l  and p i  as corresponding points. [Eq. (2.16)]. 

The next section will describe a confidence metric for the computed base heights. How to 
perform the match of points pl and p2 will be discussed in Chapter 4. The following sections 
will describe a confidence metric for the computed base heights and discuss the sensitivity 
and uncertainty of the system. 

2.3 A Confidence Metric 
Given that the WSI cameras are widely separated, it is possible that many cloud points will 
be visible in one camera but not the other. When this happens, the algorithm for finding 
corresponding points between images will report a matching point (as whichever point best 
matches), but the resulting computed height will most likely be incorrect. In cases where 
the corresponding point does not exist, a height should not be computed and the algorithm 
should report this. In order to detect cases where a cloud point is only visible in a single 
image, we describe a confidence metric which indicates the confidence of the algorithm that 
it has found two corresponding points. 

To compute the confidence, we effectively find corresponding points twice. First, corre- 
sponding points for the points in image 1 are found. Second, corresponding points for the 
points in image 2 are found. Let pl be a point in WSI image 1. The epi-polar line for point 
p l  is computed in WST image 2. The best matching point along this epi-polar line is found. 
Call this point p2. This is shown in Figure 2.3(a). Next, the epi-polar line for point p’, is 
computed in WSI image 1. The best matching point along this epi-polar line is found. Call 
this point p i .  In the ideal case, pl and p i  are the same point. The distance between points 
p l  and p i  is the confidence value. So the smaller the value, the higher the confidence of the 
algorithm. This is shown in Figure 2.3(b). 

If there is no correct corresponding point to p l  in the right image, then the point labeled 
as p i  is clearly not the correct corresponding point. When the corresponding point for i2 is 
found in the left image, it is more likely that its correct corresponding point will be found 
rather than p l  and the confidence of the computed height of p l  will be low. 

The algorithm, now with the confidence computation, is as follows: 

0 For every point, p l ,  in image 1 

- Compute the epi-polar line for p l  in image 2. [Section 2.2, Eqs. (2.17)-(2.21)]. 

- For each point, p2,  along the epi-polar line 

* Match pl and p2 [Section 4.51. 

- Find the best matching point along the epi-polar line. Call this point p i .  

- Compute the epi-polar line for p i  in image 1. [Section 2.2 Eqs. (2.17)-(2.21)]. 

- For each point, p3, along the epi-polar line 

* Match p ;  and p3. 
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Figure 2.2: (a) Let p l  be a point in the left WSI image. The epi-polar line for point pl is 
computed in the right WSI image and the best matching point, p i ,  along this epi-polar line 
is found. (b) The epi-polar line for point p i  is computed in the left WSI image. The best 
matching point, p i ,  along this epi-polar line is found. In the ideal case, p1 and p i  are the 
same point. The distance between points p l  and p i  is the confidence value. 

- Find the point of maximum correlation value along the epi-polar line. Call this 

- Compute the cloud height using p1 and p;  as corresponding points. [Eq. (2.16)]. 

- Compute the distance between p l  and p i .  This is the confidence value of point 

point p i .  

Pl.  

2.4 Sensitivity and Uncertainty 
In this section the sensitivity and uncertainty of the system will be analized. It will be shown 
how much a point in the sky could move vertically without a change in the computed base 
height. Further, there are five sources of uncertainty in the system: 1) the relative altitude 
of the WSIs; 2) the positioning of the WSIs; 3) the alignment of the WSIs; 4) the plumbness 
of the WSIs, and 5 )  the projective properties of the WSIs. These five sources of error will 
be examined in this section. In all cases, the error can result in the computed epi-polar line 
missing the correct matching point. Below we will show the difference between the azimuth 
and zenith with no error in camera positioning or alignment and the azimuth and zenith 
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Figure 2.3: The amount that the height of a point can change, Ah, without being detected 
by a WSI, i.e., O1 - O2 < 0.3". 

when there is error. In this way we get an estimate of the amount of displacement that 
the matching point is off the epi-polar line. For a small displacement there is a reasonable 
chance that the correct matching point along the epi-polar line will be found. But for large 
displacements, there is little guarantee of finding the correct point. 

Note that if we did not restrict our attention to  the matching along the epi-polar line, 
then the correct matching point might still be found regardless of these errors. However, 
there will still be error in the computed cloud base height. For completeness the error in 
computed cloud height given the correct matching points is included. The error in this case is 
the difference between the computed height with the WSI perfectly oriented and positioned 
and the computed height with the WSI mispositioned or misoriented. 

2.4.1 Sensitivity 
In this subsection the sensitivity of the camera configuration will be shown. That is, we will 
develop equations which show how much a point in the sky could move vertically without 
being detected by either camera. 

The angular resolution of the WSI camera is 5" per pixel. So given a point in the sky, 
one simply needs to move that point vertically until the zenith angle has changed by 5" in 
either of the two cameras. This is the sensitivity of the configuration for that particular 
point and height. 

From Figure 2.3 it is clear that 

d 
tan(O1) = - 

h 
and that 

d 
h + A h  

tan(02) = 

(2.22) 

(2.23) 

d is the distance from the camera to the position underneath the point and h is the height 
of the point. 

18 



Figure 2.4: The change of 02 as the elevation between WSI sites differ. Note this figure is 
effectively Figure 2.1 viewed edge-on. 

Subtracting Eqs. (2.22) and (2.23), setting the result equal to 5 and solving for A h  gives 
the sensitivity. 

1 d 
- = arctan (f) - arctan ( 3 h + A h  

3 + (a) (A) 

) 
d d 

1 h h+Ah tan(-) = 

tan($) (h2 t 61) 
d - h tan(:) 

A h  = 

A h  is computed for each camera and the smallest value is the sensitivity of the system. 

2.4.2 Uncertainty of Elevation 
The case where two WSI sites are at different elevations can be dealt with, but in this section 
we will examine the amount of error induced if the two sites are not at the exact specified 
elevation. We will assume without loss of generality that the two sites are suppose to be 
at the same elevation. Clearly, the azimuth, 4 2 ,  is unchanged by a difference in elevation. 
However, the zenith will change. Figure 2.4 shows the vertical geometry between S1 and S2. 
Also shown is the geometry when S2 differs in elevation from S1 by a distance e. 02 is the 
zenith angle if the WSIs were at the same elevation and 0; is the zenith angle if the WSI at 
Site 2 is not at the same elevation as Site 1. 

The following two equations are obvious. 

d2 tan(02) = - 
h 

d2 

h + e  
tan(&) = - 
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Solving both equations for d2, setting equal and rearranging gives: 

(2.24) 

It is known that a one-third degree change in zenith angle results in a change of one pixel 
in the image. Therefore, the number of pixels, P, that the matching point will be away from 
where it should be is given by 

1 
3 

P = -(e2 - e;) 
t a n ( 3 ~ )  = tan(o2 - e;) 

- tan(02) - tan(8;) - 
1 + tan(&) tan(0;) 

(2.25) 

Substituting Eq. (2.24) into Eq. (2.25) gives: 

In the event that the correct matching point is found, the error in computed height can 
be found by computing the difference between the computed height when the WSIs are at 
the same elevation and the computed height when one WSI is elevated with respect to the 
other. 

The height of a point with both WSIs at  the same elevation is given by Eq. (2.16). The 
computed height of a point with one WSI offset is 

Substituting Eq. (2.24) into Eq. (2.26) gives 

(2.26) 

(2.27) 

Subtracting Eq. (2.27) from Eq. (2.16) gives the error due to a difference in elevation. 

2.4.3 Uncertainty of Position 
There are two types of uncertainty in positioning of one WSI relative to another: the distance 
between the cameras and the direction of one camera relative the other. Without loss of 
generality, assume that camera 1 is situated at azimuth 90" relative to camera 2 and is 
distance d away. Figure 2.5 shows the configuration at camera 2, which is located at the 
origin. Given a potential misplacement of camera 2 by e, and ey, the new azimuth, 4; is 
given by 

(2.28) 
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Figure 2.5: Configuration at  site of WSI 2. The cloud is at (x, y)  relative to the camera 
location. If the WSI is misplaced then the position of the cloud relative to the WSI changes. 
The position is then (x + e,, y + ev) .  

The new zenith, e;, is given by 

(x + + (y + ey)2 

h 
tan(ei) = J 

4 2  and 0 2  are given by 

.Jm 
h 

tan(02) = 

(2.29) 

(2.30) 

(2.31) 

The process to find the number of pixels that a point moves in the image as a result 
of the camera being mispositioned is straightforward. Given a zenith angle, 0, the distance 
from the center of the image, R, that a point at that zenith appears is given by 

R = e(3.032 - 0.00259 e)  (2.32) 

The i and j position of that point in the image is then given by 

j = 255 + 0.8 R sin($) 
i = 240 + R COS($) 

(2.33) 
(2.34) 

where 4 is the azimuth angle. Using Eqs. (2.32), (2.33) and (2.34), i and j is computed for 
the point specified by 0 2  and 4 2  and for the point specified by 0; and 4;. The distance in 
the image between these two points is then computed. 
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To compute the potential error from the uncertainty in camera placement in the event 
that the correct matching point is found, we compute the difference between the true height 
and the computed height with camera 2 mispositioned by its uncertainty. 

The height of a point with both WSIs perfectly positioned is given by Eq. (2.16). The 
computed height of a point with one WSI mispositioned is 

d 
tan(&) sin(qh) - sin(&) tan(0;) 

- 
hmisposition - (2.35) 

where 4; and 0; 
misposi tioned. 

Solving Eqs. 

are the azimuth and zenith of the point, respectively, at site 2 with the WSI 

(2.28) and (2.30) for x, setting the results equal and solving for sin($;) gives 

(2.36) 

Solving Eqs. (2.29) and (2.31) for h, setting the results equal and solving for tan(0;) gives 

Substituting Eqs.(2.36) and (2.37) into Eq. (2.35) and rearranging gives 

d - 
e, tan(&) hmisposition - 

tan(dl) sin(4l) - sin(q52) tan(02) + 
Using Eq. (2.31), Eq. (2.38) becomes 

d 
tan(&) sin(4l) - sin($?) tan(&) + % 

- 
hmisposition - 

(2.38) 

(2.39) 

Subtracting Eq. (2.39) from Eq. (2.16) gives the error due to misposition of the WSIs. 

2.4.4 Uncertainty of Alignment 
If two cameras are not perfectly aligned, i.e., they are not pointing in the same compass 
direction, error will result in the computed height. Rather than quantifying the error that 
two cameras are misaligned with magnetic north, we will quantify the amount that one 
camera is misaligned with respect to the other. The effect of the misalignment is an incorrect 
azimuth for the corresponding point in a camera. In this case, the new azimuth is simply 
$2 + 4c where +c is the amount of misalignment. 

The process to find the number of pixels that a point moves in the image as a result of 
the camera being mispositioned is straightforward. Since the zenith angle does not change, 
a misaligned camera will not change the distance from the center of the image that the 
matching point appears. So only Eqs. (2.32)) (2.33) and (2.34) are needed to compute the x 
and y position of a point specified by & and 42 + c$~. This difference between this location 
and the location specified by 02 and 4 2  is then computed. 
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To compute the error induced by misalignment in the case where the correct matching 
point is found, the difference between the true height and the computed height with the 
camera misaligned is computed. The height of a point with both WSIs perfectly aligned is 
given by Eq. (2.16). The computed height of a point with the WSIs misaligned is 

where dc is the amount of misalignment. Subtracting Eq. (2.40) from Eq. (2.16) gives the 
error due to misalignment of the WSIs. 

