
SANDIA REPORT
SAND92–2765 UC–405
Unlimited Release
Printed March 1993

RECORD

An Efficient Parallel Algorithm MICROFICHED

Bruce Hendrickson, Robert Leland, Steve Plimpton

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 84560
for the United States Department of Energy
under Contract DE-AC04-76DP00789

SF2900Q(8-81)

Iessued by Sandia National Laboratories, operated for the Unitid States
Department of Energy by Sandia Corporation.
NOTICE This report wee prepared aa an account of work eponeored by an
agency of the Unitad States Government. Neither the United Statm Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contrac@e, subcontractor, or thei~ ernoployees, make? ~y warranty, express
or un had, or aasumes any legai hablhty or responslbdity for the accuracy, r comp etaneaa, or uaefulneea of any information, apparatus, product, or
proceea diecloeed, or re resents that ita use would not infringe privately

f ownad rights, Reference erein tQ any specific commercial product, proceae, or
aeMce b trade name, trademark, manufacturer, or otherwise, does not

j neceaean conatituta or imply ite endorsement, recommendation, or favoring
by the nited Statae Government, any ency thereof or any of their

3 contractor or mhcontract.ora. The viewa an opinions expressed herein do
not neceaearily data or reflect those of the United States Government, any
agency thereof or any of their contractme.

Printad in the United States of America, This report haa been reproduced
directly from the beet available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 97831

Pricee available from (615) 576-8401, FTS 626-8401

Available t.a the public from
Nationai Technicai Information Service
US Department of Commerce
5285 Port Ro al Rd

J Springfield, A 22161

NTIS rice codes
a Printi copy A09

Microfiche COPF AO1

SAND92-2765
Unlimited Release

Printed March 1993

Distribution
Category UC-405

An Efficient Parallel Algorithm
for Matrix–Vector Multiplication

Bruce Hendrickson, Robert Leland and Steve Plimpton
Sandia National Laboratories

Albuquerque, NM 87185

Abstract

Abstract.
The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific

computation. A fast parallel algorithm for this calculation is therefore necessary if we are to make full
use of the new generation of parallel supercomputers. This paper presents a high performance, parallel
matrix–vector multiplication algorithm that is particularly well suited to hypercube multiprocessors.
For an n x n matrix on p processors, the communication cost of this algorithm is O(n/~ + log(p)),
independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by
employing it as the kernel in the well–known NAS conjugate gradient benchmark, where a run time
of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to
date using a massively parallel supercomputer.

Key words. matrix-vector multiplication, parallel computing, hypercube, conjugate gradient
method

AMS(MOS) subject classification. 65Y05, 65F1O

Abbreviated title. Parallel Matrix–Vector Multiplication

This work was supported by the Applied Mathematical Sciences program, U.S. Department of

Energy, Office of Energy Research, and was performed at Sandia National Laboratories, operated for

the U.S. Department of Energy under contract No. DE-AC04-76DP00789.
1

1. Introduction. The multiplication of a vector by a matrix is the kernel computation in many

linear algebra algorithms, including, for example, the popular Krylov methods for solving linear and

eigen systems. Recent improvements in such methods, coupled with the increasing use of massively

parallel computers, require the development of efficient parallel algorithms for matrix–vector multiplica-

tion. This paper describes such an algorithm. Although the method works on all parallel architectures,

it is particularly well suited to machines with hypercube interconnection topology, for example the Intel

iPSC/860 and the nCUBE 2.

The algorithm described here was developed independently in connection with research on efficient

methods of organizing parallel many-body calculations (see [5]). We subsequently learned that our

algorithm is very similar in structure to a parallel matrix-vector multiplication algorithm described

in [4]. We have, nevertheless, chosen to present our algorithm because it improves upon that in [4] in

several ways: First, we specify how to overlap communication and computation and thereby reduce

the overall run time. Second, we show how to map, the blocks of the matrix to processors in a novel

way which improves the performance of a critical communication operation on current hypercube

architectures. And third, we consider the actual use of the algorithm within the iterative conjugate

gradient solution method and show how in this context a small amount of redundant computation can

be used to further reduce the communication requirements. By integrating these improvements we

have been able to achieve significantly better performance on a well known benchmark than has been

previously possible with a massively parallel machine.

A very attractive property of the new algorithm is that its communication operations are indepen-

dent of the sparsity pattern of the matrix, making it applicable to all matrices. For an n x n matrix on p

processors, the cost of the communication is O(n/@+ log(p)). However, many sparse matrices exhibit

structure which allows for other algorithms with even lower communication requirements. Typically

this structure arises from the physical problem being modeled by the matrix equation and manifests

itself as the ability to reorder the rows and columns to obtain a nearly block–diagonal matrix, where

the p diagonal blocks are about equally sized, and the number of matrix elements not in the blocks is

small. This structure can also be expressed in terms of the size of the separator of the graph describing

the nonzero structure of the matrix. Our algorithm is clearly not optimal for such matrices, but there

are many contexts where the matrix structure is not helpful (e.g. dense matrices, random matrices),

or the effort required to identify the structure is too large to justify. It is these settings in which our

algorithm is most appropriate and provides high performance.

This paper is structured as follows. In the next section we describe the algorithm and its com-

munication primitives. In §3 we present refinements and improvements to the basic algorithm, and

develop a performance model. In §4 we apply the algorithm to the NAS conjugate gradient benchmark

problem to demonstrate its utility. Conclusions are drawn in §5.

2. A parallel matrix–vector multiplication algorithm. Iterative solution methods for linear

and eigen systems are one of the mainstays of scientific computation. These methods involve repeated

matrix–vector products or matvecs of the form yi = Axi where the the new iterate, xi+1, is generally

2

some simple function of the product vector yi. To sustain the iteration on a parallel computer, it is

necessary that xi+l be distributed among processors in the same fashion as the previous iterate xi.

Hence, a good matvec routine will return a yi with the same distribution as xi so that xi+1 can be

constructed with a minimum of data movement. Our algorithm respects this distribution requirement.

We will simplify notation and consider the parallel matrix-vector product y = Ax where A is an

n x n matrix and x and y are n-vectors. The number of processors in the parallel machine is denoted

by p, and we assume for ease of exposition that n is evenly divisible by p and that p is an even power

of 2. It is fairly straightforward to relax these restrictions.

Let A be decomposed into square blocks of size (n/@) x (n/@, each of which is assigned to

one of the p processors, as illustrated by Fig. 1. We introduce the Greek subscripts a and /3 running

from O to ~ – 1 to index the row and column ordering of the blocks. The (a, ~) block of A is denoted

by Aap and owned by processor Pap. The input vector z and product vector y are also conceptually

divided into @ pieces indexed by /3 and a respectively. Given this block decomposition, processor

Pap must know Z@ in order to compute its contribution to ya. This contribution is a vector of length

n/fi which we denote by zap. Thus Z.B = A.~zp, and y. = 2P .z.p where the sum is over all the

processors sharing row block a of the matrix.

Ya

2.1.

Fig. 1. Structure of matrix product y = Ax.

Communication primitives. Our algorithm requires three distinct patterns of communi-

cation. The first of these is an efficient method for summing elements of vectors owned by different

processors, and is called a fold operation in [4]. We will use this operation to combine contributions

to y owned by the processors that hold a block row of A. The fold operation is sketched in Fig. 2 for

communication among processors with the same block row index a. Each processor begins the fold

operation with a vector zap of length n/fi. The operation requires Iogz (W) stages, halving the length

of the vectors involved at each stage. Within each stage, a processor first divides its vector z into two

equal sized subvectors, Z1 and 22, aa denoted by (zl 122). One of these subvectors is sent to another

3

processor, while the other processor sends back itscontribution tothesubvector which remained. The

received subvector is summed element–by-element with the retained subvector to finish the stage. At

the conclusion of the fold, each processor has a unique, length n/p portion of the fully summed vector.

We denote this subvector with Greek superscripts, hence Pap owns portion ya~. The fold operation

requires no redundant floating point operations, and the total number of values sent and received by

each processor is n/fi – n/p.

Fig. 2. The fo

?rocessor Pap knows zap E IRnl @

: := zap

?ori=O,log2(l-l

(Z, IZ2) = z

PaBI := PQO with i:h bit of D flipped

If bit i of/3 is 1 Then

Send Z1 to processor Pap,

Receive W2 from processor POPI

Zp := 22 i- W2

Else

Send Z2 to processor PaO,

Receive w 1 from processor P.OI

Z:=zl+wl

,Ufl := z

‘rocessor Pap now owns yafl E lRnJp

operation for processor PQOas part of block row a.

