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A PARTICLE METHOD FOR HISTORY-DEPENDENT MATERIALS * 

Deborah Sulsky, Zhen Chen 
and Howard L. Schreyer 
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ABSTRACT 

A broad class of engineering problems including penetration, impact and 
large rotations of solid bodies causes severe numerical problems. For these 
problems, the constitutive equations are history dependent so material points 
must be followed; this is difficult to implement in an Eulerian scheme. On the 
other hand, purely Lagrangian methods typically result in severe mesh distortion 
and the consequence is ill conditioning of the element stiffness matrix leading to 
mesh lockup or entanglement. Remeshing prevents the lockup and tangling but 
then interpolation must be performed for history dependent variables, a process 
which can introduce errors. Proposed here is an extension of the particle-in-cell 
method in which particles are interpreted to be material points that are followed 
through the complete loading process. A fixed Eulerian grid provides the means 
for determining a spatial gradient. Because the grid can also be interpreted as an 
updated Lagrangian frame, the usual convection term in the acceleration 
associated with Eulerian formulations does not appear. With the use of maps 
between material points and the grid, the advantages of both Eulerian and 
Lagrangian schemes are utilized so that mesh tangling is avoided while material 
variables are tracked through the complete deformation history. Example 
solutions in two dimensions are given to illustrate the robustness of the proposed 
convection algorithm and to show that typical elastic behavior can be reproduced. 
Also, it is shown that impact with no slip is handled without any special algorithm 
for bodies governed by elasticity and strain hardening plasticity. 

*The work described in this report was performed for Sandia National 
Laboratories under Contract No. AC-1801. 

i 



This page left blank. 



TABLE OF CONTENTS 

SUMMARY 
1.0 INTRODUCTION 

2.0 GOVERNING EQUATIONS 

3.0 MIXED WEAK FORM OF GOVERNING EQUATIONS 

4.0 THE CONVECTIVE PHASE 

5.0 GENERATION OF MATERIAL POINTS 

6.0 NUMERICAL ALGORITHM 

7.0 NUMERICAL EXAMPLES 

7.1 Rotation Test 

7.2 Vibrating solid elastic cylinder 

7.3 Impact of two elastic bodies 

7.4 Bouncing Bar 

7.5 Impact of two inelastic bodies 

7.6 Impact of an elastic disk with a strain-hardening disk 

8.0 CONCLUSION 

9.0 REFERENCES 

vii 

1 

3 

5 

9 

11 

13 

15 

15 

17 

19 

19 

24 

24 

29 

31 

.,. 
111 



This page left blank.

iv



LIST OF FIGURES

Fig. 1

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Sketch of typical computational grid and material elements.

Notched cylinder subjected to rigid body rotation.

Energy plots for vibrating solid-elastic cylinder.

Positions of disks at various times for elastic impact.

Energy and momentum plots for elastic impact.

Elastic impact of a bar on a layer (particle plots).

Elastic impact of a bar on a layer (velocity plots).

Energy and momentum plots for elastic-plastic impact.

Impact of disks composed of different materials.

Fig. 10. Energy and momentum plots for impact of elastic and pIastic disks.

LIST OF TABLES

Table 1. Results of convergence study for vibrating solid cylinder.

6

16

18

20

21

22

23

25

26

27

19

v



This page left blank.

vi



SUMMARY

Abroad class of engineering problems including penetration, impact and
large rotations of solid bodies causes severe numerical problems. For many of
these problems, the constitutive equations are history dependent so material
points must be followed; this is difficult to implement in an Eulerian scheme. On
the other hand, purely Lagrangian methods typically result in severe mesh
distortion, and the consequence is ill conditioning of the element stiffness matrix
leading to mesh lockup or entanglement. Remeshing prevents the lockup and
tan$ing, but then interpolation must be performed for history dependent
variables, a process which can introduce errors.

Proposed here is an extension of the particle-in-cell method in which
particles are interpreted to be material points that are followed through the
complete loading process. A fixed Eulerian grid provides the means for
determining a spatial radient.

f
Because the grid can also be interpreted as an

updated La~rangian rame, the usual convection term in the acceleration
associated w]th Eulerian formulations does not a pear. Variables are mapped

cl’between material points and the grid so that the a vantages of both Eulerian and
Lagrangian schemes can be attained. Mesh tangling is avoided while material
variables are tracked via the assigned material points through the complete
deformation history.

