
SANDIA REPORT
SAND93–2339 UC–405
Unlimited Release
Printed November 1993

MICROFICHE

The Chaco User’s Guide
Version 1.0

Bruce Hendrickson, Robert Leland

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-94AL85000 I I II 1 I I I II I 1 1 1

8605018

SANDIA NATIONAL
LABORATORIES

TECHNICAL LIBRARY

SF2900Q(8-81) 28p.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO BOX 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy A03
Microfiche copy AO1

SAND93-2339
Unlimited Release

Printed November 1993

Distribution

Category UC-405

The Chaco User’s Guide*
Version 1.0

Bruce Hendrickson and Robert Leland

Sandia National Laboratories

Albuquerque, NM 87185

Abstract

Graph partitioning is a fundamental problem in many scientific settings. This doc-

ument describes the capabilities and operation of Chaco, a software package designed

to partition graphs. Chaco allows for recursive application of any of several different

methods for finding small edge separators in weighted graphs. These methods include

inertial, spectral, Kernighan-Lin and multilevel methods in addition to several simpler

strategies. Each of these methods can be used to partition the graph into two, four or

eight pieces at each level of recursion. In addition, the Kernighan-Lin method can be

used to improve partitions generated by any of the other methods. Brief descriptions of

these methods are provided, along with references to relevant literature. The user in-

terface, input/output formats and appropriate settings for a variety of code parameters

are discussed in detail, and some suggestions on algorithm selection are offered.

* This work was supported by the Applied Mathematical Sciences program, U.S. Department of

Energy, Office of Energy Research, and was performed at Sandia National Laboratories, operated for the

U.S. Department of Energy under contract No DE-AC04-76DPO0789. The Chaco software package

was developed by the authors at Sandia National Laboratories and is under copyright protection.
Department l422; electronic mail: bahendr@cs.sandia. gov; telephone: 505-845-7599.

Department 1424; electronic mail: rwlelan@cs.sandia. gov; telephone: 505-845-7387.

1

1. Introduction. Many problems which arise in the course of scientific comput-

ing have a combinatorial nature and can be conveniently described in terms of graphs.

In particular, it is often useful to partition a graph into subgraphs that are in some

measure as disjoint as possible. This is the case in divide–and–conquer algorithms for

problems like devising efficient circuit layouts or constructing nested dissection order-

ings for sparse matrix factorization. Another prominent instance is the problem of

decomposing a large data structure to be mapped onto the processors of a parallel com-

puter. This latter example motivated the development of Chacol, and we will assume

that it is the main interest of the reader in the remainder of this user’s guide. However

we wish to emphasize that the code and its output can be used directly or with slight

modification to address other important problems as well.

For concreteness, assume we want to solve a partial differential equation on a dis-

If we use a finite difference discretization and an tributed memory parallel computer.

iterative solver, the graph to be partitioned will typically have the same topology as the

computational grid: The iterate at each grid point must be updated using neighboring

grid point values, so graph vertices correspond to the update computation, and graph

edges indicate that information must be transferred from one grid point to another. On

a serial computer this transfer is accomplished by writing to and reading from memory.

However, when we map this computational grid to a parallel computer, two vertices

joined by an edge and not owned by the same processor must communicate to exchange

values. Since communication is expensive, a mapping that minimizes it is desirable. Of

course, we could assign the entire grid to a single processor and have no communication

at all, but that wouldn’t be an effective use of the parallel machine since one processor

would do all the work while the others remained idle. We must therefore also observe

the important constraint that each processor should be assigned about the same amount

of vertex work and therefore (in the simplest case) the same number of vertices. Hence

we say informally that the objective of Chaco is to produce balanced sets with low

communication overhead.

Not all problems have such a convenient correspondence between the computational

grid and the mapping requirements of the application program. For instance in a finite

element calculation, a more appropriate approach may be to consider each element

as a vertex with some associated update work. We would then construct connecting

edges corresponding to each face or corner in the discretization mesh since these edges

correspond to the non-zero pattern in the global stiffness matrix. The most appropriate

graph will depend upon the application and is left up to the user.

1 Chaco is named in honor of Chaco Canyon, the site of spectacular Anasazi ruins in what is

presently northwestern New Mexico. Between 1000 and 1100 AD a great society, considered the most

complex and sophisticated on the continent north of Mexico, flourished there.

2

Furthermore, all vertices are not necessarily created equal. For example, a vertex

encoding a computation on the boundary may have less work associated with it than

a vertex in the interior of a domain. For this reason, Chaco allows weights to be

associated with each vertex. The weight is supposed to correspond to the amount of

work associated with the vertex. Similarly, edges may correspond to varying amounts

of communication. For example, two finite elements touching at a corner may need

to exchange less information than two sharing a face. Chaco also allows for a weight

to be associated with each edge, corresponding the the amount of communication it

represents.

The problem of interest can now be described more precisely. Given a graph G

with n weighted vertices and m weighted edges, divide the vertices into p sets in such

a way that the sum of the vertex weights in each set is as close as possible, and the

sum of the weights of edges crossing between sets is minimized. Unfortunately, even in

the simple case where p = 2 and the edge and vertex weights are uniform, this graph

partitioning problem is NP-complete[4]. Hence there is no known efficient algorithm

to solve the problem generally, and it seems unlikely that such an algorithm exists.

We must therefore to resort to heuristic solutions in which balance may be partially

compromised or (more typically) the minimization is approximate.

A variety of such heuristic methods with different cost/quality tradeoffs have been

published. Chaco includes methods based on several of these as well, as several substan-

tially new methods. The algorithms used are based on inertial, spectral, Kernighan–Lin

(KL) and multilevel principles in addition to several simpler strategies. The methods

are categorized as either local (currently just KL) or global (everything else). Chaco

allows you to combine global and local methods, and we have found that this combi-

nation leads to significant improvements in both performance and robustness. Another

advantage of Chaco’s design philosophy is that it offers flexibility. This is important

because we believe that, given the complexity of the partitioning problem, no single

method will always work well. Chaco gives you a fall–back option when your favorite

method works poorly or has an inappropriate cost/quality ratio for a given problem. It

also facilitates investigation into the relative strengths and weakness of a wide variety

of methods.

Having set the basic context, we should raise some finer but nevertheless important

issues. One such issue is the dimensionality of the partitioning scheme. Most graph

partitioning codes rely on recursive bisection. That is, the graph is partitioned into two

pieces, each of these pieces is partitioned into two more, etc. until a desired number of

sets is reached. This strategy is simple and convenient, but may be somewhat limiting.

Graphs can be constructed for which any bisection algorithm must necessarily perform

poorly, and in practice we observe that bisection algorithms often choose separators

3

which look very good at one stage of recursion but not so good with the benefit of

hindsight at a later stage. All of the partitioning algorithms implemented in Chaco

are capable of partitioning graphs into two, four or eight sets at each stage of recursion.

We have accumulated some empirical evidence that the quadrisection and octasection

algorithms do perform better in some respects than their bisection counterparts. We

have also found bisection algorithms preferable to their multi-dimensional versions in

some situations. For readers interested in the interaction between communicant ion metric

and partitioning dimensionalit y we can recommend several previous reports [7, 8, 10].

The basic difficulty in choosing the appropriate partitioning dimensionality is that

the correct representation of communication costs in the graph model is somewhat

ambiguous. Most graph part itioning schemes work to suppress the total number of edges

crossing between sets without regard to the identity of the sets 2. We say these methods

try to minimize the total number of cuts. In contrast, several of the multidimensional

schemes we have developed can take into account the identity of the sets an edge

crosses between and work to minimize the hypercube distance between these sets. We

say they try to minimize the total number of hops. For hypercube architectures and

for 2D and 3D mesh architectures in some situations, the hypercube metric is more

appropriate because it better models message congestion. In other cases it may be

preferable to focus simply on the total number of bytes communicated and hence rely

on a bisection scheme. When the communicated messages are short enough, the total

communication time will correlate best with message startups. In the graph metric this

measure corresponds to the number of neighboring sets each set has. We have also

included a method designed to deal with this contingency by suppressing the maximum

number of neighbors any set has. In fact, with an isolated change to the source code,

Chaco can implement some methods with an arbitrary cost function. However, all of

the methods currently implemented in Chaco nevertheless share the limitation that we

must have p = 2k for a whole number k. While this limitation applies to most graph

partitioning algorithms and codes, it is not fundamental, and we intend that future

releases of Chaco will allow non-power-of-two partitioning.

The methods currently implemented in Chaco are described in the next section.

In $3 we describe the input format and the menu options used to invoke the different

methods. In 54 we discuss several easily modified parameters which allow the user to

fine tune the code for a particular application. This section can be skipped on a first

reading. Finally, in 35 we give some practical advice on obtaining, installingand using

Chaco.

2 For simplicity let us consider the unweighed graph model in this discussion.

4

2. Partitioning algorithms in Chaco. The five classes of partitioning algo-

rithms currently implemented in Chaco are simple, spectral, inertial, Kernighan–Lin

and multilevel. These methods are briefly described below, and references to appropri-

ate literature are provided.

2.1. Simple Partitioning. For completeness and in order to facilitate certain

comparisons, Chaco includes three very simple partitioning schemes. In the linear

scheme, vertices are assigned in order to processors in accord with their numbering in

the original graph, i.e. the first n/p vertices are assigned to set O, the next to set 1, etc.

This often produces produces surprisingly good results because data locality is implicit

in the numbering of the graph. In the rdndom scheme, vertices are assigned randomly

to sets in a way that preserves balance, and in the scattered scheme vertices are dealt

out card fashion to the p sets in the order they are numbered. These methods are like

all the others in that they operate recursively and produce two, four or eight partitioned

sets at each stage of recursion. Usually the random ordering produces partitions with

quality between that of the linear and scattered partitioning. The run time of the

random scheme is very small and of the other schemes is negligible.

