
RECORD copy
c1 l

SANDIA REPORT
SAND92–2141 l UC–705
Unlimited Release
Printed May 1993

A GeneraI-Purpose Contact Detection
Algorithm for Nonlinear Structural
Analysis Codes

M. W. Heinstein, S. W. Attaway, J. W. Swede, F. J. Mello -- ‘-- - “--’-

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

II I I I I 1111 II II I I II
under Contract DE-AC04-76DP00789

8573079

SANDIA NATIONAL
LABORATORIES

TECHNICAL LIBRARY

SF2900Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus: product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontracts. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO BOX 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTX 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy A05
Microfiche copy AO1

SAND92-2141
Unlimited Release
Printed May 1993

Distribution
Category UC-705

A General-Purpose Contact Detection Algorithm for
Nonlinear Structural Analysis Codes*

M.W. Heinstein
Engineering Mechanics and Material Modeling Department

S.W. Attaway
Computational Mechanics and Visualization Department

J.W. Swegle
Experimental Impact Physics Department

F.J. Mello
Solid and Structural Mechanics Department

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

A new contact detection algorithm has been developed to address difficulties associated with
the numerical simulation of contact in nonlinear finite element structural analysis codes.
Problems including accurate and efficient detection of contact for self-contacting surfaces,
tearing and eroding surfaces, and multi-body impact are addressed. The proposed algorithm is
portable between dynamic and quasi-static codes and can efficiently model contact between a
variety of finite element types including shells, bricks, beams and particles. The algorithm is
composed of (1) a location strategy that uses a global search to decide which slave nodes are
in proximity to a master surface and (2) an accurate detailed contact check that uses the
projected motions of both master surface and slave node. In this report, currently used contact
detection algorithms and their associated difficulties are discussed. Then the proposed
algorithm and how it addresses these problems is described. Finally, the capability of the new
algorithm is illustrated with several example problems.

* This work performed at Sandia National Laboratories supported by the U.S. Department of
Energy under contract DE-AC04-76DP00789

1

Nomenclature

c

am,
dt
Ix, Iy, Iz
iboxmin

iboxmm

jboxmin

jboxmm

kboxmin

kboxmm

(J)mi”

(ix-m=

(iy)min

lbox
m

incremental time to contact

local surface coordinates of contact point

; component of surface normal

bucket containing node i

j component of surface normal
bucket size
number of slave node-master nodes comparisons made in 3D bucket

sorting

~ component of surface normal

vector from master surface node to slave node

current time step
Index vector for the x, y, and z coordinate respectively
slice of data containing minimum x-coordinate of master surface

capture box
slice of data containing (maximum x-coordinate of master surface

capture box j

slice of data containing minimum y-coordinate of master surface
capture box

slice of data containing maximum y-coordinate of master surface
capture box

slice of data containing minimum z-coordinate of master surface
capture box

slice of data containing maximum z-coordinate of master surface
capture box

pointer into the Index vector corresponding to the first slave node
inside a master surface capture box along the x-coordinate

pointer into the Index vector corresponding to the last slave node inside
a master surface capture box along the x-coordinate

pointer into the Index vector corresponding to the f~st slave node
inside a master surface capture box along the y-coordinate

pointer into the Index vector corresponding to the last slave node inside
a master surface capture box along the y-coordinate

pointer into the Index vector corresponding to the first slave node
inside a master surface capture box along the z-coordinate

pointer into the Index vector corresponding to the last slave node inside
a master surface capture box along the z-coordinate

number of slave nodes in each bucket
number of master nodes

2

A

‘P

N,n

n

ii
nb

nbox
ndsort
npoint

h

P
RX, RY, RZ

Sx, Sy, Sz

Vx,vy,vz

(vx~max

(Vyhnax

(Vz)max

‘i* Yi9zi9

“min

“m,ax
YCmin

Ycm,nx
ZCmin

Zcmm

number of master surfaces

unit normal of a master surface

unit normal of master surface i

unit normal of master surface at end of previous time step

surface normal of master surface

number of slave nodes

unit normal of the slave surface at a slave node
total number of buckets
bucket id for each slave node
list of slave nodes sorted by ascending bucket id
pointer into vector ndsort giving the starting location of the slave nodes

in each bucket

unit push-back direction at time t

penetration of slave node into master surface
Rank vector for the x, y, and z coordinate respectively

number of slices required along the x, y and z coordinates respectively

slice along x, y and z coordinate containing node i

current time

velocity vector

velocity of slave node

velocity of master surface at contact point

x, y and z component of velocity

maximum x-component of velocity

maximum y-component of velocity

maximum z-component of velocity

x,y, and z coordinate of master surface nodal point i
minimum x-coordinate of master surface capture box

maximum x-coordinate of master surface capture box
minimum y-coordinate of master surface capture box

maximum y-coordinate of master surface capture box
minimum z-coordinate of master surface capture box
maximum z-coordinate of master surface capture box

Table of Contents

1. Introduction ..7

2. Survey of Contact Detection Algorithms and Motivation for Current Work8

2.1 Neighborhood Identification ...9

2.1.1 Surface Side-Set Pairing ... 10

2.1.2 Surface Tracting ...lO

2.1.3 Bucket Seuching ..l 1

2.1.4 Pinball Contact ..l2

2.2 Detailed Contact Check ... 13

2.2.1 Ideal Contact Determination ...l3

2.2.2 Pushback inaccuracies ..l4

2.2.3 Overdetermined Contact ...l4

2.2.4 Undetermined Contact ..l6

2.3 Motivation for Current Work ...l7

3. New Contact DetectionAlgorithm ..l9
3.1 New Neighborhood Identification Sna@gy ...l9

3.1.1 Algorithm for vector architecture ...l9

3.1.2 Algorithm for parallel architecture ...24

3.2 New Detailed Contact Check ...29

3.2.1 Velocity Based Contact Check ...29

3.2.2 Static Contact Check ...32

3.3 Summary of New Contact Detection Algorithm ...33

4. Surface Definition Algorithm ...35

5. Example Problems ..37

5.1 Contact of Elastic Blocks ...37

5.2 Contact Chatter under High Normal Loads:
Pressure Loading of Two Elastic Bodies ..39

5.3 Self-Contacting Impact: Buckling of Shell-Like Structures4l

5.4 Automatic Contact Surface Redefinition: Cutting of a Steel Pipe43

5.5 Multi-Body Impact: Elastic-Plastic Bar impacting Bricks46

5.6 Large Sliding Contact: Elastic-Plastic Forging of a Copper Billet48

6. Conclusions ...50

7. References ..5l

Al. Appendix 1: Derivation of velocity based contact check ...54

A2. Appendix 2: User instructions and example input files ...6O

4

List of Tables

1. Surface definition algorithm example ..36

5

List of Figures

1. Master-slave relationship definition for contact enforcement ..9

2. Surface tracking and side set pairing required for self-contacting structures10

3. Detection of potential contacts for slave node 3 are influenced by bucket size 12

4. Calculation of the normal distance to contact point when contact is made 13

5. Calculation of the normal distance to contact point as point slides on surface14

6. Resolving overdetermined contact by determining most opposed master surface 15

7. Determining contact point with consideration of slave node’s movement 16

8. Resolving undetermined contact by identifying the closet point

to the master surface ..l7

9. Slave node 2 tracking closest master node 14 results in a missed contact 18

10. Example of two blocks contacting each other ...2O

11. Bounding box and capture box for a moving master surface ..21

12. Remaining penetration due to a partially enforced contact constraint22

13. Bucket Bi defined by three slices of the data that contain node i25

14. Master slave tracking using velocity and static contact check29

15. Initial estimates for the local coordinates of a contact point ...31

16. Push back direction for a concave surface based on minimum distance

to master surface ..32

17. Push back direction for convex surface based on previous master surface normal33

18. Example mesh for surface definition algorithm ..35

19. End-on impact of two blocks ...37

20. Corner impact of two blocks ..38

21. Two elastic bodies contacting under high normal load ...39

22. Kinetic energy history and deformed shape (displacements magnified by lOOx)

using old and new contact detection algorithm ...4O

23. Finite element mesh of an elastic plate impacting an elastic-plastic can4 1

24. Deformed meshes of the buckled can at various times ..42

25. Finite element model for simulating the cutting of a 2 inch steel pipe43

26. Pipe cutting simulation results at various times ...44

27. Elastic-plastic bar impacting a stack of 17 elastic bricks ..46

28. Multi-body impact simulation results at various times ..47

29. Finite element mesh of a rivet forging process ..48

30. Rivet forging of a copper billet ..49

A 1.1. Triangular master surface definition on a quadrilateral element face54

A1.2. Initial estimates for the local coordinates of a contact point58

1 Introduction

An increasingly important aspect of large-scale finite element structural simulations is the
efficient and accurate determination of contact between deformable bodies. At Sandia
National Laboratories, the PRONTO [1][2][3] transient dynamics codes and the SANTOS [4]
and JAC [5] [6] quasi static codes have been used to solve a wide variety of problems involving
contact and other nonlinearities. However in some cases, the range of their applicability could
be increased by improving the efficiency and accuracy of contact detection. These
improvements would be beneficial in problems involving: structures that buckle and fold onto
themselves; structures that have materials that tear and create new surfaces; multiple body
contact/impacC and structures that slide relatively large distances over other surfaces. This
report deals with one part of the contact problem, namely the detection of contact, which is
distinct from the procedure used to enforce contact constraints. In these codes, which use a
master-slave approach to contact problems, contact detection includes identifying the time,
location, and amount of slave node penetration through some portion of a master surface.

The benefits of reducing the time spent on contact algorithms can be significant. For iterative
equation solvers, such as those used in the Sandia codes, inaccuracies in the detection of
contact lead to an increase in the number of iterations required for convergence. These
inaccuracies arise mainly from incorrectly determining the location of contact as a slave node
slides across another surface. For large finite element simulations with large numbers of slave
nodes and master surfaces, as much as 50 percent of the total CPU time is spent using
currently available contact algorithms. Thus, improvements in the speed and efficiency of
contact detection could significantly reduce the total computational cost. More importantly,
these improvements are also expected to allow one to solve problems which cannot be solved
using existing algorithms.

This report reviews the current contact detection techniques used in the Sandia structural
analysis codes and outlines the difficulties associated with these algorithms. A new algorithm
is proposed that circumvents these difficulties. The key points of the new algorithm are that it:

i) uses a fast, memory-efficient global search to decide which slave nodes are in proximity
to a master surface;

ii) does a detailed contact check using projected movements of both the master surface and
slave node to determine the location, magnitude and direction of slave node penetra-
tion of the master surface; and

iii) automatically defines all surfaces given the mesh connectivity.

In Section 2 a short survey of the current contact detection algorithms and some difficulties
associated with them is presented. Section 3 describes the proposed new contact detection
algorithm, and in Section 4, an automatic surface definition algorithm is presented. Finally, in
Section 5, example and verification problems using the new contact detection algorithm are
discussed. Nomenclature used throughout the report is defined on the preceding pages. Two
appendices are attached. In the frost appendix, the velocity based contact check proposed in
Section 3 is derived. The second appendix has a complete listing of all input files for the
example problems presented in Section 5.

7

2 Survey of Contact Detection Algorithms and Motivation for Current
Work

The contact detection algorithms described in this section are typical for many finite element
codes, including the transient dynamic codes PRONTO [1][2] [3], DYNA[7][8], and
ABAQUS Explicit [9], and the quasistatic codes SANTOS [4], JAC [5][6] and NIKE
[10][11]. Most of this section specifically reviews the contact detection algorithms used in the
PRONTO, SANTOS, and JAC codes. Difficulties associated with the contact detection
algorithms are presented as a way for motivating the current work. A recent survey of the
contact-impact algorithm in the DYNA codes was reported in [12].

Contact detection algorithms of interest here define a set of nodes called slave nodes and a set
of surface patches called master surfaces. A slave node is simply a nodal point on the surface
of the mesh. A master surface is defined using the side of a finite element on the surface. The
surface topology is then simply a set of nodal points on the surface connected by straight line
segments, corresponding to linear surface elements in 2D and hi-linear, quadrilateral surface
elements in 3D. The master surface patches need not have the same order of interpolation as
the finite element side that they represent. A four-node quadrilateral finite element side, for
example, might be subdivided into four triangular master surfaces with the central node
position being the average of the four corner nodes [13].

Contact detection is accomplished by monitoring the displacements of the slave nodes
throughout the calculation for possible penetration of a master surface. Following contact
detection, a contact constraint is defined so that the slave node is “pushed back” to remain on
the master surface. Based on this description, it is convenient to separate contact algorithms
into a location phase and a restoration phase. The location phase consists of a neighborhood
identification and a detailed contact check. The neighborhood identification matches a slave
node to a set of master surfaces that it potentially could contact. The detailed contact check
determines which of the candidate master surfaces is in contact with a slave node, the point of
contact, the amount of penetration, and the direction of push-back. The point of contact,
amount of penetration, and the direction of pushback define a contact constraint that is then
enforced in the contact enforcement or restoration phase of the contact algorithm. This
constraint is enforced in the following time step or possibly over several time steps.

Although this report does not deal directly with contact enforcement, several aspects of it will
affect the contact detection algorithm. The fust is that the contact constraint is not necessarily
enforced exactly in one time step for transient dynamics analyses, or in one iteration for
quasistatic analyses. In part, this is due to the necessity of determining contact based on an
approximate or projected configuration. In many cases, an estimated amount of slave node
penetration is too low. Consequently, in the following time step (or iteration) the slave node is
still penetrating the master surface. It is also likely and even desirable that the contact
constraint intentionally be enforced in several time steps to improve the stability of the
nonlinear equations of motion (or in several iterations to improve the convergence of
integrating the nonlinear equilibrium equations in the case of quasistatic codes). This implies
that the location phase must allow for the possibility that the contact constraint is not exactly
enforced.

8

Another aspect that will affect contact detection is that contact enforcement algorithms are
based on a master-slave definition. For algorithms that require a strict master-slave treatment,
the user must specify which surface is the master and which surface is the slave. This choice
can have a significant effect on the resulting calculation and solution. For example, the
coarser mesh should be designated as the master surface when the two contacting materials
are the same, as shown in Figure 1a. If the master and slave surfaces are reversed as in Figure
1b, interpenetration that is not detected by the algorithm can result. The choice of master-
slave roles is less clear when the materials of the contacting bodies are different. A more
general contact enforcement approach requires that two passes be made through the contact
detection algorithm, with master and slave surfaces exchanging roles. This two-pass
approach, called a symmetric or partitioned contact algorithm, is more robust and often
justifies the additional computational cost of the extra pass. The PRONTO codes also allow
the user to specify a factor which partitions the master/slave roles of the contacting surfaces.
For the contact detection algorithm, this implies that all nodes on the surfaces are slave nodes
and all element faces on the surfaces are master surfaces.

surface 1 surface 1

(a) surface 1 is the master and (b) surface 1 is the slave and
surface 2 is the slave surface 2 is the master

Figure 1. Master-slave relationship definition for contact enforcement.

2.1 Neighborhood Identification

Based on the description of contact detection, an algorithm called “neighborhood
identification” is required to pair those slave nodes and master surfaces where potential
contact is likely. The neighborhood identification phase is usually the most time consuming
part of the contact detection algorithm. Obviously, the most robust approach would be to
check every slave node against every master surface at every time step. Typically, the
distances between each slave node and all master surface nodes are checked to find the closest
master surface node. Master surfaces attached to this node are then considered as candidates
for detailed contact checks. This exhaustive global searching approach requires nodal distance
calculations on the order nxm, where n is the number of slave nodes on the surface and m is
the number of master nodes on the surface. Several algorithms have been proposed to speed
up the neighborhood identification phase. These include surface side-set pairing, surface
tracking, bucket searching, and pinball contact which are described below.

9

2.1.1 Surface Side-Set Pairing

One simple and widely used approach to speed up neighborhood identification is to define
subsets of the surface and prescribe pairs of subsets that may be in contact. Using these
contact pairs, a search may be restricted to only those slave nodes and master nodes which are
included in the two subsets. All of the Sandia codes currently use surface side set pairing. A
recent extension of this idea subdivides the contact side sets further and has been developed
and implemented in DYNA3D [14]. This approach is effective when the contact surface pair
has a very small number of slave nodes and master surfaces. For larger problems faster search
techniques are needed.

2.1.2 Surface Tracking

To speed up the neighborhood identification further, some codes including PRONTO use a
process called surface tracking [1,2,6,7]. Surface tracking requires the definition of contact
surface pairs but does not require an exhaustive nmn search between all slave nodes and
master nodes. The surface tracking algorithms currently in PRONTO and DYNA are based on
two assumptions regarding the behavior of contacting surfaces. First, the spatially closest
master surface node is assumed to be attached to the master surface that the slave node
contacts. This assumption allows a very simple distance calculation to find what is called the
tracked master surface node. Once the tracked master surface node is known, a detailed
contact check for each master surface connected to the node can be made. The second
assumption is that from one time step to another, the new tracked master surface node can be
found near the currently-tracked node. This assumption allows the tracking to be updated by a
local search for the nearest master surface node starting with the currently-tracked node and
moving radially outward. To avoid searching for neighboring master surface nodes during the
calculation, the tracking algorithm constructs a list of master surface neighbors at the start of
the calculation and stores it for future reference. This requires a considerable amount of
memory but is usually justified because a significant amount of computing time can be saved.

A surface tracking algorithm based on these assumptions cannot effectively model two classes
of problems. The first is a structure buckling and folding onto itself as shown in Figure 2.

slave node

% slave surface

%

+ slave surface
master surface

/
master surface

tracked master
surface node

time t time t+dt

Figure 2. Surface tracking and side set pairing required for self-contacting structures

10

Since the portions of the surface that come into contact are not known a priori, the contact
surface definition and pairing must be done intermittently throughout the analysis [15]. This
extensive interaction by the user makes the solution of self contact difficult. The second class
of problems involves structures with surfaces that tear or erode. Usually the newly created
surface finds itself in contact with other parts of the structure. The fixed data structure
required for surface tracking is an obstacle for redefining the surface and allowing further
contact.

2.1.3 Bucket Searching

Recently several algorithms using a bucket search have been proposed for modelling self
contacting surfaces [12] [16]. These global search algorithms are referred to as bucket searches
because the domain of the problem is broken down into buckets (or boxes) into which the
slave nodes and master nodes are sorted. The domain of the problem is frost subdivided into SX
slices along the x-coordinate, SYslices along the y-coordinate, and Sz slices along the z-
coordinate. The intersection of any three orthogonal slices defines a bucket. Potential
interactions between nodes are determined by looping through the buckets and collecting the
slave nodes and master nodes in neighboring buckets. Typically, a closest master node is
determined for each slave node using a distance check. Assuming a uniform distribution of

__..

n+tn slave and master nodes throughout the domain, the total number of distance comparisons
for a 3D problem (reported in [12]) is:

[
c3~ = (n+rn) 27(~+~) _l

(Sxsysz)

After the distance check, all master surfaces connected to the closest master node are then
considered for potential contact with the slave node. This method for determining potential
interactions implies that the bucket size should be chosen based on the largest master surface

dimension to avoid missing a potential contact, as shown in Figure 3. The small bucket size in
Figure 3a results in a missed contact because the master nodes 7 and 8 are not in the
neighboring buckets of slave node 3. The larger bucket size in Figure 3b results in detecting
the correct contact of slave node 3 with the master surface defined by master nodes 7 and 8.
Based on this observation, a contact problem involving very dissimilar mesh sizes requires
large buckets compared to many of the elements. Consequently, a large number of potential
interactions may be found in each bucket.

