
SANDIA REPORT 
SAND92–2765 UC–405 
Unlimited Release 
Printed March 1993 

RECORD 

An Efficient Parallel Algorithm MICROFICHED 

Bruce Hendrickson, Robert Leland, Steve Plimpton 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 87185 and Livermore, California 84560 
for the United States Department of Energy 
under Contract DE-AC04-76DP00789 

SF2900Q(8-81 ) 



Iessued by Sandia National Laboratories, operated for the Unitid States 
Department of Energy by Sandia Corporation. 
NOTICE This report wee prepared aa an account of work eponeored by an 
agency of the Unitad States Government. Neither the United Statm Govern- 
ment nor any agency thereof, nor any of their employees, nor any of their 
contrac@e, subcontractor, or thei~ ernoployees, make? ~y warranty, express 
or un had, or aasumes any legai hablhty or responslbdity for the accuracy, r comp etaneaa, or uaefulneea of any information, apparatus, product, or 
proceea diecloeed, or re resents that ita use would not infringe privately 

f ownad rights, Reference erein tQ any specific commercial product, proceae, or 
aeMce b trade name, trademark, manufacturer, or otherwise, does not 

j neceaean conatituta or imply ite endorsement, recommendation, or favoring 
by the nited Statae Government, any ency thereof or any of their 

3 contractor or mhcontract.ora. The viewa an opinions expressed herein do 
not neceaearily data or reflect those of the United States Government, any 
agency thereof or any of their contractme. 

Printad in the United States of America, This report haa been reproduced 
directly from the beet available copy. 

Available to DOE and DOE contractors from 
Office of Scientific and Technical Information 
PO Box 62 
Oak Ridge, TN 97831 

Pricee available from (615) 576-8401, FTS 626-8401 

Available t.a the public from 
Nationai Technicai Information Service 
US Department of Commerce 
5285 Port Ro al Rd 

J Springfield, A 22161 

NTIS rice codes 
a Printi copy A09 

Microfiche COPF AO1 



SAND92-2765 
Unlimited Release 

Printed March 1993 

Distribution 
Category UC-405 

An Efficient Parallel Algorithm 
for Matrix–Vector Multiplication 

Bruce Hendrickson, Robert Leland and Steve Plimpton 
Sandia National Laboratories 

Albuquerque, NM 87185 

Abstract 

Abstract. 
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1. Introduction. The multiplication of a vector by a matrix is the kernel computation in many 

linear algebra algorithms, including, for example, the popular Krylov methods for solving linear and 

eigen systems. Recent improvements in such methods, coupled with the increasing use of massively 

parallel computers, require the development of efficient parallel algorithms for matrix–vector multiplica- 

tion. This paper describes such an algorithm. Although the method works on all parallel architectures, 

it is particularly well suited to machines with hypercube interconnection topology, for example the Intel 

iPSC/860 and the nCUBE 2. 

The algorithm described here was developed independently in connection with research on efficient 

methods of organizing parallel many-body calculations (see [5]). We subsequently learned that our 

algorithm is very similar in structure to a parallel matrix-vector multiplication algorithm described 

in [4]. We have, nevertheless, chosen to present our algorithm because it improves upon that in [4] in 

several ways: First, we specify how to overlap communication and computation and thereby reduce 

the overall run time. Second, we show how to map, the blocks of the matrix to processors in a novel 

way which improves the performance of a critical communication operation on current hypercube 

architectures. And third, we consider the actual use of the algorithm within the iterative conjugate 

gradient solution method and show how in this context a small amount of redundant computation can 

be used to further reduce the communication requirements. By integrating these improvements we 

have been able to achieve significantly better performance on a well known benchmark than has been 

previously possible with a massively parallel machine. 