In the second communication operation each processor knows some information that must be

shared among all the processors in a column. We use a simple algorithm called ezpand [4], that

essentially uses the inverse communication pattern of the fold operation. The expand operation is

outlined in Fig. 3 for communication between processors with the same column index /3. Each processor

in the column begins with a subvector of length n/p, and when the operation finishes all processors

in the column know all n/@ values in the union of their subvectors. At each step in the operation a

processor sends all the values it knows to another processor and receives that processor’s values. These

two subvectors are concatenated, as indicated by the “1” notation. As with the fold operation, only a

logarithmic number of stages are required, and the total number of values sent and received by each

processor is n/fi – n/p.

The optimal implementation of the fold and expand operations depends on the machine topology

and various hardware considerations, e.g. the availability of multiport communication. There are,

however, efficient implementations on most architectures. On hypercubes, for example, these operations

can be implemented using only nearest neighbor communication if the blocks in each row and column

of the matrix are owned by a sub cube with W processors. On meshes, if the blocks of the matrix are

4

Processor P08 knowsfl” EIR”IP

z:= @

Fori=log2(@) -1,...,0

Pot,@ := Papwithiih bitof a flipped

Send z to processor P0,,8

Receive w from processor P=t,D

If bit i of CYis 1 Then

z := W[z

Else

z := Zlw

Yo := z

Processor Pop now knows ya E lRnl@

Fig. 3. The expand operation for processor P&Oas part of block column /?,

mapped in the natural way to a square grid of processors, then the fold and expand operations can be

implemented efficiently [9].

The third communication operation in our matvec algorithm requires each processor to send a

message to the processor owning the transpase portion of the matrix, i.e. PQB sends to PB=. Since we

want row and column communication to be efficient for the fold and expand operations, this transpose

communication can be difficult to implement efficiently. This is because a large number of messages

must travel to architecturally distant processors, so the potential for message congestion is great. We

have devised an optimal, congestion-free algorithm for this operation on hypercubes which is discussed

in $3.1. Implementations of our matvec algorithm on other architectures may benefit from a similarly

tailored transpose algorithm. However, even if congestion is unavoidable, the length of the message

in the transpose communication step of our matvec algorithm is about @ less than the volume of

data exchanged in the fold and expand steps. Consequently, the transpose messages can be delayed by

O(@ without changing the overall scaling of the algorithm.

2.2. The matrix-vector multiplication algorithm. We can now present our algorithm for

computing y = Az in Fig. 4. Further details and enhancements are presented in the following section.

All the numerical operations in the algorithm are performed in steps (1) and (2). First, in step (1),

each processor performs the local matrix-vector multiplication involving the portion of the matrix

it owns. These values are summed within processor rows in step (2) using the fold operation from

Fig. 2, after which each processor owns n/p of the values of y. Unfortunately, the values owned by

processor Pap are just a subvector of y., whereas to perform the next matvec Pep must know all of

up. This is accomplished in steps (3) and (4). In step (3), each processor exch~ges its subsegment of

~ with the processor owning the transpose block of the matrix. After the transposition, the values of

VP are d~tributed among the procemors in COIUmII block 0 of A. The expand operation among these

procemors gives each of them all of yp, so the result is distributed as required for a subsequent matvec.

5

We note that at this level of detail, the algorithm is identical to the one described in [4] for dense

matrices, but m we discuss in the next section, the detaila of steps (1), (2) and (3) are different and

result in a more efficient overall algorithm.

(1)

(2)

(3)

(4)

Processor Pap owns A.P and ZP

Compute zap = Aaezp

Fold zap within rows to form v“$

Transpose the y“~, i.e.

a) Send I@ to Ppe

b) Receive #o from Pp.

Expand #o within columns to form VP

Fig. 4. Parallel matrix-vector multiplication algorithm for processor Pep.

3. Algorithmic details

3.1. Transposition on

and refinements.

parallel computers. The expand and fold primitives used in the

matvec algorithm are most efficient on a parallel computer if rows and columns of the matrix are

mapped to subsets of processors that allow for fast communication. On a hypercube a natural subset

is a subcube, while on a 2-D mesh rows, columns or submeahes are possible. Unfortunately, such a

mapping can make the transpose operation inefficient since it requires communication between pro-

cessors that are architecturally distant. Modern parallel computers use cut-through routing so that a

single message can be transmitted between non-adjacent processors at nearly the same speed as if it

were sent between adjacent processors. Nevertheless, if multiple messages are simultaneously trying

to use the same wire, all but one of them must be delayed. Hence machines with cut through routing

can still suffer from serious message congestion.

On a hypercube the scheme for routing a message is usually to compare the bit addresses of the

sending and receiving processors and flip the bits in a fixed order (and transmit along the corresponding

channel) until the two addresses agree. On the nCUBE 2 and Intel iPSC/860 hypercubes the order

of comparisons is from lowest bit to higheat, a procedure known as dimension order muting. Thus

a message from processor 1001 to processor 0100 will route from 1001 to 1000 to 1100 to 0100. The

usual scheme of assigning matrix blocks to processors uses low order bits to encode the column number

and the high order bits to encode the row number. Unfortunately, dimension order routing on this

mapping induces congestion since messages from all the @ processors in a row route through the

diagonal processor. A similar bottleneck occurs with mesh architectures where the usual routing

scheme is to move within a row before moving within a column. Fortunately, the messages being

transposed in our algorithm are shorter than thcee in the fold and expand operations by a factor of

@ So even if congestion delays the transpose messages by @ the overall communication scaling of

the algorithm will not be affected.

On a hypercube, a different mapping of matrix blocks to processors can avoid transpose congestion

6

altogether. With this mapping we still have nearest neighbor communication in the fold and expand

operations, but now the transpose operation is as fast as sending and receiving a single message of

length n/p. Consider a &dimensional hypercube where the address of each processor is a d-bit string.

For simplicity we assume that d is even. The row block number a is a d/2-bit string, w is the column

block number ~. For fast fold and expand operations, we require that the processors in each row and

column form a subcube. This is assured if any set of d/2 bits in the d-bit processor address encode the

block row number and the other d/2 bits encode the block column number. Now consider a mapping

where the bits of the block row and block column indices of the matrix are interleaved in the processor

address. For a 64–proceaaor hypercube (with 3-bit row and column addresses for the 8x8 blocks of

the matrix) this means the 6-bit processor address would be ~c2r1c1 roco where the three bits ~rl r.

encode the block row index and C2C1co encodes the block column index.

Note that in this mapping each row of blocks and column of blocks of the matrix still resides on

a subcube of the hypercube, so the expand and fold, operations can be performed optimally. However,

the transpose operation is now contention-free as demonstrated by the following theorem. Although

the proof assumes a routing scheme where bits are flipped in order from loweat to highest, a similar

contention free mapping is possible for any tlxed routing scheme as long as row and column bits are

forced to change alternately.

THEOREM 3.1. Consider a hypercube using dimension order routing, and map processors to

elements of an array in such a way thai the bit-repwsentations of a processor’s row number and column

number are interleaved in the processor’s bit-address id. Then ihe wires used when each processor sends

a message to the processor in the transpose location in the array are disjoint.

Proof. Consider a processor P with bit-address rbQr& lcb- 1... roco, where the row number is

encoded with rb . . . r., and the column number with cb . . . co. The processor PT in the transpose array

location will have with bit-address cbrbcb- 1r& 1 . . coro. Under dimension order routing, a message is

transmitted in as many stages as there are bits, flipping bits in order from right to left to generate

a sequence of intermediate patterns. After each stage, the message will have been routed to the

intermediate processor denoted by the current intermediate bit pattern. The wires used in routing the

message from P to P= are those that connect two processors whose patterns occur consecutively in the

sequence of intermediate patterns. After 2k stages, the intermediate processor will have the pattern

rbcb . e .rkckck_~rk_~ . . . coro. The bits of this intermediate processor are a simple permutation of the

original bits of P in which the lowest k pairs of bits have been swapped. Also, after 2k – 1 stages, the

values in the bit positions 2k and 2k – 1 are equal.

Now consider another processor P’ # P, and assume that the message being routed from P’

to Pm usea the same wire employed in step i of the transmission from P to PT. Denote the two

processors connected by this wire by P1 and Pz. Since they differ in bit position i, PI and Pz can only

be encountered consecutively in the transition between stages i - 1 and i of the routing algorithm.

