
SANDIA REPORT
SAND93-0933

Unlimited Release
Printed December 1998

*

Approved for public release; further dissemination unlimited

arch

Sandia National

i

.— —

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contract ors, subcontractors, or their employees, makes any warrant y,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

SAND93-0933
Unlimited Release

Printed December 1998

Optimizing the Point-in-Box Search Algorithm for the

M Supercomputer*Cray Y-MPT

M. E. Davis
Cray Research Inc.

6565 America’s Pkwy. NE #830
Albuquerque, NM8711 1

M.W. Heinstein, S.W. Attaway, J.W. Swegle
Engineering and Manufacturing Mechanics Department

Sandia National Laboratories
P.O. BOX 5800

Albuquerque, NM 87185-0443

Abstract

Determining the subset of points (particles) in a problem domain that are contained within
certain spatial regions of interest can be one of the most time-consuming parts of some
computer simulations. Examples where this “point-in-box” search can dominate the
computation time include (1) finite element contact problems; (2) molecular dynamics
simulations; and (3) interactions between particles in numerical methods, such as discrete

particle methods or smooth particle hydrodynamics. This paper describes methods to optimize
a point-in-box search algorithm developed by Swegle [1] that make optimal use of

m Supercomputer.architectural features of the Cray Y-MP

‘KSandia is a multiprogram laboratory operated by Sandia Corporation, a Lockleed Martin
Company, for the United States Department of Energy under Contract DE-AC04-94AL85000

1

1 Introduction

The current generation of numerical analysis codes, such as the Finite Element Method
(FEM), Discrete Motion Codes (DMC), Smooth Particle Hydrodynamics (SPH), and Particle
In Cell Methods (PIC), are increasingly solving larger problems. Often, one of the most time-
consuming parts of the analysis involves the determination of which points in the problem
domain are contained within certain spatial regions of interest. Since a region of interest can
be expressed most efficiently in the form of a box or cube, the problem becomes one of
finding which of a given set of points lies inside the box.

Swegle [1] describes a search algorithm for solving the problem of determining which of a
given set of points lies inside a box. It involves constructing an ordered list of points by

sorting the points on each rectangular coordinate value and then searching for the points that
lie within the box. The search algorithm is economical in its use of memory. In 3D, for
example, the algorithm requires only 7N memory locations, where N is the number of points.
The binary search technique used in [1] for finding the subset of points in the box is a classical
method for solving a search problem of this kind on a conventional sequential computer.

This paper describes several ways in which optimization can be done on a supercomputer,
such as the Cray Y-MP, to achieve greater efficiency and lower cost for this kind of
computation. Section 2 reviews the search algorithm developed by Swegle. Section 3
describes a general-purpose proprietary software library routine on the Y-MP for optimizing
the binary search. Section 4 describes a technique used to optimize a set of searches for the
particular problem at hand. Section 5 describes a way to minimize the number of indirect
memory references. Section 6 covers test results for two different point sets.

2 Swegle Search Algorithm

This section reviews the point-in-box search algorithm developed by Swegle [1]. Briefly the
algorithm consists of individual one-dimensional sorts of the points using each coordinate
value as the search key, followed by binary searches of each sorted list to find the points at the

edge of the search region (box). This produces separate sets of points whose positions fall
within the bounds of the box for each coordinate direction. Finally the three lists (two lists for
a 2D problem) are intersected to obtain the points inside the box. Figure 1 shows a schematic
of the three steps in the algorithm. A description of each step is given below, followed by a
detailed example.

2.1 Sort

The sorting step constructs an ordered list of the points for each coordinate direction. The
result of this sort is an index vector for each coordinate, {IX,IY,IZ}, that contains the point IDs
in order of increasing coordinate value. One additional set of vectors, {RX,RY,RZ}, called the
rank vectors is also constructed. It gives the location of each point in the index vector. It can
be easily constructed by looping through the index vector. For example, suppose point j is
stored at position i in the index vector; then the rank vector would store the pointer i at its
position j. The rank vector is required to avoid searching the index vector for a given point.
The memory requirements for this step is 2*N* ND, where N is the number of points and ND
is the spatial dimension of the point set.