A very attractive property of the new algorithm is that its communication operations are indepen- 

dent of the sparsity pattern of the matrix, making it applicable to all matrices. For an n x n matrix on p 

processors, the cost of the communication is O(n/@+ log(p)). However, many sparse matrices exhibit 

structure which allows for other algorithms with even lower communication requirements. Typically 

this structure arises from the physical problem being modeled by the matrix equation and manifests 

itself as the ability to reorder the rows and columns to obtain a nearly block–diagonal matrix, where 

the p diagonal blocks are about equally sized, and the number of matrix elements not in the blocks is 

small. This structure can also be expressed in terms of the size of the separator of the graph describing 

the nonzero structure of the matrix. Our algorithm is clearly not optimal for such matrices, but there 

are many contexts where the matrix structure is not helpful (e.g. dense matrices, random matrices), 

or the effort required to identify the structure is too large to justify. It is these settings in which our 

algorithm is most appropriate and provides high performance. 

This paper is structured as follows. In the next section we describe the algorithm and its com- 

munication primitives. In §3 we present refinements and improvements to the basic algorithm, and 

develop a performance model. In §4 we apply the algorithm to the NAS conjugate gradient benchmark 

problem to demonstrate its utility. Conclusions are drawn in §5. 

2. A parallel matrix–vector multiplication algorithm. Iterative solution methods for linear 

and eigen systems are one of the mainstays of scientific computation. These methods involve repeated 

matrix–vector products or matvecs of the form yi = Axi where the the new iterate, xi+1, is generally 
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some simple function of the product vector yi. To sustain the iteration on a parallel computer, it is 

necessary that xi+l be distributed among processors in the same fashion as the previous iterate xi. 

Hence, a good matvec routine will return a yi with the same distribution as xi so that xi+1 can be 

constructed with a minimum of data movement. Our algorithm respects this distribution requirement. 

We will simplify notation and consider the parallel matrix-vector product y = Ax where A is an 

n x n matrix and x and y are n-vectors. The number of processors in the parallel machine is denoted 

by p, and we assume for ease of exposition that n is evenly divisible by p and that p is an even power 

of 2. It is fairly straightforward to relax these restrictions. 

Let A be decomposed into square blocks of size (n/@) x (n/@, each of which is assigned to 

one of the p processors, as illustrated by Fig. 1. We introduce the Greek subscripts a and /3 running 

from O to ~ – 1 to index the row and column ordering of the blocks. The (a, ~) block of A is denoted 

by Aap and owned by processor Pap. The input vector z and product vector y are also conceptually 

divided into @ pieces indexed by /3 and a respectively. Given this block decomposition, processor 

Pap must know Z@ in order to compute its contribution to ya. This contribution is a vector of length 

n/fi which we denote by zap. Thus Z.B = A.~zp, and y. = 2P .z.p where the sum is over all the 

processors sharing row block a of the matrix. 

Ya 

2.1. 

Fig. 1. Structure of matrix product y = Ax. 

Communication primitives. Our algorithm requires three distinct patterns of communi- 

cation. The first of these is an efficient method for summing elements of vectors owned by different 

processors, and is called a fold operation in [4]. We will use this operation to combine contributions 

to y owned by the processors that hold a block row of A. The fold operation is sketched in Fig. 2 for 

communication among processors with the same block row index a. Each processor begins the fold 

operation with a vector zap of length n/fi. The operation requires Iogz (W) stages, halving the length 

of the vectors involved at each stage. Within each stage, a processor first divides its vector z into two 

equal sized subvectors, Z1 and 22, aa denoted by (zl 122). One of these subvectors is sent to another 
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processor, while the other processor sends back itscontribution tothesubvector which remained. The

received subvector is summed element–by-element with the retained subvector to finish the stage. At

the conclusion of the fold, each processor has a unique, length n/p portion of the fully summed vector.

We denote this subvector with Greek superscripts, hence Pap owns portion ya~. The fold operation

requires no redundant floating point operations, and the total number of values sent and received by

each processor is n/fi – n/p.

Fig. 2. The fo

?rocessor Pap knows zap E IRnl @

: := zap

?ori=O, . . ..log2(l-l

(Z, IZ2) = z

PaBI := PQO with i:h bit of D flipped

If bit i of/3 is 1 Then

Send Z1 to processor Pap,

Receive W2 from processor POPI

Zp := 22 i- W2

Else

Send Z2 to processor PaO,

Receive w 1 from processor P.OI

Z:=zl+wl

,Ufl := z

‘rocessor Pap now owns yafl E lRnJp

operation for processor PQOas part of block row a.