Either i – 1 or i is even, so a simple permutation of pairs of bits of P must generate either P1 or P2; say

P.. Similarly, the same permutation applied to P’ must also yield either PI or Pz; say Pi. If P. = P!

then P = P’ which is a contradiction. Otherwise, both P1 and P2 must appear after an odd number of

7

stages in one of the routing sequences. If i is odd then bits i and i + 1 of P must be equal, and if i is

even then bits i and i- 1 of P are equal. In either case, P1 = P2 which again implies the contradiction

that P = P’. Cl

3.2. Overlapping computation and communication. If a processor is able to both coinpute

and communicate simultaneously, then the algorithm in Fig. 4 has the shortcoming that once a proces-

sor has sent a message in the fold or expand operations, it is idle until the message from its neighbor

arrives. This can be alleviated in the fold operation in step (2) of the algorithm by interleaving com-

munication with computation from step (1). Rather than computing all the elements of Z=e before

beginning the fold operation, we should compute just those that are about to be sent. Then whichever

values will be sent in the next pass through the fold loop get computed between the send and receive

operations in the current pass. In the final pass, the values that the processor will keep are computed.

In this way, the total run time is reduced on each pass through the fold loop by the minimum of the

message transmission time and the time to compute” the next set of elements of za6.

3.3. Balancing the computational load. The discussion above has concentrated on the com-

munication requirements of our algorithm, but an efficient algorithm must also ensure that the com-

putational load is well balanced across the processors. For our algorithm, this requires balancing the

computations within each local matvec. If the region of the matrix owned by a processor has m’ nonze-

ros, the number of floating point operations (flops) required for the local matvec is 2m’ – n/@. These

will be balanced if m’ x m/p for each processor, where m is the total number of nonzero elements in

the matrix. For dense matrices or random matrices in which m >> n, the load is likely to be balanced.

However for matrices with some structure it may not be. For these problems, ogielski and Aiello have

shown that randomly permuting the rows and columns gives good balance with high probability [8]. A

random permutation has the additional advantage that zero values encountered when summing vectors

in the fold operation are likely to be distributed randomly among the processors.

Most matrices used in real applications have nonzero diagonal elements. We have found that when

this is the case, it may be advantageous to force an even distribution of these among processors and to

randomly map the remaining elements. This can be accomplished by first applying a random symmetric

permutation to the matrix. This preserves the diagonal while moving the off-diagonal elements. The

diagonal can now be mapped to processors to match the distribution of the y“~ subsegment that each

processor owns. The contribution of the diagonal elements can then be computed in between the send

and receive operations in the transpose communication, saving either the transpose transmission time

or the diagonal computation time, whichever is smaller.

3.4. Complexity model. The algorithm described above can be implemented to require the

minimal 2m – n flops to perform a matrix-vector multiplication, where m is the number of nonzeros

in the matrix. Some of these flops will occur during the calculation of the local matvecs, and the rest

during the fold summations. We make no assumptions about the data structure used on each processor

to compute its local matrix-vector product. This allows for the implementation of whatever algorithm

works best on the particular hardware. If we assume the computational load is balanced by using the

8

techniques described in $3.3, the time to execute these floating point operations should be very nearly

(2m - n)THoP/p, where T~~P is the time required for a single floating point operation.

The algorithm requires Iogz (p) + 1 read/write pairs for each processor, and a total communi-

cation volume of n(2~ – 1) floating point numbers. Accounting for the natural parallelism in the

communication operations, the effective communication volume is n(2~ – 1)/p. Unless the matrix is

very sparse, the computational time required to form the local matvec will be sufficient to hide the

transmission time in the fold operation, as discussed in ~3,2. We will assume that this is the case.

Furthermore, we will assume that the transpose transmission time can be hidden with computations

involving the matrix diagonal, as described in $3.3. The effective communication volume therefore

reduces to n(@ – I)/p. The total run time, TtOtal can now be expressed as

(1) Ttot~ =
2m–n
—Gop + (1%2(P) + l)(T.end + ‘Geceive) + ‘(w – 1) Tt~~n*~i~ ,

P P

where TfiOPis the time to execute a floating point opdration, Tsend and &ceive are the times to initiate a

send and receive operation respectively, and TtrmBmit is the transmission time per floating point value.

This model will be most accurate if message contention is insignificant, as it is with the mapping for

hypercubes described in $3.1.

4. Application to the Conjugate Gradient algorithm. To examine the efficiency of our

parallel matrix-vector multiplication algorithm, we used it as the kernel of a conjugate gradient (CG)

solver. A version of the CG algorithm for solving the linear system Ax = b is depicted in Fig. 5. There

are a number of variants of the basic CG method; the one we present is a slightly modified version

of the algorithm given in the NAS benchmark [1, 3] discussed later. In addition to the matrix–vector

multiplication, the inner loop of the CG algorithm requires three vector updates (of z, r and p), as

well as two inner products (forming ~ and p’).

An efficient parallel implementation of the CG algorithm should divide the workload evenly among

processors while keeping the cost of communication small, Unfortunately, these goals are in conflict

because when the vector updates are distributed, the inner product calculations require communication

among all the processors. In addition, if the algorithm in Fig. 5 is implemented in parallel, each

processor must know the value of a before it can update r to compute p’ and hence ~. The calculation

of 7 = p~y, the distribution of -y, and the calculation of p’ = rTr can actually be condensed into two

global operations because the first two operations can be accomplished simultaneously with a binary

exchange algorithm. However these global operations are still very costly. One way to reduce the

communication load of the algorithm is to modify it as shown in Fig. 6.

This modified algorithm is algebraically equivalent to the original, but instead of updating r

and then calculating rTr, the new algorithm exploits the identity r~+lri+l = (r~ – @Y)T(ri – @Y) =

r~ri – ~yTri + cr2yTy, as suggested by Van Rosendale [10]. The values of 7, ~ and @ can be summed

with a single global communication, essentially halving the communication time required outside the

matvec routine. In exchange for this communication reduction, there is a net increase of one inner

product calculation since 4 = yTr and $ = yTy must now be computed, but @ = rTr need not

9

X:=cl

r:=b

p:=b

p := rTr

Fori=l,. . .

y := Ap

‘y :=pTy

ff := p/7

x :=z+ap

r:=r — ay

p’ := rTr

P:= P’IP

P:= P’
p:=r+pp

Fig. 5. A conjugate gradient algorithm.

be calculated explicitly. Since the vectors are distributed across all the processors, this requires an

additional 2n/p floating point operations by each processor in order to avoid a global communication.

Whether this is a net gain depends upon the relative sizes of n and p, as well sa the cost of flops and

communication on a particular machine, but since communication is typically much more expensive

per unit than computation, the modified algorithm should generally be faster. For the nCUBE 2,

the machine used in this study, we estimate that this recasting of the algorithm is worthwhile when

n< 5x105.

This restructuring of the CG algorithm can in principle be carried further to hide more of the

communication cost of the linear solve. That is, by repeatedly substituting for the residual and search

vectors r and p we can express the current values of these vectors in terms of their values k steps

previously. (General formulas for this process are given in [7].) By proper choice of k it is possible to

completely hide the global communication in the CG algorithm. Unfortunately this leads to a serious

loss of stability in the CG process which is expensive to correct [6]. We therefore recommend only

limited application of this restructuring idea.

The vector and scalar operations associated with CG fit conveniently between steps (3) and (4)

of the matrix–vector multiplication algorithm outlined in Fig. 4. At the end of step (3) the product

vector y is distributed across all p processors, and it is trivial to achieve the identical distribution for

z, r and p. Now all the vector updates can proceed perfectly in parallel. At the end of the CG loop,

the vector p can be shared through an expand operation within columns and hence the processors will

be ready for the next matvec. The resulting algorithm is sketched in Fig. 7.

We implemented a double precision version of this algorithm in C on the

hypercube at Sandia’s Massively Parallel Computing Research Laboratory.

10

1024 processor nCUBE 2

The resulting code was

Fig. 6. A mc

E:=()

r := b

D:=b

o := rTr

Fori=l,.. .,n

y := Ap

~ := p2’y

~,= #’r

$:= #y

Q := p/~

p’:=p–m$+az$

p:= #/p

P:=P’ ‘

l?:=z+ap

r:=r–ffy

p:=r+~p

ified conjugate gradient algorithm.

tested on the well–known NAS parallel benchmark problem proposed by researchers at NASA Ames

[1, 3]. The benchmark uses a conjugate gradient iteration to approximate the smallest eigenvalue of

a random, symmetric matrix of size 14,000, with an average of just over 132 nonzeros in each row.