2.4.5 Uncertainty of Plumbness 
If the WSI is not perfectly plumb then the azimuth and zenith of points will be incorrect. 
Unlike earlier cases where only the relative difference between WSI was important, the 
relative difference in elevation for example, in this case the absolute difference from plumb 
of both WSIs must be considered. This results because even if all WSIs were oriented in 
parallel, if the WSI were not plumb the incorrect height would be computed. 

If a WSI is not plumb, the lens will be rotated relative to zenith angle zero. The center of 
rotation is most likely about the base of the WSI, resulting in the lens being mispositioned 
in addition to being rotated. However, mispositioning will be on the order of centimeters 
whereas the distance of clouds is on the order of kilometers. Therefore, any mispositioning 
will be ignored and it will be assumed that the center of rotation is at the lens. 

To compute the potential error from the uncertainty in plumbness, the difference between 
the true height and the computed height with the WSI out of plumb is computed. To 
compute how the azimuth and zenith change from a plumb WSI to an out-of-plumb WSI, 
we will assume without loss of generality that the lens remains fixed and the sky rotates 
around the lens. If the center of the WSI lens is considered the center of a coordinate 
system, it is straightforward to compute the change of position, and therefore change of 
azimuth and zenith, of points in the sky due to rotation. 

Let 4; and 0; be the azimuth and zenith of the point, respectively, at site 1 with the WSI 
out of plumb. Similarly, 4; and 0; are the azimuth and zenith of the point, respectively, at 
site 2 with the WSI out of plumb. 

Figure 2.5 shows the geometry of a point on a cloud with the WSI at  the origin. Without 
loss of generality, assume the distance from the origin to the cloud is 1. With the assumption, 
and considering Figure 2.5, the following are clear from inspection: 

x = sin($)sin(O) 
y = cos($)sin(0) 
h = cos(0) 

Since we are only concerned with the amount of error to be expected from cameras out 
plumb, we assume that the WSI is tilted around the z-axis. A point a t  [z, y, h] rotated by 
an angle cy around the z-axis gives 

[sin($) sin(0), cos($) sin(B),  COS(^)] I 1 0  0 
0 cos(a) -sin(a) = 
0 sin(cy) cos(a) 
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[sin($) sin(6), 
cos($) sin(0) cos(cr) + cos(0) sin(cr), 
- cos($) sin(0) sin(cr) + cos(0) cos(cr) ] 

Since it is assumed that the point is distance 1 from the WSI, the following are true: 

(2.41) 

0 = arccos(h) (2.42) 

4 = arctan (i) (2.43) 

By substituting the 5, y and h components of Eq (2.41) into Eqs. (2.42) and (2.43) we have 
the new azimuth, $', and the new zenith, 0', due to the rotation of the point around the 
WSI. Or equivalently, we have the new azimuth and zenith as a result of the WSI being out 
of plumb. 

0' = arccos (- cos($) sin(8) sin(cr) + cos(0) cos(a)) (2.44) 

1 sin($) sin(0) 
(cos(+) sin(0) cos(a> + cosp)  sin(cr) 

4' = arctan (2.45) 

The process to find the number of pixels that a point moves in the image as a result of 
the camera being out of plumb is straightforward. Using Eqs. (2.32), (2.33) and (2.34), the 
x and y position is computed for the point specified by 0 2  and $2 and for the point specified 
by 0; and 4;. The distance in the image between these two points is then computed. 

In the event that the correct matching point is found, the height of a point with both 
WSIs perfectly positioned is given by Eq. (2.16). The computed height of a point with two 
WSIs out of plumb, the height is given by 

d 
tan(0;) sin($;) - sin(&) tan(0;) hout-o f -plumb = (2.46) 

Computing the difference gives the error in the computed height due to cameras out of 
plumb. 

2.4.6 Uncertainty in Camera Calibration 
Up to now, the use of the camera calibration equations (the equations that map an azimuth 
and zenith to a point in an image) have been used as if they define the projection process 
perfectly. In fact, they do not. These equations, first shown as Eqs. (2.19), (2.20), and (2.21) 
were derived by Koehler [8]. Koehler positioned lines at specific zenith angles and measured 
the number of pixels from the center of the image to where each line appeared in the image. 
This gave a table of distances from the center of the image as a function of zenith angle. A 
second-order equation was then fit to the data. This is Eq. (2.19). Koehler reported a half 
pixel difference between the equation and data for zenith angles greater than or equal to  70 
degrees. For zenith angles less than 70, there was no detectable error. But note that this 
is just the error between the collected data and the best fit equation to describe the data; 
experimental error is not included. 
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Figure 2.6: Effects of an incorrect calibration equation. A point is shown in the left image 
and two epi-polar lines are shown in the right image. The correct matching point is shown 
along the “correct”, long-dashed epi-polar line. However, the camera calibration equations 
may result in the other epi-polar line since the equations are in error in some areas of the 
image. 

Figure 2.6 shows an example of how an incorrect calibration equation results in the 
correct matching point being off the epi-polar line. A point is shown in the left image and 
two epi-polar lines are shown in the right image. The correct matching point is shown along 
the “correct”, long-dashed epi-polar line. However, the camera calibration equations may 
result in the other epi-polar line since the equations are in error in some areas of the image. 
The undesirable effects of errors in the calibration equations have been exaggerated to show 
the point. Koehler’s experiments show that errors in the calibration equations result in less 
than a pixel error in areas of interest, Le., away from the extreme edge of the image. 

To compute the error induced by errors in the calibration equation in the case where the 
correct matching point is found, the difference between the true height and the computed 
height with incorrect zenith angles is computed. The calibration equations are only used to 
compute the zenith angle given a point in the image and vice verse. So if the calibration 
equations are wrong, only the zenith angles are in error. The computed height in this case 
is 

d 
tan(O1 + O,l)sin(qL) - sin($2) tan(@? + eC2) hmiscalibration = (2.47) 

where UC1 and Oc2 are the errors in the zenith angles O1 and 02, respectively. 
Subtracting Eq. (2.47) from Eq. (2.16) gives the error due to errors in the calibration 

equation. From Koehler [8] we know that Ocl and 8,2 are positive and at  most 0.33 degrees 
since the angular resolution along the zenith is one third degree per pixel. 

2.4.7 Typical Uncertainties 
Typical values for the five previously discussed sources of uncertainty and cloud base height 
error were chosen and the total potential displacement of pixels in an image was computed. 
The following values were used: 
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Figure 2.7: This image indicates the most that clouds can be displaced in an image for a 
typical cloud height. The brightest area indicates a displacement 8 pixels while the darkest 
area shows a displacement of 3 pixels. 

Cloud Height 10000 meters 
Uncertainty in x position 
Uncertainty in y position 
Uncertainty in elevation 10 meters 

100 meters 
100 meters 

Uncertainty in alignment 1" 
Uncertainty in plumbness 1" 
Uncertainty in calibration Equation 0 pixels if zenith < 65" 

0.5 pixels if zenith 65" - 75" 
1 pixel if zenith > 75" 

While in practice one source of error could counteract another source of error, in this 
example all errors were cumulative. Figure 2.7 shows displacement error, with bright indi- 
cating more error. The brightest section near the center has pixel displacement of 8 while 
the dark area also near the center image has pixel displacement of 3. Only the displacement 
due to  a difference in elevation between the cameras is not significant. Roughly, all other 
sources contribute equally to the displacement shown in Figure 2.7. 

When searching along the epi-polar line, the size of the correlation window is 19x19 (see 
Chapter 6), so it is likely that the correct match can be found at a displacement of 3, but a 
displacement of 8 will make finding the correct match difficult. 

The sensitivity, the amount that a point could vertically move without being detected, 
is shown in Figure 2.8. The brightest area has error up to 5% (500 meters for this scenario) 
while the darkest area has error around 1.5% (150 meters for this scenario). 
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Figure 2.8: This image indicates the worse the error can be for a typical cloud. The brightest 
area has error up to 5% while the darkest area has error around 1.5%. 
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Chapter 3 

Monocular Optical Flow for Clouds 

To compute cloud base heights (CBH) we exploit the fact that modern WSIs provide se- 
quences of images. With these sequences, the optical flow field, i.e., a field of vectors where 
each vector represents the image motion of that point, can be recovered and used to aid in 
finding corresponding points between image pairs. In this section we will present and justify 
a hierarchical correlation method for computing optical flow fields for cloud image sequences. 

In order to find or develop an appropriate optical flow algorithm it is useful to first list 
the image properties of the objects which will have their optical flow computed. The two 
most noteworthy properties of clouds, from the point of view of optical flow algorithms, are 
as follows. First, they move at  a range of speeds, from almost zero pixels per frame to tens 
of pixels per frame. Second, they are very dynamic, i.e., they change shape. 

Optical flow algorithms can be classified into two types, feature-based and gradient-based. 
Gradient based methods use the variation of the gray-level pattern from one frame to the 
next to  determine the flow. Feature-based algorithms first detect features in images, cloud 
boundaries for example, then track those features from one frame to the next. 

Gradient-based methods are desirable because optical flow can be computed most every- 
where and their behavior is well understood. Feature-based methods are desirable because 
fewer assumptions are required. Disadvantages of gradient-based optical flow methods in- 
clude: interframe image motion must be small, object motion must be rigid, and the flow 
must be constant. Disadvantages of feature-based optical flow methods include: performance 
is not well understood and a dense flow field does not usually result. 

In order for the optical flow fields to be useful for finding corresponding points they must 
be dense, that is, to exist at all pixels. For this reason, standard feature-based methods will 
not work. However, often the motion of clouds from one frame to the next is greater than 
can be handled by many gradient-based methods. For these reasons we adopt a method that 
has elements of both feature-based and gradient-based methods. 

A standard correlation algorithm for computing optical flow takes a small neighborhood 
around a point in one image and compares it to a small neighborhood around points in 
the next image of the sequence. This approach has both feature-based aspects and gradient- 
based aspects. It is feature-based in the sense that it “tracks” a feature, the grey-level pattern 
around a point, from one frame to the next. It is gradient-based in the sense that it examines 
the gray-level pattern between frames. But unlike a strictly feature-based approached, a flow 
vector is obtained at every pixel. And unlike a gradient-based approached, large motions 
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can be dealt with by comparing the small neighborhood around a point to a large number 
of candidate points in the next image. 

We thus use a correlation-based algorithm; however, a straightforward correlation ap- 
proach as described above is computationally prohibitive if large cloud motion is to be 
detected. So a hierarchical correlation algorithm is used. With this algorithm large motions 
can be detected and the computational increase is manageable. 

The hierarchical correlation algorithm used is exactly as described by Burt [4]. Motions 
are first detected at coarse scales and these are refined at finer scales. More specifically, 
consider two images in an sequence. The two images are “blurred” and subsampled so that 
the new images are half the size in each dimension as the original. The resulting images are 
blurred and subsampled again. This process continues until the resulting image is only a 
few pixels in each dimension. This is called an image pyramid since progressively smaller 
versions of an image can be viewed as being stacked one upon the other, forming a pyramid. 