In the second communication operation each processor knows some information that must be

shared among all the processors in a column. We use a simple algorithm called ezpand [4], that

essentially uses the inverse communication pattern of the fold operation. The expand operation is

outlined in Fig. 3 for communication between processors with the same column index /3. Each processor

in the column begins with a subvector of length n/p, and when the operation finishes all processors

in the column know all n/@ values in the union of their subvectors. At each step in the operation a

processor sends all the values it knows to another processor and receives that processor’s values. These

two subvectors are concatenated, as indicated by the “1” notation. As with the fold operation, only a

logarithmic number of stages are required, and the total number of values sent and received by each

processor is n/fi – n/p.

The optimal implementation of the fold and expand operations depends on the machine topology

and various hardware considerations, e.g. the availability of multiport communication. There are,

however, efficient implementations on most architectures. On hypercubes, for example, these operations

can be implemented using only nearest neighbor communication if the blocks in each row and column

of the matrix are owned by a sub cube with W processors. On meshes, if the blocks of the matrix are
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Processor P08 knowsfl” EIR”IP

z:= @

Fori=log2(@) -1,...,0

Pot,@ := Papwithiih bitof a flipped

Send z to processor P0,,8

Receive w from processor P=t,D

If bit i of CYis 1 Then

z := W[z

Else

z := Zlw

Yo := z

Processor Pop now knows ya E lRnl@

Fig. 3. The expand operation for processor P&Oas part of block column /?,

mapped in the natural way to a square grid of processors, then the fold and expand operations can be

implemented efficiently [9].

The third communication operation in our matvec algorithm requires each processor to send a

message to the processor owning the transpase portion of the matrix, i.e. PQB sends to PB=. Since we

want row and column communication to be efficient for the fold and expand operations, this transpose

communication can be difficult to implement efficiently. This is because a large number of messages

must travel to architecturally distant processors, so the potential for message congestion is great. We

have devised an optimal, congestion-free algorithm for this operation on hypercubes which is discussed

in $3.1. Implementations of our matvec algorithm on other architectures may benefit from a similarly

tailored transpose algorithm. However, even if congestion is unavoidable, the length of the message

in the transpose communication step of our matvec algorithm is about @ less than the volume of

data exchanged in the fold and expand steps. Consequently, the transpose messages can be delayed by

O(@ without changing the overall scaling of the algorithm.

2.2. The matrix-vector multiplication algorithm. We can now present our algorithm for

computing y = Az in Fig. 4. Further details and enhancements are presented in the following section.

All the numerical operations in the algorithm are performed in steps (1) and (2). First, in step (1),

each processor performs the local matrix-vector multiplication involving the portion of the matrix

it owns. These values are summed within processor rows in step (2) using the fold operation from

Fig. 2, after which each processor owns n/p of the values of y. Unfortunately, the values owned by

processor Pap are just a subvector of y., whereas to perform the next matvec Pep must know all of

up. This is accomplished in steps (3) and (4). In step (3), each processor exch~ges its subsegment of

~ with the processor owning the transpose block of the matrix. After the transposition, the values of

VP are d~tributed among the procemors in COIUmII block 0 of A. The expand operation among these

procemors gives each of them all of yp, so the result is distributed as required for a subsequent matvec.
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We note that at this level of detail, the algorithm is identical to the one described in [4] for dense

matrices, but m we discuss in the next section, the detaila of steps (1), (2) and (3) are different and

result in a more efficient overall algorithm.

(1)

(2)

(3)

(4)

Processor Pap owns A.P and ZP

Compute zap = Aaezp

Fold zap within rows to form v“$

Transpose the y“~, i.e.

a) Send I@ to Ppe

b) Receive #o from Pp.

Expand #o within columns to form VP

Fig. 4. Parallel matrix-vector multiplication algorithm for processor Pep.

