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Abstract

Abstract.

The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific
computation. A fast parallel algorithm for this calculation is therefore necessary if we are to make full
use of the new generation of parallel supercomputers. This paper presents a high performance, parallel
matrix—vector multiplication algorithm that is particularly well suited to hypercube multiprocessors.
For an n x n matrix on p processors, the communication cost of this algorithm is O(n//p + log(p)),
independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by
employing it as the kernel in the well-known NAS conjugate gradient benchmark, where a run time
of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to
date using a massively parallel supercomputer.
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method

AMS(MOS) subject classification. 65Y05, 65F10

Abbreviated title. Parallel Matrix—Vector Multiplication.

This work was supported by the Applied Mathematical Sciences program, U.S. Department of
Energy, Office of Energy Research, and was performed at Sandia National Laboratories, operated for

the U.S. Department of Energy under contract No. DE-AC04-76DP00789.
1



1. Introduction. The multiplication of a vector by a matrix is the kernel computation in many
linear algebra algorithms, including, for example, the popular Krylov methods for solving linear and
eigen systems. Recent improvements in such methods, coupled with the increasing use of massively
parallel computers, require the development of efficient parallel algorithms for matrix—vector multiplica-
tion. This paper describes such an algorithm. Although the method works on all parallel architectures,
it is particularly well suited to machines with hypercube interconnection topology, for example the Intel
1iPSC/860 and the nCUBE 2.

The algorithm described here was developed independently in connection with research on efficient
methods of organizing parallel many-body caiculations (see [5]). We subsequently learned that our
algorithm is very similar in structure to a parallel matrix-vector multiplication algorithm described
in [4]. We have, nevertheless, chosen to present our algorithm because it improves upon that in [4] in
several ways: First, we specify how to overlap communication and computation and thereby reduce
the overall run time. Second, we show how to map.the blocks of the matrix to processors in a novel
way which improves the performance of a critical communication operation on current hypercube
architectures. And third, we consider the actual use of the algorithm within the iterative conjugate
gradient solution method and show how in this context a small amount of redundant computation can
be used to further reduce the communication requirements. By integrating these improvements we
have been able to achieve significantly better performance on a well known benchmark than has been
previously possible with a massively parallel machine.

A very attractive property of the new algorithm is that its communication operations are indepen-
dent of the sparsity pattern of the matrix, making it applicable to all matrices. For an n x n matrix on p
processors, the cost of the communication is O(n/,/p+log(p)). However, many sparse matrices exhibit
structure which allows for other algorithms with even lower communication requirements. Typically
this structure arises from the physical problem being modeled by the matrix equation and manifests
itself as the ability to reorder the rows and columns to obtain a nearly block-diagonal matrix, where
the p diagonal blocks are about equally sized, and the number of matrix elements not in the blocks is
small. This structure can also be expressed in terms of the size of the separator of the graph describing
the nonzero structure of the matrix. Our algorithm is clearly not optimal for such matrices, but there
are many contexts where the matrix structure is not helpful (e.g. dense matrices, random matrices),
or the effort required to identify the structure is too large to justify. It is these settings in which our
algorithm is most appropriate and provides high performance.

This paper is structured as follows. In the next section we describe the algorithm and its com-
munication primitives. In §3 we present refinements and improvements to the basic algorithm, and
develop a performance model. In §4 we apply the algorithm to the NAS conjugate gradient benchmark

problem to demonstrate its utility. Conclusions are drawn in §5.

2. A parallel matrix—vector multiplication algorithm. Iterative solution methods for linear
and eigen systems are one of the mainstays of scientific computation. These methods involve repeated

matrix—vector products or matvecs of the form y; = Az; where the the new iterate, z;,;, is generally
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some simple function of the product vector y;. To sustain the iteration on a parallel computer, it is
necessary that z;,, be distributed among processors in the same fashion as the previous iterate z;.
Hence, a good matvec routine will return a y; with the same distribution as z; so that z;,; can be
constructed with a minimum of data movement. Our algorithm respects this distribution requirement.

We will simplify notation and consider the parallel matrix-vector product y = Az where A4 is an
n x n matrix and z and y are n-vectors. The number of processors in the parallel machine is denoted
by p, and we assume for ease of exposition that n is evenly divisible by p and that p is an even power
of 2. It is fairly straightforward to relax these restrictions.

