peen2D CCP
SAND92 —2765 « UC—405

Printed March 1993 SANDIA NATIONAL
LABORATORIES
TECHNICAL LIBRARY

|

70032%

|

SANDIA REPORT | ‘

fﬂUl

An Efficient Parallel Algorithm
for Matrix—Vector Multiplication

Bruce Hendrickson, Robert Leland, Steve Plimpton

Prepered by

Sandia National Laboratories

Albuquerque, New Mexico 87 185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-76DP00789

SF2900Q(8-81)



Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
" agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or representa that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information

PO Box
Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Rval Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A0S
Microfiche copy: A01



SAND92-2765 Distribution
Unlimited Release Category UC-405
Printed March 1993

An Efficient Parallel Algorithm
for Matrix—Vector Multiplication

Bruce Hendrickson, Robert Leland and Steve Plimpton
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

Abstract.

The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific
computation. A fast parallel algorithm for this calculation is therefore necessary if we are to make full
use of the new generation of parallel supercomputers. This paper presents a high performance, parallel
matrix—vector multiplication algorithm that is particularly well suited to hypercube multiprocessors.
For an n x n matrix on p processors, the communication cost of this algorithm is O(n//p + log(p)),
independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by
employing it as the kernel in the well-known NAS conjugate gradient benchmark, where a run time
of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to
date using a massively parallel supercomputer.

Key words. matrix—vector multiplication, parallel computing, hypercube, conjugate gradient
method

AMS(MOS) subject classification. 65Y05, 65F10

Abbreviated title. Parallel Matrix—Vector Multiplication.

This work was supported by the Applied Mathematical Sciences program, U.S. Department of
Energy, Office of Energy Research, and was performed at Sandia National Laboratories, operated for

the U.S. Department of Energy under contract No. DE-AC04-76DP00789.
1



1. Introduction. The multiplication of a vector by a matrix is the kernel computation in many
linear algebra algorithms, including, for example, the popular Krylov methods for solving linear and
eigen systems. Recent improvements in such methods, coupled with the increasing use of massively
parallel computers, require the development of efficient parallel algorithms for matrix—vector multiplica-
tion. This paper describes such an algorithm. Although the method works on all parallel architectures,
it is particularly well suited to machines with hypercube interconnection topology, for example the Intel
1iPSC/860 and the nCUBE 2.

The algorithm described here was developed independently in connection with research on efficient
methods of organizing parallel many-body caiculations (see [5]). We subsequently learned that our
algorithm is very similar in structure to a parallel matrix-vector multiplication algorithm described
in [4]. We have, nevertheless, chosen to present our algorithm because it improves upon that in [4] in
several ways: First, we specify how to overlap communication and computation and thereby reduce
the overall run time. Second, we show how to map.the blocks of the matrix to processors in a novel
way which improves the performance of a critical communication operation on current hypercube
architectures. And third, we consider the actual use of the algorithm within the iterative conjugate
gradient solution method and show how in this context a small amount of redundant computation can
be used to further reduce the communication requirements. By integrating these improvements we
have been able to achieve significantly better performance on a well known benchmark than has been
previously possible with a massively parallel machine.

A very attractive property of the new algorithm is that its communication operations are indepen-
dent of the sparsity pattern of the matrix, making it applicable to all matrices. For an n x n matrix on p
processors, the cost of the communication is O(n/,/p+log(p)). However, many sparse matrices exhibit
structure which allows for other algorithms with even lower communication requirements. Typically
this structure arises from the physical problem being modeled by the matrix equation and manifests
itself as the ability to reorder the rows and columns to obtain a nearly block-diagonal matrix, where
the p diagonal blocks are about equally sized, and the number of matrix elements not in the blocks is
small. This structure can also be expressed in terms of the size of the separator of the graph describing
the nonzero structure of the matrix. Our algorithm is clearly not optimal for such matrices, but there
are many contexts where the matrix structure is not helpful (e.g. dense matrices, random matrices),
or the effort required to identify the structure is too large to justify. It is these settings in which our
algorithm is most appropriate and provides high performance.

This paper is structured as follows. In the next section we describe the algorithm and its com-
munication primitives. In §3 we present refinements and improvements to the basic algorithm, and
develop a performance model. In §4 we apply the algorithm to the NAS conjugate gradient benchmark

problem to demonstrate its utility. Conclusions are drawn in §5.

2. A parallel matrix—vector multiplication algorithm. Iterative solution methods for linear
and eigen systems are one of the mainstays of scientific computation. These methods involve repeated

matrix—vector products or matvecs of the form y; = Az; where the the new iterate, z;,;, is generally

2



some simple function of the product vector y;. To sustain the iteration on a parallel computer, it is
necessary that z;,, be distributed among processors in the same fashion as the previous iterate z;.
Hence, a good matvec routine will return a y; with the same distribution as z; so that z;,; can be
constructed with a minimum of data movement. Our algorithm respects this distribution requirement.

We will simplify notation and consider the parallel matrix-vector product y = Az where A4 is an
n x n matrix and z and y are n-vectors. The number of processors in the parallel machine is denoted
by p, and we assume for ease of exposition that n is evenly divisible by p and that p is an even power
of 2. It is fairly straightforward to relax these restrictions.

Let A be decomposed into square blocks of size (n/,/p) x (n/./p), each of which is assigned to
one of the p processors, as illustrated by Fig. 1. We introduce the Greek subscripts « and 8 running
from 0 to \/p—1 to index the row and column ordering of the blocks. The (a, 3) block of A is denoted
by Aap and owned by processor P,3. The input vector z and product vector y are also conceptually
divided into ,/p pieces indexed by § and a respectively. Given this block decomposition, processor
Pop must know z5 in order to compute its contribution to y,. This contribution is a vector of length
n/,/p which we denote by zo5. Thus 245 = Aaszg, and y, = Ep 24 where the sum is over all the

processors sharing row block a of the matrix.

zs

Fig. 1. Structure of matrix product y = Az.

2.1, Communication primitives. Our algorithm requires three distinct patterns of communi-
cation. The first of these is an efficient method for summing elements of vectors owned by different
processors, and is called a fold operation in [4]. We will use this operation to combine contributions
to y owned by the processors that hold a block row of A. The fold operation is sketched in Fig. 2 for
communication among processors with the same block row index «. Each processor begins the fold
operation with a vector 245 of length n/,/p. The operation requires log,(/p) stages, halving the length
of the vectors involved at each stage. Within each stage, a processor first divides its vector 2z into two

equal sized subvectors, z; and z3, as denoted by (21|22). One of these subvectors is sent to another
3



processor, while the other processor sends back its contribution to the subvector which remained. The
received subvector is summed element-by-element with the retained subvector to finish the stage. At
the conclusion of the fold, each processor has a unique, length n/p portion of the fully summed vector.
We denote this subvector with Greek superscripts, hence Fyp owns portion y*?. The fold operation
requires no redundant floating point operations, and the total number of values sent and received by

each processor is n/,/p — n/p.

Processor Pap knows zqp € R™ VP

Z = 248
Fori=0,...,log,(y/p) - 1
(21]|22) = 2

Pogr := Pap with i*R bit of 8 flipped

If bit i of # is 1 Then
Send z; to processor Pug:
Receive w; from processor Pyp:
28 = 29 + wo

Else
Send z; to processor Pog:
Receive w; from processor P,g:
2= 21+ w

y*P =z

Processor Pnp now owns y*# € R*/?

Fig. 2. The fold operation for processor P,z as part of block row a.

In the second communication operation each processor knows some information that must be
shared among all the processors in a column. We use a simple algorithm called ezpand [4], that
essentially uses the inverse communication pattern of the fold operation. The expand operation is
outlined in Fig. 3 for communication between processors with the same column index 8. Each processor
in the column begins with a subvector of length n/p, and when the operation finishes all processors
in the column know all n/,/p values in the union of their subvectors. At each step in the operation a
processor sends all the values it knows to another processor and receives that processor’s values. These

two subvectors are concatenated, as indicated by the “|”

notation. As with the fold operation, only a
logarithmic number of stages are required, and the total number of values sent and received by each
processor is n/,/p — n/p.