Given two pyramids from two images in a sequence, every point in the top, smallest 
level of the first pyramid is correlated against the points in the top, smallest level of the 
second pyramid. The detected displacements give the optical flow for each pixel in the top 
level of the pyramid. These vectors are then used by the next level down in pyramid as 
“suggestions” as to where the actual motion is. Using this information, the finer level only 
correlates points in the area where the level above indicated the motion occurred. This 
process continues down to the bottom level. The optical flow field for the bottom level is 
then the optical flow field for the image. 

Vectors in optical flow fields are typically two-dimensional, V = (Ax, Ay), with Ax and 
Ay indicating the direction of motion and the length, IlVll, indicating the speed. An optical 
flow vector, V, can be converted to a three-dimensional vector, V3, by adding a temporal 
component which varies from 1 to 0 as llVl[ varies from 0 to infinity. This third component 
represents the speed and is a function of the time between frames and Ax and Ay. We 
can assume that the time between frames is 1, so the third component is set to 1. The 
three-dimensional vector is then unit vector. So 

There are two reasons for converting two-dimension flow vectors to three-dimensional 
flow vectors. First, in the next section we will describe a method for evaluating optical flow 
fields which requires three-dimensional flow fields. Second, when using flow fields to find 
matching points between corresponding images, the correlation needs to be normalized so 
that areas with large motion are not unjustly favored. But by normalizing, the speed, or 
length, of two-dimensional vectors becomes meaningless. By using the three-dimensional 
flow vectors, the speed information is retained in the third component even with normalized 
correlation. 

Below we will describe a method for determining how well an optical flow algorithm per- 
forms and use it to show that hierarchical correlation is in fact the algorithm of choice when 
dealing with cloud sequences. Another correlation algorithm and a gradient-based algorithm 
will also be used in the comparison. Hierarchical correlation with different parameters will 
also be compared to determine the optimal settings. 
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3.1 Performance of Optical Flow 
In a domain such as atmospheric imaging there is little accurate groundtruth available, par- 
ticularly for true cloud motion and its projection into image motion. In such contexts, where 
there is no available knowledge as to the true motion, there is also no established method 
for objectively measuring the performance of optical flow algorithms. Thus, competing ap- 
proaches have been evaluated subjectively and visually, typically by superimposing a flow 
representation on an animation of the subsequent frames and attempting to observe whether 
the computed flows line up with the apparent motion. This is clearly unsatisfactory for 
rigorous analysis. 

Our method of measuring the performance of optical flow algorithms has two parts: the 
generation of a new image sequence from a starting actual image and a sequence of flow fields, 
and the objective comparison of the generated images with the actual image sequence. 

In the first part of our evaluation method, the goal is to simulate the actual image 
sequence. We start with a seed true image frame and alter it for multiple frames as indicated 
by the optical flow field calculated on the seed image by a candidate algorithm. The idea is 
that a flow field sequence which can do this well must be capturing the important essence of 
the evolution of the imagery. This simulated sequence serves as the basis for both subjective 
and objective evaluation of the accuracy of the flow. By viewing this simulated sequence 
it can be visually compared to the actual sequence, providing a subjective indication of the 
accuracy of a sequence of optical flow fields. 

In the second part of our evaluation method, the simulated sequence is objectively com- 
pared to frames in the actual sequence. There are two specific objective metrics for compara- 
tive performance, POOFC and POOFP. POOFC is based on the straightforward correlation 
of the simulated pixels with their correct values, and is useful in cases where the conservation 
of intensity assumption is likely to be violated. A related but simpler metric, POOFP, is 
the percentage of relevant simulated pixels which equal the corresponding pixel in the actual 
image. These metrics are used to determine the relative performance of a set of representa- 
tive optical flow algorithms. For both metrics a value of one is best and zero is worst. This 
work is described in greater detail in [l]. 

3.2 Optical Flow Results 
The optical flow algorithms which we consider here include the gradient-based Uras et.  al. 
[ 161 algorithm and correlation-based approaches. The correlation-based approaches include 
Anandan’s hierarchical algorithm [2], Burt’s hierarchical correlation [4] and non-hierarchical 
(“flat”) correlation. There are two types of Burt hierarchical correlation algorithms, 3 x 3  
pyramid and 5 x 5  pyramid (shown as ”3p” and “5p”, respectively), indicating the size of 
the neighborhood used to construct the higher level in the pyramid. The flat correlation 
algorithm is indicated by “5f” and is essentially the special case case of a pyramid with one 
level (“5f” denotes that the maximum pixel motion detectable by this algorithm is within 
a 5 x 5  neighborhood). In all correlation algorithms, the size of the neighborhood used to 
compute the correlation was 9x9. 

For both the POOFC and POOFP metrics, higher values indicate better performance. 
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In all cases shown below, the differences between all pairs of POOFC and POOFP values 
are significant by the tenth frame, and in all but one case are significant by the first frame. 

Figures 3.1 and 3.2 show the POOFC and POOFP results for two cloud sequences. The 
hierarchical correlation algorithms consistently perform well. Based on this, the fact that 
the Anandan algorithm takes a prohibitively long time to  compute, and that 3p is faster to 
compute than 5p, we were able to determine that 3p is the optical flow algorithm of choice 
for our cloud sequences. However, the size of the correlation neighborhood still needed to be 
decided. Figure 3.3 shows the POOFC results for the 3p algorithm as the correlation size 
varies. From these we were able to determine that, to a point, smaller neighborhood sizes 
perform better due to the dynamic nature of clouds. 

3.3 Using Optical Flow for Cloud Base Height Corn- 
put at ion 

Now that we have a means of computing optical flow fields, the dynamics of clouds can 
also be used to find corresponding points between images. The algorithm at this point is as 
follows: 

0 Compute the optical flow from WSI 1 

0 Compute the optical flow from WSI 2 

0 For every point, p l ,  in image 1 

- Compute the epi-polar line for pl  in image 2. [Section 2.2, Eqs. (2.17)-(2.21)]. 

- For each point, p2,  along the epi-polar line 

* Match pl  and p2 using both pixel values and the flow field around the points 
[Section 4.51. 

- Find the best matching point along the epi-polar line. Call this point p i .  

- Compute the epi-polar line for p;  in image 1. [Section 2.2 Eqs. (2.17)-(2.21)]. 

- For each point, p3 ,  along the epi-polar line 

* Match p;  and p3 using both pixel values and the flow field around the points. 

- Find the point of maximum correlation value along the epi-polar line. Call this 

- Compute the cloud height using p l  and p i  as corresponding points. [Eq. (2.16)]. 

- Compute the distance between pl and p i .  This is the confidence of point p l .  

point p i .  
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Figure 3.1: POOFC (a) and POOFP (b) metrics for the five optical flow algorithms given 
the same cloud sequence. Higher values indicate better performance. 
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Figure 3.2: POOFC (a) and POOFP (b) metrics for the five optical flow algorithms given 
the same cloud sequence. Higher values indicate better performance. 
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Figure 3.3: Different size correlation neighborhoods were used in the 3p correlation algorithm 
and the resulting flow fields for the cloud sequences were tested. (a) The POOFC metrics 
for cloud sequence 1. (b) The POOFC metrics for cloud sequence 2. 
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Chapter 4 

Determining The Common Field of 
Reference 

Because of the projective effects of the WSI camera, images from separate WSIs must be 
transformed so that shape and velocity of the same cloud appears the same in both WSIs. 
Consider the case where a cloud moves horizontally over a WSI with constant velocity. In 
the fisheye WSI view, radial distance from the center of the image is proportional to zenith 
angle. Therefore, as the cloud enters the field of view of the WSI at high zenith angle, a 
unit displacement of the cloud in the scene produces a smaller displacement in the image 
than if the cloud were at small zenith angle. So when the cloud enters the field of view it 
moves slowly, accelerates as it passes overhead, then decelerates as it approaches the horizon. 
Similarly, the shapes of clouds are compressed as the zenith angle increases. 

In order for movement and shape in the image to reflect the movement and shape in 
the scene regardless of zenith angle, one transforms the WSI image into pseudo-Cartesian 
coordinates [9]. In this section we show that the pseudo-Cartesian transformation (PCT) 
results in an image sequence where a horizontal motion in the scene results in an image 
motion (or flow vector) that is independent of where that point projects into the image, i.e., 
it is independent of zenith angle. Similarly, it is shown that horizontal shape in the scene 
results in an image shape that is independent of zenith angle. The next section describes 
the PCT. Then it is shown that after PCT-ing images from two WSIs, the corresponding 
features in both images will have identical shape. Then it is shown how to PCT flow vectors 
so that corresponding flow vectors from two WSIs will be identical. 

4.1 The Pseudo Cartesian Transformation 
In order to counteract the projective effects of the WSI, the PCT rescales distance from the 
center of the image to a dependence that varies linearly with the tangent of the zenith angle. 
Let as; and Rpct be the distance from the center of the image to a point in WSI and PCT 
coordinates, respectively. Let 0 be the zenith angle. The coordinate transformations are 
defined as follows [9]. WSI: 

&si = O(3.032 + 0.002590) (4.1) 
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Figure 4.1: (a) A WSI image before PCT. (b) The same image after PCT. 

Pseudo-Cartesian: 

and Rpct are the distances from the center of the image to a point in WSI and PCT 
coordinates, respectively. Note that Eq. (4.1) is the WSI calibration equation described in 
Section 2.4.6. The choice of “tan(65’)” and “235” in Eq. 4.2 is arbitrary and will be discussed 
in Section 4.4. 

The procedure for constructing the PCT from the fisheye image begins with identifying 
a pixel, ppc t ,  at coordinates (xpct,ypct), in the PCT image. The zenith of the point is found 
using Eq. (4.2). The computed zenith is then substituted into Eq. (4.1) to find the distance, 
&,si, that the point is from the center of the image. That pixel is then copied to (xpct,ypct) 
in the PCT image. The azimuth is not changed by the PCT. 

Figure 4.l(a) shows an image before PCT. Figure 4.l(b) shows the same image after 
PCT. The “stretching” of the image away from the center is clearly visible. This stretching 
counteracts the compression of the fisheye camera. 

When finding corresponding points between pairs of images, we need to perform the PCT 
on small neighborhoods so that the neighborhoods are in the same frame of reference. Let 
pwsi be a point, around which a neighborhood is to be PCT-ed. The zenith of pwsi is found 
using Eq. (4.1). The computed zenith is then substituted into Eq. (4.2) to find the distance, 
Etpct,  giving ppct .  See Figure 4.2. Each point in the neighborhood around ppct has its distance 
from the center of the image computed, bet, and substituted into Eq. (4.2) to find the zenith 
of that point. Eq. (4.1) is used then to find the point in the WSI that maps to it. So the 
mapping is first from WSI to pseudo Cartesian then from pseudo Cartesian to WSI. This is 
shown by the arrows in Figure 4.2. One cannot simply PCT each point around pwsi to obtain 
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Figure 4.2: If two neighborhoods are to be compared they must be PCT-ed first. The 
neighborhood around pws; is one such neighborhood. To PCT it, the center point, pwsi is 
PCT-ed giving p,,,. For each point around p p c t ,  the point that maps to it from around pws, 
is then found. The solid arrow shows the mapping from WSI to PCT. The dashed arrow 
show the mapping from PCT to WSI. 

the neighborhood around ppct because not every point in the neighborhood around ppct will 
necessarily have a value mapped to it. 