A limitation of the bucket searching algorithm is the potential need for a large amount of
memory. At fiist glance this algorithm appears to require kS##Z memory locations, where k
is the maximum number of nodes likely to be found in a bucket. With some attention to
memory management, these requirements can be significantly reduced for certain problems.
For other problems the large amount of memory required remains an obstacle. If the problem
domain expands greatly, either the number of buckets must increase (to maintain the same
resolution) or the bucket size must increase (to maintain the same amount of memory). Either
one adversely effects the bucket search efficiency. This dependency on the bucket size or,
equivalently, on the geometry of the problem domain is considered as a limitation of current
bucket searching techniques.

11

neighboring buckets for slave node 3

7
. slave node
. master node

1

(a) a small bucket size results in a missed contact

d neighboring buckets for slave node 3

6

QBslave node
● master node

(b) a large bucket size results in detecting correct contact

Figure 3. Detection of potential contacts for slave node 3 are influenced by bucket size

Even with these possible difficulties, the distinct advantage that bucket searching algorithms
have is that they lend themselves to a parallel architecture, as discussed by Plimpton [20].

2.1.4 Pinball Contact

Another contact detection algorithm that uses a global search was proposed by Belytschko
[17]. It is referred to as pinball contact since a circle is inscribed within each element on the
surface of a two-dimensional mesh. (A sphere is inscribed within each element on the surface
of a three-dimensional mesh). Potential contact is detected simply by overlap of any two
spheres. The procedure vectorizes and therefore is suited to large-scale 3D computations
where fast and efficient algorithms are imperative. To aid this overlap detection, a sorting or
searching technique, such as bucket searching, may be necessary. After pinball overlap is
detected, a more detailed contact check can be used to obtain a more accurate prediction of the
contact constraint. The method was intended for problems where impact is the primary form
of contact. Two dimensional [18] and three dimensional [17] problems have been successful y
solved using the pinball algorithm. There is, however, a class of problems where the pinball
algorithm does not work well. For problems where sliding contact and friction is encountered,
the resolution of the mesh near the surface has a dramatic effect on the accurate prediction of
contact forces. A mesh with varying resolution at the surface gives a poor prediction of
contact pressures and forces. This is a result of modelling a geometrically flat surface with a
series of inscribed circles and is a limitation of the pinball contact algorithm.

12

2.2 Detailed Contact Check

After gathering a list of potential interactions using any one of the searching techniques
described above, a detailed contact check is done for each slave node - master surface pair.
The following section presents what is typically done in a detailed contact check. This check
determines: (1) which of the candidate master surfaces is in contact with the slave node, (2)
the point of contac$ (3) the amount of penetration, and (4) the direction the slave node should
be pushed back. This overview is presented using 2D surfaces composed of lines for
simplicity, but the theory applies equally to 3D surfaces composed of bilinear patches.

2.2.1 Ideal Contact Determination

The ideal condition for determining contact is shown in Figure 4. The slave node is
unambiguously outside a master surface at time tand inside the same surface at time t+dt. At
time t+dt, the distance, p, from the slave node to the master surface is calculated by projecting

the vector ~~~ onto the surface normal r?zf:

p= am, .rill (1)

The vector ~~~ is defined, as shown in Figure 4, from the master surface node i to the slave

node at time t+d~

im, = [x, (t+dt) -xi(t+dt)]~+ [y~(t+dt) eyi(t+dt)]~ (2)

where (x~(t+dt),y~(t+dt)) and (xi(t+dt),y~t+dt)) are the coordinates of the slave node and

master surface node i at time t+dt, respectively. This normal distance, p, is called the amount

of penetration and the unit vector @f = h] is called the pushback direction, where ~f is

defined to pass through the slave node at time t+dt. The contact point, x, is determined by
intersecting the master surface with the pushback direction:

(xc, yc) = (x,> Y,) + (P(P, J), P(Pt@j)) (3)

slave node at time t ~sthtec~ direction
master surface at time t+dt

e..
...

●.O..O

master node i
slave node at time t+dt

Figure 4. Calculation of the normal distance to contact point when contact is made

13

2.2.2 Pushback inaccuracies

Unfortunately, there are many ambiguous cases of contact that arise because of the
discretization of the surface. The surface is discretized as a collection of ~ continuous finite
element sides in 2D (or faces in 3D). ~ continuity in the geometric interpolation results in a
surface normal that is not continuous. This can have adverse effects on the accuracy of the
contact enforcement. Consider, for example, the case where a slave node is sliding across the
surface shown in Figure 5. One must keep in mind that the enforcement of the contact
constraint is not exact in one time step and could be enforced over several time steps. It is
possible then, that the slave node be penetrating the master surface at time t+dt (a time step dt
after contact was detected). As the slave node slides from being in contact with master surface
1 to being in contact with master surface 2, the pushback direction is changing to coincide
with the normal of master surface 2. This change in the pushback direction artificially
introduces added slave node motion along its trajectory. This is a direct result of the inexact
enforcement of the contact constraint in one time step. In calculations where friction is
modelled, this velocity can add noise to the solution.

contact point and contact point and

pushback direction at time t pushback direction at time t + dt
(calculated based on normal distance)

master surface 1
at time t+dt ~

?%% :Fe 2

slave node at time t+dt added slave node velocity
due to change in pushback direction

Figure 5. Calculation of the normal distance to contact point as point slides on surface

2.2.3 Overdetermined Contact

Further ambiguity is introduced when the contact algorithm performs the detailed contact
checks based only on the estimated (deformed) configuration. For example, Figure 6 shows
two different scenarios where a slave node can make contact with two master surfaces. Since
the slave node motion is not used to determine how contact was made at time t+dt, two
contact constraints can be defined (one with master surface 1 and the other with master
surface 2). The algorithm, then, must resolve the overdetermined contact and decide which
contact constraint to enforce. This is commonly done by determining which master surface is

most opposed to the slave node surface normal [1] [7] [9]. The surface normal fi at a slave node
is defined as the average of the normals of all the element faces connected to the slave node. A

master surface is most opposed to the slave surface normal when the quantity Iii . fil is
largest. It is common to assume that the most opposed master surface is the one on which the

14

contact constraint should be enforced, so that in Figure 6a, the slave node is contacting master
surface 1 and in Figure 6b the slave node is contac-ting master surface 2. The most opposed
criterion is often called the strength of contact check.

contact point

fill

master surface at time t+dt slave node at time t+dt

ii

(a) slave node more opposed to master surface 1: 16 ● iill > Ifi ● fi121

contact point

rill
master surface at time t+dt

slave node at time t+dt

(b) slave node more opposed to master surface 2: Iii ● rn21 > Ifi ● fill

Figure 6. Resolving overdetermined contact by determining most opposed master surface.

When two surfaces are already in contact the strength of contact check can be effective.
However, when the surfaces are just coming into contac~ as shown in Figure 7, this type of
static contact check cannot consistently resolve the overdetermined contact and predict the
correct contact constraint. In Figure 7a, the slave node makes contact with master surface 1. In
Figure 7b, the slave node makes contact with master surface 2. The contacts area result of the
motion of the slave node and are not determined by the master surface which is most opposed.

15

slave node at time t

!

master surface at time t+dt
e----

-...-...
fill

slave node at time t+dt

(a) contact point on master surface 1

contact point e slave node at time t

iiil
master surface at time t+dt

slave node at time t+dt

(b) contact point on master surface 2

Figure 7. Determining contact point with consideration of slave node’s movement.

2.2.4 Undetermined Contact

Another ambiguity exists when the normal distance is undetermined. Figure 8 illustrates a
situation when this can occur. The normal distance measured from the slave node to the
master surface does not intersect any master segment. Intersection implies that the contact
point, x, on the master surface lies between the ‘master surface nodes, and not beyond them as
shown in Figure 8a and b. Current algorithms typically allow an extension, e, of the master
surface so that contact can be detected. This extension means that either one contact is found
or, in other cases, both contacts are detected and a choice between the two must be made.
With either case, the contact point is still incorrectly defiied. This inaccurate determination of
the contact point causes “contact chatter”, (see example 5.2).

In this situation, the detailed contact check should identify the vertex of the two master
surfaces as the contact point since it is the closest point on the master surface, as shown in
Figure 8c.

16

J?J2(e

...

slave node at time t+dt

lilz

+

t

...-
..

slave node at time t+dt

(a) contact with master surface 1 (b) contact with master surface 2

contact point
slave node at time t

e.+ fill
●....

master surface at time t+dt
..O

..

slave node at time t+dt

(c) contact at vertex of master surface 1 and master surface 2

Figure 8. Resolving undetermined contact by identifying the closet point to the master
surface

2.3 Motivation for Current Work

Several algorithms for efficient neighborhood identification have been summarized in this
section. These included surface side-set pairing, surface tracking, bucket searching, and
pinball contact. This current technology works successfully for a large variety of contact
problems. There are some problems, however, where improvements in neighborhood
identification and searching are required. Improvements would be beneficial in problems
involving: structures that buckle and fold onto themselves; structures that have materials that
tear and create new surfaces; multiple body contact/impact; and structures that slide relatively
large distances over other surfaces.

In particular, improvements could address two distinct concerns with current search
techniques. One concern is that nearly all neighborhood identification techniques are for
nodes. For example, the result of a search is always the closest master node for a given slave
node (with one exception in pinball overlap). A slave node does not always contact a master
surface connected to the closest master node. Figure 9 shows a very simple shell self-contact

17

example demonstrating this fact. The slave node 2 is tracking master node 14, however it is
actually contacting master surface 8-9 (defined by surface nodes 8-9). The tracked master
node 14 implies that a detailed contact check would consider master surfaces 13-14 and 14-15
only and not master surface 8-9 as it should. Contact is always made between a slave node and
a master su~ace, and an improved neighborhood identification should reflect this.

slave node

contacted master surface 8-9

tracked master
surface node

Figure 9. Slave node 2 tracking closest master node 14 results in a missed contact

Another concern is that current global sorting and searching routines depend on the problem
domain. The efficiency of bucket searching is adversely affected by problems that grow or
expand in spatial dimension. Significant improvements in the speed and efficiency of the
search phase could be made if it depended only on the number of master surfaces and slave
nodes in the problem, and not on the problem geometry.

The detailed contact check was also summarized in this section. The difficulties associated
with detailed contact determination included (1) inaccurate pushback direction, (2)
overdetermined (multiply defined) potential contact, and (3) undetermined contact. An
improved contact detection algorithm should address these issues and offer improved
accuracy in determining the contact point, penetration, and pushback direction.

18

3 New Contact Detection Algorithm

The proposed contact detection algorithm outlined in the following section offers
improvements in the efficiency and accuracy of contact detection. The improvements are the
result of a neighborhood identification strategy that uses a global contact search and an
accurate detailed contact check that uses the projected motion of both master and slave
surfaces. The algorithm does not require contact surface pairing and, therefore, easily handles
self-contacting surfaces, eroding and tearing surfaces, and random contact between multiple
bodies. The algorithm also resolves the ambiguities that arise because of the surface
discretization and from using only the deformed configuration for detailed contact checks.

3.1 New Neighborhood Identification Strategy

The proposed neighborhood identification strategy uses a global search to determine what
slave nodes are in close proximity to a master surface. It accumulates these potential
interactions by constructing a local neighborhood around a master surface and globally
searching for all slave nodes that are in the neighborhood. Two global search algorithms are
presented, one that takes advantage of the characteristics of vector processors, and one that
takes advantage of the characteristics of parallel processing. The efficiencies of each search
algorithm are still under investigation. Both algorithms have been implemented on computers
with scalar and vector processors. The algorithm for vector architecture uses a new search
routine developed by Swegle [19]. The algorithm for parallel architecture is an extension of
the state-of-the-art bucket searching technique [12], with a few significant exceptions.

To illustrate the two search algorithms, the example shown in Figure 10 of two blocks
contacting each other will be used. Each block is a cube with dimensions l“X 1“x l“. The
centroid of block 1 is initially at the coordinates (0.5”, 0.5”, 0.5”) and is moving with a
velocity VY= 500 irds in the y-direction. The stable time step is approximate y 1.1x 10-6s so
that block 1 moves approximately 5.5x104 inches during one time step. Block 2 is initially at
rest with its centroid located at the coordinates (0.5”, 1.5”, 0.5”). The symmetric contact
enforcement being used implies that every node and element face on the surface is included in
the contact surface. There are 52 slave nodes (rz=52) and 48 master surfaces (m#8).

3.1.1 Algorithm for vector architecture

A search algorithm using 7n memory locations and requiring on the order of mJog2n
comparisons is utilized for the global location strategy. The algorithm is based on a particle
search technique developed by Swegle [19]. It sorts the slave nodes by location and uses a
binary search to construct a list of slave nodes that are in a master surface neighborhood. The
search algorithm implemented here depends only on the number of slave nodes n and not on
the geometry of the problem. It takes advantage of the known positions of the slave nodes and
master surfaces as well as their predicted positions in the next time step.

The slave nodes are sorted based on their current coordinates, with each coordinate sorted
independently. This sorting is done using an index vector so that the order of the slave nodes
listed in the index vector corresponds to their coordinate value, with coordinates ordered from
smallest to largest. For the current example, there are 52 slave nodes numbered as shown in
Figure 10, resulting in the following index vectors:

19

initial velocity of block 2

ij =

block 2

/ ‘

, (‘ block 1

/ ‘

x

{0,0,0}

master surface 5

initial velocity of block 1

GI = {O, 500 in/s, O}

44

36 3’/ 4
35

27 28

Figure 10. Example of two blocks contacting each other.

lx= { 1,4,7,10,13,15,1 8,21,24,27,30,33,36,39,4 l,U,47,5O,2,5,8,l 1,16,19,
22,25,28,31,34,37,42,45,48,5 1,3,6,9,12, 14,17,20,23,26,29,32,35,38,
40,43,46,49,52)

IY= { 1,2,3,4,5,6>7,8,9,10,1 1,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,3 1,32,33,34,35,36,37,38,39,40,41 ,42,43,44,45,46,47,48,
49,50,51,52 }

Iz = { 7,8,9,15, 16,17,24,25,26,33,34,35,41,42,43,50,5 1,52,4,5,6,13,14,21,
22,23,30,31,32,39,40,47,48,49,1,2,3,10,1 1,12,18,19,20,27,28,29,36,
37,38,44,45,46 }

for the x, y, and z coordinates respectively. A rank vector is also constructed for the slave
nodes. It gives the location of each slave node in the index vector and is required to avoid
searching the index vector for a given slave node. It can be easily constructed by looping
through the index vector. For example, suppose a slave node i is stored at position j in the
index vector. The rank vector would then store the pointerj at its position i. For the current
example, the rank vectors are:

20

RX={

RY=(

Rz={

1,19,35,2,20,36,3,2 1,37,4,22,38,5,39,6,23,40,7,24,41 ,8,25,42,9,26,43,
10,27,44,11,28,45,12,29,46, 13,30,47,14,48,15,31,49, 16,32,50,17,33,
51,18,34,52)

1,2,3,4,5678910,1 1,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,77>??
27,28,29,30,3 l,32,33,34,35,36,37,38,39,@,4l,42,43,U,45,46,47,48,
49,50,51,52 }

35,36,37,19,20,21, 1,2,3,38,39,40,22,23456 41 ,42,43,24,25,26,7,8,9,?9?7
44,45,46,27,28,29,10,1 1,12,47,48,49,30,31,13, 14,15,50,51,52,32,33,
34,16,17,18 }

After the slave nodes are sorted by x, y and z coordinate, the master surfaces are processed
sequentially. This processing involves defining a local neighborhood for each master surface
by bounding the space occupied by a master surface at its known location at time tand its
predicted location at time t+dt.Figure 11 shows a bounding box for a master surface over one
time step. Another box, called the capture box is also constructed to collect slave nodes that
potentially contact the master surface.

current position predicted position
\< , ~ (vz)tnaxdt

bounding box \

capture box ~
\ @

63

69

t 75
slave

@ ““”“~i$&M:.:.::M
..........................~...:.’.,:.:.::~

node @ @ ““;’w&””

@@ (vY)rnmdt
-“dt

@

Figure 11. Bounding box and capture box for a moving master surface

For example, suppose the maximum distance any slave node moves in one time step is
(vx)mmdt in the x-direction. Then a slave node within a distance (vx)mmdt from the bounding

box could potentially contact the master surface. This holds for the y- and z-directions as well
so that a capture box can be constructed, as shown in Figure 11. Any slave node inside the
capture box should therefore be considered for potential contact with the master surface. In

the example problem, (Vx)mm = O, (Vy)m= = SOO i~$ (Vz)m= =0, and dt= 1.1x10-6 s,sothe

capture box for master surface 5 would have the corners:

21

X~ln = 0.0 in., xmax = 0.5 in.

Y~l” = 1.0 – vYdt = 0.99945 in.

Z~ in = 0.5 in. , z~,x = 1.0 in.

, Yin,, = 1.0+ vYdt = 1.00055 in,

At this point it is necessary to address one aspect of the contact enforcement algorithm that
will affect contact detection. Recalling that a contact constraint is likely to be enforced over
several time steps, the capture box must be enlarged to capture slave nodes with a partially
enforced contact constraint. A distance, pr, equivalent to the amount of penetration not
enforced is easily computed for each slave node in contact with a master surface, as shown in
Figure 12. The capture box is enlarged in all directions by this distance, pr.

I
contact oint and

\
remaining penetration

pushbac direction at time t , at time t+dt

master surface 1
at time t+dt

master surface 2
penetration at time t at time t+dt

slave node at time t
enforced position of
slave node at time t+dt

Figure 12. Remaining penetration due to a partially enforced contact constraint

After defining the capture box a binary search is done on the index vectors to find the slave
nodes that are inside the capture box. The binary search results in hvo pointers for each
coordinate direction. One is a lower pointer into the index vector that corresponds to the
position in the index vector of the first slave node inside the capture box and the other is an
upper pointer that corresponds to the position in the index vector of the last slave node inside
the capture box.

For the example problem node 1 at position 1 in Ix is the frost node in the box in the x
direction, and node 51 at position 34 in Ix is the last node inside the capture box. In they
direction node 18 in position 18 of IYand node 35 at position 35 in IYare the frost and last
nodes just inside the capture box, respectively. Similarly, in the z direction node 4 in position
19 of Iz and node 46 at position 52 in Iz are the f~st and last nodes inside the capture box,
respectively. Therefore, the binary search would give the following results:

(ix)min = 1, (ix)mn = 34

(iy)min = 18, (iy)m= = 35

22

(iz)rnin = 19, (i&m= 52

This means, for example, that the subset of slave nodes from Ix((ix)min) to Ix((ix)mm) are in
the capture box of the master surface on the basis of the x-coordinate. For the example
problem, the subset or list of slave nodes for each coordinate direction that are in the capture
box of master surface 5 are:

LX= { 1,4,7,10,13,15,1 8,21,24,27,30,33,36,39,4 l,M,47,5O,2,5,8,l 1,16,19,22,

q={

Lz={

25,28,31,34,37,42,45,48,5 1 }

18,19,20,21,22,23,24,25,26,27,28,29,30,3 1,32,33,34,35 }

4,5,6,13,14,21,22,23,30,3 1,32,39,40,47,48,49, 1,2,3,10,11,12,18,19,20,
27,28,29,36,37,38,44,45,46 }

Finally, a contraction is done to find the slave nodes in the capture box of the master surface in
all three coordinate directions simultaneously. To accomplish this, each of the slave nodes in
one list is selected and then checked if its rank is between the lower and upper pointer in the
other two coordinates. For computational efficiency the shortest list of slave nodes is selected,
which can be determined by selecting the smallest of [(iW)mm - (iW)m~ + 1] , w = x, y, or z.