2.2. Spectral Partitioning. Most of the code in Chaco is devoted to spectral

methods. These methods use eigenvectors of a matrix specially constructed from the

graph to decide how to partition it. A full accounting of this surprising connection

between eigenvectors and partitions is too involved to present here, but the articles

mentioned below offer plenty of detail on the subject.

The simplest spectral method in the code is a weighted version of spectral bisection.

A description of the unweighed algorithm is given in [16, 17], and the extension to use

both edge and vertex weights is described in [7]. This method uses the second lowest

eigenvector of the LapZacian matrix of the graph to divide the graph into two pieces.

This eigenvector is known as the Fiedler vector.

The spectral quadrisection algorithm divides a graph into four pieces at once using

the second and third lowest eigenvectors of the Laplacian matrix. Similarly, spectral

octasection uses the second, third and fourth eigenvectors to divide into eight pieces.

These multidimensional spectral methods were introduced in [7, 8] where they were

shown to have some advantages over spectral bisection.

In particular, we note that spectral quadrisection and octasection try to minimize

communication cost in a more complex metric. Suppose the partitioned sets are num-

bered from O to 3 for quadrisection or O to 7 for octasection. Spectral bisection would

try to minimize the total weight of edges crossing between different sets, whereas the

multidimensional methods would use a metric in which the cost of an edge crossing

between two sets is the edge weight multiplied by the number of bits that are different

5

in a binary representation of the two sets.

Although this hops metric may seem odd at first glance, it has a nice interpretation

in the context of parallel computing. In a parallel computer consisting of four processors

connected in a mesh, and numbered in the natural way, a message traveling between

processors O and 3 must travel over two wires, whereas one between O and 1 need only

traverse a single wire. This number of wires is exactly the weighting implicit in spectral

quadrisection. Similarly, spectral octasection counts wires used on a three dimensional

mesh architectures, and both quadrisection and octasection applied recursively do so

for higher dimensional hypercubes.

One might suppose that this correspondence between cost metric and wires used

was irrelevant given the advent of cut-through routing in which the delay associated

with a message is nearly independent of the number of links it traverses. In fact this

independence only holds for isolated messages in which there is no competition for the

links in the communication network. In a great many computations, and most scientific

applications, communication occurs in the form of bursts of messages during which

there is very significant competition for the network. Hence when network congestion

is important, weighting messages by the number of wires they consume should lead to

better problem mappings. Empirical evidence supporting this and further discussion of

the issue can be found in [6].

The computational kernel of spectral methods is the calculation of a small num-

ber of eigenvectors. We have implemented a variety of eigensolvers with different

speed/robustness tradeoffs. Roughly in order of increasing speed, these are Lanczos

with full orthogonalization, Lanczos with full orthogonalization using the inverse oper-

ator, Lanczos with selective orthogonalization against both ends of the spectrum, Lanc-

zos with selective orthogonalization against the left end only, and a multilevel method

combining Rayleigh Quotient Iteration [5] and the linear solver Symmlq[14]. Several

of the issues governing the choice between these methods are touched upon below. It

should be noted that our conclusions are based on limited testing with the particular

class of matrices arising in these applications, and may not be applicable to any wider

domain. These are all iterative methods!

In our experience, full orthogonalization Lanczos is the most robust method for

problems of order up to a few hundred. The requirement of saving all the Lanczos

vectors for orthogonalization is not that burdensome since the problems are small and

we use them anyway in assembling the eigenvectors. The weak point of this method is

that for larger problems the orthogonalization work becomes prohibitively expensive.

The inverse operator full orthogonalization Lanczos method replaces the matrix

vector multiply in the basic Lanczos iteration with a linear solve using Symmlq. It

is generally less accurate and robust than direct Lanczos with full orthogonalization

6

and is often slower as well because the total number of matrix vector multiplies (which

are hidden within Symmlq) may be significantly higher. In addition it introduces the

tricky problem of how to tune the inner/outer loop combination. Thus the only reason

to recommend this method is that it requires much less memory since it converges in

many fewer Lanczos iterations.

Our implementation of selective orthogonalization is based on the original paper

by Parlett and Scott [15], with the main difference being that the Ritz spectrum is

monitored directly to assess the need for orthogonalization. A bisection algorithm on

the Sturm sequence and various heuristics governing which Ritz pairs to monitor are

used to keep this overhead small. Most of the orthogonalization work occurs at the

right end of the spectrum, and is, it turns out, unnecessary. Orthogonalizing at the left

end only generally produces more accurate eigenpairs in substantially less time. This

latter algorithm seems, for our purposes, essentially as accurate as full orthogonalization

and is our method of choice for small and medium sized systems (up to about 10,000

vertices), provided sufficient memory is available. Since all the Lanczos vectors must be

saved for the contingency that the iterate must be orthogonalized against a convergent

Ritz vector, this method can cause the program to run out of memory on very large

systems. This difficulty can be avoided by employing a restarting scheme or by giving

up on maintaining orthogonality in the Lanczos basis. These alternatives are, however,

slower and, in the latter case, impose an added risk of numerical breakdown. We decided

to optimize over the likely range of application and assumed that for problems in which

memory would be a problem for Lanczos, a partitioning method designed for larger

problems would be employed.

For partitioning larger graphs by the spectral method, we recommend the multi-

level RQI/Symmlq eigensolver. This is based on the method developed by Barnard

and Simon [1], with the main difference being that we have used an edge contraction

coarsening scheme based on the physical analogy described in [10]. This contraction

scheme preserves the low modes of the operator sufficiently well that we need only per-

form RQI refinement periodically as we work back through the grid hierarchy. We have

also modified the Symmlq iteration to terminate when the norm of the iterate reaches a

preset limit since RQI is essentially performing inverse iteration. The resulting method

is several times faster than Lanczos with selective orthogonalization for solving large

problems to the same accuracy, and also requires far less memory. A drawback is that

the method seems more prone to misconvergence than Lanczos. Experience indicates,

however, that for large graphs, eigenvectors other than the Fiedler vector usually give

partitions of similar quality to those generated with the Fiedler vector (occasionally

better!). So slight misconvergence is not that serious a problem, especially if you are

applying a local cleanup scheme. Another drawback of the RQI/Symmlq algorithm is

7

that its run time is essentially proportional to the number of eigenvectors solved for.

This erodes its speed advantage when used as the eigensolver for one of the multidi-

mensional spectral partitioning schemes.

A critical issue in the proper use of iterative eigensolvers is the choice of the tol-

erance on the eigen residual. This is treated in some detail later during the discussion

of the various code parameters in $4, but it is appropriate to mention here that all of

the eigensolvers have direct residual checks to determine whether the requested eigen

tolerance has been achieved. In addition, the selective orthogonalization schemes have

safety checks to monitor the effectiveness of the orthogonalization, and the multilevel

RQI/Symmlq code incorporates a heuristic to detect misconvergence. From time to

time and depending upon how the error and warning condition flags are set, one or

more of these conditions will be noted by Chaco. In most cases these are not show

stoppers: the desired safety standards have not been met, but the computation will

proceed and generate reasonable part itions. If certain error or warning conditions oc-

cur chronically, you may need to choose different tuning parameters. (Or, of course

there may be a problem with the code.)

In general, spectral methods are quite good at finding promising regions of the

graph in which to cut. However, they often do poorly in the fine details. Consequently,

we have found that it is advantageous to apply a local cleanup procedure to the spectral

out put. The procedure we use is a generalized version of an algorithm due to Kernighan–

Lin, and is described below in $2.4 and in more detail in [9]. The actual improvement

due to this cleanup phase is problem dependent, but is typically 10-30%. The cost of

this cleanup phase is generally a small fraction of the total partitioning cost, typically

less than 10% on large graphs.

2.3. The inertial method. The inertial bisection method is a relatively simple

and fast partitioning strategy that uses geometric information. In addition to a graph,

the user supplies geometric coordinates for each vertex in one, two or three dimensions.

The code considers the vertices as point masses with mass equal to the vertex weight.

The principle axis of this collection of point masses, which is likely to be a direction in

which the graph is elongated, is found. The vertices are then divided into sets of equal

mass by plane(s) orthogonal to the principle axis. Descriptions of this method can be

found in [13, 17].

Chaco allows inertial partitioning into two, four or eight sets at once. This is

accomplished by using one, three or seven planes, each of which is orthogonal to the

principle axis. Partitions generated by inertial quadrisection or octasection will appear

to be banded, with parallel planes dividing the sets. This “striping” will typically lead

to a fairly large surface-to-volume ratio, indicating a large volume of communication.

8

However, each set only has a small number of neighboring sets which helps reduce

the number of messages startups each processor must make. If the cost of initiating

messages is important, then partitions using inertial quadrisection or octasection may

lead to faster application execution times than those generated with inertial bisection.

Furthermore, the multidimensional inertial methods are somewhat faster than inertial

bisection since fewer inertial axes must be computed, and the overhead of recursion

is avoided. Currently, the four or eight sets are assigned to processors in such a way

that neighboring sets go to adjacent hyperculx processors. This gray coding may not

be optimal for other architectures and can be switched off by modifying the routine

“rec_me&an_l” in the file “/code/a ssign/rec_median. c”.

In our experience, inertial methods are quite fast but give partitions of fairly low

quality in comparison with spectral methods. In particular, the local details of a par-

tition are often quite poor. However, when coupled with the Kernighan-Lin local op-

timization method described below, the results significantly improve. Our experiments

indicate that inertial plus KL usually produces better partitions than pure spectral

partitioning, whereas spectral coupled with KL does better than inertial paired with

KL. For very large problems in which coordinates are available and the emphasis is

more on low partitioning time rather than high partitioning quality, we are inclined to

recommend the inertial plus KL method.