4.2 Comparing Cloud Shape After PCT 
Given a horizontal shape in the sky we need to show how to make the resulting shape in two 
WSI images identical. Without the pseudo-Cartesian transformation, the resulting shapes 
are clearly not equal. Figure 4.3 shows the geometry of the zenith angle. Positions p and 
p' are the location of two points. The zenith and azimuth angles are indicated by 0 and 4, 
respectively, with the subscript indicating the site. The superscript indicates p or p'. 

If it can be shown that the displacement between any two points is the same in PCT-ed 
images from two WSI sites, then the shape of clouds will appear the same in both images. 
Therefore, it needs to be shown that 

I I 

2 1  -21 = z2 -22 

Y1 - Y1 = Y2 - Y2 
I I 

After PCT, the x and y position are given by [9]: 

2 = 255 3- O.SRsin(c#) 
y = 240 + Rcos(c#) 

where 
tan(0) 

tan (65) 
R = 235 (4.7) 
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.... -. 
I I 

Figure 4.3: The change of zenith as a change of horizontal motion in the scene. 

Substituting Eqs. (4.5) and (4.7) into Eq. (4.3) gives: 

xi  - x i  = (255 + 0.8 Rsin(q()) - (255 + 0.8 Rsin(41)) 

(tan(0;) sin(+;) - tan(O1) sin(41)) 
(0.8) (235) 

tan( 65) 
- - 

Similarly, 

I 

(tan(0;) sin(& - tan(02) sin(+2)) 
(0.8) (235) 

tan(65) 
x2 - 5 2  = 

The equations describing the relationship between sites 1 and 2 are given by: 

(4.9) 

(4.10) 

(4.11) 

Substituting Eq. (4.11) into Eq. (4.9) gives: 

x2 - 5 2  = 
I (0.8) (235) h’tan(0;) sin(&) - d h tan(&) sin(41) - d 

sin(+;) - ( h’ sin( 4;) h s i 4 4 4  tan(65) 

tan(65) 
- h tan(&) sin(41) - d )  (4.12) 

h’tan(0;) sin($;) - d 
h‘ h 

- - 

Assuming that h’ = h, i.e., assuming that the shape in the scene is horizontal, 

I (0.8) (235) h tan(0;) sin(&) - h tan(&) sin(q51) ( h 

- - ( O m 8 )  (235) (tan(8;) sin(4;) - tan(81) sin(d1)) 

2 2  - x2 = 
tan(65) 

tan( 65) 
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which equals Eq. (4.8). 

into Eq. (4.4) gives: 
A similar procedure is performed for the y component. Substituting Eqs. (4.6) and (4.7) 

YI - yi = (255 + Rco~(4;))  - (255 + Rcos(41)) 
235 

tan(65) - - ( t 4 e I )  cos(4’,) - tan(&) cos(41)) (4.13) 

Similarly, 

(4.14) 

Substituting Eq. (4.11) into Eq. (4.14) gives: 

1 h‘ tan(0;) sin($;) - d h tan(&) sin(41) - d 
h sin( 4 2 )  

Y2 - Y 2  = tan(65) h’ sin( 4;) cos(4h) - 

(4.15) 
h tan(O1) sin(41) - d h‘ tan(0;) sin($;) - d - 

235 ( h’tan(4;) h tan( 4 2 )  
- - 

tan(65) 

Substituting Eq. (4.10) into Eq. (4.15) gives: 

which equals Eq. (4.13). 
By showing that the displacement between any two points is the same in PCT-ed images 

from two WSI sites, we have shown that the shape of horizontal features in the sky will 
appear the same in both images, and thus that PCT will permit cloud shapes to be properly 
matched. 

4.3 PCT-ing Flow Vectors 
In this section it is shown that if WSI images are PCT-ed and flow fields computed, then 
corresponding vectors will be identical. However, as explained in Chapter 3 optical flow fields 
are computed on unPCT-ed images. Therefore, the resulting flow fields must be PCT-ed so 
that corresponding flow vectors are equivalent. By PCT-ing the flow fields, corresponding 
vectors will be equal. 

There are two ways that flow vectors can be altered: they can repositioned and their 
length and/or orientation can be changed. In the next subsection it is shown that PCT-ing 
flow vectors results in corresponding vectors being equal. The following subsection then 
discusses how to reposition flow vectors. 
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4.3.1 Changing Length and Orientation of Vectors 
Given a horizontal movement of a point in the sky we need to show how to make the resulting 
flow vector in two WSI images equal. Without the pseudo-Cartesian transformation, the 
resulting flow vectors are clearly not equal. But with PCT the flow will be equal. The 
procedure for showing this is identical to  the method used to show that horizontal shapes in 
two WSI images are identical after PCT-ing. In Section 4.2 it was shown that the relative 
spacing between two points at the same altitude will be identical in two WSI images if the 
images are PCT. If those two points are thought of not as two separate points, but rather 
the same point at two different times, then the same derivation can be applied. 

Let p and p‘ be the location of a point at time t and t ‘ ,  respectively. The zenith and 
azimuth angles are indicated by 8 and 4, respectively, with the subscript indicating the site. 
The superscript indicates p or p’. It needs to  be shown that 

I I 

x1 -51 = 2 2  - 2 2  

Y1 - Y 1  = Y2 - Y2 
I I 

After PCT, the x and y position are given by [9]: 

x = 255 + O.SRsin(4) 
y = 240 + Rcos(4) 

where 
tan(0) 

tan (65) 
R = 235 

Substituting Eqs. (4.18) and (4.20) into Eq. (4.16) gives: 

xi  - X I  = (255 + 0.8 Rsin(q$)) - (255 + 0.8 Rsin(q51)) 

(tan(e;) sin(+;) - tan(ol)  sin(+l)) 
- (0.8) (235) - 

tan(65) 

Similarly, 

I 
(tan(ei) sin(& - tan(o2) sin(+2)) (0.8) (235) 

tan(65) 
x2-x2 = 

The equations describing the relationship between sites 1 and 2 are given by: 

h t an (4 )  sin(+l) - d 
02 = arctan 

(4.16) 
(4.17) 

(4.18) 
(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

Substituting Eq. (4.24) into Eq. (4.22) gives: 

x2 - 1 2  = 
I (0.8) (235) h’tan(0;) sin(q5;) - d h tan(&) sin(+l) - d 

sin(&) - 
h’ sin( 4;) h sin($2) 

(4.25) 
h tan(&) sin(q51) - d - 

( tan(65) 

tan( 65) 
h’ tan(0;) sin(&) - d 

h’ h 
- - 
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Assuming that h‘ = h, i.e., assuming the point undergoes horizontal motion, 

I h tan(0;) sin(#;) - h tan(&) sin(#l) 
h x 2 - x 2  = 

tan (65) 

(tan(e;) sin(qOl - tan(el) sin(#l)) - (0.8) (235) - 
tan(65) 

which equals Eq. (4.21). 
A similar procedure (shown in Section 4.2) is performed for the y component. 

4.3.2 Repositioning Flow Vectors 
Once a flow vector is altered, it must be repositioned. If repositioning is not performed, then 
while corresponding vectors will be equal, the relative placement between corresponding 
vectors will not be correct. After a vector is PCT-ed the base of the vector, i.e., the pixel 
that the vector is flowing from, is PCT-ed. The new position is the new location of the flow 
vector. The resulting vector and its position is now identical to the vector that would have 
resulted from computing the flow field on a sequence of PCT-ed images. 

4.4 Setting the Parameters of the PCT 
The choice of “tan(65’)” and “235” as standard parameters for the PCT is arbitrary. After 
explaining why the parameters should change continuously, depending upon the location of 
points being compared, we will show how to choose the parameters. 

When an image is PCT-ed the outer portion of the image is expanded and the inner 
portion of the image is compressed. The standard parameters of the PCT were chosen so 
as to  provide a balance between the expansion and the compression. Two images and their 
flow fields could be PCT-ed once with any suitable parameters and the resulting images 
and flow fields could be correlated to find corresponding points. However, in general, when 
correlating two neighborhoods from the two images and flow fields, the PCT parameters will 
not be optimal. It is possible that both neighborhoods will be compressed, throwing away 
useful pixels, or that both neighborhoods will be expanded, copying pixels resulting in an 
effectively smaller correlation neighborhood. 

One way to achieve a balance is to choose the parameters so that the amount of com- 
pression and expansion of the two neighborhoods is minimized. When a neighborhood is 
PCT-ed, it can expand or compress in the radial dimension (along the zenith) and/or in 
the circular dimension (along the azimuth). Given two neighborhoods, the expansion and 
compression along these two dimensions will be formulated. Then the parameters of the 
PCT can be chosen such that the amount of expansion and compression is minimized. 

Figure 4.4 shows two points, pl and p 2 ,  from different WSI images, neighborhoods around 
which are to be PCT-ed then correlated. Clearly, since the distance from the center of the 
image of the two points differ, the outer neighborhood will have fewer pixels than the inner 
neighborhood when doing the correlation. Figure 4.4 also shows in gray the neighborhoods of 
the two points after PCT. Now the neighborhoods are the same size but the inner neighbor- 
hood has skipped over some pixels and the outer neighborhood has multiply copied pixels. 
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Figure 4.4: Two points, pl  and p2,  from different WSI images, are to be PCT-ed and then 
correlated. The neighborhoods after PCT are shown in gray. The two resulting gray neigh- 
borhoods are the same size so can be correlated, but in the left image the WSI neighborhood 
expanded whereas in the right image the WSI neighborhood contracted. 

The skipping of pixels resulted because the PCT can move pixels toward the center along 
the zenith direction. Since this compresses pixels together, some pixels must be skipped. 
Pixels are copied more than once because the pixels can be moved away from the center of 
the image by the PCT, therefore, some pixels must be copied multiple times to fill in gaps. 
This is inevitable, but now we will quantify these effects and show how to minimized them. 

The camera calibration equation (discussed in Section 2.4.6) relating the distance from 
the center of the image to a point at zenith 8 before PCT is: 

~ ~ ( 0 )  = e (173.72 - 8.5 e )  
where 8 is in radians. After PCT we have: 

tan(0) 235 
= tan(65") 

where 8 is in radians. Combining ren(e) 235 into to one term, C, to be determined below, we 
have: 

&,(e) = C tan(0) 

In order to find the amount of compression or expansion along the radial direction we 
consider a small neighborhood around a point which is to  be PCT-ed. The radial extent of 
the neighborhood corresponds to some small change in zenith angle, AO. In order for there 
to be no compression or expansion, the radial extent of the neighborhood must be the same 
before and after PCT for the some Ae. That is, we want to minimize the function g,(C) 
(The subscript on g indicates the point being considered.) 

gi(C) = Itp(ei + Aei) - Rp(6i) - Rj(8i + Aei) - Rj(ei) 
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Equivalently, the square of the function can be minimized. This gives 

g i ( C )  = [(Etp(ei + Aei) - E t p ( e i ) )  - (Rj(ei + Aei) - ~ j ( e i ) ) l ~  

= [((e; + AB;) (173.72 - 8.5(8i + A8i)) - Oi(173.72 - 8.58;)) - 
(C tan(8; + AOi) - C tan(0,))l2 

= [(173.72AOi - 17.00;AOi - 8.5Ad;') - C(tan(0; + Aei) - tan(&))]?4.26) 

The angular distance of a neighborhood before PCT is given by 

Sf(8) = Q Rf 
s,(q = a e (173.72 - 8.5 e)  (4.27) 

where Q is the angle which subtens the neighborhood. 8 and a are in radians. The angular 
distance of a neighborhood after PCT is given by 

S P V )  = Q Etp 
Sp(8) = Q Ctan(8) (4.28) 

where again Q is the angle which subtens the neighborhood. Since the PCT only moves 
points radially, Q is the same before and after PCT. 