The optimal implementation of the fold and expand operations depends on the machine topology
and various hardware considerations, e.g. the availability of multiport communication. There are,
however, efficient implementations on most architectures. On hypercubes, for example, these operations
can be implemented using only nearest neighbor communication if the blocks in each row and column

of the matrix are owned by a subcube with ,/p processors. On meshes, if the blocks of the matrix are
4



Processor P, knows y#° € IR"/?
z:=yfe
For i = log,(\/p) - 1,...,0
Py g := Pap with it? bit of a flipped
Send :z to processor P, s
Receive w from processor P, g
If bit i of a is 1 Then

z:=w|z
Else
2= zlw

Yo ‘=2

Processor P,p now knows y, € R"/ VP

Fig. 3. The expand operation for processor P,z as part of block column B.

mapped in the natural way to a square grid of processors, then the fold and expand operations can be
implemented efficiently [9].

The third communication operation in our matvec algorithm requires each processor to send a
message to the processor owning the transpose portion of the matrix, i.e. P,s sends to Ps,. Since we
want row and column communication to be efficient for the fold and expand operations, this transpose
communication can be difficult to implement efficiently. This is because a large number of messages
must travel to architecturally distant processors, so the potential for message congestion is great. We
have devised an optimal, congestion—free algorithm for this operation on hypercubes which is discussed
in §3.1. Implementations of our matvec algorithm on other architectures may benefit from a similarly
tailored transpose algorithm. However, even if congestion is unavoidable, the length of the message
in the transpose communication step of our matvec algorithm is about ,/p less than the volume of
data exchanged in the fold and expand steps. Consequeﬁtly, the transpose messages can be delayed by

O(,/p) without changing the overall scaling of the algorithm.

2.2. The matrix—vector multiplication algorithm. We can now present our algorithm for
computing y = Az in Fig. 4. Further details and enhancements are presented in the following section.
All the numerical operations in the algorithm are performed in steps (1) and (2). First, in step (1),
each processor performs the local matrix-vector multiplication involving the portion of the matrix
it owns. These values are summed within processor rows in step (2) using the fold operation from
Fig. 2, after which each processor owns n/p of the values of y. Unfortunately, the values owned by
processor P,p are just a subvector of y,, whereas to perform the next matvec P,s must know all of
ys. This is accomplished in steps (3) and (4). In step (3), each processor exchanges its subsegment of
y with the processor owning the transpose block of the matrix. After the transposition, the values of
yp are distributed among the processors in column block # of A. The expand operation among these
processors gives each of them all of yg, so the result is distributed as required for a subsequent matvec.

5



We note that at this level of detail, the algorithm is identical to the one described in [4] for dense
matrices, but as we discuss in the next section, the details of steps (1), (2) and (3) are different and

result in a more efficient overall algorithm.

Processor P,g owns A,p and zg
(1) Compute 2,5 = Agpzp
(2) Fold z4p within rows to form y*#
(3) Transpose the y°?, i.e.
a) Send y°? to Ps,
b) Receive y?°° from Ps,
(4) Expand y°® within colurnns to form ys

Fig. 4. Parallel matrix-vector multiplication algorithm for processor P,g.

3. Algorithmic details and refinements.

3.1. Transposition on parallel computers. The expand and fold primitives used in the
matvec algorithm are most efficient on a paralle] computer if rows and columns of the matrix are
mapped to subsets of processors that allow for fast communication. On a hypercube a natural subset
is a subcube, while on a 2-D mesh rows, columns or submeshes are possible. Unfortunately, such a
mapping can make the transpose operation inefficient since it requires communication between pro-
cessors that are architecturally distant. Modern paralle] computers use cut-through routing so that a
single message can be transmitted between non-adjacent processors at nearly the same speed as if it
were sent between adjacent processors. Nevertheless, if multiple messages are simultaneously trying
to use the same wire, all but one of them must be delayed. Hence machines with cut through routing
can still suffer from serious message congestion.

On a hypercube the scheme for routing a message is usually to compare the bit addresses of the
sending and receiving processors and flip the bits in a fixed order (and transmit along the corresponding
channel) until the two addresses agree. On the nCUBE 2 and Intel iPSC/860 hypercubes the order
of comparisons is from lowest bit to highest, a procedure known as dimension order routing. Thus
a message from processor 1001 to processor 0100 will route from 1001 to 1000 to 1100 to 0100. The
usual scheme of assigning matrix blocks to processors uses low order bits to encode the column number
and the high order bits to encode the row number. Unfortunately, dimension order routing on this
mapping induces congestion since messages from all the \/p processors in a row route through the
diagonal processor. A similar bottleneck occurs with mesh architectures where the usual routing
scheme is to move within a row before moving within a column. Fortunately, the messages being
transposed in our algorithm are shorter than those in the fold and expand operations by a factor of
V/P- So even if congestion delays the transpose messages by ,/p, the overall communication scaling of
the algorithm will not be affected.

On a hypercube, a different mapping of matrix blocks to processors can avoid transpose congestion

6



altogether. With this mapping we still have nearest neighbor communication in the fold and expand
operations, but now the transpose operation is as fast as sending and receiving a single message of
length n/p. Consider a d—dimensional hypercube where the address of each processor is a d-bit string.
For simplicity we assume that d is even. The row block number o is a d/2-bit string, as is the column
block number 3. For fast fold and expand operations, we require that the processors in each row and
column form a subcube. This is assured if any set of d/2 bits in the d-bit processor address encode the
block row number and the other d/2 bits encode the block column number. Now consider a mapping
where the bits of the block row and block column indices of the matrix are interleaved in the processor
address. For a 64-processor hypercube (with 3-bit row and column addresses for the 8x8 blocks of
the matrix) this means the 6-bit processor address would be mear;ciroco where the three bits mryrg
encode the block row index and cy¢1cp encodes the block column index.

Note that in this mapping each row of blocks and column of blocks of the matrix still resides on
a subcube of the hypercube, so the expand and fold.operations can be performed optimally. However,
the transpose operation is now contention-free as demonstrated by the following theorem. Although
the proof assumes a routing scheme where bits are flipped in order from lowest to highest, a similar
contention free mapping is possible for any fixed routing scheme as long as row and column bits are
forced to change alternately.

THEOREM 3.1. Consider a hypercube using dimension order routing, and map processors to
elements of an array in such a way that the bit-representations of a processor’s row number and column
number are interleaved in the processor’s bit-address id. Then the wires used when each processor sends
a message o the processor in the transpose location in the array are disjoint.

Proof. Consider a processor P with bit—address rycpry_16p—1 - - - roCo, where the row number is
encoded with ry - - -rq, and the column number with ¢; - - - ¢g. The processor PT in the transpose array
location will have with bit-address eyrycy—173—1 -+ coro. Under dimension order routing, a message is
transmitted in as many stages as there are bits, flipping bits in order from right to left to generate
a sequence of intermediate patterns. After each stage, the message will have been routed to the
intermediate processor denoted by the current intermediate bit pattern. The wires used in routing the
message from P to PT are those that connect two processors whose patterns occur consecutively in the
sequence of intermediate patterns. After 2k stages, the intermediate processor will have the pattern
T3Ch - FECECE-1Tk—1 - - -CoTo. The bits of this intermediate processor are a simple permutation of the
original bits of P in which the lowest k pairs of bits have been swapped. Also, after 2k — 1 stages, the
values in the bit positions 2k and 2k — 1 are equal.