2.4. Kernighan–Lin. One of the most popular methods for partitioning graphs

dates back to work done in the early 70’s by Kernighan and Lin [12]. Various extensions

and improvements of the original idea have been proposed through the years, including

the important linear time implementation of Fiduccia and Mattheyses [3], but at it’s

heart, Kernighan-Lin (KL) is a greedy, local optimization strategy. Vertices are moved

between sets in an effort to reduce the cost of the partition. Although the original

algorithm was for graph bisection, Suaris and Kedem [18] showed how it could be

extended to quadrisection. We have generalized this idea so that our code works on an

arbitrary number of sets at once. Unfortunately, the runtime of the algorithm and its

memory requirements increase steeply with the number of sets, so in practice we use

only bisection, quadrisection and octasection to match the other methods in Chaco.

A description of our generalization of KL is contained in [10]. In our experience,

KL does not produce very good answers unless it is given a good starting guess. For

this reason, we find its value to be greatest when used in conjunction with one of the

global partitioners. To test KL essentially on its own, you can invoke the simple random

method to provide a starting partition.

2.5. A multilevel method. Our method of’ choice for large problems in which

high quality partitions are sought is the multilevel algorithm described in [9]. This

9

method is similar in approach to the method described in [2, 11]. It works by creating a

sequence of increasingly smaller graphs approximating the original graph, partitioning

the smallest graph, and projecting this partition back through the intermediate lev-

els. Kernighan–Lin is invoked every few levels to refine the partition, and the current

implementation of the code uses a spectral method to partition the smallest graph.

The algorithm for constructing smaller approximations to the graph relies upon

finding a maximal matching in the graph, and then contracting edges in the matching.

Edge contraction is intuitively attractive because it largely preserves the graph topol-

ogy. When edges are contracted, a single vertex is created out of the two endpoints

with weight given by the sum of the weights of the endpoints. In addition, any edges

which become coincident have their weights summed and become a single edge. These

operations have the effect of preserving some of the basic properties of a partition as it

is moved between graphs in the hierarchy. The size of the smallest graph is an input

option, and the frequency with which to invoke KL is a user modifiable parameter as

described in $4.

In our experience, this method gives very high quality answers in moderate time.

It is not as quick as the inertial plus KL method, but it generally produces better

partitions. In most cases it produces partitions which are better than those generated

by spectral plus KL, but runs significantly faster than any of the spectral methods.

More on the workings and performance of this multilevel method can be found in [9].

3. Input and output formats. Chaco input consists of one of more files, and

the response to several interactive queries. Files are used to describe the graph, and if

necessary to give geometric coordinates. The interactive input specifies the partitioning

method.

3.1. Format of graph input file. The essential Chaco input is a graph, which is

read from a file. Any lines in this file that begin with the character “Yo” are considered

comments and ignored. The file should contain n + 1 non-comment lines, where n is the

number of vertices in the graph. At its simplest, the first non-comment line contains

two integers. The first integer is the number of vertices in the graph, and the second is

the number of edges. Note that the number of edges is half of the sum of the number

of neighbors of each vertex. Vertices in the graph are assumed to be numbered from 1

to n. The remaining n non-comment lines contain neighbor lists for each vertex from 1

to n in order. These lists are just sets of integers separated by spaces that contain all

the neighbors of the given vertex. The list of neighbors can be in any order. Examples

of graph files can be found in subdirectory “executable”; they have names beginning

with “graph”.

10

Chaco also allows for the input of graphs with weights on vertices and/or edges.

This is indicated by including a third parameter on the first non-comment line of the

input file. This number has three digits. If the 1‘s digit is nonzero, then edge weights

will be read. If the 10’s digit is nonzero th-en vertex weights will be read. And if the

100’s digit is nonzero then vertex numbers will be read, as described below.

Edge and vertex weights should have small integer values (to be conservative, the

sum of all edge or vertex weights should be representable in a standard integer). If any

vertex has a weight, then weights must be given for all of them, and similarly for edge

weights. If the edge weight option is selected, then edge weights are included in the

graph file immediately after the corresponding entry in the neighbor list. That is, a

neighbor list will look like

neighborl edge-we ightl neighbor2 edge-weight2 . . .

If the vertex weight option is selected, then each neighbor list must begin with the

weight of the vertex the list belongs to.

If for some reason you wish to list the graph vertices in other than the natural order

from 1 to n, you can do so by including vertex numbers. The number of a vertex will

be the first value on a line comprising a (weighted) neighbor list. The vertex numbers

assigned this way must contain the values from 1 to n and only those values.

The most general form of the graph input file is illustrated below. The different

optional parameters are indicated by the different styles of parenthesis.

% This is the format of the graph input file

Number-of-vertices Number-of-edges {1}[1] (1)

{Vertex-number} [Vertex-weight] neighbor , (edge-weight,) ...

There is one exception to this general graph format. If you are using the inertial or

one of the simple methods without Kernighan-Lin, then it is not essential to include a

graph. The partitioning is based entirely on geometric data. A graph file is still needed

to read the number of vertices, but the remaining lines describing the edge lists can

be skipped. Note that the code will be unable to evaluate the quality of a partition

without the graph. Normally several measures of the partition quality are computed

and printed out, but this is skipped if the graph is not present.

3.2. Format of coordinate information input file. If you are using the in-

ertial method partitioning option, you will need to provide geometric coordinates for

all vertices.

subdirectory

have n lines,

These are placed in a different file, examples of which can be found in

“executable” with names beginning with “coords”. These geometry files

and line i contains the coordinates of vertex i. Each line must have 1, 2

11

or 3 real values, corresponding to a one-, two- or three-dimensional geometry. Chaco

determines the dimensionality by looking at the number of values on the first line.

3.3. Operating the code. To operate the code you must answer a sequence of

questions. With a basic understanding of the code structure and the methods described

in 52, these questions should be mostly self-explanatory. A brief outline and a few notes

are, however, in order.

First you will be asked to provide the names of the graph input file. If the

OUTPUTASSIGN or ECHO parameters from $4.1 are set appropriately , you will also be

asked for the names of output files. You will then select a partitioning method from

those described in ~2. Depending upon your selection, you may need to answer a few

additional questions. You must then specify the dimension of the partition, which is

simply the logz of the number of partition sets you desire. Finally YOU will choose

whether to apply the partitioning method in bisection, quadrisection or octasection

form. Note that if you choose quadrisection or octasection and an integral number of

steps will not produce the specified number of steps, Chaco will automatically change

to either quadrisection or

required number of steps.

Because some of the

are not allowed to invoke

bisection on the last stage of recursion so as to generate the

coarsening mechanisms are common to both methods, you

the RQI/Symmlq eigensolver and the multilevel partitioning

technique at the same time. With either method you will be asked how many vertices

you wish to coarsen down to. The coarsening technique removes about half the vertices

at each level, and it will continue until the number of vertices is no larger than the limit

you specify. We generally use values in the range 50 to 500 for this parameter. Note

that because quadrisection and octasection make use of higher frequency

they may need a slightly larger coarsest graph to resolve things as well

does.

information,

as bisection

3.4. Output formats. Chaco has various output options which are controlled

by parameters described later in 54. As these parameters are increased, more detailed

information is printed. If they are all set to zero, no output is produced.

The parameter OUTPUT-METRICS controls the calculation and printing of several

partition metrics. Cuts, hops, number of boundary vertices and number of set neighbors

can all be displayed in detailed or summary form. Assorted timing information is

displayed under the control of OUTPUT-TIME. This information, along with the input

parameters and the settings for many of the user accessible internal parameters can be

written to either the screen or both the screen and a designated file under the control

of the ECHO parameter.

In addition, Chaco can write an output file containing the partition assignments.

12

If the graph has n vertices this file will have n lines. Line z contains a single number,

indicating the set to which vertex i is assigned. (The set numbers begin at zero.) The

generation of this file is controlled by the parameter OUTPUTASSIGN.

4. User-modifiable parameters. As a convenience, we have collected most of

the internal parameters which control the operation of Chaco into the file “User_params. c”

in the directory “/code”. These parameters can be modified to tune the code to your

application. (It might be prudent to save a copy of the original file so that you can

return to the “factory settings” easily.) There are two types of parameters, those that

change the execution of the program, and those that merely generate additional output

for debugging. The default values for the debugging parameters generate a modest

amount of output, which can be increased or decreased as desired. The defaults for the

execution parameters were selected to provide a reasonable balance between run time

and quality of the solution, but we make no claim to having selected them optimally

for your problem. The parameters and their functions are described below.

4.1. Input and output control parameters.

CHECK~NPUT If nonzero, the graph and input parameters are checked for errors. Al-

though checking the graph can take a few seconds for large problems, this

feature should probably be left active for robustness. (The time for this check-

ing will be printed out if you set the parameter OUTPUT.TIME to be greater than

zero.)

OUTPUT_TIME This value determines how much information gets printed about the run-

time of Chaco. A value of O means that nothing is printed, and values of 1

and 2 allow for increasingly detailed timing output.

OUTPUTJIETRICS This parameter controls how much information about the quality of

the computed partition will be computed and printed on the screen. A zero

value means that no evaluation will be performed or printed. Values up to a

maximum of 3 display increasing amounts of information. The meaning of the

output metrics is described in $3.4.

OUTPUTASSIGN If this value is nonzero, then you will be prompted for the name of a

file in which the vertex assignment will be printed. A description of the format

of this output file can be found in 53.4.