The benchmark requires 15 calls to the conjugate gradient routine, each of which involves 25 passes

through the innermost loop containing the matvec.

This benchmark problem has been addressed by a number of different researchers on several

different machines [2]. A common theme in this previous work has been the search for some exploitable

structure within the benchmark matrix. Since arbitrary restructuring of the matrix is permitted by

the benchmark rules as a pre-processing step, the computational effort expended in this search for

structure is not counted in the benchmark timings.

In contrast, our algorithm is completely generic and does not require any special structure in the

matrix. The communication operations are entirely independent of the zero/nonzero pattern of the

matrix, and the only advantage of reordering would be to lessen the load on the most heavily burdened

processor. Because the benchmark matrix diagonal is dense, we did partition the diagonal across all

processors, as described in ~3.3. Otherwise, we accepted the matrix as given, and made no effort to

exploit structure.

Our implementation solved the benchmark problem in 6.09 seconds, which compares quite favor-

ably with all other published results on massively parallel machines [3]. For comparison, the recently

published times for the 128 processor iPSC/860 and 32K CM-2 are 8.61 and 8.8 seconds respectively,

which is more than 4070 longer than our result. Although this problem is highly unstructured, our

11

2rocefjsOr PPU owns ‘W

c,r, p,b, ~ E IR”IP, zP, p” G IRnlfi

E:=o
..—.—b

>:=b

? := r=r

Sum ~ over all processors to form p

Expand p within columns to form p“

Tori =l,. . .

Compute ZP = AP.P.

Fold ZP within rows to form y~v

Transpose y~”, i.e.

Send y~” to P.P ‘

Receive y := y“f’ from P.P

~ := pTy

(j := y=,

J) := y=y

Sum ~, ~ and ~ over all processors to form -y, ~ and ~

Q := p/y

p’:= p–afj+cd$

/3:= p’/p

p := p’

Z:=z+ap

r:=r+(ry

p:=r+flp

Expand p within columns to form p.

Fig. 7. A parallel CG algorithm for processor F’PV.

C code achieves about 250 Mflops, which is about 12% of the raw speed achievable by running pure

assembly language BLAS on each processor without any communication.

5. Conclusions. We have presented a parallel algorithm for matrix–vector multiplication, and

shown how this algorithm can be used very effectively within the conjugate gradient algorithm. The

communication cost of this algorithm is independent of the zero/nonzero structure of the matrix and

scales aa n/@. Consequently, the algorithm is most appropriate for matrices in which structure is

either difficult or impossible to exploit. This is clearly the case for dense and random matrices, and

it is also true more generally for sparse matrices in many contexts. For example, our algorithm could

serve aa an efficient black-box routine for prototyping sparse matrix linear algebra algorithms or could

be embedded in a sparse matrix library where few assumptions about matrix structure can be made.

12

On the NAS conjugate gradient benchmark, an nCUBE 2 implementation of this algorithm runs

more than 40’%0faster than any other reported algorithm running on any massively parallel machine.

The particular mapping we employ for hypercubes is likely to be of independent interest. This

mapping ensures that rows and columns of the matrix are owned entirely by subcubes, and that with

cut–through routing the transpose operation can be performed without message contention. This

mapping haa already proved useful for parallel many–body calculations [5], and is probably applicable

to other linear algebra algorithms.

Acknowledgements. We are indebted to David Greenberg for assistance in developing the hy-

percube transposition algorithm in $3.1.

REFERENCES

[1] D. H. BAILEY, E. BARSZCZ, J. T. BARTON; D. S. BROWNING, R. L. CARTER, L. DAGUM,

R. A. FATOOHI, P. O. FREDERICKSON, T. A. LASINSKI, R. S. SCHREIBER, , H. D. SIMON,

V. VENKATAKRISHNAN, AND S. K. WEERATUNGA, The NAS parallel benchmarks, Intl. J.

Supercomputing Applications, 5 (1991), pp. 63-73.

[2] D. H. BAILEY, E. BARSZCZ, L. DAGUM, AND H. D. SIMON, NAS parallel benchmark results, in

Proc. Supercomputing ’92, IEEE Computer Society Press, 1992, pp. 386-393.

[3] D. H. BAILEY, J. T. BARTON, T. A. LASINSKI, AND H. D. SIMON, EDITORS, The NAS parallel

benchmarks, Tech. Rep. RNR-91-02, NASA Ames Research Center, Moffett Field, CA, January

1991.

[4] G. C. Fox, M. A. JOHNSON, G. A. LYZENGA, S. W. OTTO, J. K. SALMON, AND D. W.

WALKER, Solving problems on concurrent processors: Volume 1, Prentice Hall, Englewood

Cliffs, NJ, 1988.

[5] B. HENDRICKSON AND S. PLIMPTON, Parallel many-body calculations without all-to-all com-

munication, Tech. Rep. SAND 92-2766, Sandia National Laboratories, Albuquerque, NM,

December 1992.

[6] R. W. LELAND, The Effectiveness of Parallel Iterative Algorithms for Solution of Large Sparse

Linear Systems, PhD thesis, University of Oxford, Oxford, England, October 1989.

[7] R. W. LELAND AND J. S. ROLLETT, Evaluation of a parallel conjugate gradient algorithm, in

Numerical methods in fluid dynamics III, K. W. Morton and M. J. Baines, eds., Oxford

University Press, 1988, pp. 478-483.

[8] A. T. OGIELSKI AND W. AIELLO, Sparse matriz computations on parallel processor arrays, SIAM

J. Sci. Stat. Comput., 14 (1993). To appear.

[9] R. VAN DE GEIJN, Eficient global combine operations, in Proc. 6th Distributed Memory Com-

puting Conf., IEEE Computer Society Press, 1991, pp. 291-294.

[10] J. VAN ROSENDALE, Minimizing inner product data dependencies in conjugate gradient iteration,

in 1983 International conference on parallel processing, H. J. Siegel et al., eds., IEEE, 1983,

pp. 44-46.

13

EXTERNAL DISTRIBUTION:
Raymond A. Bair
Molecuhu Science Reach. Cntr.
Pacific NW hborato~
Richland, WA 99362

Falcon AFB, CO 80912-51MfJ

R W. Alewine
DARPA/RMO
1400 Wilmn Blvd.
Arlington, VA 222o9

Bud Brewster
410South Pierce
Wheaton, IL 80187

R. E. Bak
Dept. of Mathematical
Univ. of CA at San Diego
La Jolla, CA 92093

Carl N. Brooks
Brc&a Associates
414 Falls Road
Chagrin Fafls, OH 44022

F~ Altabdi
US Air Force Weapono Lab
Nuclear Technology Branch

Kirtfand+ AFB, NM 87117-6008
Ken Bannister

US Army Bdfistic Res. Lab
Attrx SLCBIVIB-M
Aberdeen Prov. Gmd., MD 21005

John Brunet
245 Fmt St.
Cambridge, MA 02142

-5086
John Bnmo
Cntr for Comp. Sci and Engr
College of Engineering
Univemity of California

Santa BarbM~ CA 931-5110

Mad w. Allen
The Waif Street Joumaf
1233 Regal hW

Daflas, TX 75247
Edward Barragy
Dept. ASE/EM
University of Texas
Austin, TX 78712

M. Alme
Alme and Associates
6219 Bright Plume
C&unbii, MD 21044

E. Bamm
NAS Applied Rewarch Branch
NASA Ames Ikearch cent.
Moffett Field, CA 94035

H. L. Buchanan
DARPA/DSO
1400 Wifson Blvd.
Arlington, VA 22209

ChaAa E. Anderson
SOuthweat ~ Institute
PO Drawer 28610
San Antonio, TX 78284

W. Beck
AT&T Pixel Machinea, 4J-214

Crawfords Ccuner Rd.
Homdel, NJ 07733-1%8

D. A. Bud
Supercornputing Reach. Cntr,

17100 Saence Dr.
Bowie, MD 20715

Dan Anderson
Ford Motor Co., Suite 1100
Vie Pke
22400 Michigan Ave.
Dearbcrn, MI 48124 David J. fkuuq