Now consider another processor P’ # P, and assume that the message being routed from P’
to P'T uses the same wire employed in step i of the transmission from P to PT. Denote the two
processors connected by this wire by P, and P,. Since they differ in bit position ¢, P, and P, can only
be encountered consecutively in the transition between stages i — 1 and i of the routing algorithm.
Either i — 1 or i is even, so a simple permutation of pairs of bits of P must generate either P, or Py; say
P.,. Similarly, the same permutation applied to P’ must also yield either P, or P;;say P.. If P, = P
then P = P’ which is a contradiction. Otherwise, both P; and P; must appear after an odd number of

7



stages in one of the routing sequences. If ¢ is odd then bits i and ¢ + 1 of P must be equal, and if i is
even then bits { and { — 1 of P are equal. In either case, P, = P, which again implies the contradiction
that P=P'. D

3.2. Overlapping computation and communication. If a processor is able to both compute
and communicate simultaneously, then the algorithm in Fig. 4 has the shortcoming that once a proces-
sor has sent a message in the fold or expand operations, it is idle until the message from its neighbor
arrives. This can be alleviated in the fold operation in step (2) of the algorithm by interleaving com-
munication with computation from step (1). Rather than computing all the elements of 2,5 before
beginning the fold operation, we should compute just those that are about to be sent. Then whichever
values will be sent in the next pass through the fold loop get computed between the send and receive
operations in the current pass. In the final pass, the values that the processor will keep are computed.
In this way, the total run time is reduced on each pass through the fold loop by the minimum of the

message transmission time and the time to compute the next set of elements of z,g.

3.3. Balancing the computational load. The discussion above has concentrated on the com-
munication requirements of our algorithm, but an efficient algorithm must also ensure that the com-
putational load is well balanced across the processors. For our algorithm, this requires balancing the
computations within each local matvec. If the region of the matrix owned by a processor has m’ nonze-
ros, the number of floating point operations (flops) required for the local matvec is 2m’ —n/,/p. These
will be balanced if m’ & m/p for each processor, where m is the total number of nonzero elements in
the matrix. For dense matrices or random matrices in which m >» n, the load is likely to be balanced.
However for matrices with some structure it may not be. For these problems, Ogielski and Aiello have
shown that randomly permuting the rows and columns gives good balance with high probability [8]. A
random permutation has the additional advantage that zero values encountered when summing vectors
in the fold operation are likely to be distributed randomly among the processors.

Most matrices used in real applications have nonzero diagonal elements. We have found that when
this is the case, it may be advantageous to force an even distribution of these among processors and to
randomly map the remaining elements. This can be accomplished by first applying a random symmetric
permutation to the matrix. This preserves the diagonal while moving the off-diagonal elements. The
diagonal can now be mapped to processors to match the distribution of the y*# subsegment that each
processor owns. The contribution of the diagonal elements can then be computed in between the send
and receive operations in the transpose communication, saving either the transpose transmission time

or the diagonal computation time, whichever is smaller.

3.4. Complexity model. The algorithm described above can be implemented to require the
minimal 2m — n flops to perform a matrix-vector multiplication, where m is the number of nonzeros
in the matrix. Some of these flops will occur during the calculation of the local matvecs, and the rest
during the fold summations. We make no assumptions about the data structure used on each processor
to compute its local matrix-vector product. This allows for the implementation of whatever algorithm

works best on the particular hardware. If we assume the computational load is balanced by using the
8



techniques described in §3.3, the time to execute these floating point operations should be very nearly
(2m — n)Tqop/p, where Thop is the time required for a single floating point operation.

The algorithm requires log,(p) + 1 read/write pairs for each processor, and a total communi-
cation volume of n(2,/p — 1) floating point numbers. Accounting for the natural parallelism in the
communication operations, the effective communication volume is n(2,/p — 1)/p. Unless the matrix is
very sparse, the computational time required to form the local matvec will be sufficient to hide the
transmission time in the fold operation, as discussed in §3.2. We will assume that this is the case.
Furthermore, we will assume that the transpose transmission time can be hidden with computations
involving the matrix diagonal, as described in §3.3. The effective communication volume therefore

reduces to n(,/p — 1)/p. The total run time, Tioral can now be expressed as

Ttotal = Tﬂop + (lOgZ(p) + l)(Tsend + 71receive) +

Ttransmit y

(1) 2m—n n(\/i— 1)

where Tqop, is the time to execute a floating point opération, Tzend and Treceive are the times to initiate a
send and receive operation respectively, and Tiransmit 18 the transmission time per floating point value.
This model will be most accurate if message contention is insignificant, as it is with the mapping for

hypercubes described in §3.1.

4. Application to the Conjugate Gradient algorithm. To examine the efficiency of our
parallel matrix—vector multiplication algorithm, we used it as the kernel of a conjugate gradient (CG)
solver. A version of the CG algorithm for solving the linear system Az = b is depicted in Fig. 5. There
are a number of variants of the basic CG method; the one we present is a slightly modified version
of the algorithm given in the NAS benchmark [1, 3] discussed later. In addition to the matrix-vector
multiplication, the inner loop of the CG algorithm requires three vector updates (of z, r and p), as
well as two inner products (forming v and p').

An efficient parallel implementation of the CG algorithm should divide the workload evenly among
processors while keeping the cost of communication small. Unfortunately, these goals are in conflict
because when the vector updates are distributed, the inner product calculations require communication
among all the processors. In addition, if the algorithm in Fig. 5 is implemented in parallel, each
processor must know the value of « before it can update r to compute ¢/ and hence 3. The calculation
of ¥ = pTy, the distribution of v, and the calculation of p’ = rTr can actually be condensed into two
global operations because the first two operations can be accomplished simultaneously with a binary
exchange algorithm. However these global operations are still very costly. One way to reduce the
communication load of the algorithm is to modify it as shown in Fig. 6.

This modified algorithm is algebraically equivalent to the original, but instead of updating r
and then calculating r7r, the new algorithm exploits the identity rT ri4y = (ri — ay)T(ri — ay) =
rTri — ayTri + a?yTy, as suggested by Van Rosendale [10]. The values of v, ¢ and % can be summed
with a single global communication, essentially halving the communication time required outside the
matvec routine. In exchange for this communication reduction, there is a net increase of one inner

T

product calculation since ¢ = yTr and ¥ = y7y must now be computed, but o/ = rTr need not

9



z:=0

r:=5%

p=

p:=rTr

For i=1,
y:=Ap
v:=pTy
a:=pfy
z:=z+ap
ri=r-—ay
p=1rTr
B:=//p
p=P
p=r+fp

Fig. 5. A conjugate gradient algorithm.

be calculated explicitly. Since the vectors are distributed across all the processors, this requires an
additional 2n/p floating point operations by each processor in order to avoid a global communication.
Whether this is a net gain depends upon the relative sizes of n and p, as well as the cost of flops and
communication on a particular machine, but since communication is typically much more expensive
per unit than computation, the modified algorithm should generally be faster. For the nCUBE 2,
the machine used in this study, we estimate that this recasting of the algorithm is worthwhile when
n <5 x 105

This restructuring of the CG algorithm can in principle be carried further to hide more of the
communication cost of the linear solve. That is, by repeatedly substituting for the residual and search
vectors r and p we can express the current values of these vectors in terms of their values k steps
previously. (General formulas for this process are given in [7].) By proper choice of k it is possible to
completely hide the global communication in the CG algorithm. Unfortunately this leads to a serious
loss of stability in the CG process which is expensive to correct [6]. We therefore recommend only
limited application of this restructuring idea.

The vector and scalar operations associated with CG fit conveniently between steps (3) and (4)
of the matrix-vector multiplication algorithm outlined in Fig. 4. At the end of step (3) the product
vector y is distributed across all p processors, and it is trivial to achieve the identical distribution for
z, r and p. Now all the vector updates can proceed perfectly in parallel. At the end of the CG loop,
the vector p can be shared through an expand operation within columns and hence the processors will
be ready for the next matvec. The resulting algorithm is sketched in Fig. 7.

We implemented a double precision version of this algorithm in C on the 1024 processor nCUBE 2

hypercube at Sandia’s Massively Parallel Computing Research Laboratory. The resulting code was

10



z:=0

r:=b

p=>b

p=rTr

Fori=1,...n
y:=Ap
v=pTy
¢:=yTr
¥ =yTy
a:=ply
pi=p-ap+a’y
B:=¢/p
p=yp
=+ ap
ri=r—ay
pi=r+pp

Fig. 6. A modified conjugate gradient algorithm.

tested on the well-known NAS parallel benchmark problem proposed by researchers at NASA Ames
[1, 3]. The benchmark uses a conjugate gradient iteration to approximate the smallest eigenvalue of
a random, symmetric matrix of size 14,000, with an average of just over 132 nonzeros in each row.
The benchmark requires 15 calls to the conjugate gradient routine, each of which involves 25 passes
through the innermost loop containing the matvec.