●9
● 10

P

9
yUP=0.85- -

●

g

8
yup=o.85

●7 ●7 8
●1

~BOX
●1 Box

‘6 ‘5 ●
‘6 ●

y,o=o.325g :
\ ●4

y10=0.325
‘4

+3 : 3

XIO=0.475 XUP=0.685 X10=0.475 XUP=0.685

x(l)a(2)a(9)43kx(7kN6)d8)=d4)dlo@(5) x(I@(2)a(9~(3@(7)a(6)~(8b(4)a(10)451

WCY(WY(2W5W(6W(1)cYW=Y(8)CY(J WY(9) Y(WW@CYWY@-+(1kYOkY@Y(113)cY(9:

(a) sort points

P

9 (b) search for bounds
●

yuP=0.85
●1 ●7 8

Box
●

‘5
y10=0.325 ●

●4
3

X10=0.475 XUP=0.685

{3,7,6)0 {2,5,6, 1,7,8)={ 7,6)

(c) intersect lists

?igure 1. Schematic of Swegle Search Algorithm

2.2 Search

The second step is to form three lists (one for each coordinate) which contain those points that
i~e within the minimum and maximum bounds of the box. Each list is formed using two
binary searches on the index vector: one to find the pointer corresponding to the fust point
inside the box, and the other to find the pointer corresponding to the last point within the box
(the lists are therefore never formed - instead it is the ‘lo’ pointers and the ‘up’ pointers that
are stored). Figure 2 shows one step m the o(log2N) binary search, where the target xtaget
corresponds to one of the bounds xmin or Xmmof the box.

, f
Pointers Index

‘tapl’ = ’10’ +

‘tap2’ -

B

=-! ‘lo’+ ’up’) ~
2(

‘tap3’ =’up’ ~ %p x(Index(up))

XIO= x(Index(lo))

Xlap= x(Index(tapped))

updated Pointers

if{ ‘l~:et < xt~p)

’10’ + ‘lo’

‘up’ +- ‘tap2’

otherwise
‘lo’ + ‘tap2’
‘up’ + ‘up’

Figure 2. ClassicaI binary search step to find a pointer into index array

3

The binary search continues until ‘lo’ + 1 = ‘UP’ ~d XIO< x~wget< %p Upon completing the
search, the pointer into the index vector is then (ix)min= ‘up’ for the target xw~et = xmin, and

(iX)mm= ‘lo’ for the target xlmget = Xmw.

2.3 Intersection

Finally, the lists are intersected to find the points in the box for each coordinate
simultaneously. To accomplish this, each of the points in one list is selected and then checked
if its rank is between the lower and upper pointer in the other two coordinates. For
computational efficiency the shortest list of points is selected, which can be determined by
selecting the smallest of [(iw)mm - (iW)min+ 1] , w = X,y, or Z. Suppose, for example, that the

list for the y-coordinate contains the smallest number of points. Then the points in this list

i= 1~((i~)~i~)7 ‘~((i~)nli~ + 1)3 ‘--, l’y((i~)~~~) are in the box if

(i.)mi~ S Rx(i) ~ (i,)~aX ~d (i.)~in ~ R,(i) ~ (i,)~ax .

2.4 Example Problem

The 2D example problem shown in Figure 1 is used to illustrate the algorithm. The probiem
consists of finding which of the N= 10 points lie inside of the box defined by: xmin=0.475,
XmM=0.685 and ymin=0.325, ymm=0.85. The index vectors are:

(Index)x 12 9 3 7I6I8I4I105

(Index)Y 3 412 5 6I1I7I8I1O 9

This indicates, for example, that along the x-coordinate direction, point 1 has the smallest x-
coordinate, point 2 the next smallest, point 9 the next, and so on. The rank vectors give the
location of each point in the index vectors and are:

(R~)X 1I2I4I8I1OI6I5I7I 319

(Rank)Y 6I3I1I2I4I5I7I8I1OI9

The search step finds two lists of points. Each list is formed using a binary search on its
respective index vector to find the pointers that correspond to the points that are just on or
inside of the bounds (x . xtnln~Maxad ymin,ymm). Figure 3, for example, shows the binary

:
10

search to find the pointer corresponding to the point just greater than or equal to xmifl=0.475.