ECHO This parameter controls the printing of the values of the input parameters, as

well as whether to copy results of the run to a file. If this value is 1 or -1, the

input selections will be echoed to the screen. If it is 2 or -2, then the relevant

parameters from “User_params.c” will also be echoed. If the value is less than

zero, then you will be asked for the name of a file in which to record the results

of a run. This file will contain the same input selections and parameters that

13

are copied to the screen, along with partition metrics and run time breakdown

controlled by OUTPUT_METRICS and OUTPUT.TIME. Saving these results in a file

can be useful if you are doing a sequence of runs for later analysis.

4.2. Eigenvector calculation parameters.

EIGEN_TOLERANCE This one probably deserves its own short paper. All we can do here

is make a few general remarks and urge caution. If you are using a pure spec-

tral method or the multilevel partitioning method then you need to calculate

eigenvectors. This parameter controls how accurately you compute them. It

is a tolerance on the eigen residual \IAu — Au II where (A, u) is the eigenpair of

A in question. An extremely accurate calculation is expensive, and probably

unnecessary, particularly if you are using Kernighan–Lin to refine the spectral

partition. However, in general the quality of the partition gradually degrades as

the accuracy is reduced below some critical point. This can be a result of inac-

curacy in the eigenvector, or it may be because the eigensolver has converged to

an entirely wrong eigenpair. This latter phenomenon of misconvergence occurs

quite frequently if you use too large an eigen tolerance because there are many

eigenvalues in any interval of that width. So to be really correct one should

probably relate the eigen tolerance to the expected gap between eigenvalues in

the relevant portion of the spectrum using, for example, the graph size. But,

as discussed earlier in $j2, slight misconvergence is not a grave problem since

misconverged eigenvectors often give good partitions. The multidimensional

spectral methods do in general require somewhat higher accuracy than spec-

tral bisection to perform at their best. Apart from this, however, the question

of the appropriate eigen tolerance and risk of misconvergence is more a ques-

tion of being able to reproduce partitions reliably and of having a fair basis

on which to compare eigensolvers. Chaco’s design philosophy on this issue

is that you should get the accuracy you request, and, failing that, you should

be warned and told the accuracy you did get. We feel the largest value of

EIGEN_TOLERANCE that is advisable for general use is about 10 ‘3, and that is

what we ship the code with. If you are really pressing for speed and are us-

ing a local cleanup phase, a value of 10–2 might be reasonable. At the other

extreme, a value of 10–6 should prove acceptably tight in most situations — if

you’re working on a graph large enough to require higher accuracy, you should

probably switch to the multilevel partitioning method, which generally gives

better answers in less time for large problems.

LANCZOSSO.INTERVAL If you are using the selective orthogonalization variant of Lanc-

ZOS, then the convergence of the process is checked indirectly through the Ritz

14

pairs every few steps. The number of Lanczos iterations between checks is set

by the value of this parameter. Choosing a large value will generally make the

computation run marginally faster, but increases the risk of degraded accuracy

or misconvergence. A smaller value is more robust since numerical breakdown

due to the convergence of Ritz pairs will be detected sooner. If you encounter

convergence problems while using selective orthogonalization, try reducing this

parameter.

BISECTIONSAFETY When using selective orthogonalization, some of the extremal eigen-

values of the tridiagonal matrix must be found periodically (see LANCZOSSO~NTERVAL

If the number of eigenvalues to be found is small, a bisection algorithm is used

to find roots of the Sturm sequence which correspond to the eigenvalues. This

parameter amplifies or shrinks the convergence tolerance on the bisection algo-

rithm. A higher value specifies a tighter (smaller) tolerance and results in more

accurate computation of these eigenvalues, but a slightly longer run time.

LANCZOSSO.TIME If you desire a detailed breakdown of the time spent in different stages

of the Lanczos eigensolver, then this parameter should be set to 1. Lanczos

will run very slightly faster if you leave this value at O, since many fewer calls

to the timing function will be made. This may be noticeable if many calls are

made to Lanczos.

WARNINGJZVECS If this parameter has a value greater than O, the occurrence of sev-

eral possible numerical problems in the eigensolvers is monitored. When using

RQI/Symmlq, a value above O means you will be notified if the eigen residual is

not converging monotonically, an indication of possible misconvergence. When

using Lanczos, a value above O means you will be notified if the requested eigen

tolerance was not achieved, if there has been a minor or severe loss of orthog-

onality in the computation, or if the maximum number of Lanczos iterations

was reached. A value above 1 means that if any of the preceding warning con-

ditions occur, you will be notified of the eigenvalues and predicted and actual

eigen residual tolerances computed. A value above 2 means you will be notified

when the computation of the eigenvector of the tridiagonal matrix is not very

accurate.

WARNING13RTHTOL This parameter determines the level of loss of orthogonality in Lanc-

zos which is considered minor but worth reporting. If the ratio between the

estimate of the eigen residual and the computed eigen residual is above this

value, the minor loss of orthogonality condition is triggered. Refer to the dis-

cussion on WARNING-EVECS.

WARNINGllISTOL Same as WARNINGJIRTHTOL, but this value indicates a more serious

loss of orthogonality. In some cases this may indicate misconvergence, hence

15

the name.

WARNINGSRESTOL If the residual encountered at the end of the recurrence used to

compute the eigenvector of the tridiagonal matrix in Lanczos is above this

value, a corresponding warning condition is flagged. Refer to the discussion on

WARNINGlOJECS.

4.3. Other parameters for spectral methods.

MAKE.CONNECTED Spectral methods can break down if the graph is disconnected. Even

if the original graph is connected, disconnected graphs can be generated in

the recursion. To avoid any associated problems, we use a breadth-first-search

algorithm to find connected components and add a minimal number of edges

to make the graph connected. If MAKE.CONNECTEDis nonzero, then this con-

nectivity y check will be invoked whenever a spectral option is selected. You

should only change this parameter if you plan to use a spectral method and

you are certain that you will only operate on connected graphs (i.e. if you aren’t

recurring).

PERTURB Spectral methods can encounter problems if the graph has symmetry since its

eigenvalues can then have multiplicity greater than 1. For spectral bisection,

all you can hope for is selecting some vector (which depends on the starting

Lanczos vector) in the subspace of second lowest eigenvectors. However, since

they work within a subspace of 2 and 3 vectors respectively, spectral quadrisec-

tion and octasection can handle two or three degrees of multiplicity respectively.

Unfortunately, Lanczos can’t easily identify this multiplicity. We can, however,

avoid the issue by randomly perturbing the matrix. The parameter PERTURB

controls whether or not this perturbation is invoked. Using this option helps

avoid problems in some degenerate cases like the square grid graph, at the cost

of a very slight increase run time. We recommend that you leave this feature

actived unless you are sure you don’t need it.

NPERTURB If the PERTURB option is being used, this parameter indicates how many

random edges are added to the graph to break the symmetry.

PERTURBMAX If the PERTURB option is being used, this parameter is the maximum

. value of an edge weight for one of the randomly added edges. A small value

will perturb the eigenvectors a small amount, but if the perturbation is too

small, then Lanczos might not be able to separate the eigenvectors. This value

should probably be a small multiple of EIGEN_TOLERANCE.

COARSE-NLEVELJtQI The parameter applies if you are using the spectral method with

the RQI/ Symmlq eigensolver option. As you work back through the interme-

diate graphs, the approximation to the eigenvector is refined with Rayleigh

16

Quotient Iteration every few levels. This parameter indicates how many levels

occur between these refinements. A small value for this parameter is more

robust, but a large value will reduce execution time.

MAPPING.TYPE We have implemented several methods for generating an assignment

from two or three eigenvectors. This flag allows the user to switch between

them. In our experience, the clear winner was a bipartite matching algorithm

described in [7]. This option is invoked by a value of 3, and we encourage users

to leave this parameter alone.

0PT3DJTRIES If you are using spectral, octasection, then when mapping back to a

discrete solution you need to solve a constrained, global optimization problem

as described in [7]. In our experience, this problem usually has a small number

of local minimizers, so we solve it using local minimization techniques from

random starting points. This parameter controls how many local minimizations

get done, and should only be modified by sophisticated users.

4.4. Kernighan–Lin parameters.

KL_METRIC When dividing into more than 2 sets at once, our implementation of Kernighan–

Lin can try to minimize any inter-set metric. Two are currently built into the

code, and are controlled by this parameter. If the value of KL_METRIC is one,

then all edges crossing between two sets are treated the same. If the value

is two, then edges are weighted in a hypercube hop metric. That is, an edge

between sets O and 1 costs one third of an edge between O and 7. Note that

the spectral quadrisection and octasection algorithms automatically use a hy -

percube hop metric. If you wish to use a different metric, you can tinker with

the appropriate code in “/code/main/balance. c”.

KLXANDOM This flag turns on and off the randomness in the Kernighan–Lin routines.

We recommend that you leave this parameter alone since it increases the quality

and robustness of Kernighan-Lin for a tiny increase in run time.

KL~AD_MOVES our version of Kernighan-Lin can exit a pass early if it doesn’t seem to

be making any progress. This parameter controls how quickly KL will hit this

cutoff. A large value will make KL more effective, but will also increase the

run time.

KL_NTRIESBAD This parameter controls the speed at which the Kernighan–Lin code

is exited. The KL routine will exit after KL_NTRIES_BAD passes in which no .

improvement is detected. Because of randomness, a pass with no improvement

can be followed by one that finds a better partitioning. However, if you set

KL-RANDOMto zero, then you should set KLJJTRIESBAD to 1. A large value

for this parameter will produce better results, but will cause the code to run

17

longer.

KL.ONLYBNDY At one point it seemed like a good idea to only require Kernighan–Lin

to consider moving vertices that were on the boundary between sets. Our

implementation of this idea actually runs slower and gives worse answers than

true KL, so we emphatically discourage changing this parameter.