For the example problem, ~ is the list with the smallest number of slave nodes, so that slave

nodes i = IY((iY) ~in), IY((iY) ~in + 1), IY((iY) ~aX) are in the capture box if

‘ix) ~i~ S ‘X ‘i) < ‘ix) ~~~ and (iZ) ~in < Rz (i) S (iz) ~,x.

To help illustrate this procedure, the frost few slave nodes in list ~ are processed as follows:

1) i = IY((iY)~in) = 18 ,Rx(18) =7, and Rz(18) =41.

Since (iX)~in S7 s (iX)m,X and (iz)~in s41 < (iz)~,, slave node 18 is in

the capture box of master surface 5.

2) i = $((iY)~in+ 1) = 19, Rx(19)= 24, and RZ(19) =42.

Since (iX) ~in <24 S (i,) ~,, and (iZ) ~in <42 S (iZ) ~,X slave node 19 is also

in the capture box of master surface 5.

3) i = IY((iY)~in +2) = 20, RX(20) = 41, and RZ(20) = 43.

Since 41> (i,) ~,, slave node 20 is NOT in the capture box of master surface 5.

After processing all of the slave nodes in list Ly, it is found that only the slave nodes
{18,19,21,22,27,28,30,31) are within the bounding box of master surface 5.

For efficiency on a vector computer each slave node-master surface pair is stored in an array

23

for later processing after a vector length of pairs is accumulated. Note that only those pairs are
added where the slave node is not also a node on the master surface. For the example problem
only the following four pairs would be added to the array:

{ (27, 5), (28, 5), (30,5) and (31,5) }

At this point an exhaustive search has been done and no assumptions have been made on the
manner in which contact can or will be made. The processing that will determine contact is
called the detailed contact check. In the current implementation of the algorithm, the binary
sorting is implemented every time step.

3.1.2 Algorithm for parallel architecture

The following algorithm is essentially a conventional bucket search [12] with two significant
exceptions. These exceptions are that (1) the bucket size b~ is based on the smallest master
surface dimension and (2) a capture box is used to ensure all potential contacts are gathered
for a detailed contact check. The capture box takes advantage of the known positions of the
slave nodes and master surfaces as well as the predicted positions in the next time step. Both
are described in detailed after the bucket search algorithm is reviewed.

The bucket search algorithm f~st sorts the slave nodes into buckets, then finds the buckets that
a master surface occupies and pairs the master surface with the slave nodes in those buckets. It
requires (18n) memory locations plus two vectors with lengths equal to the number of
buckets (rib).

To sort the slave nodes into buckets, an integer coordinate system is constructed in each
physical direction. Assuming that the bucket size b~ is based on the dimension of the smallest
master surface, the number of slices (each with thickness bs) required in the x, y, and z
directions are:

s= = int[(Xm~~–Xml~) /b~] + 1

Sy = int [(Ymax– Ymin)lb,] + 1

Sz = int [(z~~x–z~i~) /b,] + 1

The three slices containing any given node, i, can be calculated as follows:

S; = int [(xi – Xmin) /b~] + 1

S; = int[(yi_ymin) /b,] + 1

S: = int [(zi_zmin) /b~] + 1

The intersection of the three orthogonal slices defines the bucket Bi containing node i, as
shown in Figure 14.

24

(Xmim Ymax>%nin)

.F
(xmin~Ymirp‘ma.x)

@l
V s;

Figure 13. Bucket Bi defined by three slices of the data that contain node i.

If buckets are numbered sequentially, progressing fiist in the x direction, next in the y
direction, and then in the z direction, the bucket id containing node i is given by;

Bi = (B~-l)SXSY +(Bj-l)SX+B~

With the eventual aim of efficiently determining a list of slave nodes within any given bucke~
two vectors of length n are created. One stores the bucket id for each slave node, fbox, and the
other is a list of slave nodes sorted by bucket id, nukort. Two additional vectors of length nb
are also constructed to efficiently access the slave nodes. The f~st contains the number of
slave nodes occurring in each bucket, nbox, and the other is a pointer that identifies the first
slave node in each bucket, npoint. The entire sorting procedure can be summarized as follows:

1.

2.

3.

4.

5.

6.

Zero the vector (nbox) containing the number of nodes in each bucket.

Find the bucket id (Bi) for each node.

Store the bucket id for node i in the vector: fbox(i) = Bi

Increment the counter for bucket Bi: nbox(Bi) = nbox(Bi) + 1

Calculate the pointer for each bucketj into a sorted list of nodes.

npoint(l) = 1 npoint(j) = npointfj-1) + nbox(j-1)

Zero the vector nbox

25

7. Sort the slave nodes according to their bucket number into a list nakort.

nakort(nbox([box(i)) + npoint(lbox(i))) = i

nbox(lbox(i)) = nbox(lbox(i)) + 1

For the example problem, the bucket size is 0.5 inches corresponding to the dimension of the
smallest master surface. This implies that Sx =3, SY= 5, and Sz = 3 and a total number of
buckets nb = 45. The bucket sort of all 52 slave nodes would give the following results:

Bucket id for each slave node:

lbox = {3 1,32,33,16,17,18,1,2,3,34,35,36, 19,21 ,4,5,6,37,38,39,22,23,24,7,8,9,

Pointer into ndsort

37,38,39,22,23,24,7,8,9,40,41 ,42,25,27,10,1 1,12,43,44,45,28,29,30,
13,14,15)

giving the starting location of the slave nodes in each bucket:

npoint = {1,2,3,4,5,6,7,9,11,13,14,15,16, 17,18,19,20,2 1,22,23,23,24,26,28,30,3 1,
3l,32,33,34,35,36,37,38,39,4O,4l,43,45,47,48,49,5O,5 1,52}

List of slave nodes sorted by their bucket id:

ndsort = (7,8,9, 15,16, 17,24,33,25,34,26,35,41 ,42,43,50,51,52,4,5,6, 13,14,21,
30,22,3 1,23,32,39,40,47,48,49 12310,1 1,12,18,27,19,28,20,29,36,37,979?
38,44,45,46}

Number of slave nodes in each bucket:

nbox={l,l,l,l,l,l,2,2,2,1,1,1,1,1,1,1,1,1 1012221011111111112229?77937>>9 >> 77799977 >>
1,1,1,1,1,1}

To illustrate how all slave nodes within, for example, bucket 23 are gathered, the sorted
information described above is used as follows. The number of slave nodes in bucket 23 is
given by: nbox(23) = 2. The slave nodes occupying bucket 23 can be found starting at location
npoint(23)=26 in ndsort. This implies that slave nodes at location 26 and 27 in ndsort are in
bucket 23: ndsort(26-27) = slave nodes {22,31).

The sorting algorithm above is identical to that described in [12][16]. Potential interactions
between nodes in [12] [16] are determined by looping through the buckets and collecting the
slave nodes in neighboring buckets, using the pointer into the sorted list. This implies that the
bucket size must be based on the largest master surface dimension to avoid missing potential
contact, as was demonstrated in Figure 3.

To avoid these difllculties, the strategy that the proposed search algorithm employs is to
collect all the buckets occupied by a master surface. Then, using the information obtained
during sorting, the slave nodes in those buckets are collected. This ensures that all potential

26

interactions with a given master surface are found regardless of bucket size (and therefore
problem geometry). Lnthe current algorithm, the bucket size should be interpreted as the
sorting refinement instead of a length measure of the largest master surface. A bucket size
based on the smallest master surface assures that there will be a small number of slave nodes
in each bucket and admits the possibility that a master surface could occupy many buckets.

The collection of slave nodes with which a master surface could potentially interact is
determined in the following way:

1. A capture box is constructed for each master surface, as described previously

2. The buckets containing the extreme comers of the master surface capture box are
determined

iboxmin = min(SX, iflx((xcmin-xmin)b,)+l)

jboxmin = min(SY, ifix((ycm~-ymin)b~) + 1)

kboxmin = min(Sz , ifix((ZC~in-Zmin)/bS) + 1)

iboxm~ = min(Sx , ifix((xcmm-xmin)/bs) + 1)

jboxmm = min(SY, ifix((ycmm-ymin)/bs) + 1)

kboxm,m = min(SZ , ifix((ZCmax-’Zmin)/bS) + 1)

where xcmin and xcmcware the comers of the master surface capture box in the x
direction (ycmin, ycmax, zcm~ and zcmm have the same definitions in the y and z
directions, respectively).

3. All buckets within the ranges calculated in step 2 are identified as follows:

Loop from ibox = iboxmin to iboxmm

LOOP from jbox = jboxmin to jboxmm

Loop from kbox = kboxlnin to kboxmm

B*= (kbox-l)SXSY + (jbox-l)SX + ibex

Endloop

Endloop

Endloop

4. All slave nodes in the buckets calculated in step 3 are considered for potential
interaction with the master surface

In this approach, the algorithm takes advantage of the observation that the buckets that a
master surface occupies can be easily determined. Lnthe example problem, assume that
master surface 5 is to be processed. The comers of the capture box of master surface 5 are:

27

XC~in= 0.0 ill., XC~~= 0.5 iI1.

ycm~ = 0.99945 in., ycmn= 1.00055 in.

zcm~ = 0.5 in., zcmm= 1.0 in.

so that the capture box would occupy the range of buckets:

iboxmin = 1 , iboxmm = 2

jboxmin = 3, jboxmn = 3

kboxmin = 2, kboxmm = 3

This identifies buckets 22,23,37, and 38. The slave nodes occupying these buckets would be
considered for potential contact with master surface 5. Note that only the slave nodes which
are not also nodes on master surface 5 are considered, so that only the following four pairs
would be added to the vectonzed list:

{ (27, 5), (28, 5), (30,5) and (31,5) }

In the current implementation of the algorithm, the bucket sorting is implemented every time
step in a vectorized mode. A study of the efficiencies of a bucket search algorithm was
presented by Plimpton [20] for a computer with parallel architecture. For a certain class of
spatially compact problems, the bucket searching seems to be faster than the vectorized global
search. Further speed up might be anticipated by sorting every 5 to 10 time steps, suggested by
[12], while storing the nearest neighbors for contact determination in the intermediate time
steps.

28

3.2 New Detailed Contact Check

The proposed detailed contact check distinguishes between slave nodes that are not in contact
and those that are already in contact. It does so to resolve the ambiguities that arise in each
case. The ambiguity shown in Figure 7, for example, could be easily resolved by considering
the velocity of the slave node. This idea of a velocity based contact check can be extended to
include a moving slave node contacting a moving master surface, as shown in Figure. 14a. For
slave nodes just coming into contact the velocity based contact check identifies the point of
contact (or impact) and the contact time. Figure 14b shows a static contact check that is used
for slave nodes already in contact with a master surface. For these slave nodes, ambiguities
arise because the surface normal is not continuous. This can result in not finding any contact
when there should be one or finding multiple solutions to a single contact. The proposed
velocity based and static based detailed contact checks resolve these ambiguities, as shown in
the following sections.

slave node

slaye no
at time t+

master surfdce
at time t

solve for:

● time until
contact occurs (dt)

● coordinates of

contact point (x)

(a) velocity based contact check based on position and velocity

@

\
\”’----

solve for:

\
● coordinates of the nearest

i
point to surface (x)

slave node master surface
at time t+dt at time t+dt

(b) static based contact check based on position

Figure 14. Master slave tracking using velocity and static contact check

3.2.1 Velocity Based Contact Check

The velocity based contact check makes use of the current position of the surfaces and the
estimated velocities in the following time step. The contact check is restricted to a moving
triangular master surface and a moving slave node for 3D, as shown in Figure 14a.

29

The hi-linear quadrilateral master surface is subdivided into four triangular master surfaces.
The four triangles are defined by the four comer nodes of the quadrilateral plus an added fifth
node located at its centroid. In 2D, the master surface is a moving line, and is just a special
case of the 3D moving contact presented below. A complete derivation of the velocity based
contact check can be found in Appendix 1.

The equation of a triangular master surface (a plane) can be written as:

a(x–xl) +b(y–yl)+c(z–zl) =0 (4)

The point (xl, y,, Zl) is a node on the master surface, and a, b, and c are components of the

master surface normal ~m = a; + b~ + c~, where:

a= [(yl–y3) (zz –21) – (Y2– Y1) (21–23)1

b= [(x2–xI) (Z1–z~) – (xl–x3) (22–21)1

c= [(X1–X3) (yz–y~) – (X2–X1) (Y1– Y3)I

(5)

Here, x2, y2, Zzand X3,yq, z~ are coordinates of the other nodes defining the triangular master
surface. Now, note that the triangular surface is moving, so that:

[(xi(t+At) >yi(t+At) >zi(t+ At)) =

(xi (t) +xiAt> yi (t) +jiAt> zi (t) + ziAt)], i = 1>3
(6)

and the slave node is also moving, so that:

(x,(t+At), y,(t+At), z,(t+ At)) =

(X, (t) + x,At, y, (t) + y~At, 2, (t) + z,At)
(7)

Following these definitions, a time At is sought such that the slave node will be co-planar
with the three nodes defining the triangular master surface. Such a time can be found (if it
exists) by substituting equations (5), (6), and (7) into equation (4) and solving a cubic
equation in At (see Appendix 1).

Suppose a solution At = AtC is found. Then it also must satisfy two conditions for it to be

considered a contact. The first is that the time Atc occurs in the next time step increment,

O < AtC < dt. The other condition is that the contact point:

(xc,Yc> Zc) = (x, + x,Atc> Y,+ y,Atc> z,+ Z,At.) (8)

30

must lie inside the edges of the quadrilateral master surface. This can be determined exactly

by computing the local ~, q coordinates of the contact point on the quadrilateral master

surface. Figure 15 shows how an initial estimate go, q ~ of the local coordinates can be

computed. Four triangles are constructed by connecting the contact point with the four corners
of the quadrilateral master surface. The contact point is inside the master surface when all four
areas A 1, A2, A3, and A4 are greater than or equal to zero and Al + A3 >0 and A2 + A4 z O. If

this condition is met, then an initial estimate of the local coordinates of the contact point can
be found, as shown by the equations in Figure 15.

initial estimate of
contact point

0

!()=2A~A-1
24

Al
~0=2A1+A~–*

Figure 15. Initial estimates for the local coordinates of a contact point

The logic for these equations is based simply on the observation that (~, ~) = (5., ~o) is

computed exactly for any rectangular quadrilateral and that the limiting values of

~ and q = *1 are computed exactly for any shaped quadrilateral. If the quadrilateral surface

is a rectangle, then the proof is simple. If it is not, then by observation ~ is computed exactly

only when one of the areas A2 or A4 is zero. Likewise q is computed exactly only when one

of the areas A 1 or A3 is zero. For example, suppose A2 is zero then the estimated coordinate

~ = go = 1 is exact. If A4 is zero then the estimated coordinate ~ = go = -1 is also exact.

If neither A2 or A4 are zero, then the equation gives a reasonable estimate of the contact point

~. Improvements in the accuracy of the local coordinates can be achieved byperfOrm@

Newton iterations on the nonlinear equations relating ~, q, and ~ to ~, yc, and ZC(see

Appendix 1).

In certain cases there maybe multiple master surfaces where contact is possible. The example
problem shown in Figure 10 illustrates such a case in which a slave node contacts multiple
master surfaces. For example, the slave node 27 could contact any one of the three master
surfaces connected to node 18. In these cases, a strength of contact check is used to determine

the most opposed master surface where ~~ ● (VS – ~~) is minimized. In the example

problem, master surface 5 is the most opposed master surface.

31

3.2.2 Static Contact Check

The static contact check is used for those slave nodes already in contact with a master surface.
The contact check is also restricted to a slave node contacting a triangular master surface. The
calculations are based on the predicted configuration of the surface if the contact forces were
removed from the surface nodes. This predicted configuration would obviously have slave
nodes penetrating master surface elements. In order to bring these interpenetrating surfaces
back into compliance, the slave node must be pushed back to the master surface. In
determining the push back direction, a distinction is made between concave and convex
surfaces.

The push back direction for a concave surface is determined simply by the minimum distance
to the master surface as shown in Figure 16. The push back direction @t+~t can be along the
master surface normal as shown in Figure 16a or it may be defined by the minimum distance
to a vertex as shown in Figure 16b. This choice in pushback direction is done simply to detect
an undetermined contact.

fh2

contact point

\r’ill

/
slave node
at time t+dt

master surface
it tune t+dt

:a) closest point is on master surface 2

contact point

Ihl

t\

‘/
master surface b
at time t+dt slaye node

at time t+dt

Figure 16. Push back direction for a concave surface

(b) closest Domt IS on vertex of
master surface 1 and 2

based on minimum distance to

master surface.

For a convex surface, the push back direction ~t + d~is always along the normal of the master

surface that the slave node was previously in contact with, i.e fhP in Figure 17. In Figure 17a

the slave node was previously in contact with master surface 1 (fiP = fil) so the pushback

direction is fit+ d~ = rnP = fi ~. Again, in Figure 17b the slave node was originally in contact

with master surface 1 so ~t + d~ = fiP = h 1. After the slave node is pushed back to master

surface 2, the pushback direction is updated to reflect that ~t + .2d~= rn2. This avoids adding

artificial slave node velocity due to a change in pushback direction, as illustrated in Figure 5.

32

fjt = &p contact point

A
‘P

= fil

naster surface
t time t+dt

slave node
at time t+dt

@t = ‘p contact pointA
‘P = fil

master surface
at time t+dt /

slave node
at time t+dt

(a) closest point is on previous
master surface

(b) closest point is neighboring
master surface

Figure 17. Push back direction for convex surface based on previous master surface
normal.

The contact point, X, on a convex surface is found by the intersection of the triangular master
surface plane, Equation (4), and a line defined by the parametric equations:

x=x~+s(fipoi)

Y= Ys+s(rnp”l)

z=z~+s(lilp. i)

Providing that the master surface and the line are not parallel, the parameters can be found as:

(9)

a(xl–x~) +b(yl–y~)+c(zl –z~)
. . . (lo)

a(fipoi) +b(fip. j)+c(fipo k)

Just as in the case of a velocity based contact check, there may be some instances where
contact with multiple master surfaces is possible according to the static contact check. Again a

strength of contact check is used to determine the master surface where fi~ ● ~~ is

minimized.

3.3 Summary of Proposed Contact Detection Algorithm

The proposed contact detection algorithm outlined in this section offers some advantages over
the currently used algorithm in the Sandia codes. It does so by separately considering a fast,
memory efficient, global search for potential contacts, and a much more accurate detailed
contact check:

33

● The efficient global search allows for global contact. This means that added capability
for modelling self contacting structures and eroding or tearing surfaces is now
available. Another benefit of the efficient global contact search is that fewer slave
node - master surface pairs are found as potential contacts. This is possible by taking
advantage of both the known location of the contacting surfaces and their velocities in
constructing a master surface capture box. The capture box ensures that a minimum
number of slave nodes are paired with the master surface.