Several sam le problems in two dimensions are included. The first is one
/’of large rotation o a rigid body to show that the dissipation normally present with

EulerIan codes is not present. Next, the fundamental vibration mode for an
elastic, solid cylindrical body is reproduced to illustrate the dispersion and
dissipation properties of the combined effects of the spatial and temporal
discretizations. Next, the method is applied to impact problems. It is shown that
elastic and elastic-plastic impact can be handled with no special algorithm for
interfaces. Because the velocity field is forced to be single valued, the algorithm is
actually one of no slip. Impacting disks and the im act of a bar on an elastic base

/’are analysed. Plastic behavior is included in one o the impacting disk problems to
illustrate the fact that history-dependent variables are easdy accommodated.
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1.0 INTRODUCTION

The particle-in-cell (PIC) method represents a fluid by hgrangian mass
points, called particles, moving through a computational rid. The “classical” PIC

Ifmethod (Harlow, 1964) is partially J-agrangian Ionthat o y a m.as and position is
attributed to each particle. The procedure 1s highly successful m tracking contact
discontinuities and in modeling highly distorted fluid flow. To reduce the amount
of numerical dissipation, a “full-particle” formulation called FLIP has been
developed in which each particle is attributed all the properties of the fluid,
including momentum and energy (Brackbill and Ruppel, 1986; Brackbill et al.,
1988). It has been shown (Burgess et al., 1992) that, with the use of a consistent
mass matrix, kinetic energy is conserved by the mappings that are required
between particles and grid vertices (nodes). This further reduction in dissipation
is attained at the expense of inverting a new mass matrix for each time step. For
comparable accuracy of results, the use of a large time step seems to compensate
for the cost of inverting the consistent mass matrix in comparison with the
alternative procedure of using a small time step and a diagonal mass matrix.

Recently, Sulsky and Brackbill (1991) have extended FLIP to handle elastic
bodies and elastic bodies in contact with a fluid. Because the positions of the
particles are forced to be single valued through mappings inherent in the method,
interpenetration cannot occur. In effect, the procedure automatically provides a
nonslipping contact algorithm between two bodies or any two media that may
have different path-independent constitutive relations.

So far, FLIP has been used for materials governed by history independent
constitutive equations for which it is naturaI to apply the constitutive equation at
grid nodes. In this paper, we choose to invoke the constitutive equation at the
material points. Since each material point is followed, history-dependent
variables, such as plastic strain and strain-hardening parameters, can be
associated with the material point for the complete evolution of the problem. In
addition, the equations are presented in the weak formulation consistent with the
finite element method which ensures that the tangent stiffness matrix (if it were to
be determined) is symmetric. The formulation actually follows that of many
current dynamic finite element codes in that a stiffness matrix is never computed,
and the internal force vector is determined by sweeping over the elements.

To illustrate the usefulness of the new approach, several sam le problems
[in two dimensions are included. The first is one of large rotation o a rigid body

to show that the dissipation normally present with Eulerian codes is not resent.
fNext, the fundamental vibration mode for an elastic body is reproduce . One

great advantage of the method is its application to im act. It is shown that elastlc
fImpact can be handled with no special algorithm or interfaces. Because the

velocity field is forced to be single valued, the algorithm is actually one of no slip.
Plastic behavior is also included to illustrate the fact that history-dependent
variables are easily accommodated.

1
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2.0 GOVERNING EQUATIONS

To present the method in the simplest possible context, the formulation is
limited to small deformations although large translations are allowed. Therefore
there is no need to select from among the various strain and stress tensors and
the gradient operators associated with large-deformation theory. The following
paragraphs provide a brief summary of the governing equations. Vectors and
tensors are Identified with bold type in a manner consistent with that found in
texts on continuum mechanics, e.g., Malvern (1969).

Let x denote the position of a material point at time, t. The position of the
same material point at t = Ois XO,i.e., if x is considered to be a function of XO and
t, then x(XO, O) = Xo. The velocity, v, is the derivative of x with respect to t,

denoted v=x.

Let L denote the gradient of velocity with respect to the spatial variable, x
Then

in which
W, is the

L=vV=D+W, (1)

the rate of deformation, D, is the symmetric part of L and the vorticity,
skew-symmetric part. Frequently, a strain tensor, e, is defined such that

e= D. Such a strain tensor is often used for computational convenience, as it is
here, even though there is no correspondence with physical measurements, as
exists, for example, with Lagrangian or logarithmic strain tensors.

The tangent modulus, T, is a fourth-order tensor defined such that

in which o is

tensor, TE.
decomposed

(j= T:e.

the stress tensor.

(2)

For linearly elastic materials, T is just the elasticity
For elastic-plastic materials, suppose that the material strain is

into elastic and plastic parts:

e =ee+eP . (3)

If M

The

is the evolution function for plastic strain rate, then

ep=~M . (4)

rate of the monotonically increasing parameter, A, must satisfj the consistency

condition, f = O, where the yield function f is a function of o, and stress hardening
(and softening) parameters. The yield function is chosen such that f < 0 denotes
elastic behavior, f = O denotes yielding, and f > 0 is not permitted. Let the
gradient off with respect too be the tensor, N. Then the tangent modulus is

3



in which H is

T= TE-;(TE: ~@(N: T~

kN:TE: M-H .