KL-UNDO-LIST This parameter turns on an optimization that dramatically reduces the

run time of Kernighan–Lin for large graphs. Instead of bucket sorting the

entire set of possible vertex moves before each pass, this option preserves the

moves that haven’t been changed; typically the vast majority. This leads to a

dramatic increase in speed, with no perceptible change in quality. We strongly

encourage you to leave this parameter alone.

4.5. Parameters for multilevel methods.

COARSENllATIOllIN This value is employed if you are using either the RQI/Symmlq

eigensolver, or the multilevel partitioning algorithm. It should have a value

between .5 and 1.0, representing the minimal acceptable reduction in number

of vertices associated with a coarsening step. If a step fails to achieve this

reduction, the coarsening algorithm exits prematurely, and the resulting calcu-

lations will be performed on a larger graph than anticipated. The coarsening

algorithm cannot reduce the number of vertices by more than half, so this value

should always be greater than .5.

COARSE-NLEVELXL If you are using the multilevel partitioning algorithm, then Kernighan–

Lin gets invoked periodically on successively finer graphs. This parameter in-

dicates how many levels occur bet ween these invocations. A small value for

COARSEJJLEVELXL will lead to better partitions, while a large value will reduce

execution time.

4.6. Parameters that control debugging output.

DEBUGIVECS This parameter controls the quantity of debug output concerning calcu-

lation of eigenvectors. When set to zero, no output is generated except when

an unrecoverable error condition is encountered, in which case a short message

is printed before the program aborts. A value of 1 will produce a moderate

amount amount of information, 2 a bit more, and so on up to a maximum value

of 5.

DEBUGXL This flag controls the output in the Kernighan–Lin routines. No debugging

output is generated if the value is O, while the improvement due to KL at each

step is shown if the value is 1. Values of 2 and 3 generate mass quantities of

output, and should only be invoked by an expert.

18

DEBUG_INERTIAL If you are using the inertial method, this flag will turn on output

concerning the computation of the principle axis of the mesh.

DEBUG.CONNECTED If you are enforcing connectivity and using a spectral method, a

value of 1 for this flag turns on a small amount of output in the routines that

identify connected components. This will tell you if subgraphs have become

disconnected in the course of a decomposition.

DEBUGIERTURB A value of 1 for this flag turns on a small amount of output in the

routines for randomly perturbing the matrix.

DEBUGASSIGN When using a spectral method, the mapping from the eigenvectors to

an assignment can be complicated, particularly for spectral quadrisection and

octasection. This parameter turns on output in the routines that compute this

mapping.

DEBUGJ3PTIMIZE With spectral quadrisection or spectral octasection, part of the map-

ping to an assignment involves a nonlinear optimization. This flag controls

debugging output in the optimization subroutines.

DEBUGBPMATCH When using spectral quadrisection or octasection, the trickiest part of

the mapping from eigenvectors to a partition involves solving a maximal cost

assignment problem in a bipartite graph. This flag turns on the output in the

corresponding sections of the code. A value of 1 gives a moderate amount of

cryptic output, while a value of 2 does more error checking and can generate a

lot of output.

DEBUG.COARSEN If you invoke a multilevel method, the code will construct a sequence

of increasingly coarse approximations to the original graph. This parameter

controls the output for the routines performing this process.

DEBUG-MEMORYThis variable turns on some consistency checks in the allocation and

freeing of memory. Unless you encounter problems you think might be memory

related, this value should be left at O.

DEBUG~NPUT If this is set to 1, a message is printed confirming that the input files have

been read.

4.7. Miscellaneous parameters.

RANDOMSEED This is the seed for the random number generators “rando’” and “rand48()“.

NSQRTS If you are using either of the multilevel options, then coarse versions of the graph

get created with vertex weights. We also need the square roots of these vertex

weights. Since these are typically integers, instead of repeatedly calculating

square roots of integers, Chaco computes them once and stores them in the

array SQRTS. The value of NSQRTS is the length of this array, and for best

performance should be somewhat larger than the number of vertices in the

19

original graph, divided by the number of vertices in the coarsest graph. A

large value may use a small amount of unnecessary space, while a small value

may lead to an unnecessary excess of computation.

5. Helpful hints.

5.1. Implementation details. Chaco is written entirely in ANSI standard C

and is about 15,000 lines long. C performs floating point computations in double

precision (8 byte) format, and Chaco stores the results in double precision format

(except in a few cases where precision is clearly not an issue). In order to maximize

the size of graphs which can be partitioned, memory is allocated dynamically when

needed and released as soon as possible without seriously degrading efficiency. Chaco

can be run in a stand–alone mode or called as a subroutine from either C programs or

(with the addition of a simple wrapper) Fortran programs. The interface routine used

to invoke Chaco as a subroutine is called “interface.c” and resides in the subdirectory

“/code/main”. However, invocation as a subroutine requires a detailed understanding

of some data structures and parameters, and should not be attempted without first

gaining familiarity with the code.

5.2. Installation instructions. If you are using an ANSI standard compiler, then

Chaco should compile correctly, and it should do fine on many non-standard compil-

ers as well. Chaco uses several machine and compiler dependent parameters that are

defined within the ANSI standard. If these values aren’t defined, then Chaco tries to

compute them, but this is difficult to do in a machine independent way. One thing

the user can do to improve robustness with a non-standard compiler is to define ap-

propriate values for three parameters in the file ‘Lmachine.params.c” in “/code/util”.

These parameters are DBLJZPSILDN, the machine precision, DBLJIAX the largest double

precision value, and RAND_MAX,the largest value returned by the system random number

generator “rando’”.

5.3. Some things to watch out for. Most of these points have been made ear-

lier, but they bear repeating, if only for the sake of those readers who would rather not

read the whole guide.

● Use of the Lanczos-based eigensolvers on large problems may cause the pro-

gram to run out of memory on your system. This is a result of a design deci-

sion to favor speed and robustness over memory conservation in this situation.

The assumption is that for very large graphs you will want to use either the

RQI/Symmlq eigensolver , or the inertial or multilevel partitioning methods.

See 52.2, 52.3 and $2.5.

20

● It is your responsibility to either choose an appropriate eigen tolerance or to

live quietly with our choice on your behalf. Chaco tries hard to deliver the

accuracy you request, but can’t help much if your request is unwise. If you

choose a very tight (small) tolerance, things will slow down considerably and

you may run into memory trouble. If you choose a very loose (big) tolerance,

your results will generally degrade and become erratic due to poor accuracy or

misconvergence. See $2.2 and 54.2.

● The eigensolvers and the I<ernighan-Lin heuristic make use of randomization

techniques, so results generated using these methods are only strictly repro-

ducible if the program is used in a way that generates the same sequence of ran-

dom numbers. This is sometimes a very noticeable effect in the RQI/Symmlq

solver, where a different random seed can result in large swings in execution

time.

● The multidimensional inertial methods return sets with a gray coded mapping.

This is appropriate for hypercubes, but probably not for other architectures.

Although they are reasonably efiective at reducing the volume of messages given

their short run time, the multidimensional inertial techniques are designed to

compromise on the goal of low message volume in order to produce partitions

with fewer message start-ups than the other methods. See 52.3.

● The routine “func3d. c” takes a long time to compile with optimization.

not a significant part of the execution time, so if, for some reason, you

recompiling the code often, you may wish to compile this routine without

timization.

It’s

are

op-

. If you are using a compiler that is not ANSI standard, Chaco is probably

computing a few numerical constants for you. Although we don’t expect any

problems to arise, this computation is not exact. If you are using a non-ANSI

standard compiler, it may be prudent to define these constants. See tj5.2 for

further details.

5.4. Obtaining the code. Chaco is publicly available for research purposes and

may be licensed for commercial application. The code is distributed along with technical

documentation and sample input files via the internet. If you are interested in obtaining

a copy, you should contact us at the addresses given on the cover page of this report.

Upon receipt, the “Chaco” directory will have three subdirectories, “code”, “ex-

ecutable)’ and “documentation”. The ‘(documentation” directory contains postscript

files of this user’s guide, and three of our technical reports which are referenced in this

guide. The “code” subdirectory contains all of the source code and the makefile. The

makefile is set up to place the executable version of Chaco in the “executable” subdi-

21

rectory. The “executable” directory

input files.

[1] S. T. BARNARD AND H. D. SIMON,

also contains several sample graph and coordinate

REFERENCES

A fast multilevel implementation of recursive spectral bisec-

tion for partitioning unstructured problems, in Proc. 6th SIAM Conf. Parallel Processing for

Scientific Computing, SIAM, 1993, pp. 711-718.
[2] T. BUI, C. HEIGHAM, C. JONES, AND T. LEIGHTON, Improving the performance of the

Kernighan-Lin and simulated annealing graph bisection algorithms, in Proc. 26th IEEE De-

sign Automation Conference, IEEE, 1989, pp. 775–778.
[3] C. M. FIDUCCIA AND R. M. MATTHEYSES, A linear time heuristic for improving network

partitions, in Proc. 19th IEEE Design Automation Conference, IEEE, 1982, pp. 175-181.

[4] M. GAREY, D. JOHNSON, AND L. STOCKMEYER, Some simplified NP-complete graph problems,

[5] G.

[6] S.

[7] B.

Theoretical Computer Science, 1 (1976), pp. 237-267.
GOLUB AND C. VAN LOAN, Matrix Computations, Second Edition, Johns Hopkins University

Press, Baltimore, MD, 1989.

HAMMOND, Mapping unstructured grid computations to massively parallel computers, PhD

thesis, Rensselaer Polytechnic Institute, Dept. of Computer Science, Troy, NY, 1992.

HENDRICKSON AND R. LELAND, An improved spectral graph partitioning algorithm for map-

ping parallel computations, Tech. Rep. SAND 92-1460, Sandia National Laboratories, Albu-

querque, NM, September 1992.