Dept. of AMES FLO1l
Univ. of California at San Diego
La Jolla, CA 92093

B. L. Buzbee
Scientific Computing Dept.
NCAR
PO Box 3000
Boulder, CO 80307

Andy Arenth
National Security Agency
SlwageRoad
Ft. Meade, MD 207ss
Attn: C6

Mylea R. Berg
Lockheed, 0/62-30, B/150
1111 Lockheed Way
%nqyvale, CA 9408%3.504

G. F. Carey
Dept. of Engineering Mechanics
TICOM ASEEM WRW 305
University of Texan at Austin
Austin, TX 78712

Greg Astfdk
Convex Computer (hp.
3(N)0 Waterview Parkwqy
PO Box 833851
Richrmdao% TX 750s3-3851

Stephan Bilyk
US Army Baflist. Reach. Lab
SLCBKTB-AMB
Aberdeen Proving Ground, MD
21OOWIO66

Art Carfmn
NOSC Code 41
New London, CT 06320Susan R. Atlas

TMC, MS B258

Center for Nonlinear Studies
Los Alarnos Nationaf Labs
Los Ahunos, NM 87545

Rob Bisseling
Shelf Research B.V.
Postbus 3003
1003 AA Amsterdam

The Netherlands

Bonnie C. Carrolf
Sec. Dir.

CENDI, Information Iut’1
PO Box 4141
Oak Ridge, TN 37831L. Audander

DARPA/DSO
1400 Wifson Blvd.

Arfington, VA 222o9
Matt Blumrich
Dept. of Comp. Saence
Princeton University
Princeto~ NJ 0s644

Charfm T. Casale
Aberdeen Group, Inc.
92 State Street
Boston, MA 02109D. M. Austin

Army High Per Comp. Rea. Cntr.
University of Minnesota
1100 S. Second St.
Mirmeapolie, MN 5s41s

B. W. Boehm
DARPA/ISTO
1400 Wilson Blvd.
Arlington, VA 222o9

J. M. Cavdlini
US Department of Energy
OSC, ER-30, GTN
Wasbingto~ DC 20585

ScottBadm
Univemity of Cdiforni% Stm Diego
Dept. of Computer Saence
95OOGifman Drive
Engirmxing0114

La Jofla, CA 92091-CX)14

R. R. Borchcr
L-889
Lawrence Lhennore Nat’1 Labs
PO Box 808
Livermore, CA 94550

John Champine
Clay Rea. Inc., Software Div.
655F Lone Oak Dr.
Eagan, MN 55121

Tony Chan
Department of Computer Science
The Chinese Univemity of Hong Kong
Shatin, NT
Hong Kong

F. R. Bailey
MS2Cxl-4
NASA Ames Research Center

Moffett Field, CA 94o35

Dan BOWhIS
Mail Code 8123
Attm D. Bowlus & G. l..diecq
Naval Underwater Sys. Cntr.
Newport, RI 02841-5047

D. H. Bailey
NAS Applied Research Branch
NASA b- Research Center
Moffett F]eld, CA 94o35

J. Chandra
Army Research Office
PO Box 12211
Resch Triangle Park, NC 27709

Dr. Donald Brand
MS - N8930
Geodynamica

14

Siddmtba Chatterjee
RIAcs
NASA Ames Reaeara C.ter
Mail Stop T04~l
MofTett Field, CA 94~l(W

IBM Corporation
472 Wheelers F- Ibad
Milford, CT 06460

Yale University
PO Box 2158
New Haven, CT 06520

J. K. Crdlum
Thorruu J. Watmn Resch. Center
Po Box 218
Yorktown Heights, NY 10598

H. Elman
Computer Science Dept.
University of Marylaud
College Park, MD 20842Wamm Chemock

Scientific Advisor DP.1
US Department of Energy
Forentd Bldg. 4A.045
Washington, DC 20585

Leo Dagmn
Computer Sciences Corp.
NASA Ames Research Center
Moffett Field, CA 94CL3S

M. A. Efmer
DARPA/RMO
1400 Wilson Blvd.
Arfington, VA 222o9

R.C.Y. Chin
L-321
La wre.nceLiverrmwe Nat’1 Lab
PO Box 808

Livermore, CA 9455o

Kenneth I. Daugherty
Chief Scientist
HQ DMA (5A), MS -A-16

8613 Lee Highway
Fairfax, VA 22031-2138

J. N. Entzminger
DARPA/TTO
1400 When Blvd.

Arlington, VA 222o9

Mark Christen
L122
Lawreme Llvennore Nat’1 Lab
PO %X 808
Livemnme, CA 9455o

A. M. Erisrnan
MS 7L21
Boeing Computer Services
PO Box 24346
Seattle, WA 98124-0346

L. Davis
Cray Research Inc.
1168 Industnd Blvd.
Chippawa Fafls, WI s472s

M. Cirnent
Adv. Sci. Comp/ Div. RM 417
National Science Foundation
Washington, DC 20ss0

Mr. Frank R. Deis
Martin Marietta
Falcon AFB, CO 80912-50t13

R. E. Ewing
Mathernatica Dept.
University of W yoming
PO Box 3036 Univemity Station
Lammie, WY 82071R. A. DeWlllo

Comp. & Comput. Reach.,
Rm. 304 ,
National Science Foundation
Washington DC 20550

Richard Cfaytor
US Department of Energy
Def. Prog. DE1

Foreatd Bldg. 4A-014
Washington, DC 20585

El Dabaghi Fadi
Charge of Research
Institute Nat’1 De Recherche en
Informatique et en Automatique
Dornaine de Voluceau Romuencourt
BP 105
78153 Le Chemay Cedex (France)

L. Deng
Applied Mathematics Dept.
SUNY at Stony Brook

Stony Brook, NY 11794-3&lI

Andy Cleary
Centm for Information Research
Austrafia National University
GPA Box 4
CanberrA ACT 26o1
Australia

H. D. F&
Institute for Adv. Tech.
4032-2 W. Braker Lane
Austin. TX 78759

A. Trent DePersia
Prog. Mgr.
DARPA/ASTO
1400 Wifscm Blvd.
Arlington, VA 22209-2308

T. Cole
MS180-500
Jet Prop. Lab
4800 Oak Grove Dr.,
P.amdena. CA 911OP

Kurt D. Fickie
US Army Ballistic Resch. Lab
ATTN: SLCBR-SE
Aberdeen Proving Ground, MD
21OWA4M6

Sean Dolan
nCUBE
919 E. Hilbdafe Blvd.
Foster City, CA 944o4Monte Cole-

US Army Bd. Reach Lab
SLCBR-SEA (Bldg. 394/216)
Aberdeen Prov. Gmd., MD 21005-5006

Tom Finnegan

NORAD/USSPACECOM J2XS
STOP 35
PETERSON AFB, CO 80914

Jack Dongama
Department of Computer Science
Univemity of Termeasee
Knoxville, TN 37996Tom Coleman

Dept. of Computer Science
Upeon Hdl
Comelf University
Ithaca, NY 14853

J. E. Flaherty
Computer Science Dept.
Remselaer Polytedr Inst.
Troy, NY 12181

L. Dowdy
Computer Science Department
Vanderbilt University
Nashville, TN 37235

S. Coney
NCUBE
19A Davis Drive
Belmont, CA 94oO2

L. D. Foedick
University of Colorado
Computer Science Department
Campus Box 43o
Boulder, CO 8030P

Joanne Downey-Burke
8030 Sangor Dr.
Colorado Springs, CO 80920

J. Corones
Ames Laboratory
236 Wilhelm Hdl
Iowa State University
Ames, IA 50011-3020

L S. DutT
CSS Division
Harwelf Laboratory
Oxfordshire,OX11 ORA
United Kingdom

G. C. Fox
Northeast PamUef Archit. Cntr.
111 College Place
Syracuse, NY 13244

Steve COogrOve
E6220
KliOb Atomic power Lab
PO Box 1072
Schenectady, NY 12301-1072

Alan Edelman
University of California, Berkeley
Dept. of Mathematics
Berkefey, CA 94720

R. F. Freund
NRaD- Code 423
San D,ego, CA 991525000

Sveme Fmyen
Solar Energy Research Inst.
1617 Cole Blvd.