In order to minimized the amount of circular compression or expansion due to the PCT, 
we want the difference between Eqs. (4.27) and (4.28) to be minimized. Equivalently, the 
square of the difference of Eqs. (4.27) and (4.28) can be minimized, giving: 

hi(C) = [Sp(ei) - Sf(ei)12 
= [Qiei(i73.72 - 8.58;) - CO; tan(e;)l2 (4.29) 

The subscript on h indicates the point being considered. 
Eqs (4.26) and (4.29) give the amount of compression or expansion for one neighborhood 

when PCT-ed. However, we need to PCT two neighborhoods which will then be correlated. 
In order to minimize the compression and expansion for both neighborhoods we sum Eqs 
(4.26) and (4.29) for both neighborhoods and minimize. This gives: 

91(c) + 92(c) + hi(C) + h2(C) 
= [ R A ~  +adl) - ~ t p ( & ) l ~  + [ 4 ( e 2  +ne2) - q e 2 ) l 2  + 

[SA4 + A e l )  - sp(e1)l2 + [sf(e2 +ae2) - sP(e2)l2 
= [(173.72AOl - 17.001A01 - 8.5AO12) - C(tan(B1 + A&) - tan(Ol))I2 + 

[(173.72A82 - 17.OO2A82 - 8.5A822) - C(tan(02 + A02) - tan(&))l2 + 
[a1O1(173.72 - 8.501) - Cal tan(S1)I2 + 
[0282( 173.72 - 8.502) - Ca2 tan(O2)]' 

We want the value of C which minimized this. This is just a parabola so the minimum is 
found by computing the derivative with respect to C, setting the result equal to zero and 
solving for C. 
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Appropriate values for CY and AB still need to be found. In the discussion below, subscripts 
on AB and CY will be dropped, but reference to AB and CY will refer to all AB’s and CY’S. One 
approach to PCT-ing a neighborhood would be to PCT every point in the neighborhood, 
effectly taking a square patch in WSI coordinates and putting it in PCT coordinates. If 
done in this way, A0 and CY are easily determined from the size of the neighborhood in WSI 
coordinates. However, as described in Section 4.1, using this method may result in pixels 
in the PCT neighborhood which have no value mapped to them as the PCT does not map 
pixels one to one. In order to prevent this, the mapping is done from PCT coordinates 
to WSI coordinates as described in Section 4.1. In this case AB and CY would have to be 
determined from the neighborhood in PCT coordinates. But this cannot be done without 
first PCT-ing the neighborhood. But this cannot be done until AB and CY are determined. 
In other words, there is a circular dependency. This dependency is eliminated by assuming 
that the values of A0 and CY for a square WSI neighborhood coordinates will result in the 
same minimizing value of C as would result using a square PCT neighborhood around the 
two points to be PCT-ed. So, AB and CY are determined from square neighborhoods in WSI 
coordinates. 

4.5 The Algorithm 
At this point everything necessary to compute cloud base heights has been described. The 
complete algorithm is as follows: 

0 Compute the optical flow from WSI 1 [Chapter 31. 

0 Compute the optical flow from WSI 2 [Chapter 31. 

0 For every point, p1, in image 1 

- Compute the epi-polar line for p l  in image 2. [Section 2.2 Eqs. (2.17)-(2.21)]. 

- For each point, p2,  along the epi-polar line 

* Perform PCT on the pixel values in neighborhooas around pl and p2 [Sec- 

* Perform PCT on the optical flow fields in neighborhoods around pl  and p2 

* Perform a 4D correlation of the PCT-ed pixel and flow neighborhoods. 

- Find the maximum correlation value along the epi-polar line. Call this point p i .  

- Compute the epi-polar line for p i  in image 1. [Section 2.2 Eqs. (2.17)-(2.21)]. 
- For each point, p3, along the epi-polar line 

tion 4.11. 

[Section 4.3). 

* Perform PCT on the pixel values in neighborhoods around p i  and p3 [Sec- 

* Perform PCT on the optical flow fields in neighborhoods around p i  and p3 

* Perform a 4D correlation of the PCT-ed pixel and flow neighborhoods. 

tion 4.11. 

[Section 4.31. 
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- Find the point of maximum correlation value along the epi-polar line. Call this 

- Compute the cloud height using pl and p i  as corresponding points. [Eq. (2.16)]. 

- Compute the distance between pl and p i .  This is the confidence of point pl.  

point p i .  

4.6 The Effects of Non-Horizontal Cloud Shape and 
Motion 

In the formulations in Sections 4.2 and 4.3.1 the assumption of constant height and motion 
was not necessary to show yi - y1 = 9; - y2. So if cloud shape is not horizontal this result 
is unaffected. However, the same cannot be said of the x component. 

The effect of non-horizontal shape can be examined by computing the difference between 
Eqs. (4.12) and (4.8). If h' = h then this difference is zero. However, without this assumption 
we find 

(tan(e;) sin(#;) - tan(d1) sin(91)) - 
(0.8) (235) 

tan( 65) 
(0.8) (235) h'tan(0;) sin(#;) - d - h tan(&) sin(#l) - d 

tan(65) ( h' h 

(tan(OI) sin(#',> - tan(O1) sin(41) - 
tan(65) 

(5; - 51) - (4 - 5 2 )  = 

- (0.8) (235) 
- 

h' tan(0;) sin(+;) 
h' 

h tan(01) sin(+l) + 
h + 

By letting and x1 be the 5 position of the same point at two separate times, the same 
procedure gives the potential error from non-horizontal motion. 
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Chapter 5 

Real and Simulated Test Data 

Cloud base heights have been computed for various synthetic cloud image sequences and for 
real WSI data collected under conditions designed to be similar to  those that will actually 
be experienced in field studies. The generation of synthetic data and the collection of real 
data is described in this section. 

5.1 Simulated Data 
The simulated sequences were created with a cloud scene simulation model, developed by 
Cianciolo [6] which uses stochastic field generation techniques and knowledge of atmospheric 
structure and physics to model four-dimensional (3 spatial and 1 temporal) cloud scenes, 
represented by liquid water content (LWC) values. To this we attached a cloud density 
model to derive radiance fields from the LWC volumes. Synthetic images are then generated 
by projecting a cloud scene using a WSI camera model that is identical to an actual WSI. 
Since the cloud scene has a temporal component, it can be projected at  a sequence of times, 
creating an image sequence that captures cloud evolution and motion. 

The cloud scene simulation model is a fractal-based model which generates a time series 
of cloud fields. The sky is represented as a cube of data with each cell in the cube having 
some amount of liquid water. If the liquid water content is sufficiently high in a cell, then 
that cell is considered to be part of a cloud. By varying the distribution and amount of 
water in the cube, different types of clouds are produced. To generate a cloud field, the 
cloud cover, cloud type, cloud base and top, horizontal domain size, grid resolution and the 
atmospheric temperature, wind and humidity profiles, etc. are given as inputs. By tuning 
the parameters in the model, the morphology and texture of different cloud types including 
cumulus, stratus and cirrus can be simulated. Also, the input wind profile can be used to 
generate a time series of cloud fields. Figure 5.1 shows an example of a synthetic cloud field 
generated in this manner. 

The simulated 3D cloud field is then used to form 2D WSI images. This is done by using 
a simple cloud illumination algorithm to generate the illumination effect of the cloud surface. 
The following assumptions are made. 

0 The incoming light is parallel. 
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Figure 5.1: An example of a synthetic cloud field generated with the TASC fractal-based 
model. 

0 Illumination of the cloud surface is inversely proportional to the sum of the water 
content along the light path which is in the same direction as the incoming light. 

0 Light is scattered uniformly in all directions in the clear air and there is no attenuation 
effect in the clear air. 

0 There are no reflection effects on the cloud surface. 

Because of the complicated optical properties of clouds in the atmosphere, these assumptions 
are a simplification of the real-world process. Figure 5.2 shows the illumination process of 
points on the cloud surface and their projection into two WSI cameras. The third assumption 
states that light is scattered uniformly in all directions, therefore, the gray level of that point 
in an image is the same regardless of the WSIs position. 

With the illumination of the cloud surface points determined, the final phase is to generate 
WSI images in a manner that simulates the real WSI cameras. For a WSI with a specified 
angular resolution, each non-occluded cloud surface point visible to the WSI is projected to 
a WSI image. Given a point on a cloud surface at zenith and azimuth 0 and $, respectively, 
the location of that point in an image is given by the following equations. 

d = O(3.032 - 0.002590) 
x = 255 + 0.8dsin(4) 
y = 240 + dcos($) 

d is the distance from the center of the image to a point. These equations, first shown in 
Section 2.2, were derived by Koehler [9] to describe the projection of the real WSI camera. 

Since the spatial resolution of a WSI pixel decreases while the radial distance of the 
point to the WSI increases, and the data points are discrete, interpolation and smoothing 
are included in the projection. When the spatial resolution of the WSI is finer than that of 
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Parallel Light 

/ WSI1 / 

Figure 5.2: Light rays enter the cloud in parallel. The LWC is summed along each ray and 
each summation is used as the illumination of the point where the ray exits the cloud. The 
illumination is the same regardless of viewing position underneath the cloud. 

the 3D cloud field, linear interpolation is used to fill the pixels in the WSI image. When the 
spatial resolution of WSI is more coarse than that of the 3D cloud field, the point on the 
cloud surface that projects closest to the WSI point is used. 

Figure 5.3 shows two examples of images produced from a synthetic cloud field. In each 
case two images are shown, one from each WSI camera viewing the cloud field. Figure 5.4 
shows a single image of six other synthetic cloud fields. 

Although the model and projection are much simpler than the real cloud projection 
in the atmosphere, the data set can used as an optimized case for the cloud base height 
calculation. Also, this allows calculation and, most importantly, verification of cloud base 
heights on realistic data. Moreover, the simulation can produce a wider range of cloud types 
than exist in our real imagery. 

5.2 Whole-Sky Imager Data 
The WSI camera which generated our existing data is the Whole Sky Imager developed 
by the Marine Physical Laboratory (MPL) at the Scripps Institution of Oceanography, as 
described Shields, Koehler and Karr [15]. Two of these cameras were used to collect data in 
a manner that is similar to their expected future use. This section will described the images 
in greater detail and describe the geometry of the site where the data was collected. 

Two types of WSI images have been used in our experiments, Field and Cloud Decision. 
Field images are produced directly by the WSI while Cloud Decision images are the result 
of post, offsite processing of the Field images. The goal of the post processing is to label 
each pixel as either “sky”, “opaque cloud”, or “thin cloud”. Having each pixel categorized 
as “cloud” or “not cloud” has obvious advantages when computing cloud base heights since 
sky points do not have to be considered, either when picking the points which have height 

48 



Altocumulus WSI 1 Altocumulus WSI 2 

Altostratus WSI I Altostratus WSI 2 

Figure 5.3: One frame of a synthetic altocumulus (top) and synthetic altostratus cloud scene 
as viewed from two WSI cameras. WSI 2 was south of WSI 1 so correspoinding pixels in the 
right image are shifted up relative to the left image. 
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Cirrocumulus Cirrostratus 

C' irrus Cumulus 

Stratocumulus Stratus 

Figure 5.4: One frame of various synthetic cloud scenes. 
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computed or when finding the matching point in a corresponding image. However, the 
process of generating a Cloud Decision image requires human intervention and therefore can 
be prohibitive. However, to investigate whether the cost of human intervention is warranted, 
results were determined for both Field and Cloud Decision images. Below the process of 
generating Cloud Decision images will be described. This discussion is based upon the work 
of Johnson, Hering and Shields [i’]. 