● The detailed contact check is more accurate in determining the point of contact,
amount of penetration, and the direction of pushback. This results in a physically
correct determination of contact constraints. The improved accuracy has also reduced
the number of iterations required for convergence in the iterative solvers in the Sandia
quasistatic codes.

34

4 Surface Definition Algorithm

The proposed contact detection algorithm described in the previous section discussed the
details of the neighborhood identification and global search, and the detailed contact check.
Implied in the discussion was the definition of the entities involved in contact, namely the
slave nodes and the master surfaces. Typically this is done using preprocessors such as
FASTQ [21], GJOIN [22], GEN3D [23], and GENSHELL [24] to define meshes and side
sets. Side sets are a collection of element faces and their corresponding nodal points. The
contact algorithm would then require as input the listing of these side sets (without requiring
side set pairing). In many applications, such as self contact, this kind of input is all that is
required. For other applications such as tearing or eroding surfaces, the contact surface is
changing during the execution of the problem. In these types of problems, a dynamically
defined surface (composed of all master surfaces and slave nodes on the surface) is essential.

For this purpose, an algorithm for automatically determining the surface of an arbitrary mesh
composed of hexahedral and shell elements is proposed. The surface definition algorithm uses
a data structure that allows the initial surface definition and an incrementally updated surface
when necessary. In the algorithm, shell elements are considered as a subset of hexahedral
elements. For clarity, the following discussion is limited to a mesh composed of hexahedral
elements. The algorithm requires 6 x ne memory locations for a mesh composed of ne 8-node
hexahedral elements and involves two simple steps. The first step is to construct a face id for
every element face:

faceid = ndia~ + nmin X nnod (11)

where nnod is the total number of nodes in the problem, nm”nis the smallest global node
number defining the element face, and ndiugis the global node number that is diagonal to the
smallest global node nmin. Step two is to search for all face id’s for any non-repeated numbers
which will correspond to the faces that are on the surface. The search is efficiently done using
the CRAY UNICOS library routine wheneq [25]. Figure 18 shows an example of a 3D mesh
composed of two hexahedral elements.

element 1

Figure 18. Example mesh for surface definition algorithm

35

Table 1 lists the 12 element faces in the mesh, their connectivity, nm”n,ndiag, and their face id.
In the example problem, all element faces are on the surface except element 1- face 6 and
element 2- face 5 (which have a the same face id of 67).

II Table 1. Surface definition algorithm example

element face map

number number connectivityy nm.n ndkg (faceid)
(iele) (iface)

1 1 1562 1 6 18

1 I 2673 1217131

1 3 3784 3 8 44

1 4 4851 1 8 20

1 5 1234 1 3 15

1- 6 5876 5 7 67

2 1 59106 5 10 70

2 12 I 610117 16111]83

2 3 711128 7 12 96

2 4 81295 5 12 72

2 IS I 5678 1517167

2- 1 6 I 9121110 I 9 I 11 I 119

The result of collecting all the element faces with unique face ids is a list of the master
surfaces. The slave nodes can be determined by looping through the master surface list and
flagging the nodal points defined by the master surface connectivity.

The array called smap initially stores the faceid of each face, as shown in Table 1. For every
element face on the surface (ones with a unique face id), a zero is over-written in
smap(6*(iel.e-l) +iface). For those intenor element faces (ones without unique face ids), a
pointer to the opposing face is stored in the array, snzap:

smap (6 (ielei – 1) + ifacei) = 6 (ielej – 1) + ifacej

smap (6 (ielej – 1) + ifacej) = 6 (ielei – 1) + ifacei

Using this surface map array, the surface can be incrementally updated as elements are
deleted. For the current example there are only two opposing faces, element 1 face 6 and
element 2 face 5, so that smap(6) = 11, smap(11) = 6, and all other positions in smap would be
zero.

This idea of collecting master surfaces and slave nodes into a heap allows modelling of
contact between a variety of finite element types. For example, the nodal points of elements
such as beams and trusses can be added to the slave node list. Also, the potential contacts in a
problem coupling the finite element method with other methods can be modelled. For
example, particle methods such as Smooth Particle Hydrodynamics (SPH) [26] or Particle-In-
Cell (PIC) [27] can be easily coupled by adding the particles to the slave node list.

36

5 Example Problems

The examples considered in this section demonstrate both the improvements in the accuracy
of contact detection and the added capabilities that are possible with the global search
algorithm. The improvements in the accuracy of contact detection are demonstrated with an
example of two elastic blocks contacting and an example of contact induced chatter or
ringing. Some of the added capabilities include modelling (1) structures that buckle and fold
onto themselves, (2) structures that have materials which tear and create new surfaces, (3)
problems where multiple body contactiimpact is occurring, and (4) problems where
considerable sliding between bodies is occurring. (The necessary files for constructing the
input for all example problems are in Appendix 2)

5.1 Contact of Elastic Blocks

The example of two blocks impacting one another is a simple demonstration of the need for an
accurate detailed contact check. The new contact algorithm correctly chooses the most
opposed master surface for each slave node in the two cases shown in Figures 19 and 20. The
two different cases are described as follows:

Case 1. The elastic blocks already discussed in the previous sections and shown in Figure 10
are impacting at a velocity VY=500 in/s, as shown in Figure 19. Each comer node has
the potential of contacting three different master surfaces, and each edge node has the
potential of contacting four different master surfaces. The new contact algorithm
duplicates the results of the old algorithm by correctly enforcing the most opposed
contacts.

500 injs

impact (t= O) t = 0.5 milliseconds

Figure 19. End-on impact of two blocks

37

Case 2. The same two blocks in Figure 10 are repositioned such that a comer of Block 1 is
impacting a comer of Block 2, as shown in Figure 20. The old static contact check,
which is based on surface normals, chooses the incorrect master surface causing both
blocks to rotate clockwise. By incorrectly determining the pushback direction, a large
increase in kinetic energy (from 92.5 in-lbs to 1300 in-lbs) results. The new contact
detection algorithm correctly determines the initial contact using the velocity based
check and the subsequent updated contact using the static based check. This results in
the correct counterclockwise rotation of both blocks.

%

?
500 inis

initial position and
velocity of blocks

f.
d

& \
old contact

PaA

--%/

\\
\+

new contact
algorithm

-\. algorithm
t = 0.2 milliseconds “\\\ t = 0.2 milliseconds

\\
\

\
*

.2

Figure 20. Corner impact of two blocks

38

5.2 Contact Chatter under High Normal Loads: PIKWSUreLoading of ‘IWOElastic
Bodies

One of the difficulties with two curved surfaces contacting each other under high normal
loads is the accurate determination of the push back direction. The example shown in Figure
21 has a semicircular rod that is pushed into a semicircular cavity. A pressure load is applied
to the flat surface of the rod. All the nodes on each contact surface are initially aligned with
each other, so that as the pressure is ramped up, the slave nodes on the semicircle (convex
surface) must be pushed back to the vertices of the master surfaces on the cavity (concave
surface). The old algorithm incorrectly determines the pushback direction and introduces
noise (contact chatter) into the solution. This eventually accumulates over many time steps
and results in mesh hourglassing and increased kinetic energy, as shown in Figure 22. The
new contact detection algorithm correctly determines the pushback direction and does not
introduce noise.

time, t

Fixed

Figure 21. Two elastic bodies contacting under high normal load.

39

o.k!-___J
o. 0.7 1.4 2.1

time (milliseconds)

Figure 22.

o. 0.7 1.4 2.1
time (milliseconds)

(a) old algorithm (b) new algorithm

Kinetic energy history and deform~ shape (displacements magnified by 100x)
using old and new contact detection algorithm

40

5.3 Self-Contacting Impact: Buckling of Shell-Like Structures

The following example demonstrates the self contacting capability of the contact detection
algorithm. This feature is important for modelling crash dynamics where buckling, tearing,
and self contact is common. The elastic-plastic shell-like (can) structure shown in Figure 23 is
impacted by an elastic-plastic plate. The can is 0.25 inches thick, has an inside radius of 5
inches, and is 15 inches long. The bottom of the can is constrained in all directions. The
22x 11 in. plate is 2.5 inches thick and is initially tilted at a 10 degree angle as it impacts the
can at 5000 in/s.

The contact detection algorithm currently in PRONT03D is a surface tracking algorithm that
requires surface pairing. The amount of user intervention required to intermittently define and
pair many contact surfaces would make this problem impractical to solve using the current
algorithm. In contrast, the new algorithm requires two surface ids (one for the plate and one
for the can). Contact between any of the slave nodes and master surfaces on both surface sets
are detected during the analysis. The deformed shapes at various times are shown in Figure
24. The self-contact of the buckled can is evident in several locations.

ocity 5000 in/s
i

Figure 23. Fh_iiteelement mesh of an elastic plate impacting an elastic-plastic can

41

(b) t = 2.2 ms

(c) t = 3.3 ms (d) half-section at t = 3.3 ms

Figure 24. Deformed meshes of the buckled can at various times

42

5.4 Automatic Contact Surface Redefinition: Cutting of a Steel Pipe

In the following example, the capability of automatically redefining the contact surface is
exercised. For this problem, and others like it, the new surface that is generated as a result of
tearing can find itself in contact with other surfaces of the body. The current capabilities of the
Sandia codes do not include a periodic redefinition of the contact surface. The new algorithm
automatically redefines the surface after any elements are deleted.

The algorithm is demonstrated with a simulation of a pipe cutting process. The process
involves a hardened, 0.25 inch thick, wedged-shape cutting blade that is forced through a two
inch, schedule 40 pipe that is resting on a support, as shown in Figure 25. The blade initially
indents and punctures through one side of the pipe and then progressively tears the pipe wall-
s,as shown in Figure 26. The tear is simulated by deleting elements in which the material dam-
age has accumulated to 0.9. The power law hardening material accumulates damage when it
exceeds a failure strain of 1.27 and is loaded under hydrostatic tension [28]. The newly cre-
ated surface is automatically included in the contact algorithm by redefining the surface after
any elements are deleted. As the simulation progresses, the edges of the tear are in contact
with the moving cutting blade, as shown in Figure 26. The simulation continues until the
blade cuts through the pipe at approximately 3 milliseconds.

Specified velocity
= 1187.5 inls

Cutting blade

tip

Figure 25. Finite element model for simulating the cutting of a 2 inch steel pipe.

43

WtiY”‘a)””’
milliseconds

Figure 26. Pipe cutting simulation results at various times

44

milliseconds

(d) 3.0 milliseconds

Figure 26 (cent’d). Pipe cutting simulation
results at various times

45

5.5 Multi-Body Impact: Elastic-Plastic Bar impacting Bricks

One of the added capabilities of the new contact detection algorithm is the efficient modelling
of multi-body impact without a-priori definition of contact surfaces. The example, shown in
Figure 27, has an elastic-plastic bar impacting a stack of 17 elastic bricks. A stationary elastic-
plastic wall is also resting against the stack of bricks. All slave nodes and master surfaces on
the bodies were automatically defined using the algorithm described in Section 4.

For problems where random contact is anticipated, as in this example, each body could
potentially impact any other body. For a contact-pairing algorithm, 1~ contact pairs would be
necessary, with each pair having 2n slave nodes. For the new global contact searching
algorithm, one search with 19n slave nodes is necessary. Assuming that each block has
n = 50 slave nodes, 192 pairs would require 192(2nlog(2n)) = 239,843 comparisons, whereas

the new global contact searching algorithm would require only 19nfog2(l 9n) = 9397
comparisons.

Another important feature of the contact detection algorithm is the spatial independence of the
nlogn vectorized sorting algorithm. The speed and efficiency of the algorithm is nearly
independent of the location of the bricks. This becomes particularly important late in this
example since the volume that the bodies occupy is increasing, as shown in Figure 28.

- elastic-dastic rod with I

initial velocity

Figure 27. Elastic-plastic bar impacting a stack of 17 elastic bricks

46

Figure 28. Multi-body impact simulation results at various times

47

5.6 Large Sliding Contact: Elastic-Plastic Forging of a Copper Billet

The following example demonstrates the capability of modelling large sliding contact typical
in large deformation forming and forging. The quasistatic axisymrnetric forging of a copper
billet shown in Figure 29 was simulated with the program SANTOS. The billet has an initial
radius of 2 inches and height of 5 inches. Figure 30 shows a series of deformed meshes as the
billet is forged. As the billet is compressed, it slides horizontally until the die cavity is filled.
After further compression, the billet is forged around the die comer forming the rivet head.

There are two difficulties related to contact detection in this example. The f~st is the accurate
determination of the pushback direction of the slave node in the lower comer of the die. It is
initially constrained on the horizontal master surface as the billet is compressed. Then, just as
the billet fills the die cavity, the slave node is constrained on the vertical master surface. Upon
further loading, gradual adjustments in the pushback direction are automatically made so that
it is constrained to the vertex of the horizontal and vertical master surface. (The current
tracking algorithms do not push the slave node back to the vertex of the two master surfaces.
This results in contact chatter similar to that described in example 5.2.)

Another difficulty arises from the large sliding contact of the material in the billet around the
die corner (shown enlarged in Figure 30). The new contact detection algorithm determines the
updated contact point and pushback direction such that the slave nodes on the billet are not
given any added artificial velocity.

F@me 29. Finite

I elastic die I
J

I

elastic die

rrdie cavity

4

element mesh of a rivet

48

forging :ocess

I
J

t r
I I I

r=o

I

I

I

r=2.0”
1 u

Figure 30. Rivet forging of a copper billet

r=l.2° r=l.(j”

r=z.()”

49

6 Conclusions

The current contact detection techniques used in the Sandia structural analysis codes have
been reviewed. The review has pointed out several areas where improvements are necessary
in current contact detection techniques. These areas include neighborhood ident.iflcation and
detailed contact checking. The neighborhood search should not rely on a closest master node
to a slave node, and it should be independent of the problem geometry. In several cases, the
detailed contact check requires improved accuracy in determining the contact poin~
penetration, and the pushback direction.

A new contact detection algorithm has been presented that offers improvements in these areas.
The improvements are a result of a neighborhood identification strategy that uses a global
contact search and a detailed contact check that distinguishes between concave and convex
stiaces. The key features of the new contact detection algorithm are:

● The efficient global search allows for global contact. This means that added capability
for modelling self contacting structures and eroding or tearing surfaces is now
available.

● The known locations of contacting surfaces and their velocities are used to construct a
master surface capture box. This guarantees that only physically meaningful contacts
are considered in the detailed contact check. The capture box also ensures that a
minimum number of slave nodes are paired with the master surface.

● The position and velocity of both the slave node and master surface are considered in
determining initial contact. This results in a physically correct determination of the
contact location.

● A distinction between a concave and convex surface is made for slave nodes already in
contact with a master surface. This results in a more accurate determination of the
point of contact, amount of penetration, and the direction of pushback.

● An automatic surface definition algorithm allows for a simplified user input in many
cases. One can, for example, include all surfaces of a body by specifying that the
material be considered for global contact.

The capabilities of the new contact detection algorithm have been demonstrated with several
example problems. Several of the example problems have demonstrated improvements in the
accuracy and efficiency of contact determination. Other problems have demonstrated the
added capability provided by the new alognthm.

50

References7

1

2

3

4

5

6

7

8

9

10

11

Taylor, L.M. and Flanagan, D.P., PRONT02D: A Two-Dimensional Transient Solid
Dynamics Program, SAND86-0594, Sandia National Laboratories, Albuquerque, NM
87185, 1987.

Taylor, L.M. and Flanagan, D. P., PRONT03D: A Three-Dimensional Transient Solid
Dynamics Program, SAND89- 1912, Sandia National Laboratories, Albuquerque, NM
87185.1989.

Attaway, S.W., Update of PRONT02D and PRONT03D Transient Solid Dynamics
Programs, SAND90-O 102, Sandia National Laboratories, Albuquerque, NM 87185,
1990.

Stone, C. M., SANTOS: A Two-Dimensional Finite Element Program for the
Quasistatic Lurge Deformation, Inelastic Response of Solids, SAND90-0543, Sandia
National Laboratories, Albuquerque, NM 87185, in preparation.

Biffle, J. H., JAC - A Two-Dimensional Finite Element Computer Program for the
Nonlinear Quasi-Static Response of Soliak with the Conjugate Gradient Method,
SAND81 -0998, Sandia National Laboratories, Albuquerque, NM 87185, 1984.

Biffle, J. H., JAC3D - A Three-Dimensional Finite Element Computer Program for the
Nonlinear Quasi-Static Response of Solids with the Conjugate Gradient Method,
SAND87- 1305, Sandia National Laboratories, Albuquerque, NM 87185, in
preparation.

Hallquist, J.O., User’s Manual for DYNA2D: An Explicit Two-Dimemional
Hydrodynamic Finite Element Code With Interactive Rezoning, Rev. 2, UCID- 18756,
Lawrence Livermore National Laboratories, 1984.

Hallquist, J.O. and Benson, D.J., User’s Manual for DYNA3D: Nonlinear Dynamic
Analysis of Structures, Rev. 3, UCID- 19592, Lawrence Livermore National
Laboratories, 1987.

Hibbitt, Karlsson and Sorensen, Lnc., Contact Calculations with ABAQUS - ABAQUS
Explicit Users Manual, Hibbitt, Karlsson and Sorensen, Inc., 1992.

Hallquist, J.O., N1KE2D: A Vectorized Implicit, Finite Deformation Finite Element
Code for Analyzing the Static and Dynamic Response of 2-D Solioh With Interactive
Rezoning and Graphics, UCID- 19677, Lawrence Livermore National Laboratories,
1986.

Hallquist, J.O., NIKE3D: An Implicit, Finite Deformation, Finite Element Code for
Analyzing tk Static and Dynamic Response of Three Dimensional Solids, UCID-
18822, Lawrence Livermore National Laboratories, 1984.

51

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Benson, B.J. and Hallquist, J.O., “A Single Surface Contact Algorithm for the Post-
Buckling Analysis of Structures, ” Computer Methoa3 in Applied Mechanics and
Engineering, Vol. 78, pp. 141-163, 1990.

Chaudhary, A.B. and Bathe, K.J., “A Solution Method for Static and Dynamic Analysis
of Three-Dimensional Contact Problems with Friction,” Computers and Structures,
Vol. 24, No. 6, pp. 855-873, 1986.

Zhong, Z.H. and Nilsson, L., “A Contact Searching Algorithm for General 3D Contact-
Impact Problems,” Computers and Structures, Vol. 34, No. 2, pp. 327-335, 1990.

Harding, D.C., Attaway, S.W., Neilsen, J., Blacker, T. D., and Pierce, J., “Evaluation of
Four Multiple Package Crush Environment to the Common Package, Model 1,
Plutonium Air Transport Container,” SAND92-0278, Sandia National Laboratories,
Albuquerque, NM 87185, 1992.

Belytschko,T. and Lin, J. I., “A Three-Dimensional Impact-Penetration Algorithm with
Erosion,” Computers and Structures, Vol. 25, No. 1, pp. 95-104, 1987.

Belytschko,T. and Neal, M. O., “Contact-Impact by the Pinball Algorithm with Penalty
and Lagrangian Methods,” Int. J. Numerical Methods Eng., Vol. 31, pp. 547-572, 1991.

Metzinger, K., Attaway, S., and Mello, F., “Bobbin Stresses Generated by Wire
Winding,” First International Conference on Web Handling, Oklahoma State
University, Stillwater, OK 74078, May 19-22, 1991.

Swegle, J.W., “Search Algorithm,” Memo to Distribution, Sandia National
Laboratories, Albuquerque, NM 87185, May 25, 1992.