S. C. Euenstat
Computer Sdence Dept.

15

C. L. Crothera

Golden, CO 80401 Boa 2008
Oak Ridge, TN 37831

United Kingdom

W. D. Hillis
Thinking Machinea, Inc.
245 First St.
Cambridge, MA 02139

David Gale
Intel Corp
600 S. Cherry St.
Denver, CO 802221~1

Anne Grcenbaum
New York University
Courant Institute
251 Mercer Street
New York, NY 10012-1185 Dan Hitchmck

US Department of Energy
SCS, ER-30 GTN
Washington, DC 20585

D. B. Grmnon
Computer %ience Dept.
Indhma University
Bloomington, IN 47401

Satya Gupta

Intel SSD
Bldg. C)&O9, Zone 8
14924 NW Greenbriar,Pwky
Beaverton, OR 97cE36

LTC Richard Hochbewrg
SDIO/SDA
The Pentagon
Waahingto~ DC 20301-7100

C. W. Gear
NEC Rcseadr Institute
4 Independence Way
Princeton, NJ 08548 J. Guetafson

Computer Sdence Department

236 Wilhelm Hall
Iowa State University
Ames, IA 50011

J. A. George
Needles Half
University of Water400
Waterloo, Ont., Can.
N2L 3G1

C. J. Holland
Director
Math and Information Sciences
AFOSR/NM, Boiling AFB
Washingto~ DC 20332-6448R. Graysnrr Hall

USDOE/HQ
11XH3Independence Ave, SW
Washington, DC 20585

Shomit Ghose
nCUBE
919 E. HilhuLale Blvd.
Foster City, CA 94404

Dr. Albert C. Holt
Oft. of Munitions
Ofc of Sec. of St.-ODDRE/TWP
Pentagon, Room 3B106o
Washington, DC 203301-311Xl

Cuah Handen
Minnesota Supercomputer Cntr.
1200 Washington Ave. So.
Minneapolis, MN 55415

Clarence Giese
8135 Table Mesa Way
Colorado Springs, CO 80919

Mr. Daniel Holtzman
vanguardR?SearChInc.

10306 Eaton P]., Suite 450
Fairfax, VA 22030-2201

Steve Hammond ,
NCAR
PO Box 3000
Borddm, CO 80307

Dr. Horst Gietl
nCUBE GmbH
Hammer Strame 85
8000 Mrmich 50
Germany

David A. Hopkins
US Army Ballistic Resch. Lab.
Attention: SLCBfVIB-M
Aber-decn Prov. Gmd., MD 21W5-5066

CDR. D. R. Hamon
Chief, Space Integration Div.

ussPAcEcoM/J5sI
Peterson AFB, CO 809145003

John Glbert
Xerox PARC
3333 Coyote Hill Road
palo Alto, CA 94304

Graimm Horton
Univemitat Erlangen-Nurnberg
IMMD III
Martenmrtrase 3
8520 Erlangen
Germany

Dr. James P. Hardy
NTBIC/GEODYNAMICS
MS N 893o
Falcon AFB$ CO 60912-LYYJo

Micbnel E. Giltrud

DNA
HQ DNA/SPSD
6801 Telegraph Rd.
Alexan&la, VA 2231CL3398

Doug Harless
NCUBE
2221 E~t Lamar Blvd., Suite 36o
Arlington, TX 76oo6

Fred Howes
US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585AktairM. Glass

AT&T Bell Labe Rm IA-164
6(KI Mountain Avenue
Murray Hill, NJ 07974

Mike Heath
University of Illinois
4157 Beckman Institute
405 N. Mathews Ave.
Urbana, IL 61801

Chua-Huang Hu~
Assist. Prof. Dept. Comp. & Info Sci
Ohio State Uuiv.
228 Bolz Hall-2036 Neil Ave.
Columbus, OH 43210-1277

J. G. Glirnm
Dept. of App Math. & Stat.

State U. of NY at Stony Brook
Stony Brook, NY 11794 Greg Heileman

EECE Department
Univemity of New Mexico
Albuquerque, NM 87131

R. E. Huddleston
L61
Lawrence Llvermore Nat’1 Lab
PO Box 808
Liverrnore. CA 9455o

Dr. Raphael Gluck
TRW-DSSG, R4/1408
One Space Par-k
Redondo Bea+ CA 90278 Brent Henrich

Mobile R &D Laboratory
13777 Midway Rd.
PO Box 819047
DaU=, TX 75244-4312

Zdenek Johan
Thinking Machines Corp.
245 First Street
Cambridge, MA 02142-1264

G. H. Golub
Computer =Ience Dept.
Stanford University
Stanford, CA 943o5

Michael Heroux
Cray Research Park
655F Lone Oak Drive
Eagrm, MN 55121

Gary Johnson
US Department of Energy
SCS, ER30 GTN
Washington, DC 20585

Marcia Grabow
AT&T Bell Labe ID-153
6CCIMountain Ave.

PO Box 636
Murray Hill, NJ 07974-0636 A.J. Hey

University of Southampton
Dept. of Electronic and Computer
Mountbatten Bldg., Highfield
Southampton, S095NH

16

S. Lenmwt Johnsson
Thinking Machines Corp.

Science 245 First Street
Cambridge, MA 02142-1264

Nancy Grady
MS 6240
Oak Ridge Nat’] Lab

G. S. Jones

Teeh Program Support Cntr.
DARPA/AVSTO
1515 Wifson BIvd.
Arlington, VA 222o9

lIXIO Independence Ave.
Washington, DC 20585

Kelly AFB
San Antonio, TX 782435~

Ann Krause
HQ AFOTEC/OAN
Kirtl.and AFB, NM 87117-7(XI1

H. Mair
Naval Surface Warfare Center
10901 New Hampshire Ave.
Silver Springs, MD 2090&5000T. H. Jordan

Dept of Earth, Atmoa & Pla. Sci.
MIT
Cambridge, MA 02139

V. Kumar
Computer Science D~ment
Univemity of Minnesota
Minneapolis, MN 55455

Henry Makowitz
MS - 2211-INEL
EG&E Idaho Incorporated
Idaho F.dlE, ID 83415M. H. Kdoa

Cornell Theory Center
514A Eng. and Theory Center
Hoy Road, Cornell Univemity
Ithaca, NY 14853

J. Larmutti
MS B-166
Director, SC. Reach. Institute
Florida State Univemity
Tallahassee, FL 32306

David ManddI
MS F663
Hydrodynamic App. Grp. X-3
IAM Alamos Nat’] Labs
Los Alanms, NM 87545H. G. Kaper

Math. and Comp. %]. Division

Argonne National Laboratory
Argonne, IL 60439

P. D. Lax

New York University-Courant
251 Mercer St.

New York, NY 10012

T. A. ManteufTel
Department of Mathematics

University of Co. at Denver
Denver, CO 80202S. Karin

SuperComputing Department
9.5MIGilman Drive
University of CA at San Diego
La Jofla, CA 92093

Lawrence A. Lee
NC Supercomputing Center
PO Box 12689
3021 Comwdlis Rd.
Research Triangle Park, NC 27709

William S. Mark
Lockheed - Org, 96-01
Bldg. 254E
3251 Hanover Street
Palo Alto, CA 943031191Herb Keller

Applied Math 217-50
Cd Tech
Paaadena, CA 91125

Dr. H.R. Leland
Calspan Corporation
PO Box 400,
Buff.do, NY 14225

Kapit Mathur
Thinking Machines Corporation
245 Fimt Street

Cambridge, MA 0214>1214M. J. Kelley
DARPA/DMO
1400 Witson Blvd.
Arlington, VA 222C9

David Levine
Math & Comp. S&me
Argonne National Laboratay
9700 Cam Avenue South
Argonne, IL 60439

John May
Kanutn Sciences Corporation
1500 Garden of the Gods Road
Colorado Springn, CO 60933K. W. Kennedy

Computer Science Department
Rice University
PO Box 1892
Houston. TX 77251

Peter Llttlewood
Theoret. Phy. Dept.
AT&T Belt Labe
Ran lD-?35
Murray Hill, NJ 07974

William McColt
Oxford Univ. Computing Lab
6-11 Keble Road
Oxford, OX1 3QD
United KingdomAram K. Kevorkian

Codje 73L14
Naval Ocean Systems Center
271 Catalina Blvd.
San Diego, CA 92152-5000

Peter Lomdafd
T-II, MS B262
Los Alamoa Nat’] Lab
Los AhllllOS, NM 87545

S. F. McCormick

Computer Mathematical Group
Univemity of CO at Denver
1200 Larimer St.
Denver, CO 80204John E. Killougb