This benchmark problem has been addressed by a number of different researchers on several
different machines [2]. A common theme in this previous work has been the search for some exploitable
structure within the benchmark matrix. Since arbitrary restructuring of the matrix is permitted by
the benchmark rules as a pre-processing step, the computational effort expended in this search for
structure is not counted in the benchmark timings.

In contrast, our algorithm is completely generic and does not require any special structure in the
matrix. The communication operations are entirely independent of the zero/nonzero pattern of the
matrix, and the only advantage of reordering would be to lessen the load on the most heavily burdened
processor. Because the benchmark matrix diagonal is dense, we did partition the diagonal across all
processors, as described in §3.3. Otherwise, we accepted the matrix as given, and made no effort to
exploit structure.

Our implementation solved the benchmark problem in 6.09 seconds, which compares quite favor-
ably with all other published results on massively parallel machines [3). For comparison, the recently
published times for the 128 processor iPSC/860 and 32K CM-2 are 8.61 and 8.8 seconds respectively,

which is more than 40% longer than our result. Although this problem is highly unstructured, our

11



Processor Py, owns A,y
z,r,p,b,y € R"?, z,,p, € R*/VF

z:=0
r:=b
p=1b
p:=rTr

Sum p over all processors to form p
Expand p within columns to form p,
For:=1,...
Compute z, = A,,p,
Fold z, within rows to form y*¥
Transpose y*Y, t.e.
Send y#* to P, ’

Receive y := y’# from P,,

y:=pTy

é:=yTr

b =9y

Sum ¥, ¢ and 3 over all processors to form v, ¢ and ¥
a:=p/y
p=p—ap+ay
B:=p/p

pi=p

T =z+ap
ri=r+ay
p=r+pfp

Expand p within columns to form p,

Fig. 7. A parallel CG algorithm for processor P,,.

C code achieves about 250 Mflops, which is about 12% of the raw speed achievable by running pure

assembly language BLAS on each processor without any communication.

5. Conclusions. We have presented a parallel algorithm for matrix-vector multiplication, and
shown how this algorithm can be used very effectively within the conjugate gradient algorithm. The
communication cost of this algorithm is independent of the zero/nonzero structure of the matrix and
scales as n/,/p. Consequently, the algorithm is most appropriate for matrices in which structure is
either difficult or impossible to exploit. This is clearly the case for dense and random matrices, and
it is also true more generally for sparse matrices in many contexts. For example, our algorithm could
serve as an efficient black-box routine for prototyping sparse matrix linear algebra algorithms or could
be embedded in a sparse matrix library where few assumptions about matrix structure can be made.

12



On the NAS conjugate gradient benchmark, an nCUBE 2 implementation of this algorithm runs

more than 40% faster than any other reported algorithm running on any massively parallel machine.

The particular mapping we employ for hypercubes is likely to be of independent interest. This

mapping ensures that rows and columns of the matrix are owned entirely by subcubes, and that with

cut-through routing the transpose operation can be performed without message contention. This

mapping has already proved useful for parallel many-body calculations [5], and is probably applicable

to other linear algebra algorithms.

Acknowledgements. We are indebted to David Greenberg for assistance in developing the hy-

percube transposition algorithm in §3.1.

[1] D

[2] D.

3] D.

[4] G.

[5] B.

(7] R.

8] A.

[9 R.

REFERENCES

H. BAILEY, E. BARrszcz, J. T. BarToN,; D. S. BROwWNING, R. L. CARTER, L. DaGuM,
R. A. FatooHi, P. O. FREDERICKSON, T. A. LasINskI, R. S. SCHREIBER, , H. D. SIMON,
V. VENKATAKRISHNAN, AND S. K. WEERATUNGA, The NAS parallel benchmarks, Intl. J.
Supercomputing Applications, 5 (1991), pp. 63-73.

H. BaiLEY, E. Barszcz, L. DaguM, aAND H. D. SIMON, NAS parallel benchmark results, in
Proc. Supercomputing '92, IEEE Computer Society Press, 1992, pp. 386-393.

H. BAILEY, J. T. BaRTON, T. A. LAsINSKI, AND H. D. SimoN, EpIToRS, The NAS parallel
benchmarks, Tech. Rep. RNR-91-02, NASA Ames Research Center, Moffett Field, CA, January
1991.

C. Fox, M. A. JounsoN, G. A. LYyzenga, S. W. OtTo, J. K. SALMON, AND D. W.
WALKER, Solving problems on concurrent processors: Volume 1, Prentice Hall, Englewood
Cliffs, NJ, 1988.

HENDRICKSON AND S. PLIMPTON, Parallel many-body calculations without all-to-all com-
munication, Tech. Rep. SAND 92-2766, Sandia National Laboratories, Albuquerque, NM,
December 1992.

. W. LELAND, The Effectiveness of Parallel Iterative Algorithms for Solution of Large Sparse

Linear Systems, PhD thesis, University of Oxford, Oxford, England, October 1989.

W. LELAND AND J. S. ROLLETT, Evaluation of a parallel conjugate gradient algorithm, in
Numerical methods in fluid dynamics III, K. W. Morton and M. J. Baines, eds., Oxford
University Press, 1988, pp. 478-483.

T. OGIELSKI AND W. AIELLO, Sparse malriz computations on parallel processor arrays, SIAM
J. Sci. Stat. Comput., 14 (1993). To appear.

VAN DE GELIN, Efficient global combine operations, in Proc. 6th Distributed Memory Com-
puting Conf., IEEE Computer Society Press, 1991, pp. 291-294.

[10] J. VAN ROSENDALE, Minimizing inner product data dependencies in conjugate gradient ileration,

in 1983 International conference on parallel processing, H. J. Siegel et al., eds., IEEE, 1983,

pp. 44-46.
13



EXTERNAL DISTRIBUTION:

R. W. Alewine
DARPA/RMO

1400 Wilson Blvd.
Arlington, VA 22209

Firooz Allahadi

US Air Force Weapons Lab
Nuclear Technalogy Branch
Kirtland, AFB, NM 87117-6008

Michael W. Allen

The Wall Street Journal
1233 Regal Row

Dallas, TX 75247

M. Alme

Alme and Associates
6219 Bright Plume
Columbia, MD 21044

Charles E. Anderson
Southwest Research Institute
PO Drawer 28510

San Antonio, TX 78284

Dan Anderson

Ford Motor Co.,Suite 1100
Village Place

22400 Michigan Ave.
Dearbarn, MI 48124

Andy Arenth

National Security Agency
Savage Road

Ft. Meade, MD 20755 °
Attn: C6

Greg Astfalk

Convex Computer Corp.
3000 Waterview Parkway
PO Box 833851
Richardson, TX 75083-3851