Plimpton, S.J., “Molecular Dynamics Simulations of Short-Range Force Systems on
1024-Node Hypercubes,” Proceedings of the Fifth Distributed Memory Computing
Conference, Charleston, South Carolina, April 8-12, 1990.

Blacker, T. D., “FASTQ Users Manual Version 1.2,” SAND88- 1326, Sandia National
Laboratories, Albuquerque, NM 87185, June 1988.

Sjaardema, G. D., “GJOIN: A program for Merging Two or More GENESIS Databases
Version 1.4,” SAND92-2290, Sandia National Laboratories, Albuquerque, NM 87185,
November 1992.

Gilkey, A. P. and Sjaardema, G. D., “GEN3D: A GENESIS Database 2D to 3D
Transformation Programy” SAND89-0485, Sandia National Laboratories,
Albuquerque, NM 87185, March 1989.

Sjaardema, G. D., “GENSHELL: A GENESIS Database Shell Transformation
Program,” Sandia National Laboratories, Albuquerque, NM 87185, In preparation.

CRAY Research, Inc., Volume 3: UNICOS Math and Scientific Library Reference
Manual, SR-2081 5.0, March 1989.

52

26 Monaghan, J.J., “An Introduction to SPH,” Comp. Phys. Comm., Vol. 48, pp. 89-98,
1988.

27 Harlow, F.H., “PIC and its Progeny,” Comp. Phys. Comm., Vol. 48, pp. 1-10, 1988.

28 Stone, C. M., Wellman, G. W., and fileg, R.D., A Vectorized ElasticlPlastic Power Law
Hardening Material MoaW Including Luders Strain, SAND90-O 153, Sandia National
Laboratories, Albuquerque, NM 87185, March 1990.

53

Al Appendix 1: Derivationof velocity based contact check

This appendix derives the velocity based detailed contact check that determines the time and
point of contact between a moving quadrilateral surface and a moving slave node in 3D.

The equation of a tiangular master surface, shown in Figure A 1.1, can be written as:

a(x–xl) +b(y–yl)+c(z–zl) =0 (All)

centroid of quadrilateral

(X3>Y3>@

tringular
master surface quadrilateral

,ooooo,.,...oo..............o.o..oooooooo..o.o....o.o""""".''"".""o""".""""""""""""o""""o.".7* element face

Figure All Triangular master surface definition on a quadrilateral element face

The point X1,yl, and ZI is a node on the master surface and a, b, and c are components of the

master surface normal ~~ = a; + b~ + c~:

a = [(yl –y3) (Z2 –Zl) – (Y2– Y1) (Z1– Z3)I

b= [(x2–x1) (Z1– Z3) – (xl–x~) (Z2– Z1)l

- (X2-XJ (y~-YJlc = [(x~– x3) (Y2– Y1)

Substituting equations (A 1.2) into equation (A 1.1) and simplifying:

{xlyqzz+xzylzs+x~yzzl ‘xly2z3 ‘x2y3zl ‘.x3 Ylz2}

+ { (ylz2+y2z3+y3zl ‘Jf~z3 ‘Yzzl ‘y3z2) x

(X~Z3+X2Z~+ X~Z2– X~Z2– X2 Z3– X3Z~)Y

(‘lyz+xzyq +xsyl-x~ys -xzy~-xqyz)Z} = 0

Now, note that the nodal points of the triangular surface are moving, so that:

(A 1.2)

(A 1.3)

(4)

54

[(xi(t+At) >yi(t+At), zi(t+ At)) =

(xi (t) + xiAt, yi (t) + yiAt> zi (t) + iiAt)], i = 1$3
(A1.5)

If equation (A 1.4) is substituted into (A 1.3), the result is an equation for a moving planar
master surface, as follows:

(A 1.6)ao+a1x+a2y+a3z = O

where:

a. = (x IY3Z2) + (xlY3~2+xlY3Z2+XlY3Z2)At

+ (x1 Y3Z2+X1Y3~2 +X1y3z2)At2+ (xly3z2)At3

+ (X2 Y1Z3) + (X2 Y1Z3+X2Y1Z3+ ‘2ylz3)At

+ (X2 Y1Z3+X2Y1Z3 +i2ylz3)At2+ (x2yli3)At3

+ (x3 Y2ZI) + (x3Y2~l ‘X3Y2Z1 ‘x3 Y2zl)At

+ (X3Y2Z1 +X3Y2Z1 +X3j2Z1)At2+ (k3y2zl)At3

+ (X1 Y2Z3) + (xl Y2Z3+xl Y2z3+xl Y2z3)At

+ (X1 Y2Z3+ X1Y2Z3 +Xl Y2z3)At2+ (xly2z3)At3

+ (X2Y3Z1) + (X2Y3Z1+ X2Y3Z1+ X2y3z1)At

+ (X2Y3Z1+X2Y3Z1 +X2 Y3z1)At2+ (i2j3i1)At3

+ (X3 Y1Z2) + (x3 YlZ2+x=j YlZ2+x3Ylz2)At

+ (x3y1Z2+ X3y1Z2+X3y1z2)At2+ (x3y1z2)At3

al = (Y1Z2) + (y1Z2+y1z2) At+ (y1z2)At2

+ (Y2Z3) + (Y2Z3+ Y2Z3) At+ (y2i3) At2

+ (Yqzl)+ (y3z1+y3z1)At+ (y3z JAt2

+ (Y1Z3) + (y1~3+Y1z3) At+ (y1i3)At2

+ (Y2Z1) + (Y2Z1+ j2z1) At+ (y2il)At2

+ (Y3Z2) + (y3Z2+y3z2) At+ (Y3i2)At2

55

a2 = (X1Z3) + (x1i3+x1z3)At+ (x1i3)At2

+ (x2z1)+ (x2i1+x2z1) At+ (x2z1)At2

+ (X3Z2) + (X3Z2 + ~3Z2) At + (X3Z2) At2

+ (X1Z2) + (x1 Z2+i1z2)At+ (x1z2)At2

+ (X2Z3) + (X2Z3 + X2Z3) At + (X2Z3) At2

+ (X3Z1) + (X3Z1 +x3z1) At+ (x3i JAt2

a3 = (XIY2) + (x1 Y2+X1y2)At+ (X1y2)At2

+ (XZY3) + (X2Y3+ X2Y3)At+ (X2j3)At2

+ (X3YI) + (X3Y1+X3yl) At+ (X3yl)At2

+ (X1Y3) + (q Y3+x1y3) At+ (i1y3)At2

+ (X2Y1) + (X2Y1+X2y1) At+ (x2y1)At2

+ (X3Y2) + (X3Y2+ X3y2)At + (X3Y2) At2

The slave node is also moving, so that its position can be expressed as:

(X,(t+At), y~(t+At), Z,(t+ At)) =

(X, (t) + x,At, Y, (t) + y,At, Z, (t) + z,At)
(AI.7)

Following these definitions, we seek a time At such that the slave node will be co-planar with
the master surface. Such a time can be found (if it exists) by substituting equations (A 1.6),
into equation (A 1.5) and solving the following cubic equation in At:

bo+ blAt+ b2At2+ b3At3 = O (AI.8)

where:

b. = xl {Y2(z~-z3) +Y3(z2–zs) ‘Y~(z3–z2)}

+x2{ Yl(z3 –ZJ +Y~ (q – 23) + Y3 (ZS –Zl) }

+x3{ Y~(z2–zl) +Y2(zl- z~)+Yl(z~–z2)l

+X~{Y~ (Z2-z3) +Y2(z3–zl) +Y3(ZI–z2)l

56

and

bl=xl(Y2(z~ ‘Z3) +Y3(Z2–~~) +Y~(Z3– Z2)

Y2(z~–z3) +Y3 (z2 ‘Z~) +Y~(z3–z2) }

+X2{ yl (Z3– ZJ +y~(iil –Z3) +y3(z~–zl)

Y1 (Z3 -ZJ +Y~ (ZI –Z3) +y3(z~–zl))

+X3(Y~(~2–zl) +Y2(Z1 –ZJ +Yl (ZS– ZJ

YS(Z2– Z1) +Y2(Z1 –Q +yl (z~–-q)

+X~{ y,~(i.2-i3) +J’2(Z3-Z1) +Y3(Z1–~2)

Yl(z2–z3) ‘Y2(z3–zl) +y3(zl–z2))

‘xl{y2(z~– z3)+y3(z2–z~) ‘y~(z3–z2)}

+X2{ Yl(z3–z~)+ Y,(z~-z3) +y3(z, -z~)}

‘x3{y~(z2– zl)+y2(zl –zS)+yl(z~–z2)}

‘x~{yl(z2– z3)+y2(z3– zl)+y3(zl–z2)}

b2 =X1(y2(Z~ ‘is) +y3(~2–~~) +J’~(Z3-Z2)

Y2(zs–z3) +Y3(z2 ‘Z,) +y~(z3–z2) 1

+X2(yl(~3– ,O+ YJzl-i3)+Y3(zs -q)

Y1(Z3– ZJ +Y~(zl–z3) +y3(z~–q) }

+X3(y~(z2–zl) +y2(zl–zJ +yl(~~–@

Ys(z2–q) +Y2(Z1 –ZJ +yl (2,–22))

+X~{ y~ (i2– Z3) +y.2(Z3-~1) ‘Y3(Z1 ‘Z2)

Yl(z2-z3) +Y2(z3–zl) +y3(zl–z2))

+Xl {Yz(zs ’23) +Y3(Z.2 ‘is) +j~(Z3–Z2) }

+X2{jl(z3– Z~)+j~(Zl –z3)+y3(z~–zl)}

+X3{Y~(~2 –Zl) +y2(z1 –ZJ +yl (z~–~z)}

+X~{y~(z2– z3)+j2(z3– Zl)+j3(zl–z2)}

b3 = Xl {Y2(Z~– Z3) +Y3(Z2– Z~) +Ys(Z3– Z2) }

+x2{y1(z3 –ZJ +y~(zl –Z3) +y3(z~–~1) }

‘X3{Y~(Z2–~1) +Y2(Z1–~S) +Yl(~s–Z2)}

+X~{j~(z2– z3)+j2(~3– zl)+j3(zl–z2)}

57

Suppose a solution for At = AtCisfound. ~enitalso mustsatisfy Woconditions forittok

considered a contact. The fust is that the time AtC occurs in the next time step increment,

Os Atc < dt. The other condition is that the contact point:

(xc> Yc> @ = (X, + x,AtC, y,+ y~AtC, Z,+ z,AtC) (Al .9)

must lie inside the master surface edges. This can be determined exactly by computing the
local ~, q coordinates of the contact point on the master surface. Figure A 1.2 shows how an
initial estimate go, To of the local coordinates can be computed. Four triangles are constructed
by connecting the contact point with the four comers of the quadrilateral master surface. The
contact point is inside the master surface when all four areas Al, A2, A3, and A4 are all be
positive. If it is inside the master surface, then an initial estimate of the local coordinates of
the contact point can be found, as shown by the equations in Figure A 1.2.

“ %7/ initial estimate of
contact point

contact point (&~)

/ \
~-. A >/ lEn =2. -’. -1 1

w A2 + Ab

A.
/ -=L -.-.,.. -..-A?..- I?L= 2.--’. -1 I- Illd>lcx >Ullduc (

‘u A1+A3

Figure A1.2 Initial estimates for the local coordinates of a contact point

The logic for these equations is based simply on the observation that (~, ~) = (go, ‘f@ is

computed exactly for any rectangular quadrilateral and that the limiting values of

~andq= +1 are computed exactly for any shaped quadrilateral. If the quadrilateral surface

is a rectangle, then the proof is simple. If it is not, then by observation & is computed exactly

only when one of the areas A2 or A4 is zero. Likewise q is computed exactly only when one

of the areas A 1 or A3 is zero. For example, suppose A2 is zero then the estimated coordinate

~ = go = 1 is exact. If A4 is zero then the estimated coordinate ~ = <0 = –1 is also exact.

If neither A2 or A4 are zero, then the equation gives a reasonable estimate of the contact point

~. Improvements in the accuracy of the local coordinates can be achieved by performing
Newton iterations on the nonlinear equations:

58

{:}=

—
4

4x– ~ (1 +gjqj<q)xj
j=l

4
(A1.1O)

4y – ~ (1 ‘!lj~jtl~) Yj
j=l

with the seed (~, q) = (go, ~0). Upon converging on tie local coordinates of the contact

point ~, q with & = (+ or -) 1, they should satisfy

8 8 8

where Nj (& q, {), j= 1,8 are the eight shape functions for a hexahedral element.

59

A2 Appendix 2: User instructions and example input files

Reduced user input is a convenience that is an outcome of the global searching and automatic
surface definition capability. One can, for example, include all surfaces of a body by
specifying that the material be considered for global contact, or selectively include only a
subset of the surface. Figure A2. 1 shows the typical input required for a problem. Reducing
the input required from the user minimizes the potential number of mistakes, which minimizes
cost.

contact material 1

contact material 2

contact material 5

contact surface 100

contact data material 2, material 5, friction . .1

contact data material 1, eurface 100, friction . 0.3, beta = O. 1

Surface 100, materials 1,2 and 5 will be globally searched for contacts.

Contacts between material 2 and 5 will have a coefficient of friction equal to 0.1

Contacts between material 1 and contact surface 100 will have a coefficient of fric-
tion equal to 0.1 and a master slave partitioning of 0.1

Figure A2.1. Typical contact surface user input.

A2. 1 PRONTO User Instructions

Listed below are updated and new keywords supported by the PRONTO 2D and 3D command
language for using by the new contact detection algorithm. The uppercase letters represent the
minimum abbreviation of each word.

● CONtact SURface

● CONtact MATerial

● CONtact DATa

The CONtact SURface command now has two distinct uses, a paired side set contact and a
global contact. The paired side set contact is unchanged in its algorithm logic and usage. The
global contact uses the new global contact detection algorithm and can be used to model a self
contacting surface, for example.

60

A2. 1.1 Paired Side Set Contact

CONtact SURface, side 1 id, side 2 id, FIXED, P, toler

side 1 id must match a side set on the GENESIS file
side 2 id must match a side set on the GENESIS file
FMED -1 or the word FIXED will tie the contacts together

P kinematic partition factor (default=O.5)
toler tolerance for determining fixed contacts

CONtact SURface, side 1 id, side 2 id, PO, ~, PI, Y

side 1 id must match a side set on the GENESIS file
side 2 id must match a side set on the GENESIS file

Lo static coefficient of friction (default=O.0)

P kinematic partition factor (default=O.5)

v, high velocity coefficient of friction (default=O.0)

‘Y velocity decay coefficient

A contact condition is enforced between the two surfaces defined by the respective side sets.
The kinematic partition is a relative weighting of the master slave relationship of the two
surfaces. A value of zero implies that the f~st surface (defined by side 1 id) acts only as a
master and the second surface acts only as a slave. A value of one reverses these roles. The
default value (0.5) gives a symmetric treatment of the contact. If one surface is much more
massive than the other, this variable should be adjusted so that it is treated as the master. By
massive, we mean that the surface either has a higher material density and/or a coarser mesh
refinement.

A2. 1.2 Global Contact

CONtact SURface, side 1 id

side 1 id must match a side set on the GENESIS file

A contact condition is enforced between a surface contacting itself and other surfaces defined
using the single side set CONtact SURface keyword and those surfaces defined using the
CONtact MATerial keyword.

CONtact MATerial, material id 1

material 1 id must match a material id on the GENESIS file. If no material
id is specified then all materials are included.

All surfaces associated with the material id are automatically determined and considered for
contact with itself and other surfaces defined by the single side set CONtact SURface keyword

61

and any additional surfaces defined as a result of repeated use of CONtact MATerial keyword.
If the material id has an element death option, the surface will be automatically redefined as
elements die. Note that the automatic surface redefinition is only done for those surfaces
defined by the CONtact MATerial keyword and not those defined by the CONtact SURface
keyword.

A new command called CONtact DATa is added so that friction and partitioning factors can
be defined between contact surfaces and materials if required. Note that default values are set.

CONtact DATa, id 1, id 2, ~0, ~, Ml, y

id 1 must be either “SURface surface id” or “MATerial material id”
id 2 must be either “SURface surface id” or “MATerial material id”

P@ static coefficient of friction (default=O.0)

P kinematic partition factor (default=O.5)

PI high velocity coefficient of friction (default=O.0)

‘Y velocity decay coefficient

All surfaces associated with the surface id/material id pair use the contact friction conditions
and kinematic partitioning factor specified. If a part of a surface is multiply defined by a
material id and a surface id, the contact data specification using the surface id will override the
material id specitlcation.

A2.2 SANTOS and JAC User Instructions

Both SANTOS and JAC have the partioned contact detection algorithm installed. At this
moment contact surface pairs are still required (in the same manner outlined in the user
instructions for the respective codes). The improvements in the accuracy of the detailed con-
tact check are available in the updated versions of these codes. After the development of a par-
titioned contact enforcement algorithm, the benefit of using the global contact search can be
available.

62

A2.3 Input files

This section provides a collection of the FASTQ, GEN3D, GREPOS, GJOIN, and PRONTO
(or SANTOS) inputs for the example problems presented in this report.

A2.3.1 Contact of Elastic Blocks

makefile:

bricks .g2d: brick. faq brick. size

faatq -aprepro -n bricks. g2d brick. faq

brick. g: bricks .g2d brick .size bricks .gen3d

gen3d -aprepro bricks.g2d brick.g <bricks.gen3d

brickl.g: brick.g brickl.grp brick.s~ze

grepos -aprepro br~ck.g br~ckl.g<brickl.grp

br~ck2.g: br~ck.g brlck2.grp br~ck.size

grepoa -aprepro brick.g brick2.g<brick2 .grp

bricks.g: brick.g br~ckl.g brick2.g bricke.gjn

gjo~n <br~cke.gjn

FASTQinput:

f w
title

contact teet problem: two blocks impacting

{include(brick. size)}

point 1 0. 0.

point 2 {xlen) O.

point 3 {xlen} {ylen)

point 4 {O.) {ylen}

line 1 str 1 2 0 {ix}

line 2 str 2 3 0 {iy}

line 3 atr 3 4 0 {ix}

line 4 str 4 1 0 (iy)

region 1 1 -1 -2 -3 -4

eidebc 300 1 2 3 4

exit

brick. size:

$ {xlen=l} {ylen=l) {zlen=ll {ix = 2} {iY=2} {iz = 2}

GEN3Dfile:

{include(brick. size)}

translate {iz} {zlen)
esets back 100

seets front 200

63

GREPOS file: brick 1:

{include (brick. size) }
offset O. 0. 0.

chsnge sldeset 100 101

change sideset 200 201

c-e *ideset 300 301

G~pOSfile:brick 2:

{include(brick. size)) {include(brick. size)}

offset {-O.9*xlen) {1.O*ylen) O. offset O. {1.O*ylen) O.

c-e Sideset 100 101 c-e sideset 100 101
change sideeet 200 201 change sideset 200 201

change sideset 300 301 change sideset 300 301

exit

GJOINfiie:

‘brickl.g
w

brick2 .g

N

SSETS

COMSINS 101 201 301

COMBINS 102 202 302

XXIT

SXIT

NO

64

PRONT03D input fide:

TITLE

FIXED CONTACT TEST PROB

TERMINATION TIMS = .5X-3

PLOT TIME . .le-5

OUTPUT TIME n .le-5

MATERIAL, 1, ELASTIC, .00074

YOUNQS MODULUS, 30x6

POISONS RATIO, .3333

Em

MATERIAL, 2, XLASTIC, .00074

YOUNQS MODULUS, 30x6

POISONS RATIO, .3333

XND

INITIAL VELOCITY NATXRIAL 1 0., 500., 0.