There are numerous methods that could be used to segment clouds from sky in WSI 
images. Two approaches include radiance thresholding and edge detection. However, prob- 
lems with radiance thresholding include: 1) sky and radiances vary over large excursions; 2) 
threshold radiance requires continual analytic updates; 3) dark or shadowed clouds mimic 
background sky radiances. Problems with edge detection include: 1) clouds embedded in 
cloud background yield redundant boundaries; 2) fails as the scene approaches uniform over- 
cast. However, cloud discrimination algorithms based on the ratio of blue and red radiance 
fields are effective since the blue/red spectral radiance ratios are near one for clouds and 
significantly higher for sky. 

Toward this ratio approach, each minute the camera produces two image pairs for a total 
of four Field images in all. The first pair consists of an image taken with a red filter and 
one taken with a blue filter. The second pair is also a red-blue pair, but with a neutral 
density filter used as well. By “darkening” the images, the neutral density filter helps insure 
that the full range of sky/cloud brightness in the scene is accommodated. Each red-blue 
pair is then ratioed, threshold cutoff values for clouds determined, and the two ratio pairs 
combined to form the final Cloud Decision image. The threshold values are determined 
manually. Figure 5.2 shows an example of the four Field images and the resulting Cloud 
Decision image. 

There are two problems with this Cloud Decision approach. First, the four Field images 
are not taken simultaneously, rather there are a few seconds between them. Depending upon 
the motion of the clouds, the difference between the four images may be appreciable. Second, 
the filters do not have the same optical properties, requiring that the red/blue pairs must 
first be geometrically corrected so that corresponding points appear at  the same location in 
the images. Both of these problems result in ratio images that appear blurred. 

While ratio images can be used for cloud discrimination, the results from using them 
for cloud base height calculation are expected to be adversely effected by the  blurring. But 
Field images can be troublesome because the radiance can be so high that the image becomes 
saturated, removing texture. Section 6 will examine the accuracy obtained using only Field 
images, only Cloud Decision images, and Field images with Cloud Decision images as masks, 
indicating cloud and sky points. 

Our real WSI data was taken in May, 1992, in White Sands, NM. In an attempt to 
simulate the eventual CART data, we separated two WSIs by 5.54 km, with a ceilometer 
located close to the midpoint between them. The intent of the ceilometer was to provide 
fiduciary points with which to check our algorithm. It was fired once a minute, in time with 
both WSIs. As a result, when the ceilometer reports the presence of clouds, simple geometry 
and knowledge of the camera location suffices to compute which pixel on the WSI images 
corresponds to that ceilometer report. The cloud base height computed at that point can 
then be compared to the ceilometer measurement. Figure 5.6 shows the geometry between 
the sites and the ceilometer. 
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Figure 5.5: Four Field images and the resulting Cloud Decision image. 
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N 
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Site 2 I 

Figure 5.6: Relative geometry of the cameras and ceilometer at White Sands. There is a 
WSI camera at Site 1 and Site 2. The distance and bearing from Site 2 to Site 1 is 5.54 km 
and 125", respectively. The distance and bearing from Site 2 to the ceilometer is 2.16 km 
and 133", respectively. 
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Chapter 6 

Performance Results 

In this section results will be presented for both synthetic and real imagery. A number of 
issues are investigated, including: 

0 Should Field or Cloud Decision images be used? 

0 If Field images are used for finding corresponding points, does it help to use Cloud 
Decision images to identify cloud versus sky? 

0 What size correlation window should be used? 

0 How far off the epi-polar line should you look for corresponding points? 

0 How much does using the optical flow field help? 

The geometry in the synthetic case is known exactly so it does not make sense to look off the 
epi-polar line for matches. The issue of Field verses Cloud Decision images does not apply to 
the synthetic data. But all the other issues are relevant to  synthetic and real images. After 
showing results for the synthetic cloud data, each of these issues will be addressed. 

In all cases, only points where the computed height was confident are considered when 
presenting results. Points with confidence values below 2.1 are considered confident. If the 
confidence threshold is set to a lower value (so only more confident points are considered), the 
number of confident points decreases, but the distribution of errors remains approximately 
the same. 

For all histograms, the standard deviation of the data shown in the histogram is presented. 
However, the usefulness of standard deviation is questionable. If large errors are no worse 
than small errors, then the standard deviation is not a good indicator of performance since 
large errors have more impact on the standard deviation than do small errors. However, if 
large errors are in fact worse than small errors, then the standard deviation is an appropriate 
measure of performance. Standard deviation is presented for completeness. 

Figure 6.1 shows the points where cloud height was computed correctly and incorrectly 
for four different synthetic images. White indicates that the computed height was too high. 
Black indicates too low. Dark gray indicates there was no cloud or that the computed height 
was not confident. Light gray indicates that the height was computed within 5% of the true 
height. 
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altocumulus altostratus 

stratus 

Figure 6.1: Accuracy of four synthetic cases. 

stratocumulus 

White indicates that the computed height 
was too high. Black indicates too low. Dark gray indicates there was no cloud or the that 
the computed height was not confident. Light gray indicates that the height was computed 
within 5% of the true height. 
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The error histograms of these four cases and four other ones are shown in Figure 6.2. For 
each confidently computed height, it is subtracted from the true height (known because this 
is synthetic imagery). The resulting differences are shown in the normalized histogram. AS 
expected, the peaks are centered at zero. 

In order to test the accuracy of our computed heights with real images a ceilometer was 
used to measure the cloud height for a point on a cloud. Cloud heights were computed for 
all the points in a 5 x 5  neighborhood around the point where the ceilometer was pointing. 
This is done for all the ceilometer hits in one day and results for the entire day are shown 
together. Unfortunately, the range of the ceilometer was only 3800 meters, so clouds above 
3800 meters were not detectable by the ceilometer. Since only points around ceilometer 
hits are processed for these results, all clouds in these experiments were below 3800 meters. 
The lower the cloud is in the sky, the greater its shape varies between two WSI cameras. 
Therefore, these results show the performance of the algorithm on the hardest of cases, i.e., 
low clouds. It is very reasonable to expect that results will improve if clouds at  all heights 
are considered. 

The first issue when working with real images is whether Field images give better or worse 
results than Cloud Decision images. Figure 6.3 compares the results using Cloud Decision 
images and Field images for two separate days. For May 4 it is clear that Field images give 
better results. For May 5 Cloud Decision images give slightly better results. 

The advantage of Field images is that they do not require extra computation and human 
intervention whereas the Cloud Decision images do. However, the quality control of the Field 
images is not as good as with Cloud Decision images. The images for one of the cameras on 
May 5 were washed out, making matching points between images difficult. Even though the 
Cloud Decision images have segmented the clouds from the sky, the texture in the clouds has 
been diminished in the process. Since there is usually more texture available when finding 
corresponding points and Field images are easier to acquire, they are the type of image of 
choice. 

Even though Cloud Decision images give worse results than Field images, they may still 
be useful since they distinguish sky from cloud. While using Field images, the Cloud Decision 
images can be used as masking images, indicating points that are sky and can therefore not 
be a corresponding point of a cloud point. The results of using Field images with Cloud 
Decision images as a mask verses no mask are shown in Figure 6.4. It is clear that for May 
4, masking hurts performance. This results because the set of points that went into the 
Masking histogram differs from the set of points in the No Masking histogram. 

That is, for a given day, the set of points that have a height computed can differ between 
Cloud Decision and Field images, or between Field images with masking and Field image 
without masking. For each ceilometer hit, all points in a 5 x 5  neighborhood around the hit 
are considered as possible cloud points. If it is a cloud point, then it’s height is computed. 
For Cloud Decision images it is straightforward to determined if the point is labeled as cloud, 
but for Field images it is not as easy. Currently simple thresholding is used. This results 
in some cloud points being eliminated and some sky points considered as cloud. Errors in 
labeling clouds are made in both the Cloud Decision and Field images, and it is because of 
these errors that differences result in the set of points that go into the histograms. When 
presenting histograms, we could only use the points common to all the sets of data, but we 
are more concerned with the percentage of correct answers given the entire set of data for 
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Figure 6.2: Normalized error histograms for eight different synthetic cases. 
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Figure 6.3: Normalized error histograms using Cloud Decision images (left) and Field images 
(right). Each row shows corresponding histograms. 
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Figure 6.4: Normalized error histograms using Field images with Cloud Decision images 
as masks (left) and Field images without a mask (right). Each row shows corresponding 
histograms. The May 4 data was used in every run shown here, but the parameters of the 
runs were different for each row. Specifically, flow was used for the runs shown in the first 
row but not used for the runs shown in the second row. 
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the day. 
The size of the neighborhood used to do the correlation when trying to find matching 

points can vary anywhere from one to the size of the image. Smaller neighborhood sizes 
require less computation, but often do not perform as well as larger sizes. In order to 
determine the optimal value, results are computed for various correlation sizes. This is 
shown in Figure 6.5. After a size of about 19x19 little is gained by using a larger window. 

Since there is uncertainty in the relative positioning of the WSI cameras, it  is possible 
that the matching point is not on the epi-polar line. Therefore it may be beneficial to look 
some small distance away from the epi-polar line for matching points. Figure 6.6 shows the 
results when additional points near the epi-polar line are considered as possible matching 
points. Clearly, nothing is gained by examiningpoints off the epi-polar line. So, if the correct 
matching point is in fact off the line, the point on the epi-polar line that best matches must be 
very close to the true matching point. Since wider epi-polar lines require more computation, 
an epi-polar line width of 1 is used. 

Finally, the importance of using optical flow was tested. Figure 6.7 shows results with 
and without using flow to help find corresponding points. The benefits of using flow, while 
there, are not as significant as one would initially expect. This tells us that, while the human 
visual systems needs the additional help of flow to find corresponding points, the computer 
gets most of the matching information from the texture of the clouds and not from the 
variations in the flow field. 

In this chapter we have shown the following: 

0 Field images should be used rather than Cloud Decision images 

0 Using Cloud Decision images as masks results in fewer cloud points being considered 
and resulted in worse performance. 

0 A 19x19 correlation window should be used 

0 Looking for matching points off the epi-polar lines does not increase performance 

0 This usefulness of optical flow for finding corresponding points is minimal. 
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Figure 6.5: Normalized error histograms for different correlation neighborhood sizes. 
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Figure 6.6: Normalized error histograms for different epi-polar line widths. 
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Figure 6.7: Normalized error histograms using optical flow (left) and not using optical flow 
(right). Each row shows corresponding histograms. The May 4 data was used in every run 
shown here, but the parameters of the runs were different for each row. Specifically, the 
first row used no masking and a correlation window size of 29 x 29. The second row used no 
masking and a correlation window size of 9x9. The third row used masking and a correlation 
window size of 9x9. 
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Figure 6.8: Normalized error histograms using the best setting of all the parameters. 
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Chapter 7 

Concluding Remarks 

We have demonstrated how paired data from widely separated whole-sky imagers can be 
fused to extract cloud base heights, an important cloud property and one which could not 
be recovered from either imager alone. An important feature of our approach, one that will 
help it to generalize to the incorporation of other data sources, is its ability to measure its 
own confidence in the determined base heights. 