Susan R. Atlas

TMC, MS B258

Center for Nonlinear Studies
Los Alamos National Labs
Los Alamos, NM 87545

L. Auslander
DARPA/DSO

1400 Wilson Blvd.
Arlington, VA 22209

D. M. Austin

Army High Per Comp. Res. Cntr.
University of Minnesota

1100 S. Second St.

Minneapolis, MN 55415

Scott Baden

University of California, San Diego
Dept. of Computer Science

9500 Gilman Drive

Engineering 0114

La Jolla, CA 92091-0014

F. R. Bailey

MS200-4

NASA Ames Research Center
Moffett Field, CA 94035

D. H. Bailey

NAS Applied Research Branch
NASA Ames Research Center
Moflett Field, CA 94035

Raymond A. Bair

Molecular Science Resch. Cntr.
Pacific NW Laboratory
Richland, WA 99352

R. E. Bank

Dept. of Mathematics
Univ. of CA at San Diego
La Jolla, CA 92093

Ken Bannister
US Army Ballistic Res. Lab
Attn: SLCBR-IB-M

Aberdeen Prov. Gmd., MD 21005-5066

Edward Barragy
Dept. ASE/EM
University of Texas
Austin, TX 78712

E. Barszez

NAS Applied Research Branch
NASA Ames Research Center
Moffett Field, CA 94035

W. Beck

AT&T Pixel Machines, 4J-214
Crawfords Corner Rd.
Homdel, NJ 07733-1988

David J. Benson

Dept. of AMES R-011

Univ. of California at San Diego
La Jolla, CA 92093

Myles R. Berg

Lockheed, O /62-30, B/150
1111 Lockheed Way
Sunnyvale, CA 940898-3504

Stephan Bilyk

US Army Ballist. Resch. Lab
SLCBR-TB-AMB

Aberdeen Proving Ground, MD
21005-5066

Rob Bisseling

Shell Research B.V.
Postbus 3003

1003 AA Amsterdam
The Netherlands

Matt Blumrich

Dept. of Comp. Science
Princeton University
Princeton, NJ 08544

B. W. Boehm
DARPA/ISTO

1400 Wilson Blvd.
Arlington, VA 22209

R. R. Borcher

L-669

Lawrence Livermore Nat'l Labs
PO Box 808

Livermore, CA 94550

Dan Bowlus

Mail Code 8123

Attn: D. Bowlus & G. Letiecq
Naval Underwater Sys. Cntr.
Newport, RI 02841-5047

Dr. Donald Brand
MS - N8930
Geodynamics

14

Falcon AFB, CO 80912-5000

Bud Brewster
4)0 South Pierce
Wheaton, 11, 60187

Carl N. Brooks

Brooks Associates

414 Falls Road

Chagrin Falls, OH 44022

John Brunet
245 First St.
Cambridge, MA 02142

John Bruno

Cntr for Comp. Sci and Engr
College of Engineering
University of California

Santa Barbara, CA 93106-5110

H. L. Buchanan
DARPA/DSO

1400 Wilson Blvd.
Arlington, VA 22209

D. A. Buell

Supercomputing Resch. Cntr.
17100 Science Dr.

Bowie, MD 20715

B. L. Buzbee

Scientific Computing Dept.
NCAR

PO Box 3000

Boulder, CO 80307

G. F. Carey

Dept. of Engineering Mechanics
TICOM ASE-EM WRW 305
University of Texas at Austin
Austin, TX 78712

Art Carlson
NOSC Code 41
New London, CT 06320

Bonnie C. Carroll

Sec. Dir.

CENDI, Information Int’l
PO Box 4141

Oak Ridge, TN 37831

Charles T. Casale
Aberdeen Group, Inc.
92 State Street
Boston, MA 02109

J. M. Cavallini

US Department of Energy
0SC, ER-30, GTN
Washington, DC 20585

John Champine

Clay Res. Inc., Software Div.
655F Lone Oak Dr.

Eagan, MN 55121

Tony Chan
Department of Computer Science

The Chinese University of Hong Kong

Shatin, NT
Hong Kong

J. Chandra

Army Research Office

PO Box 12211

Resch Triangle Park, NC 27709



Siddartha Chatterjee

RIACS

NASA Ames Research Center
Mail Stop T045-1

Moffett Field, CA 94035-1000

Warren Chernock
Scientific Advisar DP-1
US Department of Energy
Forestal Bldg. 4A-045
Washington, DC 20585

R.C.Y. Chin

L-321

Lawrence Livermore Nat’l Lab
PO Box 808

Livermore, CA 94550

Mark Christon

L-122

Lawrence Livermore Nat'l Lab
PO Box 808

Livermore, CA 94550

M. Ciment
Adv. Sci. Comp/ Div. RM 417
National Science Foundation

Washington, DC 20550

Richard Claytor

US Department of Energy
Def. Prog. DE-1

Forestal Bldg. 4A-014
Washington, DC 20585

Andy Cleary

Centre for Information Research
Australia National University
GPA Box 4

Canberra, ACT 2601

Australia

T. Cole

MS180-500

Jet Prop. Lab

4800 Oak Grove Dr.,
Pasadena, CA 91109

Monte Coleman

US Army Bal. Resch Lab
SLCBR-SE-A (Bldg. 394/216)
Aberdeen Prov. Gmd., MD 21005-5006

Tom Coleman

Dept. of Computer Science
Upson Hall

Cornell University

Ithaca, NY 14853

S. Colley

NCUBE

19A Davis Drive
Belmont, CA 94002

J. Corones

Ames Laboratory
236 Wilhelm Hall
Iowa State University
Ames, JA 50011-3020

Steve Cosgrove

E6-220

Knolls Atomic Power Lab
PO Box 1072

Schenectady, NY 12301-1072

C. L. Crothers

IBM Corporation
472 Wheelers Farms Road
Milford, CT 06460

J. K. Cullum

Thomas J. Watson Resch. Center
PO Box 218

Yorktown Heights, NY 10598

Leo Dagum

Computer Sciences Corp.
NASA Ames Research Center
Moffett Field, CA 94035

Kenneth I. Daugherty
Chief Scientist

HQ DMA (SA), MS -A-16
8613 Lee Highway

Fairfax, VA 22031-2138

L. Davis

Cray Research Inc.

1168 Industrial Blvd.
Chippawa Falls, WI 54729

Mr. Frank R. Deis
Martin Marietta
Falcon AFB, CO 80912-5000

R. A. DeMillo

Comp. & Comput. Resch.,
Rm. 304

National Science Foundation
Washington, DC 20550

L. Deng
Applied Mathematics Dept.

SUNY at Stony Brook
Stony Brook, NY 11794-3600

A. Trent DePersia

Prog. Mgr.
DARPA/ASTO

1400 Wilson Blvd.
Arlington, VA 22209-2308

Sean Dolan

nCUBE

919 E. Hillsdale Blvd.
Foster City, CA 94404

Jack Dongarra

Department of Computer Science
University of Tennessee
Knoxville, TN 37996

L. Dowdy

Computer Science Department
Vanderbilt University
Nashville, TN 37235

Joanne Downey-Burke
8030 Sangor Dr.
Colorado Springs, CO 80920

1. S. Duff

CSS Division

Harwell Laboratory
Oxfordshire, 0X11 ORA
United Kingdom

Alan Edelman

University of California, Berkeley
Dept. of Mathematics

Berkeley, CA 94720

S. C. Eisenstat
Computer Science Dept.

15

Yale University
PO Box 2158
New Haven, CT 08520

H. Elman

Computer Science Dept.
University of Maryland
College Park, MD 20842

M. A. Elmer
DARPA/RMO

1400 Wilson Blvd.
Arlington, VA 22209

J. N. Entzminger
DARPA/TTO

1400 Wilson Blvd.
Arlington, VA 22209

A. M. Erisman

MS 7L-21

Boeing Computer Services
PO Box 24346

Seattle, WA 98124-0346

R. E. Ewing

Mathematics Dept.

University of Wyoming

PO Box 3036 University Station
Laramie, WY 82071

El Dabaghi Fadi

Charge of Research

Institute Nat'l De Recherche en
Informatique et en Automatique
Domaine de Voluceau Rocouencourt
BP 105

78153 Le Chesnay Cedex (France)

H. D. Fair

Institute for Adv. Tech.
4032-2 W, Braker Lane
Austin, TX 78759

Kurt D. Fickie

US Army Ballistic Resch. Lab
ATTN: SLCBR-SE

Aberdeen Proving Ground, MD
21005-5066

Tom Finnegan
NORAD/USSPACECOM J2XS
STOP 35

PETERSON AFB, CO 80914

J. E. Flaherty
Computer Science Dept.
Rensselaer Polytech Inst.
Troy, NY 12181

L. D. Fosdick

University of Colorado
Computer Science Department
Campus Box 430

Boulder, CO 80309

G. C. Fox

Northeast Parallel Archit. Cntr.
111 College Place

Syracuse, NY 13244

R. F. Freund
NRaD- Code 423
San Diego, CA 99152-5000

Sverre Froyen
Solar Energy Research Inst.
1617 Cole Blvd.