INITIAL VSLOCI~ NATSRIAL 2 0., 0., 0.

PLOT ELEMENT =

PLOT NODAL DISPLACEMENT, REACTION, VELOCITY,

CONTACT SORPACX 101
CONTACT SURPACX 102

ACCXLXRATION

BXIT

65

A2.3.2 Pressure Loading of Two Elastic Bodies

FASTQ input:

title

contact chatter

$ {r=.5) (hx=l) (hy=l)

point 1 0. 0.

point 2 {r) O.

point 3 {-r) O.

linelstr1205

line 2 circ 2 3 1 12

line3str3105

region 1 1 -1 -2 -3

point 10 (r) {Q}

point 11 (hx) {o)

point 12 {hx} (by)

point 13 {-hx} {by}

point 14 {-hx) {O}

point 15 {-r} (0)

line 10 str 10 11 0 5

line 11 str 11 12 0 10

line 12 str 12 13 0 20

line 13 str 13 14 0 10

line 14 atr 14 15 0 5

line 15 circ 10 15 1 12

region 2 2 -10 -11 -12 -13 -14 -15

achame 1 C6S
scheme 2 X

sidabc 1 15

aidebc 2 2

sidabc 100 3 1

linebc 11 12

exit

GEN3Dfile:

trenslate 10 1.

66

PRONT03D input fde:

. . . .
tt%cle

chatter test problem

termination time .0025

plot time .00001

output time .00001

write restart .001

material 1 elastic .00074

youngs modulus 30e6

poissons ratio .3

end

material 2 elastic .00074

younge madulue

poissons ratio

end

contact surface

pressure 100 50

function 50

0. 0.

.00015 20000.

.01 20000.

end

no displacement

no displacement

exit

30e6

.3

12

1.

y 11

x 11

67

A2.3.3 Buckling of a Shell-like Structures

makefile:

can. g2d: can. fsq can. size

fastq -aprepro -m can. g2d can. faq

can. g: can. g2d can. gen3d can. size

gen3d -aprepro can. g2d can. g <can. gen3d

block.g2d: block.fsq can.size

fastq -aprepro -m block.g2d block.fsq

block.g: block.g2d block.gen3d can.size

gen3d -aprepro block.g2d block.g < block.gen3d

can_block. g: can.g block.g car_block.gjn

gjoin < car_block.gjn

FASTQinputfor can:

.
‘ title

self contact test

(include (can.size))

point 1 0 0

point 2 {rad) O.

point 3 (rad+t) O.

point 4 (-rad) O.

point 5 {-rad-t} O.

line 1 str 2 3 0 {ithick

line 2 circ 2 4 1 {irad)

line 3 str 4 5 0 (Ithick:

line 4 circ 3 5 1 {irad)

region 1 1 -1 -2 -3 -4

line 5 circ 4 2 1 {irad)

line 6 clrc 5 3 1 {irad)

$ half can

region 2 3 -1 -5 -3 -6

aidebc 1 2 5

sidabc 2 4 6

68

FASTQ input for block:
v *

title

self contact test problem

{Include(can.size))

point 1 (rad+e) {-(rad+e))

point 2 (-(rad+e)) {-(rad+e)}

point 3 {-(rad+e)} {rad+e)

point 4 {rad+e} (rad+e)

line 1 str 1 2 0 {isq)

line 2 str 2 3 0 {isq)

line 3 str 3 4 0 {isq}

line 4 str 4 1 0 {isq}

region 1 2 -1 -2 -3 .4

sldebc 1000 1 2 3 d

exit

can. size:

$ $ cylinder rad = (rad=5} t= {t=.2) Int = (lthlck=3} (irad=40)

$ length of cylender (cyllen=15)

.$number of elements in cylinder {icYl=40}

$ block {e = 2} Int= (iSCI = 28}

$ number of elements in block thick {iblkt .5) block thicknees {blkt=2.5)

$ block angle {angle=lO)

GEN3D file for can:

{include(can. size))

translate (icyl) (cyllen)

sideset front 4

nodeset back 100

GEN3D file for block:

{include(can.size)}

translate {Iblkt] (blkt)

revolve y {180+angle)

revcen O. 0. 0.

offset O. 0. {tand(angle) *(rad+t)+.01}

sideaet front 3

G.IOINfiie:
● ●

Cal.g

block .g

no

ssets

combine 1 2 4

combine 3 1000

exit

exit

no

can_block. g
b d

69

PRONT03D input file:

title

self contact test problem

hourglass stiffness .01 .03

TERMINATION TIMS = .004

RBAD RSSTART = .002

WRITS RSSTART = .00005

PLOT TINS = .0001

OUTPUT TINS = .00001

MATSRIAL, 1, BLASTIC plastic, .00074

YOUNUS MODULUS, 301s6

POISONS RATIO, .3333

hardening zcdulus O.

yields stress 30000

beta . 1

END

MATERIAL, 2, ELASTIC plastic, .00074

YOUNQS MODULUS, 30E6

POISONS RATIO, .3333

hardening modulus O.

yields stress 30000

beta = 1

mm

MATSRIAL, 3, ELASTIC plastic, .00074

YOUNW MODULUS, 30E6

POISONS RATIO, .3333

hardening nkxlulus O.

yields atreee 30000

beta . 1

END

contact surface 1

contact surface 3

INITIAL VBIA3CITY MATSRIAL 2 0., 0. -5000.

no dieplacemt x 100

no displacemt y 100

no displacemt z 100

PLOT XLXM13NT .

PLOT NODAL DISPLACSMBNT, VELOCITY, ACCELERATION

plot state . eqpe

EXIT

70

A2.3.4 Cutting of a Steel Pipe

makeflle:
f
bladel. g2d: bladel. fsq blade .size T

fastq -aprepro -n bladel. g2d bladel. fsq

bladel.g: bladel.g2d blade.size bladel.gen3d

gen3d -aprepro bladel.g2d bladel.g <bladel.gen3d

edge.g2d: edge.fsq blade.nize

faBtq -aprepro -m edge.g2d edge.fsq

e~el.g3: edge.g2d blade.size edgel.gen3d

gen3d -aprepro edge.g2d edgel.g3 < edgel.gen3d

edgal.g31: edgel.g3 edgel.grp blade.eize

grepos -aprepro edgel.g3 edgel.g31 < edgel.grp

edgel.g: edgel.g31 edgell.grp blade.size

grepos -aprepro edgel.g31 edgel.g < edgell.grp

edge2.g3: edge.g2d blade.eize edge2.gen3d

gen3d -aprepro edge.g2d edge2.g3 < edge2.gen3d

edge2.g31: edge2.g3 edge2.grp blade.size

grepos -aprepro edge2.g3 edge2.g31 < edge2.grp

edge2.g: edge2.g31 edge21.grp blade.size

grepos -aprepro edge2.g31 edge2.g < edge21.grp

edge3.g3: edge.g2d blade.size edge3.gen3d

gen3d -aprepro edge.g2d edge3.g3 < edge3.gen3d

edge3.g31: edge3.g3 edge3.grp blade.eize

grepos -aprepro edge3.g3 edge3.g31 < edge3.grp

edge3.g: edge3.g31 edge31.grp blade.size

grepoa -aprepro edge3.g31 edge3.g < edge31.grp

edge4.g3: edge.g2d blade.size edge4.gen3d

gen3d -aprepro edge.g2d edge4.g3 < edge4.gen3d

edge4.g31: edge4.g3 edge4.grp blade.size

grepos -aprepro edge4.g3 edge4.g31 < edge4.grp

edge4.g: edge4.g31 edge41.grp blade.size

grepos -aprepro edge4.g31 edge4.g < edge41.grp

edge5.g3: edge.g2d blade.size edge5.gen3d

gen3d -aprepro edge.g2d edge5.g3 < edge5.gen3d

edge5.g31: edge5.g3 edge5.grp blade.eize

grepos -aprepro edge5.g3 edge5.g31 < edge5.grp

edge5.g: edge5.g31 edge51.grp blade.size

grepos -aprepro edge5.g31 edge5.g < edge51.grp

71

ma.kefile (contd):
● ☞
blade.g3a bladel.g edgel.g edge2.g edge3.g edge4.g edge5.g blade.gjn

gjoin < blade.gjn

blade.g: blade.g3 blade.grp

grepos -aprepro blade.g3 blade.g < blade.grp

pipel.g2d: pipel.faq blade.size pipe.size

fastq -aprepro -m pipel.g2d pipel.faq

pipel.g3! pipel.g2d blade.size pipe.size plpel.gen3d

gen3d -aprepro pipel.g2d pipel.g3 <pipel.gen3d

pipel.g: pipel.g3 pipel.grp

grepos -aprepro pipel.g3 pipel.g < pipel.grp

pipe2.g2d: pipe2.faq blade.size pipe.size

faetq -aprepro -m pipe2.g2d pipe2.feq

pipe2.g3: pipe2.g2d blade.size pipe.size pipe2.gen3d

gen3d -aprepro pipe2.g2d pipe2.g3 <pipe2.gen3d

pipe2.g: pipe2.g3 pipe2.grp

grepoa -aprepro pipe2.g3 pipe2.g < pipe2.grp

clamp.g2d: clamp.fsq blade.size pipe.size clemp.size

fastq -aprepro -m clamp.g2d cl~.fsq

clamp.g3: clamp.g2d blade.size pipe.size clamp.size

gen3d -aprepro clamp.g2d clamp.g3 <clamp.gen3d

clamp.g: clamp.g3 blade.size clamp.size clamp.grp

grepos -aprepro clamp.g3 clamp.g < cl~.grp

clamp.gen3d

pcut.g: blade.g pipel.g pipe2.g clamp.g

gjoin < pcut.gjn

72

FASTQ input for bladel:

‘title
●

pipe cutter blade

{include(blade .elze)}

point 1 -2.594 0.312

point 2 2.716 0.312

point 3 {x3) {y3}

point 4 {x4) {y4}

point 5 {x5} {y5}

point 6 {x6) {Y6}

point 7 {x7} {y7}

point 8 {x8} (Y8)

point 9 {x9) {y9)

point 10 {0.5*(x8+x9)} {y8+0.7’abs (x8-x9)}

point 11 {0.5*(x8+x9)) {y8-O.068)

line 1 str 1 2 0 (3’11)

line 2 str 2 3 0 {4*il} 0.9

line 3 str 3 4 0 (2”11)

line 4 str 4 8 0 (10*I1} 0.8

line 5 clrc 11 8 10 {3’11} 1.17647

line 6 circ 9 11 10 {3’11) 0.85

line 7 str 9 6 0 {1O*I1) 1.25

line 8 str 6 7 0 (3’11}

line 9 atr 1 7 0 (4’11) 0.9

region 1 1 -1 -2 -3 -4 -5 -6 -7 -8 -9

scheme 1 x68

nodebc 200 1

exit

& A

GEN3D file for blade 1:

{include(blade. size))

[

translate {12} {bthick/2.+.002)

nsets back 100

esets front 20

exit

blade. size:

$ {11=1) (12=2) {bthick=O.25)

$ (x3=2.716) (Y3=-2.1715)

$ {x4=1.5) {Y4=-2.286}

$ {x5=0.156) {Y5=-3.63}

$ {x6=-1.0~09) {Y6=-2.4331)

$ (x7=-2.594) (Y7=-2.175)

$ {x8=0.288583) {Y8=-3.497417)

1 $ {x9=0.023417) (Y9=-3.497417)

73

FASTQ input for edge:

pipe cutter blade edge

(include (blade. size))

point 1 0.002 0.0

point 2 -0.125 0.0

point 3 -0.02 -0.2

point 4 0.002 -0.2165

point 5 0.002 -0.205

line 1 str 1 2 0 {i2)

line 2 str 2 3 0 (2*i2) 0.8

line 3 circ 3 4 5 2

line 4 str 4 1 0 {2*i2) 1.4

region 1 1 -1 -2 -3 -4

scheme 1 X6

nodebc 100 4

sidebc 10 2 3

exit

GEN3Dfileforedge 1:

{include(blade. size))

translate {2*il), {x3-x4)

GREPOS files for edge 1:

{include(blade.size))

elope left (atan(ebS(y4-y3)/abS(X4-X3)))

slope right (atan(zbs(y4-y3)/abs(x4-x3))}

0.0 0. 0.

{-ebs(x4-x3)) 0.0 {-abs(Y3-Y4))

end

{include(blade size)}

revcen 0.0 0.0 0.0

revolve y 90.

offset x {x3) y {y3) z {-bthick/2.0)

GEN3Dfileforedge2:

(include(blade size))

tranzlate {lO*il), {x4-x8) 0.8

74

GREPOS files for edge2:

r {include(blade.size))

offset apline

slope left {aten(abs(y5-y4)/abs(x5-x4)))

slope right {atan(abs(y5-yd)/abs(x5-xd)))

0.0 0. 0.

(-abs(x5-x4)) 0.0 (-abs(y4-y5)}

end

exit

r (include(blade.size))

revcen 0.0 0.0 0.0

revolve y 90.

offset x {x4) y {y4) z {-bthick/2.0)

exit

GEN3D file for edge3:

{include(blade. size)}

translate (lO*il), {x9-x6) 1.25

GREPOS files for edge3:

r (include(blade.size))

offset spline

slope left (atan(abs(y6-y5)/abs (x6-x5)))

slope right {atan(abs(y6-y5)/abs (x6-x5))}

0.0 0. 0.

{-ebs(x6-x5)) 0.0 {abs(y5-y6))

end

exit

{include(blade. size)}

revcen 0.0 0.0 0.0

revolve y 90.

offset x {x9) y {y9) z (-bthick/2.0)

GEN3Dfileforedge4:

{include(blade size))

translate {3*il}, {x6-x7}

75

GREPOS files for edgwl:

{include(blade size))

slope left {atan(abs(y7-y6)/abs(x7-x6))}

slope right {atan(abs(y7-y6)/abs (x7-x6)))

0.0 0. 0.
{-sbs(x7-x6)} 0.0 {sbs(Y6-Y7))
end

{include(blade. size))

revcen 0.0 0.0 0.0

revolve y 90.

offset x {x6} y (y6) z (-bthick/2.0)

GEN3D file for edge5:

(include(blade size)}

translate {6*il), {abs(x8-x9))

GREPOSfilesforedge5:

~{include(blade. eize))
*

offset spline

slope top 0.0 {atan(abs(y5-y4)/abs (X5-X4)))

slope bottom 0.0 {-atan(abs(y5-y4)/abs (x5-x4)))

0.0 0.0 0.0

$ (sbs(x8-x9)/4.0} IJ.O -0.048083261
(-abs(x8-x9)/2.0) 0.0 -0.068

$ {3.0*abs(x8-x9)/4.0) 0.0 -0.048083261

{-abs(x8-x9)} 0.0 0.0

end

exit

{include(blade. size))

revcen 0.0 0.0 0.0

revolve y 90.

offset x {x8) y {y8) z {-bthick/2.0)

76

GJOIN file for blade:

edgel. g

combine .000001

combine exit

exit

yes

edge2 .g

combine .000001

combine exit

exit

yea

edge3. g

combine .000001

combine exit

exit

yes

edge4. g

combine .000001

combine exit

exit

yea

edge5. g

combine .01

combine exit

exit

no

blade.g3

GREPOS file for blade:

f
offset y -0.064

exit)

77

FASTQ input for pipel:. .

title
pipe

{include(pipe. size)}
(include(blade. size)}

point 1 {x5} (Y5 - (bthick/2.)/tan(3.14159*30. /180.) - pr - pt)

point 2 (x5) (Y5 - (bthick/2.)/tan(3.14159’30. /180.) - pt }

point 3 {x5) (Y5 - (bthick/2.)/tan(3.14159*30. /180.) }

point 4 {x5) {y5 - (bthick/2.)/tan(3.14159*30. /180.) - 2*pr - pt)

point 5 {x5) {ys - (bthick/2.)/tan(3.14159*30. /180.) - 2*pr -2’pt)

line 1 str 2 3 0 {ithick)

line 2 circ 2 4 1 {irad)

line 3 str 4 5 0 (ithick)

line 4 circ 3 5 1 (irad}

line 5 circ 4 2 1 {irad}

line 6 circ 5 3 1 {irad}

region 1 2 -1 -2 -3 -4

region 2 3 -1 -5 -3 -6

exit

pipe. size:

$ {ithkk=4} (irad=50) {pr=l.0335) {pt=O.154}

$ {ithick2=2) {irad2=25]

$ {Rlength=l.5} {i3=16}

$ {Rlen@h2=3.5) {i4=12}

GEN3D file for pipel:
r

{include(blade size))
*

{include(pipe size))

translate (13) {plength/2.) 1.05

nsets front 100

ssets back 400

exit

I d

78

GREPOS file for pipel :FASTQ input for pipe2:

{include (blade. size))

revcen (x5) 0.0 0.0

revolve y 180

offeet x 0.00001 z (-bthick/2.+0.0001)

\ w
F ●

title

pipe

(include(pipe size))

{include(blade. size))

point 1 {x5} (Y5 - (bthick/2.)/tan(3.14159*30. /180.) - pr - pt)

point 2 {x5} {ys - (bthick/2.)/tan(3.14159*30. /180.) - pt)

point 3 {x5} {y5 - (bthick/2.)/tan(3.14159*30. /180.) }

point 4 {x5) {Y5 - (bthick/2.)/tan(3.14159*30. /180.) - 2*pr - pt)

point 5 {x5) (Y5 - (bthick/2.)/tan(3.14159*30. /180.) - 2*pr -2’pt}

line 1 etr 2 3 0 {ithick2)

line 2 circ 2 4 1 {irad2)

line 3 str 4 5 0 {ithick2}

line 4 circ 3 5 1 (irad2}

line 5 circ 4 2 1 (irad2}

line 6 circ 5 3 1 (irad2)

region 1 4 -1 -2 -3 -4

region 2 5 -1 -5 -3 -6

exit

k 4

GEN3D file for pipe2:

(include(blade. size)}

{include(pipe. size))

tramslate {i4) (plength2) 1.08

aseta front 401

GREPOS file for pipe2:
v

{include(blade size))

(include(pipe.size))

revcen (x5} 0.0 0.0

revolve y 180

offset x 0.00001 z {-bthick/2.+0.0001+plength/2.}

exit

k 4

79

FASTQ input for clamp:-.
P T

title

clamp

{include (pipe. eize) }

{include (blado. size))

{include(clamp. size)}

point 1 -4.0 (Y5 - (bthick/2.)/tan(3.14159’30. /180.) - 2“pr -2”pt)

point 2 4.0 (y5 - (bthick/2.)/tan(3.14159*30. /180.) - 2*pr -2*pt)

point 3 4.0 (Y5 - (bthick/2.)/tan(3.14159*30. /180.) - 2*Pr -2’pt - cheight)

point 4 -4.0 {y5 - (bthick/2.)/tan(3.14159*30. /180.) - 2*pr -2*pt - cheight)

linelstr1208

line2etr2302

line3str3408

line4str4102

region 1 1 -1 -2 -3 -4

nodebc 300 3

sidebc 30 1

exit

k d

clamp.size:

$ {cthick=O.5} {coffset=O.31}

GEN3Dfileforclamp:

{include(blade. size))

{include(pipe. size))

{include(clemp. size))

translate 2 {cthick}

sset back 31

GREPOSfilefor clamp:

(include(blade. size)}

{include(clemp. size))

offset z (cthick+coffset-bthick/2.)

