
RECORD COPY

SANDIA REPORT
SAND92–2290 l UC– 705
Unlimited Release
Printed December 1992

GJOIN:
A Program for Merging Two or More
GENESIS Databases

—

II I I I I I I II II I I II I
Gregory D. Sjaardema

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DPO0789

8546090

SANDIA NATIONAL
LABORATORIES

TECHNICAL LIBRARY

SF2900Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information

Oak Ridge TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy:

: AO1

SAND92-2290
Unlimited Release

Printed December 1992

Distribution
Category UC-705

GJOIN:
A Program for Merging Two or More

GENESIS Databases

Gregory D. Sjaardema
Solid and Structural Mechanics Department

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

GJOIN is a two- or three-dimensional mesh combination program. GJOIN
combines two or more meshes written in the GENESIS mesh database format
into a single GENESIS mesh. Selected nodes in the two meshes that are closer
than a specified distance can be combined The geometry of the mesh databases
can be modified by scaling, offsetting, revolving, and mirroring. The combined
meshes can be further modified by deleting, renaming, or combining material
blocks, sideset identifications, or nodeset identifications. GJOIN is one of the
mesh generation tools in the Sandia National Laboratories Engineering Analy-
sis Code Access System (SEACAS). GJOIN is typically used with the other
SEACAS mesh generation codes GEN3D, GENSHELL, GREPOS,
and Aprepro.

Content3

1 Introduction .
1.1 SEACAS Mesh Generation Toolbox .
1.2 Introduction to the GENESIS File Format .
1.3 Organization of Report .

2 Commands .
2.1 Command Syntax .
2.2 Filename specification phase .
2.3 Node combination and database modification phase .

2.3.1 Details of the Node Combination Algorithm .
2.4 General Command Processing Phase .

2.4.1 TITLE .
2.4.2 Blocks and Material .
2.4.3 Nodesets .
2.4.4 Sideseti .
2.4.5 Finish .
2.4.6 Add .
2.4.7 Exitand End .
2.4.8 Quit .
2.4.9 Help .

3 GJOIN Example Problem .
4 References* ...*..*..... ...*
A Old Style Command Input Syntax .
B GJOIN Details .
C The GENESIS Database Format .
D GJOIN Example Problem Output .

E&u!E!s

Figure 1. Structure of SEACAS Mesh Generation Toolbox .
Figure 2. Geometry Definition for GJOIN Example Problem .
Figure 3. Schematics of Mesh Primitives for GJOIN Example Problem

5
5
7
7
9
9

10
10
11
13
13
14
14
14
15
15
15
15
15
17
21
23
25
27
31

5
17
17

Figure 4. Mesh Resulting from GJOIN Example Problem . 19

1 Introduction

GJOIN is a two- or three-dimensional mesh combination program. GJOIN combines two or
more meshes written in the GENESIS” mesh database format into a single GENESIS
mesh. Selected nodes in the two meshes that are closer than a specified distance can be
combined. The geometry of the mesh databases can be modified by scaling, offsetting,
revolving, and mirroring. The combined mesh can be further modified by deleting,
renaming, or combining material blocks, sideset identifications, or nodeset identifications.

1.1 Sandia Engineering Analysis Code Access System Mesh Generation
Toolbox

GJOIN is one of the mesh generation tools in the Sandia National Laboratories Engineering
Analysis Code Access System (SEACAS)l. GJOIN is typicall used with the other

2 SEACAS mesh generation codes FASTQ6, GEN3D2, GENSHELL , GREPOS4, and Apre-
pro7. Figure 1 shows the structure of the SEACAS mesh generation toolbox. The basic
premise underlying this toolbox is that complicated geometries can be generated using a set
of small specialized codes.

2r%m

&
Figure 1.Structure of SEACAS Mesh Generation Toolbox

Each of these codes has a specialized purpose, a short synopsis of each code is given below,
for more information consult the referenced documentation.

GEN3D Transforms a two-dimensional GENESIS database into a
three-dimensional GENESIS database. Several transforma-
tions are sup orted and additional transformations can be
easily added. 1

GREPOS Transforms the geometry of a GENESIS database by scal-
ing, mirroring, offsetting, or rotating. It can also modify the
database by deleting or renaming material blocks, sideset
identifications, or nodeset identifications.4

5

FASTQ

APREPRO

GENSHELL

NUMBERS

BLOT

Interactive two-dimensional finite element mesh generation
program. Includes several mesh generation options includ-
ing paving.6

An algebraic preprocessing program which is used to param-
etrize finite element analyses. Includes a unit conversion
system and material database access routines.7

Transforms a two-dimensional GENESIS database into a
three-dimensional shell GENESIS database. Several trans-
formations are supported and additional transformations can
be easily added.2

Calculates several properties of an EXODUS file, including
mass properties, timesteps, condition numbers, cavity vol-
umes, and others.9

The primary graphical two-dimensional and three-dimen-
sional postprocessing code. It includes deformed mesh plots,
contour plots, shaded fringe plots, variable versus variable
and time history plots, and distance versus variable plots.s

The SEACAS mesh generation toolbox is a simpler approach to three-dimensional mesh
generation than the automatic and general-purpose programs that are available from com-
mercial vendors. Many complicated three-dimensional geometries are composed of several
primitives that can be defined in terms of transformations of two-dimensional geometries.
Each of the primitives can be meshed using FASTQ and GEN3D, and then joined together
using GJOIN.