(5)

a hardenhw modulus which deDends on the sDecific form of the vield
function. For hardening: perfect plasticity ~nd softening, ‘H is positive, zero” and
negative, respectively. The symbol, @, denotes the tensor product.

If p denotes the mass density, then the specific stress, OS, is defined such
that

p@=~ . (6)

The specific stress proves to be useful in the weak form of the equation of motion
that will be developed. The specific stress requires the use of a “specific” tangent
modulus, Ts, defined such that

&= Ts:& . (7)

For small deformations, the mass density can be taken as constant constant so it
follows that

pTs=T . (8)

If b denotes the body force per unit mass and a is the acceleration, then the
equation of motion is

(pCJs).V+pb=pa a.v (9)

In addition, the stress is symmetric, o = GT. For the proposed numerical
algorithm, the specific stress will be taken as a function of x and t to form the
Eulerian part of the formulation whereas the velocity will be considered a function
of XO and t. The latter is a Lagrangian formulation which implies that the
acceleration does not contain the convection term which causes a significant
amount of numerical error if a purely Eulerian ap roach is used. Convection is

?handled in a separate step by mapping quantities rom the material points to the
grid. The separation of the calculation into a Lagrangian phase and a convective
phase is also the basis of ALE methods (Hirt et al., 1974; Belytschko et al., 1980).
A comprehensive review of Lagrangian and Eulerian schemes together with a host
of other topics including contact algorithms has recently been provided by Benson
(1992).

In the finite element literature associated with solid mechanics, a mixed
Lagrangian-Eulerian formulation is also quite common and is sometimes called an
“updated Lagran~ian” scheme. In an updated Lagrangian approach, the position,
X, of the material points at the end of the time step is used as the reference
configuration for the subsequent step. By contrast, a “fully Lagrangian” approach
uses XO as the inde endent variable. However, in the fluid dynamics literature the

i?term Lagrangian o ten refers to the method defined here as updated Lagrangian.
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3.0 MIXED WEAK FORM OF GOVERNING EQUATIONS

The governing equations are summarized as follows:

(p(f) V+pb=pa

us =Ts :e

e= ;[(VV) + (VV)T] .

(lo)

Suppose each of these equations is multiplied by the weighting functions, w, PW,
and PW *, in turn, and an integration over the current configuration, Q, is
performed. After the use of the divergence theorem for the first equation, the
resulting set of equations is

J J Jp[w .a+os: wV]dV= pw “bdV+ w “~dS

Q n an

JpW: [tis-T$e]dV= O
n

(11)

JpW*:{e-~[(vV) +(vV’)T]} dV= O .

Here, I denotes the prescribed part of the traction on the surface 13Q.
Differentials of volume and surface are denoted by dV and dS, respectively.

In (11), the momentum equation is to be solved on a grid, whereas the
second two equations are to be evaluated at material points in the PIC
formulation. Invoking constitutive equations at material points simplifies the
treatment of history-depenedent variables.

With a particular choice of basis functions, the numerical procedure can be
described in the finite element framework as follows. First consider the material
points. Suppose the domain of the body in the original configuration is composed

of the subdomains, Q ~, P = 1,...,N as illustrated in Fig. 1. Associated with each

subdomain is a reference material point, as defined by the position vector, flp,

and a mass, Mp. With time, these subdomains deform into the subdomains, Q p,

with the reference material points located at XP and with the same mass. From
compatibility, these material subdomains remain simply connected but, in general,
the shapes of the subdomains will be unknown. Nevertheless, as shown below,
the material points, XP, can be tracked.

Over the material subdomains, define piecewise constant basis functions
Up such that Up = 1 for all points on Q p; otherwise Up = O. It follows that UI(XJ)

= 8lJ. Suppose these basis functions are used to represent the functions W, W*,

as, and e in the weak form of the equations. For example:

5
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(a) Initial configuration.

Y

o
x

(b) Final configuration.

Fig. 1 Sketch of typical computational grid and material elements.

(TS= ;dpup e=

P =1

where ~~ and ep are the time-dependent

taken to be constant over Q p.

; upep , (12)
P =1

stress and strain variables which are

Dirac delta functions are used as basis functions for the mass density:

N

P= ~MP~[x-XPl .
P=l

(13)



Then, with the argument that the generalized variables Wp and W; are arbitrary,
the last two weak equations become:

bfi=Ts(Xp):ep

ep = +[(VV) + (VV)TIXP ,
(14)

in which the subscript, XP in the expression for the strain rate indicates that the
function in the square brackets is evaluated at the material point. In other words,
the stress and strain rates are evaluated at those material oints which will be

?tracked as part of the computational procedure. In many mite element codes,
stress and strain rates are determined at element centers or at Gauss points.
Here, the tracked material points may appear at arbitrary points within an
element.