3. Algorithmic details

3.1. Transposition on

and refinements.

parallel computers. The expand and fold primitives used in the

matvec algorithm are most efficient on a parallel computer if rows and columns of the matrix are

mapped to subsets of processors that allow for fast communication. On a hypercube a natural subset

is a subcube, while on a 2-D mesh rows, columns or submeahes are possible. Unfortunately, such a

mapping can make the transpose operation inefficient since it requires communication between pro-

cessors that are architecturally distant. Modern parallel computers use cut-through routing so that a

single message can be transmitted between non-adjacent processors at nearly the same speed as if it

were sent between adjacent processors. Nevertheless, if multiple messages are simultaneously trying

to use the same wire, all but one of them must be delayed. Hence machines with cut through routing

can still suffer from serious message congestion.

On a hypercube the scheme for routing a message is usually to compare the bit addresses of the

sending and receiving processors and flip the bits in a fixed order (and transmit along the corresponding

channel) until the two addresses agree. On the nCUBE 2 and Intel iPSC/860 hypercubes the order

of comparisons is from lowest bit to higheat, a procedure known as dimension order muting. Thus

a message from processor 1001 to processor 0100 will route from 1001 to 1000 to 1100 to 0100. The

usual scheme of assigning matrix blocks to processors uses low order bits to encode the column number

and the high order bits to encode the row number. Unfortunately, dimension order routing on this

mapping induces congestion since messages from all the @ processors in a row route through the

diagonal processor. A similar bottleneck occurs with mesh architectures where the usual routing

scheme is to move within a row before moving within a column. Fortunately, the messages being

transposed in our algorithm are shorter than thcee in the fold and expand operations by a factor of

@ So even if congestion delays the transpose messages by @ the overall communication scaling of

the algorithm will not be affected.

On a hypercube, a different mapping of matrix blocks to processors can avoid transpose congestion
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altogether. With this mapping we still have nearest neighbor communication in the fold and expand

operations, but now the transpose operation is as fast as sending and receiving a single message of

length n/p. Consider a &dimensional hypercube where the address of each processor is a d-bit string.

For simplicity we assume that d is even. The row block number a is a d/2-bit string, w is the column

block number ~. For fast fold and expand operations, we require that the processors in each row and

column form a subcube. This is assured if any set of d/2 bits in the d-bit processor address encode the

block row number and the other d/2 bits encode the block column number. Now consider a mapping

where the bits of the block row and block column indices of the matrix are interleaved in the processor

address. For a 64–proceaaor hypercube (with 3-bit row and column addresses for the 8x8 blocks of

the matrix) this means the 6-bit processor address would be ~c2r1c1 roco where the three bits ~rl r.

encode the block row index and C2C1co encodes the block column index.

Note that in this mapping each row of blocks and column of blocks of the matrix still resides on

a subcube of the hypercube, so the expand and fold, operations can be performed optimally. However,

the transpose operation is now contention-free as demonstrated by the following theorem. Although

the proof assumes a routing scheme where bits are flipped in order from loweat to highest, a similar

contention free mapping is possible for any tlxed routing scheme as long as row and column bits are

forced to change alternately.

THEOREM 3.1. Consider a hypercube using dimension order routing, and map processors to

elements of an array in such a way thai the bit-repwsentations of a processor’s row number and column

number are interleaved in the processor’s bit-address id. Then ihe wires used when each processor sends

a message to the processor in the transpose location in the array are disjoint.

Proof. Consider a processor P with bit-address rbQr& lcb- 1... roco, where the row number is

encoded with rb . . . r., and the column number with cb . . . co. The processor PT in the transpose array

location will have with bit-address cbrbcb- 1r& 1 . . coro. Under dimension order routing, a message is

transmitted in as many stages as there are bits, flipping bits in order from right to left to generate

a sequence of intermediate patterns. After each stage, the message will have been routed to the

intermediate processor denoted by the current intermediate bit pattern. The wires used in routing the

message from P to P= are those that connect two processors whose patterns occur consecutively in the

sequence of intermediate patterns. After 2k stages, the intermediate processor will have the pattern

rbcb . e .rkckck_~rk_~ . . . coro. The bits of this intermediate processor are a simple permutation of the

original bits of P in which the lowest k pairs of bits have been swapped. Also, after 2k – 1 stages, the

values in the bit positions 2k and 2k – 1 are equal.