This approach does; however, have some inherent difficulties. The biggest being managing
and synchronizing several related files. For example, the meshes form some large problems
can require more than one hundred files containing FASTQ, GEN3D, GJOIN, and GREPOS
input files; temporary GENESIS files; and parameter files. Manually building and modify-
ing a mesh this complicated is obviously very difficult and time consuming. This problem
has typically been minimized at SNL through the use of the UNIX* make+ program and
Aprepro. Make is used to build a set of dependencies between the various pieces of the fi-
nite element model. The analyst can then change files as needed and simply type make

mesh to generate the mesh. If the dependencies have been entered correctly, make will re-
build only those portions of the mesh that are affected by the changed file. The synchroni-
zation problem (that is, ensuring that all of the separate pieces have compatible dimensions
and discretizations) is typically solved by creating a few parameter files which contain key
dimensions and discretization information. Aprepro is then used to preprocess the input
files and insert the key dimensions and discretization information into the input files.

*UNIXis a registeredtrademarkof UNIX Systems Lahoratorks Inc.
~ See your UNIX documerwion for more information on make. Typically this is done by entering

the comnmnd man 1 make

6

1.2 Introduction to the GENESIS File Format

The GENESIS mesh database file format is the geometry definition portion of the
EXODUS database file format used in the Engineering Sciences Center at Sandia National
Laboratories. All of the mesh generation programs in the Engineering Sciences Center read
and write files in the GENESIS format, which allows great flexibility in the choice of mesh
generation, file translation, and graphical processing.

The GENESIS file contains the data to describe a finite element mesh including the location
of the nodal points, the connectivity of the nodes that form each element, the material types
of each element, and the boundary condition data which are used to specify load application
points and nodal constraints. The two GENESIS entities that are primarily used in GJOIN
are the Element Block ID and the Nodeset ID. These will be briefly described below; how-
ever, the reader is referred to Reference 10 for more information.

Element Block ID: In order to promote efficient storage and to enable efficient processing
within codes, elements are grouped into element blocks. Within an element block, all ele-
ments must be of the same type and the same material. Each element block has an arbitrary

unique number which identifies that particular block. This is called the Element Block ID.

Nodeset ID: Nodesets provide a means to reference a group of nodes with a single ID with-
out requiring the user to know node numbers in the model. A particular node may be in mul-
tiple nodesets, but may be in a single set only once. GJOIN uses nodesets to specify which
nodes are to be combined in the two meshes.

1.3 Organization of Report

The remainder of this document is organized as follows:

● Chapter 2 describes the commands recognized by GJOIN and the algorithms it
uses to combine the mesh databases into a single mesh database, and

● Chapter 3 includes a short example problem which illustrates GJOIN use.

Four appendices are included in this document:

● Appendix A describes the specifics of GJOIN including executing it, obtaining it,
compiling it, and quality assurance.

● Appendix B describes the original GJOIN input syntax which is still recognized,
but is not recommended.

● Appendix C describes the GENESIS mesh database format.

● Appendix D presents the GJOIN output from the example problem

Intentionally Left Blank

8

2 Commands

GJOIN has three distinct input phases:

1. Filename prompting

2. Node cotnbination and/or database modification prompting

3. General command processing

Initially, GJOIN prompts for the names of the two GENESIS files which are to be com-
bined. Both files must have the same spatial dimension. GJOIN then enters the second
phase in which the second database can be modified by scaling and or offsetting its coordi-
nates and the combination of nodes in the two databases is specified. Following this,
GJOIN enters the general command section in which the numbering of material blocks,
sidesets, and nodesets can be modified. At this point, the resulting combined database can
be saved, or additional databases can be combined with the current database. GJOIN cre-
ates a log file containing the commands entered during an interactive session. This file,
typically named gjoin. log, can be used in subsequent invocations to run GJOIN in a
batch mode.

2.1 Command Syntax

The user directs the processing by entering commands to set processing parameters.

The commands are in free-format and must adhere to the following syntax rules.

● Valid delimiters are a comma or one or more blanks.

● Either lowercase or uppercase letters are acceptable, but lowercase letters are con-
verted to uppercase except for filenames, and database titles.

● A “$” character in any command line starts a comment. The “!$” and any charac-
ters following it on the line are ignored.

Each command has an action keyword or “verb” followed by a variable number of param-
eters. The command verb is a character string. It may be abbreviated, as long as enough
characters are given to distinguish it from other commands. The meaning and type of the
parameters is dependent on the command verb. Most command parameters are optional. If
an optional parameter field is blank, a command-dependent default value is supplied.
Below is a description of the valid entries for parameters.

● A numeric parameter may be a real number or an integer. A real number may be
in tiny legal FORTRAN numeric format (e.g., 1,0.2, -1E-2). An integer parameter
may be in any legal integer format.

● A string parameter is a literal character string. Most string parameters may be ab-
breviated.

The notation conventions used in the command descriptions are:

● The command verb is in all uppercase bold SANSERIF type.