Let A be decomposed into square blocks of size (n/,/p) x (n/./p), each of which is assigned to
one of the p processors, as illustrated by Fig. 1. We introduce the Greek subscripts « and 8 running
from 0 to \/p—1 to index the row and column ordering of the blocks. The (a, 3) block of A is denoted
by Aap and owned by processor P,3. The input vector z and product vector y are also conceptually
divided into ,/p pieces indexed by § and a respectively. Given this block decomposition, processor
Pop must know z5 in order to compute its contribution to y,. This contribution is a vector of length
n/,/p which we denote by zo5. Thus 245 = Aaszg, and y, = Ep 24 where the sum is over all the

processors sharing row block a of the matrix.

zs

Fig. 1. Structure of matrix product y = Az.

2.1, Communication primitives. Our algorithm requires three distinct patterns of communi-
cation. The first of these is an efficient method for summing elements of vectors owned by different
processors, and is called a fold operation in [4]. We will use this operation to combine contributions
to y owned by the processors that hold a block row of A. The fold operation is sketched in Fig. 2 for
communication among processors with the same block row index «. Each processor begins the fold
operation with a vector 245 of length n/,/p. The operation requires log,(/p) stages, halving the length
of the vectors involved at each stage. Within each stage, a processor first divides its vector 2z into two

equal sized subvectors, z; and z3, as denoted by (21|22). One of these subvectors is sent to another
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processor, while the other processor sends back its contribution to the subvector which remained. The
received subvector is summed element-by-element with the retained subvector to finish the stage. At
the conclusion of the fold, each processor has a unique, length n/p portion of the fully summed vector.
We denote this subvector with Greek superscripts, hence Fyp owns portion y*?. The fold operation
requires no redundant floating point operations, and the total number of values sent and received by

each processor is n/,/p — n/p.

Processor Pap knows zqp € R™ VP

Z = 248
Fori=0,...,log,(y/p) - 1
(21]|22) = 2

Pogr := Pap with i*R bit of 8 flipped

If bit i of # is 1 Then
Send z; to processor Pug:
Receive w; from processor Pyp:
28 = 29 + wo

Else
Send z; to processor Pog:
Receive w; from processor P,g:
2= 21+ w

y*P =z

Processor Pnp now owns y*# € R*/?

Fig. 2. The fold operation for processor P,z as part of block row a.

In the second communication operation each processor knows some information that must be
shared among all the processors in a column. We use a simple algorithm called ezpand [4], that
essentially uses the inverse communication pattern of the fold operation. The expand operation is
outlined in Fig. 3 for communication between processors with the same column index 8. Each processor
in the column begins with a subvector of length n/p, and when the operation finishes all processors
in the column know all n/,/p values in the union of their subvectors. At each step in the operation a
processor sends all the values it knows to another processor and receives that processor’s values. These

two subvectors are concatenated, as indicated by the “|”

notation. As with the fold operation, only a
logarithmic number of stages are required, and the total number of values sent and received by each
processor is n/,/p — n/p.

The optimal implementation of the fold and expand operations depends on the machine topology
and various hardware considerations, e.g. the availability of multiport communication. There are,
however, efficient implementations on most architectures. On hypercubes, for example, these operations
can be implemented using only nearest neighbor communication if the blocks in each row and column

of the matrix are owned by a subcube with ,/p processors. On meshes, if the blocks of the matrix are
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Processor P, knows y#° € IR"/?
z:=yfe
For i = log,(\/p) - 1,...,0
Py g := Pap with it? bit of a flipped
Send :z to processor P, s
Receive w from processor P, g
If bit i of a is 1 Then

z:=w|z
Else
2= zlw

Yo ‘=2

Processor P,p now knows y, € R"/ VP

Fig. 3. The expand operation for processor P,z as part of block column B.

mapped in the natural way to a square grid of processors, then the fold and expand operations can be
implemented efficiently [9].

The third communication operation in our matvec algorithm requires each processor to send a
message to the processor owning the transpose portion of the matrix, i.e. P,s sends to Ps,. Since we
want row and column communication to be efficient for the fold and expand operations, this transpose
communication can be difficult to implement efficiently. This is because a large number of messages
must travel to architecturally distant processors, so the potential for message congestion is great. We
have devised an optimal, congestion—free algorithm for this operation on hypercubes which is discussed
in §3.1. Implementations of our matvec algorithm on other architectures may benefit from a similarly
tailored transpose algorithm. However, even if congestion is unavoidable, the length of the message
in the transpose communication step of our matvec algorithm is about ,/p less than the volume of
data exchanged in the fold and expand steps. Consequeﬁtly, the transpose messages can be delayed by

O(,/p) without changing the overall scaling of the algorithm.