Now, consider basis functions for the grid. The remaining variables W, v
and a must be continuous at least in the limit as the spatial mesh size goes to zero.
Surmose a computational mid is constructed of elements which are used to form
no%l basis fun~tions Ni(x} associated with spatial points
denoting the number of grid nodes. The nodal basis
union of conventional finite element shape fimctions.. . .
COIMNIOUSvariables are:

n

n

V= ~~i(t)Ni(x)

i =1

a= ~ %(t)Ni(X)
i =1

xi with i = 1, .... n with n
functions are merely the
Representations for the

(15)

the nodal vectors for the respective functions.in which wi, vi and ai denote
Introduce the mapping matrix, [S], whose components, SPi, ire values of the
nodal basis functions at the current locations of the material points. [S] can be
thought of as a stochastic matrix in the sense that all entries are positive or zero
and ~ach row sum is one. Also define the set of gradient vectorsj GPi. The set
represents the gradient of each basis function at the current locations of the
material points. The components of these matrices are:

Spi = Ni(Xp)
(16)

GPi = Niv lx
P“

Consider the weak form of the equation of motion given as the first equation in
(11). With the use of (13), (15) and (16), the first and second terms in the
equation become:

(17)

7



and

where N denotes the number of material points. The term mij denotes a

component of the mass matrix associated with the computational grid and f~ is
the internal force vector associated with node i. Nodal vectors for the body force
field, bi, and the surface traction are defined as a natural consequence of the
volume and surface integrals involving applied forces:

Jpw. bdV= ~ wi. bi
n isl

J

n

z
w“~cls= wi.~. 1

N

bi = ~ S~pMpbp
PI

Jii= Ni~dS .

(19)

@ i=l @

Alternatively, since the body force and surface traction are explicitly given, the
conventional finite element form can be used in which these functions are

evaluated at the grid nodes. The external force vector, f~t, is defined to be

fy =bi+~i (20)

The components of wi are arbitrary except for those points where components of
the displacement are prescribed. With the understanding that the constraints on
the displacement field are invoked, the weak form of the equation of motion yields

n

L

int
‘ij aj = fi + f~xt i=i n,. ..,.

j =1
(21)

The set of equations given by (14) and (21) are similar in form to those
obtained by conventional finite element schemes. For example, the internal and
external force vectors associated with nodes are developed by sweeping over
elements at each time step. The components of physical vectors are arranged
sequentially to form a vector of scalar components. The constitutive equation
subroutines are also traditional.

However, there are important differences between the present algorithm
and the conventional finite element approach. First, the mass matrix, mij, varies
with time and therefore must be computed at each time step. To simplify
calculations, as in PIC/FLIP and the conventional finite element procedure for
transient problems, a diagonal mass matrix can be employed in which each
diagonal term consists of the row sum of mij. Second, the gradient, stress and
strain are evaluated at material points that can move from one element to another
rather than remain at the center or at the Gauss points of an element. Third, the
use of the point mass representation for the mass density results in the
appearance of point masses in expressions for the internal and external force
vectors. Fourth, the specific stress is used to provide a convenient form of the
equation of motion in which the stress is evaluated only at the material points.

8



4.0 THE CONVECTIVE PHASE

A great advantage of this approach is that the computa~ional grid can be
chosen for convenience. For example, the grid can be kept freed in contrast to
updated Lagrangian schemes in which elements can become severely distorted
and even entangled. However, fixing the grid in space implicitly means that
material points cross grid lines and the convection associated with material motion
must be included in the com utational procedure. With a procedure initiated by

YBrackbill and Ruppel (1986 , the convection phase is handled by mapping the
velocity field based on values at the material points to values at the nodes of the
computational grid. The procedure is described in this section.

Once the accelerations at the grid nodes are determined from (21), explicit
time integration gives values for the nodal velocity vectors. This integration is
carried out as if the grid were an updated Lagrangian frame so that convection
terms are not required. Information obtained during this Lagrangian step is then
transferred to the material points to update their properties. When the material
points move, they transport material properties assigned to them without error.
With the use of information carried by the material points, the solution can be
reconstructed on any grid. In contrast to methods that continue to use the
current updated Lagrangian frame, the freedom to choose the grid means mesh
entanglement can be avoided. In the numerical examples of Sec. 7, information is
mapped from material points to a uniform Eulerian grid to begin each time step.
The mappings between the grid and material points are detailed below.