● A literal string is in all uppercase SANSERIF type and should be entered as shown
(or abbreviated).

● The value of a pammeter is represented by the parameter name in italics.

● A literal string or parameter in square brackets (“[]“) represents a parameter op-
tion which is omitted entirely (including any following comma) if not appropriate.

● A series of literal strings separated by a vertical bar (“l“) represents a list of valid
options. Only one of the options is allowed. Unless the strings are in square brack-
ets, one of the strings must be entered.

● A command description terminating with ellipses (“...”) signifies that the data fol-
lowing the command verb can be repeated on the same command line.

2.2 Filename specification phase

Initially, GJOIN will prompt for the filenames of the first two mesh databases that are to be
combined. If only one filename is specified, GJOIN will skip the node combination phase
and go directly to the general command processing phase.

2.3 Node combination and database modification phase

In the node combination and database modification phase, nodes in the two files can be
combined or the coordinates of the second database can be scaled, offset, and mirrored.
GJOIN will prompt with the string:

“Combine or Convert (Enter HELP for info) > “

At this point, the valid responses are*:

● COMBINE [met], n.setz] toferance [CLOSESTl[MATERIAL]

combine all nodes in nodesets met] and rzset2 that are within toferance distance
of each other.

If CLOSEST is not specified, GJOIN combines the firs? node in the second
database that is within tolerance distrme of a node in the first da~abase. If
CLOSEST is specified, the closest node of all nodes in the second database that are
within tolerance distance of a node in the first database is combined.

If MATERIALis specified, nodes are only combined if the material numbers in the
first and second databases match.

The keyword EQUIVALENCE can be used in place of COMBINE. Node
combinations are performed on the modified geometry, therefore, all scaling,
offsetting, and mirroring commands must be specified prior to specifying any
combination command.

* An older syntax is also supported that requires several Y/N answers. See “Old Style Comnmnd
Input Syntax” cmpage 23 for more information.

10

● COMBINE EXITIENDINO

exit the node combination phase, perform all of the specified offset, scale, and
mirror commands, and combine the nodes.

● OFFSET XIYIZIALLIRESET offset, . . .
modify the coordinates of the second database by adding offset to its coordinates.
Multiple offsets can be specified on a single command line; however, offsets are
not cumulative. For example, if “OFFSET X 5, V 7.5, X 10” is entered, the X-coor-
dinate will be offset by 10 and the Y-coordinate by 7.5. The command OFFSET

RESET nullifies previous offset commands. The keyword SHIFT is a synonym for
OFFSET.

● SCALE XIYIZIALLIRESET scafe,. . .
modify the coordinates of the second database by multiplying the specified coor-
dinates by scale. Multiple scalings can be specified on a single command line;
however, scalings are not cumulative. For example, if “SCALE X 2, y 3, x 4“ is en-
tered, the X-coordinate will be scaled by 4 and the Y-coordinate by 3. The com-
mand SCALE RESET nullifies previous scale commands.

● REVOLVE XIYIZIALL angle,...
modify the coordinates of the second database by revolving arzgfe degrees about
the specified axis. The center of rotation defaults to 0.0, 0.0, 0.0 unless set by the
REVCEN command. Two-dimensional meshes can only be rotated about the Z

axis. Multiple revolutions can be specified on a single command line and they are
cumulative.

● REVCEN XC(?/2,yC(2n,ZCf?tl

set the center of rotation for the REVOLVE command to xcen, ycen, zcen. The cen-
ter of rotation defaults to 0.0,0.0, 0.0 if it is not specified.

● MIRROR XIYIZIALL,...

modify the coordinates of the second database by multiplying the specified coor-
dinate by -1. Multiple mirroring can be specified on a single command line; how-
ever they are not cumulative. The MIRROR command simply sets the scale f~ctor
to -1, so scaling and mirroring can not be used together. To mirror and scale at the
same time, simply set the scale f%ctor to a negative value.

● LIST list the nodesets that are in the first and second mesh databases.

2.3.1 Details of the Node Combination Algorithm

The GJOIN node combination algorithm is an efficient, but not overly complicated, pro-
cess. The algorithm will be described by first describing the most simplistic algorithm and
then adding additional refinements until the GJOIN algorithm results.

The most simplistic algorithm would be to determine the distance between every node in
mesh 1 and every node in mesh 2. This would generate numl x num2 comparisons, where
num 1 and num2 are the number of nodes in mesh 1 and mesh 2, respectively. In addition to
requiring excessive comparisons, this approach also has the disadvantage of possibly com-
bining two or more nodes in one mesh with a single node in the other mesh.

11

The first refinement is to keep a list of the nodes for each mesh. Once a match has been
determined, the nodes that participated in the match are removed from the list. This simple
refinement wiH, on the average, reduce the number of comparisons by one-half. Another
gain in performance can be realized by preprocessing the two lists. First the overlapping
volume of the two lists is calculated, then the lists are reduced to include only the nodes that
fall within the overlapping volume. This eliminates from the node lists all nodes that could
not possibly match a node in the other list. For some geometries this results in a signitlcant
reduction in the lis~ however, for many geometries there is little savings.