2.2. The matrix—vector multiplication algorithm. We can now present our algorithm for
computing y = Az in Fig. 4. Further details and enhancements are presented in the following section.
All the numerical operations in the algorithm are performed in steps (1) and (2). First, in step (1),
each processor performs the local matrix-vector multiplication involving the portion of the matrix
it owns. These values are summed within processor rows in step (2) using the fold operation from
Fig. 2, after which each processor owns n/p of the values of y. Unfortunately, the values owned by
processor P,p are just a subvector of y,, whereas to perform the next matvec P,s must know all of
ys. This is accomplished in steps (3) and (4). In step (3), each processor exchanges its subsegment of
y with the processor owning the transpose block of the matrix. After the transposition, the values of
yp are distributed among the processors in column block # of A. The expand operation among these
processors gives each of them all of yg, so the result is distributed as required for a subsequent matvec.
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We note that at this level of detail, the algorithm is identical to the one described in [4] for dense
matrices, but as we discuss in the next section, the details of steps (1), (2) and (3) are different and

result in a more efficient overall algorithm.

Processor P,g owns A,p and zg
(1) Compute 2,5 = Agpzp
(2) Fold z4p within rows to form y*#
(3) Transpose the y°?, i.e.
a) Send y°? to Ps,
b) Receive y?°° from Ps,
(4) Expand y°® within colurnns to form ys

Fig. 4. Parallel matrix-vector multiplication algorithm for processor P,g.

3. Algorithmic details and refinements.

3.1. Transposition on parallel computers. The expand and fold primitives used in the
matvec algorithm are most efficient on a paralle] computer if rows and columns of the matrix are
mapped to subsets of processors that allow for fast communication. On a hypercube a natural subset
is a subcube, while on a 2-D mesh rows, columns or submeshes are possible. Unfortunately, such a
mapping can make the transpose operation inefficient since it requires communication between pro-
cessors that are architecturally distant. Modern paralle] computers use cut-through routing so that a
single message can be transmitted between non-adjacent processors at nearly the same speed as if it
were sent between adjacent processors. Nevertheless, if multiple messages are simultaneously trying
to use the same wire, all but one of them must be delayed. Hence machines with cut through routing
can still suffer from serious message congestion.

On a hypercube the scheme for routing a message is usually to compare the bit addresses of the
sending and receiving processors and flip the bits in a fixed order (and transmit along the corresponding
channel) until the two addresses agree. On the nCUBE 2 and Intel iPSC/860 hypercubes the order
of comparisons is from lowest bit to highest, a procedure known as dimension order routing. Thus
a message from processor 1001 to processor 0100 will route from 1001 to 1000 to 1100 to 0100. The
usual scheme of assigning matrix blocks to processors uses low order bits to encode the column number
and the high order bits to encode the row number. Unfortunately, dimension order routing on this
mapping induces congestion since messages from all the \/p processors in a row route through the
diagonal processor. A similar bottleneck occurs with mesh architectures where the usual routing
scheme is to move within a row before moving within a column. Fortunately, the messages being
transposed in our algorithm are shorter than those in the fold and expand operations by a factor of
V/P- So even if congestion delays the transpose messages by ,/p, the overall communication scaling of
the algorithm will not be affected.

On a hypercube, a different mapping of matrix blocks to processors can avoid transpose congestion
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altogether. With this mapping we still have nearest neighbor communication in the fold and expand
operations, but now the transpose operation is as fast as sending and receiving a single message of
length n/p. Consider a d—dimensional hypercube where the address of each processor is a d-bit string.
For simplicity we assume that d is even. The row block number o is a d/2-bit string, as is the column
block number 3. For fast fold and expand operations, we require that the processors in each row and
column form a subcube. This is assured if any set of d/2 bits in the d-bit processor address encode the
block row number and the other d/2 bits encode the block column number. Now consider a mapping
where the bits of the block row and block column indices of the matrix are interleaved in the processor
address. For a 64-processor hypercube (with 3-bit row and column addresses for the 8x8 blocks of
the matrix) this means the 6-bit processor address would be mear;ciroco where the three bits mryrg
encode the block row index and cy¢1cp encodes the block column index.

Note that in this mapping each row of blocks and column of blocks of the matrix still resides on
a subcube of the hypercube, so the expand and fold.operations can be performed optimally. However,
the transpose operation is now contention-free as demonstrated by the following theorem. Although
the proof assumes a routing scheme where bits are flipped in order from lowest to highest, a similar
contention free mapping is possible for any fixed routing scheme as long as row and column bits are
forced to change alternately.