80

GJOIN file for blade, pipe, and clamp:

‘lblade.g
+

pipel.g

no

exit

yee

pipe2. g

no

exit

yea

Clamp.g

no

exit

no

pcut .g

PRONT03D input file:

TITLE

Pipe Cutting Simulation

$hourglaas stiffness 0.01 0.03

TERMINATION TIME = 4.B-3

PI.KITTIMS . 4.e-5

OUTPUT TIMS = 4.e-5

write restart = 8.e-5

function 1

0.0 1.0

1.0 1.0

end

MATERIAL, 1, ELASTIC, .00074

YOUNGS MODULUS, 30E6

POISONS RATIO, .3333

END

MATERIAL, 2, plh strength , .00074

YOUNQS MODULUS, 30E6

POISONS RATIO, .3

yield stress, 38.8e3

hardening constant 93.6e3

hardening exponent 0.4539

luders strain 0.021

failure value 1.27

decay conetant 0.7

BND

MATERIAL , 3, plh etrength , .00074

YOUNQS MODULUS, 30E6

POISONS RATIO, .3

yield strese, 38.8e3

hardening constant 93.6e3

hardening exponent 0.4539

luders strain 0.021

failure value 1.27

decay constant 0.7

END

PRONT03D input fde (contd):
r

NATS3UAL, 4, plh strength , .00074

YOUNUS MODULUS, 30B6

POISONS RATIO, .3

yield stress, 38.8e3

hardening constant 93.6e3

hardening exponent 0.4539

luders strain 0.021

failure value 1.27

decay constant 0.7

END

NATSRIAL, 5, plh etrength , .00074

YOUNGS NODULUS, 30B6

POISONS RATIO, .3

yield stress, 38.8e3
hardening constant 93.6e3
hardening exponent 0.4539
luders strain 0.021
failure value 1.27
decay constant 0.7

mm

death 2 decay min 0.1

death 3 decay m.in 0.1

prescribed VBLOCITY y 200 1 -1187.5

INITIAL VSLOCITY MATSRIAL 1 0. -1187.5 0.

no displacement z 100

no displacement y 300

PLOT HJQ4SNT = vonm.ises, pressure

plot state . eqpe

PLoT NODAL DISPLACXMSNT, REACTION, VELOCITY,

7

AccmAsRATIoN

contact surface 400 401 fixed

CONTACT material 1

CONTACT material 2

CONTACT material 3

SXIT

82

A2.3.5 Elastic-Plastic Bar Impacting Bricks

makefile:

bricks.g2d: bricks.fsq 1

fantq -aprepro -m bricks.g2d -- bricks.fsq

bricks.g: bricks.g2d bricks.gen3d

gen3d bricks.g2d bricks.g <bricks.gen3d

bricks.gx: bricks.g

exoxdr bricke.g bricks.gx

wall.g2d: wall.fsq

fastq -m wall.g2d -- wall.faq

wall.g: wall.g2d wall.gen3d

gen3d wall.g2d wall.g <wall.gen3d

brick_wall.gx: brick_wall.g

exoxdr brick_wall.g brick_wall.gx

rod.g2d: rod.fsq

fastq -m rod.g2d -- rod.faq

rod.g: rod.g2d rod.gen3d

gen3d rod.g2d rod.g <rod.gen3d

brick_wall.g: bricks.g wall.g rod.g

gjoin < brick_wall.gjn .
A

83

FASTQ file for bricks:

TITLE

STSEL ROD EITTINQ BRICRS

$ {e = .005}

POINT 1 {0. +e} (0. +e)

POINT 2 {I.-e} {0. +e}

POINT 3 (I.-e) {.5-e)

POINT 4 (0.+e} (.5-e}

LINB1STR1201O

LINs2sTR2305

LINB3STR3401O

LINE 4 STR4 1 0 5

RRQION 1 1 -1 -2 -3 -4

POINT 11 {1.+e} {0.+e}

POINT 12 {2.-e} (0.+e}

POINT 13 (2.-e) {.5-e)

POINT 14 {1.+e} {.5-e)

LINE 11 STR 11 12 0 10

LINE 12 STR 12 13 0 5

LINE 13 STR 13 14 0 10

LINE 14 STR 14 11 0 5

RBQION 11 1 -11 -12 -13 -14

POINT 21 {2.+e) {0.+e}

POINT 22 {3.-e} {0.+e)

POINT 23 {3.-e) {.5-e}
POINT 24 {2.+e) {.5-e)

LINE 21 STR 21 22 0 10

LINE 22 STR 22 23 0 5

LINS 23 STR 23 24 0 10

LINE 24 STR 24 21 0 5

REGION 21 1 -21 -22 -23 -24

.$SECOND ROW

POINT 101 {0.+e} {.5+e}

POINT 102 {.5-e) {0.5+e}

POINT 103 {.5-e) {I.-e)

POINT 104 {0.+e) (l.-e)

LINE 101 STR 101 102 0 5

LINE 102 STR 102 103 0 5

LINE 103 STR 103 104 0 5

LINE 104 STR 104 101 0 5

REGION 101 1 -101 -102 -103 -104

POINT 111 (.5+e} {.5+e}

POINT 112 {1.5-e} (.5+e}

POINT 113 {1.5-e) {l.-e)

POINT 114 (.5+e) {I.-e}

LXNB 111 STR 111 112 0 10

LINE 112 STR 112 113 0 5

LINS 113 STR 113 114 0 10

LINE 114 STR 114 111 0 5

RBCION 111 1 -111 -112 -113 -114

POINT 121 {1.5+e) {.5+e}

POINT 122 {2.5-e} {0.5+e)

POINT 123 {2.5-e) {l.-e)

POINT 124 {1.5+e} {l.-e)

LINE 121 STR 121 122 0 10

LINE 122 STR 122 123 0 5

LINE 123 STR 123 124 0 10

LINE 124 STR 124 121 0 5

REGION 121 1 -121 -122 -123 -124

POINT 131 {2.5+e) {.5+e)

POINT 132 {3.O-e} (0.5+e}

POINT 133 {3.O-e} {l.-e)

POINT 134 {2.5+e} {l.-e}

LINE 131 STR 131 132 0 5

LINE 132 STR 132 133 0 5

LINE 133 STR 133 134 0 5

LINE 134 STR 134 131 0 5

RSGION 131 1 -131 -132 -133 -134

$ TNIRD ROW

POINT 201 {0.+e) {1.+e)

POINT 202 {l.-e} {1.+e)

POINT 203 {l.-e) {1.5-e)

POINT 204 (0.+e) {1.5-e}

LINE 201 STR 201 202 0 10

LINE 202 STR 202 203 0 5

LXNB 203 STR 203 204 0 10

LINS 204 STR 204 201 0 5

RSGION 201 1 -201 -202 -203 -204

POINT 211 {1.+e) {1.+e)

POINT 212 (2.-e) (1.+e)

POINT 213 {2.-e} (1.5-e)

POINT 214 {1.+e) {1.5-e}

84

FASTQ file for bricks (contd):

LINS 211 STR 211 212 0 10 REGION 321 1 -321 -322 -323 -324

LINE 212 STR 212 213 0 5

LINE 213 STR 213 214 0 10

LINE 214 STR 214 211 0 5

REGION 211

POINT 221

POINT 222

1 -211 -212 -213 -214

2.+e} {1. +e)

3.-e} {1. +e)

POINT 223 {3.-e} (1.5-e}
POINT 224 {2.+e} {1.5-e)

LINB 221 STR 221 222 0 10

LINS 222 STR 222 223 0 5

LINE 223 STR 223 224 0 10

LINE 224 STR 224 221 0 5

RSGION 221 1 -221 -222 -223 -224

PoINT 331 {2.5+e} {1.5+e)

POINT 332 {3.O-e) {1.5+e)

POINT 333 {3.O-e) {2.-e)

POINT 334 {2.5+e) {2.-e}

LINS 331 STR 331 332 0 5

LINB 332 STR 332 333 0 5

LINB 333 STR 333 334 0 5

LINS 334 STR 334 331 0 5

REGION 331 1 -331 -332 -333 -334

$ FIFTH ROW

POINT 401 {0.+e) {2.+e}
POINT 402 {l.-e} {2. +e)

POINT 403 (I.-e) {2.5-e)

POINT 404 {0.+e) {2.5-e)

$ FOURTS ROW

POINT 301 {0.+e)

POINT 302 {.5-e}

POINT 303 {.5-e}

POINT 304 {0.+e}

LINB 301 STR 301

LINS 302 STR 302

LINE 303 STR 303

LINB 304 STR 304

{1.5+e}

(1.5+e)

{2.O-e}

{2.O-e)

302 0 5

303 0 5

304 0 5

301 0 5

RKGION 301 1 -301 -302 -303 -304

POINT 311 {.5+e} (1.5+e)

POINT 312 (1.5-e} {1.5+e)

POINT 313 (1.5-e) {2.-e}

POINT 314 (.5+e) {2.-e)

LINE 311 STR 311 312 0 10

LINE 312 STR 312 313 0 5

LINS 313 STR 313 314 0 10

LINE 314 STR 314 311 0 5

RSGION 311 1 -311 -312 -313 -314

POINT 321 {1.5+e} (1.5+e)

POINT 322 {2.5-e) (1.5+e)

POINT 323 {2.5-e} {2.-e}

POINT 324 {1.5+e) {2.-e}

LINE 321 STR 321 322 0 10

LINE 322 STR 322 323 0 5

LINS 323 STR 323 324 0 10
T.TNR ~2A .STR ~2A 791 (l ~

LINS 401 STR 401 402 0 10

LINS 402 STR 402 403 0 5

LINB 403 STR 403 404 0 10

LINE 404 STR 404 401 0 5

REGION 401 1 -401 -402 -403 -404

POINT 411 {1.+e) {2.+e)

POINT 412 (2.-e) {2. +e)

POINT 413 {2.-e} {2.5-e)

POINT 414 {1.+e} {2.5-e)

LINS 411 STR 411 412 0 10

LINE 412 STR 412 413 0 5

LINB 413 STR 413 414 0 10

LINB 414 STR 414 411 0 5

REGION 411 1 -411 -412 -413 -414

POINT 421 {2.+e} {2. +e}

POINT 422 {3.-e) {2. +e}

POINT 423 (3.-e} {2.5-e]

POINT 424 {2.+e} {2.5-e)

LINS 421 STR 421 422 0 10

LINS 422 STR 422 423 0 5

LINB 423 STR 423 424 0 10

LINE 424 STR 424 421 0 5

REGION 421 1 -421 -422 -423 -424

EXIT

85

GEN3D file for bricks:

translate 3 .6

FASTC) file for wall:

~
*

wall

point 1 5.5 0.
point 2 5.85355 .35355

point 4 .5 5.

point 3 .85355 5.35355

line lstr 1205

line 2 str 2 3 0 70

line3s.tr3405

line 4 str 4 1 0 70

region 1 3 -1 -2 -3 -4

exit

GEN3Dfileforwall:

translate 9 1.5

offset 0.05 0.05 .5

FASTQ file for rod:

brick wall example

!$STEEL ROD

POINT 500 1.25 0.

POINT 501 1.75 0.

POINT 502 1.75 -.5

POINT 503 1.25 -.5

LINE 501 STR 500 501 0 5

LINE 502 STR 501 502 0 5

LINS 503 STR 502 503 0 5

LINS 504 STR 503 500 0 5

REGION 500 2 -501 -502 -503 -504

SXIT

GEN3Dfilefor rod:

translate 30 5

offset O. 0. 3.

86

GREPOS file for bricks, wall, and rod:
.,,

bricks.g

wall.g

no

exit

yes

rod. g

no
P exit

i no

brick_wall.g

PRONT03Dinput file:

title

MULTI-BOBY CONTACT test problem

TMU41NATION TIMB = .0005

PLOT TIM = .00001

OUTPUT TIMB = .00001

MATBRIAL, 1, ELASTIC, .00074

YOUNCJS MODULUS, 30E6

POISONS RATIO, .3333

END

MATERIAL, 2, ELASTIC, .0074

YOUNGS MODULUS, 30E6

POISONS RATIO, .3333

END

MATBRIAL, 3, ELASTIC plastic, .0005

YOVNGS MODULUS, 16X6

POISONS RATIO, .3333

hardening modulus 1000.

beta = 1

yield stress = 10000.

END

INITIAL VBLOCITY MATSRIAL 2 0. , 2500. , 0.

PLOT ELEMBNT =

PLOT NODAL DISPLACEMENT, VSLOCITY, ACCELERATION

CONTACT MATERIAL 1

CONTACT MATSRIAL 2

CONTACT MATERIAL 3

BXIT

87

A2.3.6 Forging of a Copper Billet

FASTQ file:

RIVET PROBLKM FOR CONTACT SURPACB CHECK

POINT 1 0.0 0.0

POINT 2 2.0 0.0

POINT 3 2.2 0.0

POINT 4 0.0 0.2

POINT 5 2.0 0.2

POINT 6 2.2 0.2

POINT 7 2.0 2.95

POINT 8 2.2 3.0

POINT 9 4.0 3.0

POINT 10 2.0 3.2

POINT 11 2.25 3.2

POINT 12 4.0 3.2

POINT 13 0.0 0.2

POINT 14 1.75 0.2

POINT 15 1.75 6.2

POINT 16 0.0 6.2

POINT 17 0.0 6.2

POINT 18 4.0 6.2

POINT 19 4.0 7.2

POINT 20 0.0 7.2

POINT 21 2.25 3.0

POINT 22 2.20 2.95

POINT 23 2.25 2.95

LINE 1 STR1 3 0 1

LINB2STR32201

LINE 3 STR 21 9 0 1

LINB4STR4501

LINB 5 STR5 7 0 1

LINE 6 STR 11 12 0 1

LINB 7 STR1 4 0 1

LINB 8 STR 5 3 0 1

LINE 9 STR 8 10 0 1

LINB 10 STR 9 12 0 1

LINE 13 STR 13 14 0 20

LINS 14 STR 14 15 0 80

LINE 15 STR 16 15 0 20

LINB 16 STR 13 16 0 80

LINE 17 STR 17 18 0 1

LINB 18 STR 18 19 0 1

LINE 19 STR 20 19 0 1

LINB 20 STR 17 20 0 1

LINB 21 CIRC 21 22 23 45
LINB 22 CIRC 11 7 23 45

LINB 23 STR 7 22 0 1

LINB 24 STR 21 11 0 1

REGION 1 1 -1 -8 -4 -7

REGION 2 1 -2 -23 -5 -8

REGION 3 1 -3 -10 -6 -24

RBGION 4 2 -13 -14 -15 -16

RB1310N 5 3 -17 -18 -19 -20

REGION 6 1 -21 -24 -22 -23

NODBBC 3 1 2 3 4 5 6 21 22

NODXBC 1 16 17 18 19 20

NODEBC 2 17 18 19 20

SIDBBC 100 4 5 6 22

SIDBBC 200 13 14 15

SIDEBC 300 17

SIDEBC 400 14 15

(\ BXIT .

88

SANTOS2D input file:

TITLE

RIVET PROBLEM - CRECK FOR CONTACT SURFACES

AXISYMMBTRIC

STEP CONTROL

500 1.

END

OUTPUT TIMB

10 1.

END

PLOT TIME

5 1.

XND

TIME STEP SCALE = 0.75

MINIMUM DAMPINQ FACTOR = .8

RESIDUAL TOLERANCE, 0.5
MAXIMUM TOLBRANCB, 100.

MAXIMUM ITERATIONS, 2000

INTERMEDIATE PRINT, 10

PLOT NODAL = DISPLACEMENT

PLOT STATE = EQPS

PLOT ELXMENT = VONMISES, PRESSURE, STRESS, STRAIN

FUNCTION, 1

0.0,0.0

1.0,1.0

END

MATBRIAL, 1, BLASTIC, 1.

YOUNGS MODULUS = 30.x6

POISSONS RATIO = 0.3
END

MATERIAL, 2, EP POWER HARD, 1.

YOUNGS MODULUS = 17.0E+6

POISSONS RATIO = 0.35

SARDENINC3 CONSTANT = 50.0E+3

SARDENINQ EXPONENT = .31

YIELD STRESS = 15.5E+3

LUDER STRAIN = 0.0

END

MATERIAL, 3, ELASTIC, 1.

YOUNQS MODULUS = 30.E+6,

POISSONS RATIO = 0.3

END

CONTACT SURFACE, 100, 200, 0., 1.E-10

CONTACT SURFACE, 300, 400, 0., 1.B-10

NO DISPLACEMENT, X, 3

NO DISPLACBMBNT, Y, 3

NO DISPLACEMENT, X, 1

PRESCRIBED DISPLACEMENT, Y, 2, 1, -2.5

EXIT

89

DISTRIBUTION:

1 Dr. R. T. Allen
Pacifica Technology
P.O. BOX 148
Del Mar, CA 92014

3 Anatech International Corp.
5435 Oberlin Drive
San Diego, CA 92121
Attn: Dr. R. A. Dameron

Dr. R. S. Dunham
Dr. Joe Rashid

Prof. S. Atluri
Center for the Advancement of

Computational Mechanics
School of Civil Engineering
Georgia Institute of Technology
Atlanta, GA 30332

Dr. Ali S. Argon
Dept. of Mechanical Engineering
Massachusetts Institute of

Technology
Cambridge, MA 02139

Dr. William E. Bachrach
Areojet Research Propulsion Inst.
P. O. BOX 13502
Sacramento, CA 95853-4502

Mr. Ken Bannister

USA Ballistic Research Lab
SLCBR-IB-M
Aberdeen Proving Grounds, MD
21005-5066

3 Battelle
505 King Avenue
Columbus, OH 43201-2693
Attn: Mr. R. Douglas Everhart

Dr. Michael L. Fisher
Mr. Charles R. Hargreaves

Prof. T. Belytschko
Department of Civil Engineering
Northwestern University
Evanston, IL 60201

Mr. Winy Benz
University of Arizona
Steward Observatory
Tucson, AZ 85321

Mr. Naury K. Birnbaum
Century Dynamics Incorporated
7700 Edgewater Dr., Suite 626
Oakland CA 94621

Mr. Akif O. Bolukbasi
McDonnell Douglas Helicopter

Company
5000 East McDowell Road
Mesa, AZ 85205-9797

Dr. Kenneth W. Brown
Computer Aided Engineering

Associates, Inc.
398 Old Sherman Hill Rd.
Woodbury, CT 06798

Mr. Malcolm Burgess
AEA Transport Technology
205/B71 Winfrith Technology Centre
Dorchester, Dorset DT2 8DH
United Kingdom

Mr. Mark Campbell
PASTDCO
1248 Princeton N.E.
Albuquerque, NM 87106

Dr. Tom Canfield
Argonne National Laboratories
9700 S. Cass Ave CTD/221
Argonne, IL 60439-4844

Mr. Ted Carney
Advanced Sciences Inc.
6739 Academy Road N.E.
Albuquerque, NM 87109

Mr. Tien S. Chou
EG&G Mound
P.O. Box 3000
Miarnisburg, OH 45343

Mr. Chuck Charman
GA Technologies
P.O. BOX81608
San Diego, CA 92138

Mr. Ken K. Chipley
Martin Marietta Energy Systems
P.O. BOX2009
Oak Ridge, TN 37831-8053