Golden, CO 80401

David Gale

Intel Corp

600 S. Cherry St.
Denver, CO 80222-1801

D. B. Gannon
Computer Science Dept.
Indiana University
Bloomington, IN 47401

C. W. Gear

NEC Research Institute
4 Independence Way
Princeton, NJ 08548

J. A. George

Needles Hall
University of Waterloo
Waterloo, Ont., Can.
N2L 3G1

Shomit Ghose
nCUBE

919 E. Hillsdale Blvd.
Foster City, CA 94404

Clarence Giese
8135 Table Mesa Way
Colorado Springs, CO 80919

Dr. Horst Gietl
nCUBE GmbH
Hanauer Strasse 85
8000 Munich 50
Germany

John Gilbert

Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

Michael E. Giltrud

DNA

HQ DNA/SPSD

6801 Telegraph Rd.
Alexandria, VA 22310-3398

Alastair M. Glass

AT&T Bell Labs Rm 1A-164
600 Mountain Avenue
Murray Hill, NJ 07974

J. G. Glimm

Dept. of App Math. & Stat.
State U. of NY at Stony Brook
Stony Brook, NY 11794

Dr. Raphael Gluck
TRW.DSSG, R4/1408
One Space Park

Redondo Beach, CA 90278

" G. H. Golub
Computer Science Dept.
Stanford University
Stanford, CA 94305

Marcia Grabow

AT&T Bell Labs 1D-153
600 Mountain Ave.

PO Box 636

Murray Hill, NJ 07974-0636

Nancy Grady
MS 6240
Oak Ridge Nat'l Lab

Bos 2008
Oak Ridge, TN 37831

Anne Greenbaum

New York University
Courant Institute

251 Mercer Street

New York, NY 10012-1185

Satya Gupta

Intel SSD

Bidg. C)6-09, Zone 8

14924 NW Greenbriar Pwky
Beaverton, OR 97006

J. Gustafson

Computer Science Department
236 Wilhelm Hall

Iowa State University

Ames, IA 50011

R. Grayson Hall
USDOE/HQ

1000 Independence Ave, SW
Washington, DC 20585

Cush Hamlen

Minnesota Supercomputer Cntr.
1200 Washington Ave. So.
Minneapolis, MN 55415

Steve Hammond ,
NCAR

PO Box 3000
Boulder, CO 80307

CDR. D. R. Hamon

Chief, Space Integration Div.
USSPACECOM/JsSI
Peterson AFB, CO 80914-5003

Dr. James P. Hardy
NTBIC/GEODYNAMICS
MS N 8930

Falcon AFB, CO 80912-5000

Doug Harless

NCUBE

2221 East Lamar Blvd., Suite 360
Arlington, TX 76006

Mike Heath

University of [llinois
4157 Beckman Institute
405 N. Mathews Ave.
Urbana, IL 61801

Greg Heileman

EECE Department
University of New Mexico
Albuquerque, NM 87131

Brent Henrich

Mobile R &D Laboratory
13777 Midway Rd.

PO Box 819047

Dallas, TX 75244-4312

Michael Heroux

Cray Research Park
655F Lone Oak Drive
Eagan, MN 55121

A.J. Hey
University of Southampton

Dept. of Electronics and Computer Science

Mountbatten Bldg., Highfield
Southampton, SO9 5NH

16

United Kingdom

W. D. Hillis

Thinking Machines, Inc.
245 First St.
Cambridge, MA 02139

Dan Hitchcock

US Department of Energy
SCS, ER-30 GTN
Washington, DC 20585

LTC Richard Hochbewrg
SDIO/SDA

The Pentagon

Washington, DC 20301-7100

C. J. Holland

Director

Math and Information Sciences
AFOSR/NM, Bolling AFB
Washington, DC 20332-6448

Dr. Albert C. Holt

Ofc. of Munitions

Ofc of Sec. of St.-ODDRE/TWP
Pentagon, Room 3B1060
Washington, DC 203301-3100

Mr. Daniel Holtzman
Vanguard Research Inc.
10306 Eaton Pl., Suite 450
Fairfax, VA 22030-2201

David A. Hopkins

US Army Ballistic Resch. Lab.
Attention: SLCBR-IB-M

Aberdeen Prov. Gmd., MD 21005-5066

Graham Horton

Universitat Erlangen-Numberg
IMMD II1

Martensstrase 3

8520 Erlangen

Germany

Fred Howes

US Department of Energy
0SC, ER-30, GTN
Washington, DC 20585

Chua-Huang Huang

Assist. Prof. Dept. Comp. & Info Sci
Ohio State Univ.

228 Bolz Hall-2036 Neil Ave.
Columbus, OH 43210-1277

R. E. Huddleston

L-61

Lawrence Livermore Nat'l Lab
PO Box 808

Livermore, CA 94550

Zdenek Johan

Thinking Machines Corp.
245 First Street
Cambridge, MA 02142-1264

Gary Johnson

US Department of Energy
SCS, ER-30 GTN
Washington, DC 20585

S. Lennart Johnsson
Thinking Machines Corp.
245 First Street
Cambridge, MA 02142-1264



G. S. Jones

Tech Program Support Cntr.
DARPA/AVSTO

1515 Wilson Blvd.
Arlington, VA 22209

T. H. Jordan

Dept of Earth, Atmos & Pla. Sci.
MIT

Cambridge, MA 02139

M. H. Kalos

Cornell Theory Center

514A Eng. and Theory Center
Hoy Road, Cornell University
Ithaca, NY 14853

H. G. Kaper

Math. and Comp. Sci. Division
Argonne National Laboratory
Argonne, IL 60439

S. Karin

Supercomputing Department
9500 Gilman Drive

University of CA at San Diego
La Jolla, CA 92093

Herb Keller

Applied Math 217-50
Cal Tech

Pasadena, CA 91125

M. J. Kelley
DARPA/DMO

1400 Wilson Blvd.
Arlington, VA 22209

K. W. Kennedy

Computer Science Department
Rice University

PO Box 1892

Houston, TX 77251

Aram K. Kevorkian

Codje 7304

Naval Ocean Systems Center
271 Catalina Blvd.

San Diego, CA 92152-5000

John E. Killough

University of Houston

Dept. of Chem. Engineering
Houston, TX 77204-4792

D. R. Kincaid

Cntr. for Num. Analy.,
RLM 13-150

University of Texas at Austin
Austin, TX 78712

T. A. Kitchens

US Department of Energy
0SC, ER-30, GTN
Washington, DC 20585

Thomas Klemas
394 Briar Lane
Newark, DE 19711

Dr. Peter L. Knepell
NTBIC/GEODYNAMICS
MS N 8930

Falcon AFB, CO 80912-5000

Max Koontz
DOE/OAC/DP 5.1
Forestal Bldg

1000 Independence Ave.
Washington, DC 20585

Ann Krause
HQ AFOTEC/OAN
Kirtland AFB, NM 87117-7001

V. Kumar

Computer Science Department
University of Minnesota
Minneapolis, MN 55455

J. Lannutti

MS B-186

Director, SC. Resch. Institute
Florida State University
Tallahassee, FL 32306

P.D. Lax

New York University-Courant
251 Mercer St.