THEOREM 3.1. Consider a hypercube using dimension order routing, and map processors to
elements of an array in such a way that the bit-representations of a processor’s row number and column
number are interleaved in the processor’s bit-address id. Then the wires used when each processor sends
a message o the processor in the transpose location in the array are disjoint.

Proof. Consider a processor P with bit—address rycpry_16p—1 - - - roCo, where the row number is
encoded with ry - - -rq, and the column number with ¢; - - - ¢g. The processor PT in the transpose array
location will have with bit-address eyrycy—173—1 -+ coro. Under dimension order routing, a message is
transmitted in as many stages as there are bits, flipping bits in order from right to left to generate
a sequence of intermediate patterns. After each stage, the message will have been routed to the
intermediate processor denoted by the current intermediate bit pattern. The wires used in routing the
message from P to PT are those that connect two processors whose patterns occur consecutively in the
sequence of intermediate patterns. After 2k stages, the intermediate processor will have the pattern
T3Ch - FECECE-1Tk—1 - - -CoTo. The bits of this intermediate processor are a simple permutation of the
original bits of P in which the lowest k pairs of bits have been swapped. Also, after 2k — 1 stages, the
values in the bit positions 2k and 2k — 1 are equal.

Now consider another processor P’ # P, and assume that the message being routed from P’
to P'T uses the same wire employed in step i of the transmission from P to PT. Denote the two
processors connected by this wire by P, and P,. Since they differ in bit position ¢, P, and P, can only
be encountered consecutively in the transition between stages i — 1 and i of the routing algorithm.
Either i — 1 or i is even, so a simple permutation of pairs of bits of P must generate either P, or Py; say
P.,. Similarly, the same permutation applied to P’ must also yield either P, or P;;say P.. If P, = P
then P = P’ which is a contradiction. Otherwise, both P; and P; must appear after an odd number of
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stages in one of the routing sequences. If ¢ is odd then bits i and ¢ + 1 of P must be equal, and if i is
even then bits { and { — 1 of P are equal. In either case, P, = P, which again implies the contradiction
that P=P'. D

3.2. Overlapping computation and communication. If a processor is able to both compute
and communicate simultaneously, then the algorithm in Fig. 4 has the shortcoming that once a proces-
sor has sent a message in the fold or expand operations, it is idle until the message from its neighbor
arrives. This can be alleviated in the fold operation in step (2) of the algorithm by interleaving com-
munication with computation from step (1). Rather than computing all the elements of 2,5 before
beginning the fold operation, we should compute just those that are about to be sent. Then whichever
values will be sent in the next pass through the fold loop get computed between the send and receive
operations in the current pass. In the final pass, the values that the processor will keep are computed.
In this way, the total run time is reduced on each pass through the fold loop by the minimum of the

message transmission time and the time to compute the next set of elements of z,g.

3.3. Balancing the computational load. The discussion above has concentrated on the com-
munication requirements of our algorithm, but an efficient algorithm must also ensure that the com-
putational load is well balanced across the processors. For our algorithm, this requires balancing the
computations within each local matvec. If the region of the matrix owned by a processor has m’ nonze-
ros, the number of floating point operations (flops) required for the local matvec is 2m’ —n/,/p. These
will be balanced if m’ & m/p for each processor, where m is the total number of nonzero elements in
the matrix. For dense matrices or random matrices in which m >» n, the load is likely to be balanced.
However for matrices with some structure it may not be. For these problems, Ogielski and Aiello have
shown that randomly permuting the rows and columns gives good balance with high probability [8]. A
random permutation has the additional advantage that zero values encountered when summing vectors
in the fold operation are likely to be distributed randomly among the processors.

Most matrices used in real applications have nonzero diagonal elements. We have found that when
this is the case, it may be advantageous to force an even distribution of these among processors and to
randomly map the remaining elements. This can be accomplished by first applying a random symmetric
permutation to the matrix. This preserves the diagonal while moving the off-diagonal elements. The
diagonal can now be mapped to processors to match the distribution of the y*# subsegment that each
processor owns. The contribution of the diagonal elements can then be computed in between the send
and receive operations in the transpose communication, saving either the transpose transmission time

or the diagonal computation time, whichever is smaller.