Point X pointer IX cycle 1 cycle 2 cycle 3 cycle 4

1 IT’T2--1

i

+ 10=1 + 10=1
;2
39 ~ tap=3 ~ 10=3 +10=3
43 ~ tap=4 +up=4

~ tap=5 ~up=5 4- up=5

%Tget> X(L(w)) xt~~~t< x(lX(tap)) x(IX(lo))< ‘m:e[< XIX(UP))

4 ‘lo’ +’tap’ ‘up’+ ’tap’
-

i +UD=1O

I X[mge[< X(Ix(tap))
‘up’+- ‘taD’ I

Figure 3. Binary search to find point just greater than or equal to xmin=0.475

4

For the example problem, the binary search would result in the following pointers: (iX)min= 4,

(~x)ma = 6, (iY)min= 3, (iY)rn~ =8, so that point 3 is the first point greater than or equal to

xnlin and point 6 is the last point less than or equal to Xma, etc.

Finally, the two lists are intersected to find the points in the box. The list for the x-coordinate
is the one with the smallest number of points, so that the points

i= Ix((ix)min)j Ix((ix)min + 1), .--, Ix((ix)max) = 3,6,7 are in the box if

(iY)min S RY(i) S (iY)maX .

Tc) help illustrate this procedure, the three points in the smallest list are processed as follows:

l)i= IX((iX)min) = 3 and RY(3)= 1.

Since 1< (iY)min , point i=3 is not in the box.

2)i= IX((iX)~in+ 1) = 7 and RY(7) =7.

Since (iY)min _‘7 ~ (iY)maX point 7 is in the box.

3)i= Ix((ix)min + 2) = 6 and RY(6) = 5.

Since (iY)min _<5 ~ (iY)maX Point 6 is also in the box.

After intersecting the lists, it is found that only the points {6,7} are in the box.

2.5 Summary and Motivation for Current Work

The great advantage of this algorithm is that it is nearly independent of the geometry of the
point set and is very economical in its use of memory. In 3D, for example, the search
algorithm requires only (7N) memory locations, where N is the number of points. This work is
aimed at improving the speed of the algorithm.

In the following sections, several methods to speed-up the Swegle search algorithm are
described. These methods make optimal use of architectural features of the CRAY YMP
strpercomputer. Sections 3 and 4 describe two methods to optimize the binary search. Section
5 describes a method for optimally intersecting the lists.

5

3 Cray Research o(Log64N) Binary Search

Proprietary general-purpose libraries on supercomputer systems such as the Cray Y-MP pro-
vide an optimized subroutine osrchf to solve the binary search problem [2]. In these rou-
tines, the architecture of the computer is exploited to the fullest extent possible so that the
problem can be solved efficiently. On the Cray for example, a 64-element list of data can be
processed as an atomic unit, so that a “binary” search on the Cray could be done in log@N
time rather than in the log2N time that is required for scalar architectures -- a factor of 6 per-
formance improvement in the search. This architecture-dependent binary search is accom-
plished by picking not a single element (“tap”) from the middle of the set of data between ‘lo’
and ‘up’, but by picking 64 elements at equally-spaced intervals. It is then possible to do the
comp&son of the target with the vector of “tapped” elements, as shown in Figure 2.

Pointers Index

‘tapl’ =’10’ + - xtaPl = x(Index(tappedl))

‘tap2’ =’10’++ (’up’-’lo’) + xtaP2= x(Index(tapped2))

‘tap3,’ =’lo’+:(’up’-’l)’) + x[aP31= x(Index(tapped31))

‘tapbs’ =’lo’+~(’up’-’l)’) + xl@3 = x(kdex(tappedbs))

‘tap~’ = ‘up’ + xtaP@= x(Index(tapped@))

updated Pointers
,

‘f(‘tapN < ‘target < ‘tapN+])

‘lo’ + ‘ta~’

‘UP’ 4 ‘taPN+l’

w

Figure 4. Log64N binary search on the CRAY Y-MP

4 Vectorized Binary Search

The popular estimate of the maximum performance improvement to be gained by processing
data in vector mode on the Cray Y-MP is 10 times scalar performance [3]. Given this, even
the optimized proprietary library routine osrchf ,runningat 6 times the scalar rate, is not
providing peak performance for a binary search of a single element. Realizing that the prob-
lem consists of finding the set of points that lie within each of many boxes, there is a way to
achieve closer to peak performance by processing several of the boxes at once. This method
would take as input the entire set of points to be searched, and a set of box endpoints (targets)
to search for. It would then return a list of indexes, equal in size to the list of targets, indicat-
ing where in the point set the targets (would) reside. Clearly, this method requires more mem-

ory than the classical search for a single target.