Mr. Ken P. Chong
Dept. of Civil Engineering
University of Wyoming
Laramie, WY 82071

Dr. S. C. (Tony) Chou
U.S. Army Materials Technology Lab
SLCMT-BM
Watertown, MA 02172-0001

Mr. Dwight Clark
Mail Stop 281
Morton Thiokol Corp.
P. O. BOX524
Brigham City, UT 84302

Mr. Gregory Clifford
Cray Research Park
655E Lone Oak Drive
Eagan,MN55121

Mr. Gerald Collingwood
Morton Thiokol, Inc.
Huntsville, AL 35807-7501

Mr. David L. Conover
Swanson Analysis Systems, Inc.
P. O. BOX65
Houston, PA 15342-0065

Prof. Steven M. Cramer
University of Wisconsin
2266 Engineering Building
1415 Johnson Drive
Madison, WI 53706

Mr. Steven Crouch
GeoLogic Research, Inc.
1313 Fifth St. SE, Suite 226
Minneapolis, MN 55414

Dr. Ian Cullis
XTZ Division
Royal Armament R&D

Establishment
Fort I-Edstead
Sevenoaks, Kent
United Kingdom

Mr. Peter Cundall
ITASCA Consulting Group, Inc.
1313 Fifth Street, S.E.
Minneapolis, MN 55414

Mr. Richard E. Danell
Research Officer
Central Research Laboratories
BHP Research& New Technology
P.O. Box 188
Wallsend NSW 2287
Australia

Mr. William A. Danne
Strategic Systems Division, MS#50
Teledyne Brown Engineering
P.O. Box 07007
Huntsville, AL 35807-7007

Dr. C. S. Desai
Dept. of Civil Eng. & Eng. Mech.
The University of Arizona
Tucson, AZ 85721

Mr. Ramji Digumarthi
Org. 8111, Bldg. 157 -
Lockheed MSD
P.O. Box 3504
Sunnyvale, CA 94088-3504

Prof. Robert Dodds, Jr.
Department of Civil Engineering
3140 Newmark Laboratory, MC-250
University of Illinois at Urbana
Urbana, IL 61801-2397

Dr. Arlo Fossum
RE/SPEC Inc.
BOX725
Rapid City, SD 57709

Dr. Russel Garnsworthy
CRA Advanced Tech Development
G.P.O. BOX384D
Melbourne 3001, Australia

Prof. Lorna Gibson
Department of Civil Engineering
Room 1-232
Massachusetts Institute of

Technology
Cambridge, MA 02139

2 Goodyear Technical Center
P.O. Box 3531
Akron, OH 44309-3531
Attn: Mr. Loren K. Miller

Mr. David Wismer, D/410F

Dr. Gerry Goudreau
Methods Development Group
Mechanical Engineering Department
Lawrence Livermore National Lab
Livermore, CA 94550

Prof. O. Hayden Griffin, Jr.
Dept. of Eng. Science & Mechanics
Virginia Polytechnic Institute and
State University
Blacksburg, VA 24061-0219

2 Grumman Corporate Technology
Bethpage, NY 11714-3580
Attn: Dr. John M. Papazian

Dr. Allan B. Pifko

Mr. H. L. Hassenpflug
B&W Fuel Company
P.O. Box 10935
3315 Old Forest Rd
Lynchburg, VA 24501

5 Hibbitt, Karlsson & Sorrensen, Inc.
100 Medway St.
Providence, RI 02906
Attn: Dr. David Hibbitt

Dr. Joop Nagtegaal
Dr. D. P. Flanagan
Dr. L. M. Taylor
Dr. W. C. Mills-Curran

Mr. Richard Hilson
M/s 4009
GTE Government Systems
Corporation
P.O. BOX7188
Mountain View, CA 94039

Mr. Douglas Holzhauer
Rome Air Development Center
Griffiss AFB, NY 13441

Dr. William Hufferd
United Technologies
Chemical Systems Division
P.O. Box 50015
San Jose, CA 95150-0015

Prof. T. J. R. Hughes
Dept. of Mechanical Engineering
Stanford University
palo Alto, CA 94306

Mr. James P. Johnson
Rm L 120, CPC Analysis Dept.
General Motors Corp. Engineering

Center
30003 Van Dyke Avenue
Warren, MI 48090-9060

Mr. Jerome B. Johnson
USACRREL
Building 4070
Ft. Wainwright, AK 99703

Mr. Ken Johnson
Theoretical and Applied Mechanics

Group
Battelle Pacific Northwest

Laboratories
P.O. Box 999
Richland, WA 99352

Dr. Gordon R. Johnson
Honeywell, Inc.
5901 S. County Rd. 18
Edina, MN 55436

Mr. James W. Jones
Swanson Service Corporation
18700 Beach Blvd.
Suite 200-210
Huntington Beach, CA 92648

Mr. Sheldon Jones
Kaman Sciences
P.O. BOX 7463
Colorado Springs, CO 80933-7463

Mr. G. A. Kaepp
Ford Motor Company
P.O. Box 2053, Room 2019
Dearborn, MI 48124

Dr. David W. Keck
CONVEX Computer Corporation
P.O. BOX833851 M.S. MAR
Richardson, TX 75083-3851

Mr. Gary Ketner
Applied Mechanics and Structures
Battelle Pacific Northwest

Laboratories
P.O. Box 999
Richland, WA 99352

Dr. Sam Key
RE/SPEC Inc.
4775 Indian School NE, Suite 300
Albuquerque, NM 87110-3827

Prof. Raymond D. Krieg
Engineering Science and Mechanics
301 Perkins Hall
University of Tennessee
Knoxville, TN 37996-2030

Mr. Don D. Kunard
Analytical Systems Engineering

Corp.
1725 Jefferson Davis Hwy, Suite212
Arlington, VA 22202

Mr. Brett Lewis
APTEK
1257 Lake Plaza Drive
Colorado Springs, CO 80906-3578

Norman A. Lindsey
MCAE Technical Marketing
CONVEX Computer Corporation
P. O. BOX833851 M.S. MAR
Richardson, TX 75083-3851

Mr. Trent R. Logan
Rockwell International Corp.
P.O. BOX 92098
Los Angeles, CA 90009

/7

.
f

f

,

34 Los Alarnos National Laboratory
LOSAklIllOS, NM 87545
Attn:

J. Hopson, T3, MS B216
R. Hill, P15, MS D44
J. P. Hill,WX-11, MS C931
D. J. Sandstorm, MST-DO, MSG756
K. A. Meyer, X-3 MS F663
W. A. Cook, N-6, MS K557
P. T. Maulden, N-6, MS K557
J.J.Ruminer,WX-11, MSC931
S. P. Girrens, MEE- 13, MS J576
J. L. Fales, MEE-13, MS J575
J. D. Allen, MEE-4, MS G787

D. A. Rabem, MEE-4, MS G787
M. W. Burkett, MEE-4, MS G787
J. H. Fu, MEE-4, MS G787
P. R. Romero, MEE-4, MS G787
P.S. Follansbee, MST-DO,MS G756
D. Mandell, X-3, MS F663
R. F. Davidson, N-6, MS K557
J. N. Johnson, N-6, MS K557
J. K. Dienes, N-6, MS K557
S. Marsh, N-6, MS K557
L. H. Sullivan, N-6, MS K557
D. L. Jaeger,WX-11, MS K557
C. A. Anderson, MEE-13, MS J576
J. G. Bennett, MEE-13, MS J576
T. A. Butler, MEE- 13, MS J576
D. C. Nelson, MEE-4, MS G787
R. B. Parker, MEE-4, MS G787
M. W. Lewis, MEE-4, MS G787
E. S. Idar, MEE-4, MS G787
B. M. Wheat, MEE-4, MS G787
F. Guerra, WX- 11, MSC931
C. Wingate, MS F645
B. Stellingwerf, MS F645

Dr. Jack Maison
Engineering Cybernetics, Inc.
1856 Lockhill Selma Rd, Suite 105
San Antonio, TX 78213

Mr. Joseph Marti
Hamilton Standard Division of

United Technologies
M/S 1-3-BC52
One Hamilton Road
Windsor Locks, CT 06096-1010

Mr. Darin McKinnis
NASA Pyrotechnics Group, MS EP5
LBJ Space Center
Houston, TX 77058

Mr. Craig Miller
Unit 973
Neutron Devices Department
General Electric Company
P.O. BOX2908
Large, FL 34294-2908

2 Lockheed Missiles and Space Co.
P. O. Box 3504
Sunnyvale, CA 94088-3504
Attn:

Mr. J. J. Murphy, 59-22 B/580
Mr. Brian M.Cuthbert,81-12 B/157

Prof. V. D. Murty
School of Engineering
University of Portland
5000 N. Willamette Blvd.
Portland, OR 97203

2 Naval Surface Warfare Center
10901 New Hampsure Ave.
Silver Spring, MD 20903-5000
Attn:

Mr. Hans Mair, Code R14
Mr. Andrew Wardlaw Jr. Code R44

2 Naval Research Lab
Materials Science & Technology
Building 28, Code 6386
4555 Overlook Avenue SW
Washington, DC 20375-5000
Attn: Mr. Luther D. Flippen

Dr. Carl Dyka

Dr. R. E. Nickell
c/o Anatech International Corp.
5435 Oberlin Drive
San Diego, CA 92121

Mr. Dean Norman
Waterways Experiment Station
P.O. BOX631
Vicksburg, MS 39180

2 Office of Naval Research
Structural Mechanics Div. (Code 434)
800 N. Quincy Street
Arlington, VA 22217
Attn: Dr. Rembert Jones

Dr. Alan S. Kushner

Mr. Shane R. Page
Albuquerque Valve & Fitting
Company
2451 Alamo S.E.
Albuquerque, NM 87106

Dr. Robert Pardue
Martin Marietta, MS 2
Y-12 Plant, Bldg. 9998
Oak Ridge, TN 37831

Dr. T. Kim Parnell
Failure Analysis Associates, Inc.
P.O. Box 3015
Menlo Park, CA 94025

Dr. Philip A. Pfund
Babcock & Wilcox
P.O. BOX271
Barberton, OH 44203

Mr. Mitchell R. Phillabaum
Monsanto Research Corp.
MRC-MOUND
Miamisburg, OH 45342

4 Phillips Laboratory (AFSC)
Kirtland AFB, NM 87117-6008
Attn:

Firooz Allahdadi, PLAVSSD
David Amdahl, PL/WSSD
David Medina, PL/WSSD
David H. Hilland, PLAVSSH

3 POD Associates, Inc.
2309 Renard Pl, Suite 201
Albuquerque, NM 87106
Attn: Mr. Dale R. Atkinson

Mr. Steven F. Rieco
Dr. Alan J. Watts

2 Pratt& Whitney Aircraft
400 Main St.
East Hartford, CT 06108
Attn: John Cowles, MS 118-38

Mick Bruskotter, MS 114-38

Dr. Harold E. Read
S-Cubed
P.O. BOX 1620
La Jolla, CA 92038-1620

Dr. Douglas Reeder
Hardening Technology Dept.
General Research Corp.
P.O. BOX6770
Santa Barbara, CA 93160-6770

Prof. J. A. Reuscher
Texas A & M
Dept. of Nuclear Engineering
College Station, Texas 77843

2 Reynolds Metals Company
1941 Reymet Road
Richmond, VA 23237
Attn: Mr. Stephen P. Sunday

Mr. Armand Beaudoin

Mr. J. S. (Gus) Rice
Caterpillar Inc. Technical Center
Division 927
P.O. BOX 1875
Peoria, IL 61656-1875

Mr. Samit Roy
Dept. of Engineering Mechanics
Southwest Research Institute
P.O. Drawer 28510
San Antonio, TX 78284

R. G. Sauv6
Applied Mechanics Section
Mechanical Research Department
Ontario Hydro
700 University Avenue
C26
Toronto, Ontario M5G 1X6
Canada

Mr. Donald W. Sandidge
AMSMI-RLA
U.S. Army Missile Command
Redstone Arsenal, AZ 35898-5247

Mr. Steven Sauer
Ktech Corporation
901 Pennsylvania Ave NE
Albuquerque, NM 87110

Mr. Martin Schmidt, M/S 4G09
WL/MNSA
Eglin AFB, FL 32542-5434

Mr. Luka Serdar, Jr.
Kaman Sciences Corporation
AviDyne Office
83 Second Ave
Burlington, MA 01803-4479

Mr. Mark E. Smith
Arvin Calspan Corp.
AEDC Division, M/S 440
Arnold AFB, TN 37389-9998

Mr. Ray Stoudt
Lawrence Livermore National Lab
P.O. BOX 808, L200
Liverrnore, CA 94550

Prof. D. V. Swenson
Mechanical Engineering Department
Kansas State University
Manhattan, KS 66506

Mr. David W. Sykora
U.S. Army Corps of Engineers
Waterways Experimental Station
P.O. BOX631
Vicksburg, MS 39180

Mr. Sing C. Tang
Rm 3039 Scientific Lab
P. O. BOX2053
Dearborn, MI 48121-2053

2 Spokane Research Center
U.S. Bureau of Mines
315 Montgomery Avenue
Spokane, WA 99207-2291
Attn: Mr. J. Donald Dixon

Dr. Hamid Maleki

2 TRW Ballistic Missiles Division
Bldg 527, Rrn 709
P.O. Box 1310
San Bemadino, CA 92402
Attn: Dr. Mike Katona

Mr. Richard Lung

Mr. Harvey Singer
Science Applications International
P.O. Box 1303
McLean, VA 22102-1303

4 United Technologies Research Center
411 Silver Lane
East Hartford, CT 06108
Attn: Dave Edwards, MS 129-13

Robert LaBarre, MS 129-20
Tony Giamei, MS 129-22
Tom Vasko

2 Department of Applied Mechanics
and Engineering Sciences
University of California San Diego
La Jolla, CA 92093
Attn: Prof. S. Nemat-Nasser

Prof. Dave Benson

3 Department of Aerospace
Engineering and Engineering
Mechanics

The University of Texas at Austin
Austin, TX 78712-1085
Attn: Prof. E. B. Becker

Prof. J. T. Oden
Prof. M. Stem

Mr. David Wade, 36E
Bettis Atomic Power Laboratory
P.O. Box 79
West Miffland, PA 15122

Dr. Krishan K. Wahi
Gram, Inc.
1709 Moon NE
Albuquerque, NM 87112

Dr. Paul T. Wang
Fabricating Technology Division
Alcoa Technical Center
Alcoa Center, PA 15069

Dr. Ted B. Wertheimer
MARC Analysis Research

Corporation
260 Sheridan Ave, Suite 309
Palo Alto, CA 94306

4 Westinghouse Electric Corporation
Bettis Atomic Power Laboratory
P.O. Box 79
West Mifflin, PA 15122-0079
Attn: Todd Hoover

Claire Knolle
Dan Kotcher
Wayne Long

Prof. Tomasz Wlerzbicki
Dept. of Ocean Engineering
Massachusetts Institute of

Technology
Cambridge, MA 02139

Prof. John Wilson
Department of Geoscience
NM Institute of Mining &

Technology
Socorro, NM 87801

Mr. Philip J. Winters
Chicago Bridge & Iron
1501 North Division Street
Plainfield, IL 60544

Dr. John F. Wohler
Land Systems Division
General Dynamics
P.O. BOX2074
Warren, MI 48090-2074

Dr. Albert Yao
SMCRI-SEE-A
Rock Island Arsenal
Rock Island, IL 61299-5000

Mr. Jerry Zimmerlee
Manager, Engineering Analysis
Johnson Controls, Inc.
P. O. BOX8010
Plymouth, MI 48170

Mr. J. A. Zukas
Computational Mechanics

Consultants, Inc.
8600 La Salle Road, Suite 614
Towson, MD 21204

1200
1239
1400
1425

10 1425
1425
1425

50 1425
1431
1431
1434
1500
1501
1502
1511
1512
1513
1551
1552
1553
1554

15 1561
10 1561
14 1562
2 1562
2 1562

1832
1912
2565
2814
5600
5941
6000
6112
6112
6113
6113

George Allshouse
Frank Dempsey
Ed Barsis
Johnny Biffle
Stephen Attaway
Mark Blanford
William Bohnhoff
Marilyn Smith
Michael McGlaun
James Peery
David Martinez
D. J. McCloskey
Carl Peterson
Paul Hommert
J. S. Rottler
A. C. Ratzel
R. D. Skocypec
W. P. Wolfe
C. E. Hailey
W. L. Hermina
W. H. Rutledge
Harold Morgan and Staff
Martin Heinstein
Robert Thomas and Staff
Frank Mello
Jeff Swegle
Jeanne Ramage
William Mason
Stephen Montgomery
Randall Lober
Dennis Hayes
John Schamaun
Dan Hartley
Dale Preece
Norman Warpinski
Stephen Bauer
Brian Ehgartner

6313
6313
6313
6313
6316
6500
6514
6515
6522
6642

5 7141
7151

10 7613-2

8523-2
8702
8712
8240
8741
8742
8743
8743
8743
8743
8743
8743
8744
8745

John Holland
Joseph Jung
John Pott
Alex Treadway
Mike Wemig
James Rice
Jim Fisk
Mike Rightley
Joel Miller
Douglas Ammerman

Technical Library
Technical Publications
Document Processing for

DOE/OSTI
Central Technical Files
Bill Robinson
Kim Mahin
George Johnson
Michael Chiesa
Bruce Kistler
Melvin Callabresi
Douglas Bamrnann
Juanita Benson
Lee Bertram
Mark Horstemeyer
James Lathrop
Arthur Ortega
William Winters

THIS PAG?3 INTENTIONALLY LEFT BLJl!!?(

	TABLE OF CONTENTS
	1. INTRODUCTION
	2. SURVEY OF CONTACT DETECTION ALGORITHMS AND MOTIVATION FOR CURRENT WORK
	2.1 NEIGHBORHOOD IDENTIFICATION
	2.2 DETAILED CONTACT CHECK
	2.3 MOTIVATION FOR CURRENT WORK

	3. NEW CONTACT DETECTION ALGORITHM
	3.1 NEW NEIGHBORHOOD IDENTIFICATION STRATEGY
	3.2 NEW DETAILED CONTACT CHECK
	3.3 SUMMARY OF NEW CONTACT DETECTION ALGORITHM

	4. SURFACE DEFINITION ALGORITHM
	5. EXAMPLE PROBLEMS
	5.1 CONTACT OF ELASTIC BLOCKS
	5.2 CONTACT CHATTER UNDER HIGH NORMAL LOADS: PRESSURE LOADING OF TWO ELASTIC BODIES
	5.3 SELF-CONTACTING IMPACT: BUCKLING OF SHELL-LIKE STRUCTURES
	5.4 AUTOMATIC CONTACT SURFACE REDEFINITION: CUTTING OF A STEEL PIPE
	5.5 MULTI-BODY IMPACT: ELASTIC-PLASTIC BAR IMPACTING BRICKS
	5.6 LARGE SLIDING CONTACT: ELASTIC-PLASTIC FORGING OF A COPPER BILLET

	6. CONCLUSIONS
	7. REFERENCES
	A1. APPENDIX 1: DERIVATION OF VELOCITY BASED CONTACT CHECK
	A2. APPENDIX 2: USER INSTRUCTIONS AND EXAMPLE INPUT FILES
	LIST OF TABLES
	LIST OF FIGURES