[8] — An improved spectml load balancing method, in Proc. 6th SIAM Conf, Parallel Processing
fo; Scientific Computing, SIAM, 1993, pp. 953-961.

[9] — A multi-level algorithm for partitioning graphs, Tech. Rep. SAND 93-1301, Sandia National

L~boratories, Albuquerque, NM, June 1993.

[10] —, Multidimensional spectml load balancing, Tech. Rep. SAND 93-0074, Sandia National Lab-

[11] c.

[12] B.

[13] B.

[14] c.

[15] B.

[16] A

[17] H

[18] P.

oratories, Albuquerque, NM, January 1993.

A. JONES, Vertez and Edge Partitions of Graphs, PhD thesis, Penn State, Dept. Computer

Science, State College, PA, 1992.

KERNIGHAN AND S. LIN, An eficient heuristic procedure for partitioning graphs, Bell System

Technical Journal, 29 (1970), pp. 291-307.

NOUR-OMID, A. RAEFSKY, AND G. LYZENGA, Solving finite t?/t?lnf31L~ equations on concurrent

computers, in Parallel computations and their impact on mechanics, A. K. Noor, cd,, American

Sot. Mech. Eng., New York, 1986, pp. 209-227.

C. PAIGE AND M. A. SAUNDERS, Solution of sparse indejiniie systems of linear equations,

SIAM J. Numer. Anal., 12 (1975), pp. 617-629.
PARLETT AND D. SCOTT, The Lanczos algorithm with selective orthogonali.zation, Math.

Comp., 33 (1979), pp. 217-238.
POTHEN, H. SIMON, AND K. LIOU, Partitioning sparse matrices with eigenvectors of graphs,

SIAM J. Matrix Anal., 11 (1990), pp. 430-452.

D. SIMON, Partitioning of unstructured problems for parallel processing, in Proc. Conference

on Parallel Methods on Large Scale Structural Analysis and Physics Applications, Pergammon

Press, 1991.

SUARIS AND G. KEDEM, An algorithmfor quadrisectionand its application to standardcell
placement, IEEE Trans. Circuits and Systems, 35 (1988), pp. 294-303.

22

EXTERNAL DISTRIBUTION: NYU
251 Mercer Street
New York, NY 10012

Supercomputing Research Cente
17100 Science Dr.
Bowie. MD 20715-4300Alpesh Amin

4401 Dayton-Xenia Rd.
Dayton, OH 45432 J. Browne

University of Texas
Dept. of Computer Science
Taylor Hall 5.126
Austin, TX 78712

Anil Deane
MC 934
NASA Goddard
Greenbelt. MD 20771

Steve Ashby
Lawrence Liverrnore Nat. Lab.
M/S L-316
PO Box 808
Livermore, CA 94551-0808

Professor P. Diaconis
Department of Mathematics
Harvard University
Cambridge, MA 02138

John Brunet
Thinking Machines Corporation
245 First St.
Cambridge, MA 02142

Brian Aubert
Los AhurIos National Lab
PO Box 1666, MS C931
Los Akarnos, NM 87545

Ralf Diekmann
University of Paderborn
Dept. of Comp. Science
33095 Paderbom, Germany

Thang Bui
Computer Science Department
Penn State Harrisburg
Midrfletown, PA 17057

D. M. Austin
Army High Per. Comp. Res. Cntr;
University of Minnesota
1100 S. Second St.
Minneapolis, MN 55415

Peter Dobreff
GE/KAPL
1 f%ver Rd.
Schenectady, NY 12301

G. F. Carey
ASE/EM Dept., WRW 305
University of Texas
Austin, TX 78712Scott Baden

University of California, San Diego
Dept. of Computer Science
9s00 Gilman Drive
Engineering 0114
La Jolla, CA 92091-0014

Sean Dolan
nCUBE
919 E. Hillsdale Blvd.
Foster City, CA 944o4

J. M. Cavaffini
US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

J. J. Drmgarra
Computer Science Dept.
104 Ayres Hafl
University of Tennessee
Knoxvitle. TN 37996-1301

Steve Barnard
NAS Systems Division
Applied Research Branch
NASA Ames Research Center
Mail Stop T045-1
Moffett Field, CA 94o35

T. Chan
UCLA
405 Hilgard Ave.
Los Angeles, CA 90024-7009

Pak K. Chan
225 Applied Sciences
Computer Engineering
University of Cafifomia
Santa Cruz, CA 95064

I. S. DufT
CSS Division
Harwell Laboratory

Oxfordshire, OX11 ORA
United Kingdom

Edward Barragy
Dept. ASE/EM
University of Texas
Austin. TX 78712

Ted Charrette
MIT Bldg. E3 554
42 Carleton St.

Cambridge, MA 02142

Alan Edelman
University of California, Berkeley
Dept. of Mathematics
Berkeley, CA 94720

Roman J. Bechmrz
Cray Research Park

655F Lone Oak Drive
Eagan, MN 55121

Siddartha Chatterjee
RIACS

NASA Ames Research Center
Mail Stop T045-1
Moffett Field, CA 94035-1000

Steve Elbert
US Department of Energy

OSC, ER-30, GTN
Washington, DC 20585

M. Berzins

Stool of Computer Studies
The University of Leeds
Leeds, LS290T
United Kingdom H. Elman

Computer Science Dept.
University of Maryland
College Park, MD 20842

Warren Chernock
Scientific Advisor DP-1

US Department of Energy
Forestaf Bldg. 4A-045
Washington, DC 20585

Professor N. L. Biggs
Mathematics Dept.
LSE
Houghton Street
London WC2A 2AE
United kingdom

Dr. D.R. Emerson
Theory and Comput.atiomd Scien
Daresbury Laboratory
Daresbury, Warington
Cheshire, WA4 4AD
United Kingdom

Tzi-cker Chiueh
Computer Science Division
U .C. Berkeley
571 Evans Hall
Berkeley, CA 94720

Rob Bisseling

Shell Research B.V.
Postbus 3003
1003 AA Amsterdam
The Netherlands

Dr. Giovanni Erbacci
Dipartimento di Technologia dei
Centro Di Calcolo Interuniversite
dell’ Itafia Nerd-Orientafe
6/3 Via Magnanelli 40033
Casalecchio di Reno
Bologna
Italy

Doug Cline
The University of Texas System
Center for High Performance Computing
Balcones Research Center
10100 Burnett Road, CMS 1.154
Austin, Texas 78758

Michael Bockelie
Mail Stop 125
NASA Langley Res. Center
Hampton, VA 23665

Kenneth J. Bongort

Mail Station D12-025
Grurmnarr Data Systems
Bethpage, NY 11714-3584

Tom Coleman
Dept. of Computer Science
Upson Hafl

Cornell University
Ithaca, NY 14853

R. E. Ewing
Mathematics Dept.
University of WyOrning
PO Box 3036 University Station
Laramie. WY 8’2071Ravi Boppana

Department of Computer Science Neil Coleth

1

Charbel Farhat
Dept. Aerospace Engineering
UC Boulder
Bonldw, CO 80309-0429

Oxford, OXI-3QD
United Kingdom

Cambridge, MA 02139

Prof. E. Hinton
Civil Engineering
University of Swansea
Wales
United Kingdom

G. H. Golub
Computer Science Dept
Stanford University
Stanford, CA 94305

Prof. Miroslav Fiedler
Institute of Mathematics
Czech Academy of Sciences
Prague
Czech Republic

Dan Hitchcock
US Department of Energy
SCS, ER-30 GTN
Washington, DC 20585

Anne Greenbaum
New York University
Courant Institute
251 Mercer Street

New York, NY 10012-1
Salvatore Filippone

IBM ECSEC
Viale Oceano Pacifico 171/173
00144 Rorna, Italy

David Hodgson
School of Computer Studies
University of Leeds,
Leeds LS2 9JT
United Kingdom

Jokn Green6eld
EECE Department
University of New MexicoJ. E. Flahert y

Computer Science Dept.

Rensselaer Polytech Inst.
Troy, NY 12181

Satya Gupta
Intel SSD
Bldg. CO&09, Zone 8
14924 NW Greenbrier Parkway
Beaverton, OR 97006

Adolfy Hoisie
Cornell University
Cornell Theory Center
631 E&TC Bldg
Ithaca, NY 14853

Rupert Ford
CNC Rm. 2122
Dept. Computer Science
University of Manchester
Manchester M139PL
United Kingdom

J. Gustafson
Computer Science Dept.
236 Wilhelm Hall
Iowa State University
Ames, IA 50011

Graham Horton
Universitat Erlangen-Numberl
IMMD III
Martensstrase 3
8520 Erlangen
G ermauy

Ron Fowler
Building R1
Ruthefiord Appleton Laboratory
Chilton, Didcot, OX1l OQX,
United Kingdom.