If the representation for the velocity given by (15) is evaluated at a material
point, Xp, the result is

n

Vp = ~viNi(xp) .
i=l

Equation (22) maps the velocity on the
of the nodal basis functions assures
velocitv field.

(22)

grid to material-point locations. The use
single-valuedness and continuity of the

‘Let the vector of N terms, {V}, denote one component (the x-component,
say) of the velocity for all material points. Similarly, let the vector of n terms, {v},
represent the same component of velocity at the rid nodes. Then with the use of

fthe mapping matrix [S] with components, SPi, de ined in (16), each component of
the above equation can be given in matrix form as

{v} = [S]{v} . (23)

Explicit time integration is used to obtain the updated position of each material
point with the use of these components of the velocity vector. Strain can also be
updated by using the gradient of this velocity field evaluated at the current
locations of the material points. Then stress is obtained from the consitutive
equation.

The convective phase consists of mapping the velocity back from the
updated material points to the grid points. Because [S] is rectangular, the
procedure is not straight forward. The approach used in FLIP can be interpreted
as using weighted least squares to determine the nodal velocities from the

9



velocities at the material points. The weighting consists of the diagonal matrix
[MD] formed from the point masses, MP, associated with the material points. The
result is the following equation which must be solved for {v}

[m] {v} = [S]T[MD]{V} , (24)

where the components of [m] are rnij, the same grid mass matrix, (17), that
appears in the equation of motion. However, we also use the diagonal form of
the grid mass matrix for com utational efficiency in obtaining {v}.

!Burgess et al. (1992 have shown that this particular formulation for
mapping velocity from material points to grid nodes implies that kinetic energy,
linear momentum and angular momentum are conserved. Kinetic energy is
conserved provided the consistent mass matrix, [m], is used with grid quantities.
The result of using a diagonal mass matrix is some dissipation of kinetic energy
that has been quantified by Brackbill and Ruppel (1986), Brackbill et al. (1988)
and Burgess et al. (1992). The same analysis applies in the context of this study.

10



5.0 GENERATION OF MATERIAL POINTS

The method followed here is an adaptation of a procedure used by
Brackbill and Ruppel (1986). Suppose the computational grid is constructed in a
convenient manner to cover the potential domain for the boundary value
problem. Unless there is some reason to do otherwise, choose square elements.
Suppose further that the initial configuration for each material is defined
analytically by a set of relations

(25)

Each function, ~, might describe one segment of a surface. Voids can also be
described within the framework. The current implementation in 2-D allows
combinations of straight line segments, circles, and ellipses, but more general
forms can be used.

Each material region is discretized by prescribing the number of material
points and their locations within each element. A loop is performed over the
computational grid with trial material points in each element. If the trial point
does not satis& the inequalities (25) for that material region, then the trial point is
discarded. Otherwise, the material point is added to an array associated with a
specific constitutive equation and the initial values of parameters for that material
are stored. Initial values consist of position, velocity, and mass which is
determined based on mass density and number of material points per cell. No
attempt is made to allocate partial masses to account for the fact that material
boundaries can pass through a cell. The effect of not allocating partial masses can
be assessed by performing a convergence study with respect to changes in the
number of material points assigned to each cell.

The result is a mesh and material point generation scheme that is
remarkably general and easy to implement. In effect, all that is needed is a
description of the region in a form given by (25) for each material type, the size of
each element (cell) in a regular grid, and the number of material points to be
assigned initially to each element.

11
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6.0 NUMERICAL ALGORITHM

For the time integration, let the time step bes and the discrete time be tk =
ks with k=O, 1,2, .... The diagonal mass matrix [MD] associated with the material
points is based on the initial discretization and is fixed for all time, i.e., the mass of
a material point does not change.

Suppose the following parameters are known at tk: (i) the mapping matrix,
[S]k, (ii) the gradient matrix, [G]k, and (iii) the diagonal form of the grid mass
matrix, [mD]k, (iv) the grid nodal values of each component of velocity, {v}k, (v)

each component of the position of the material points, {X}k, (vi) each component
of the internal force vector, {@nt},and (vii) each component of the external force
vector, {Ffi}.

In the following description only one of the components (x, y and z for
three dimensions) of the matrices [G]k, {v}k,{X}k, {@t} and {Ffi} will be used to
simplify the presentation.

The algorithm consists of the following steps:
1. Determine the acceleration, {a}k, at the grid nodes from the equation of
motion (21):

[mD]k{a}k= {fint}k + {feti}k . (26)

2. Use an explicit time integrator to obtain the velocity, {V”}k+1, of points located
at the grid nodes:

{V”}k+l = {v}k + s{a}k . (27)

3. Obtain the velocity gradients at the material points. There are nine such
combinations in three dimensions of which a typical expression is [G]k{v*}k+1.