Now consider another processor P’ # P, and assume that the message being routed from P’

to Pm usea the same wire employed in step i of the transmission from P to PT. Denote the two

processors connected by this wire by P1 and Pz. Since they differ in bit position i, PI and Pz can only

be encountered consecutively in the transition between stages i - 1 and i of the routing algorithm.

Either i – 1 or i is even, so a simple permutation of pairs of bits of P must generate either P1 or P2; say

P.. Similarly, the same permutation applied to P’ must also yield either PI or Pz; say Pi. If P. = P!

then P = P’ which is a contradiction. Otherwise, both P1 and P2 must appear after an odd number of
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stages in one of the routing sequences. If i is odd then bits i and i + 1 of P must be equal, and if i is

even then bits i and i- 1 of P are equal. In either case, P1 = P2 which again implies the contradiction

that P = P’. Cl

3.2. Overlapping computation and communication. If a processor is able to both coinpute

and communicate simultaneously, then the algorithm in Fig. 4 has the shortcoming that once a proces-

sor has sent a message in the fold or expand operations, it is idle until the message from its neighbor

arrives. This can be alleviated in the fold operation in step (2) of the algorithm by interleaving com-

munication with computation from step (1). Rather than computing all the elements of Z=e before

beginning the fold operation, we should compute just those that are about to be sent. Then whichever

values will be sent in the next pass through the fold loop get computed between the send and receive

operations in the current pass. In the final pass, the values that the processor will keep are computed.

In this way, the total run time is reduced on each pass through the fold loop by the minimum of the

message transmission time and the time to compute” the next set of elements of za6.

3.3. Balancing the computational load. The discussion above has concentrated on the com-

munication requirements of our algorithm, but an efficient algorithm must also ensure that the com-

putational load is well balanced across the processors. For our algorithm, this requires balancing the

computations within each local matvec. If the region of the matrix owned by a processor has m’ nonze-

ros, the number of floating point operations (flops) required for the local matvec is 2m’ – n/@. These

will be balanced if m’ x m/p for each processor, where m is the total number of nonzero elements in

the matrix. For dense matrices or random matrices in which m >> n, the load is likely to be balanced.

However for matrices with some structure it may not be. For these problems, ogielski and Aiello have

shown that randomly permuting the rows and columns gives good balance with high probability [8]. A

random permutation has the additional advantage that zero values encountered when summing vectors

in the fold operation are likely to be distributed randomly among the processors.

Most matrices used in real applications have nonzero diagonal elements. We have found that when

this is the case, it may be advantageous to force an even distribution of these among processors and to

randomly map the remaining elements. This can be accomplished by first applying a random symmetric

permutation to the matrix. This preserves the diagonal while moving the off-diagonal elements. The

diagonal can now be mapped to processors to match the distribution of the y“~ subsegment that each

processor owns. The contribution of the diagonal elements can then be computed in between the send

and receive operations in the transpose communication, saving either the transpose transmission time

or the diagonal computation time, whichever is smaller.

3.4. Complexity model. The algorithm described above can be implemented to require the

minimal 2m – n flops to perform a matrix-vector multiplication, where m is the number of nonzeros

in the matrix. Some of these flops will occur during the calculation of the local matvecs, and the rest

during the fold summations. We make no assumptions about the data structure used on each processor

to compute its local matrix-vector product. This allows for the implementation of whatever algorithm

works best on the particular hardware. If we assume the computational load is balanced by using the
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techniques described in $3.3, the time to execute these floating point operations should be very nearly

(2m - n)THoP/p, where T~~P is the time required for a single floating point operation.

The algorithm requires Iogz (p) + 1 read/write pairs for each processor, and a total communi-

cation volume of n(2~ – 1) floating point numbers. Accounting for the natural parallelism in the

communication operations, the effective communication volume is n(2~ – 1)/p. Unless the matrix is

very sparse, the computational time required to form the local matvec will be sufficient to hide the

transmission time in the fold operation, as discussed in ~3,2. We will assume that this is the case.