The next refinement is to order the lists based on the nodal X-coordinate. The searching can
then be terminated when the X-coordinate in the second list exceeds the X-coordinate in
the first list by more than the tolerance. This is algorithm is implemented in GJOIN. Addi-
tional refinements could be made; however, the current algorithm has proven itself fast
enough, even for meshes consisting of over 200,000 nodes. A pseudo-code representation
of this algorithm is shown below:

generate node lists -- either all of the nodes, or if a nodeset

match, all of the nodes in the nodesets .

determine overlapping volume of two node lists

remove nodes that do not fall within overlapping volume

sort lists on x-coordinate

–-–now we begin the node comparison function

jbeg = 1

for i = 1 to length (listl)

nodel = listl (i)

dmin = BIGJUMBER

for j = jbeg to length (list2)

node2 = list2 (j)

if (x(nodel) - eps > x(node2)) jbeg = j

if (x(nodel) + eps < x(node2)) --exit inner loop
clist = distance (nodel, nocle2)

if (dist c tolerance) then

if (closest match AND dist < dmin) then

dmin = dist

node_min . node2

else (not closest match)
---Combine nodel and node2

---Remove node2 from list2

---Get a new node from listl (goto next i)

end if

end if

next j

if (closest match AND dmin < tolerance) then

--–Combine nodel and node_min

---Remove node_min from list2

end if

next i

If the by-material matching is being performed, the above process is repeated for each
matching material block inthe two meshes. Attheend ofthisprocess, thenumberofcom-
bined nodes, themaximum distance between matched nodes, andthe minimum distance/

12

between non-matched nodes are summarized. If the minimum and maximum distances are
relatively close, or if the number of combined nodes is less (or more) than expected, you
should loosen (or tighten) the tolerance.

2.4 General Command Processing Phase

After the node combination section has been completed, GJOIN enters the general com-
mand processing mode in which several attributes of the mesh can be controlled. The
prompt in this mode is: GJOIN>. Valid commands are:

TITLE change the database title

BLOCKS manipulate the element material blocks

MATERIAL manipulate the element material blocks

NODESETS manipulate the nodal point sets

NSETS manipulate the nodal point sets

SIDESETS manipulate the element side sets

SSETS manipulate the element side sets

FINISH end command input, write output file

ADD end command input, add another mesh piece

EXIT, END end command input, start processing

QUIT abort processing, stop immediately

HELP print this list

NOTE: END and EXIT are old commands that have been superseded by ADD and FINISH.

See “Old Style Command Input Syntax” on page 23 for more information. Each of the
above commands is described in more detail in the following sections. When ADD is en-

tered, GJOIN begins again in the file name prompting mode and continues through each of
the modes again. If FINISH is entered, GJOIN prompts for the output file name and writes
the combined mesh to the specified file.

2.4.1 TITLE

TITLE enters the title manipulation routine in which you can change the title of the output
database. By default, the title of the first input database is written to the output database.
Valid commands in this section are:

1 copy title from first database

2 copy title from second database (if any)

CHANGE change title to user-specified title

LIST list database titles

UP go up a command level (back to command mode)

EXIT go up a command level (back to command mode)

13

If CHANGE is entered, GJOIN will prompt for the title on a separate line.

2.4.2 Blocks and Material

BLOCKS or MATERIAL enters the block manipulation routine in which you can modify the
material blocks of the output database. Valid commands are:

ID n newid

DELETE idl, id2,

COMBINE idl id2

RESET id

LIST

UP/EXIT

2.4.3 Nodesets

change the block identification of block n to id

delete material blocks with identification
numbers idl, id2,

combine material blocks id], id2, ..., into a single
material block with identification idl

reset material block id

list information about the material blocks

go up a command level

NODESETS or NSETS enters the nodeset manipulation routine in which you can modify
the nodesets of the output database. Valid commands are:

ID n rwwid

DELETE id] id2 .

COMBINE idl id2

RESET id

LIST

UPIEXIT

2.4.4 Sidesets

change the nodeset identification of nodeset
number n to newid

delete nodesets with identification numbers idl,
id2, .,.

.combine nodesets id], id2, . . . into a single
nodeset with identification number id]

reset nodeset id

list information about the nodesets

go up a command level

SIDESETS or SSETS enters the sideset manipulation routine in which you can modify the
sidesets of the output database. Valid commands are:

ID n newid

DELETE idl id2 .

COMBINE id] id2

RESET id

LIST

change the sideset identification of sideset
number n to rwwid

delete sidesets with identification numbers idl,
id2, . . .

.combine sidesets idl, id2, . . . into a single sideset
with identification number idl

reset sideset id

list information about the sidesets

14

UP/EXIT go up a command level

2.4.5 Finish

FINISH ends general command processing and terminates GJOIN. GJOIN will prompt for
the filename for the output database, write the file, and terminate.

2.4.6 Add

ADD ends general command processing and prepares to add another piece to the combined
mesh. GJOIN will prompt for the filename for the next input database and begin again at
the node combination phase.

2.4.7 Exit and End

EXIT and END are old style commands which terminate general command processing.
GJOIN will then ask if you want to add another piece or write the combined mesh.

2.4.8 Quit

QUIT abandons all processing and terminates GJOIN. No files are written.