.k+l
4. The strain rate at material points, eP , is formed from the components of the

velocity gradient tensor, as in (14).

5, The stress at material points is updated with the increment obtained from the
constitutive equation subroutine. History-depenedent variables such as plastic
strain and strain-hardening parameters are also updated for each material point.

6. Map to obtain velocities and accelerations at the material points, as in (22):

{v*}k+l = [S]k{v*}k+l {A}k = [S]k{a}k . (28)

7. Use an explicit time integrator to update components of the position vector
and velocity of the material points:

{X}k+l = {x}k + s{v*}k+l {V}k+ 1 = {V}k + s{A}k. (29)

8. Determine new mapping and gradient matrices as in (16):

13



[S]k+l = {N}(Xk+l) [G]k+l = {N}VIXk+l . (30)

9. The internal force vector is determined in terms of the current stress and
gradient matrices, as m (18).

10. Update the consistent mass matrix associated with the grid:

[m]k+l = [STk+l[MI-j][S]k+l . (31)

Sumrows toobtain the diagonal version: [mD]k+l

11. Map back to obtain velocities at the grid nodes, i.e., solve

[IIID]k+l{V}k+l = [S~k+l[MD]{Vk+l} (32)

for {v}k+1. This step corresponds to (24) where the diagonal form of the grid
mass matrix has been substituted in the left-hand side of the equation.

12. The cycle for one time step is complete; go to 1.

We want to emphasize that the matrices used to describe the procedure are
never formed. Rather, quantities are accumulated by sweeping over elements as
done in many finite element programs. The details are not included because the
procedure is well established in the finite element literature.

14



7.0 NUMERICAL EXAMPLES

7.1 Rotation Test

A model problem that is often used to illustrate properties of convection
algorithms is the continuity equation describing transport of the nondiffusive

scalar quantity ‘?( z t):

d’? a~
—= —+ V.(YV)=– Y(V.V) .
dt &

(33)

In this model problem, the velocity field V(X t) is prescribed. A common test is to
prescribe a velocity field corresponding to rigid body motion. One example used
by Smolarkiewicz (1984) is that of a cylinder with a sharp notch cut out. The

function Y (X O) is assigned the height of the cylinder and the velocity is prescribed
to be one of rigid body rotation in the plane perpendicular to the unit vector k in
the z-direction:

v(~t) =Okx(x-xJ (34)

in which ~ is the fixed center of rotation. The velocity field is divergence free so

after one full rotation Y should be the same as its initial value. Typical convection

algorithms on Eulerian grids artificially diffuse Y and/or produce ripples in the
solution (Bensen, 1992).

In FLIP, Y ~ = Y( ~p , O) is assigned to the material points. Since the

velocity field is divergence free, Y is a Lagrangian invariant; so Y p is fixed and
transported by the particles without error.

The top view of the cylinder, computational grid and material points are
shown in Fig. 2(a). The cylinder has radius 0.15 and height 4.0 so that initially
V P(L, O) = 4.0. The computational domain is a square with side length 1.0. The

angular velocity is Q = 0.1 and the components of ~ are (0.5, 0.5, O). The grid has
51 nodes in each coordinate direction and the time step is s = 0.1. One full
rotation corresponds to 628 time steps. Initially, four material points were

assigned to each element where Y is nonzero. This formulation contains fewer
grid points than the number used by Smolarkiewicz (1984), but because of the
material points, the computational effort is greater. However, even when the the
number of elements is reduced, our results are unchanged.

The algorithm for this test problem differs slightly from the algorithm in
Sec. 6. There is no acceleration and the velocity in Step 2 is prescribed rather than
computed:

{v*}k+l = ~kx (Xk+~ .%)

~+~
where x I is the time-centered position,

(35)

~ (d + #+I), and
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(a) Initial configuration of material points and grid (top view).

Fig. 2.

“’o

(b) Surface after one revolution.

Notched cylinder subjected to rigid body rotation.
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{X}k+l = {X}k+ S{v”}k+l . (36)

After the velocity on the grid is -prescribed, it is. mapped to the material points
according to Step 6 and the posltlons of the material pints are updated as in Step
7.

The result of applying the algorithm is shown in Fig. 2(b) which is a plot of

the computed surface Y (q t) after one full revolution. The only source of
numerical error is the mapping of the velocity from the grid to the material points
at each step and the discrete-time integration algorlthm used to update the
positions of the material points. The errors associated with the process are
neglible compared with the errors associated with convection algorithms on
Eulerian grids (Smolarkiewicz, 1984).