3.4. Complexity model. The algorithm described above can be implemented to require the
minimal 2m — n flops to perform a matrix-vector multiplication, where m is the number of nonzeros
in the matrix. Some of these flops will occur during the calculation of the local matvecs, and the rest
during the fold summations. We make no assumptions about the data structure used on each processor
to compute its local matrix-vector product. This allows for the implementation of whatever algorithm

works best on the particular hardware. If we assume the computational load is balanced by using the
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techniques described in §3.3, the time to execute these floating point operations should be very nearly
(2m — n)Tqop/p, where Thop is the time required for a single floating point operation.

The algorithm requires log,(p) + 1 read/write pairs for each processor, and a total communi-
cation volume of n(2,/p — 1) floating point numbers. Accounting for the natural parallelism in the
communication operations, the effective communication volume is n(2,/p — 1)/p. Unless the matrix is
very sparse, the computational time required to form the local matvec will be sufficient to hide the
transmission time in the fold operation, as discussed in §3.2. We will assume that this is the case.
Furthermore, we will assume that the transpose transmission time can be hidden with computations
involving the matrix diagonal, as described in §3.3. The effective communication volume therefore

reduces to n(,/p — 1)/p. The total run time, Tioral can now be expressed as

Ttotal = Tﬂop + (lOgZ(p) + l)(Tsend + 71receive) +

Ttransmit y

(1) 2m—n n(\/i— 1)

where Tqop, is the time to execute a floating point opération, Tzend and Treceive are the times to initiate a
send and receive operation respectively, and Tiransmit 18 the transmission time per floating point value.
This model will be most accurate if message contention is insignificant, as it is with the mapping for

hypercubes described in §3.1.

4. Application to the Conjugate Gradient algorithm. To examine the efficiency of our
parallel matrix—vector multiplication algorithm, we used it as the kernel of a conjugate gradient (CG)
solver. A version of the CG algorithm for solving the linear system Az = b is depicted in Fig. 5. There
are a number of variants of the basic CG method; the one we present is a slightly modified version
of the algorithm given in the NAS benchmark [1, 3] discussed later. In addition to the matrix-vector
multiplication, the inner loop of the CG algorithm requires three vector updates (of z, r and p), as
well as two inner products (forming v and p').

An efficient parallel implementation of the CG algorithm should divide the workload evenly among
processors while keeping the cost of communication small. Unfortunately, these goals are in conflict
because when the vector updates are distributed, the inner product calculations require communication
among all the processors. In addition, if the algorithm in Fig. 5 is implemented in parallel, each
processor must know the value of « before it can update r to compute ¢/ and hence 3. The calculation
of ¥ = pTy, the distribution of v, and the calculation of p’ = rTr can actually be condensed into two
global operations because the first two operations can be accomplished simultaneously with a binary
exchange algorithm. However these global operations are still very costly. One way to reduce the
communication load of the algorithm is to modify it as shown in Fig. 6.

This modified algorithm is algebraically equivalent to the original, but instead of updating r
and then calculating r7r, the new algorithm exploits the identity rT ri4y = (ri — ay)T(ri — ay) =
rTri — ayTri + a?yTy, as suggested by Van Rosendale [10]. The values of v, ¢ and % can be summed
with a single global communication, essentially halving the communication time required outside the
matvec routine. In exchange for this communication reduction, there is a net increase of one inner

T

product calculation since ¢ = yTr and ¥ = y7y must now be computed, but o/ = rTr need not
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z:=0

r:=5%

p=

p:=rTr

For i=1,
y:=Ap
v:=pTy
a:=pfy
z:=z+ap
ri=r-—ay
p=1rTr
B:=//p
p=P
p=r+fp

Fig. 5. A conjugate gradient algorithm.

be calculated explicitly. Since the vectors are distributed across all the processors, this requires an
additional 2n/p floating point operations by each processor in order to avoid a global communication.
Whether this is a net gain depends upon the relative sizes of n and p, as well as the cost of flops and
communication on a particular machine, but since communication is typically much more expensive
per unit than computation, the modified algorithm should generally be faster. For the nCUBE 2,
the machine used in this study, we estimate that this recasting of the algorithm is worthwhile when
n <5 x 105

This restructuring of the CG algorithm can in principle be carried further to hide more of the
communication cost of the linear solve. That is, by repeatedly substituting for the residual and search
vectors r and p we can express the current values of these vectors in terms of their values k steps
previously. (General formulas for this process are given in [7].) By proper choice of k it is possible to
completely hide the global communication in the CG algorithm. Unfortunately this leads to a serious
loss of stability in the CG process which is expensive to correct [6]. We therefore recommend only
limited application of this restructuring idea.