2.4.9 Help

HELP provides a system-dependent help message.

15

Intentionally Left Blank

1(5

3 GJOIN Example Problem

The following example illustrates most of the commands in GJOIN. Although this
geometry could easily be generated without GJOIN, it is easier to illustrate GJOIN usage

with a two-dimensional mesh. In this example, we want to generate the geometry shown at
the left side of Figure 2. The first step in performing the mesh generation is to decompose

Origin

6712 Slit

34

Figure 2. Geometry Definition for GJOIN Example Problem

the geometry into primitives. In this case, the entire geometry can be built with a mesh of
a square and a quadrant of a circle as shown in the right side of Figure 2. The next step is
to generate the primitive meshes which are schematically shown in Figure 3. Now, we must

Origin

Figure 3.

3
Z Material 2
Q(D
m
(D
n
hl
o

Origin O, 0
,U arc.g

Material 1
z

1-
0

square.g

Schematics of Mesh Primitives for GJOIN Example Problem

determine the order to join the pieces together. For this case, and for many practical cases,
there are many options: In this ~ase we ~an simply join all of the pieces separately with no
intermediate meshes generated; however, in practical cases it is sometimes advantttgeous
to generate, for example, half of the mesh and then mirror it and join it to itself. For the
sample problem, we could do this by first combining pieces 1 and 2, write a temporary
mesh, and then reenter GJOI N and read in the temporary mesh, mirror it about the vertical
axis and join it to itself.

17

Next, we need to create the GJOIN input file. In our case, the input file will look like:

square. g

arc. g

mirror x

combine 1 .00-4

combine end

add

arc. g

mirror x, y

combine 1.Oe-4

combine end

add

square. g

offset y -1.0

combine 20 10 1.08-4

combine end

nodeset

delete 10, 20

up

material

combine 1 2

up

title

change

Example Problem for GJoin

up

finish

exarnple.g

Initial Input File

SecondInputFile

Mirrorithorizontally

Equivalenceall nodescloser than 1.Oe-4

No more combination

Add anotherpiece

Fiknameofadded piece

Mirror ithorizontally ,andverticatly

Equivalence all nodes closer th,an 1.04

Nomorecornhlnation

Addanotherpiece

Filenameofadded piece

Offset vertically 1 unit

Equivalence nodes in nodeset 20 in main piece and
nodeset 10in added piece.

No more combination

Mcdifythe nodesets

Deleteboth nodesets, used only for mesh generation, not
needed for amdysis

Finished with nodeset modification

Modify the materiaJ blocks

Combineall materialsto material 1

Finishedwith materialmodification

Modifythe title

Wanta completelynew title

The newtitle

Finishedwith title modification

Finishedwith mesh combination

Name the resultant file

This is then run by typing gjoin < input_ file. The output from this execution is repro-
duced in Reference D, and the resulting mesh is shown in Figure 4.

18

I I I

I

Figure 4. Mesh Resulting from GJOIN Example Problem

19

Intentionally Left Blank

20

References

lG. D. Sjaardema, “Overview of the Sandia National Laboratories
Engineering Analysis Code Access System,” SAND92-2292, Sandia
National Laboratories, Albuquerque, NM, January 1993.

2A P Gilkey and G. D. Sjaardema, “GEN3D: A GENESIS Database 2D to. .
3D Transformation Program,” SAND89-0485, Sandia National
Laboratories, Albuquerque, New Mexico, March 1989.

3G D Sjaardema, “GENSHELL: A GENESIS Database 2D to 3D Shell. .
Transformation Program,” In preparation.

4G. D. Sjaardema, “GREPOS: A GENESIS Database Repositioning
Program,” SAND90-0566, Sandia National Laboratories, Albuquerque, NM,
April 1990.

5A P Gilkey and J. H. Glick, “BLOT-A Mesh and Curve Plot Program for the. .
Output of a Finite Element Analysis,” SAND88- 1432, Sandia National
Laboratories, Albuquerque, New Mexico, August 1991.

‘%. D. Blacker, “FASTQ Users Manual, Version 2. 1,“ SAND88- 1326, Sandia
National Laboratories, Albuquerque, NM, July 1988.

‘G. D. Sjaardema, “Aprepro: An Algebraic Preprocessor for Parameterizing
Finite Element Analyses,” SAND92-2291, Sandia National Laboratories,
Albuquerque, New Mexico, Decemberl 992.

8J H Red-Horse, W. C. Mills-Curran, D. P. Flanagan, “SUPES Version 2.1,. .
A Software Utilities Package for the Engineering Sciences,” SAND90-0247,
Sandia National Laboratories, Albuquerque, New Mexico, May 1990.

‘G. D. Sjaardema, “NUMBERS: A Collection of Utilities for Pre- and
Postprocessing Two- and Three-Dimensional EXODUS Finite Element
Models,” SAND88-0737, Sandia National Laboratories, Albuquerque, New
Mexico, March 1989.

10W C Mills-Curran, A. P. Gilkey, and D. P. Flanagan, “EXODUS: A Finite. .
Element File Format for Pre- and Post-processing,” SAND87-2977, Sandia
National Laboratories, Albuquerque, New Mexico, September 1988.