Furthermore, we will assume that the transpose transmission time can be hidden with computations

involving the matrix diagonal, as described in $3.3. The effective communication volume therefore

reduces to n(@ – I)/p. The total run time, TtOtal can now be expressed as

(1) Ttot~ =
2m–n
—Gop + (1%2(P) + l)(T.end + ‘Geceive) + ‘(w – 1) Tt~~n*~i~ ,

P P

where TfiOPis the time to execute a floating point opdration, Tsend and &ceive are the times to initiate a

send and receive operation respectively, and TtrmBmit is the transmission time per floating point value.

This model will be most accurate if message contention is insignificant, as it is with the mapping for

hypercubes described in $3.1.

4. Application to the Conjugate Gradient algorithm. To examine the efficiency of our

parallel matrix-vector multiplication algorithm, we used it as the kernel of a conjugate gradient (CG)

solver. A version of the CG algorithm for solving the linear system Ax = b is depicted in Fig. 5. There

are a number of variants of the basic CG method; the one we present is a slightly modified version

of the algorithm given in the NAS benchmark [1, 3] discussed later. In addition to the matrix–vector

multiplication, the inner loop of the CG algorithm requires three vector updates (of z, r and p), as

well as two inner products (forming ~ and p’).

An efficient parallel implementation of the CG algorithm should divide the workload evenly among

processors while keeping the cost of communication small, Unfortunately, these goals are in conflict

because when the vector updates are distributed, the inner product calculations require communication

among all the processors. In addition, if the algorithm in Fig. 5 is implemented in parallel, each

processor must know the value of a before it can update r to compute p’ and hence ~. The calculation

of 7 = p~y, the distribution of -y, and the calculation of p’ = rTr can actually be condensed into two

global operations because the first two operations can be accomplished simultaneously with a binary

exchange algorithm. However these global operations are still very costly. One way to reduce the

communication load of the algorithm is to modify it as shown in Fig. 6.

This modified algorithm is algebraically equivalent to the original, but instead of updating r

and then calculating rTr, the new algorithm exploits the identity r~+lri+l = (r~ – @Y)T(ri – @Y) =

r~ri – ~yTri + cr2yTy, as suggested by Van Rosendale [10]. The values of 7, ~ and @ can be summed

with a single global communication, essentially halving the communication time required outside the

matvec routine. In exchange for this communication reduction, there is a net increase of one inner

product calculation since 4 = yTr and $ = yTy must now be computed, but @ = rTr need not

9



X:=cl

r:=b

p:=b

p := rTr

Fori=l,. . .

y := Ap

‘y :=pTy

ff := p/7

x :=z+ap

r:=r — ay

p’ := rTr

P:= P’IP

P:= P’
p:=r+pp

Fig. 5. A conjugate gradient algorithm.

be calculated explicitly. Since the vectors are distributed across all the processors, this requires an

additional 2n/p floating point operations by each processor in order to avoid a global communication.

Whether this is a net gain depends upon the relative sizes of n and p, as well sa the cost of flops and

communication on a particular machine, but since communication is typically much more expensive

per unit than computation, the modified algorithm should generally be faster. For the nCUBE 2,

the machine used in this study, we estimate that this recasting of the algorithm is worthwhile when

n< 5x105.

This restructuring of the CG algorithm can in principle be carried further to hide more of the

communication cost of the linear solve. That is, by repeatedly substituting for the residual and search

vectors r and p we can express the current values of these vectors in terms of their values k steps

previously. (General formulas for this process are given in [7].) By proper choice of k it is possible to

completely hide the global communication in the CG algorithm. Unfortunately this leads to a serious

loss of stability in the CG process which is expensive to correct [6]. We therefore recommend only

limited application of this restructuring idea.

The vector and scalar operations associated with CG fit conveniently between steps (3) and (4)

of the matrix–vector multiplication algorithm outlined in Fig. 4. At the end of step (3) the product

vector y is distributed across all p processors, and it is trivial to achieve the identical distribution for

z, r and p. Now all the vector updates can proceed perfectly in parallel. At the end of the CG loop,

the vector p can be shared through an expand operation within columns and hence the processors will

be ready for the next matvec. The resulting algorithm is sketched in Fig. 7.

We implemented a double precision version of this algorithm in C on the

hypercube at Sandia’s Massively Parallel Computing Research Laboratory.