New York, NY 10012

Lawrence A. Lee

NC Supercomputing Center

PO Box 12889

3021 Comwallis Rd.

Research Triangle Park, NC 27709

Dr. H.R. Leland
Calspan Corporation
PO Box 400,
Buffalo, NY 14225

David Levine

Math & Comp. Science
Argonne National Laboratory
9700 Cass Avenue South
Argonne, IL 60439

Peter Littlewood
Theoret. Phy. Dept.
AT&T Bell Labs

Rm 1D-335

Murray Hill, NJ 07974

Peter Lomdahl

T-11, MS B262

Los Alamos Nat'l Lab
Los Alamos, NM 87545

Louis S. Lome

SDIO/TNI

The Pentagon

Washington, DC 20301-7100

Col. Gordon A. Long

Deptuty Director for Adv. Comp.
HQ USSPACECOM/JOSDEPS
Peterson AFB, CO 80914-5003

John Lou
3258 Caminito Ameca
La Jolla, CA 92037

Daniel Loyens
Koninklijke/Shell-Laboratorium
Postbus 3003

1002 AA Amsterdam

The Netherlands

Robert E. Lynch

Dept. of CS

Purdue University

West Lafayete, IN 47907

Kathy MacLeod
AFEWC/SAT

17

Kelly AFB
San Antonio, TX 78243-5000

H. Mair

Naval Surface Warfare Center
10901 New Hampshire Ave.
Silver Springs, MD 20903-5000

Henry Makowitz

MS - 2211-INEL

EG&E Idaho Incorporated
Idaho Falls, ID 83415

David Mandell

MS Fé663

Hydrodynamic App. Grp. X-3
Los Alamos Nat'l Labs

Los Alamos, NM 87545

T. A. Manteuffel
Department of Mathematics
University of Co. at Denver
Denver, CO 80202

William S. Mark
Lockheed - Org, 96-01
Bldg. 254E

3251 Hanover Street

Palo Alto, CA 94303-1191

Kapil Mathur

Thinking Machines Corporation
245 First Street

Cambridge, MA 02142-1214

John May

Kaman Sciences Corporation
1500 Garden of the Gods Road
Colorado Springs, CO 80933

William McColl

Oxford Univ. Computing Lab
8-11 Keble Road

Oxford, OX1 3QD

United Kingdom

S. F. McCormick

Computer Mathematics Group
University of CO at Denver
1200 Larimer St.

Denver, CO 80204

J. R. McGraw

L-316

Lawrence Livermore Nat'l Lab
PO Box 808

Livermore, CA 94550

Jill Mesirov

Thinking Machines Corporation
245 First Street

Cambridge, MA 02142-1214

P. C. Messina

158-79

Mathematics & Comp Sci. Dept.
Caltech

Pasadena, CA 91125

Prof. Ralph Metcalfe
Dept. of Mech. Engr.
University of Houston
4800 Calhoun Road
Houston, TX 77204-4792

G. A. Michael
L-306
Lawrence Livermore Nat Lab



PO Box 808
Livermore, CA 84550

Loren K. Miller
Goodyear Tire & Rubber
PO Box 3531

Akron, OH 44309-3531

Robert E. Millstein
TMC

245 First Street
Cambridge, MA 02142

G. Mohnkern
NOSC - Code 73
San Diego, CA 92152-5000

C. Moler

The Mathworks

24 Prime Park Way
Natick, MA 01760

Gary Montry

Southwest Software
11812 Persimmon, NE
Albuquerque, NM 87111

N. R. Morse

C-DO, MS B260

Comp. & Comm .Division
Los Alamos National Lab
Los Alamos, NM 87545

J. R. Moulic

IBM

Thomas J. Watson Resch Cntr.
PO Box 704 )
Yorktown Heights, NY 10598

D. B. Nelson

US Department of Energy
0SC, ER-30, GTN
Washington, DC 20585

Jeff Newmeyer

Org. 81-04, Bldg. 157
1111 Lockheed Way
Sunnyvale, CA 94089-3504

D. M. Nosenchuck

Mech. and Aero. Engr. Dept.
D302 E Quad

Princeton University
Princeton, NJ 08544

C. E. Oliver

Offc of Lab Comp Bldg. 4500N,
Oak Ridge Nat’l Laboratory
PO Box 2008

Oak Ridge, TN 37831-6259

Dennis L. Orphal

Calif Resch & Technology Inc.
5117 Johnson Dr.

Pleasanton, CA 94588

J. M. Ortega

Applied Math Department
University of Virginia
Charlottesville, VA 22903

John Palmer

TMC

245 First St.
Cambridge, MA 02142

Robert J . Paluck
Convex Computer Corp.

3000 Waterview Parkway
PO Box 733851
Richardson, TX 75083-3851

Anthony C. Parmee
Counsellor and Attache (Def.)
British Embassy

3100 Mass. Ave, NW
Washington, DC 20008

S. V. Parter

Department of Mathematics
Van Vleck Hall

University of Wisconsin
Madison, WI 53706

Dr. Nisheeth Patel
US Army Ballistic Resch. Lab.
AMXBR-LFD

Aberdeen Prov. Gmd., MD 21005-5068

A. T. Patera

Mechanical Engineering Dept.
77 Massachusetts Ave.

MIT

Cambridge, MA 02139

A. Patrinos

Atmos. and Clim. Resch. Div
Office of Engy Resch, ER-74
US Department of Energy
Washington, DG 20545

R. F. Peierls

Math. Sciences Group, Bldg. 515
Brookhaven National Lab
Upton, NY 11973

Donna Perez

NOSC - MCAC Resource Cntr.
Code 912

San Diego, CA 92152-5000

K. Perko

Supercomputing Solutions, Inc.
6175 Mancy Ridge Dr.

San Diego, CA 92121

John Petresky
Ballistic Research Lab
SLCBR-LF-C

Aberdeen Prov. Gmd., MD 21005-5006

Linda Petzold

L-316

Lawrence Livermore Natl . Lab.
Livermore, CA 94550

Wayne Pfeiffer
San Diego SC Center
PO Box 85608
San Diego, CA 92186

Frank X. Pfenneberger
Martin Marietta

MS-N83104

National Test Bed

Falcon AFB, CO 80912-5000

Dr. Leslie Pierre
SDIO/ENA

The Pentagon

Washington, DC 20301-7100

Paul Plassman

Math and Computer Science Division

Argonne National Lab
Argonne, IL 60439

18

R. J. Plemmons

Dept. of Math. & Comp Sci.
Wake Forest University

PO Box 7311

Winston Salem, NC 27109

Alex Pothen

Computer Science Department
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada

John K. Prentice

Amparo Corporation

3700 Rio Grande NW, Suite 5
Albugq., NM 87107-3042

Peter P. F. Radkowski
PO Box 1121
Los Alamos, NM 87544

J. Rattner

Intel Scientific Computers
15201 NW Greenbriar Pkwy.
Beaverton, OR 97008

J. P. Retelle

Org. 94-90

Lockheed - Bldg. 254G
3251 Hanover Street
Palo Alto, CA 984304

C. E. Rhoades

L-298

Computational Physics Div.
PO Box 808

Lawrence Livermore Nat'l Lab
Livermore, CA 94550

J. R. Rice

Computer Science Dept.
Purdue University

West Lafayette, IN 47907

John Richardson

Thinking Machines Corporation
245 First Street

Cambridge, MA 02142-1214

Lt. Col. George E. Richie
Chief, ADv. Tech Plans
JOSDEPS

Peterson AFB, CO 80914-5003

John Rollett

Oxford University Computing Laboratory
8-11 Keble Road

Oxford, OX1 3QD

United Kingdom

R. Z. Roskies

Physics and Astronomy Dept.
100 Allen Hall

University of Pittsburg
Pittsburg, PA 15206

Diane Rover

Michigan State University
Dept. of Electrical Engineering
260 Engineering Bldg.

East Lansing, MI 48824

Y. Saad

University of Minnesota
4-192 EE/CSci Bldg.

200 Union St.

Minneapolis, MN 55455-0159



P. Sadayappan

Dept. of Comp. & Info Science
Ohio State Univ.-228 Bolz Hall
2036 Neil Ave.