Ray Hagstrom
Hagforce HQ
823 S. Racine #D
Chicago, IL 60607-4123

Fred Howes
US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

G. C. Fox
Northeast Parallef Archlt. Cntr.
111 College Place
Syracuse, NY 13244

Lama Hamandi
The Ohio State University
Electrical Engineering Department
205 Dreese Lab
2015 Neil Avenue
Columbux, Ohio 43210

Ronald R. Hoyt

Computing Devices Iutematio
88OO Queen Avenue South
Minneapolis, MN 55431-1996

Jon Frankle
Xilinx Corporation
2100 Logic Drive
Sau Jose, CA 95124 Steve Hammond

NCAR
PO Box 3000
Boulder, CO 80307

Yi-Fan Hu
Daresbury Laboratory
Science & Eng. Research Cou]
Daresbmy, Warrington, WA4 ~
United Kingdom

R. F. Freund
NRaD- Code 423
San Diego, CA 99152-5000

Doug Harless
NCUBE
2221 East Lamar Blvd., Suite 360
Arlington, TX 76006

T. C. Hu
Professor of Computer Science
University of Cafifomia
La Jolla. CA 92093

D. B. Gannon
Computer Science Dept.
fndiana Univemity
Bloomington, IN 47401

Michael Heath
Univ. of fll., Nat. CSA
4157 Bechman Institute

, 405 North Matthews Ave
Urbana, IL 61801-2300

Dr. Chua-Huang Huang
Ohio State University
Computer & Information Sciel
228 Boltz Hall
2036 Neil Avenue
Columbus, OH 43210-1277

Apostolm Gerasoulis
Dept. Computer Science
Rutgem University
New Brunswick, NJ 08903

Greg Heileman
EECE Department
University of New Mexico
Albuquerque, NM 87131

Bashkar Ghosh
Department of Computer Science
Yale University
POB 2158, Yale Station
New Haven, CT 06520

Yuan-Shin Hwang
Computer Science Departmen
A.V. Williams Btilding

University of Maryland
College Park MD, 20742

Mike Heroux
Cray Research Park
655F Lone Oak Drive
Eagan, MN 55121

Dr. Horst Gietl
nCUBE Deutschfand
Hanauer Str. 85
8000 Munchen 50
Germany

Arthur Jaffe
Dept. Mathematics
Harvard University
1 Oxford St.

Science Cambridge, MA 02138-2901

A.J. Hey
University of Southampton
Dept. of Electronics and Computer
Mountbatten Bldg., Highfield

Southampton, S09 5NH
United Kingdom

John Gilbert
Xerox PARC

3333 Coyote Hiff Road
Palo Alto. CA 94304

Peter Jimack
School of Computer Studies
University of Leeds,
Leeds LS2 9JT
United Kingdom

W. D. Hillis
Thinking Machines, Inc
245 First St.

2

Dr. M. Giles
Oxford University Computing Laboratory

8-11 Keble Rd.

Zdenek Johan
Thinking Machines Corp.
245 Fimt Street
Cambridge, MA 02142-1264

Minneapolis, MN 55455
S. F. McCormick
Computer Mathematics Group
University of CO at Denver
1200 Larimer St.
Denver, CO 80204

Arne Laukholm
Senter for Informasjonsteknologi
Universitetet I Oslo
GaustadaUeen 23
Postboks 1059 Blindern, N-0316 Oslo
Norway

Professor C. R. Johnson
Mathematics Dept.
College of William and Mary
PO Box 8795
Williarnsbu~, VA 23187-8795

Robert McLay
University of Texas at Austin
Dept. ASE-EM
Austin, TX 78712

Julian Leberrsold
CRIM
3744 Jean-Brillant Street
Suite 500
Montreal, Quebec
Canada

Gary Johnson
US Department of Energy
SCS, ER-30 GTN
Washington, DC 20585

Dr. Russell Merris
Dep. of Mathematics and Comp.
California State Urriversity
Hayward, CA 94542

Lermart Johnsson
Thinking Machines Corporation
245 First Street
Cambridge, MA 02142-1214

Charles Leete
Mathematical Sciences Section
Oak Ridge Nat. Lab.
P.O. Box 2008, Bldg. 6012
Oak R]dge, TN 37831-6367

Jill Mesirov
Thinking Machines Corporation

245 First Street
Cambridge, MA 02142-1214

C. Jones
Math Department
Bloonrsburg University
Bloomsburg, PA 17815

Dr. H.R. Leland
Calspan Corporation
PO Box 400
Buffalo, NY 14225

George Messina
Computational Fluid Dynamics
Nuclear Reactor Reasearch Dept.
EG&G Idaho, Inc.
PO Box 1625
Idaho Falls, ID 83415-2403

Andrew Kalmg
UCLA Computer Science Dept.
6291 Boelter HaU
Los Angeles, CA 900241596

M. Lesoinne
Dept. Aerospace Engineering
UC Boulder
Boulder, CO 80309–0429

P. C. Messina
158-79
Mathematics & Comp Sci. Dept.
Caltech
Pasadena, CA 91125

Joe Kaitschuck
EDS
800 Tower Drive
Troy, MI 48098

John Lewis
Boeing Corp.
M/S 7L-21
P.O. box 24346
Seattle, WA 981240346

Gary Miller
School of Computer Science
Carnegie Mellon University
Pittsburg, PA 1521 ZL3890

Herb Keller
Applied Math 217-50
California Institute of Technology
Pasadena, CA 91125

Ray Loy
Computer Science Dept.
Amos Eaton Bldg.
RPI
Troy, NY 12180

Bojan Mohar
Department of Mathematics
University of Ljubljam
Jadrarrska 19, 61111 Ljublajam
Slovenia

Brian Kerrrighrm
Bell Labs
600 Mountain Ave.
New Providence. NJ 07974 J. G. Malone

Dept. of Mecarrical Eng.
General Motors Res. Lab.

30500 Hound Rd.
Warren, MI 48090

R. Keuinings

Unite de Mecanique Appliquee
University Catholique de Louvain
B-1348 Louvain-l*Neuve
Belgium

C. Moler

The Mathworks
24 Prime Park Way
Natick, MA 01760

T. A. Manteuffel
Department of Mathematics
University of Co. at Denver
Denver, CO 80202

Gary Montry
Southwest Software
11812 Persimmon, NE
Albuquerque, NM 87111

David Keyes
Dept. of Mechanical Engineering
Yale University
PO Box 2159, Yale Station
New Haven, CT 06520-2159

Kapil Mathur
Thinking Machines Corporation
245 First Street
Cambridge, MA 02142-1214

D. B. Nelson
US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

David Kincaid
Center for Numerical Analysis
RLM 13.150
University of Texas
Austin, TX 78713-8510

Tim Mattson
Intel Corporation
Supercomputer Systems Division
C06-09 Bldg., Zone 8
14924 N. W. Greenbrier Parkway
Beaverton, OR 97006

Kwong T. Ng
Electrical & Computer Engineering
New Mexico State University
Box 30001
Las Cruces, NM 8800~(JOUl

T. A. Kitchens
US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585 Richard J. Matus

Fluent Inc.
Centerra Resource Park
10 Cavendish Court
Lebanon, NH 03766-1442

D. M. Nosenchuck
Mech. and Aero. Engr. Dept
D302 E Quad
Princeton Univemity
Princeton, NJ 08544

Scott Kohn
CSE 0114
UC San Diego
95OO Gilman Drive
La Jolla, CA 92093-0114 William McCOU

Oxford Univ. Computing Lab
8-11 I<eble Road
Oxford, OX I 3QD

United Kingdom

J. M. Ortega
Applied Mathematics Dept.
University of Virginia
CharlottesviUe. VA 22903

V. Kumar
Computer Science Department

University of Minnesota

3

can Ozturan
Deptar+ment of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180

John Palmer
Thinking Machines Corp.
245 Fimt St.
Cambridge, MA 02142

Kevin Parrot
Oxford University Computing Laboratory
8-11 Keble Road
Oxford, OX1 3QD
United Kingdom

Glauscio Paulino
Civil Engineering
Cornell University
Hollister Hall 413
Ithaca, NY 14853

Diniz, Pedro
Computer Science Department
Engineering I Bldg, Room 2106
University of California at Santa Barbara
Santa Barbara. CA 93106

Linda Petzold
L-316
Lawrence Livermore Natl Lab.
Liverrnore, CA 94550

Barry Peyton
Mathematical Sciences Section
Oak Ridge National Laboratory
PO. BOX 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Paul Plassman
Math and Computer Science Division
Argonne National Lab
Argonne, IL 60439

Claude Pommerell
AT&T Bell Labs
600 Mountain Ave, Room 2C-548A
Murray Hill, NJ 07974-0636

Ravi Pommsamy
Computer Sc. Dept

AV Williams Bldg
Univ of Maryland,
College Park, MD 20742

Alex Pothen
Computer Science Department
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada

D. Powem
Dept. of Math. and Comp. Sci.
Clarkson Univ.
Potsdam, NY 13699-5815

Robert Preis
University of Paderborn
Dept. of Comp. Science
33095 Paderborn, Germany

Mike Quayle
Cadence Design Systems
2 Lowell Research Center Drive

Lowell. MA 01857

Sanjay Ranka
School of Computer and Information Scien(

Suite 4-116
Center for Science and Technology
Syracuse, NY 13244-4100

Satish Rao
NEC Research Institute,
4 Independence Way,
Princeton, NJ, 08540

J. Rattner

Intel Scientific Computers
15201 NW Greenbriar Pkwy.
Beaverton, OR 97C06

Franz Rendl
Technische Universitat Graz
Institute fur Mathematik
Kopernikusgasse 24, A-901O Graz
Austria

John Richardson
Thinking Machines Corporation
245 Fimt Street
Cambridge, MA 02142-1214

John Rollett
Oxford University Computing Laboratory
8-11 Keble Road
Oxford, OX1 3QD
United Kingdom

Diane Rover
Michigan State Univemity
Dept. of Electrical Engineering
260 Engineering Bldg.
East Lansing, MI 48824

Jim Ruppert
NASA Ames Research Center M/S T045-1
Moffett Field. CA 94035-1OIXI

Ralph Rye
Northern States Power Company
414 Nicollet Mall, TN4
Minneapolis, MN 554o1

Y. Saad
University of Minnesota
4-192 EE/CSci Bldg.
200 Union St.
Minneapolis, MN 55455-0159

P. Sadayappau
Ohio State University
Computer & Information Science
228 Boltz Hall
2036 Neil Avenue
Columbus, OH 43210-1277

Joel Saltz
Computer Science Department
A.V. Williams Building
University of Maryland
College Park, MD 20742

A. H. Sameh
CSRD
305 Talbot Laboratory
University of Illinois
104 S. Wright St.

Urbana, IL 61801

P. E. Saylor
Dept. of Comp. Science
222 Digital Computation Lab
University of Illinois
Urbana, IL 61801

:e

Dr. H. Schellwat
Department of Technology
BOX 923

S-70130 Orebro, Sweden

Martine Schlag
225 Applied Sciences
Computer Engineering
University of California
Santa Cruz. CA 95064

Rob Schreiber
RIACS
NASA Ames Research Center
Mail Stop T045-1
Moffett Field, CA 94035-1000

Elliot Schulman
nCUBE Corp.
3575 9th St.