Simply passing more data to the routine is not sufficient to get the routine to run faster. The
basic problem with the classical binary search algorithm is that the binary search loop does
not vectorize, as shown in Figure 5.

LSRC!H PAGE 1

1 1.

2 2.

3 3.

4 4.

5 5.

6 6.

7 7.

8 8.

9 9.

10 10.

11 11.

12 12.

13 13.

14 14.

15 15.

16 16.

17 17.

CRAY FORTRAN CFJ?77 5.0.0.0 06/12/91 14:30:52

suhroutina srch

pammeter (n.10000)

conmon /ccanl/ list, tgt, ind
real list(n)

ilo=l

ihi=n

log2n=64-leadz (n)+l

do i=l, log2n

itap=ilo+ihi/2

if (tgt. gt.list(itap)) then

ilo=itap

else

ihi=itap

endif

enddo

ind=itap

end

VECTOR IZATIO H INFORMATION
------------ ---

cft77-8009 cft77: VECTOR SRCH, Line = 8, File = srch. f, Line = 8

Loop starting at line 8 was not vectorized. A value defined conditionally is used in

mother block.

Figure 5. Classical binary search loop does not vectorize

There are two key ideas that must be used in changing the binary search algorithm so that it
will run in vector mode. The first is that only inner loops vectonze. This means that the
classical binary search loop which iterates over the space of the point set must be interchanged
with the one that iterates over the space of the target list. The other key idea is that the binary
search loop always iterates the same number of times, namely 1+log2N, where N is the
number of elements in the point set. This is true no matter what the value of the target is. Most
implementations of a binary search loop use a test of the target and the “tap” as the loop
ccmtrol condition. This kind of test is too irregular to work easily as an outer loop, but a loop

7

that iterates from 1 to l+log2N is quite workable. Armed with these ideas, a vectorized Log2N
binary search algorithm can be implemented, as shown in Figure 6.

10SRCEFRM ~Y FORTRAN CFT77 5.0.0.0 06/12/91 14:30:52

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

1. c

2. c--

3. c

4.

5. c

6. C

7. c

8. C

9. c

10. c

11. c

12. c

13. c

14.

15. c

16. C

17. c

18.

19.

20.

21.

22.

23.

24. C

25. c

26. C

27.

28.

29. C

30. c

31. c

32.

33.

34.

35.

36.

37.

38. C

39.

40. c

41. c

42. c

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

subroutine osrchfrm (nx,x,indord, nt, tgtmin, tgtmax, imin, imax)

produce in each imin(i) [imax(i)l the index into the integer

array indord whose referenced element in the real array x

has the smallest [largest] value greater than [less than] that
of tgtmin(i) [tgtmax(i)l.

*licit none

inputs:

integer ox ! number of elements in array x

real x(nx) ! array of real numbers

integer indord(nx) ! array of indexes into x, from ORDERS

integer nt ! number of elements in the target arrays

real tgtmin(nt) ! array of minimum targets to be found

real tgtmax(nt) ! array of maximum targets to ha found

outputs:

integer

integer

scratch:

integer

integer

integer

integer

integer

integer

ntaps =

imin(nt) ! indexes into x of min targets

_(nt) ! indexes into x of w targets

ntaps ! number of taps into

i 1 loop index over nt

lo(nt) ! current low tap

hi(nt) ! current high tap

j ! loop index over ntaps

x required

tap(nt) I current middle tap

64-leadz(nx) ! log base 2 of nx + 1

first the min

10=1

hi =nx

doj= l,ntaps

tap = (lo+hi)/2

do i = l,nt

if (x(indord(tap(i))).ge.tgtmin

hi(i) = tap(i)

else

lo(i) = tap

end if

end do

end do

i)) then

i)

:

Figure6. Vectorized Log2Nbinary search onthe CRAYY-MP

8

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

55. do i = l,nt

56. if (x(indord(lo(i))).ge. tgtmin(i)) then

57. kin(i) = lo(i)

58. else

59. bin(i) = hi(i)

60. end if

61. and do

62. C

63. c now the

64. C

65. 10

66. hi

67. do

68.

69.

70.

71.

72.

73.

74.