In the discretized equation of motion combined with a time integrator, if
there is no acceleration and if the solution for the velocity can be represented
exactly by the element shape functions, then the numerical solution will be exact.
A particular case is uniform translation, another standard test problem in which
V(Z t) is a prescribed constant. Numerical illustrations are given in some of the
following examples.

7.2 Vibrating solid elastic cylinder

Consider an infinitely long, solid cylinder of radius R = 0.6 cm. For copper,
the mass density is p = 8.92 kg/mq, and the elastic parameters are Young’s

modulus, E = 126 GPa, and Poisson’s ratio, v = 0.35. The cylinder will vibrate in
its fundamental mode which is the Bessel function of order one with a frequency
of~e s 1.73 x 106 Hz for plane strain. The cylinder is subjected to a uniform
radial strain of 2% so that only the first mode is excited.

Again, four material points per element are used. Results for various time
steps and element sizes are given in the form of energy plotted as a function of
time in Fig. 3. Dotted lines denote elastic strain energy, dashed lines represent
kinetic energy, and solid lines the sum. Figure 3(a) shows the results for a time

step ofs = 0.2 ps (u% = 0.35) and a square mesh spacing of h = 0.80 cm = O.133R

The predicted frequency is 1.68 x 106 Hz. A measure of numerical dispersion is @d
= u/0 e which for this case is @d = 0.97. If the amplitude for total energy is

approximated with an expression of the type E = EOe- ‘tit’2X then y can be

considered a measure of numerical dissipation. For this case, Y = 0.121.
The results of a convergence study for consecutive halving of both the time

step and element size are given in Table 1. Both dissipation and dispersion are
reduced to an insignificant amount with mesh and time step refinement. This
problem was also studied previously, (Burgess et al., 1992; Sulsky and Brackbill,
1991), with similar results. The difference between our algorithm and the one in
these references is that we apply constitutive equations at the material points
rather than at grid nodes.
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Fig. 3. Energy plots for vibrating solid-elastic cylinder.



(ins) ( )
0.35 {:8 0.97 0.121

:? 0.17 0.04 0.99 0.0126
0.05 0.087 0.02 1.00 0.0041

Table 1. Results ofconvergence study forvibrating solid qlinder.

7.3 Impact oftwo elastic bodies

Figure 4 shows the impact of two identical elastic disks, with Young’s

modulus E = 1000, Poisson’s ratio v = 0.3 and density p = 1000. The disks start in
the lower left and upper right corners with initial velocities of (0.1, 0.1) and (-0.1, -
0.1), respectively. The grid is uniform with square elements of side h = 0.05 and
the time step is s = 0.001. In Fig. 4(a), the disks have already travelled some
distance through the grid. The displacement of each disk makes an angle of 45o
with respect to either grid line. As mentioned previously, there is no error in the
numerical solution associated with a uniform translation of an object through a
grid. Figure 4(b) shows the distortion that results when the disks are in contact
during impact under the assumption of plane strain. Fi~res 4(c) and 4(d) show
how the disks rebound and translate in the opposite dmection after impact has
occurred.

Energy plots are given in Fig. 5(a). All of the initial energy is kinetic energy
(dashed line). The kinetic energy decreases during impact and then is mostly
recovered after separation. The strain energy (dotted Ime) attains its maximum
value at the point of maximum deformation during impact and then decreases to a
nominal value associated with free vibration of the disks after impact. The strain
energy is small but not zero at discrete times after impact. The fact that a zero
value is not achieved can be attributed to the activation of several modes which do
not exhibit zeros at the same time. The total energy (solid line) decreases slightly
with time indicating some numerical dissipation.

For the disk located initially in the lower left corner the x-component of
momentum is lotted as a solid line in Fig. 5(b). As expected, the momentum

fswitches sign a ter impact. Also plotted is the y-component of momentum (dotted
line) which is indistinguishable from the x-component both before and after
impact.

7.4 Bouncing Bar

Consider a rectan ular elastic bar of dimensions 0.2X 0,4& moving with a
funiform initial velocity o (-0.1, -0.1). A corner of a bar strikes an elastic layer 0.25

thick. For both materials, E = 1000, v = 0.3, and p = 1000. Initially, four particles
per square element with size h = 0.05 are assigned as indicated in Fig. 6(a) and
the time step iss = 0.005. The subsequent configurations are shown in the series
of particle plots given in Fi .6.

i!When one corner o the bar strikes the layer, the bar rebounds and starts
to rotate. A second corner of the bar then strikes the layer. Then the second
rebound velocity distribution implies that the bar will not strike the layer again.