10
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Fig. 6. A mc

E:=()

r := b

D:=b

o := rTr

Fori=l,.. .,n

y := Ap

~ := p2’y

~,= #’r

$ := #y

Q := p/~

p’:=p–m$+az$

p:= #/p

P:=P’ ‘

l?:=z+ap

r:=r–ffy

p:=r+~p

ified conjugate gradient algorithm.

tested on the well–known NAS parallel benchmark problem proposed by researchers at NASA Ames

[1, 3]. The benchmark uses a conjugate gradient iteration to approximate the smallest eigenvalue of

a random, symmetric matrix of size 14,000, with an average of just over 132 nonzeros in each row.

The benchmark requires 15 calls to the conjugate gradient routine, each of which involves 25 passes

through the innermost loop containing the matvec.

This benchmark problem has been addressed by a number of different researchers on several

different machines [2]. A common theme in this previous work has been the search for some exploitable

structure within the benchmark matrix. Since arbitrary restructuring of the matrix is permitted by

the benchmark rules as a pre-processing step, the computational effort expended in this search for

structure is not counted in the benchmark timings.

In contrast, our algorithm is completely generic and does not require any special structure in the

matrix. The communication operations are entirely independent of the zero/nonzero pattern of the

matrix, and the only advantage of reordering would be to lessen the load on the most heavily burdened

processor. Because the benchmark matrix diagonal is dense, we did partition the diagonal across all

processors, as described in ~3.3. Otherwise, we accepted the matrix as given, and made no effort to

exploit structure.

Our implementation solved the benchmark problem in 6.09 seconds, which compares quite favor-

ably with all other published results on massively parallel machines [3]. For comparison, the recently

published times for the 128 processor iPSC/860 and 32K CM-2 are 8.61 and 8.8 seconds respectively,

which is more than 4070 longer than our result. Although this problem is highly unstructured, our
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2rocefjsOr PPU owns ‘W

c,r, p,b, ~ E IR”IP, zP, p” G IRnlfi

E:=o
..—.—b

>:=b

? := r=r

Sum ~ over all processors to form p

Expand p within columns to form p“

Tori =l,. . .

Compute ZP = AP.P.

Fold ZP within rows to form y~v

Transpose y~”, i.e.

Send y~” to P.P ‘

Receive y := y“f’ from P.P

~ := pTy

(j := y=,

J) := y=y

Sum ~, ~ and ~ over all processors to form -y, ~ and ~

Q := p/y

p’:= p–afj+cd$

/3:= p’/p

p := p’

Z:=z+ap

r:=r+(ry

p:=r+flp

Expand p within columns to form p.

Fig. 7. A parallel CG algorithm for processor F’PV.

C code achieves about 250 Mflops, which is about 12% of the raw speed achievable by running pure

assembly language BLAS on each processor without any communication.

5. Conclusions. We have presented a parallel algorithm for matrix–vector multiplication, and

shown how this algorithm can be used very effectively within the conjugate gradient algorithm. The

communication cost of this algorithm is independent of the zero/nonzero structure of the matrix and

scales aa n/@. Consequently, the algorithm is most appropriate for matrices in which structure is

either difficult or impossible to exploit. This is clearly the case for dense and random matrices, and

it is also true more generally for sparse matrices in many contexts. For example, our algorithm could

serve aa an efficient black-box routine for prototyping sparse matrix linear algebra algorithms or could

be embedded in a sparse matrix library where few assumptions about matrix structure can be made.

12



On the NAS conjugate gradient benchmark, an nCUBE 2 implementation of this algorithm runs

more than 40’%0faster than any other reported algorithm running on any massively parallel machine.

The particular mapping we employ for hypercubes is likely to be of independent interest. This

mapping ensures that rows and columns of the matrix are owned entirely by subcubes, and that with

cut–through routing the transpose operation can be performed without message contention. This

mapping haa already proved useful for parallel many–body calculations [5], and is probably applicable

to other linear algebra algorithms.

Acknowledgements. We are indebted to David Greenberg for assistance in developing the hy-

percube transposition algorithm in $3.1.
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