University of Houston
Dept. of Chem. Engineering
Houston, TX 77204-4792

L-As S. Leme
SDIO/TNI

The Pentagon
Washington, DC 20301.7tO0

J. R. McGraw
L-316
Lawrence Livermore Nat’1 Lab

D. R. Kincaid
Cntr. for Num. Andy.,
RLM l&150
Univemity of Texaa at Austin
Austin, TX 78712

PO Box 808

Col. Gordon A. Long
Deptuty Director for Adv. Comp.
HQ USSPACECOM/JOSDEPS
Peterson AFB, CO 6(X)145(X)3

Livermore, CA 9455o

Jill Mesirov
Thinking Machines Corporation
245 F]mt Street
Cambridge, MA 0214Z1214T. A. Kitchens

US Department of Energy
OSC, ER-30, GTN
Washington, DC 20565

John LOll
3258 Caminito Ameca
La Jolla, CA 92037 P. C. Messina

158-79
Mathematics & Comp Sci. Dept.
Caltech
Pasadena, CA 91125

Daniel Loyem
Koninklijke/ShelL Laboratorium
Postbus 3003
1C02 AA Amsterdam
The Nethertamb

Thomas Klemas
394 Briar Lane
Newark, DE 19711

Prof. Ralph Metmlfe

Dept. of Mech. Engr.
University of Houston
4600 Calhoun Road

Houston, TX 772044792

Dr. Peter L. Knepell
NTBIC/GEODYNAMICS
MS N 8930
Falcon AFB, CO 80912-50W

Robert E. Lynch
Dept. of CS
Purdue University
West Lafayete, IN 479o7

Max Koontz
DOE/OAC/DP 5.1
Forestal Bldg

G. A. Michael
L306
Lawrence Livermore Nat Lab

Kathy MacLeod
AFEWC/SAT

17

PO Box 808
Liverrnore, CA 94550

Lam K. Miller
Goodyear Tire & Rubber
PO Box 3531
Akron, OH 4430P-3531

Robert E. Milletein
TMC
245 Fint Street
Cambridge, MA 02142

G. Mohnkem
NOSC - Code 73
San Diego, CA 92152-50W

C. Moler
Tbe Mathworke
24 prime Pti Way
Nati~, MA 01760

Gery Montry
Southwcat software
11812 Pemimrrton, NE
Albuquerque, NM 87111

N. R. Morse
C-DO, MS B260
Comp. & Comm .Division
Loe Alamoe National Lab
Loe Alamoe, NM 87546

J. R. Medic

IBM
Thomas J. Wateon Raech Cntr.
PO Box 704
Yorktown Heighte, NY 10698

D. B. Neleon

US Department of Energy
OSC, E&30, GTN
Weehington, DC 20s65

Jeff Newmeyer
Org. 81-04, Bldg. 157
1111 Lockheed Way
Sunnyvale, CA 9406$3504

D. M. Noeenchuck
Mech. and Aero. Engr. Dept.
D302 E Quad
Princeton University
Princeton, NJ 08544

C. E. Oliver

Offc of Lab Comp Bldg. 4500N,
Oak Ridge Nat’1 Laboratory
PO Box 2006
Oak Ridge, TN 37631-6259

Dennis L. Orphal
Cdif Reach& Technology Inc.
5117 Jolmeon Dr.
Pleasanton, CA 94586

J. M. Ortega
Applied Math Department
Univemity of Virginia
Charlottesville, VA 22903

John Palmer
TMC
245 Fimt St.
Cambridge, MA 02142

Robert J . Paluck
Convex Computer Corp.

3000 Waternew Parkw~

PO Box 733851
Ricbrdaon, TX 75083-3851

Anthony C. Parmee
Co-nor and Attde (Def.)
British Embsssy
31W MaLw. Ave, NW
WashingtorL DC 20008

s. v. Parter
Department of Mathemati=
Van Vleck Hall
University of Wisconsin
Madison, WI 537o6

Dr. Nieheeth Patel
US Army Ballistic Ftesch. Lab.
AMXBR-LFD
Aberdeen Prov. Gmd., MD 21005-5066

A. T. Patera
Mechanical Engineering Dept.
77 Maseachueetto Ave.

MIT
Cambridge, MA 02139

A. Patrinoe
Atmoe. and Cfirn. Resch. Div
OSice of Engy ResclL ER-74
US Deprutment of Energy
WaAingtoaL D~ 20545

R. F. Peierfs
Math. Saenca Group, Bldg. S1S
Brookhawrt National Lab
upton, NY 11973

Donna Perez
NOSC - MCAC Reeource Cntr.

Code 912
San Diego, CA 92152-5LXKI

K. Perko
Supercomputing Solutions, Inc.
6175 Mancy Ridge Dr.
San Diego, CA 92121

John Petresky
Ballistic Research Lab
SLCBRLF-C

Aberdeen Prov. Gmd., MD 21MM-5006

Linda Petzold
L-316
Lawrence Livennore Natl . Lab.
Livermore, CA 9455o

Wayne Pfeiffer
San Diego SC Center
PO Box 856o8
San Diego, CA 92136

Frank X. Pfenneberger
Martin Marietta
MS-N33104
National Test Bed
Falcon AFB, CO 80912-~

Dr. Leslie Pierre
SDIO/ENA
The Pentagon
Washington, DC 20301-7100

Paul Plaesman
Math and Computer Science Division
Argonne National Lab
Argonne, IL 6043S

R. J. Plemmone
Dept. of Math. & Comp Sci.
Wake Forest University
PO Box 7311
Wimtort Salem, NC 27109

Alex Pothen
Computer Science Department
Univemity of Waterloo
Waterloo, Ontario N2L 301
Canada

John K. Prentice
Amparo Corporation
37OORio Grande NW, Suite 5
Albuq., NM 87107-3042

Peter P. F. Radkoweki
PO Box 1121
LOU Alamoe, NM 87644

J. Rattncr
Intel Scientific Computere

15201 NW Greenbriar Pkwy,
Beaverton, OR 97oo6

J. P. Retelle
Org. 94-90
Lakheed - Bldg. 254G
32S1 Hanover Street
Palo Alto, CA 94304

C. E. Rhoadea
L298
Computational Phyeia Div.
PO Box 808
Lawrence Livermore Nat’1Lab
Livennore, CA 84550

J. R. Rice
Computer Science Dept.
Purdue University
West Lafayette, IN 479o7

John Richardson
Thinking Machines Corporation
245 Fhat Street
Cambridge, MA 02142-1214

Lt. Col. George E. Richie
Chief, ADv. Tech Plans
JOSDEPS
Peterson AFB, CO 80914-5fK13

John Rollett
Oxford University Computing Laboratory

%11 Keble Road
Oxford, OX1 3QD
United Kingdom

R. Z. h!?kk

Physics and Astronomy Dept.
100 Allen Hall
University of Pittsburg
Pittsburg, PA 15206

Diane Rnver
Michigan State Univemity
Dept. of Electrical Engineering
260 Engineering Bldg.
East Lansing, MI 48824

Y. sad
University of Minnesota
4-192 EE/CSci Bldg.
2LMUnion St.
Minneapolis, MN 5545&O159

18

P. wappm
Dept. of Conlp. & Info SCiena
Ohio State Univ.-228 Bolz HaU
2036 Neil Ave.
Colurnbu, OH 43210-1277

Anthony Skjellum
Lawrence Lkmrnore National Laboratol
7000 E-ad Ave., Mail Code L316
Llvermore, CA 94550

Gligor A. Taddcovicb

“Y PO Box 2%
Pound Ridge, NY 1057& cY296

H. Teuteberg
Cray Research, Suite 830
6565 American Pkway, NE
Albuquerque, NM 87110

L. S-
Director, Supercbmputer Apps.
152 sup —puter Applications
Bldg. 605 E. Sphgfield
Chrunpaign, IL 618431

Jod Sdtz
Computer Science Department
A.V. Williams Building

university of Maryland
College Park, MD 20742

A. Tludcr
Division of Math Sciences
National ScienceFoun&Ion
Waahingto~ DC 20550

Wk R. Somaky
Ballistic Remueb Laboratory
SLCBR-SEA, Bldg. 394
Aberdeen Proving Ground, MD 21005