A motivating factor for this research was to exploit the ability of the WSI imager to 
provide temporally dense sequences of images. This would allow us to use cloud dynamics 
to help find corresponding points between images. However, the usefulness of using optical 
flow was not as great as was expected. But this only says there is sufficient texture in the 
images to find corresponding points, and that the additional information of optical flow is 
not strictly necessary. It was also concluded that, given the expense of obtaining Cloud 
Decision images and their diminished texture, Field images should be used. We also found 
that looking off the epi-polar line does not improve performance and that a 19 x 19 correlation 
window is a reasonable choice. 

We presented results on both synthetic data and particularly challenging real data. Recall 
that due to the limitations of the ceilometer, only the hardest case clouds were used in the 
results. With this data, cloud base heights are computed to  within 5% of the correct height 
approximately 50% of the time. 
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Appendix A 

Open Issues and Future Work 

In this section open issues will be briefly reviewed and future work discussed. This is not 
intented to be an exhaustive description, rather a terse summary of the issues. For further 
information the authors should be contacted. Unresolved issues with derivations will be 
discussed first, followed by unresolved issued with the interpretation of results. Finally 
future research directions will be discussed. 

A.1 Future Work 
Future efforts would be most usefully devoted to improving the confidence metric. The 
confidence metric described in this work is a measure of how likely it is that a cloud point 
is visible in both cameras. Other metrics can be sensitive to how large and/or unique the 
best correlation value is along the epi-polar line. If the best match is weak or there are 
other points with correlation values of similar strength, then the confidence that the correct 
matching point has been found should be low. This could be formulated using a Bayesain 
model where corresponding points along the epi-polar line are found using the maximum 
a posteriori (MAP) probability criterion. In this case, the a posterior probability can be 
obtained for each possible match along the epi-polar line. A low MAP probability indicates 
that the posterior probability distribution has a broad, low peak (as would occur for sky 
points), or that the there are many strong matches along the epi-polar line. With this 
approach, the confidence would be low in these cases, as desired. 

Other future and concurrent work investigates the extraction of other properties of inter- 
est (particularly fractional cloud cover and aspect ratio) from paired WSI images, and fusing 
of WSI images with satellite imagery in order to determine cloud top structure as well. 

A.2 Derivation Issues 

In Section 4.4 an assumption was required in order to find the parameters of PCT which 
minimized the amount of compression and/or expansion of neighborhood induced by the 
PCT. There was a circular dependency that prevented knowing the size of the neighborhood 
in WSI coordinates that would map to a specific size neighborhood in PCT coordinates. It 
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was assumed that the parameters that minimized the amount of expansion and/or compres- 
sion was independent of the size of the neighborhood in WSI coordinates. For example, the 
optimal parameters for a 5 x 5  neighborhood would be the same for a 9 x 9  neighborhood. 
This assumption may not be valid. The assumption could be avoided if the size of the 
neighborhood were not part of the final optimization equation. 

Below we present some preliminary thoughts on an improvement to the equation to  be 
optimize. These improvements make assumptions unnecessary in some cases and possibly 
true otherwise. 

Currently, the expansion and compression of a neighborhood is measured by subtracting 
the size of the neighborhood before and after PCT. But consider a 1 x 1 neighborhood in WSI 
coordinates that becomes a 5 x 5  neighborhood after PCT. In this case the neighborhood 
expanded by a factor of 5 in both dimensions and the PCT parameter formulation will 
consider the expansion in both dimension as 5- 1 = 4. Now consider a 5 x 5  neighborhood in 
WSI coordinates that becomes a 25x25 neighborhood after PCT. Again, the neighborhood 
expanded by a factor of 5 in both dimensions, but the PCT parameter formulation will 
consider the expansion in both dimension as 25 - 5 = 20. This is clearly not correct since 
in both cases each pixel was copied five times. This can be corrected by considering the ratio 
of the of the sizes of the neighborhoods rather than the difference. With this approach, the 
expansion would be seen as five for both cases. 

If this new approach is used, we want the the ratio of the sizes to  be 1.0. By taking 
the ratio, subtracting 1 and squaring the result (to eliminate possible negative values), we 
have a formulation which can be minimized to give the optimal PCT parameters. In this 
formulation, the angular size of the neighborhood drops out, so our assumption is valid for 
the angular dimension of the neighborhood. However, the radial size of the neighborhood 
does not cancel. But it may be the case that the assumption is valid in this case. 

A.3 Results Interpretation Issues 
In the results chapter an explanation was given as to why the results using Field images 
with Cloud Decision images as masks can give worse error histograms. The reason was that 
different sets of cloud points went into each histogram. But even if the same cloud points go 
into corresponding histograms, masking does not improve results. One would expect that 
masking would help at least slightly since the clouds are segmented from the sky; so you 
cannot accidently match a cloud point to a sky point, as you can when using Field images. 
Why masking does not help more, or why cloud points are never matched to sky points when 
using Field images without masks is worth further investigation. 

For all the results presented, the confidence threshold was set at 2.1. So only the cloud 
base heights with a confidence value less than 2.1 are shown in the error histograms. If the 
confidence is set lower or slightly higher, the error histograms do not change significantly. 
The number of confidently computed cloud base heights decreases as the confidence threshold 
decreases, but the mix of height errors remains the same. An explanation for why this is 
true is worth further investigation. 
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Appendix B 

A Guide to the Software 

There are two software packages needed for computing cloud base heights, cloud-of and cbh. 
cloud-of computes the optical flow and cbh computes the cloud base heights. Each package 
will be described below. Then a third package for doing the pseudo-Cartesian transformation 
(PCT) of a WSI image is described. The code for doing PCT is incorporated into cbh. The 
package described below is a stand-alone version, supplied for possible interest. Finally, 
parameters within the code that may need to be changed depending upon the cameras used 
and the geometry of the site are discussed. In all cases, images must be in VIFF format [ l l ] .  

B.l  cloud-of 

cloud-of computes the optical flow for an image sequence using Burt's hierarchical pyramid 
algorithm. While this program exists in support of cbh, and has its default parameters 
sct accordingly, i t  is actually a general purpose optical flow algorithm and can be used for 
other purposes. This is why there is such flexibility in the command line arguments. For 
use with cbh the only parameters that need to be specified are LL-in and "-0". For all the 
other parameters, appropriate default values will be used if no other values are provided on 
the command line. The command-line parameters are as follows. Optional parameters are 
indicated with square brackets; the default values shown in parentheses. 

Image Base Name 

Masking Image 1 (null) 
First Frame (0) 
Image Type (0-Non Cloud; 1-Field; 2-Cloud Decision) (2) 
Number of Frames of Flow (1) 
Compute flow every sth pixels (1) 
Vector Type (0-3D Spatiotemporal; 1-2D Displacement) (1) 
Pyramid Generation Size (3) 
Maximum Levels in the pyramids (100) 
Correlation Size (5) 

output  flow 

Input Image Names (-i -f): The base name of the input images. The images must be in 
the files base-narnezzz.~~, base-narnezsz+l .xv, etc., where zsz is the three-digit frame 
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number specified by the “-f” parameter. Note that if the frame number is less than 
100, the number in the file names must be padded with zeros. 

Output Image Name ( -0) :  The “-o)) specifies the file that the flow is to be written to. 

Pyramid Generation (-p): Two versions of the algorithm are available, “-p 3” and “-p 
5”. The -p argument specifies the size of the neighborhood used around a point to 
generate the next level of the pyramid. 

Correlation Size ( -c ) :  The “-c” parameter specifies the size of the neighborhood around a 
point used when correlating that neighborhood against the next image in the sequence. 

Sampling (-s): If flow is not needed at every point then the “-s” argument can be used so 
that flow is computed every sth pixel. Note that if the flow field is going to be used 
with cbh, the “-s” argument must be 1. Flow vectors are not computed for pixels that 
are skipped over and are not in the outputted flow file. 

Number of Frames of Flow (-n): The “-n” specifies the number of frames of flow that 
is to be generated. All the flow files will be put in the file specified by “-0”. Note that 
if the flow field is going to be used with cbh, the “-n” argument must be 1. 

Image Type (-t): The “image type”, -t, argument specifies the type of image being passed 
in and hence where flow should be computed. 0 indicates any type of image and that 
flow should be computed at  every pixel. 1 indicates that flow should be computed 
at  every nonzero pixel. This is what should be specified for a Field WSI image. 2 
indicates that this is a Cloud Decision image and that flow should only be computed 
on clouds. 

Masking (-m): If flow is being computed for Field images, then a Cloud Decision image 
can be used as a mask. A masking image is specified with the “-m” parameter. It will 
be assumed that the masking image is a cloud decision image and flow will only be 
computed for cloud points. Note that the mask name is the complete file name, not 
the base name. So it will also be assumed that only one frame of flow is desired since 
only one mask can be specified. If a masking image is used the image type should be 
2, i.e., “-t 2” should be specified. Points in the halo around the occluder will not be 
considered even though those points are visible in the field image. 

Vector Type (-vt): The “vector type”, -vt, argument specifies the type of flow field to 
generate. 0 indicates that a spatiotemporal flow field (a three component vector field, 
dx, dy and dt ,  representing the instantaneous motion at a point) should be written. 
1 indicates that a displacement flow field (a two component vector field, dx and dy, 
representing the displacement of a point from one image to the next) should be written. 
Note that if the flow field is going to be used with cbh, the -vt argument must be 1. 

Number of Levels in the Pyramid (-1): A standard, non hierarchical algorithm is 
achieved by setting the maximum levels of the pyramid to 1 (“-1 1”). If the hier- 
archical algorithm is desired simply set this parameter to some large number, 100 €or 
example. 

69 



Flow Field File Format: Below is a listing of the contents of the resulting flow fields. If 
more than one flow field is requested, Le. “-n” greater than 1, all the flow fields are 
put in one file with one header at the start of the file. The header is the same for files 
containing flow fields of spatiotemporal vectors or displacement vectors. 

Type 
int 
int 
int 
int 

int 

int 

float or char 

Size 
4 bytes 
4 bytes 
4 bytes 
4 bytes 

4 bytes 

4 bytes 

variable 

Description 
Number of rows. 
Number of columns. 
Number of frames of flow in the file. 
Sampling, flow computed every sampling- 
th pixel in each dimension. 
Offset, the number of pixels in from the 
edge of the image that the flow field starts. 
First frame number. File number of the 
first frame which actually had flow com- 
puted. Not used by cbh. 
Flow field vectors 

If the sampling is greater than 1, only the pixels that had flow computed are stored. 
For spatiotemporal flow fields, for each pixel which had flow computed, three vector 
components, dx, dy, and dt, are stored in that order as floats (4 bytes). The vector 
field is stored in row-major order. Every vector is a unit vector. 
For displacement flow fields, for each pixel which had flow computed, two vector corn- 
ponents, dx and dy are stored in that order as characters. The vector field is stored in 
row-major order. 