1lL M Taylor and D. P. Flanagan and W. C. Mills-Curran, “The GENESIS. .
Finite Element Mesh File Format,” SAND86-09 10, Sandia National
Laboratories, Albuquerque, NM, May 1986.

‘*American National Standard Programming Language FORTRAN,
American National Standards Institute, Inc., ANSI X3.9- 1978, New York,
1978.

13B Berliner, “CVS H: Parallelizing Software Development,” Paper
presented at the Winter 1990 USENIX Conference, Washington, D.C., 1990.

21

Intentionally Left Blank

22

A Old Style Command Input Syntax

The initial version of GJOIN was primarily a request-driven program. GJOIN would ask a
question and the user would respond with Yes or No. This syntax is still recognized to
maintain backward compatibility; however, its use is not recommended. The following
questions would be asked:

First input file> Enter thefi[e name of the first piece

Next input file> Enter the file name of the second piece

Combine or Convert (Enter HELP for info) >

Enter Yes or No

The following two prompts only appear if each piece has nodesets.

Should a nodal point set match be done?

Enter YES if you want to match based on nodesets,
Enter NO if you want 10 match on geometry only.

Enter set ID of first set, second set>

Enter nodeset ids

Enter new value for tolerance (<ret> for default) :

Is

Enter the tolerance

The above three lines will be repeated until NO is entered
The GJOIN> prompt will now appear and you will he in generul command mode
Enter EXIT to end command mode, GJOIN will then ask:

there another database?

Enter YES if you want to add another database to the generated database, the Next

input ii~e> prompt (line 2 above) will then appear and the above process will
repeat.
Enter NO to end processing and write out thejlnal database

Output file> Enter the output filename

23

Intentionally Left Blank

24

B GJOIN Details

To execute GJOIN on a UNIX* system (with SEACAS), type:

gjoin [<input_ file]

where inPut_fi le is an optional input file containing commands. Commands are read
from the smridard input if input_f ile is not specified.

GJOIN reads and writes mesh database files written in the GENES 1S format. A code seg-
ment illustrating the GENESIS database is given in Appendix C.

The GJOIN source code is maintained in the SEACAS system which is managed by the
13 GJOIN is written in ANSI standard FORTRAN-7712.Concurrent Version System (CVS) .

It must be linked with the SUPES8 and suplib libraries which are also part of SEACAS.

~ vailab ilitv:

GJOIN and all other SEACAS codes are available on a licensed basis. The license
agreements for these codes stipulate that (1) the software is to be used solely for internal
purposes, (2) the codes are not to be distributed or transferred to any person without written

permission, (3) the codes are to be used at a single site and should be copied only for
necessary maintenance, development, or backup purposes, and (4) there should be a
procedure, or site plan, in place for protecting the provisions of the license agreements.

For more information on obtaining GJOIN or other SEACAS codes, contact:

Marilyn K. Smith
Division 1425
Sandia National Laboratones
P.O. Box 5800
Albuquerque, New Mexico 87185-5800
(505) W4-3082, FAX: (505) 844-9297

*UNIX is a registcmd trademark of UNIX Systems Laboratories Inc.

25

Intentionally Left Blank

26

C The GENESIS Database Format

The following code segment reads a GENESIS database.

c

c

c

c

c
~

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

--Open the GENESIS database file

NDB = 9

OPEN (UNIT=NDB, STATUS=’OLD’, FORM= ’UNFORJ.fATTED’)

--Read the title

READ (NDB) TITLE

--TITLE - the title of the database (CHARACTER*80)

--Read the database sizing parameters

READ (NDB) NUMNP, NDIM, NUMEL, NELBLK,

& NUMNPS, LNPSNL, NUMESS, LESSEL, LESSNL

--NUMNP - the number of nodes

--NDIM - the number of coordinates per node

--NVMEL - the number of elements

--NELBLK - the number of element blocks

--NUMNPS - the number of node sets

--LNPSNL - the length of the node sets node list

--NUMESS – the number of side sets

--LESSEL - the length of the side sets element list

--LESSNL - the length of the side sets node list

--Read the nodal coordinates

READ (NDB) ((CORD(INP, I), INP=l,NUMNP), I=l,NDIM)

--Read the element order map (each element must be listed once)

READ (NDB) (MAPEL(IEL), IEL=l,NUMEL)

--Read the element blocks

DO 100 IEB = 1, NELBLK

--Read the sizing parameters for this element block

READ (NDB) IDELB, NUMELB, NUMLNK, NATRIB

--IDELB - the element block identification (must be unique)

--NUMELB - the number of elements in this block
-- (the sum of NUMELE for all blocks must equal NVMEL)

--NVMLNK - the number of nodes defining the connectivity
—- for an element in this block
--NATRIB - the number of element attributes for an element
-- in this block

--Read the connectivity for all elements in this block

27

READ (NDB) ((LINK(J, I), J=l, NUMLNK, 1=1, NUMELB)

c --Read the attributes for all elements in this block

READ (NDB) ((ATRIB(J, I), J=l,NATRIB, I=l,NUMELB)

100 CONTINUE

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

--Read the node sets

READ (NDB) (IDNPS(I), I=l,NUMNPS)