75.

ma%

. 1
=Ox

i = l,ntaps

tap = (lo+hi)/2

do i = l,nt

if (x(indord(tap(i

lo(i) = tap(i)

else

hi(i) = tap(i)

and if

end do

76. and do

77. do i = l,nt

)).le.t~(i)) then

78. if (x(indord(hi(i))) .la.tgtmax

79. -(i) = hi(i)

80. else

81. k(i) = lo(i)

82. end if

83. end do

84. and

i)) than

VECTORIZATIO N INFORMATION
-------------------- ---------------------------------------
cft77-8004 cft77: VECTOR

Loop starting at line 43

cft77-8004 cft77: VECTOR

Loop starting at line 44

cft77-8035 cft77: VZCTOR

Loop starting at line 45

cft77-8004 cft77: VECTOR

LOOP starting at line 46

cft77-8004 cft77: VECTOR

Loop starting at line 47

OSRCEFRM, Line = 43, File = osrchfrm.f, Line . 43

was vectorized.

OSRCEFRM, Line = 44, File = osrchfrm.f, Line = 44

was vectorized.

OSRCHFRM, Line = 45, File = osrchfrm.f, Line = 45

was not vectoxized. It contains an inner loop.

OSRCHFRM, Line = 46, File = osrchfnn.f, Lima = 46

was vectorized.

OSRCHFRM, Line . 47, File = osrchfrm.f, Line = 47

was vectorized.

cft77-8004 cft77: VECTOR OSRCHF’RM, Line . 55, File = osrchfrm.f, Line = 55

Loop starting at line 55 was vectorized.

cft77-8004 cft77: VSCTOR OSRCRFRM, Line = 65, File = osrchfrm.f, Line = 65

Loop starting at line 65 was vectorized.

cft77-8004 cft77: VECTOR OSRCXFRM, Line = 66, File = osrchfrm.f, Line = 66

Loop starting at line 66 was vectorized.

cft77-8035 cft77: VZCTOR OSRCEFRM, Line = 67, File = osrchfrm.f, Line = 67

Loop starting at line 67 was not vectorized. It contains an inner looP.

cft77-8004 cft77: VSCTOR OSRCHFRM, Line = 68, File = osrchfrm.f, Line = 68

Loop starting at line 68 was vectorized.

cft77-8004 cft77: VZCTOR OSRCHFRN, Line = 69, File = osrchfzm.f, Line = 69

Loop starting at line 69 was vectorized.

cft77-8004 cft77: VZCTOR OSRCHFRM, Line = 77, File = osrchfrmf, Line = 77

Loop starting at line 77 was vectorized.

Figure 6. (cent’d)

5 Direct List Intersection

The final step in the search algorithm is to intersect the three lists to find the points in the box
for each coordinate simultaneously. To accomplish this, each of the points in one list is
selected and then checked if its rank is between the lower and upper pointer in the other two
coordinates. For computational efficiency the shortest list of points is selected, which can be
determined by selecting the smallest of [(iW)ma - (iw)min+ 1] , w = X, y, or Z. A straightfor-
ward implementation of the list intersection is shown in Figure 7.

c select the mnellestlist
INln12= iup(l)- ilo(l) + 1

num2 = iup(2) - ilo(2) + 1

num3 = iup(3) - ilo(3) + 1

if(num.1 le. mud .snd. numl .1o. num3)then

*2=1

iy.2

iz=3

num = lluml

else if(nunu le. mud and. nun12 le. num3)then

ixyz = 2

iy.1

iz=3

num = num2

else

iwz = 3

W=l
iz=2

num = nuld

endi f

c first intersection

do 101 il = ilo (ixyz), iup (ixyz)

nl=ind (il, Sz)

if(irnJc2(nl, iy) .ge. ilo(iy) and.

irnk2(nl, iy) .10. iup(iy))then

ilp = ilp +1

index (ilp) = nl

endif

101 continue

c second intersection
do 102 il = 1, ilp

nl = index(il)

if(irnk2(nl, iz) .ge. ilo(iz) .snd.

irnk2(nl, iz) .10. iup(iz))then

nlist = nlist + 1

list(nlist) = nl

endif

102 continue

Figure 7. Indirect list intersection

The algorithm described in Figure 7 is an indirect list intersection. That terminology is used
because of the indirect memory reference of the points in the if test: irnkz (nl, iy) ,
where nl=ind (i.1, ixyz) . This implies irnk2 (ind (il, ixyz) , iy) or an indirect

memory reference. In order to directly reference the data, the following can be done, as shown
in Figure 8.