Examples: 
cloud-of -i cirrus -f 0 -0 flowl -m cirrus000.cd.x~ -t 2 -vt 0 
will compute the optical flow for the image sequence with base name cirrus. The file 
names of the images will be in cirrusOO0. xv and cirrusOOO1. xv. The cloud decision 
image cirrusOO0. cd. xv is a mask. Since a mask image is specified, the image type is 
specified as 2. The flow field will be written to the file flowl. Since this flow is to be 
used with cbh, the vector type is set to 0. 

cloud-of -i cirrus -f 0 -0 flow2 -n 10 -p 5 -1 100 -w 15 -vt 1 
will generate 10 displacement vector flow fields and put it in the file flow2. A 5 by 5 
pyramid generation scheme will be used. Since the number of maximum levels is set 
to a large number the entire pyramid will be generated. A neighborhood size of 15 by 
15 will be used when doing correlation. 

B.2 cbh 

cbh computes the cloud heights for points visible in Cloud Image 1. This is done by knowing 
the geometry between two WSI cameras and finding corresponding points between Cloud 
Image 1 and Cloud Image 2. In order to help find the corresponding points, two optical 
flow fields, one for Cloud Image 1 and one for Cloud Image 2, are also passed in. The 
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only parameters that need to be specified are “-cloudl”, “-cloud2”, “-flowl”, “ - f l 0 ~ 2 ~ ’  and, 
possibly, “-maskl7’ and “-mask2”. For all the other parameters, appropriate default values 
will be used. This is assuming that the relative geometry between the cameras has been set 
in the file cbh.pane. If not, then “-dist” and “-dir” must also be specified. The command- 
line parameters are as follows. Optional parameters are indicated with square brackets; the 
default values shown in parentheses. 

-cloud1 
-cloud2 
-flow 1 
-flow2 

[-mask 11 
[-mask21 

[-dir] 
[-dist] 

-0 

[-CPl 

[-flow-wt] 

[-pixel-wt] 

[-Cl 

[-el 

1-4 
[-XI 

[-Yl 
[-Wl 

[-hI 
PI 

[-ci] 

Cloud Image 1 
Cloud Image 2 
Flow Field 1 
Flow Field 2 
Base Name for computed height and confidence images 
Masking Image 1 (null) 
Masking Image 2 (null) 
Check Point File Base Name (null) 
Direction of 2nd WSI with respect to 1st (125) 
Distance Between WSI Sites (5540) 
Flow weight 
(3 * pixel-wt + flow-wt = 1.0) (0.166667) 
Pixels weight 
(3 * pixel-wt + flow-wt = 1.0) (0.5) 
Correlation Size (19) 
Distance off the epi-polar line to look for matching points (0) 
Generate a confidence image (true) 
Compute heights every sth pixels (1) 
Left corner of a region to be processed (0) 
Upper corner of a region to be processed (0) 
Width of a region to be processed (-1) 
Height of a region to be processed (-1) 
Image Type (1-Field; 2-Cloud Decision) (1) 

Input Images (-cloud1 -cloud2): A pair of WSI images is specified with the “-cloudl” 
and “-cloud2” parameters. 

Output Images ( -0):  <Output Image>.xv is a float image with the computed height at 
each pixel. The unit of the computed heights is the same as the unit of the “-dist” pa- 
rameter. If “-ci l’’ is specified then <Output Image>.conf.xv will be created. <Output 
Image>.conf.xv is the confidence of the computed height at each pixel. A value of -1 
in the confidence image indicates that no height was computed for that point. 

Image Type (-t): The “image type”, -t, argument specifies the type of image being passed 
in. 1 indicates a Field image and 2 indicates a Cloud Decision image. 

Masking Images (-mask1 -mask%:) If Field images are specified with -cloud prameters, 
then Cloud Decision images can be use as masks. Two masking images are passed in, 
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one for each cloud image. The masking image is assumed to be a Cloud Decision image 
and is used to distinguish cloud points from sky points. If masking images are used 
the image type should be 2, i.e., “-t 2” should be specified. Cloud Decision images 
have a “halo” around the occluder where clouds are not visible. If masking images are 
used, points in the halo will not be considered even though those points are visible in 
the field image. 

Confidence Image (-ci): If “-ci 1” is specified then a confidence image will be generated. 
For every pixel in <Output Image>.xv, its confidence will be the corresponding pixel 
value in <Output Image>.conf.xv. This confidence image is generated as follows. First, 
for every point, p, in cloud image 1, a matching point, p’, is found in cloud image 2 
and a height computed. Then for point p’ in image 2, the best matching point, p” 
in cloud image 1 is found. Obviously, in the ideal case, p and p” are the same. The 
distance between these two points is the confidence for point p. 

Sampling (-s): If heights are not needed at every point then the “-s” argument can be used 
so that heights are computed every sth pixel. Pixels that were skipped over will not be 
in the output images. The output images will be l/s-th the size of the input images. 

Camera Positioning (-dir -dist): The relative positioning of camera 2 relative to camera 
1 is specified by the distance, “-dist”, and the direction, “-dir”, between them. The 
distance is in whatever units the cloud height is desired in and the direction is in 
degrees measured from North. 

Flow and Pixel Weighting (-flow-wt -pixel-wt): The weighting for the optical flow vec- 
tor components and pixel values is specified with the “-flow-wt” and “-pixel-wt” pa- 
rameters, respectively. The flow weight is applied to all three components of the optical 
flow vectors. The sum of the weights must equal 1.0, so 3 * f low-wt +pixe l -wt  = 1.0. 

Correlation Size (-c): The “-c” parameter specifies the size of the neighborhood around 
a point which is used when correlating that neighborhood against the other image. 

Epi-polar Line Size (-e): The number of pixels to look off the epi-polar line for matching 
points is specified by the “-e” parameter. 

Checkpoint Files (-cp): Since a run can take a rather long time the routine periodically 
writes a checkpoint if a file is specified with the -cp argument. If a checkpoint file is 
specified and the run is being started for the first time make sure that the files <Check 
Point File>.cp and <Check Point File>.conf.cp do not exist. If starting the routine 
from a checkpoint simply give the same command that was first used to start the run. 
The existence of the checkpoint files will be checked. If they exist they will be read in 
and the run will continue from the checkpoint. 

Subwindows (-x -y -w -h): If heights are desired for part of the points in Cloud Image 1, 
the upper left corner of the region is specified by the -x and -y parameters. The width 
and height of the region are specified by -w and -h, respectively. 
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Examples: 

cloud-of -1 wsil- -f 100 -0 flowl 
cloud-of -1 wsi2- -f 100 -0 flow2 
cbh -cloud1 wsi1-lOO.xv -cloud2 wsi2-10O.x~ -flow1 wsil-100.flow 

-flow2 wsi2~100.flow -dir 90 -dist 5540 -0 cbh 

The two cloud-of commands will compute the optical flow fields for the two sequences 
with base names wsil and wsi2. The resulting two flow fields in flowl and flow2 will 
be used by the cbh command. 

The cbh command will compute the cloud height for each point in wsil-100 .xv and put 
the computed heights in cbh. xv and the confidences in cbh. conf . xv. The direction 
(from north in degrees) and distance (in any units) of WSI2 from WSIl are 90 and 
5540, respectively. The computed heights are in the same units as the -dist argument. 

For the following examples, the computation of the flow fields will not be shown. 

cbh -cloud1 wsil-1OO.xv -cloud2 wsi2AOO.x~ -flow1 wsil-100.flow 
-flow2 wsi2~100.flow -mask1 wsil-100.cd.x~ -mask2 wsi2~100.cd.xv 
-e 2 -ci 1 -s  2 -dir 90 -dist 5540 -0 cbh 

will compute the cloud height for each point in wsil-100.x~ and put the computed 
heights in cbh. xv and the confidences in cbh. conf . xv. 
The cloud decision image wsii-100.cd.x~ is used as a mask; so only points that 
are on a cloud in that image will have a height calculated. The cloud decision im- 
age wsi2-100. cd. xv acts as a mask image for wsi2-100 .xv; again, only points that 
are on clouds will be considered as potential matching points for the cloud points in 
wsil-100.cd.x~. 

All points within two pixels of the epi-polar line will be considered as possible matching 
points. 

The confidence image will be written to cbh. conf . xv. 
Heights and confidences will only be computed every second pixel. 

cbh -cloud1 wsil-1OO.xv -cloud2 wsi2-10O.x~ -flow1 wsil-100.flow 
-flow2 wsi2~100.flow -x 150 -y 235 -w 10 -h 10 

will compute the cloud heights for a 10 by 10 neighborhood whose upper left had corner 
is located at  point 150, 235 in the image. 

The default direction and distance between the cameras will be used. 
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B.3 pct  
p c t  takes a Whole Sky Imager image and converts it from fisheye coordinates to pseudo- 
Cartesian coordinates. This is done by changing the distance between each point and the 
center of the image so that the distance from the center varies with the tangent of the zenith 
angle. By doing this the projective effects of the camera are eliminated. That is, clouds near 
the edge of the image are expanded, counteracting the compression at large zenith angles. 
Further, the motion of clouds will be uniform across the image; the speed of clouds will no 
longer be slow near the edge and faster near the center. 

It must be assumed that clouds are horizontal. In areas where this assumption is violated, 
the expansion will not be correct and the corrected motion will not necessarily be correct. 

This algorithm was developed by Koehler and Shields [9]. 
Command-line parameters are: 

-1 Input File 
-0 Output File 

Input Image (-i): A WSI image to be PCT-ed. 

Output Images ( -0) :  The PCT-ed image. 

B.4 Parameters Within the Code 
There are two reasons why the cbh, cloud-of or p c t  code may need changing: 1) the 
geometry between the cameras does not match the default values used by cbh; 2) the type 
of images produced by the WSI cameras change. 

For the first case, the default values for the “-dir” and “-dist” parameters in the pane file 
for cbh need .to be changed. Ghostwriter is then run and the code recompiled. This is not 
absolutely necessary since the default values can be overridden on the command line. 

For the second case, all the parameters of the WSI images are specified by “#defines” in 
the file def s . h and all the code that relates points in the sky to where they appear in the 
image is in the file w s i  . c. There is a wsi; c file that could require changing for p c t  and cbh. 
There are “#defines” that could require changing for p c t ,  cloud-of and cbh. The #defines 
that should be checked with any new camera are: 
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#define 
M AXRO WS 
MAXCOLS 
W S I-RO W-SIZE 
W SI-C 0 L-S IZE 
M I D X  
MID-Y 
INNER-WSIAREA 

#define 
HALO-VALUE 
SKY-VALUE 

INNER-ZENITH AREA 

Description 
Gray level of pixels in the occluder halo 
All pixels with gray levels less than this are 
considered sky 

IMAGERADIUS 

Description 
Maximum number of rows of an image 
Maximum number of columns of an image 
Row size of a WSI image 
Column size of a WSI image 
X location of the center pixel 
Y location of the center pixel 
Only pixels within this distance from the 
center of the image have a height computed 
Only pixels withing this zenith have a height 
computed (effectively the same as 
INNER-WSIAREA) 
When PCTing an image, this is the size of the 
final image 

If only the algorithm for generated Cloud Decision images changed that it is possible 
that only the #defines will need to change. But with a new camera it is very likely that 
the how the camera projects points into the image will change. In this case the wsi . c files 
will have to be examined and the functions modified to match to the new camera. See the 
code for more information. 
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