A. H. Sarneh
CSRD
305Tdbot Laboratory
University of Illinois
104 s. wright St.
Urbana, IL 61801

Allan Ton-es
125 Lincoln Ave., Suite 400
Santa Fe, NM 87501D. C. Sorenson

Department of Math Scien-
Rice University
PO BOX1892
Houston, TX 77261

Harold ‘lYeMe

Loe Alamoa National Lab
PO Box 1666, MS F663
Los Ahrnos, NM 87545

P. E. Saylor
Dept. of Comp. Saence
222 Digital Computation Lab
Univunity of Illinois
Urbana, IL 61801

s. Squires
DARPA/ISTO
1400 Wilson Blvd.
Arlington, VA 11109

Randy ‘human
Mechanical Engineering Dept.
University of NM
Albuquerque, NM 87131LCDR Robert J. sCbOppG

Chief, Operatiom Rqmts
USSPACECOM/JOSDEPS (Stop 35)
Peterson AFB, CO 80914

N. Srinivasan
AMOCO Corp
PO 87703
Chicago, IL 60680-0703

Ray Tuminaro
CERFACS
42 Ave Gustaw Coriolis
31057 Toulouse Cedex
l%nce

Rob SCbreibcr
RIAcs
NASA Am- ReeearcbCemter
Mail Stop T04$1
Moffett Field, CA 9403$1OW

Thomas Stegmann
Digital Equipment Corporation
8085 S. Cbeskr Street
Engiewood, CO 80112

Mark Urmtia
Intel Corp., CO1-03
5200 NE Elam Youns f%vy.
Hilleboro, ORE 971246497M. H. Sclodtz

Department of Computer Science
Y.de Univen3ity
PO Box 2158
New Haven, CT 06520

D. E. Stein
AT&T
100 South Jefferson Rd.
Whippally, NJ 07981

Mike Uttormark

UW-Madiaon
lsw Johnson Dr.
Madison, WI 537o6M. Steuerwdt

Division of Math Sciences

National Science Foundation
Washington, DC 20550

Da= Schwartz
NOSC, Code 733
San Diego, CA 92152A5C4Kl

R. VanDeGeijn
Computer Science Department
University of Texas
Austin, TX 78712Mark Seager

LLNL, L80
PO box 803
Livermore, CA 94550

Mike Stevens
nCUBE
919 E. Hillsdale Blvd.
Foster City, CA 94404

George Vandergrift
Dist. Mgr.
Convex Computer Corp.
3916 Juan Tabo, NE, Suite 38
Albuquerque, NM 87111

A. H. Sh—
Sa. Computing Amoc. Inc.
Suite 307, 246 Church Street
New Haven, CT 06510

G. W. Stewart
Computer Stience Department
University of Maryland
Colfege Park, MD 20742 H. VanDerVomt

Delft University of Technology
Facufty of Mathematics
POB 356
26oO AJ Ddft
The Netherlands

O. StOrasdi
MS-244
NASA Langley Research Cntr.
Hampton, VA 23665

Horst Simon

NAS Systems Divti]on
NASA Amen Research Center
Mail Stop T045-1
MofTett Field, CA 94035

c. Stwt
DARPA/TTO
1400 Wilson Blvd.
Arlington, VA 22209

c. vanLaan
Department of Computer Science
Cornell University, Rm. 5146
Ithaca, NY 14853

Richard Sincovec
Oak Ridge National Laboratory

P.O. Box 2008, Bldg 6012
Oak Ridge, TN 37831-6367

John VanRosendde
ICASE, NASA Langley Researrh Center
MS 132C
Hampton, VA 23665

LTC Jarnea Sweeder
SDIO/SDA
The Pentagon
Washington, DC 20301-7100

Vineet Singb
HP Labs, Bldg. lU, MS 14
1501 Page Mill RcA
P.do Alto, CA 94304

Steve Vavasis
Dept. of Computer Science
Upson Hall
COmeU Univemity
Ithaca, NY 14853

R. A. Tapia
Mathematical =1. Dept
Rice University
PO Box 1892
Houston, TX 77251

Aehok Singlud
CFD Reach. Center
3325 ‘IMana Blvd.
Huntsville, AL 35805

19

R. G. Voigt
MS 132-C
NASA Langley Ikcb Cntr, ICASE
Hampton, VA 36665

Phuong Vu

Cray ReaeadL Inc.
19607 pram Road
Houston, TX 77084

David Walker
Bldg 6012
Oak Ridge National Lab
PO Box 2008
Oak Ridge, TN 37B31

Stevm J. Wallach
Convex Computer Corp.
3000 WaterView ParkwW
PO Box 833851
Ricbardno~ TX 75083-3651

R. C. Ward
Bid. 9207-A
Mathernatimf %iencen
Oak Ridge National Lab
PO Box 4141
Oak Ridge, TN 37831-8083

Thomas A. Weber
National Science Found
18Lx3G. Street, NW
Washington, DC 20550

G. W. Weigand
DARPA/CSTO
37o1 N. Fairfax Ave.
Arfington, VA 22203-1714

M. F. Wheeler
Math Sciences Dept
Rice university
PO Box 1892
Houston. TX 77251

A. B. White
MS-265
k Ahmms National Lab
PO Box 16433
Los Alamm, NM 87544

B. Wilcox
DARPA/DSO
1400 Wilson Blvd.
Arlington, VA 222o9

Roy Wifliams
California Institute of Technology
20&49
Pasadena, CA 91104

C. W. Wif.90n
MS MI02L3/Bll
Digitaf Equipment Corp.
146 Main Street
Maynar~ MA IM175

K. G. Wilson
Physics Dept.
Ohio State University
Columbus, OH 43210

Leonad T. Wifncm
NSWC
Code G22
Dahlgmn, VA 22448

Peter WOlochOw

fntef Corp., CO1-03
52OONE Elam Young Pkwy.
Hiflsboro, OR 97124-6497

P. R. Woodward
University of Minnesota
Department of Astronomy

116 Chumh Street, SE
Minneapolis, MN 55455

M. Wunderli&
Math. Sciencm Program
National Security Agency
Ft. George G. Mead, MD 20755

Hishashi Yasumori
KTEC-Kawasaki Steel
Techrwrenearch Corporation
Hiblya Kokusai Bldg. 2-3
Uchisaiwaicho ‘khrome
Chiyoddm, Tokyo lCII

David Young
Center for Numerical Analysis

RLM 13.150
The University of Texax
Austin, TX 78713-8510

Robert Young
Alcoa Laboratories
Alcoa Centw, PA 15069

Attm R. Youn8 & J. McMichaef

Wilfiam Zierke
Applied Research LabPenn State.
PO Box 30
State CoUege, PA 168C14

INTERNAL DISTRIBUTION:
Pauf Fleury
Ed Bamis
Sudip Dosanjh
Bilf Camp
Doug Cline
David Gardner

Grant Heffelfinger
Scott Hutchinson
Martin Lewitt
Steve Plimpton
Mark Sears
John Sbadid
Julie Swisshelrn
Dick Allen
Bruce Hendrickson (25)
David Womble
Ernie Brickell
Kevin McCurley
Robert Benner
Carl Diegert
Art Hale
Rob Leland (25)
Courtenay Vaughan
Steve Attaway
Johnny Bif3e
Mark Blanford
Jim Schutt
Michael McGlaun
Allen Robinson
Pauf Barrington
David Martinez
Dons Crawford
William Mason

Technical Library (5)
Technical Publication
Document Processing for
DOE/OSTI (10)
Centraf Technical Fite
Charles Tong

20

1400
1402
1421
1421
1421
1421
1421
1421
1421
1421
1421
1421
1422
1422
1422
1423
1423
1424

1424
1424
1424
1424
1425

1425
1425
1425
1431
1431
1432
1434
lWO
1952
7141
7151

7613-2
8523-2
8117

	ABSTRACT
	1. INTRODUCTION
	2. A PARALLEL MATRIX-VECTOR MULTIPLICATION ALGORITHM
	2.1. COMMUNICATION PRIMITIVES
	2.2. THE MATRIX-VECTOR MULTIPLICATION ALGORITHM

	3. ALGORITHMIC DETAILS AND REFINEMENTS
	3.1. TRANSPOSITION ON PARALLEL COMPUTERS
	3.2. OVERLAPPING COMPUTATION AND COMMUNICATION
	3.3. BALANCING THE COMPUTATIONAL LOAD
	3.4. COMPLEXITY MODEL

	4. APPLICATION TO THE CONJUGATE GRADIENT ALGORITHM
	5. CONCLUSIONS
	REFERENCES
	DISTRIBUTION