--IDNPS - the ID of each node set

READ (NDB) (NNNPS(I), I=l,NUMNPS)

--NNNPS - the number of nodes in each node set

READ (NDB) (IXNNPS(I), I=l,NUMNPS)

--IXNNPS - the index of the first node in each node set
-— (in LTNNPS and FACNPS)

READ (NDB) (LTNNPS(I), I=l,LNPSNL)

--LTNNPS - the nodes in all the node sets

READ (NDB) (FACNPS(I), I=l,LNPSNL)

--FACNPS - the factor for each node in .LTNNPS

--Read the side sets

READ (NDB) (IDESS(I), I=l,NUMESS)

--IDESS - the ID of each side set

READ (NDB) (NEESS(I), I=l,NUMESS)

--NEESS - the number of elements in each side set

READ (NDB) (NNESS(I), I=l,NUMESS)

--NNESS - the number of nodes i.neach side set

READ (NDB) (IXEESS(I), I=l,NUMESS)

--IXEESS - the index of the first element in each side set
-- (in LTEESS)

READ (NDB) (IXNESS(I), I=l,NUMESS)

--IXNESS - the index of the first node in each side set
-- (in LTNESS and FACESS)

READ (NDB)

--LTEESS -

READ (NDB)

--LTNESS -

READ (NDB)

--FACESS -

LTEESS(I), I=l,LESSEL)

the elements in all the side sets

LTNESS(I) , I=l,LESSNL)

the nodes in all the side sets

FACESS(I), I=l,LESSNL)

the factor for each node in LTNESS

. . .A valid GENESIS database may end at this point or after any point

...described below.

--Read the QA header information

READ (NDB, END=. ..) NQAREC

--NQAREC - the number of QA records (must be at least 1)

DO 110 IQA = 1, MAX(l,NQAREC)

28

READ (NDB) (QATITL(I,IQA), 1=1,4)
c --QATITL - the QA title records;

c

each record contains:
-- 1) analysis code name (CHARACTER*8)

c -- 2) analysis code qa descriptor (CHARACTER*8)

c -- 3) analysis date (CHARACTER*8)

c -- 4) analysis time (CHARACTER*8)

11O CONTINUE

c --Read the optional header text

READ (NDB, END=. ..) NINFO

c –-NINFO – the number of information records

DO 120 I = 1, NINFO

READ (NDB) INFO(I)

c --INFO - extra info~-mation records (optional) that contain

c -- any supportive documentation that the acalysis code

c -- developer wishes (CHARACTER*80)

120 CONTINUE

c -–Read the coordinate names

READ (NDB, END) (NAMEco(I), I=l,NDIM)

c --NAMECO - the coordinate names (CHARACTER’8)

c --Read the element type names

READ (NDB, END=. ..) (NAMELB(I), I=I,NELBLK)

c --NAMELB - the element type names (CHARACTER*8)

Intentionally Left Blank

30

D GJOIN Example Problem Output

*** GJoin Test Ve~SiOn 1.9 ***

Revised 92/11/11

A GENESIS DATABASE COMBINATION PROGRAM

Run on 11/11/92 at 15:48:19

Database: square.g

Square mesh for gjoin example

Number of coordinates per node

Number of nodes

Number of elements

Number of element blocks

Number of node sets

Length of node list

Number of side sets

Database: arc.g

Arc mesh for gjoin example

Number of coordinates per node

Number of nodes

Number of elements

Number of element blocks

Number of node sets

Length of node list

Number of side sets

*** Xnew = -1.000E+OO * Xold + 0.000E+OO

*** Entering Sorting Phase
*** Enteringcomparison Phase

Number of equivalence comparisons =

Tolerance used for matching =

Maximum distance between matched nodes

2

121

100

1

1

11

0

2

101

82

1

1

11

0

66

1.000E-04
—— 0.000E+OO

Minimum distance between nonmatched nodes = 1.000E-01

11 nodes matched

Cpu Time = 0.000E+OO, comparison/see = Infinite

31

Database: %gjoin

Square mesh for gjoin example

Number of coordinates per node = 2

Number of nodes . 211

Number of elements — 182

Number of element blocks — 2

Number of node sets = 2

Length of node list — 22

Number of side sets = o

Database: arc .g

Arc mesh for gjoin example

Number of coordinates per node — 2

Number of nodes 101

Number of elements 82

Number of element blocks 1

Number of node sets = 1

Length of node list — 11

Number of side sets o

‘“ Xnew = -1.000E+OO * Xold + 0.000E+OO
*** Ynew . -1.000E+OO * Yold + 0.000E+OO
*** Entering Sorting Phase

*** Entering Comparison Phase

Number of equivalence comparisons =

Tolerance used for matching =

Maximum distance between matched nodes =

66

1.000E-04

0.000E+OO

11 nodes matched

Cpu Time = 0.000E+OO, comparison/see = Infinite

*** WARNING - Duplicate IDs in element blocks - combined unless changed
*** WARNING - Duplicate IDs in nodal point sets -

combined unless changed

Database: %gjoin

Square mesh for gjoin example

Number of coordinates per node 2

32

Number of nodes

Number of elements

Number of element blocks

Number of node sets

Length of node list

Number of side sets

Database: square.g

Square mesh for gjoin example

Number of coordinates per node

Number of nodes

Number of elements

Number of element blocks

Number of node sets

Length of node list

Number of side sets

= 301
—— 264
—— 2

. 2
—— 32
. 0

—— 2
—— 121
— 100
= 1

Nodal point sets:

Set 10 (#l): 11 nodes

Set 20 (#2): 21 nodes

* Set 10 (#3): 11 nodes
*** Ynew = 1.000E+OO * Yold + -1.000E+OO

*** Entering Sorting Phase
*** Entering Comparison Phase

Number of equivalence comparisons .