Columbus, OH 43210-1277

Joel Saltz

Computer Science Department
A.V. Williams Building
University of Maryland
College Park, MD 20742

A. H. Sameh

CSRD

305 Talbot Laboratory
University of Illinois
104 S. Wright St.
Urbana, IL 61801

P. E. Saylor

Dept. of Comp. Science

222 Digital Computation Lab
University of Illinois

Urbana, IL 61801

LCDR Robert J. Schoppe
Chief, Operations Rqmts

USSPACECOM/JOSDEPS (Stop 35)

Peterson AFB, CO 80914

Rob Schreiber

RIACS

NASA Ames Research Center
Mail Stop T045-1

Moffett Field, CA 94035-1000

M. H. Schultz

Department of Computer Science
Yale University

PO Box 2158

New Haven, CT 06520

Dave Schwartz
NOSC, Code 733
San Diego, CA 92152-5000

Mark Seager
LLNL, L-80
PO box 803
Livermore, CA 94550

A. H. Sherman

Sa. Computing Assoc. Inc.
Suite 307, 246 Church Street
New Haven, CT 06510

Horst Simon

NAS Systems Division

NASA Ames Research Center
Mail Stop T045-1

Moffett Field, CA 94035

Richard Sincovec

Oak Ridge National Laboratory
P.O. Box 2008, Bldg 6012

Oak Ridge, TN 37831-6367

Vineet Singh

HP Labs, Bldg. 1U, MS 14
1501 Page Mill Road

Palo Alto, CA 94304

Ashok Singhal

CFD Resch. Center
3325 Triana Blvd.
Huntsville, AL 35805

Anthony Skjellum

Lawrence Livermore National Laboratory

7000 East Ave., Mail Code L-316
Livermore, CA 94550

L. Smarr

Director, Supercomputer Apps.
152 Supercomputer Applications
Bldg. 605 E. Springfield
Champaign, IL 61801

William R. Somsky
Ballistic Research Laboratory
SLCBR-SE-A, Bldg. 394

Aberdeen Proving Ground, MD 21005

D. C. Sorenson

Department of Math Sciences
Rice University

PO Box 1892

Houston, TX 77251

S. Squires
DARPA/ISTO

1400 Wilson Blvd.
Arlington, VA 11109

N. Srinivasan

AMOCO Corp

PO 87703

Chicago, IL 60680-0703

Thomas Stegmann

Digital Equipment Corporation
8085 S. Chester Street
Englewood, CO 80112

D. E. Stein

AT&T

100 South Jefferson Rd.
Whippany, NJ 07981

M. Steuerwalt

Division of Math Sciences
National Science Foundation
Washington, DC 20550

Mike Stevens

nCUBE

919 E. Hillsdale Blvd.
Foster City, CA 94404

G. W. Stewart

Computer Science Department
University of Maryland
College Park, MD 20742

0. Storassli

MS-244

NASA Langley Research Cntr.
Hampton, VA 23665

C. Stuart
DARPA/TTO

1400 Wilson Blvd.
Arlington, VA 22209

LTC James Sweeder
SDIO/SDA

The Pentagon

Washington, DC 20301-7100

R. A. Tapia
Mathematical Sci. Dept
Rice University

PO Box 1892

Houston, TX 77251

19

Gligor A. Tashkovich
PO Box 296
Pound Ridge, NY 10576-0296

H. Teuteberg

Cray Research, Suite 830
6565 Americas Pkway, NE
Albuquerque, NM 87110

A. Thaler
Division of Math Sciences
National Science Foundation

Washington, DC 20550

Allan Torres
125 Lincoln Ave., Suite 400
Santa Fe, NM 87501

Harold Trease

Los Alamos National Lab
PO Box 1666, MS F663
Los Alamos, NM 87545

Randy Truman

Mechanical Engineering Dept.
University of NM
Albuquerque, NM 87131

Ray Tuminaro
CERFACS

42 Ave Gustave Coriolis
31057 Toulouse Cedex
France

Mark Urrutia

Intel Corp., CO1-03

5200 NE Elam Young Pkwy.
Hillsboro, ORE 97124-6497

Mike Uttormark
UW-Madison

1500 Johnson Dr.
Madison, W1 53706

R. VanDeGeijn

Computer Science Department
University of Texas

Austin, TX 78712

George Vandergrift

Dist. Mgr.

Convex Computer Corp.

3916 Juan Tabo, NE, Suite 38
Albuquerque, NM 87111

H. VanDerVorst

Delft University of Technology
Faculty of Mathematics

POB 356

2600 AJ Delit

The Netherlands

C. VanLoan

Department of Computer Science
Comnell University, Rm. 5146
Ithaca, NY 14853

John VanRosendale

ICASE, NASA Langley Research Center

MS 132C
Hampton, VA 23665

Steve Vavasis

Dept. of Computer Science
Upson Hall

Cornell University

Ithaca, NY 14853



R. G. Voigt

MS 132-C

NASA Langley Resch Cntr, ICASE
Hampton, VA 36665

Phuong Vu

Cray Research, Inc.
19607 Franz Road
Houston, TX 77084

David Walker

Bldg 6012

Oak Ridge National Lab
PO Box 2008

Oak Ridge, TN 37831

Steven J. Wallach

Convex Computer Corp.
3000 Waterview Parkway
PO Box 833851
Richardson, TX 75083-3851

R. C. Ward

Bld. 9207-A

Mathematical Sciences
Oak Ridge National Lab
PO Box 4141

Oak Ridge, TN 37831-8083

Thomas A. Weber
National Science Found.
1800 G. Street, NW
Washington, DC 20550

G. W. Weigand
DARPA/CSTO

3701 N. Fairfax Ave. ’
Arlington, VA 22203-1714

M. F. Wheeler
Math Sciences Dept
Rice University

PO Box 1892
Houston, TX 77251

A. B. White

MS-265

Los Alamos National Lab
PO Box 1663

Los Alamos, NM 87544

B. Wilcox
DARPA/DSO

1400 Wilson Blvd.
Arlington, VA 22209

Roy Williams

California Institute of Technology
206-49

Pasadena, CA 91104

C. W. Wilson

MS MIo2-3/B11

Digital Equipment Corp.
146 Main Street
Maynard, MA 00175

K. G. Wilson
Physica Dept.
Ohio State University
Columbus, OH 43210

Leonard T. Wilson
NSWC

Code G22
Dahlgren, VA 22448

Peter Wolochow

Intel Corp., CO1-03
5200 NE Elam Young Pkwy.
Hillsboro, OR 97124-6497

P. R. Woodward
University of Minnesota
Department of Astronomy
116 Church Street, SE
Minneapolis, MN 55455

M. Wunderlich

Math. Sciences Program
National Security Agency

Ft. George G. Mead, MD 20755

Hishashi Yasumori
KTEC-Kawasaki Steel
Techno-research Corporation
Hibiya Kokusai Bldg. 2-3
Uchisaiwaicho 2-chrome
Chiyoda-ku, Tokyo 100

David Young

Center for Numerical Analysis
RLM 13.150

The University of Texax
Austin, TX 78713-8510

Robert Young

Alcoa Laboratories

Alcoa Center, PA 15069

Attn: R. Young & J. McMichael

William Zierke

Applied Research Lab-Penn State.
PO Box 30

State College, PA 16804

INTERNAL DISTRIBUTION:
Paul Fleury

Ed Barsis

Sudip Dosanjh

Bill Camp

Doug Cline

David Gardner

Grant Heflelfinger
Scott Hutchinson
Martin Lewitt

Steve Plimpton

Mark Sears

John Shadid

Julie Swisshelm

Dick Allen

Bruce Hendrickson (25)
David Womble

Ernie Brickell

Kevin McCurley
Robert Benner

Carl Diegert

Art Hale

Rob Leland (25)
Courtenay Vaughan
Steve Attaway

Johnny Biffle

Mark Blanford

Jim Schutt

Michael McGlaun
Allen Robinson

Paul Yarrington
David Martinez

Dona Crawford
William Mason
Technical Library (5)
Technical Publications
Document Processing for
DOE/OSTI (10)
Central Technical File
Charles Tong

20

1000
1400
1402
1421
1421
1421

1421

1421

1421
1421
1421
1421
1421
1422
1422
1422
1423
1423
1424
1424
1424
1424
1424
1425
1425
1425
1425
1431
1431
1432
1434
1900
1952
7141

7151

7613-2
8523-2
8117



	ABSTRACT
	1. INTRODUCTION
	2. A PARALLEL MATRIX-VECTOR MULTIPLICATION ALGORITHM
	2.1. COMMUNICATION PRIMITIVES
	2.2. THE MATRIX-VECTOR MULTIPLICATION ALGORITHM

	3. ALGORITHMIC DETAILS AND REFINEMENTS
	3.1. TRANSPOSITION ON PARALLEL COMPUTERS
	3.2. OVERLAPPING COMPUTATION AND COMMUNICATION
	3.3. BALANCING THE COMPUTATIONAL LOAD
	3.4. COMPLEXITY MODEL

	4. APPLICATION TO THE CONJUGATE GRADIENT ALGORITHM
	5. CONCLUSIONS
	REFERENCES
	DISTRIBUTION