10

do 10 i=l,npoints
iznk(i,l,l) . iznk2(ind(i,l),2)
iznk(i,l,2)= iznk2(ind(i,l),3)
iznk(i,2,1)= iznk2(ind(i,2),l)
iznk(i,2,2)= irnk2(ind(i,2),3)
iznk(i,3,1)= iznk2(ind(i,3),l)
irnk(i,3,2)= iznk2(ind(i,3),2)

12 continue

C first intersection

do 101 il = ilo(ixyz), iup(ixyz) ,/

if(iznk(il,imz,l) .ge. ilo(j,iy) and.
● iznk(il,~,l) .19. iup(j,iy))then

ilp = ilp +1

index(ilp) = il

ENDIF

101 COMTIM’OB

c second intersection
do 102 il = 1, ilp

if(iznk(index(il),ixyz,2) .ge. ilo(j,iz) end.
● iznk(index(il),ixyz,2) .18. iup(j,iz))then

nlist = nlist + 1

list(nlist) = ind(indax(il),i~z)

endi f

102 continue

Figure 8. Direct list intersection

To understand how the movement of the indirect memory references out of the list
intersection loops improves performance, consider the following data regarding central
memoryperforrnance ontheCrayY-MP [3].

If nomemoryconflicts are encountered, the following access times foreachregister type can
beexpected:

● 19 plus vector length CPs(clockpenods) for Vregister stride references

● 24 plus vector length CPS for V register gather references.

So to reference the irxJz2 array in the do 101 loop in Figure 7 above would require
19+ilp CPs for ind(Il, iWz), plus 24+ntrip CPS for irnk2(nl, iy), where
ntrip=iup (i~z)-ilo(i~z)+l. Recall that iup(i~z) -ilo(ixyz)+l is the
length of the smallest list. This assessment assumes that the indirect memory references
produce no delays due to memory conflicts. In reality, such a reference almost always
ploduces some conflicts, so this assessment is generous. To continue, then, referencing
ixm.k2 indirectly costs 43+2 *nt rip CPS. Assuming that ntrip averages some fraction 1/F
of the number of points N, we have a time of43 +2 *N/F CPS.

The key point to the difference between indirect and direct list intersection is that this cost in
time is going to be incurred for every list intersection operation that is performed. There are
two list intersections in 3D for each box (search space) and in many applications the number
of boxes is on the order of the number of points N. For the purposes of demonstration, the

11

number of boxes is assumed to be the same as the number of points. So, to do the indirect
memory references for the whole search problem will involve a cost in time of
43*N + 2*N2/F Cps.

The optimized direct list intersection performs the indirect memory references on all of the
rank arrays only once, prior to list intersection. In order to handle all possible cases, six
scratch arrays are built to hold the results of the up-front indirect memory operations. This
involves a cost in time of 6* (43+2 *N) CPS. Then, at list intersection time, the memory
references are direct and stride- 1. This is the most efficient kind of memory reference that
can be done. It will involve a cost in time of 19 +N/F CPS for each box processed. So for the
whole list intersection, the cost is 19 *N + N2 /F CPS. Adding the up-front gathers, the
whole optimized search problem costs 258 + 31*N + N2 /F CPS to process the irnk2
array. Subtracting the cost for the optimized method from the cost for the original method, the
savings is N2/F + 12*N - 258 CPS. For the CRAY Y-MP, one CP is 6 nanoseconds.

To see how the direct list intersection is an improvement, consider a set N=1OOOOOof
randomly distributed points on the space O < x,y,z < 1. Based on performance evaluation of
the algorithm the value of F is approximately 20. Since 1 CP is 6 ns, the savings can be
computed to be approximately 3 seconds. Factoring in the cost penalty of the original method
due to memory conflicts is impossible to do because of the non-deterministic nature of the
references, but given the fact that there is a difference of a factor of 5 in performance between
the best memory access pattern and the worst [3], it is easy to see how the savings could be
much more.

6 Performance

In this section the performance of the search algorithm is presented. With the realization that
this algorithm may be used for several different applications, the performance is given for
several point sets and box definitions. Three point sets are used, as shown in Figure 9. The first
is a set of randomly distributed points on the space O< X,Y,Z<1. The second is a set of
randomly distributed points in a diagonal rod with a radius of 0.1, beginning at x,y,z = 0,0,0
and ending at x,y,z = 1,1,1. The third is a set of randomly distributed points in a diagonal rod
impacting a plate.