Velocity plots on the grid are shown in Fig. 7 for the same configurations
given by the particle plots in Fig. 6. Localized velocities at the points of impact are
shown m the layer. All points in the layer are actually excited but velocities below a
certain level were excluded from the plot.
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7.5 Impact of two inelastic bodies

The calculation in Sec. 7.3
that the disks are now considered

is repeated using the same parameters except
to be elastic-dastic solids. The model is von

Mises plasticity with a yield function, f, and strai; hardening function, H, given by

f= 5-H

H=c1+czZ
(37)

in which C7 is the second invariant of the stress deviator, (~#:CJd)1’2, and E is

the plastic strain path invariant r (;i# ti)l/2 d, . In the numerical calculation, c1

= 100 (0.lE) and cz = 400. The’positions of the material points are very similar to
those shown in Fig. 4 for the elastic impact and are not plotted. A small difference
appears after impact, where a part of each disk is flattened and remains
permanently distorted after separation. The amount of separation is not as large
as that shown in Fig. 4(d) for the corresponding elastic case.

The energy plot of Fig. 8(a) shows a large dissipation in the total energy
(solid line) after impact because of plastic dissipation. After impact, the kinetic
energy (dashed line) oscillates about a lower value than existed before the impact
and the elastic strain energy (dotted line) does not achieve a value of zero for any
time. In addition to the argument concerning the activation of several modes as a
reason for nonzero strain energy, there is now the additional factor that residual
plastic strains can prevent the elastic strain (and stress) from achieving a zero
state even in the unloaded condition.

As in the elastic case, x- and y-components of momentum (solid and dotted
lines, respectively) for the lower-left disk switches sign after impact as indicated in
Fig. 8(b). However the magnitude of each component now significantly decreases
after impact. Again, the x- and y-components are indistinguishable.

7.6 Impact of an elastic disk with a strain-hardening disk

Similarly to the problems of 7.3 and 7.5, two disks are allowed to impact.
However, now one disk is elastic (lower left) and one is elastic-strain hardening
plastic (upper right). The properties, computational grid, initial velocities and
time step used in the previous examples are used here as well. However, here the
initial velocity is chosen to make an angle of 300 with respect to the horizontal
coordinate and the initial separation of the centers is 0.55 which is smaller than
the initial separation of 0.71 used for the previous examples. Particle plots are
given in Fig. 9 and show a slight flattening of one side of the @astic disk after
Impact. The energy plot of Fig. 10(a) shows results intermediate to those of
problems 7.3 and 7.5. The components of momentum are shown in Figs. 10(b)
and 1O(C)for the elastic and plastic disks, respectively. Because of the direction of
motion, the x and y components of momentum are not equal. Furthermore, the
relative magnitude of the two components of momentum switches after impact as
expected.
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Fig. 9. Impact of disks composed of different materials.
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Energ and momentum plots for impact of elastic and plastic
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8.0 CONCLUSION

With an extension of the particle-in-cell method, a numerical al orithm has
Ebeen developed that combines several desirable features. In effect, t e grid can

beinte~reted asanu~dated hgran~ian onesothat thedifision associated with
the numerical evaluation of convectwe derivatives in an Eulerian description is
not present. Material points are followed so that interpolation for history-
dependent variables is not required. Furthermore, the symmetry associated with
the weak formulation and the formation of an internal force vector generally
associated with the finite element method have been retained. The additional cost
of the method over existing finite element algorithms appears in the form of maps
between the material oints and the grid. The benefit 1s no mesh distortion and,

xconsequently, no nee to remesh in the event that large deformations occur.
An advantage of applying the constitutive equation at the particle locations

is an automatic treatment of “mixed cells”. In purely Eulerian codes one must
define “averaged” or “typical” material parameters for elements (cells) that contain
materials described with different constitutive equations. For im act problems,

1’the situation arises naturally in that frequently one body remains e astic while the
other is inelastic. By following material points, the ap ropriate constitutive

!equation is invoked no matter how many or what kind o material points are
located within a single element.

The sample problems show that conventional elastic vibrations can be
reproduced. For impact, the enforcement of a single-valued velocity field within
any element no matter how many material points are in that element implies that
no sliding occurs along the impact surface. Since no slideline algorithm is
required the computational procedure is remarkably efficient for this class of
problems.

The urpose of this work has been to demonstrate the otential benefit of
f fcombining eatures of the particle-in-cell method with those o the finite element

method normally used for inelastic deformations of solid structures. Numerous
points remain to be investigated in detail; convergence, stability, boundary
conditions, relaxation of the no slip condition, and the utility of using more or
fewer material points per element. A significantly more difficult problem is that of
material failure as characterized by material softening and material bifurcations in
which case convergence is not expected unless a nonlocal aspect is incorporated in
the constitutive equation. With a satisfactory completion of these investigations,
the fact that solid-solid as well as solid-fluid interfaces can be handled so
effortlessly suggests that the method will have numerous applications.
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