The vector and scalar operations associated with CG fit conveniently between steps (3) and (4)
of the matrix-vector multiplication algorithm outlined in Fig. 4. At the end of step (3) the product
vector y is distributed across all p processors, and it is trivial to achieve the identical distribution for
z, r and p. Now all the vector updates can proceed perfectly in parallel. At the end of the CG loop,
the vector p can be shared through an expand operation within columns and hence the processors will
be ready for the next matvec. The resulting algorithm is sketched in Fig. 7.

We implemented a double precision version of this algorithm in C on the 1024 processor nCUBE 2

hypercube at Sandia’s Massively Parallel Computing Research Laboratory. The resulting code was
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z:=0

r:=b

p=>b

p=rTr

Fori=1,...n
y:=Ap
v=pTy
¢:=yTr
¥ =yTy
a:=ply
pi=p-ap+a’y
B:=¢/p
p=yp
=+ ap
ri=r—ay
pi=r+pp

Fig. 6. A modified conjugate gradient algorithm.

tested on the well-known NAS parallel benchmark problem proposed by researchers at NASA Ames
[1, 3]. The benchmark uses a conjugate gradient iteration to approximate the smallest eigenvalue of
a random, symmetric matrix of size 14,000, with an average of just over 132 nonzeros in each row.
The benchmark requires 15 calls to the conjugate gradient routine, each of which involves 25 passes
through the innermost loop containing the matvec.

This benchmark problem has been addressed by a number of different researchers on several
different machines [2]. A common theme in this previous work has been the search for some exploitable
structure within the benchmark matrix. Since arbitrary restructuring of the matrix is permitted by
the benchmark rules as a pre-processing step, the computational effort expended in this search for
structure is not counted in the benchmark timings.

In contrast, our algorithm is completely generic and does not require any special structure in the
matrix. The communication operations are entirely independent of the zero/nonzero pattern of the
matrix, and the only advantage of reordering would be to lessen the load on the most heavily burdened
processor. Because the benchmark matrix diagonal is dense, we did partition the diagonal across all
processors, as described in §3.3. Otherwise, we accepted the matrix as given, and made no effort to
exploit structure.

Our implementation solved the benchmark problem in 6.09 seconds, which compares quite favor-
ably with all other published results on massively parallel machines [3). For comparison, the recently
published times for the 128 processor iPSC/860 and 32K CM-2 are 8.61 and 8.8 seconds respectively,

which is more than 40% longer than our result. Although this problem is highly unstructured, our
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Processor Py, owns A,y
z,r,p,b,y € R"?, z,,p, € R*/VF

z:=0
r:=b
p=1b
p:=rTr

Sum p over all processors to form p
Expand p within columns to form p,
For:=1,...
Compute z, = A,,p,
Fold z, within rows to form y*¥
Transpose y*Y, t.e.
Send y#* to P, ’

Receive y := y’# from P,,

y:=pTy

é:=yTr

b =9y

Sum ¥, ¢ and 3 over all processors to form v, ¢ and ¥
a:=p/y
p=p—ap+ay
B:=p/p

pi=p

T =z+ap
ri=r+ay
p=r+pfp

Expand p within columns to form p,

Fig. 7. A parallel CG algorithm for processor P,,.

C code achieves about 250 Mflops, which is about 12% of the raw speed achievable by running pure

assembly language BLAS on each processor without any communication.

5. Conclusions. We have presented a parallel algorithm for matrix-vector multiplication, and
shown how this algorithm can be used very effectively within the conjugate gradient algorithm. The
communication cost of this algorithm is independent of the zero/nonzero structure of the matrix and
scales as n/,/p. Consequently, the algorithm is most appropriate for matrices in which structure is
either difficult or impossible to exploit. This is clearly the case for dense and random matrices, and
it is also true more generally for sparse matrices in many contexts. For example, our algorithm could
serve as an efficient black-box routine for prototyping sparse matrix linear algebra algorithms or could
be embedded in a sparse matrix library where few assumptions about matrix structure can be made.
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On the NAS conjugate gradient benchmark, an nCUBE 2 implementation of this algorithm runs

more than 40% faster than any other reported algorithm running on any massively parallel machine.

The particular mapping we employ for hypercubes is likely to be of independent interest. This

mapping ensures that rows and columns of the matrix are owned entirely by subcubes, and that with

cut-through routing the transpose operation can be performed without message contention. This

mapping has already proved useful for parallel many-body calculations [5], and is probably applicable

to other linear algebra algorithms.
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