B 6
(a) uniform data set (b) diagonal rod data set (c) rod impacting plate data set

Figure 9. Three point sets used in performance testing

12

Two ways of covering the space 0< x,y,z <1 are used. The simplest is to uniformly cover the
space by placing the boxes side by side - that is to have the boxes independent of the points.
With this type of arrangement the number of boxes are assumed as: M = (nint(N1’3))3. The
other way to cover the space 0< x,y,z <1 with boxes is to center a box around each point. The
size of the box is then a free parameter and is usually related to a physical aspect of the prob-
lem. In the examples that are presented, the box size was chosen so that an average of ten par-
ticles are found inside each box. This case represents the likely scenario for particle methods.

The first step in the algorithm is the one-dimensional sorts of the points. In the following
work, the sorting is done using a standard CRAY UNICO@ library routine orders [2]. The
routine has a Log2N performance, as shown in Figure 10. The performance is independent of
the geometric distribution of the point set.

0.8

0“
NA10000 NhOOOOO

NLog2N

Figure 10. Timing for Cray UNICOS subroutine orders

The second step of the algorithm is the binary search. The performance of the classical (sca-
lar) binary search, the LogaN CRAY search, and the vectorized Log2N search tie shown in
Figure 11. Here, again, the performance is independent on the point set distribution.

g 1
Log2 scalar

6 10
0
a)
u)

;5 -.-
3 /-’--’d LogG N
Q
o

-------““.—--

0--.---.”-”””---“:”’-“:--: ”-”:”---= -- - L092
~ “ector

Nhoooo N&l 00000
NLog2N

Figure 11. Timings for binary search

13

Finally, the performance for the complete algorithm is shown in Figures 12 and 13. The
timings are dependent on the problem domain. The reason for this is that the number of points
found in the smallest list varies with the point data set. It is important to realize, though, that
the absolute worst case data set is uniformly distributed points over O~,y,z<l.

Figure 12. Timing

10
side-by-side boxes /unifOT

8 “

6 -

4 -

2

0
NA1 0000 NhOOOOO

NLog2N
for optimized point-in-box search algorithm: side-by-side boxes

15 -
i

10 -

5“

o I
N=1OOOO

NLog2N
Figure 13. Timing for optimized point-in-box search

7 Summary

NA100000

algorithm: boxes around points

.

The point-in-box search algorithm developed by Swegle has been optimized by taking advan-
tsge of the architectural features of the CRAY YMP supercomputer. Figure 14 represents
improvements in the performance of the algorithm for N= 100000 points uniformly distributed
on the domain Oex,y,z< 1. Recall that this point set represents the worst possible distribution
of points for the performance of the algorithm. With some ordering of the points, such as a rod
impacting a plate, the algorithm’s performance is considerably better.

4

100,000 random points (O<x,y,z<l)

searching for approx. 10 neighbors around each point

0.61s
orders

CRAY orders CRAY orders
scalar search vectorized search
indirect list contraction direct list contraction

Figure 14. Performance improvement by optimizing the point-in-box search algorithm
on the CRAY Y-NIP

REFERENCES

[1] Swegle, J.W., “Search Algorithm,” Internal Memorandum, Sandia National Laboratories,
Albuquerque, NM 87185, May 25, 1992.

[2] UNICOS Math and Scientific Library Reference Manual, VOL. 3, August 1992.

[3] CRAY Y-MP System Programmer Reference Manual, June 1989.

15

Distribution
MS0841 09100
MS0443 09117
MS0443 09117
MS0807 04418
MS0443 09117
MS0443 09117

1 MS 9018
2 MS 0899
1 MS 0619

Hornrnert, Paul J.
Morgan, Harold S.
Attaway, Steve W.. (10)
Davis, Mike E. (10)
Heinstein, Martin W. (10)
Swegle, Jeff W. (10)

Central Technical Files, 8940-2
Technical Library, 4916
Review & Approval Desk, 15102
For DOE/OSTI

	Abstract
	1 Introduction
	2 Swegle Search Algorithm
	2.1 Sort
	2.2 Search
	2.3 Intersection
	2.4 Example Problem
	2.5 Summary and Motivation for Current Work

	3 Cray Research o(Log64N) Binary Search
	4 Vectorized Binary Search
	5 Direct List Intersection
	6 Performance
	7 Summary
	REFERENCES
	Distribution