Boulder, Co. 80304

M. H. Schultz
Department of Computer Sciet
Yale Univemity
PO Box 2158
New Haven, CT 06520

Eric Schwabe
Department of EECS
Northwestern University
2145 Sheridan Road
Evanston, IL 60208

Mark Seager
LLNL, L-SO
PO box 803
Livermore, CA 94550

Dr. J. J. Seidel
Vesaliuslaan 26
5644 HK Eindhoven
Netherlands

Horst Simon
NAS Systems Division
Applied Research Branch

NASA Ames Research Center
Mail Stop T045-1
Moffett Field, CA 94o35

K]chard Sincovec
Mathematical Sciences Section
Oak R]dge Nat. Lab.
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6267

Vineet Singh
HP Labs, Bldg. lU, MS 14
1501 Page Mill Road
Palo Alto, CA 94304

Anthony Skjellum
Lawrence Livermore National
7(X)0 East Ave., Mail Code L-:
Livermore, CA 94550

L. Smarr
Director, Supercomputer ApP
152 Supercomputer Application

Bldg. 605 E. Springfield
Champaign, IL 61801

Burton Smith

Tera Computer Co
400 N. 34th St., Suite 300
Seattle, WA 98103

4

Barry Smith
Department of Mathematics
UCLA
Los Angeles, CA 900241555

Ray Tuminaro
CERFACS
42 Ave. Gustave Coriolis
31057 Toulouse Cedex
France

G. W’. Weigand
DARPA/CSTO
3701 N. Fairfax Ave.
Arlington, VA 22203-1714

Barry Smith
Department of Mathematics
UCLA
Los Angeles, CA 900241555

Paut Wesson
Oxford University Computing Laboratory
8-11 Keble Rd.
Oxford, OX I-3QD
United Kingdom

John A. Turner
Los Alarnos National Lab
PO Box 1666, MS B226
Los Akunos, NM 87545Sharon Smith

CERFACS
42 Ave. Gustave Coriolis
31057 Toulouse
France

D. Vandemtraeten
Unite de Memrsique Appliquee
University Catholique de Louvain
B-1348 Louvain-la-Neuve
Belgium

A. B. White
MS-265
Los Alarnos National Lab
PO Box 1663
LOS Ahsnos. NM 87544Prof. L. Snyder

Dept. of Computer Sci. and Eng.
Mail Stop FR35
University of Washington
Seattle, WA 98195

Stefan VanDeWalle
Katholieke Universiteit Leuven
Dept. of Computer Science
Celestjnenl=n 200A
B-3001 Leuven, Belgium

Olof B. Widlund
Dept. Computer Science
Courant Lnstitute of Math Science
New York University
251 Mercer St.
New York, NY 10012

D. C. Sorenson
Department of Math Sciences
R]ce University
PO Box 1892
Houston, TX 77251

C. VanLoan
Department of Computer Science
Cornell University, f%m. 5146
Ithaca, NY 14853

Roy Williams
California Institute of Technology
206-49
Pasadena, CA 91104Dr. F. Stanischewshi

Institut fur Mathematische Mascbinen
und Datenverarfxitung
der Universitat Erlangen-Nurnberg
Martensstrasse 3
91058 Erlangen
Germany

John VanRosendafe
ICASE, NASA Langley Research Center
MS 132C
Hampton, VA 23665

1<. G. Wilson
Physics Dept.
Oh10 State University
Columbus, OH 43210

Steve Vava.sis
Dept. of Computer Science
Upson Hafl
Cornell University

Ithaca, NY 14853

Henry Wolkowicz
Dept. Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario, N2L 3Gl
Canada

Mike Stevens
nCUBE

919 E. Hillsdale Blvd.
Foster City, CA 944o4

Sesh Venngopal
Dept. Computer Science
Rutgem University
New Brunswick, NJ 08903

Margaret StPierre
Thinking Machines Corporation
245 First Street
Cambridge, MA 02142-1214

L. A. Wolsey
Center for Operations Res. and Economet.1
Uni versi te Catholique de Lou vain
B- 1348 Louvain-la-Neuve
BelgiumReiner Vogelsang

KFA, Zulich, 2AM
POstfucb 1913
s170 Zulich
Switzerland

Judy Sturtevaut
Mission Research Corporation
1720 Randolph Rd. SE
Albuquerque, NM 87106-4245

Minoru Yao
Recruit Company Scientific Systems
1-13-1, Kacbidoki, Chuo-ku, Tokyo 104
Japan

Wing-Kei Szeto
Department of Computer Science
The Chinese Univemity of Hong Kong
Shatin, NT
Hong Kong

R. G. Voigt
MS 132-C
NASA Langley Resch Cntr, ICASE
Hampton, VA 36665

Shing-Tung Yau
Dept. Mathematics
Harvard University
1 Oxford St.
Carbridge, MA 02138-2S01Phuong Vu

Cray Research, Inc.
19607 Franz Road
Houston, TX 77084

Shanghua Teng

Department of Mathematics
MIT
Cambridge, MA 02139

David Young
Center for N urnerical Analysis
RLM 13.150
The University of Texas
Austin, TX 78713-8510

Steven J. Wallach
Convex Computer Corp.

3000 Waterview Parkway
PO BOX 833851
Richardson. TX 75083-3851

Kenneth Traub
Exa Corporation
One Kendalf Square, Bldg. 300
Cambridge, MA 02139

Yin Zhang

Dept. Mathematics & Statistics
University of Maryland
Baltimore County Campus
Baltimore, MD 21228-5329

Harold Trease
Los Alarnos Nationaf Lab
PO Box 1666, MS F663
Los Aknos, NM 87545

C. Wafshaw
School of Computer Studies
University of Leeds
Leeds LS2 9JT
United Kingdom

Jason Y. Zien
225 Applied Sciences
Computer Engineering
University of California
Santa Cmz. CA 95064

Shari Trewin
Edinburgh Paraflel Computing Centre
The King’s Buildings
Mayfield Road
Edinburgh, EH9 3JZ
United Kingdom

Robert Weaver
University of Colorado at Boulder
Dept. of Computer Science
Campus Box 43o
Boufder, CO 80309

0. Zone
Unite de Mecanique Appliquee

5

University Catholique de Louvain
B-1348 Louvain-l>Neuve
Belgium

INTERNAL DISTRIBUTION:
A.R.C. Westwood
Ed Barsis
Sudip Dosanjh
George Davidson
Jim Ang
Bilf Camp
David Gardner
Grant Heffelfiger
Scott Hutchinson
Martin Lewitt
Steve Pfimpton
Mark Sears
John Shadid
Julie Swisshehn
Dick Allen
Bruce Henti]ckson (35)
David Womble
Ernie Brickell
Kevin McCurley
Robert Bemer
Carl Diegert

Art Hale
Rob Leland (35)
Courtenay Vaughan
Steve Attaway
JofmIIy Biffle
Mark Blanford
Jim Schutt
Mike McGlaun
Allen Robinson
Kent Budge
John Greenfield
Panf Barrington
Phil Stanton
David Martinez
Dons Crawford
William Mason
Technical Library (5)
Technical Publications
Document Processing for
DOE/OSTI (10)
Cent;al Tec~]~l File
Charles Tong

1000
1400
1402
1403
1404
1421
1421
1421
1421
1421
1421
1421
1421
1421
1422
1422
1422
1423
1423
1424
1424
1424
1424
1424
1425
1425
1425
1425
1431
1431
1431
1431
1432
1433
1434
1900
1952
7141
7151

7613-2
8523-2
8117

* U.S.GOVERNMENT PRINTING OFFICE 1993-573-1 10/80285

	ABSTRACT
	1. INTRODUCTION
	2. PARTITIONING ALGORITHMS IN CHACO
	2.1 SIMPLE PARTITIONING
	2.2 SPECTRAL PARTITIONING
	2.3 THE INERTIAL METHOD
	2.4 KERNIGHAN-LIN
	2.5 A MULTILEVEL METHOD

	3. INPUT AND OUTPUT FORMATS
	3.1 FORMAT OF GRAPH INPUT FILE
	3.2 FORMAT OF COORDINATE INFORMATION INPUT FILE
	3.3 OPERATING THE CODE
	3.4 OUTPUT FORMATS

	4. USER-MODIFIABLE PARAMETERS
	4.1 INPUT AND OUTPUT CONTROL PARAMETERS
	4.2 EIGENVECTOR CALCULATION PARAMETERS
	4.3 OTHER PARAMETERS FOR SPECTRAL METHODS
	4.4 KERNIGHAN-LIN PARAMETERS
	4.5 PARAMETERS FOR MULTILEVEL METHODS
	4.6 PARAMETERS THAT CONTROL DEBUGGING OUTPUT
	4.7 MISCELLANEOUS PARAMETERS

	5. HELPFUL HINTS
	5.1 IMPLEMENTATION DETAILS
	5.2 INSTALLATION INSTRUCTIONS
	5.3 SOME THINGS TO WATCH OUT FOR
	5.4 OBTAINING THE CODE

	REFERENCES