Tolerance used for matching .

Maximum distance between matched nodes .

Minimum distance between nonmatched nodes .

176

1.000E-04

2.086E-07

1.000E-01

11 nodes matched

Cpu Time . 0.000E+OO, comparison/see = Infinite

*** WARNING – Duplicate IDS in element blocks – combined unless changed

*** WARNING - Duplicate IDs in nodal point Set5’ –

combined unless changed

Nodal point sets:

Set 10 (++1): 11 nodes \ combined into ID 10

* Set 10 (#3): 11 nodes / combined into ID 10

Set 20 (#2): 21 nodes

Nodal point sets:
Set 10 (#l): 11 nodes <“deleted>

33

se:-. 20 (#2): 21 nodes <deleted>
* Set 10 (#3): 11 nodes <deleted>

Element blocks:

Block 1 (#l): 100 elements
* Block 1 (#3): 100 elements

Block 2 (#2): 164 elements

Element blocks:

Block 1 (#l): 100 elements

Block 2 (#2): 164 elements

* Block 1 (#3): 100 elements

Database title:

Square mesh for gjoin example

Output database title:

Square mesh for gjoin example

Database title:

Square mesh for gjoin example

Output database title:

Example Problem for GJoin

Database: example.g

Example Problem for GJoin

Number of coordinates per node

Number of nodes

Number of elements

Number of element blocks

Number of node sets

Number of side sets

GJoin used .27 seconds of CPU time

4-node

4-node

4-node

4-node

4-node

4-node

.

2
411
364

1

0

0

\
/

\
I

/

combined into ID 1

combined into ID 1

combined into ID 1

combined into ID 1

combined into ID 1

34

Distribution

1 1400

1 1401

1 1402

1 1403

1 1404

13 1425

50 1425

1 1431

1 1431

1 1431

1 1432

1 1433

15 1434

1 1500

1 1501

1 1502

1 1503

1 1504

1 1511

1 1511

1 1511

1 1511

1 1511

1 1511

1 1511

1 1511

1 1512

1 1513

1 1513

1 1513

1 1513

1 1513

1 1551

1 1552

1 1553

1 1554

15 1561

13 1562

E. J. Barsis

J. R. Asay

S. S. Dosanjh

G. S. Davidson

J. A. Ang

J. H. Biffle & staff

M. K. Smith

J. M. McGlaun

K. G. Budge

J. S. Peery

W. T. Brown

J. W. Swegle

D. R. Martinez & smff

D. J. McCloskey

C. W. Peterson

P. J. Hommert

L. W. Davison

D. J. McCloskey, actg

J. S. Rottler

D. K. Gartling

M. W. Glass

P. L. Hopkins

M. J. Martinez

P. A. Sackinger

P. R. Schunk

J. D. Zepper

A. C. Ratzel

R. D. Skocypec

R. G. Baca

B. L. Bainbridge

R. E. Hogan, Jr.

J. L. Moya

W. P. Wolfe

C. E. Hailey

W. L. Hermina

W. H. Rutledge

H. S. Morgan& staff

R. K. Thomas& staff

10

1

1

1

1

1

1

1

5

1

10

1

6

1

1

1

5

1562

1832

2565

6313

6411

6423

6513

6522

7141

7151

7613-2

8523-2

8741

8742

8742
X74”).-

8743

G. D. Sjaardema

J. M. Ramage

S. T. Montgomery

J. Jung

A. S. Benjamin

J. F. Dempsey

D. S. Oscar

J. D. Miller

Technical Library

Technical Publications

Document Processing
for DOE/OSTI

Central Technical Files

G. A. Benedetti & staff

M. R. Birnbaum

J. J. Dike

L. I. Weingarten

M. L. Callabresi & staff

35

	CONTENTS
	1. INTRODUCTION
	1.1 SEACAS MESH GENERATION TOOLBOX
	1.2 INTRODUCTION TO THE GENESIS FILE FORMAT
	1.3 ORGANIZATION OF REPORT

	2. COMMANDS
	2.1 COMMAND SYNTAX
	2.2 FILENAME SPECIFICATION PHASE
	2.3 NODE COMBINATION AND DATABASE MODIFICATION PHASE
	2.4 GENERAL COMMAND PROCESSING PHASE

	3. GJOIN EXAMPLE PROBLEM
	4. REFERENCES
	A. OLD STYLE COMMAND INPUT SYNTAX
	B. GJOIN DETAILS
	C. THE GENESIS DATABASE FORMAT
	D. GJOIN EXAMPLE PROBLEM OUTPUT

	FIGURES

